]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/pci/vmd.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / x86 / pci / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR      0
31 #define VMD_MEMBAR1     2
32 #define VMD_MEMBAR2     4
33
34 /*
35  * Lock for manipulating VMD IRQ lists.
36  */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41  * @node:       list item for parent traversal.
42  * @rcu:        RCU callback item for freeing.
43  * @irq:        back pointer to parent.
44  * @virq:       the virtual IRQ value provided to the requesting driver.
45  *
46  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47  * a VMD IRQ using this structure.
48  */
49 struct vmd_irq {
50         struct list_head        node;
51         struct rcu_head         rcu;
52         struct vmd_irq_list     *irq;
53         unsigned int            virq;
54 };
55
56 /**
57  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58  * @irq_list:   the list of irq's the VMD one demuxes to.
59  * @vmd_vector: the h/w IRQ assigned to the VMD.
60  * @index:      index into the VMD MSI-X table; used for message routing.
61  * @count:      number of child IRQs assigned to this vector; used to track
62  *              sharing.
63  */
64 struct vmd_irq_list {
65         struct list_head        irq_list;
66         struct vmd_dev          *vmd;
67         unsigned int            vmd_vector;
68         unsigned int            index;
69         unsigned int            count;
70 };
71
72 struct vmd_dev {
73         struct pci_dev          *dev;
74
75         spinlock_t              cfg_lock;
76         char __iomem            *cfgbar;
77
78         int msix_count;
79         struct msix_entry       *msix_entries;
80         struct vmd_irq_list     *irqs;
81
82         struct pci_sysdata      sysdata;
83         struct resource         resources[3];
84         struct irq_domain       *irq_domain;
85         struct pci_bus          *bus;
86
87 #ifdef CONFIG_X86_DEV_DMA_OPS
88         struct dma_map_ops      dma_ops;
89         struct dma_domain       dma_domain;
90 #endif
91 };
92
93 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
94 {
95         return container_of(bus->sysdata, struct vmd_dev, sysdata);
96 }
97
98 /*
99  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100  * but the MSI entry for the hardware it's driving will be programmed with a
101  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
102  * domain into one of its own, and the VMD driver de-muxes these for the
103  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
104  * and irq_chip to set this up.
105  */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108         struct vmd_irq *vmdirq = data->chip_data;
109         struct vmd_irq_list *irq = vmdirq->irq;
110
111         msg->address_hi = MSI_ADDR_BASE_HI;
112         msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index);
113         msg->data = 0;
114 }
115
116 /*
117  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
118  */
119 static void vmd_irq_enable(struct irq_data *data)
120 {
121         struct vmd_irq *vmdirq = data->chip_data;
122
123         raw_spin_lock(&list_lock);
124         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
125         raw_spin_unlock(&list_lock);
126
127         data->chip->irq_unmask(data);
128 }
129
130 static void vmd_irq_disable(struct irq_data *data)
131 {
132         struct vmd_irq *vmdirq = data->chip_data;
133
134         data->chip->irq_mask(data);
135
136         raw_spin_lock(&list_lock);
137         list_del_rcu(&vmdirq->node);
138         raw_spin_unlock(&list_lock);
139 }
140
141 /*
142  * XXX: Stubbed until we develop acceptable way to not create conflicts with
143  * other devices sharing the same vector.
144  */
145 static int vmd_irq_set_affinity(struct irq_data *data,
146                                 const struct cpumask *dest, bool force)
147 {
148         return -EINVAL;
149 }
150
151 static struct irq_chip vmd_msi_controller = {
152         .name                   = "VMD-MSI",
153         .irq_enable             = vmd_irq_enable,
154         .irq_disable            = vmd_irq_disable,
155         .irq_compose_msi_msg    = vmd_compose_msi_msg,
156         .irq_set_affinity       = vmd_irq_set_affinity,
157 };
158
159 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
160                                      msi_alloc_info_t *arg)
161 {
162         return 0;
163 }
164
165 /*
166  * XXX: We can be even smarter selecting the best IRQ once we solve the
167  * affinity problem.
