]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
block: introduce new block status code type
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186         struct blk_mq_hw_ctx *hctx;
187         unsigned int i;
188
189         queue_for_each_hw_ctx(q, hctx, i)
190                 if (blk_mq_hw_queue_mapped(hctx))
191                         blk_mq_tag_wakeup_all(hctx->tags, true);
192
193         /*
194          * If we are called because the queue has now been marked as
195          * dying, we need to ensure that processes currently waiting on
196          * the queue are notified as well.
197          */
198         wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203         return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208                         struct request *rq, unsigned int op)
209 {
210         INIT_LIST_HEAD(&rq->queuelist);
211         /* csd/requeue_work/fifo_time is initialized before use */
212         rq->q = q;
213         rq->mq_ctx = ctx;
214         rq->cmd_flags = op;
215         if (blk_queue_io_stat(q))
216                 rq->rq_flags |= RQF_IO_STAT;
217         /* do not touch atomic flags, it needs atomic ops against the timer */
218         rq->cpu = -1;
219         INIT_HLIST_NODE(&rq->hash);
220         RB_CLEAR_NODE(&rq->rb_node);
221         rq->rq_disk = NULL;
222         rq->part = NULL;
223         rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225         rq->rl = NULL;
226         set_start_time_ns(rq);
227         rq->io_start_time_ns = 0;
228 #endif
229         rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231         rq->nr_integrity_segments = 0;
232 #endif
233         rq->special = NULL;
234         /* tag was already set */
235         rq->extra_len = 0;
236
237         INIT_LIST_HEAD(&rq->timeout_list);
238         rq->timeout = 0;
239
240         rq->end_io = NULL;
241         rq->end_io_data = NULL;
242         rq->next_rq = NULL;
243
244         ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249                                        unsigned int op)
250 {
251         struct request *rq;
252         unsigned int tag;
253
254         tag = blk_mq_get_tag(data);
255         if (tag != BLK_MQ_TAG_FAIL) {
256                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257
258                 rq = tags->static_rqs[tag];
259
260                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
261                         rq->tag = -1;
262                         rq->internal_tag = tag;
263                 } else {
264                         if (blk_mq_tag_busy(data->hctx)) {
265                                 rq->rq_flags = RQF_MQ_INFLIGHT;
266                                 atomic_inc(&data->hctx->nr_active);
267                         }
268                         rq->tag = tag;
269                         rq->internal_tag = -1;
270                         data->hctx->tags->rqs[rq->tag] = rq;
271                 }
272
273                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274                 return rq;
275         }
276
277         return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282                 unsigned int flags)
283 {
284         struct blk_mq_alloc_data alloc_data = { .flags = flags };
285         struct request *rq;
286         int ret;
287
288         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289         if (ret)
290                 return ERR_PTR(ret);
291
292         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293
294         blk_mq_put_ctx(alloc_data.ctx);
295         blk_queue_exit(q);
296
297         if (!rq)
298                 return ERR_PTR(-EWOULDBLOCK);
299
300         rq->__data_len = 0;
301         rq->__sector = (sector_t) -1;
302         rq->bio = rq->biotail = NULL;
303         return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308                 unsigned int flags, unsigned int hctx_idx)
309 {
310         struct blk_mq_alloc_data alloc_data = { .flags = flags };
311         struct request *rq;
312         unsigned int cpu;
313         int ret;
314
315         /*
316          * If the tag allocator sleeps we could get an allocation for a
317          * different hardware context.  No need to complicate the low level
318          * allocator for this for the rare use case of a command tied to
319          * a specific queue.
320          */
321         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322                 return ERR_PTR(-EINVAL);
323
324         if (hctx_idx >= q->nr_hw_queues)
325                 return ERR_PTR(-EIO);
326
327         ret = blk_queue_enter(q, true);
328         if (ret)
329                 return ERR_PTR(ret);
330
331         /*
332          * Check if the hardware context is actually mapped to anything.
333          * If not tell the caller that it should skip this queue.
334          */
335         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337                 blk_queue_exit(q);
338                 return ERR_PTR(-EXDEV);
339         }
340         cpu = cpumask_first(alloc_data.hctx->cpumask);
341         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342
343         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344
345         blk_queue_exit(q);
346
347         if (!rq)
348                 return ERR_PTR(-EWOULDBLOCK);
349
350         return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355                              struct request *rq)
356 {
357         const int sched_tag = rq->internal_tag;
358         struct request_queue *q = rq->q;
359
360         if (rq->rq_flags & RQF_MQ_INFLIGHT)
361                 atomic_dec(&hctx->nr_active);
362
363         wbt_done(q->rq_wb, &rq->issue_stat);
364         rq->rq_flags = 0;
365
366         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368         if (rq->tag != -1)
369                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370         if (sched_tag != -1)
371                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372         blk_mq_sched_restart(hctx);
373         blk_queue_exit(q);
374 }
375
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377                                      struct request *rq)
378 {
379         struct blk_mq_ctx *ctx = rq->mq_ctx;
380
381         ctx->rq_completed[rq_is_sync(rq)]++;
382         __blk_mq_finish_request(hctx, ctx, rq);
383 }
384
385 void blk_mq_finish_request(struct request *rq)
386 {
387         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390
391 void blk_mq_free_request(struct request *rq)
392 {
393         blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396
397 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
398 {
399         blk_account_io_done(rq);
400
401         if (rq->end_io) {
402                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
403                 rq->end_io(rq, error);
404         } else {
405                 if (unlikely(blk_bidi_rq(rq)))
406                         blk_mq_free_request(rq->next_rq);
407                 blk_mq_free_request(rq);
408         }
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411
412 void blk_mq_end_request(struct request *rq, blk_status_t error)
413 {
414         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415                 BUG();
416         __blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422         struct request *rq = data;
423
424         rq->q->softirq_done_fn(rq);
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429         struct blk_mq_ctx *ctx = rq->mq_ctx;
430         bool shared = false;
431         int cpu;
432
433         if (rq->internal_tag != -1)
434                 blk_mq_sched_completed_request(rq);
435         if (rq->rq_flags & RQF_STATS) {
436                 blk_mq_poll_stats_start(rq->q);
437                 blk_stat_add(rq);
438         }
439
440         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441                 rq->q->softirq_done_fn(rq);
442                 return;
443         }
444
445         cpu = get_cpu();
446         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447                 shared = cpus_share_cache(cpu, ctx->cpu);
448
449         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450                 rq->csd.func = __blk_mq_complete_request_remote;
451                 rq->csd.info = rq;
452                 rq->csd.flags = 0;
453                 smp_call_function_single_async(ctx->cpu, &rq->csd);
454         } else {
455                 rq->q->softirq_done_fn(rq);
456         }
457         put_cpu();
458 }
459
460 /**
461  * blk_mq_complete_request - end I/O on a request
462  * @rq:         the request being processed
463  *
464  * Description:
465  *      Ends all I/O on a request. It does not handle partial completions.
466  *      The actual completion happens out-of-order, through a IPI handler.
467  **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471
472         if (unlikely(blk_should_fake_timeout(q)))
473                 return;
474         if (!blk_mark_rq_complete(rq))
475                 __blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487         struct request_queue *q = rq->q;
488
489         blk_mq_sched_started_request(rq);
490
491         trace_block_rq_issue(q, rq);
492
493         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495                 rq->rq_flags |= RQF_STATS;
496                 wbt_issue(q->rq_wb, &rq->issue_stat);
497         }
498
499         blk_add_timer(rq);
500
501         /*
502          * Ensure that ->deadline is visible before set the started
503          * flag and clear the completed flag.
504          */
505         smp_mb__before_atomic();
506
507         /*
508          * Mark us as started and clear complete. Complete might have been
509          * set if requeue raced with timeout, which then marked it as
510          * complete. So be sure to clear complete again when we start
511          * the request, otherwise we'll ignore the completion event.
512          */
513         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518         if (q->dma_drain_size && blk_rq_bytes(rq)) {
519                 /*
520                  * Make sure space for the drain appears.  We know we can do
521                  * this because max_hw_segments has been adjusted to be one
522                  * fewer than the device can handle.
523                  */
524                 rq->nr_phys_segments++;
525         }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540         struct request_queue *q = rq->q;
541
542         trace_block_rq_requeue(q, rq);
543         wbt_requeue(q->rq_wb, &rq->issue_stat);
544         blk_mq_sched_requeue_request(rq);
545
546         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547                 if (q->dma_drain_size && blk_rq_bytes(rq))
548                         rq->nr_phys_segments--;
549         }
550 }
551
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554         __blk_mq_requeue_request(rq);
555
556         BUG_ON(blk_queued_rq(rq));
557         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563         struct request_queue *q =
564                 container_of(work, struct request_queue, requeue_work.work);
565         LIST_HEAD(rq_list);
566         struct request *rq, *next;
567         unsigned long flags;
568
569         spin_lock_irqsave(&q->requeue_lock, flags);
570         list_splice_init(&q->requeue_list, &rq_list);
571         spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
575                         continue;
576
577                 rq->rq_flags &= ~RQF_SOFTBARRIER;
578                 list_del_init(&rq->queuelist);
579                 blk_mq_sched_insert_request(rq, true, false, false, true);
580         }
581
582         while (!list_empty(&rq_list)) {
583                 rq = list_entry(rq_list.next, struct request, queuelist);
584                 list_del_init(&rq->queuelist);
585                 blk_mq_sched_insert_request(rq, false, false, false, true);
586         }
587
588         blk_mq_run_hw_queues(q, false);
589 }
590
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592                                 bool kick_requeue_list)
593 {
594         struct request_queue *q = rq->q;
595         unsigned long flags;
596
597         /*
598          * We abuse this flag that is otherwise used by the I/O scheduler to
599          * request head insertation from the workqueue.
