]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
1c4f1f4978c6f0934a04c6a4e493e17a2b9c60f9
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48         int ddir, bytes, bucket;
49
50         ddir = rq_data_dir(rq);
51         bytes = blk_rq_bytes(rq);
52
53         bucket = ddir + 2*(ilog2(bytes) - 9);
54
55         if (bucket < 0)
56                 return -1;
57         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60         return bucket;
61 }
62
63 /*
64  * Check if any of the ctx's have pending work in this hardware queue
65  */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         !list_empty_careful(&hctx->dispatch) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91         int freeze_depth;
92
93         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94         if (freeze_depth == 1) {
95                 percpu_ref_kill(&q->q_usage_counter);
96                 blk_mq_run_hw_queues(q, false);
97         }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108                                      unsigned long timeout)
109 {
110         return wait_event_timeout(q->mq_freeze_wq,
111                                         percpu_ref_is_zero(&q->q_usage_counter),
112                                         timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117  * Guarantee no request is in use, so we can change any data structure of
118  * the queue afterward.
119  */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122         /*
123          * In the !blk_mq case we are only calling this to kill the
124          * q_usage_counter, otherwise this increases the freeze depth
125          * and waits for it to return to zero.  For this reason there is
126          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127          * exported to drivers as the only user for unfreeze is blk_mq.
128          */
129         blk_freeze_queue_start(q);
130         blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135         /*
136          * ...just an alias to keep freeze and unfreeze actions balanced
137          * in the blk_mq_* namespace
138          */
139         blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148         WARN_ON_ONCE(freeze_depth < 0);
149         if (!freeze_depth) {
150                 percpu_ref_reinit(&q->q_usage_counter);
151                 wake_up_all(&q->mq_freeze_wq);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /**
157  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158  * @q: request queue.
159  *
160  * Note: this function does not prevent that the struct request end_io()
161  * callback function is invoked. Once this function is returned, we make
162  * sure no dispatch can happen until the queue is unquiesced via
163  * blk_mq_unquiesce_queue().
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         blk_mq_quiesce_queue_nowait(q);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186  * @q: request queue.
187  *
188  * This function recovers queue into the state before quiescing
189  * which is done by blk_mq_quiesce_queue.
190  */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193         spin_lock_irq(q->queue_lock);
194         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195         spin_unlock_irq(q->queue_lock);
196
197         /* dispatch requests which are inserted during quiescing */
198         blk_mq_run_hw_queues(q, true);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
202 void blk_mq_wake_waiters(struct request_queue *q)
203 {
204         struct blk_mq_hw_ctx *hctx;
205         unsigned int i;
206
207         queue_for_each_hw_ctx(q, hctx, i)
208                 if (blk_mq_hw_queue_mapped(hctx))
209                         blk_mq_tag_wakeup_all(hctx->tags, true);
210
211         /*
212          * If we are called because the queue has now been marked as
213          * dying, we need to ensure that processes currently waiting on
214          * the queue are notified as well.
215          */
216         wake_up_all(&q->mq_freeze_wq);
217 }
218
219 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220 {
221         return blk_mq_has_free_tags(hctx->tags);
222 }
223 EXPORT_SYMBOL(blk_mq_can_queue);
224
225 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226                 unsigned int tag, unsigned int op)
227 {
228         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229         struct request *rq = tags->static_rqs[tag];
230
231         rq->rq_flags = 0;
232
233         if (data->flags & BLK_MQ_REQ_INTERNAL) {
234                 rq->tag = -1;
235                 rq->internal_tag = tag;
236         } else {
237                 if (blk_mq_tag_busy(data->hctx)) {
238                         rq->rq_flags = RQF_MQ_INFLIGHT;
239                         atomic_inc(&data->hctx->nr_active);
240                 }
241                 rq->tag = tag;
242                 rq->internal_tag = -1;
243                 data->hctx->tags->rqs[rq->tag] = rq;
244         }
245
246         INIT_LIST_HEAD(&rq->queuelist);
247         /* csd/requeue_work/fifo_time is initialized before use */
248         rq->q = data->q;
249         rq->mq_ctx = data->ctx;
250         rq->cmd_flags = op;
251         if (blk_queue_io_stat(data->q))
252                 rq->rq_flags |= RQF_IO_STAT;
253         /* do not touch atomic flags, it needs atomic ops against the timer */
254         rq->cpu = -1;
255         INIT_HLIST_NODE(&rq->hash);
256         RB_CLEAR_NODE(&rq->rb_node);
257         rq->rq_disk = NULL;
258         rq->part = NULL;
259         rq->start_time = jiffies;
260 #ifdef CONFIG_BLK_CGROUP
261         rq->rl = NULL;
262         set_start_time_ns(rq);
263         rq->io_start_time_ns = 0;
264 #endif
265         rq->nr_phys_segments = 0;
266 #if defined(CONFIG_BLK_DEV_INTEGRITY)
267         rq->nr_integrity_segments = 0;
268 #endif
269         rq->special = NULL;
270         /* tag was already set */
271         rq->extra_len = 0;
272
273         INIT_LIST_HEAD(&rq->timeout_list);
274         rq->timeout = 0;
275
276         rq->end_io = NULL;
277         rq->end_io_data = NULL;
278         rq->next_rq = NULL;
279
280         data->ctx->rq_dispatched[op_is_sync(op)]++;
281         return rq;
282 }
283
284 static struct request *blk_mq_get_request(struct request_queue *q,
285                 struct bio *bio, unsigned int op,
286                 struct blk_mq_alloc_data *data)
287 {
288         struct elevator_queue *e = q->elevator;
289         struct request *rq;
290         unsigned int tag;
291
292         blk_queue_enter_live(q);
293         data->q = q;
294         if (likely(!data->ctx))
295                 data->ctx = blk_mq_get_ctx(q);
296         if (likely(!data->hctx))
297                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
298         if (op & REQ_NOWAIT)
299                 data->flags |= BLK_MQ_REQ_NOWAIT;
300
301         if (e) {
302                 data->flags |= BLK_MQ_REQ_INTERNAL;
303
304                 /*
305                  * Flush requests are special and go directly to the
306                  * dispatch list.
307                  */
308                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
309                         e->type->ops.mq.limit_depth(op, data);
310         }
311
312         tag = blk_mq_get_tag(data);
313         if (tag == BLK_MQ_TAG_FAIL) {
314                 blk_queue_exit(q);
315                 return NULL;
316         }
317
318         rq = blk_mq_rq_ctx_init(data, tag, op);
319         if (!op_is_flush(op)) {
320                 rq->elv.icq = NULL;
321                 if (e && e->type->ops.mq.prepare_request) {
322                         if (e->type->icq_cache && rq_ioc(bio))
323                                 blk_mq_sched_assign_ioc(rq, bio);
324
325                         e->type->ops.mq.prepare_request(rq, bio);
326                         rq->rq_flags |= RQF_ELVPRIV;
327                 }
328         }
329         data->hctx->queued++;
330         return rq;
331 }
332
333 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
334                 unsigned int flags)
335 {
336         struct blk_mq_alloc_data alloc_data = { .flags = flags };
337         struct request *rq;
338         int ret;
339
340         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
341         if (ret)
342                 return ERR_PTR(ret);
343
344         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
345
346         blk_mq_put_ctx(alloc_data.ctx);
347         blk_queue_exit(q);
348
349         if (!rq)
350                 return ERR_PTR(-EWOULDBLOCK);
351
352         rq->__data_len = 0;
353         rq->__sector = (sector_t) -1;
354         rq->bio = rq->biotail = NULL;
355         return rq;
356 }
357 EXPORT_SYMBOL(blk_mq_alloc_request);
358
359 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
360                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
361 {
362         struct blk_mq_alloc_data alloc_data = { .flags = flags };
363         struct request *rq;
364         unsigned int cpu;
365         int ret;
366
367         /*
368          * If the tag allocator sleeps we could get an allocation for a
369          * different hardware context.  No need to complicate the low level
370          * allocator for this for the rare use case of a command tied to
371          * a specific queue.
372          */
373         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
374                 return ERR_PTR(-EINVAL);
375
376         if (hctx_idx >= q->nr_hw_queues)
377                 return ERR_PTR(-EIO);
378
379         ret = blk_queue_enter(q, true);
380         if (ret)
381                 return ERR_PTR(ret);
382
383         /*
384          * Check if the hardware context is actually mapped to anything.
385          * If not tell the caller that it should skip this queue.