168  */
169 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd)
170 {
171         int i, best = 0;
172
173         raw_spin_lock(&list_lock);
174         for (i = 1; i < vmd->msix_count; i++)
175                 if (vmd->irqs[i].count < vmd->irqs[best].count)
176                         best = i;
177         vmd->irqs[best].count++;
178         raw_spin_unlock(&list_lock);
179
180         return &vmd->irqs[best];
181 }
182
183 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
184                         unsigned int virq, irq_hw_number_t hwirq,
185                         msi_alloc_info_t *arg)
186 {
187         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(arg->desc)->bus);
188         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
189
190         if (!vmdirq)
191                 return -ENOMEM;
192
193         INIT_LIST_HEAD(&vmdirq->node);
194         vmdirq->irq = vmd_next_irq(vmd);
195         vmdirq->virq = virq;
196
197         irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip,
198                             vmdirq, handle_untracked_irq, vmd, NULL);
199         return 0;
200 }
201
202 static void vmd_msi_free(struct irq_domain *domain,
203                         struct msi_domain_info *info, unsigned int virq)
204 {
205         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
206
207         /* XXX: Potential optimization to rebalance */
208         raw_spin_lock(&list_lock);
209         vmdirq->irq->count--;
210         raw_spin_unlock(&list_lock);
211
212         kfree_rcu(vmdirq, rcu);
213 }
214
215 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
216                            int nvec, msi_alloc_info_t *arg)
217 {
218         struct pci_dev *pdev = to_pci_dev(dev);
219         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
220
221         if (nvec > vmd->msix_count)
222                 return vmd->msix_count;
223
224         memset(arg, 0, sizeof(*arg));
225         return 0;
226 }
227
228 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
229 {
230         arg->desc = desc;
231 }
232
233 static struct msi_domain_ops vmd_msi_domain_ops = {
234         .get_hwirq      = vmd_get_hwirq,
235         .msi_init       = vmd_msi_init,
236         .msi_free       = vmd_msi_free,
237         .msi_prepare    = vmd_msi_prepare,
238         .set_desc       = vmd_set_desc,
239 };
240
241 static struct msi_domain_info vmd_msi_domain_info = {
242         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
243                           MSI_FLAG_PCI_MSIX,
244         .ops            = &vmd_msi_domain_ops,
245         .chip           = &vmd_msi_controller,
246 };
247
248 #ifdef CONFIG_X86_DEV_DMA_OPS
249 /*
250  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
251  * VMD domain need to be mapped for the VMD, not the device requiring
252  * the mapping.
253  */
254 static struct device *to_vmd_dev(struct device *dev)
255 {
256         struct pci_dev *pdev = to_pci_dev(dev);
257         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
258
259         return &vmd->dev->dev;
260 }
261
262 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
263 {
264         return to_vmd_dev(dev)->archdata.dma_ops;
265 }
266
267 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
268                        gfp_t flag, struct dma_attrs *attrs)
269 {
270         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
271                                        attrs);
272 }
273
274 static void vmd_free(struct device *dev, size_t size, void *vaddr,
275                      dma_addr_t addr, struct dma_attrs *attrs)
276 {
277         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
278                                       attrs);
279 }
280
281 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
282                     void *cpu_addr, dma_addr_t addr, size_t size,
283                     struct dma_attrs *attrs)
284 {
285         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
286                                       size, attrs);
287 }
288
289 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
290                            void *cpu_addr, dma_addr_t addr, size_t size,
291                            struct dma_attrs *attrs)
292 {
293         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
294                                              addr, size, attrs);
295 }
296
297 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
298                                unsigned long offset, size_t size,
299                                enum dma_data_direction dir,
300                                struct dma_attrs *attrs)
301 {
302         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
303                                           dir, attrs);
304 }
305
306 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
307                            enum dma_data_direction dir, struct dma_attrs *attrs)
308 {
309         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
310 }
311
312 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
313                       enum dma_data_direction dir, struct dma_attrs *attrs)
314 {
315         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
316 }
317
318 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
319                          enum dma_data_direction dir, struct dma_attrs *attrs)
320 {