600          */
601         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602
603         spin_lock_irqsave(&q->requeue_lock, flags);
604         if (at_head) {
605                 rq->rq_flags |= RQF_SOFTBARRIER;
606                 list_add(&rq->queuelist, &q->requeue_list);
607         } else {
608                 list_add_tail(&rq->queuelist, &q->requeue_list);
609         }
610         spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612         if (kick_requeue_list)
613                 blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619         kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624                                     unsigned long msecs)
625 {
626         kblockd_schedule_delayed_work(&q->requeue_work,
627                                       msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
631 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
632 {
633         if (tag < tags->nr_tags) {
634                 prefetch(tags->rqs[tag]);
635                 return tags->rqs[tag];
636         }
637
638         return NULL;
639 }
640 EXPORT_SYMBOL(blk_mq_tag_to_rq);
641
642 struct blk_mq_timeout_data {
643         unsigned long next;
644         unsigned int next_set;
645 };
646
647 void blk_mq_rq_timed_out(struct request *req, bool reserved)
648 {
649         const struct blk_mq_ops *ops = req->q->mq_ops;
650         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
651
652         /*
653          * We know that complete is set at this point. If STARTED isn't set
654          * anymore, then the request isn't active and the "timeout" should
655          * just be ignored. This can happen due to the bitflag ordering.
656          * Timeout first checks if STARTED is set, and if it is, assumes
657          * the request is active. But if we race with completion, then
658          * both flags will get cleared. So check here again, and ignore
659          * a timeout event with a request that isn't active.
660          */
661         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
662                 return;
663
664         if (ops->timeout)
665                 ret = ops->timeout(req, reserved);
666
667         switch (ret) {
668         case BLK_EH_HANDLED:
669                 __blk_mq_complete_request(req);
670                 break;
671         case BLK_EH_RESET_TIMER:
672                 blk_add_timer(req);
673                 blk_clear_rq_complete(req);
674                 break;
675         case BLK_EH_NOT_HANDLED:
676                 break;
677         default:
678                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
679                 break;
680         }
681 }
682
683 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
684                 struct request *rq, void *priv, bool reserved)
685 {
686         struct blk_mq_timeout_data *data = priv;
687
688         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
689                 return;
690
691         /*
692          * The rq being checked may have been freed and reallocated
693          * out already here, we avoid this race by checking rq->deadline
694          * and REQ_ATOM_COMPLETE flag together:
695          *
696          * - if rq->deadline is observed as new value because of
697          *   reusing, the rq won't be timed out because of timing.
698          * - if rq->deadline is observed as previous value,
699          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
700          *   because we put a barrier between setting rq->deadline
701          *   and clearing the flag in blk_mq_start_request(), so
702          *   this rq won't be timed out too.
703          */
704         if (time_after_eq(jiffies, rq->deadline)) {
705                 if (!blk_mark_rq_complete(rq))
706                         blk_mq_rq_timed_out(rq, reserved);
707         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
708                 data->next = rq->deadline;
709                 data->next_set = 1;
710         }
711 }
712
713 static void blk_mq_timeout_work(struct work_struct *work)
714 {
715         struct request_queue *q =
716                 container_of(work, struct request_queue, timeout_work);
717         struct blk_mq_timeout_data data = {
718                 .next           = 0,
719                 .next_set       = 0,
720         };
721         int i;
722
723         /* A deadlock might occur if a request is stuck requiring a
724          * timeout at the same time a queue freeze is waiting
725          * completion, since the timeout code would not be able to
726          * acquire the queue reference here.
727          *
728          * That's why we don't use blk_queue_enter here; instead, we use
729          * percpu_ref_tryget directly, because we need to be able to
730          * obtain a reference even in the short window between the queue
731          * starting to freeze, by dropping the first reference in
732          * blk_freeze_queue_start, and the moment the last request is
733          * consumed, marked by the instant q_usage_counter reaches
734          * zero.
735          */
736         if (!percpu_ref_tryget(&q->q_usage_counter))
737                 return;
738
739         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
740
741         if (data.next_set) {
742                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
743                 mod_timer(&q->timeout, data.next);
744         } else {
745                 struct blk_mq_hw_ctx *hctx;
746
747                 queue_for_each_hw_ctx(q, hctx, i) {
748                         /* the hctx may be unmapped, so check it here */
749                         if (blk_mq_hw_queue_mapped(hctx))
750                                 blk_mq_tag_idle(hctx);
751                 }
752         }
753         blk_queue_exit(q);
754 }
755
756 struct flush_busy_ctx_data {
757         struct blk_mq_hw_ctx *hctx;
758         struct list_head *list;
759 };
760
761 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
762 {
763         struct flush_busy_ctx_data *flush_data = data;
764         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
765         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
766
767         sbitmap_clear_bit(sb, bitnr);
768         spin_lock(&ctx->lock);
769         list_splice_tail_init(&ctx->rq_list, flush_data->list);
770         spin_unlock(&ctx->lock);
771         return true;
772 }
773
774 /*
775  * Process software queues that have been marked busy, splicing them
776  * to the for-dispatch
777  */
778 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
779 {
780         struct flush_busy_ctx_data data = {
781                 .hctx = hctx,
782                 .list = list,
783         };
784
785         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
786 }
787 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
788
789 static inline unsigned int queued_to_index(unsigned int queued)
790 {
791         if (!queued)
792                 return 0;
793
794         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
795 }
796
797 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
798                            bool wait)
799 {
800         struct blk_mq_alloc_data data = {
801                 .q = rq->q,
802                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
803                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
804         };
805
806         might_sleep_if(wait);
807
808         if (rq->tag != -1)
809                 goto done;
810
811         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
812                 data.flags |= BLK_MQ_REQ_RESERVED;
813
814         rq->tag = blk_mq_get_tag(&data);
815         if (rq->tag >= 0) {
816                 if (blk_mq_tag_busy(data.hctx)) {
817                         rq->rq_flags |= RQF_MQ_INFLIGHT;
818                         atomic_inc(&data.hctx->nr_active);
819                 }
820                 data.hctx->tags->rqs[rq->tag] = rq;
821         }
822
823 done:
824         if (hctx)
825                 *hctx = data.hctx;
826         return rq->tag != -1;
827 }
828
829 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
830                                     struct request *rq)
831 {
832         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
833         rq->tag = -1;
834
835         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
836                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
837                 atomic_dec(&hctx->nr_active);
838         }
839 }
840
841 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
842                                        struct request *rq)
843 {
844         if (rq->tag == -1 || rq->internal_tag == -1)
845                 return;
846
847         __blk_mq_put_driver_tag(hctx, rq);
848 }
849
850 static void blk_mq_put_driver_tag(struct request *rq)
851 {
852         struct blk_mq_hw_ctx *hctx;
853
854         if (rq->tag == -1 || rq->internal_tag == -1)
855                 return;
856
857         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
858         __blk_mq_put_driver_tag(hctx, rq);
859 }
860
861 /*
862  * If we fail getting a driver tag because all the driver tags are already
863  * assigned and on the dispatch list, BUT the first entry does not have a
864  * tag, then we could deadlock. For that case, move entries with assigned
865  * driver tags to the front, leaving the set of tagged requests in the
866  * same order, and the untagged set in the same order.
867  */
868 static bool reorder_tags_to_front(struct list_head *list)
869 {
870         struct request *rq, *tmp, *first = NULL;
871
872         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
873                 if (rq == first)
874                         break;
875                 if (rq->tag != -1) {
876                         list_move(&rq->queuelist, list);
877                         if (!first)
878                                 first = rq;
879                 }
880         }
881
882         return first != NULL;
883 }
884
885 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
886                                 void *key)
887 {
888         struct blk_mq_hw_ctx *hctx;
889
890         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
891
892         list_del(&wait->task_list);
893         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
894         blk_mq_run_hw_queue(hctx, true);
895         return 1;
896 }
897
898 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
899 {
900         struct sbq_wait_state *ws;
901
902         /*
903          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
904          * The thread which wins the race to grab this bit adds the hardware
905          * queue to the wait queue.
906          */
907         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
908             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
909                 return false;
910
911         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
912         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
913
914         /*
915          * As soon as this returns, it's no longer safe to fiddle with
916          * hctx->dispatch_wait, since a completion can wake up the wait queue
917          * and unlock the bit.
918          */
919         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
920         return true;
921 }
922
923 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
924 {
925         struct blk_mq_hw_ctx *hctx;
926         struct request *rq;
927         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
928
929         if (list_empty(list))
930                 return false;
931
932         /*
933          * Now process all the entries, sending them to the driver.