386          */
387         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
388         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
389                 blk_queue_exit(q);
390                 return ERR_PTR(-EXDEV);
391         }
392         cpu = cpumask_first(alloc_data.hctx->cpumask);
393         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
394
395         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396
397         blk_queue_exit(q);
398
399         if (!rq)
400                 return ERR_PTR(-EWOULDBLOCK);
401
402         return rq;
403 }
404 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
405
406 void blk_mq_free_request(struct request *rq)
407 {
408         struct request_queue *q = rq->q;
409         struct elevator_queue *e = q->elevator;
410         struct blk_mq_ctx *ctx = rq->mq_ctx;
411         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
412         const int sched_tag = rq->internal_tag;
413
414         if (rq->rq_flags & RQF_ELVPRIV) {
415                 if (e && e->type->ops.mq.finish_request)
416                         e->type->ops.mq.finish_request(rq);
417                 if (rq->elv.icq) {
418                         put_io_context(rq->elv.icq->ioc);
419                         rq->elv.icq = NULL;
420                 }
421         }
422
423         ctx->rq_completed[rq_is_sync(rq)]++;
424         if (rq->rq_flags & RQF_MQ_INFLIGHT)
425                 atomic_dec(&hctx->nr_active);
426
427         wbt_done(q->rq_wb, &rq->issue_stat);
428
429         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
430         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
431         if (rq->tag != -1)
432                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
433         if (sched_tag != -1)
434                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
435         blk_mq_sched_restart(hctx);
436         blk_queue_exit(q);
437 }
438 EXPORT_SYMBOL_GPL(blk_mq_free_request);
439
440 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
441 {
442         blk_account_io_done(rq);
443
444         if (rq->end_io) {
445                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
446                 rq->end_io(rq, error);
447         } else {
448                 if (unlikely(blk_bidi_rq(rq)))
449                         blk_mq_free_request(rq->next_rq);
450                 blk_mq_free_request(rq);
451         }
452 }
453 EXPORT_SYMBOL(__blk_mq_end_request);
454
455 void blk_mq_end_request(struct request *rq, blk_status_t error)
456 {
457         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
458                 BUG();
459         __blk_mq_end_request(rq, error);
460 }
461 EXPORT_SYMBOL(blk_mq_end_request);
462
463 static void __blk_mq_complete_request_remote(void *data)
464 {
465         struct request *rq = data;
466
467         rq->q->softirq_done_fn(rq);
468 }
469
470 static void __blk_mq_complete_request(struct request *rq)
471 {
472         struct blk_mq_ctx *ctx = rq->mq_ctx;
473         bool shared = false;
474         int cpu;
475
476         if (rq->internal_tag != -1)
477                 blk_mq_sched_completed_request(rq);
478         if (rq->rq_flags & RQF_STATS) {
479                 blk_mq_poll_stats_start(rq->q);
480                 blk_stat_add(rq);
481         }
482
483         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
484                 rq->q->softirq_done_fn(rq);
485                 return;
486         }
487
488         cpu = get_cpu();
489         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
490                 shared = cpus_share_cache(cpu, ctx->cpu);
491
492         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
493                 rq->csd.func = __blk_mq_complete_request_remote;
494                 rq->csd.info = rq;
495                 rq->csd.flags = 0;
496                 smp_call_function_single_async(ctx->cpu, &rq->csd);
497         } else {
498                 rq->q->softirq_done_fn(rq);
499         }
500         put_cpu();
501 }
502
503 /**
504  * blk_mq_complete_request - end I/O on a request
505  * @rq:         the request being processed
506  *
507  * Description:
508  *      Ends all I/O on a request. It does not handle partial completions.
509  *      The actual completion happens out-of-order, through a IPI handler.
510  **/
511 void blk_mq_complete_request(struct request *rq)
512 {
513         struct request_queue *q = rq->q;
514
515         if (unlikely(blk_should_fake_timeout(q)))
516                 return;
517         if (!blk_mark_rq_complete(rq))
518                 __blk_mq_complete_request(rq);
519 }
520 EXPORT_SYMBOL(blk_mq_complete_request);
521
522 int blk_mq_request_started(struct request *rq)
523 {
524         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
525 }
526 EXPORT_SYMBOL_GPL(blk_mq_request_started);
527
528 void blk_mq_start_request(struct request *rq)
529 {
530         struct request_queue *q = rq->q;
531
532         blk_mq_sched_started_request(rq);
533
534         trace_block_rq_issue(q, rq);
535
536         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
537                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
538                 rq->rq_flags |= RQF_STATS;
539                 wbt_issue(q->rq_wb, &rq->issue_stat);
540         }
541
542         blk_add_timer(rq);
543
544         /*
545          * Ensure that ->deadline is visible before set the started
546          * flag and clear the completed flag.
547          */
548         smp_mb__before_atomic();
549
550         /*
551          * Mark us as started and clear complete. Complete might have been
552          * set if requeue raced with timeout, which then marked it as
553          * complete. So be sure to clear complete again when we start
554          * the request, otherwise we'll ignore the completion event.
555          */
556         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
557                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
558         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
559                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
560
561         if (q->dma_drain_size && blk_rq_bytes(rq)) {
562                 /*
563                  * Make sure space for the drain appears.  We know we can do
564                  * this because max_hw_segments has been adjusted to be one
565                  * fewer than the device can handle.
566                  */
567                 rq->nr_phys_segments++;
568         }
569 }
570 EXPORT_SYMBOL(blk_mq_start_request);
571
572 /*
573  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
574  * flag isn't set yet, so there may be race with timeout handler,
575  * but given rq->deadline is just set in .queue_rq() under
576  * this situation, the race won't be possible in reality because
577  * rq->timeout should be set as big enough to cover the window
578  * between blk_mq_start_request() called from .queue_rq() and
579  * clearing REQ_ATOM_STARTED here.
580  */
581 static void __blk_mq_requeue_request(struct request *rq)
582 {
583         struct request_queue *q = rq->q;
584
585         trace_block_rq_requeue(q, rq);
586         wbt_requeue(q->rq_wb, &rq->issue_stat);
587         blk_mq_sched_requeue_request(rq);
588
589         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
590                 if (q->dma_drain_size && blk_rq_bytes(rq))
591                         rq->nr_phys_segments--;
592         }
593 }
594
595 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
596 {
597         __blk_mq_requeue_request(rq);
598
599         BUG_ON(blk_queued_rq(rq));
600         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
601 }
602 EXPORT_SYMBOL(blk_mq_requeue_request);
603
604 static void blk_mq_requeue_work(struct work_struct *work)
605 {
606         struct request_queue *q =
607                 container_of(work, struct request_queue, requeue_work.work);
608         LIST_HEAD(rq_list);
609         struct request *rq, *next;
610         unsigned long flags;
611
612         spin_lock_irqsave(&q->requeue_lock, flags);
613         list_splice_init(&q->requeue_list, &rq_list);
614         spin_unlock_irqrestore(&q->requeue_lock, flags);
615
616         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
617                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
618                         continue;
619
620                 rq->rq_flags &= ~RQF_SOFTBARRIER;
621                 list_del_init(&rq->queuelist);
622                 blk_mq_sched_insert_request(rq, true, false, false, true);
623         }
624
625         while (!list_empty(&rq_list)) {
626                 rq = list_entry(rq_list.next, struct request, queuelist);
627                 list_del_init(&rq->queuelist);
628                 blk_mq_sched_insert_request(rq, false, false, false, true);
629         }
630
631         blk_mq_run_hw_queues(q, false);
632 }
633
634 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
635                                 bool kick_requeue_list)
636 {
637         struct request_queue *q = rq->q;
638         unsigned long flags;
639
640         /*
641          * We abuse this flag that is otherwise used by the I/O scheduler to
642          * request head insertation from the workqueue.
643          */
644         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
645
646         spin_lock_irqsave(&q->requeue_lock, flags);
647         if (at_head) {
648                 rq->rq_flags |= RQF_SOFTBARRIER;
649                 list_add(&rq->queuelist, &q->requeue_list);
650         } else {
651                 list_add_tail(&rq->queuelist, &q->requeue_list);
652         }
653         spin_unlock_irqrestore(&q->requeue_lock, flags);
654
655         if (kick_requeue_list)
656                 blk_mq_kick_requeue_list(q);
657 }
658 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
659
660 void blk_mq_kick_requeue_list(struct request_queue *q)
661 {
662         kblockd_schedule_delayed_work(&q->requeue_work, 0);
663 }
664 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
665
666 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
667                                     unsigned long msecs)
668 {
669         kblockd_schedule_delayed_work(&q->requeue_work,
670                                       msecs_to_jiffies(msecs));
671 }
672 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
673
674 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
675 {
676         if (tag < tags->nr_tags) {
677                 prefetch(tags->rqs[tag]);
678                 return tags->rqs[tag];
679         }
680
681         return NULL;
682 }
683 EXPORT_SYMBOL(blk_mq_tag_to_rq);
684
685 struct blk_mq_timeout_data {
686         unsigned long next;
687         unsigned int next_set;
688 };
689
690 void blk_mq_rq_timed_out(struct request *req, bool reserved)
691 {
692         const struct blk_mq_ops *ops = req->q->mq_ops;
693         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
694
695         /*
696          * We know that complete is set at this point. If STARTED isn't set
697          * anymore, then the request isn't active and the "timeout" should
698          * just be ignored. This can happen due to the bitflag ordering.
699          * Timeout first checks if STARTED is set, and if it is, assumes
700          * the request is active. But if we race with completion, then
701          * both flags will get cleared. So check here again, and ignore
702          * a timeout event with a request that isn't active.
703          */
704         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
705                 return;
706
707         if (ops->timeout)
708                 ret = ops->timeout(req, reserved);
709
710         switch (ret) {
711         case BLK_EH_HANDLED:
712                 __blk_mq_complete_request(req);
713                 break;
714         case BLK_EH_RESET_TIMER:
715                 blk_add_timer(req);
716                 blk_clear_rq_complete(req);
717                 break;
718         case BLK_EH_NOT_HANDLED:
719                 break;
720         default:
721                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
722                 break;
723         }
724 }
725
726 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
727                 struct request *rq, void *priv, bool reserved)
728 {
729         struct blk_mq_timeout_data *data = priv;
730
731         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
732                 return;
733
734         /*
735          * The rq being checked may have been freed and reallocated
736          * out already here, we avoid this race by checking rq->deadline
737          * and REQ_ATOM_COMPLETE flag together:
738          *
739          * - if rq->deadline is observed as new value because of
740          *   reusing, the rq won't be timed out because of timing.
741          * - if rq->deadline is observed as previous value,
742          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
743          *   because we put a barrier between setting rq->deadline
744          *   and clearing the flag in blk_mq_start_request(), so
745          *   this rq won't be timed out too.
746          */
747         if (time_after_eq(jiffies, rq->deadline)) {
748                 if (!blk_mark_rq_complete(rq))
749                         blk_mq_rq_timed_out(rq, reserved);
750         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
751                 data->next = rq->deadline;
752                 data->next_set = 1;
753         }
754 }
755
756 static void blk_mq_timeout_work(struct work_struct *work)
757 {
758         struct request_queue *q =
759                 container_of(work, struct request_queue, timeout_work);
760         struct blk_mq_timeout_data data = {
761                 .next           = 0,
762                 .next_set       = 0,
763         };
764         int i;
765
766         /* A deadlock might occur if a request is stuck requiring a
767          * timeout at the same time a queue freeze is waiting
768          * completion, since the timeout code would not be able to
769          * acquire the queue reference here.
770          *
771          * That's why we don't use blk_queue_enter here; instead, we use
772          * percpu_ref_tryget directly, because we need to be able to
773          * obtain a reference even in the short window between the queue
774          * starting to freeze, by dropping the first reference in
775          * blk_freeze_queue_start, and the moment the last request is
776          * consumed, marked by the instant q_usage_counter reaches
777          * zero.