321         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
322 }
323
324 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
325                                     size_t size, enum dma_data_direction dir)
326 {
327         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
328 }
329
330 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
331                                        size_t size, enum dma_data_direction dir)
332 {
333         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
334                                                  dir);
335 }
336
337 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
338                                 int nents, enum dma_data_direction dir)
339 {
340         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
341 }
342
343 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
344                                    int nents, enum dma_data_direction dir)
345 {
346         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
347 }
348
349 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
350 {
351         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
352 }
353
354 static int vmd_dma_supported(struct device *dev, u64 mask)
355 {
356         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
357 }
358
359 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
360 static u64 vmd_get_required_mask(struct device *dev)
361 {
362         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
363 }
364 #endif
365
366 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
367 {
368         struct dma_domain *domain = &vmd->dma_domain;
369
370         if (vmd->dev->dev.archdata.dma_ops)
371                 del_dma_domain(domain);
372 }
373
374 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
375         do {                                    \
376                 if (source->fn)                 \
377                         dest->fn = vmd_##fn;    \
378         } while (0)
379
380 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
381 {
382         const struct dma_map_ops *source = vmd->dev->dev.archdata.dma_ops;
383         struct dma_map_ops *dest = &vmd->dma_ops;
384         struct dma_domain *domain = &vmd->dma_domain;
385
386         domain->domain_nr = vmd->sysdata.domain;
387         domain->dma_ops = dest;
388
389         if (!source)
390                 return;
391         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
392         ASSIGN_VMD_DMA_OPS(source, dest, free);
393         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
394         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
395         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
396         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
397         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
398         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
399         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
400         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
401         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
402         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
403         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
404         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
405 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
406         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
407 #endif
408         add_dma_domain(domain);
409 }
410 #undef ASSIGN_VMD_DMA_OPS
411 #else
412 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
413 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
414 #endif
415
416 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
417                                   unsigned int devfn, int reg, int len)
418 {
419         char __iomem *addr = vmd->cfgbar +
420                              (bus->number << 20) + (devfn << 12) + reg;
421
422         if ((addr - vmd->cfgbar) + len >=
423             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
424                 return NULL;
425
426         return addr;
427 }
428
429 /*
430  * CPU may deadlock if config space is not serialized on some versions of this
431  * hardware, so all config space access is done under a spinlock.
432  */
433 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
434                         int len, u32 *value)
435 {
436         struct vmd_dev *vmd = vmd_from_bus(bus);
437         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
438         unsigned long flags;
439         int ret = 0;
440
441         if (!addr)
442                 return -EFAULT;
443
444         spin_lock_irqsave(&vmd->cfg_lock, flags);
445         switch (len) {
446         case 1:
447                 *value = readb(addr);
448                 break;
449         case 2:
450                 *value = readw(addr);
451                 break;
452         case 4:
453                 *value = readl(addr);
454                 break;
455         default:
456                 ret = -EINVAL;
457                 break;
458         }
459         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
460         return ret;
461 }
462
463 /*
464  * VMD h/w converts non-posted config writes to posted memory writes. The
465  * read-back in this function forces the completion so it returns only after
466  * the config space was written, as expected.