934          */
935         errors = queued = 0;
936         do {
937                 struct blk_mq_queue_data bd;
938
939                 rq = list_first_entry(list, struct request, queuelist);
940                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
941                         if (!queued && reorder_tags_to_front(list))
942                                 continue;
943
944                         /*
945                          * The initial allocation attempt failed, so we need to
946                          * rerun the hardware queue when a tag is freed.
947                          */
948                         if (!blk_mq_dispatch_wait_add(hctx))
949                                 break;
950
951                         /*
952                          * It's possible that a tag was freed in the window
953                          * between the allocation failure and adding the
954                          * hardware queue to the wait queue.
955                          */
956                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
957                                 break;
958                 }
959
960                 list_del_init(&rq->queuelist);
961
962                 bd.rq = rq;
963
964                 /*
965                  * Flag last if we have no more requests, or if we have more
966                  * but can't assign a driver tag to it.
967                  */
968                 if (list_empty(list))
969                         bd.last = true;
970                 else {
971                         struct request *nxt;
972
973                         nxt = list_first_entry(list, struct request, queuelist);
974                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
975                 }
976
977                 ret = q->mq_ops->queue_rq(hctx, &bd);
978                 switch (ret) {
979                 case BLK_MQ_RQ_QUEUE_OK:
980                         queued++;
981                         break;
982                 case BLK_MQ_RQ_QUEUE_BUSY:
983                         blk_mq_put_driver_tag_hctx(hctx, rq);
984                         list_add(&rq->queuelist, list);
985                         __blk_mq_requeue_request(rq);
986                         break;
987                 default:
988                         pr_err("blk-mq: bad return on queue: %d\n", ret);
989                 case BLK_MQ_RQ_QUEUE_ERROR:
990                         errors++;
991                         blk_mq_end_request(rq, BLK_STS_IOERR);
992                         break;
993                 }
994
995                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
996                         break;
997         } while (!list_empty(list));
998
999         hctx->dispatched[queued_to_index(queued)]++;
1000
1001         /*
1002          * Any items that need requeuing? Stuff them into hctx->dispatch,
1003          * that is where we will continue on next queue run.
1004          */
1005         if (!list_empty(list)) {
1006                 /*
1007                  * If an I/O scheduler has been configured and we got a driver
1008                  * tag for the next request already, free it again.
1009                  */
1010                 rq = list_first_entry(list, struct request, queuelist);
1011                 blk_mq_put_driver_tag(rq);
1012
1013                 spin_lock(&hctx->lock);
1014                 list_splice_init(list, &hctx->dispatch);
1015                 spin_unlock(&hctx->lock);
1016
1017                 /*
1018                  * If SCHED_RESTART was set by the caller of this function and
1019                  * it is no longer set that means that it was cleared by another
1020                  * thread and hence that a queue rerun is needed.
1021                  *
1022                  * If TAG_WAITING is set that means that an I/O scheduler has
1023                  * been configured and another thread is waiting for a driver
1024                  * tag. To guarantee fairness, do not rerun this hardware queue
1025                  * but let the other thread grab the driver tag.
1026                  *
1027                  * If no I/O scheduler has been configured it is possible that
1028                  * the hardware queue got stopped and restarted before requests
1029                  * were pushed back onto the dispatch list. Rerun the queue to
1030                  * avoid starvation. Notes:
1031                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1032                  *   been stopped before rerunning a queue.
1033                  * - Some but not all block drivers stop a queue before
1034                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1035                  *   and dm-rq.
1036                  */
1037                 if (!blk_mq_sched_needs_restart(hctx) &&
1038                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1039                         blk_mq_run_hw_queue(hctx, true);
1040         }
1041
1042         return (queued + errors) != 0;
1043 }
1044
1045 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1046 {
1047         int srcu_idx;
1048
1049         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1050                 cpu_online(hctx->next_cpu));
1051
1052         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1053                 rcu_read_lock();
1054                 blk_mq_sched_dispatch_requests(hctx);
1055                 rcu_read_unlock();
1056         } else {
1057                 might_sleep();
1058
1059                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1060                 blk_mq_sched_dispatch_requests(hctx);
1061                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1062         }
1063 }
1064
1065 /*
1066  * It'd be great if the workqueue API had a way to pass
1067  * in a mask and had some smarts for more clever placement.
1068  * For now we just round-robin here, switching for every
1069  * BLK_MQ_CPU_WORK_BATCH queued items.
1070  */
1071 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1072 {
1073         if (hctx->queue->nr_hw_queues == 1)
1074                 return WORK_CPU_UNBOUND;
1075
1076         if (--hctx->next_cpu_batch <= 0) {
1077                 int next_cpu;
1078
1079                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1080                 if (next_cpu >= nr_cpu_ids)
1081                         next_cpu = cpumask_first(hctx->cpumask);
1082
1083                 hctx->next_cpu = next_cpu;
1084                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1085         }
1086
1087         return hctx->next_cpu;
1088 }
1089
1090 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1091                                         unsigned long msecs)
1092 {
1093         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1094                      !blk_mq_hw_queue_mapped(hctx)))
1095                 return;
1096
1097         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1098                 int cpu = get_cpu();
1099                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1100                         __blk_mq_run_hw_queue(hctx);
1101                         put_cpu();
1102                         return;
1103                 }
1104
1105                 put_cpu();
1106         }
1107
1108         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1109                                          &hctx->run_work,
1110                                          msecs_to_jiffies(msecs));
1111 }
1112
1113 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1114 {
1115         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1116 }
1117 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1118
1119 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1120 {
1121         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1122 }
1123 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1124
1125 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1126 {
1127         struct blk_mq_hw_ctx *hctx;
1128         int i;
1129
1130         queue_for_each_hw_ctx(q, hctx, i) {
1131                 if (!blk_mq_hctx_has_pending(hctx) ||
1132                     blk_mq_hctx_stopped(hctx))
1133                         continue;
1134
1135                 blk_mq_run_hw_queue(hctx, async);
1136         }
1137 }
1138 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1139
1140 /**
1141  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1142  * @q: request queue.
1143  *
1144  * The caller is responsible for serializing this function against
1145  * blk_mq_{start,stop}_hw_queue().
1146  */
1147 bool blk_mq_queue_stopped(struct request_queue *q)
1148 {
1149         struct blk_mq_hw_ctx *hctx;
1150         int i;
1151
1152         queue_for_each_hw_ctx(q, hctx, i)
1153                 if (blk_mq_hctx_stopped(hctx))
1154                         return true;
1155
1156         return false;
1157 }
1158 EXPORT_SYMBOL(blk_mq_queue_stopped);
1159
1160 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1161 {
1162         if (sync)
1163                 cancel_delayed_work_sync(&hctx->run_work);
1164         else
1165                 cancel_delayed_work(&hctx->run_work);
1166
1167         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1168 }
1169
1170 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1171 {
1172         __blk_mq_stop_hw_queue(hctx, false);
1173 }
1174 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1175
1176 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1177 {
1178         struct blk_mq_hw_ctx *hctx;
1179         int i;
1180
1181         queue_for_each_hw_ctx(q, hctx, i)
1182                 __blk_mq_stop_hw_queue(hctx, sync);
1183 }
1184
1185 void blk_mq_stop_hw_queues(struct request_queue *q)
1186 {
1187         __blk_mq_stop_hw_queues(q, false);
1188 }
1189 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1190
1191 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1192 {
1193         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1194
1195         blk_mq_run_hw_queue(hctx, false);
1196 }
1197 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1198
1199 void blk_mq_start_hw_queues(struct request_queue *q)
1200 {
1201         struct blk_mq_hw_ctx *hctx;
1202         int i;
1203
1204         queue_for_each_hw_ctx(q, hctx, i)
1205                 blk_mq_start_hw_queue(hctx);
1206 }
1207 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1208
1209 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1210 {
1211         if (!blk_mq_hctx_stopped(hctx))
1212                 return;
1213
1214         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215         blk_mq_run_hw_queue(hctx, async);
1216 }
1217 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1218
1219 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1220 {
1221         struct blk_mq_hw_ctx *hctx;
1222         int i;
1223
1224         queue_for_each_hw_ctx(q, hctx, i)
1225                 blk_mq_start_stopped_hw_queue(hctx, async);
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1228
1229 static void blk_mq_run_work_fn(struct work_struct *work)
1230 {
1231         struct blk_mq_hw_ctx *hctx;
1232
1233         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1234
1235         /*
1236          * If we are stopped, don't run the queue. The exception is if
1237          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1238          * the STOPPED bit and run it.
1239          */
1240         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1241                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1242                         return;
1243
1244                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1245                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1246         }
1247
1248         __blk_mq_run_hw_queue(hctx);
1249 }
1250
1251
1252 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1253 {
1254         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1255                 return;
1256
1257         /*
1258          * Stop the hw queue, then modify currently delayed work.
1259          * This should prevent us from running the queue prematurely.
1260          * Mark the queue as auto-clearing STOPPED when it runs.