778          */
779         if (!percpu_ref_tryget(&q->q_usage_counter))
780                 return;
781
782         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
783
784         if (data.next_set) {
785                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
786                 mod_timer(&q->timeout, data.next);
787         } else {
788                 struct blk_mq_hw_ctx *hctx;
789
790                 queue_for_each_hw_ctx(q, hctx, i) {
791                         /* the hctx may be unmapped, so check it here */
792                         if (blk_mq_hw_queue_mapped(hctx))
793                                 blk_mq_tag_idle(hctx);
794                 }
795         }
796         blk_queue_exit(q);
797 }
798
799 struct flush_busy_ctx_data {
800         struct blk_mq_hw_ctx *hctx;
801         struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806         struct flush_busy_ctx_data *flush_data = data;
807         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810         sbitmap_clear_bit(sb, bitnr);
811         spin_lock(&ctx->lock);
812         list_splice_tail_init(&ctx->rq_list, flush_data->list);
813         spin_unlock(&ctx->lock);
814         return true;
815 }
816
817 /*
818  * Process software queues that have been marked busy, splicing them
819  * to the for-dispatch
820  */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823         struct flush_busy_ctx_data data = {
824                 .hctx = hctx,
825                 .list = list,
826         };
827
828         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834         if (!queued)
835                 return 0;
836
837         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841                            bool wait)
842 {
843         struct blk_mq_alloc_data data = {
844                 .q = rq->q,
845                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847         };
848
849         might_sleep_if(wait);
850
851         if (rq->tag != -1)
852                 goto done;
853
854         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
855                 data.flags |= BLK_MQ_REQ_RESERVED;
856
857         rq->tag = blk_mq_get_tag(&data);
858         if (rq->tag >= 0) {
859                 if (blk_mq_tag_busy(data.hctx)) {
860                         rq->rq_flags |= RQF_MQ_INFLIGHT;
861                         atomic_inc(&data.hctx->nr_active);
862                 }
863                 data.hctx->tags->rqs[rq->tag] = rq;
864         }
865
866 done:
867         if (hctx)
868                 *hctx = data.hctx;
869         return rq->tag != -1;
870 }
871
872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873                                     struct request *rq)
874 {
875         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876         rq->tag = -1;
877
878         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880                 atomic_dec(&hctx->nr_active);
881         }
882 }
883
884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885                                        struct request *rq)
886 {
887         if (rq->tag == -1 || rq->internal_tag == -1)
888                 return;
889
890         __blk_mq_put_driver_tag(hctx, rq);
891 }
892
893 static void blk_mq_put_driver_tag(struct request *rq)
894 {
895         struct blk_mq_hw_ctx *hctx;
896
897         if (rq->tag == -1 || rq->internal_tag == -1)
898                 return;
899
900         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901         __blk_mq_put_driver_tag(hctx, rq);
902 }
903
904 /*
905  * If we fail getting a driver tag because all the driver tags are already
906  * assigned and on the dispatch list, BUT the first entry does not have a
907  * tag, then we could deadlock. For that case, move entries with assigned
908  * driver tags to the front, leaving the set of tagged requests in the
909  * same order, and the untagged set in the same order.
910  */
911 static bool reorder_tags_to_front(struct list_head *list)
912 {
913         struct request *rq, *tmp, *first = NULL;
914
915         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916                 if (rq == first)
917                         break;
918                 if (rq->tag != -1) {
919                         list_move(&rq->queuelist, list);
920                         if (!first)
921                                 first = rq;
922                 }
923         }
924
925         return first != NULL;
926 }
927
928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929                                 void *key)
930 {
931         struct blk_mq_hw_ctx *hctx;
932
933         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934
935         list_del(&wait->task_list);
936         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937         blk_mq_run_hw_queue(hctx, true);
938         return 1;
939 }
940
941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942 {
943         struct sbq_wait_state *ws;
944
945         /*
946          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947          * The thread which wins the race to grab this bit adds the hardware
948          * queue to the wait queue.
949          */
950         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952                 return false;
953
954         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956
957         /*
958          * As soon as this returns, it's no longer safe to fiddle with
959          * hctx->dispatch_wait, since a completion can wake up the wait queue
960          * and unlock the bit.
961          */
962         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963         return true;
964 }
965
966 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
967 {
968         struct blk_mq_hw_ctx *hctx;
969         struct request *rq;
970         int errors, queued;
971
972         if (list_empty(list))
973                 return false;
974
975         /*
976          * Now process all the entries, sending them to the driver.
977          */
978         errors = queued = 0;
979         do {
980                 struct blk_mq_queue_data bd;
981                 blk_status_t ret;
982
983                 rq = list_first_entry(list, struct request, queuelist);
984                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
985                         if (!queued && reorder_tags_to_front(list))
986                                 continue;
987
988                         /*
989                          * The initial allocation attempt failed, so we need to
990                          * rerun the hardware queue when a tag is freed.
991                          */
992                         if (!blk_mq_dispatch_wait_add(hctx))
993                                 break;
994
995                         /*
996                          * It's possible that a tag was freed in the window
997                          * between the allocation failure and adding the
998                          * hardware queue to the wait queue.
999                          */
1000                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001                                 break;
1002                 }
1003
1004                 list_del_init(&rq->queuelist);
1005
1006                 bd.rq = rq;
1007
1008                 /*
1009                  * Flag last if we have no more requests, or if we have more
1010                  * but can't assign a driver tag to it.
1011                  */
1012                 if (list_empty(list))
1013                         bd.last = true;
1014                 else {
1015                         struct request *nxt;
1016
1017                         nxt = list_first_entry(list, struct request, queuelist);
1018                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1019                 }
1020
1021                 ret = q->mq_ops->queue_rq(hctx, &bd);
1022                 if (ret == BLK_STS_RESOURCE) {
1023                         blk_mq_put_driver_tag_hctx(hctx, rq);
1024                         list_add(&rq->queuelist, list);
1025                         __blk_mq_requeue_request(rq);
1026                         break;
1027                 }
1028
1029                 if (unlikely(ret != BLK_STS_OK)) {
1030                         errors++;
1031                         blk_mq_end_request(rq, BLK_STS_IOERR);
1032                         continue;
1033                 }
1034
1035                 queued++;
1036         } while (!list_empty(list));
1037
1038         hctx->dispatched[queued_to_index(queued)]++;
1039
1040         /*
1041          * Any items that need requeuing? Stuff them into hctx->dispatch,
1042          * that is where we will continue on next queue run.
1043          */
1044         if (!list_empty(list)) {
1045                 /*
1046                  * If an I/O scheduler has been configured and we got a driver
1047                  * tag for the next request already, free it again.
1048                  */
1049                 rq = list_first_entry(list, struct request, queuelist);
1050                 blk_mq_put_driver_tag(rq);
1051
1052                 spin_lock(&hctx->lock);
1053                 list_splice_init(list, &hctx->dispatch);
1054                 spin_unlock(&hctx->lock);
1055
1056                 /*
1057                  * If SCHED_RESTART was set by the caller of this function and
1058                  * it is no longer set that means that it was cleared by another
1059                  * thread and hence that a queue rerun is needed.
1060                  *
1061                  * If TAG_WAITING is set that means that an I/O scheduler has
1062                  * been configured and another thread is waiting for a driver
1063                  * tag. To guarantee fairness, do not rerun this hardware queue
1064                  * but let the other thread grab the driver tag.
1065                  *
1066                  * If no I/O scheduler has been configured it is possible that
1067                  * the hardware queue got stopped and restarted before requests
1068                  * were pushed back onto the dispatch list. Rerun the queue to
1069                  * avoid starvation. Notes:
1070                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1071                  *   been stopped before rerunning a queue.
1072                  * - Some but not all block drivers stop a queue before
1073                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1074                  *   and dm-rq.
1075                  */
1076                 if (!blk_mq_sched_needs_restart(hctx) &&
1077                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1078                         blk_mq_run_hw_queue(hctx, true);
1079         }
1080
1081         return (queued + errors) != 0;
1082 }
1083
1084 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1085 {
1086         int srcu_idx;
1087
1088         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1089                 cpu_online(hctx->next_cpu));
1090
1091         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1092                 rcu_read_lock();
1093                 blk_mq_sched_dispatch_requests(hctx);
1094                 rcu_read_unlock();
1095         } else {
1096                 might_sleep();
1097
1098                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1099                 blk_mq_sched_dispatch_requests(hctx);
1100                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1101         }
1102 }
1103
1104 /*
1105  * It'd be great if the workqueue API had a way to pass
1106  * in a mask and had some smarts for more clever placement.
1107  * For now we just round-robin here, switching for every
1108  * BLK_MQ_CPU_WORK_BATCH queued items.
1109  */
1110 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1111 {
1112         if (hctx->queue->nr_hw_queues == 1)
1113                 return WORK_CPU_UNBOUND;
1114
1115         if (--hctx->next_cpu_batch <= 0) {
1116                 int next_cpu;
1117
1118                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1119                 if (next_cpu >= nr_cpu_ids)
1120                         next_cpu = cpumask_first(hctx->cpumask);
1121
1122                 hctx->next_cpu = next_cpu;
1123                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1124         }
1125
1126         return hctx->next_cpu;
1127 }
1128
1129 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1130                                         unsigned long msecs)
1131 {
1132         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1133                 return;
1134
1135         if (unlikely(blk_mq_hctx_stopped(hctx)))
1136                 return;
1137
1138         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1139                 int cpu = get_cpu();
1140                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1141                         __blk_mq_run_hw_queue(hctx);
1142                         put_cpu();
1143                         return;
1144                 }
1145
1146                 put_cpu();
1147         }
1148
1149         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1150                                          &hctx->run_work,
1151                                          msecs_to_jiffies(msecs));
1152 }
1153
1154 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1155 {
1156         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1157 }
1158 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1159
1160 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1161 {
1162         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1163 }
1164 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1165
1166 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 {
1168         struct blk_mq_hw_ctx *hctx;
1169         int i;
1170
1171         queue_for_each_hw_ctx(q, hctx, i) {
1172                 if (!blk_mq_hctx_has_pending(hctx) ||
1173                     blk_mq_hctx_stopped(hctx))
1174                         continue;
1175
1176                 blk_mq_run_hw_queue(hctx, async);
1177         }
1178 }
1179 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180
1181 /**
1182  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183  * @q: request queue.