467  */
468 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
469                          int len, u32 value)
470 {
471         struct vmd_dev *vmd = vmd_from_bus(bus);
472         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
473         unsigned long flags;
474         int ret = 0;
475
476         if (!addr)
477                 return -EFAULT;
478
479         spin_lock_irqsave(&vmd->cfg_lock, flags);
480         switch (len) {
481         case 1:
482                 writeb(value, addr);
483                 readb(addr);
484                 break;
485         case 2:
486                 writew(value, addr);
487                 readw(addr);
488                 break;
489         case 4:
490                 writel(value, addr);
491                 readl(addr);
492                 break;
493         default:
494                 ret = -EINVAL;
495                 break;
496         }
497         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
498         return ret;
499 }
500
501 static struct pci_ops vmd_ops = {
502         .read           = vmd_pci_read,
503         .write          = vmd_pci_write,
504 };
505
506 static void vmd_attach_resources(struct vmd_dev *vmd)
507 {
508         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
509         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
510 }
511
512 static void vmd_detach_resources(struct vmd_dev *vmd)
513 {
514         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
515         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
516 }
517
518 /*
519  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
520  */
521 static int vmd_find_free_domain(void)
522 {
523         int domain = 0xffff;
524         struct pci_bus *bus = NULL;
525
526         while ((bus = pci_find_next_bus(bus)) != NULL)
527                 domain = max_t(int, domain, pci_domain_nr(bus));
528         return domain + 1;
529 }
530
531 static int vmd_enable_domain(struct vmd_dev *vmd)
532 {
533         struct pci_sysdata *sd = &vmd->sysdata;
534         struct resource *res;
535         u32 upper_bits;
536         unsigned long flags;
537         LIST_HEAD(resources);
538
539         res = &vmd->dev->resource[VMD_CFGBAR];
540         vmd->resources[0] = (struct resource) {
541                 .name  = "VMD CFGBAR",
542                 .start = 0,
543                 .end   = (resource_size(res) >> 20) - 1,
544                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
545         };
546
547         /*
548          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
549          * put 32-bit resources in the window.
550          *
551          * There's no hardware reason why a 64-bit window *couldn't*
552          * contain a 32-bit resource, but pbus_size_mem() computes the
553          * bridge window size assuming a 64-bit window will contain no
554          * 32-bit resources.  __pci_assign_resource() enforces that
555          * artificial restriction to make sure everything will fit.
556          *
557          * The only way we could use a 64-bit non-prefechable MEMBAR is
558          * if its address is <4GB so that we can convert it to a 32-bit
559          * resource.  To be visible to the host OS, all VMD endpoints must
560          * be initially configured by platform BIOS, which includes setting
561          * up these resources.  We can assume the device is configured
562          * according to the platform needs.
563          */
564         res = &vmd->dev->resource[VMD_MEMBAR1];
565         upper_bits = upper_32_bits(res->end);
566         flags = res->flags & ~IORESOURCE_SIZEALIGN;
567         if (!upper_bits)
568                 flags &= ~IORESOURCE_MEM_64;
569         vmd->resources[1] = (struct resource) {
570                 .name  = "VMD MEMBAR1",
571                 .start = res->start,
572                 .end   = res->end,
573                 .flags = flags,
574                 .parent = res,
575         };
576
577         res = &vmd->dev->resource[VMD_MEMBAR2];
578         upper_bits = upper_32_bits(res->end);
579         flags = res->flags & ~IORESOURCE_SIZEALIGN;
580         if (!upper_bits)
581                 flags &= ~IORESOURCE_MEM_64;
582         vmd->resources[2] = (struct resource) {
583                 .name  = "VMD MEMBAR2",
584                 .start = res->start + 0x2000,
585                 .end   = res->end,
586                 .flags = flags,
587                 .parent = res,
588         };
589
590         sd->domain = vmd_find_free_domain();
591         if (sd->domain < 0)
592                 return sd->domain;
593
594         sd->node = pcibus_to_node(vmd->dev->bus);
595
596         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
597                                                     NULL);
598         if (!vmd->irq_domain)
599                 return -ENODEV;
600
601         pci_add_resource(&resources, &vmd->resources[0]);
602         pci_add_resource(&resources, &vmd->resources[1]);
603         pci_add_resource(&resources, &vmd->resources[2]);
604         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