1261          */
1262         blk_mq_stop_hw_queue(hctx);
1263         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1264         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1265                                         &hctx->run_work,
1266                                         msecs_to_jiffies(msecs));
1267 }
1268 EXPORT_SYMBOL(blk_mq_delay_queue);
1269
1270 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1271                                             struct request *rq,
1272                                             bool at_head)
1273 {
1274         struct blk_mq_ctx *ctx = rq->mq_ctx;
1275
1276         trace_block_rq_insert(hctx->queue, rq);
1277
1278         if (at_head)
1279                 list_add(&rq->queuelist, &ctx->rq_list);
1280         else
1281                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1282 }
1283
1284 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1285                              bool at_head)
1286 {
1287         struct blk_mq_ctx *ctx = rq->mq_ctx;
1288
1289         __blk_mq_insert_req_list(hctx, rq, at_head);
1290         blk_mq_hctx_mark_pending(hctx, ctx);
1291 }
1292
1293 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1294                             struct list_head *list)
1295
1296 {
1297         /*
1298          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1299          * offline now
1300          */
1301         spin_lock(&ctx->lock);
1302         while (!list_empty(list)) {
1303                 struct request *rq;
1304
1305                 rq = list_first_entry(list, struct request, queuelist);
1306                 BUG_ON(rq->mq_ctx != ctx);
1307                 list_del_init(&rq->queuelist);
1308                 __blk_mq_insert_req_list(hctx, rq, false);
1309         }
1310         blk_mq_hctx_mark_pending(hctx, ctx);
1311         spin_unlock(&ctx->lock);
1312 }
1313
1314 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1315 {
1316         struct request *rqa = container_of(a, struct request, queuelist);
1317         struct request *rqb = container_of(b, struct request, queuelist);
1318
1319         return !(rqa->mq_ctx < rqb->mq_ctx ||
1320                  (rqa->mq_ctx == rqb->mq_ctx &&
1321                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1322 }
1323
1324 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1325 {
1326         struct blk_mq_ctx *this_ctx;
1327         struct request_queue *this_q;
1328         struct request *rq;
1329         LIST_HEAD(list);
1330         LIST_HEAD(ctx_list);
1331         unsigned int depth;
1332
1333         list_splice_init(&plug->mq_list, &list);
1334
1335         list_sort(NULL, &list, plug_ctx_cmp);
1336
1337         this_q = NULL;
1338         this_ctx = NULL;
1339         depth = 0;
1340
1341         while (!list_empty(&list)) {
1342                 rq = list_entry_rq(list.next);
1343                 list_del_init(&rq->queuelist);
1344                 BUG_ON(!rq->q);
1345                 if (rq->mq_ctx != this_ctx) {
1346                         if (this_ctx) {
1347                                 trace_block_unplug(this_q, depth, from_schedule);
1348                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1349                                                                 &ctx_list,
1350                                                                 from_schedule);
1351                         }
1352
1353                         this_ctx = rq->mq_ctx;
1354                         this_q = rq->q;
1355                         depth = 0;
1356                 }
1357
1358                 depth++;
1359                 list_add_tail(&rq->queuelist, &ctx_list);
1360         }
1361
1362         /*
1363          * If 'this_ctx' is set, we know we have entries to complete
1364          * on 'ctx_list'. Do those.
1365          */
1366         if (this_ctx) {
1367                 trace_block_unplug(this_q, depth, from_schedule);
1368                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1369                                                 from_schedule);
1370         }
1371 }
1372
1373 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1374 {
1375         blk_init_request_from_bio(rq, bio);
1376
1377         blk_account_io_start(rq, true);
1378 }
1379
1380 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1381 {
1382         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1383                 !blk_queue_nomerges(hctx->queue);
1384 }
1385
1386 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1387                                    struct blk_mq_ctx *ctx,
1388                                    struct request *rq)
1389 {
1390         spin_lock(&ctx->lock);
1391         __blk_mq_insert_request(hctx, rq, false);
1392         spin_unlock(&ctx->lock);
1393 }
1394
1395 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1396 {
1397         if (rq->tag != -1)
1398                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1399
1400         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1401 }
1402
1403 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1404                                       bool may_sleep)
1405 {
1406         struct request_queue *q = rq->q;
1407         struct blk_mq_queue_data bd = {
1408                 .rq = rq,
1409                 .last = true,
1410         };
1411         struct blk_mq_hw_ctx *hctx;
1412         blk_qc_t new_cookie;
1413         int ret;
1414
1415         if (q->elevator)
1416                 goto insert;
1417
1418         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1419                 goto insert;
1420
1421         new_cookie = request_to_qc_t(hctx, rq);
1422
1423         /*
1424          * For OK queue, we are done. For error, kill it. Any other
1425          * error (busy), just add it to our list as we previously
1426          * would have done
1427          */
1428         ret = q->mq_ops->queue_rq(hctx, &bd);
1429         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1430                 *cookie = new_cookie;
1431                 return;
1432         }
1433
1434         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1435                 *cookie = BLK_QC_T_NONE;
1436                 blk_mq_end_request(rq, BLK_STS_IOERR);
1437                 return;
1438         }
1439
1440         __blk_mq_requeue_request(rq);
1441 insert:
1442         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1443 }
1444
1445 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1446                 struct request *rq, blk_qc_t *cookie)
1447 {
1448         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1449                 rcu_read_lock();
1450                 __blk_mq_try_issue_directly(rq, cookie, false);
1451                 rcu_read_unlock();
1452         } else {
1453                 unsigned int srcu_idx;
1454
1455                 might_sleep();
1456
1457                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1458                 __blk_mq_try_issue_directly(rq, cookie, true);
1459                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1460         }
1461 }
1462
1463 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1464 {
1465         const int is_sync = op_is_sync(bio->bi_opf);
1466         const int is_flush_fua = op_is_flush(bio->bi_opf);
1467         struct blk_mq_alloc_data data = { .flags = 0 };
1468         struct request *rq;
1469         unsigned int request_count = 0;
1470         struct blk_plug *plug;
1471         struct request *same_queue_rq = NULL;
1472         blk_qc_t cookie;
1473         unsigned int wb_acct;
1474
1475         blk_queue_bounce(q, &bio);
1476
1477         blk_queue_split(q, &bio, q->bio_split);
1478
1479         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1480                 bio_io_error(bio);
1481                 return BLK_QC_T_NONE;
1482         }
1483
1484         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1485             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1486                 return BLK_QC_T_NONE;
1487
1488         if (blk_mq_sched_bio_merge(q, bio))
1489                 return BLK_QC_T_NONE;
1490
1491         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1492
1493         trace_block_getrq(q, bio, bio->bi_opf);
1494
1495         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1496         if (unlikely(!rq)) {
1497                 __wbt_done(q->rq_wb, wb_acct);
1498                 return BLK_QC_T_NONE;
1499         }
1500
1501         wbt_track(&rq->issue_stat, wb_acct);
1502
1503         cookie = request_to_qc_t(data.hctx, rq);
1504
1505         plug = current->plug;
1506         if (unlikely(is_flush_fua)) {
1507                 blk_mq_put_ctx(data.ctx);
1508                 blk_mq_bio_to_request(rq, bio);
1509                 if (q->elevator) {
1510                         blk_mq_sched_insert_request(rq, false, true, true,
1511                                         true);
1512                 } else {
1513                         blk_insert_flush(rq);
1514                         blk_mq_run_hw_queue(data.hctx, true);
1515                 }
1516         } else if (plug && q->nr_hw_queues == 1) {
1517                 struct request *last = NULL;
1518
1519                 blk_mq_put_ctx(data.ctx);
1520                 blk_mq_bio_to_request(rq, bio);
1521
1522                 /*
1523                  * @request_count may become stale because of schedule
1524                  * out, so check the list again.
1525                  */
1526                 if (list_empty(&plug->mq_list))
1527                         request_count = 0;
1528                 else if (blk_queue_nomerges(q))
1529                         request_count = blk_plug_queued_count(q);
1530
1531                 if (!request_count)
1532                         trace_block_plug(q);
1533                 else
1534                         last = list_entry_rq(plug->mq_list.prev);
1535
1536                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1537                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1538                         blk_flush_plug_list(plug, false);
1539                         trace_block_plug(q);
1540                 }
1541
1542                 list_add_tail(&rq->queuelist, &plug->mq_list);
1543         } else if (plug && !blk_queue_nomerges(q)) {
1544                 blk_mq_bio_to_request(rq, bio);
1545
1546                 /*
1547                  * We do limited plugging. If the bio can be merged, do that.
1548                  * Otherwise the existing request in the plug list will be
1549                  * issued. So the plug list will have one request at most
1550                  * The plug list might get flushed before this. If that happens,
1551                  * the plug list is empty, and same_queue_rq is invalid.