1184  *
1185  * The caller is responsible for serializing this function against
1186  * blk_mq_{start,stop}_hw_queue().
1187  */
1188 bool blk_mq_queue_stopped(struct request_queue *q)
1189 {
1190         struct blk_mq_hw_ctx *hctx;
1191         int i;
1192
1193         queue_for_each_hw_ctx(q, hctx, i)
1194                 if (blk_mq_hctx_stopped(hctx))
1195                         return true;
1196
1197         return false;
1198 }
1199 EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
1201 /*
1202  * This function is often used for pausing .queue_rq() by driver when
1203  * there isn't enough resource or some conditions aren't satisfied, and
1204  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1205  *
1206  * We do not guarantee that dispatch can be drained or blocked
1207  * after blk_mq_stop_hw_queue() returns. Please use
1208  * blk_mq_quiesce_queue() for that requirement.
1209  */
1210 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1211 {
1212         cancel_delayed_work(&hctx->run_work);
1213
1214         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215 }
1216 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217
1218 /*
1219  * This function is often used for pausing .queue_rq() by driver when
1220  * there isn't enough resource or some conditions aren't satisfied, and
1221  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1222  *
1223  * We do not guarantee that dispatch can be drained or blocked
1224  * after blk_mq_stop_hw_queues() returns. Please use
1225  * blk_mq_quiesce_queue() for that requirement.
1226  */
1227 void blk_mq_stop_hw_queues(struct request_queue *q)
1228 {
1229         struct blk_mq_hw_ctx *hctx;
1230         int i;
1231
1232         queue_for_each_hw_ctx(q, hctx, i)
1233                 blk_mq_stop_hw_queue(hctx);
1234 }
1235 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1236
1237 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1238 {
1239         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1240
1241         blk_mq_run_hw_queue(hctx, false);
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1244
1245 void blk_mq_start_hw_queues(struct request_queue *q)
1246 {
1247         struct blk_mq_hw_ctx *hctx;
1248         int i;
1249
1250         queue_for_each_hw_ctx(q, hctx, i)
1251                 blk_mq_start_hw_queue(hctx);
1252 }
1253 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1254
1255 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1256 {
1257         if (!blk_mq_hctx_stopped(hctx))
1258                 return;
1259
1260         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1261         blk_mq_run_hw_queue(hctx, async);
1262 }
1263 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1264
1265 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1266 {
1267         struct blk_mq_hw_ctx *hctx;
1268         int i;
1269
1270         queue_for_each_hw_ctx(q, hctx, i)
1271                 blk_mq_start_stopped_hw_queue(hctx, async);
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1274
1275 static void blk_mq_run_work_fn(struct work_struct *work)
1276 {
1277         struct blk_mq_hw_ctx *hctx;
1278
1279         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1280
1281         /*
1282          * If we are stopped, don't run the queue. The exception is if
1283          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1284          * the STOPPED bit and run it.
1285          */
1286         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1287                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1288                         return;
1289
1290                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1291                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1292         }
1293
1294         __blk_mq_run_hw_queue(hctx);
1295 }
1296
1297
1298 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1299 {
1300         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1301                 return;
1302
1303         /*
1304          * Stop the hw queue, then modify currently delayed work.
1305          * This should prevent us from running the queue prematurely.
1306          * Mark the queue as auto-clearing STOPPED when it runs.
1307          */
1308         blk_mq_stop_hw_queue(hctx);
1309         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1310         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1311                                         &hctx->run_work,
1312                                         msecs_to_jiffies(msecs));
1313 }
1314 EXPORT_SYMBOL(blk_mq_delay_queue);
1315
1316 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1317                                             struct request *rq,
1318                                             bool at_head)
1319 {
1320         struct blk_mq_ctx *ctx = rq->mq_ctx;
1321
1322         lockdep_assert_held(&ctx->lock);
1323
1324         trace_block_rq_insert(hctx->queue, rq);
1325
1326         if (at_head)
1327                 list_add(&rq->queuelist, &ctx->rq_list);
1328         else
1329                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1330 }
1331
1332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1333                              bool at_head)
1334 {
1335         struct blk_mq_ctx *ctx = rq->mq_ctx;
1336
1337         lockdep_assert_held(&ctx->lock);
1338
1339         __blk_mq_insert_req_list(hctx, rq, at_head);
1340         blk_mq_hctx_mark_pending(hctx, ctx);
1341 }
1342
1343 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1344                             struct list_head *list)
1345
1346 {
1347         /*
1348          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1349          * offline now
1350          */
1351         spin_lock(&ctx->lock);
1352         while (!list_empty(list)) {
1353                 struct request *rq;
1354
1355                 rq = list_first_entry(list, struct request, queuelist);
1356                 BUG_ON(rq->mq_ctx != ctx);
1357                 list_del_init(&rq->queuelist);
1358                 __blk_mq_insert_req_list(hctx, rq, false);
1359         }
1360         blk_mq_hctx_mark_pending(hctx, ctx);
1361         spin_unlock(&ctx->lock);
1362 }
1363
1364 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1365 {
1366         struct request *rqa = container_of(a, struct request, queuelist);
1367         struct request *rqb = container_of(b, struct request, queuelist);
1368
1369         return !(rqa->mq_ctx < rqb->mq_ctx ||
1370                  (rqa->mq_ctx == rqb->mq_ctx &&
1371                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1372 }
1373
1374 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1375 {
1376         struct blk_mq_ctx *this_ctx;
1377         struct request_queue *this_q;
1378         struct request *rq;
1379         LIST_HEAD(list);
1380         LIST_HEAD(ctx_list);
1381         unsigned int depth;
1382
1383         list_splice_init(&plug->mq_list, &list);
1384
1385         list_sort(NULL, &list, plug_ctx_cmp);
1386
1387         this_q = NULL;
1388         this_ctx = NULL;
1389         depth = 0;
1390
1391         while (!list_empty(&list)) {
1392                 rq = list_entry_rq(list.next);
1393                 list_del_init(&rq->queuelist);
1394                 BUG_ON(!rq->q);
1395                 if (rq->mq_ctx != this_ctx) {
1396                         if (this_ctx) {
1397                                 trace_block_unplug(this_q, depth, from_schedule);
1398                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1399                                                                 &ctx_list,
1400                                                                 from_schedule);
1401                         }
1402
1403                         this_ctx = rq->mq_ctx;
1404                         this_q = rq->q;
1405                         depth = 0;
1406                 }
1407
1408                 depth++;
1409                 list_add_tail(&rq->queuelist, &ctx_list);
1410         }
1411
1412         /*
1413          * If 'this_ctx' is set, we know we have entries to complete
1414          * on 'ctx_list'. Do those.
1415          */
1416         if (this_ctx) {
1417                 trace_block_unplug(this_q, depth, from_schedule);
1418                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1419                                                 from_schedule);
1420         }
1421 }
1422
1423 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1424 {
1425         blk_init_request_from_bio(rq, bio);
1426
1427         blk_account_io_start(rq, true);
1428 }
1429
1430 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1431 {
1432         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1433                 !blk_queue_nomerges(hctx->queue);
1434 }
1435
1436 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1437                                    struct blk_mq_ctx *ctx,
1438                                    struct request *rq)
1439 {
1440         spin_lock(&ctx->lock);
1441         __blk_mq_insert_request(hctx, rq, false);
1442         spin_unlock(&ctx->lock);
1443 }
1444
1445 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1446 {
1447         if (rq->tag != -1)
1448                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1449
1450         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1451 }
1452
1453 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1454                                         struct request *rq,
1455                                         blk_qc_t *cookie, bool may_sleep)
1456 {
1457         struct request_queue *q = rq->q;
1458         struct blk_mq_queue_data bd = {
1459                 .rq = rq,
1460                 .last = true,
1461         };
1462         blk_qc_t new_cookie;
1463         blk_status_t ret;
1464         bool run_queue = true;
1465
1466         /* RCU or SRCU read lock is needed before checking quiesced flag */
1467         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1468                 run_queue = false;
1469                 goto insert;
1470         }
1471
1472         if (q->elevator)
1473                 goto insert;
1474
1475         if (!blk_mq_get_driver_tag(rq, NULL, false))
1476                 goto insert;
1477
1478         new_cookie = request_to_qc_t(hctx, rq);
1479
1480         /*
1481          * For OK queue, we are done. For error, kill it. Any other
1482          * error (busy), just add it to our list as we previously
1483          * would have done
1484          */
1485         ret = q->mq_ops->queue_rq(hctx, &bd);
1486         switch (ret) {
1487         case BLK_STS_OK:
1488                 *cookie = new_cookie;
1489                 return;
1490         case BLK_STS_RESOURCE:
1491                 __blk_mq_requeue_request(rq);
1492                 goto insert;
1493         default:
1494                 *cookie = BLK_QC_T_NONE;
1495                 blk_mq_end_request(rq, ret);
1496                 return;
1497         }
1498
1499 insert:
1500         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1501 }
1502
1503 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1504                 struct request *rq, blk_qc_t *cookie)
1505 {
1506         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1507                 rcu_read_lock();
1508                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1509                 rcu_read_unlock();
1510         } else {
1511                 unsigned int srcu_idx;
1512
1513                 might_sleep();
1514
1515                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1516                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1517                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1518         }
1519 }
1520
1521 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1522 {
1523         const int is_sync = op_is_sync(bio->bi_opf);
1524         const int is_flush_fua = op_is_flush(bio->bi_opf);
1525         struct blk_mq_alloc_data data = { .flags = 0 };
1526         struct request *rq;
1527         unsigned int request_count = 0;
1528         struct blk_plug *plug;
1529         struct request *same_queue_rq = NULL;
1530         blk_qc_t cookie;
1531         unsigned int wb_acct;
1532
1533         blk_queue_bounce(q, &bio);
1534
1535         blk_queue_split(q, &bio);
1536
1537         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1538                 bio_io_error(bio);
1539                 return BLK_QC_T_NONE;
1540         }
1541
1542         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1543             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1544                 return BLK_QC_T_NONE;
1545
1546         if (blk_mq_sched_bio_merge(q, bio))
1547                 return BLK_QC_T_NONE;
1548
1549         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1550
1551         trace_block_getrq(q, bio, bio->bi_opf);
1552
1553         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1554         if (unlikely(!rq)) {
1555                 __wbt_done(q->rq_wb, wb_acct);
1556                 if (bio->bi_opf & REQ_NOWAIT)
1557                         bio_wouldblock_error(bio);
1558                 return BLK_QC_T_NONE;
1559         }
1560
1561         wbt_track(&rq->issue_stat, wb_acct);
1562
1563         cookie = request_to_qc_t(data.hctx, rq);
1564
1565         plug = current->plug;
1566         if (unlikely(is_flush_fua)) {
1567                 blk_mq_put_ctx(data.ctx);
1568                 blk_mq_bio_to_request(rq, bio);
1569                 if (q->elevator) {
1570                         blk_mq_sched_insert_request(rq, false, true, true,
1571                                         true);
1572                 } else {
1573                         blk_insert_flush(rq);
1574                         blk_mq_run_hw_queue(data.hctx, true);
1575                 }
1576         } else if (plug && q->nr_hw_queues == 1) {
1577                 struct request *last = NULL;
1578
1579                 blk_mq_put_ctx(data.ctx);
1580                 blk_mq_bio_to_request(rq, bio);
1581
1582                 /*
1583                  * @request_count may become stale because of schedule
1584                  * out, so check the list again.