605                                        &resources);
606         if (!vmd->bus) {
607                 pci_free_resource_list(&resources);
608                 irq_domain_remove(vmd->irq_domain);
609                 return -ENODEV;
610         }
611
612         vmd_attach_resources(vmd);
613         vmd_setup_dma_ops(vmd);
614         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
615         pci_rescan_bus(vmd->bus);
616
617         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
618                                "domain"), "Can't create symlink to domain\n");
619         return 0;
620 }
621
622 static irqreturn_t vmd_irq(int irq, void *data)
623 {
624         struct vmd_irq_list *irqs = data;
625         struct vmd_irq *vmdirq;
626
627         rcu_read_lock();
628         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
629                 generic_handle_irq(vmdirq->virq);
630         rcu_read_unlock();
631
632         return IRQ_HANDLED;
633 }
634
635 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
636 {
637         struct vmd_dev *vmd;
638         int i, err;
639
640         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
641                 return -ENOMEM;
642
643         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
644         if (!vmd)
645                 return -ENOMEM;
646
647         vmd->dev = dev;
648         err = pcim_enable_device(dev);
649         if (err < 0)
650                 return err;
651
652         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
653         if (!vmd->cfgbar)
654                 return -ENOMEM;
655
656         pci_set_master(dev);
657         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
658             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
659                 return -ENODEV;
660
661         vmd->msix_count = pci_msix_vec_count(dev);
662         if (vmd->msix_count < 0)
663                 return -ENODEV;
664
665         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
666                                  GFP_KERNEL);
667         if (!vmd->irqs)
668                 return -ENOMEM;
669
670         vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count,
671                                          sizeof(*vmd->msix_entries),
672                                          GFP_KERNEL);
673         if (!vmd->msix_entries)
674                 return -ENOMEM;
675         for (i = 0; i < vmd->msix_count; i++)
676                 vmd->msix_entries[i].entry = i;
677
678         vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1,
679                                                 vmd->msix_count);
680         if (vmd->msix_count < 0)
681                 return vmd->msix_count;
682
683         for (i = 0; i < vmd->msix_count; i++) {
684                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
685                 vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector;
686                 vmd->irqs[i].index = i;
687
688                 err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector,
689                                        vmd_irq, 0, "vmd", &vmd->irqs[i]);
690                 if (err)
691                         return err;
692         }
693
694         spin_lock_init(&vmd->cfg_lock);
695         pci_set_drvdata(dev, vmd);
696         err = vmd_enable_domain(vmd);
697         if (err)
698                 return err;
699
700         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
701                  vmd->sysdata.domain);
702         return 0;
703 }
704
705 static void vmd_remove(struct pci_dev *dev)
706 {
707         struct vmd_dev *vmd = pci_get_drvdata(dev);
708
709         vmd_detach_resources(vmd);
710         pci_set_drvdata(dev, NULL);
711         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
712         pci_stop_root_bus(vmd->bus);
713         pci_remove_root_bus(vmd->bus);
714         vmd_teardown_dma_ops(vmd);
715         irq_domain_remove(vmd->irq_domain);
716 }
717
718 #ifdef CONFIG_PM
719 static int vmd_suspend(struct device *dev)
720 {
721         struct pci_dev *pdev = to_pci_dev(dev);
722
723         pci_save_state(pdev);
724         return 0;
725 }
726
727 static int vmd_resume(struct device *dev)
728 {
729         struct pci_dev *pdev = to_pci_dev(dev);
730
731         pci_restore_state(pdev);
732         return 0;
733 }
734 #endif
735 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
736
737 static const struct pci_device_id vmd_ids[] = {
738         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
739         {0,}
740 };
741 MODULE_DEVICE_TABLE(pci, vmd_ids);
742
743 static struct pci_driver vmd_drv = {
744         .name           = "vmd",
745         .id_table       = vmd_ids,
746         .probe          = vmd_probe,
747         .remove         = vmd_remove,
748         .driver         = {
749                 .pm     = &vmd_dev_pm_ops,
750         },
751 };
752 module_pci_driver(vmd_drv);
753
754 MODULE_AUTHOR("Intel Corporation");
755 MODULE_LICENSE("GPL v2");
756 MODULE_VERSION("0.6");