1552                  */
1553                 if (list_empty(&plug->mq_list))
1554                         same_queue_rq = NULL;
1555                 if (same_queue_rq)
1556                         list_del_init(&same_queue_rq->queuelist);
1557                 list_add_tail(&rq->queuelist, &plug->mq_list);
1558
1559                 blk_mq_put_ctx(data.ctx);
1560
1561                 if (same_queue_rq)
1562                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1563                                         &cookie);
1564         } else if (q->nr_hw_queues > 1 && is_sync) {
1565                 blk_mq_put_ctx(data.ctx);
1566                 blk_mq_bio_to_request(rq, bio);
1567                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1568         } else if (q->elevator) {
1569                 blk_mq_put_ctx(data.ctx);
1570                 blk_mq_bio_to_request(rq, bio);
1571                 blk_mq_sched_insert_request(rq, false, true, true, true);
1572         } else {
1573                 blk_mq_put_ctx(data.ctx);
1574                 blk_mq_bio_to_request(rq, bio);
1575                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1576                 blk_mq_run_hw_queue(data.hctx, true);
1577         }
1578
1579         return cookie;
1580 }
1581
1582 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1583                      unsigned int hctx_idx)
1584 {
1585         struct page *page;
1586
1587         if (tags->rqs && set->ops->exit_request) {
1588                 int i;
1589
1590                 for (i = 0; i < tags->nr_tags; i++) {
1591                         struct request *rq = tags->static_rqs[i];
1592
1593                         if (!rq)
1594                                 continue;
1595                         set->ops->exit_request(set, rq, hctx_idx);
1596                         tags->static_rqs[i] = NULL;
1597                 }
1598         }
1599
1600         while (!list_empty(&tags->page_list)) {
1601                 page = list_first_entry(&tags->page_list, struct page, lru);
1602                 list_del_init(&page->lru);
1603                 /*
1604                  * Remove kmemleak object previously allocated in
1605                  * blk_mq_init_rq_map().
1606                  */
1607                 kmemleak_free(page_address(page));
1608                 __free_pages(page, page->private);
1609         }
1610 }
1611
1612 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1613 {
1614         kfree(tags->rqs);
1615         tags->rqs = NULL;
1616         kfree(tags->static_rqs);
1617         tags->static_rqs = NULL;
1618
1619         blk_mq_free_tags(tags);
1620 }
1621
1622 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1623                                         unsigned int hctx_idx,
1624                                         unsigned int nr_tags,
1625                                         unsigned int reserved_tags)
1626 {
1627         struct blk_mq_tags *tags;
1628         int node;
1629
1630         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1631         if (node == NUMA_NO_NODE)
1632                 node = set->numa_node;
1633
1634         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1635                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1636         if (!tags)
1637                 return NULL;
1638
1639         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1640                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1641                                  node);
1642         if (!tags->rqs) {
1643                 blk_mq_free_tags(tags);
1644                 return NULL;
1645         }
1646
1647         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1648                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1649                                  node);
1650         if (!tags->static_rqs) {
1651                 kfree(tags->rqs);
1652                 blk_mq_free_tags(tags);
1653                 return NULL;
1654         }
1655
1656         return tags;
1657 }
1658
1659 static size_t order_to_size(unsigned int order)
1660 {
1661         return (size_t)PAGE_SIZE << order;
1662 }
1663
1664 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1665                      unsigned int hctx_idx, unsigned int depth)
1666 {
1667         unsigned int i, j, entries_per_page, max_order = 4;
1668         size_t rq_size, left;
1669         int node;
1670
1671         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1672         if (node == NUMA_NO_NODE)
1673                 node = set->numa_node;
1674
1675         INIT_LIST_HEAD(&tags->page_list);
1676
1677         /*
1678          * rq_size is the size of the request plus driver payload, rounded
1679          * to the cacheline size
1680          */
1681         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1682                                 cache_line_size());
1683         left = rq_size * depth;
1684
1685         for (i = 0; i < depth; ) {
1686                 int this_order = max_order;
1687                 struct page *page;
1688                 int to_do;
1689                 void *p;
1690
1691                 while (this_order && left < order_to_size(this_order - 1))
1692                         this_order--;
1693
1694                 do {
1695                         page = alloc_pages_node(node,
1696                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1697                                 this_order);
1698                         if (page)
1699                                 break;
1700                         if (!this_order--)
1701                                 break;
1702                         if (order_to_size(this_order) < rq_size)
1703                                 break;
1704                 } while (1);
1705
1706                 if (!page)
1707                         goto fail;
1708
1709                 page->private = this_order;
1710                 list_add_tail(&page->lru, &tags->page_list);
1711
1712                 p = page_address(page);
1713                 /*
1714                  * Allow kmemleak to scan these pages as they contain pointers
1715                  * to additional allocations like via ops->init_request().
1716                  */
1717                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1718                 entries_per_page = order_to_size(this_order) / rq_size;
1719                 to_do = min(entries_per_page, depth - i);
1720                 left -= to_do * rq_size;
1721                 for (j = 0; j < to_do; j++) {
1722                         struct request *rq = p;
1723
1724                         tags->static_rqs[i] = rq;
1725                         if (set->ops->init_request) {
1726                                 if (set->ops->init_request(set, rq, hctx_idx,
1727                                                 node)) {
1728                                         tags->static_rqs[i] = NULL;
1729                                         goto fail;
1730                                 }
1731                         }
1732
1733                         p += rq_size;
1734                         i++;
1735                 }
1736         }
1737         return 0;
1738
1739 fail:
1740         blk_mq_free_rqs(set, tags, hctx_idx);
1741         return -ENOMEM;
1742 }
1743
1744 /*
1745  * 'cpu' is going away. splice any existing rq_list entries from this
1746  * software queue to the hw queue dispatch list, and ensure that it
1747  * gets run.
1748  */
1749 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1750 {
1751         struct blk_mq_hw_ctx *hctx;
1752         struct blk_mq_ctx *ctx;
1753         LIST_HEAD(tmp);
1754
1755         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1756         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1757
1758         spin_lock(&ctx->lock);
1759         if (!list_empty(&ctx->rq_list)) {
1760                 list_splice_init(&ctx->rq_list, &tmp);
1761                 blk_mq_hctx_clear_pending(hctx, ctx);
1762         }
1763         spin_unlock(&ctx->lock);
1764
1765         if (list_empty(&tmp))
1766                 return 0;
1767
1768         spin_lock(&hctx->lock);
1769         list_splice_tail_init(&tmp, &hctx->dispatch);
1770         spin_unlock(&hctx->lock);
1771
1772         blk_mq_run_hw_queue(hctx, true);
1773         return 0;
1774 }
1775
1776 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1777 {
1778         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1779                                             &hctx->cpuhp_dead);
1780 }
1781
1782 /* hctx->ctxs will be freed in queue's release handler */
1783 static void blk_mq_exit_hctx(struct request_queue *q,
1784                 struct blk_mq_tag_set *set,
1785                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1786 {
1787         blk_mq_debugfs_unregister_hctx(hctx);
1788
1789         blk_mq_tag_idle(hctx);
1790
1791         if (set->ops->exit_request)
1792                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1793
1794         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1795
1796         if (set->ops->exit_hctx)
1797                 set->ops->exit_hctx(hctx, hctx_idx);
1798
1799         if (hctx->flags & BLK_MQ_F_BLOCKING)
1800                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1801
1802         blk_mq_remove_cpuhp(hctx);
1803         blk_free_flush_queue(hctx->fq);
1804         sbitmap_free(&hctx->ctx_map);
1805 }
1806
1807 static void blk_mq_exit_hw_queues(struct request_queue *q,
1808                 struct blk_mq_tag_set *set, int nr_queue)
1809 {
1810         struct blk_mq_hw_ctx *hctx;
1811         unsigned int i;
1812
1813         queue_for_each_hw_ctx(q, hctx, i) {
1814                 if (i == nr_queue)
1815                         break;
1816                 blk_mq_exit_hctx(q, set, hctx, i);
1817         }
1818 }
1819
1820 static int blk_mq_init_hctx(struct request_queue *q,
1821                 struct blk_mq_tag_set *set,
1822                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1823 {
1824         int node;
1825
1826         node = hctx->numa_node;
1827         if (node == NUMA_NO_NODE)
1828                 node = hctx->numa_node = set->numa_node;
1829
1830         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1831         spin_lock_init(&hctx->lock);
1832         INIT_LIST_HEAD(&hctx->dispatch);
1833         hctx->queue = q;
1834         hctx->queue_num = hctx_idx;
1835         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1836
1837         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1838
1839         hctx->tags = set->tags[hctx_idx];
1840
1841         /*
1842          * Allocate space for all possible cpus to avoid allocation at
1843          * runtime
1844          */
1845         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1846                                         GFP_KERNEL, node);
1847         if (!hctx->ctxs)
1848                 goto unregister_cpu_notifier;
1849
1850         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1851                               node))
1852                 goto free_ctxs;
1853
1854         hctx->nr_ctx = 0;
1855
1856         if (set->ops->init_hctx &&
1857             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1858                 goto free_bitmap;
1859
1860         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1861                 goto exit_hctx;
1862
1863         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1864         if (!hctx->fq)
1865                 goto sched_exit_hctx;
1866
1867         if (set->ops->init_request &&
1868             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1869                                    node))
1870                 goto free_fq;
1871
1872         if (hctx->flags & BLK_MQ_F_BLOCKING)
1873                 init_srcu_struct(&hctx->queue_rq_srcu);
1874
1875         blk_mq_debugfs_register_hctx(q, hctx);
1876
1877         return 0;
1878
1879  free_fq:
1880         kfree(hctx->fq);
1881  sched_exit_hctx:
1882         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1883  exit_hctx:
1884         if (set->ops->exit_hctx)
1885                 set->ops->exit_hctx(hctx, hctx_idx);
1886  free_bitmap:
1887         sbitmap_free(&hctx->ctx_map);
1888  free_ctxs:
1889         kfree(hctx->ctxs);
1890  unregister_cpu_notifier:
1891         blk_mq_remove_cpuhp(hctx);
1892         return -1;
1893 }
1894
1895 static void blk_mq_init_cpu_queues(struct request_queue *q,
1896                                    unsigned int nr_hw_queues)
1897 {
1898         unsigned int i;
1899
1900         for_each_possible_cpu(i) {
1901                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1902                 struct blk_mq_hw_ctx *hctx;
1903
1904                 __ctx->cpu = i;