1585                  */
1586                 if (list_empty(&plug->mq_list))
1587                         request_count = 0;
1588                 else if (blk_queue_nomerges(q))
1589                         request_count = blk_plug_queued_count(q);
1590
1591                 if (!request_count)
1592                         trace_block_plug(q);
1593                 else
1594                         last = list_entry_rq(plug->mq_list.prev);
1595
1596                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1597                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1598                         blk_flush_plug_list(plug, false);
1599                         trace_block_plug(q);
1600                 }
1601
1602                 list_add_tail(&rq->queuelist, &plug->mq_list);
1603         } else if (plug && !blk_queue_nomerges(q)) {
1604                 blk_mq_bio_to_request(rq, bio);
1605
1606                 /*
1607                  * We do limited plugging. If the bio can be merged, do that.
1608                  * Otherwise the existing request in the plug list will be
1609                  * issued. So the plug list will have one request at most
1610                  * The plug list might get flushed before this. If that happens,
1611                  * the plug list is empty, and same_queue_rq is invalid.
1612                  */
1613                 if (list_empty(&plug->mq_list))
1614                         same_queue_rq = NULL;
1615                 if (same_queue_rq)
1616                         list_del_init(&same_queue_rq->queuelist);
1617                 list_add_tail(&rq->queuelist, &plug->mq_list);
1618
1619                 blk_mq_put_ctx(data.ctx);
1620
1621                 if (same_queue_rq) {
1622                         data.hctx = blk_mq_map_queue(q,
1623                                         same_queue_rq->mq_ctx->cpu);
1624                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1625                                         &cookie);
1626                 }
1627         } else if (q->nr_hw_queues > 1 && is_sync) {
1628                 blk_mq_put_ctx(data.ctx);
1629                 blk_mq_bio_to_request(rq, bio);
1630                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1631         } else if (q->elevator) {
1632                 blk_mq_put_ctx(data.ctx);
1633                 blk_mq_bio_to_request(rq, bio);
1634                 blk_mq_sched_insert_request(rq, false, true, true, true);
1635         } else {
1636                 blk_mq_put_ctx(data.ctx);
1637                 blk_mq_bio_to_request(rq, bio);
1638                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1639                 blk_mq_run_hw_queue(data.hctx, true);
1640         }
1641
1642         return cookie;
1643 }
1644
1645 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646                      unsigned int hctx_idx)
1647 {
1648         struct page *page;
1649
1650         if (tags->rqs && set->ops->exit_request) {
1651                 int i;
1652
1653                 for (i = 0; i < tags->nr_tags; i++) {
1654                         struct request *rq = tags->static_rqs[i];
1655
1656                         if (!rq)
1657                                 continue;
1658                         set->ops->exit_request(set, rq, hctx_idx);
1659                         tags->static_rqs[i] = NULL;
1660                 }
1661         }
1662
1663         while (!list_empty(&tags->page_list)) {
1664                 page = list_first_entry(&tags->page_list, struct page, lru);
1665                 list_del_init(&page->lru);
1666                 /*
1667                  * Remove kmemleak object previously allocated in
1668                  * blk_mq_init_rq_map().
1669                  */
1670                 kmemleak_free(page_address(page));
1671                 __free_pages(page, page->private);
1672         }
1673 }
1674
1675 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1676 {
1677         kfree(tags->rqs);
1678         tags->rqs = NULL;
1679         kfree(tags->static_rqs);
1680         tags->static_rqs = NULL;
1681
1682         blk_mq_free_tags(tags);
1683 }
1684
1685 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1686                                         unsigned int hctx_idx,
1687                                         unsigned int nr_tags,
1688                                         unsigned int reserved_tags)
1689 {
1690         struct blk_mq_tags *tags;
1691         int node;
1692
1693         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1694         if (node == NUMA_NO_NODE)
1695                 node = set->numa_node;
1696
1697         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1698                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1699         if (!tags)
1700                 return NULL;
1701
1702         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1703                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1704                                  node);
1705         if (!tags->rqs) {
1706                 blk_mq_free_tags(tags);
1707                 return NULL;
1708         }
1709
1710         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1711                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1712                                  node);
1713         if (!tags->static_rqs) {
1714                 kfree(tags->rqs);
1715                 blk_mq_free_tags(tags);
1716                 return NULL;
1717         }
1718
1719         return tags;
1720 }
1721
1722 static size_t order_to_size(unsigned int order)
1723 {
1724         return (size_t)PAGE_SIZE << order;
1725 }
1726
1727 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1728                      unsigned int hctx_idx, unsigned int depth)
1729 {
1730         unsigned int i, j, entries_per_page, max_order = 4;
1731         size_t rq_size, left;
1732         int node;
1733
1734         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1735         if (node == NUMA_NO_NODE)
1736                 node = set->numa_node;
1737
1738         INIT_LIST_HEAD(&tags->page_list);
1739
1740         /*
1741          * rq_size is the size of the request plus driver payload, rounded
1742          * to the cacheline size
1743          */
1744         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1745                                 cache_line_size());
1746         left = rq_size * depth;
1747
1748         for (i = 0; i < depth; ) {
1749                 int this_order = max_order;
1750                 struct page *page;
1751                 int to_do;
1752                 void *p;
1753
1754                 while (this_order && left < order_to_size(this_order - 1))
1755                         this_order--;
1756
1757                 do {
1758                         page = alloc_pages_node(node,
1759                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1760                                 this_order);
1761                         if (page)
1762                                 break;
1763                         if (!this_order--)
1764                                 break;
1765                         if (order_to_size(this_order) < rq_size)
1766                                 break;
1767                 } while (1);
1768
1769                 if (!page)
1770                         goto fail;
1771
1772                 page->private = this_order;
1773                 list_add_tail(&page->lru, &tags->page_list);
1774
1775                 p = page_address(page);
1776                 /*
1777                  * Allow kmemleak to scan these pages as they contain pointers
1778                  * to additional allocations like via ops->init_request().
1779                  */
1780                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1781                 entries_per_page = order_to_size(this_order) / rq_size;
1782                 to_do = min(entries_per_page, depth - i);
1783                 left -= to_do * rq_size;
1784                 for (j = 0; j < to_do; j++) {
1785                         struct request *rq = p;
1786
1787                         tags->static_rqs[i] = rq;
1788                         if (set->ops->init_request) {
1789                                 if (set->ops->init_request(set, rq, hctx_idx,
1790                                                 node)) {
1791                                         tags->static_rqs[i] = NULL;
1792                                         goto fail;
1793                                 }
1794                         }
1795
1796                         p += rq_size;
1797                         i++;
1798                 }
1799         }
1800         return 0;
1801
1802 fail:
1803         blk_mq_free_rqs(set, tags, hctx_idx);
1804         return -ENOMEM;
1805 }
1806
1807 /*
1808  * 'cpu' is going away. splice any existing rq_list entries from this
1809  * software queue to the hw queue dispatch list, and ensure that it
1810  * gets run.