1905                 spin_lock_init(&__ctx->lock);
1906                 INIT_LIST_HEAD(&__ctx->rq_list);
1907                 __ctx->queue = q;
1908
1909                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1910                 if (!cpu_online(i))
1911                         continue;
1912
1913                 hctx = blk_mq_map_queue(q, i);
1914
1915                 /*
1916                  * Set local node, IFF we have more than one hw queue. If
1917                  * not, we remain on the home node of the device
1918                  */
1919                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1920                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1921         }
1922 }
1923
1924 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1925 {
1926         int ret = 0;
1927
1928         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1929                                         set->queue_depth, set->reserved_tags);
1930         if (!set->tags[hctx_idx])
1931                 return false;
1932
1933         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1934                                 set->queue_depth);
1935         if (!ret)
1936                 return true;
1937
1938         blk_mq_free_rq_map(set->tags[hctx_idx]);
1939         set->tags[hctx_idx] = NULL;
1940         return false;
1941 }
1942
1943 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1944                                          unsigned int hctx_idx)
1945 {
1946         if (set->tags[hctx_idx]) {
1947                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1948                 blk_mq_free_rq_map(set->tags[hctx_idx]);
1949                 set->tags[hctx_idx] = NULL;
1950         }
1951 }
1952
1953 static void blk_mq_map_swqueue(struct request_queue *q,
1954                                const struct cpumask *online_mask)
1955 {
1956         unsigned int i, hctx_idx;
1957         struct blk_mq_hw_ctx *hctx;
1958         struct blk_mq_ctx *ctx;
1959         struct blk_mq_tag_set *set = q->tag_set;
1960
1961         /*
1962          * Avoid others reading imcomplete hctx->cpumask through sysfs
1963          */
1964         mutex_lock(&q->sysfs_lock);
1965
1966         queue_for_each_hw_ctx(q, hctx, i) {
1967                 cpumask_clear(hctx->cpumask);
1968                 hctx->nr_ctx = 0;
1969         }
1970
1971         /*
1972          * Map software to hardware queues
1973          */
1974         for_each_possible_cpu(i) {
1975                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1976                 if (!cpumask_test_cpu(i, online_mask))
1977                         continue;
1978
1979                 hctx_idx = q->mq_map[i];
1980                 /* unmapped hw queue can be remapped after CPU topo changed */
1981                 if (!set->tags[hctx_idx] &&
1982                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1983                         /*
1984                          * If tags initialization fail for some hctx,
1985                          * that hctx won't be brought online.  In this
1986                          * case, remap the current ctx to hctx[0] which
1987                          * is guaranteed to always have tags allocated
1988                          */
1989                         q->mq_map[i] = 0;
1990                 }
1991
1992                 ctx = per_cpu_ptr(q->queue_ctx, i);
1993                 hctx = blk_mq_map_queue(q, i);
1994
1995                 cpumask_set_cpu(i, hctx->cpumask);
1996                 ctx->index_hw = hctx->nr_ctx;
1997                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1998         }
1999
2000         mutex_unlock(&q->sysfs_lock);
2001
2002         queue_for_each_hw_ctx(q, hctx, i) {
2003                 /*
2004                  * If no software queues are mapped to this hardware queue,
2005                  * disable it and free the request entries.
2006                  */
2007                 if (!hctx->nr_ctx) {
2008                         /* Never unmap queue 0.  We need it as a
2009                          * fallback in case of a new remap fails
2010                          * allocation
2011                          */
2012                         if (i && set->tags[i])
2013                                 blk_mq_free_map_and_requests(set, i);
2014
2015                         hctx->tags = NULL;
2016                         continue;
2017                 }
2018
2019                 hctx->tags = set->tags[i];
2020                 WARN_ON(!hctx->tags);
2021
2022                 /*
2023                  * Set the map size to the number of mapped software queues.
2024                  * This is more accurate and more efficient than looping
2025                  * over all possibly mapped software queues.
2026                  */
2027                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2028
2029                 /*
2030                  * Initialize batch roundrobin counts
2031                  */
2032                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2033                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2034         }
2035 }
2036
2037 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2038 {
2039         struct blk_mq_hw_ctx *hctx;
2040         int i;
2041
2042         queue_for_each_hw_ctx(q, hctx, i) {
2043                 if (shared)
2044                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2045                 else
2046                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2047         }
2048 }
2049
2050 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2051 {
2052         struct request_queue *q;
2053
2054         lockdep_assert_held(&set->tag_list_lock);
2055
2056         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2057                 blk_mq_freeze_queue(q);
2058                 queue_set_hctx_shared(q, shared);
2059                 blk_mq_unfreeze_queue(q);
2060         }
2061 }
2062
2063 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2064 {
2065         struct blk_mq_tag_set *set = q->tag_set;
2066
2067         mutex_lock(&set->tag_list_lock);
2068         list_del_rcu(&q->tag_set_list);
2069         INIT_LIST_HEAD(&q->tag_set_list);
2070         if (list_is_singular(&set->tag_list)) {
2071                 /* just transitioned to unshared */
2072                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2073                 /* update existing queue */
2074                 blk_mq_update_tag_set_depth(set, false);
2075         }
2076         mutex_unlock(&set->tag_list_lock);
2077
2078         synchronize_rcu();
2079 }
2080
2081 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2082                                      struct request_queue *q)
2083 {
2084         q->tag_set = set;
2085
2086         mutex_lock(&set->tag_list_lock);
2087
2088         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2089         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2090                 set->flags |= BLK_MQ_F_TAG_SHARED;
2091                 /* update existing queue */
2092                 blk_mq_update_tag_set_depth(set, true);
2093         }
2094         if (set->flags & BLK_MQ_F_TAG_SHARED)
2095                 queue_set_hctx_shared(q, true);
2096         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2097
2098         mutex_unlock(&set->tag_list_lock);
2099 }
2100
2101 /*
2102  * It is the actual release handler for mq, but we do it from
2103  * request queue's release handler for avoiding use-after-free
2104  * and headache because q->mq_kobj shouldn't have been introduced,
2105  * but we can't group ctx/kctx kobj without it.
2106  */
2107 void blk_mq_release(struct request_queue *q)
2108 {
2109         struct blk_mq_hw_ctx *hctx;
2110         unsigned int i;
2111
2112         /* hctx kobj stays in hctx */
2113         queue_for_each_hw_ctx(q, hctx, i) {
2114                 if (!hctx)
2115                         continue;
2116                 kobject_put(&hctx->kobj);
2117         }
2118
2119         q->mq_map = NULL;
2120
2121         kfree(q->queue_hw_ctx);
2122
2123         /*
2124          * release .mq_kobj and sw queue's kobject now because
2125          * both share lifetime with request queue.
2126          */
2127         blk_mq_sysfs_deinit(q);
2128
2129         free_percpu(q->queue_ctx);
2130 }
2131
2132 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2133 {
2134         struct request_queue *uninit_q, *q;
2135
2136         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2137         if (!uninit_q)
2138                 return ERR_PTR(-ENOMEM);
2139
2140         q = blk_mq_init_allocated_queue(set, uninit_q);
2141         if (IS_ERR(q))
2142                 blk_cleanup_queue(uninit_q);
2143
2144         return q;
2145 }
2146 EXPORT_SYMBOL(blk_mq_init_queue);
2147
2148 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2149                                                 struct request_queue *q)
2150 {
2151         int i, j;
2152         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2153
2154         blk_mq_sysfs_unregister(q);
2155         for (i = 0; i < set->nr_hw_queues; i++) {
2156                 int node;
2157
2158                 if (hctxs[i])
2159                         continue;
2160
2161                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2162                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2163                                         GFP_KERNEL, node);
2164                 if (!hctxs[i])
2165                         break;
2166
2167                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2168                                                 node)) {
2169                         kfree(hctxs[i]);
2170                         hctxs[i] = NULL;
2171                         break;
2172                 }
2173
2174                 atomic_set(&hctxs[i]->nr_active, 0);
2175                 hctxs[i]->numa_node = node;
2176                 hctxs[i]->queue_num = i;
2177
2178                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2179                         free_cpumask_var(hctxs[i]->cpumask);
2180                         kfree(hctxs[i]);
2181                         hctxs[i] = NULL;
2182                         break;
2183                 }
2184                 blk_mq_hctx_kobj_init(hctxs[i]);
2185         }
2186         for (j = i; j < q->nr_hw_queues; j++) {
2187                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2188
2189                 if (hctx) {
2190                         if (hctx->tags)
2191                                 blk_mq_free_map_and_requests(set, j);
2192                         blk_mq_exit_hctx(q, set, hctx, j);
2193                         kobject_put(&hctx->kobj);
2194                         hctxs[j] = NULL;
2195
2196                 }
2197         }
2198         q->nr_hw_queues = i;
2199         blk_mq_sysfs_register(q);
2200 }
2201
2202 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2203                                                   struct request_queue *q)
2204 {
2205         /* mark the queue as mq asap */
2206         q->mq_ops = set->ops;
2207
2208         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2209                                              blk_mq_poll_stats_bkt,
2210                                              BLK_MQ_POLL_STATS_BKTS, q);
2211         if (!q->poll_cb)
2212                 goto err_exit;
2213
2214         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2215         if (!q->queue_ctx)
2216                 goto err_exit;
2217
2218         /* init q->mq_kobj and sw queues' kobjects */
2219         blk_mq_sysfs_init(q);
2220
2221         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2222                                                 GFP_KERNEL, set->numa_node);
2223         if (!q->queue_hw_ctx)
2224                 goto err_percpu;
2225
2226         q->mq_map = set->mq_map;
2227
2228         blk_mq_realloc_hw_ctxs(set, q);
2229         if (!q->nr_hw_queues)
2230                 goto err_hctxs;
2231
2232         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2233         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2234
2235         q->nr_queues = nr_cpu_ids;
2236
2237         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2238
2239         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2240                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2241
2242         q->sg_reserved_size = INT_MAX;
2243
2244         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2245         INIT_LIST_HEAD(&q->requeue_list);
2246         spin_lock_init(&q->requeue_lock);
2247
2248         blk_queue_make_request(q, blk_mq_make_request);
2249
2250         /*
2251          * Do this after blk_queue_make_request() overrides it...
2252          */
2253         q->nr_requests = set->queue_depth;
2254
2255         /*
2256          * Default to classic polling
2257          */
2258         q->poll_nsec = -1;
2259
2260         if (set->ops->complete)
2261                 blk_queue_softirq_done(q, set->ops->complete);
2262
2263         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2264
2265         get_online_cpus();
2266         mutex_lock(&all_q_mutex);
2267
2268         list_add_tail(&q->all_q_node, &all_q_list);
2269         blk_mq_add_queue_tag_set(set, q);
2270         blk_mq_map_swqueue(q, cpu_online_mask);
2271
2272         mutex_unlock(&all_q_mutex);
2273         put_online_cpus();
2274
2275         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2276                 int ret;
2277
2278                 ret = blk_mq_sched_init(q);
2279                 if (ret)
2280                         return ERR_PTR(ret);
2281         }
2282
2283         return q;
2284
2285 err_hctxs:
2286         kfree(q->queue_hw_ctx);
2287 err_percpu:
2288         free_percpu(q->queue_ctx);
2289 err_exit:
2290         q->mq_ops = NULL;
2291         return ERR_PTR(-ENOMEM);
2292 }
2293 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2294
2295 void blk_mq_free_queue(struct request_queue *q)
2296 {
2297         struct blk_mq_tag_set   *set = q->tag_set;
2298
2299         mutex_lock(&all_q_mutex);
2300         list_del_init(&q->all_q_node);
2301         mutex_unlock(&all_q_mutex);
2302
2303         blk_mq_del_queue_tag_set(q);
2304
2305         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2306 }
2307
2308 /* Basically redo blk_mq_init_queue with queue frozen */
2309 static void blk_mq_queue_reinit(struct request_queue *q,
2310                                 const struct cpumask *online_mask)
2311 {
2312         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2313
2314         blk_mq_debugfs_unregister_hctxs(q);
2315         blk_mq_sysfs_unregister(q);
2316
2317         /*
2318          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2319          * we should change hctx numa_node according to new topology (this
2320          * involves free and re-allocate memory, worthy doing?)
2321          */
2322
2323         blk_mq_map_swqueue(q, online_mask);
2324
2325         blk_mq_sysfs_register(q);
2326         blk_mq_debugfs_register_hctxs(q);
2327 }
2328
2329 /*
2330  * New online cpumask which is going to be set in this hotplug event.
2331  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2332  * one-by-one and dynamically allocating this could result in a failure.
2333  */
2334 static struct cpumask cpuhp_online_new;
2335
2336 static void blk_mq_queue_reinit_work(void)
2337 {
2338         struct request_queue *q;
2339
2340         mutex_lock(&all_q_mutex);
2341         /*
2342          * We need to freeze and reinit all existing queues.  Freezing
2343          * involves synchronous wait for an RCU grace period and doing it
2344          * one by one may take a long time.  Start freezing all queues in
2345          * one swoop and then wait for the completions so that freezing can
2346          * take place in parallel.
2347          */
2348         list_for_each_entry(q, &all_q_list, all_q_node)
2349                 blk_freeze_queue_start(q);
2350         list_for_each_entry(q, &all_q_list, all_q_node)
2351                 blk_mq_freeze_queue_wait(q);
2352
2353         list_for_each_entry(q, &all_q_list, all_q_node)
2354                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2355
2356         list_for_each_entry(q, &all_q_list, all_q_node)
2357                 blk_mq_unfreeze_queue(q);
2358
2359         mutex_unlock(&all_q_mutex);
2360 }
2361
2362 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2363 {
2364         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2365         blk_mq_queue_reinit_work();
2366         return 0;
2367 }
2368
2369 /*
2370  * Before hotadded cpu starts handling requests, new mappings must be
2371  * established.  Otherwise, these requests in hw queue might never be
2372  * dispatched.
2373  *
2374  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2375  * for CPU0, and ctx1 for CPU1).
2376  *
2377  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2378  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2379  *
2380  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2381  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2382  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2383  * ignored.
2384  */
2385 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2386 {
2387         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2388         cpumask_set_cpu(cpu, &cpuhp_online_new);
2389         blk_mq_queue_reinit_work();
2390         return 0;
2391 }
2392
2393 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2394 {
2395         int i;
2396
2397         for (i = 0; i < set->nr_hw_queues; i++)
2398                 if (!__blk_mq_alloc_rq_map(set, i))
2399                         goto out_unwind;
2400
2401         return 0;
2402
2403 out_unwind:
2404         while (--i >= 0)
2405                 blk_mq_free_rq_map(set->tags[i]);
2406
2407         return -ENOMEM;
2408 }
2409
2410 /*
2411  * Allocate the request maps associated with this tag_set. Note that this
2412  * may reduce the depth asked for, if memory is tight. set->queue_depth
2413  * will be updated to reflect the allocated depth.
2414  */
2415 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2416 {
2417         unsigned int depth;
2418         int err;
2419
2420         depth = set->queue_depth;
2421         do {
2422                 err = __blk_mq_alloc_rq_maps(set);
2423                 if (!err)
2424                         break;
2425
2426                 set->queue_depth >>= 1;
2427                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2428                         err = -ENOMEM;
2429                         break;
2430                 }
2431         } while (set->queue_depth);
2432
2433         if (!set->queue_depth || err) {
2434                 pr_err("blk-mq: failed to allocate request map\n");
2435                 return -ENOMEM;
2436         }
2437
2438         if (depth != set->queue_depth)
2439                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2440                                                 depth, set->queue_depth);
2441
2442         return 0;
2443 }
2444
2445 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2446 {
2447         if (set->ops->map_queues)
2448                 return set->ops->map_queues(set);
2449         else
2450                 return blk_mq_map_queues(set);
2451 }
2452
2453 /*
2454  * Alloc a tag set to be associated with one or more request queues.
2455  * May fail with EINVAL for various error conditions. May adjust the
2456  * requested depth down, if if it too large. In that case, the set
2457  * value will be stored in set->queue_depth.
2458  */
2459 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2460 {
2461         int ret;
2462
2463         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2464
2465         if (!set->nr_hw_queues)
2466                 return -EINVAL;
2467         if (!set->queue_depth)
2468                 return -EINVAL;
2469         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2470                 return -EINVAL;
2471
2472         if (!set->ops->queue_rq)
2473                 return -EINVAL;
2474
2475         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2476                 pr_info("blk-mq: reduced tag depth to %u\n",
2477                         BLK_MQ_MAX_DEPTH);
2478                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2479         }
2480
2481         /*
2482          * If a crashdump is active, then we are potentially in a very
2483          * memory constrained environment. Limit us to 1 queue and
2484          * 64 tags to prevent using too much memory.
2485          */
2486         if (is_kdump_kernel()) {
2487                 set->nr_hw_queues = 1;
2488                 set->queue_depth = min(64U, set->queue_depth);
2489         }
2490         /*
2491          * There is no use for more h/w queues than cpus.