1811  */
1812 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1813 {
1814         struct blk_mq_hw_ctx *hctx;
1815         struct blk_mq_ctx *ctx;
1816         LIST_HEAD(tmp);
1817
1818         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1819         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1820
1821         spin_lock(&ctx->lock);
1822         if (!list_empty(&ctx->rq_list)) {
1823                 list_splice_init(&ctx->rq_list, &tmp);
1824                 blk_mq_hctx_clear_pending(hctx, ctx);
1825         }
1826         spin_unlock(&ctx->lock);
1827
1828         if (list_empty(&tmp))
1829                 return 0;
1830
1831         spin_lock(&hctx->lock);
1832         list_splice_tail_init(&tmp, &hctx->dispatch);
1833         spin_unlock(&hctx->lock);
1834
1835         blk_mq_run_hw_queue(hctx, true);
1836         return 0;
1837 }
1838
1839 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1840 {
1841         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1842                                             &hctx->cpuhp_dead);
1843 }
1844
1845 /* hctx->ctxs will be freed in queue's release handler */
1846 static void blk_mq_exit_hctx(struct request_queue *q,
1847                 struct blk_mq_tag_set *set,
1848                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1849 {
1850         blk_mq_debugfs_unregister_hctx(hctx);
1851
1852         blk_mq_tag_idle(hctx);
1853
1854         if (set->ops->exit_request)
1855                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1856
1857         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1858
1859         if (set->ops->exit_hctx)
1860                 set->ops->exit_hctx(hctx, hctx_idx);
1861
1862         if (hctx->flags & BLK_MQ_F_BLOCKING)
1863                 cleanup_srcu_struct(hctx->queue_rq_srcu);
1864
1865         blk_mq_remove_cpuhp(hctx);
1866         blk_free_flush_queue(hctx->fq);
1867         sbitmap_free(&hctx->ctx_map);
1868 }
1869
1870 static void blk_mq_exit_hw_queues(struct request_queue *q,
1871                 struct blk_mq_tag_set *set, int nr_queue)
1872 {
1873         struct blk_mq_hw_ctx *hctx;
1874         unsigned int i;
1875
1876         queue_for_each_hw_ctx(q, hctx, i) {
1877                 if (i == nr_queue)
1878                         break;
1879                 blk_mq_exit_hctx(q, set, hctx, i);
1880         }
1881 }
1882
1883 static int blk_mq_init_hctx(struct request_queue *q,
1884                 struct blk_mq_tag_set *set,
1885                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1886 {
1887         int node;
1888
1889         node = hctx->numa_node;
1890         if (node == NUMA_NO_NODE)
1891                 node = hctx->numa_node = set->numa_node;
1892
1893         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1894         spin_lock_init(&hctx->lock);
1895         INIT_LIST_HEAD(&hctx->dispatch);
1896         hctx->queue = q;
1897         hctx->queue_num = hctx_idx;
1898         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1899
1900         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1901
1902         hctx->tags = set->tags[hctx_idx];
1903
1904         /*
1905          * Allocate space for all possible cpus to avoid allocation at
1906          * runtime
1907          */
1908         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1909                                         GFP_KERNEL, node);
1910         if (!hctx->ctxs)
1911                 goto unregister_cpu_notifier;
1912
1913         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1914                               node))
1915                 goto free_ctxs;
1916
1917         hctx->nr_ctx = 0;
1918
1919         if (set->ops->init_hctx &&
1920             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1921                 goto free_bitmap;
1922
1923         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1924                 goto exit_hctx;
1925
1926         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1927         if (!hctx->fq)
1928                 goto sched_exit_hctx;
1929
1930         if (set->ops->init_request &&
1931             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1932                                    node))
1933                 goto free_fq;
1934
1935         if (hctx->flags & BLK_MQ_F_BLOCKING)
1936                 init_srcu_struct(hctx->queue_rq_srcu);
1937
1938         blk_mq_debugfs_register_hctx(q, hctx);
1939
1940         return 0;
1941
1942  free_fq:
1943         kfree(hctx->fq);
1944  sched_exit_hctx:
1945         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1946  exit_hctx:
1947         if (set->ops->exit_hctx)
1948                 set->ops->exit_hctx(hctx, hctx_idx);
1949  free_bitmap:
1950         sbitmap_free(&hctx->ctx_map);
1951  free_ctxs:
1952         kfree(hctx->ctxs);
1953  unregister_cpu_notifier:
1954         blk_mq_remove_cpuhp(hctx);
1955         return -1;
1956 }
1957
1958 static void blk_mq_init_cpu_queues(struct request_queue *q,
1959                                    unsigned int nr_hw_queues)
1960 {
1961         unsigned int i;
1962
1963         for_each_possible_cpu(i) {
1964                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1965                 struct blk_mq_hw_ctx *hctx;
1966
1967                 __ctx->cpu = i;
1968                 spin_lock_init(&__ctx->lock);
1969                 INIT_LIST_HEAD(&__ctx->rq_list);
1970                 __ctx->queue = q;
1971
1972                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1973                 if (!cpu_online(i))
1974                         continue;
1975
1976                 hctx = blk_mq_map_queue(q, i);
1977
1978                 /*
1979                  * Set local node, IFF we have more than one hw queue. If
1980                  * not, we remain on the home node of the device
1981                  */
1982                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1983                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1984         }
1985 }
1986
1987 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1988 {
1989         int ret = 0;
1990
1991         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1992                                         set->queue_depth, set->reserved_tags);
1993         if (!set->tags[hctx_idx])
1994                 return false;
1995
1996         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1997                                 set->queue_depth);
1998         if (!ret)
1999                 return true;
2000
2001         blk_mq_free_rq_map(set->tags[hctx_idx]);
2002         set->tags[hctx_idx] = NULL;
2003         return false;
2004 }
2005
2006 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2007                                          unsigned int hctx_idx)
2008 {
2009         if (set->tags[hctx_idx]) {
2010                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2011                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2012                 set->tags[hctx_idx] = NULL;
2013         }
2014 }
2015
2016 static void blk_mq_map_swqueue(struct request_queue *q,
2017                                const struct cpumask *online_mask)
2018 {
2019         unsigned int i, hctx_idx;
2020         struct blk_mq_hw_ctx *hctx;
2021         struct blk_mq_ctx *ctx;
2022         struct blk_mq_tag_set *set = q->tag_set;
2023
2024         /*
2025          * Avoid others reading imcomplete hctx->cpumask through sysfs
2026          */
2027         mutex_lock(&q->sysfs_lock);
2028
2029         queue_for_each_hw_ctx(q, hctx, i) {
2030                 cpumask_clear(hctx->cpumask);
2031                 hctx->nr_ctx = 0;
2032         }
2033
2034         /*
2035          * Map software to hardware queues
2036          */
2037         for_each_possible_cpu(i) {
2038                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2039                 if (!cpumask_test_cpu(i, online_mask))
2040                         continue;
2041
2042                 hctx_idx = q->mq_map[i];
2043                 /* unmapped hw queue can be remapped after CPU topo changed */
2044                 if (!set->tags[hctx_idx] &&
2045                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2046                         /*
2047                          * If tags initialization fail for some hctx,
2048                          * that hctx won't be brought online.  In this
2049                          * case, remap the current ctx to hctx[0] which
2050                          * is guaranteed to always have tags allocated
2051                          */
2052                         q->mq_map[i] = 0;
2053                 }
2054
2055                 ctx = per_cpu_ptr(q->queue_ctx, i);
2056                 hctx = blk_mq_map_queue(q, i);
2057
2058                 cpumask_set_cpu(i, hctx->cpumask);
2059                 ctx->index_hw = hctx->nr_ctx;
2060                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2061         }
2062
2063         mutex_unlock(&q->sysfs_lock);
2064
2065         queue_for_each_hw_ctx(q, hctx, i) {
2066                 /*
2067                  * If no software queues are mapped to this hardware queue,
2068                  * disable it and free the request entries.
2069                  */
2070                 if (!hctx->nr_ctx) {
2071                         /* Never unmap queue 0.  We need it as a
2072                          * fallback in case of a new remap fails
2073                          * allocation
2074                          */
2075                         if (i && set->tags[i])
2076                                 blk_mq_free_map_and_requests(set, i);
2077
2078                         hctx->tags = NULL;
2079                         continue;
2080                 }
2081
2082                 hctx->tags = set->tags[i];
2083                 WARN_ON(!hctx->tags);
2084
2085                 /*
2086                  * Set the map size to the number of mapped software queues.
2087                  * This is more accurate and more efficient than looping
2088                  * over all possibly mapped software queues.
2089                  */
2090                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2091
2092                 /*
2093                  * Initialize batch roundrobin counts
2094                  */
2095                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2096                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2097         }
2098 }
2099
2100 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2101 {
2102         struct blk_mq_hw_ctx *hctx;
2103         int i;
2104
2105         queue_for_each_hw_ctx(q, hctx, i) {
2106                 if (shared)
2107                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2108                 else
2109                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2110         }
2111 }
2112
2113 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2114 {
2115         struct request_queue *q;
2116
2117         lockdep_assert_held(&set->tag_list_lock);
2118
2119         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2120                 blk_mq_freeze_queue(q);
2121                 queue_set_hctx_shared(q, shared);
2122                 blk_mq_unfreeze_queue(q);
2123         }
2124 }
2125
2126 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2127 {
2128         struct blk_mq_tag_set *set = q->tag_set;
2129
2130         mutex_lock(&set->tag_list_lock);
2131         list_del_rcu(&q->tag_set_list);
2132         INIT_LIST_HEAD(&q->tag_set_list);
2133         if (list_is_singular(&set->tag_list)) {
2134                 /* just transitioned to unshared */
2135                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2136                 /* update existing queue */
2137                 blk_mq_update_tag_set_depth(set, false);
2138         }
2139         mutex_unlock(&set->tag_list_lock);
2140
2141         synchronize_rcu();
2142 }
2143
2144 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2145                                      struct request_queue *q)
2146 {
2147         q->tag_set = set;
2148
2149         mutex_lock(&set->tag_list_lock);
2150
2151         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2152         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2153                 set->flags |= BLK_MQ_F_TAG_SHARED;
2154                 /* update existing queue */
2155                 blk_mq_update_tag_set_depth(set, true);
2156         }
2157         if (set->flags & BLK_MQ_F_TAG_SHARED)
2158                 queue_set_hctx_shared(q, true);
2159         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2160
2161         mutex_unlock(&set->tag_list_lock);
2162 }
2163
2164 /*
2165  * It is the actual release handler for mq, but we do it from
2166  * request queue's release handler for avoiding use-after-free
2167  * and headache because q->mq_kobj shouldn't have been introduced,
2168  * but we can't group ctx/kctx kobj without it.
2169  */
2170 void blk_mq_release(struct request_queue *q)
2171 {
2172         struct blk_mq_hw_ctx *hctx;
2173         unsigned int i;
2174
2175         /* hctx kobj stays in hctx */
2176         queue_for_each_hw_ctx(q, hctx, i) {
2177                 if (!hctx)
2178                         continue;
2179                 kobject_put(&hctx->kobj);
2180         }
2181
2182         q->mq_map = NULL;
2183
2184         kfree(q->queue_hw_ctx);
2185
2186         /*
2187          * release .mq_kobj and sw queue's kobject now because
2188          * both share lifetime with request queue.
2189          */
2190         blk_mq_sysfs_deinit(q);
2191
2192         free_percpu(q->queue_ctx);
2193 }
2194
2195 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2196 {
2197         struct request_queue *uninit_q, *q;
2198
2199         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2200         if (!uninit_q)
2201                 return ERR_PTR(-ENOMEM);
2202
2203         q = blk_mq_init_allocated_queue(set, uninit_q);
2204         if (IS_ERR(q))
2205                 blk_cleanup_queue(uninit_q);
2206
2207         return q;
2208 }
2209 EXPORT_SYMBOL(blk_mq_init_queue);
2210
2211 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2212 {
2213         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2214
2215         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2216                            __alignof__(struct blk_mq_hw_ctx)) !=
2217                      sizeof(struct blk_mq_hw_ctx));
2218
2219         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2220                 hw_ctx_size += sizeof(struct srcu_struct);
2221
2222         return hw_ctx_size;
2223 }
2224
2225 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2226                                                 struct request_queue *q)
2227 {
2228         int i, j;
2229         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2230
2231         blk_mq_sysfs_unregister(q);
2232         for (i = 0; i < set->nr_hw_queues; i++) {
2233                 int node;
2234
2235                 if (hctxs[i])
2236                         continue;
2237
2238                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2239                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2240                                         GFP_KERNEL, node);
2241                 if (!hctxs[i])
2242                         break;
2243
2244                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2245                                                 node)) {
2246                         kfree(hctxs[i]);
2247                         hctxs[i] = NULL;
2248                         break;
2249                 }
2250
2251                 atomic_set(&hctxs[i]->nr_active, 0);
2252                 hctxs[i]->numa_node = node;
2253                 hctxs[i]->queue_num = i;
2254
2255                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2256                         free_cpumask_var(hctxs[i]->cpumask);
2257                         kfree(hctxs[i]);
2258                         hctxs[i] = NULL;
2259                         break;
2260                 }
2261                 blk_mq_hctx_kobj_init(hctxs[i]);
2262         }
2263         for (j = i; j < q->nr_hw_queues; j++) {
2264                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2265
2266                 if (hctx) {
2267                         if (hctx->tags)
2268                                 blk_mq_free_map_and_requests(set, j);
2269                         blk_mq_exit_hctx(q, set, hctx, j);
2270                         kobject_put(&hctx->kobj);
2271                         hctxs[j] = NULL;
2272
2273                 }
2274         }
2275         q->nr_hw_queues = i;
2276         blk_mq_sysfs_register(q);
2277 }
2278
2279 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2280                                                   struct request_queue *q)
2281 {
2282         /* mark the queue as mq asap */
2283         q->mq_ops = set->ops;
2284
2285         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2286                                              blk_mq_poll_stats_bkt,
2287                                              BLK_MQ_POLL_STATS_BKTS, q);
2288         if (!q->poll_cb)
2289                 goto err_exit;
2290
2291         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2292         if (!q->queue_ctx)
2293                 goto err_exit;
2294
2295         /* init q->mq_kobj and sw queues' kobjects */
2296         blk_mq_sysfs_init(q);
2297
2298         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2299                                                 GFP_KERNEL, set->numa_node);
2300         if (!q->queue_hw_ctx)
2301                 goto err_percpu;
2302
2303         q->mq_map = set->mq_map;
2304
2305         blk_mq_realloc_hw_ctxs(set, q);
2306         if (!q->nr_hw_queues)
2307                 goto err_hctxs;
2308
2309         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2310         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2311
2312         q->nr_queues = nr_cpu_ids;
2313
2314         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2315
2316         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2317                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2318
2319         q->sg_reserved_size = INT_MAX;
2320
2321         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2322         INIT_LIST_HEAD(&q->requeue_list);
2323         spin_lock_init(&q->requeue_lock);
2324
2325         blk_queue_make_request(q, blk_mq_make_request);
2326
2327         /*
2328          * Do this after blk_queue_make_request() overrides it...
2329          */
2330         q->nr_requests = set->queue_depth;
2331
2332         /*
2333          * Default to classic polling
2334          */
2335         q->poll_nsec = -1;
2336
2337         if (set->ops->complete)
2338                 blk_queue_softirq_done(q, set->ops->complete);
2339
2340         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2341
2342         get_online_cpus();
2343         mutex_lock(&all_q_mutex);
2344
2345         list_add_tail(&q->all_q_node, &all_q_list);
2346         blk_mq_add_queue_tag_set(set, q);
2347         blk_mq_map_swqueue(q, cpu_online_mask);
2348
2349         mutex_unlock(&all_q_mutex);
2350         put_online_cpus();
2351
2352         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2353                 int ret;
2354
2355                 ret = blk_mq_sched_init(q);
2356                 if (ret)
2357                         return ERR_PTR(ret);
2358         }
2359
2360         return q;
2361
2362 err_hctxs:
2363         kfree(q->queue_hw_ctx);
2364 err_percpu:
2365         free_percpu(q->queue_ctx);
2366 err_exit:
2367         q->mq_ops = NULL;
2368         return ERR_PTR(-ENOMEM);
2369 }
2370 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2371
2372 void blk_mq_free_queue(struct request_queue *q)
2373 {
2374         struct blk_mq_tag_set   *set = q->tag_set;
2375
2376         mutex_lock(&all_q_mutex);
2377         list_del_init(&q->all_q_node);
2378         mutex_unlock(&all_q_mutex);
2379
2380         blk_mq_del_queue_tag_set(q);
2381
2382         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2383 }
2384
2385 /* Basically redo blk_mq_init_queue with queue frozen */
2386 static void blk_mq_queue_reinit(struct request_queue *q,
2387                                 const struct cpumask *online_mask)
2388 {
2389         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2390
2391         blk_mq_debugfs_unregister_hctxs(q);
2392         blk_mq_sysfs_unregister(q);
2393
2394         /*
2395          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2396          * we should change hctx numa_node according to new topology (this
2397          * involves free and re-allocate memory, worthy doing?)
2398          */
2399
2400         blk_mq_map_swqueue(q, online_mask);
2401
2402         blk_mq_sysfs_register(q);
2403         blk_mq_debugfs_register_hctxs(q);
2404 }
2405
2406 /*
2407  * New online cpumask which is going to be set in this hotplug event.
2408  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2409  * one-by-one and dynamically allocating this could result in a failure.
2410  */
2411 static struct cpumask cpuhp_online_new;
2412
2413 static void blk_mq_queue_reinit_work(void)
2414 {
2415         struct request_queue *q;
2416
2417         mutex_lock(&all_q_mutex);
2418         /*
2419          * We need to freeze and reinit all existing queues.  Freezing
2420          * involves synchronous wait for an RCU grace period and doing it
2421          * one by one may take a long time.  Start freezing all queues in
2422          * one swoop and then wait for the completions so that freezing can
2423          * take place in parallel.
2424          */
2425         list_for_each_entry(q, &all_q_list, all_q_node)
2426                 blk_freeze_queue_start(q);
2427         list_for_each_entry(q, &all_q_list, all_q_node)
2428                 blk_mq_freeze_queue_wait(q);
2429
2430         list_for_each_entry(q, &all_q_list, all_q_node)
2431                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2432
2433         list_for_each_entry(q, &all_q_list, all_q_node)
2434                 blk_mq_unfreeze_queue(q);
2435
2436         mutex_unlock(&all_q_mutex);
2437 }
2438
2439 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2440 {
2441         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2442         blk_mq_queue_reinit_work();
2443         return 0;
2444 }
2445
2446 /*
2447  * Before hotadded cpu starts handling requests, new mappings must be
2448  * established.  Otherwise, these requests in hw queue might never be
2449  * dispatched.
2450  *
2451  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2452  * for CPU0, and ctx1 for CPU1).
2453  *
2454  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2455  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2456  *
2457  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2458  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2459  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2460  * ignored.
2461  */
2462 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2463 {
2464         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2465         cpumask_set_cpu(cpu, &cpuhp_online_new);
2466         blk_mq_queue_reinit_work();
2467         return 0;
2468 }
2469
2470 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2471 {
2472         int i;
2473
2474         for (i = 0; i < set->nr_hw_queues; i++)
2475                 if (!__blk_mq_alloc_rq_map(set, i))
2476                         goto out_unwind;
2477
2478         return 0;
2479
2480 out_unwind:
2481         while (--i >= 0)
2482                 blk_mq_free_rq_map(set->tags[i]);
2483
2484         return -ENOMEM;
2485 }
2486
2487 /*
2488  * Allocate the request maps associated with this tag_set. Note that this
2489  * may reduce the depth asked for, if memory is tight. set->queue_depth
2490  * will be updated to reflect the allocated depth.
2491  */
2492 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2493 {
2494         unsigned int depth;
2495         int err;
2496
2497         depth = set->queue_depth;
2498         do {
2499                 err = __blk_mq_alloc_rq_maps(set);
2500                 if (!err)
2501                         break;
2502
2503                 set->queue_depth >>= 1;
2504                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2505                         err = -ENOMEM;
2506                         break;
2507                 }
2508         } while (set->queue_depth);
2509
2510         if (!set->queue_depth || err) {
2511                 pr_err("blk-mq: failed to allocate request map\n");
2512                 return -ENOMEM;
2513         }
2514
2515         if (depth != set->queue_depth)
2516                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2517                                                 depth, set->queue_depth);
2518
2519         return 0;
2520 }
2521
2522 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2523 {
2524         if (set->ops->map_queues)
2525                 return set->ops->map_queues(set);
2526         else
2527                 return blk_mq_map_queues(set);
2528 }
2529
2530 /*
2531  * Alloc a tag set to be associated with one or more request queues.
2532  * May fail with EINVAL for various error conditions. May adjust the
2533  * requested depth down, if if it too large. In that case, the set
2534  * value will be stored in set->queue_depth.
2535  */
2536 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2537 {
2538         int ret;
2539
2540         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2541
2542         if (!set->nr_hw_queues)
2543                 return -EINVAL;
2544         if (!set->queue_depth)
2545                 return -EINVAL;
2546         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2547                 return -EINVAL;
2548
2549         if (!set->ops->queue_rq)
2550                 return -EINVAL;
2551
2552         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2553                 pr_info("blk-mq: reduced tag depth to %u\n",
2554                         BLK_MQ_MAX_DEPTH);
2555                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2556         }
2557
2558         /*
2559          * If a crashdump is active, then we are potentially in a very
2560          * memory constrained environment. Limit us to 1 queue and
2561          * 64 tags to prevent using too much memory.