2492          */
2493         if (set->nr_hw_queues > nr_cpu_ids)
2494                 set->nr_hw_queues = nr_cpu_ids;
2495
2496         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2497                                  GFP_KERNEL, set->numa_node);
2498         if (!set->tags)
2499                 return -ENOMEM;
2500
2501         ret = -ENOMEM;
2502         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2503                         GFP_KERNEL, set->numa_node);
2504         if (!set->mq_map)
2505                 goto out_free_tags;
2506
2507         ret = blk_mq_update_queue_map(set);
2508         if (ret)
2509                 goto out_free_mq_map;
2510
2511         ret = blk_mq_alloc_rq_maps(set);
2512         if (ret)
2513                 goto out_free_mq_map;
2514
2515         mutex_init(&set->tag_list_lock);
2516         INIT_LIST_HEAD(&set->tag_list);
2517
2518         return 0;
2519
2520 out_free_mq_map:
2521         kfree(set->mq_map);
2522         set->mq_map = NULL;
2523 out_free_tags:
2524         kfree(set->tags);
2525         set->tags = NULL;
2526         return ret;
2527 }
2528 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2529
2530 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2531 {
2532         int i;
2533
2534         for (i = 0; i < nr_cpu_ids; i++)
2535                 blk_mq_free_map_and_requests(set, i);
2536
2537         kfree(set->mq_map);
2538         set->mq_map = NULL;
2539
2540         kfree(set->tags);
2541         set->tags = NULL;
2542 }
2543 EXPORT_SYMBOL(blk_mq_free_tag_set);
2544
2545 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2546 {
2547         struct blk_mq_tag_set *set = q->tag_set;
2548         struct blk_mq_hw_ctx *hctx;
2549         int i, ret;
2550
2551         if (!set)
2552                 return -EINVAL;
2553
2554         blk_mq_freeze_queue(q);
2555
2556         ret = 0;
2557         queue_for_each_hw_ctx(q, hctx, i) {
2558                 if (!hctx->tags)
2559                         continue;
2560                 /*
2561                  * If we're using an MQ scheduler, just update the scheduler
2562                  * queue depth. This is similar to what the old code would do.
2563                  */
2564                 if (!hctx->sched_tags) {
2565                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2566                                                         min(nr, set->queue_depth),
2567                                                         false);
2568                 } else {
2569                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2570                                                         nr, true);
2571                 }
2572                 if (ret)
2573                         break;
2574         }
2575
2576         if (!ret)
2577                 q->nr_requests = nr;
2578
2579         blk_mq_unfreeze_queue(q);
2580
2581         return ret;
2582 }
2583
2584 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2585 {
2586         struct request_queue *q;
2587
2588         lockdep_assert_held(&set->tag_list_lock);
2589
2590         if (nr_hw_queues > nr_cpu_ids)
2591                 nr_hw_queues = nr_cpu_ids;
2592         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2593                 return;
2594
2595         list_for_each_entry(q, &set->tag_list, tag_set_list)
2596                 blk_mq_freeze_queue(q);
2597
2598         set->nr_hw_queues = nr_hw_queues;
2599         blk_mq_update_queue_map(set);
2600         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2601                 blk_mq_realloc_hw_ctxs(set, q);
2602                 blk_mq_queue_reinit(q, cpu_online_mask);
2603         }
2604
2605         list_for_each_entry(q, &set->tag_list, tag_set_list)
2606                 blk_mq_unfreeze_queue(q);
2607 }
2608 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2609
2610 /* Enable polling stats and return whether they were already enabled. */
2611 static bool blk_poll_stats_enable(struct request_queue *q)
2612 {
2613         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2614             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2615                 return true;
2616         blk_stat_add_callback(q, q->poll_cb);
2617         return false;
2618 }
2619
2620 static void blk_mq_poll_stats_start(struct request_queue *q)
2621 {
2622         /*
2623          * We don't arm the callback if polling stats are not enabled or the
2624          * callback is already active.
2625          */
2626         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2627             blk_stat_is_active(q->poll_cb))
2628                 return;
2629
2630         blk_stat_activate_msecs(q->poll_cb, 100);
2631 }
2632
2633 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2634 {
2635         struct request_queue *q = cb->data;
2636         int bucket;
2637
2638         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2639                 if (cb->stat[bucket].nr_samples)
2640                         q->poll_stat[bucket] = cb->stat[bucket];
2641         }
2642 }
2643
2644 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2645                                        struct blk_mq_hw_ctx *hctx,
2646                                        struct request *rq)
2647 {
2648         unsigned long ret = 0;
2649         int bucket;
2650
2651         /*
2652          * If stats collection isn't on, don't sleep but turn it on for
2653          * future users
2654          */
2655         if (!blk_poll_stats_enable(q))
2656                 return 0;
2657
2658         /*
2659          * As an optimistic guess, use half of the mean service time
2660          * for this type of request. We can (and should) make this smarter.
2661          * For instance, if the completion latencies are tight, we can
2662          * get closer than just half the mean. This is especially
2663          * important on devices where the completion latencies are longer
2664          * than ~10 usec. We do use the stats for the relevant IO size
2665          * if available which does lead to better estimates.
2666          */
2667         bucket = blk_mq_poll_stats_bkt(rq);
2668         if (bucket < 0)
2669                 return ret;
2670
2671         if (q->poll_stat[bucket].nr_samples)
2672                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2673
2674         return ret;
2675 }
2676
2677 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2678                                      struct blk_mq_hw_ctx *hctx,
2679                                      struct request *rq)
2680 {
2681         struct hrtimer_sleeper hs;
2682         enum hrtimer_mode mode;
2683         unsigned int nsecs;
2684         ktime_t kt;
2685
2686         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2687                 return false;
2688
2689         /*
2690          * poll_nsec can be:
2691          *
2692          * -1:  don't ever hybrid sleep
2693          *  0:  use half of prev avg
2694          * >0:  use this specific value
2695          */
2696         if (q->poll_nsec == -1)
2697                 return false;
2698         else if (q->poll_nsec > 0)
2699                 nsecs = q->poll_nsec;
2700         else
2701                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2702
2703         if (!nsecs)
2704                 return false;
2705
2706         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2707
2708         /*
2709          * This will be replaced with the stats tracking code, using
2710          * 'avg_completion_time / 2' as the pre-sleep target.
2711          */
2712         kt = nsecs;
2713
2714         mode = HRTIMER_MODE_REL;
2715         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2716         hrtimer_set_expires(&hs.timer, kt);
2717
2718         hrtimer_init_sleeper(&hs, current);
2719         do {
2720                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2721                         break;
2722                 set_current_state(TASK_UNINTERRUPTIBLE);
2723                 hrtimer_start_expires(&hs.timer, mode);
2724                 if (hs.task)
2725                         io_schedule();
2726                 hrtimer_cancel(&hs.timer);
2727                 mode = HRTIMER_MODE_ABS;
2728         } while (hs.task && !signal_pending(current));
2729
2730         __set_current_state(TASK_RUNNING);
2731         destroy_hrtimer_on_stack(&hs.timer);
2732         return true;
2733 }
2734
2735 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2736 {
2737         struct request_queue *q = hctx->queue;
2738         long state;
2739
2740         /*
2741          * If we sleep, have the caller restart the poll loop to reset
2742          * the state. Like for the other success return cases, the
2743          * caller is responsible for checking if the IO completed. If
2744          * the IO isn't complete, we'll get called again and will go
2745          * straight to the busy poll loop.
2746          */
2747         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2748                 return true;
2749
2750         hctx->poll_considered++;
2751
2752         state = current->state;
2753         while (!need_resched()) {
2754                 int ret;
2755
2756                 hctx->poll_invoked++;
2757
2758                 ret = q->mq_ops->poll(hctx, rq->tag);
2759                 if (ret > 0) {
2760                         hctx->poll_success++;
2761                         set_current_state(TASK_RUNNING);
2762                         return true;
2763                 }
2764
2765                 if (signal_pending_state(state, current))
2766                         set_current_state(TASK_RUNNING);
2767
2768                 if (current->state == TASK_RUNNING)
2769                         return true;
2770                 if (ret < 0)
2771                         break;
2772                 cpu_relax();
2773         }
2774
2775         return false;
2776 }
2777
2778 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2779 {
2780         struct blk_mq_hw_ctx *hctx;
2781         struct blk_plug *plug;
2782         struct request *rq;
2783
2784         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2785             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2786                 return false;
2787
2788         plug = current->plug;
2789         if (plug)
2790                 blk_flush_plug_list(plug, false);
2791
2792         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2793         if (!blk_qc_t_is_internal(cookie))
2794                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2795         else {
2796                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2797                 /*
2798                  * With scheduling, if the request has completed, we'll
2799                  * get a NULL return here, as we clear the sched tag when
2800                  * that happens. The request still remains valid, like always,
2801                  * so we should be safe with just the NULL check.
2802                  */
2803                 if (!rq)
2804                         return false;
2805         }
2806
2807         return __blk_mq_poll(hctx, rq);
2808 }
2809 EXPORT_SYMBOL_GPL(blk_mq_poll);
2810
2811 void blk_mq_disable_hotplug(void)
2812 {
2813         mutex_lock(&all_q_mutex);
2814 }
2815
2816 void blk_mq_enable_hotplug(void)
2817 {
2818         mutex_unlock(&all_q_mutex);
2819 }
2820
2821 static int __init blk_mq_init(void)
2822 {
2823         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2824                                 blk_mq_hctx_notify_dead);
2825
2826         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2827                                   blk_mq_queue_reinit_prepare,
2828                                   blk_mq_queue_reinit_dead);
2829         return 0;
2830 }
2831 subsys_initcall(blk_mq_init);