2562          */
2563         if (is_kdump_kernel()) {
2564                 set->nr_hw_queues = 1;
2565                 set->queue_depth = min(64U, set->queue_depth);
2566         }
2567         /*
2568          * There is no use for more h/w queues than cpus.
2569          */
2570         if (set->nr_hw_queues > nr_cpu_ids)
2571                 set->nr_hw_queues = nr_cpu_ids;
2572
2573         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2574                                  GFP_KERNEL, set->numa_node);
2575         if (!set->tags)
2576                 return -ENOMEM;
2577
2578         ret = -ENOMEM;
2579         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2580                         GFP_KERNEL, set->numa_node);
2581         if (!set->mq_map)
2582                 goto out_free_tags;
2583
2584         ret = blk_mq_update_queue_map(set);
2585         if (ret)
2586                 goto out_free_mq_map;
2587
2588         ret = blk_mq_alloc_rq_maps(set);
2589         if (ret)
2590                 goto out_free_mq_map;
2591
2592         mutex_init(&set->tag_list_lock);
2593         INIT_LIST_HEAD(&set->tag_list);
2594
2595         return 0;
2596
2597 out_free_mq_map:
2598         kfree(set->mq_map);
2599         set->mq_map = NULL;
2600 out_free_tags:
2601         kfree(set->tags);
2602         set->tags = NULL;
2603         return ret;
2604 }
2605 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2606
2607 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2608 {
2609         int i;
2610
2611         for (i = 0; i < nr_cpu_ids; i++)
2612                 blk_mq_free_map_and_requests(set, i);
2613
2614         kfree(set->mq_map);
2615         set->mq_map = NULL;
2616
2617         kfree(set->tags);
2618         set->tags = NULL;
2619 }
2620 EXPORT_SYMBOL(blk_mq_free_tag_set);
2621
2622 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2623 {
2624         struct blk_mq_tag_set *set = q->tag_set;
2625         struct blk_mq_hw_ctx *hctx;
2626         int i, ret;
2627
2628         if (!set)
2629                 return -EINVAL;
2630
2631         blk_mq_freeze_queue(q);
2632
2633         ret = 0;
2634         queue_for_each_hw_ctx(q, hctx, i) {
2635                 if (!hctx->tags)
2636                         continue;
2637                 /*
2638                  * If we're using an MQ scheduler, just update the scheduler
2639                  * queue depth. This is similar to what the old code would do.
2640                  */
2641                 if (!hctx->sched_tags) {
2642                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2643                                                         min(nr, set->queue_depth),
2644                                                         false);
2645                 } else {
2646                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2647                                                         nr, true);
2648                 }
2649                 if (ret)
2650                         break;
2651         }
2652
2653         if (!ret)
2654                 q->nr_requests = nr;
2655
2656         blk_mq_unfreeze_queue(q);
2657
2658         return ret;
2659 }
2660
2661 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2662                                                         int nr_hw_queues)
2663 {
2664         struct request_queue *q;
2665
2666         lockdep_assert_held(&set->tag_list_lock);
2667
2668         if (nr_hw_queues > nr_cpu_ids)
2669                 nr_hw_queues = nr_cpu_ids;
2670         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2671                 return;
2672
2673         list_for_each_entry(q, &set->tag_list, tag_set_list)
2674                 blk_mq_freeze_queue(q);
2675
2676         set->nr_hw_queues = nr_hw_queues;
2677         blk_mq_update_queue_map(set);
2678         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2679                 blk_mq_realloc_hw_ctxs(set, q);
2680                 blk_mq_queue_reinit(q, cpu_online_mask);
2681         }
2682
2683         list_for_each_entry(q, &set->tag_list, tag_set_list)
2684                 blk_mq_unfreeze_queue(q);
2685 }
2686
2687 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2688 {
2689         mutex_lock(&set->tag_list_lock);
2690         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2691         mutex_unlock(&set->tag_list_lock);
2692 }
2693 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2694
2695 /* Enable polling stats and return whether they were already enabled. */
2696 static bool blk_poll_stats_enable(struct request_queue *q)
2697 {
2698         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2700                 return true;
2701         blk_stat_add_callback(q, q->poll_cb);
2702         return false;
2703 }
2704
2705 static void blk_mq_poll_stats_start(struct request_queue *q)
2706 {
2707         /*
2708          * We don't arm the callback if polling stats are not enabled or the
2709          * callback is already active.
2710          */
2711         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2712             blk_stat_is_active(q->poll_cb))
2713                 return;
2714
2715         blk_stat_activate_msecs(q->poll_cb, 100);
2716 }
2717
2718 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2719 {
2720         struct request_queue *q = cb->data;
2721         int bucket;
2722
2723         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2724                 if (cb->stat[bucket].nr_samples)
2725                         q->poll_stat[bucket] = cb->stat[bucket];
2726         }
2727 }
2728
2729 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2730                                        struct blk_mq_hw_ctx *hctx,
2731                                        struct request *rq)
2732 {
2733         unsigned long ret = 0;
2734         int bucket;
2735
2736         /*
2737          * If stats collection isn't on, don't sleep but turn it on for
2738          * future users
2739          */
2740         if (!blk_poll_stats_enable(q))
2741                 return 0;
2742
2743         /*
2744          * As an optimistic guess, use half of the mean service time
2745          * for this type of request. We can (and should) make this smarter.
2746          * For instance, if the completion latencies are tight, we can
2747          * get closer than just half the mean. This is especially
2748          * important on devices where the completion latencies are longer
2749          * than ~10 usec. We do use the stats for the relevant IO size
2750          * if available which does lead to better estimates.
2751          */
2752         bucket = blk_mq_poll_stats_bkt(rq);
2753         if (bucket < 0)
2754                 return ret;
2755
2756         if (q->poll_stat[bucket].nr_samples)
2757                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2758
2759         return ret;
2760 }
2761
2762 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2763                                      struct blk_mq_hw_ctx *hctx,
2764                                      struct request *rq)
2765 {
2766         struct hrtimer_sleeper hs;
2767         enum hrtimer_mode mode;
2768         unsigned int nsecs;
2769         ktime_t kt;
2770
2771         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2772                 return false;
2773
2774         /*
2775          * poll_nsec can be:
2776          *
2777          * -1:  don't ever hybrid sleep
2778          *  0:  use half of prev avg
2779          * >0:  use this specific value
2780          */
2781         if (q->poll_nsec == -1)
2782                 return false;
2783         else if (q->poll_nsec > 0)
2784                 nsecs = q->poll_nsec;
2785         else
2786                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2787
2788         if (!nsecs)
2789                 return false;
2790
2791         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2792
2793         /*
2794          * This will be replaced with the stats tracking code, using
2795          * 'avg_completion_time / 2' as the pre-sleep target.
2796          */
2797         kt = nsecs;
2798
2799         mode = HRTIMER_MODE_REL;
2800         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2801         hrtimer_set_expires(&hs.timer, kt);
2802
2803         hrtimer_init_sleeper(&hs, current);
2804         do {
2805                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2806                         break;
2807                 set_current_state(TASK_UNINTERRUPTIBLE);
2808                 hrtimer_start_expires(&hs.timer, mode);
2809                 if (hs.task)
2810                         io_schedule();
2811                 hrtimer_cancel(&hs.timer);
2812                 mode = HRTIMER_MODE_ABS;
2813         } while (hs.task && !signal_pending(current));
2814
2815         __set_current_state(TASK_RUNNING);
2816         destroy_hrtimer_on_stack(&hs.timer);
2817         return true;
2818 }
2819
2820 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2821 {
2822         struct request_queue *q = hctx->queue;
2823         long state;
2824
2825         /*
2826          * If we sleep, have the caller restart the poll loop to reset
2827          * the state. Like for the other success return cases, the
2828          * caller is responsible for checking if the IO completed. If
2829          * the IO isn't complete, we'll get called again and will go
2830          * straight to the busy poll loop.
2831          */
2832         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2833                 return true;
2834
2835         hctx->poll_considered++;
2836
2837         state = current->state;
2838         while (!need_resched()) {
2839                 int ret;
2840
2841                 hctx->poll_invoked++;
2842
2843                 ret = q->mq_ops->poll(hctx, rq->tag);
2844                 if (ret > 0) {
2845                         hctx->poll_success++;
2846                         set_current_state(TASK_RUNNING);
2847                         return true;
2848                 }
2849
2850                 if (signal_pending_state(state, current))
2851                         set_current_state(TASK_RUNNING);
2852
2853                 if (current->state == TASK_RUNNING)
2854                         return true;
2855                 if (ret < 0)
2856                         break;
2857                 cpu_relax();
2858         }
2859
2860         return false;
2861 }
2862
2863 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2864 {
2865         struct blk_mq_hw_ctx *hctx;
2866         struct blk_plug *plug;
2867         struct request *rq;
2868
2869         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2870             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2871                 return false;
2872
2873         plug = current->plug;
2874         if (plug)
2875                 blk_flush_plug_list(plug, false);
2876
2877         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2878         if (!blk_qc_t_is_internal(cookie))
2879                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2880         else {
2881                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2882                 /*
2883                  * With scheduling, if the request has completed, we'll
2884                  * get a NULL return here, as we clear the sched tag when
2885                  * that happens. The request still remains valid, like always,
2886                  * so we should be safe with just the NULL check.
2887                  */
2888                 if (!rq)
2889                         return false;
2890         }
2891
2892         return __blk_mq_poll(hctx, rq);
2893 }
2894 EXPORT_SYMBOL_GPL(blk_mq_poll);
2895
2896 void blk_mq_disable_hotplug(void)
2897 {
2898         mutex_lock(&all_q_mutex);
2899 }
2900
2901 void blk_mq_enable_hotplug(void)
2902 {
2903         mutex_unlock(&all_q_mutex);
2904 }
2905
2906 static int __init blk_mq_init(void)
2907 {
2908         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2909                                 blk_mq_hctx_notify_dead);
2910
2911         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2912                                   blk_mq_queue_reinit_prepare,
2913                                   blk_mq_queue_reinit_dead);
2914         return 0;
2915 }
2916 subsys_initcall(blk_mq_init);