]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: include errors in did_work calculation
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_mq_put_ctx(alloc_data.ctx);
328         blk_queue_exit(q);
329
330         if (!rq)
331                 return ERR_PTR(-EWOULDBLOCK);
332
333         return rq;
334 }
335 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
337 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338                              struct request *rq)
339 {
340         const int sched_tag = rq->internal_tag;
341         struct request_queue *q = rq->q;
342
343         if (rq->rq_flags & RQF_MQ_INFLIGHT)
344                 atomic_dec(&hctx->nr_active);
345
346         wbt_done(q->rq_wb, &rq->issue_stat);
347         rq->rq_flags = 0;
348
349         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351         if (rq->tag != -1)
352                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353         if (sched_tag != -1)
354                 blk_mq_sched_completed_request(hctx, rq);
355         blk_mq_sched_restart_queues(hctx);
356         blk_queue_exit(q);
357 }
358
359 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360                                      struct request *rq)
361 {
362         struct blk_mq_ctx *ctx = rq->mq_ctx;
363
364         ctx->rq_completed[rq_is_sync(rq)]++;
365         __blk_mq_finish_request(hctx, ctx, rq);
366 }
367
368 void blk_mq_finish_request(struct request *rq)
369 {
370         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 }
372
373 void blk_mq_free_request(struct request *rq)
374 {
375         blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381         blk_account_io_done(rq);
382
383         if (rq->end_io) {
384                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385                 rq->end_io(rq, error);
386         } else {
387                 if (unlikely(blk_bidi_rq(rq)))
388                         blk_mq_free_request(rq->next_rq);
389                 blk_mq_free_request(rq);
390         }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397                 BUG();
398         __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404         struct request *rq = data;
405
406         rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411         struct blk_mq_ctx *ctx = rq->mq_ctx;
412         bool shared = false;
413         int cpu;
414
415         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416                 rq->q->softirq_done_fn(rq);
417                 return;
418         }
419
420         cpu = get_cpu();
421         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422                 shared = cpus_share_cache(cpu, ctx->cpu);
423
424         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425                 rq->csd.func = __blk_mq_complete_request_remote;
426                 rq->csd.info = rq;
427                 rq->csd.flags = 0;
428                 smp_call_function_single_async(ctx->cpu, &rq->csd);
429         } else {
430                 rq->q->softirq_done_fn(rq);
431         }
432         put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437         if (rq->rq_flags & RQF_STATS) {
438                 blk_mq_poll_stats_start(rq->q);
439                 blk_stat_add(rq);
440         }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445         struct request_queue *q = rq->q;
446
447         blk_mq_stat_add(rq);
448
449         if (!q->softirq_done_fn)
450                 blk_mq_end_request(rq, rq->errors);
451         else
452                 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456  * blk_mq_complete_request - end I/O on a request
457  * @rq:         the request being processed
458  *
459  * Description:
460  *      Ends all I/O on a request. It does not handle partial completions.
461  *      The actual completion happens out-of-order, through a IPI handler.
462  **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465         struct request_queue *q = rq->q;
466
467         if (unlikely(blk_should_fake_timeout(q)))
468                 return;
469         if (!blk_mark_rq_complete(rq)) {
470                 rq->errors = error;
471                 __blk_mq_complete_request(rq);
472         }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485
486         blk_mq_sched_started_request(rq);
487
488         trace_block_rq_issue(q, rq);
489
490         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492                 rq->rq_flags |= RQF_STATS;
493                 wbt_issue(q->rq_wb, &rq->issue_stat);
494         }
495
496         blk_add_timer(rq);
497
498         /*
499          * Ensure that ->deadline is visible before set the started
500          * flag and clear the completed flag.
501          */
502         smp_mb__before_atomic();
503
504         /*
505          * Mark us as started and clear complete. Complete might have been
506          * set if requeue raced with timeout, which then marked it as
507          * complete. So be sure to clear complete again when we start
508          * the request, otherwise we'll ignore the completion event.
509          */
510         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515         if (q->dma_drain_size && blk_rq_bytes(rq)) {
516                 /*
517                  * Make sure space for the drain appears.  We know we can do
518                  * this because max_hw_segments has been adjusted to be one
519                  * fewer than the device can handle.
520                  */
521                 rq->nr_phys_segments++;
522         }
523 }
524 EXPORT_SYMBOL(blk_mq_start_request);
525
526 /*
527  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528  * flag isn't set yet, so there may be race with timeout handler,
529  * but given rq->deadline is just set in .queue_rq() under
530  * this situation, the race won't be possible in reality because
531  * rq->timeout should be set as big enough to cover the window
532  * between blk_mq_start_request() called from .queue_rq() and
533  * clearing REQ_ATOM_STARTED here.
534  */
535 static void __blk_mq_requeue_request(struct request *rq)
536 {
537         struct request_queue *q = rq->q;
538
539         trace_block_rq_requeue(q, rq);
540         wbt_requeue(q->rq_wb, &rq->issue_stat);
541         blk_mq_sched_requeue_request(rq);
542
543         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
544                 if (q->dma_drain_size && blk_rq_bytes(rq))
545                         rq->nr_phys_segments--;
546         }
547 }
548
549 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 {
551         __blk_mq_requeue_request(rq);
552
553         BUG_ON(blk_queued_rq(rq));
554         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 }
556 EXPORT_SYMBOL(blk_mq_requeue_request);
557
558 static void blk_mq_requeue_work(struct work_struct *work)
559 {
560         struct request_queue *q =
561                 container_of(work, struct request_queue, requeue_work.work);
562         LIST_HEAD(rq_list);
563         struct request *rq, *next;
564         unsigned long flags;
565
566         spin_lock_irqsave(&q->requeue_lock, flags);
567         list_splice_init(&q->requeue_list, &rq_list);
568         spin_unlock_irqrestore(&q->requeue_lock, flags);
569
570         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
572                         continue;
573
574                 rq->rq_flags &= ~RQF_SOFTBARRIER;
575                 list_del_init(&rq->queuelist);
576                 blk_mq_sched_insert_request(rq, true, false, false, true);
577         }
578
579         while (!list_empty(&rq_list)) {
580                 rq = list_entry(rq_list.next, struct request, queuelist);
581                 list_del_init(&rq->queuelist);
582                 blk_mq_sched_insert_request(rq, false, false, false, true);
583         }
584
585         blk_mq_run_hw_queues(q, false);
586 }
587
588 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
589                                 bool kick_requeue_list)
590 {
591         struct request_queue *q = rq->q;
592         unsigned long flags;
593
594         /*
595          * We abuse this flag that is otherwise used by the I/O scheduler to
596          * request head insertation from the workqueue.
597          */
598         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599
600         spin_lock_irqsave(&q->requeue_lock, flags);
601         if (at_head) {
602                 rq->rq_flags |= RQF_SOFTBARRIER;
603                 list_add(&rq->queuelist, &q->requeue_list);
604         } else {
605                 list_add_tail(&rq->queuelist, &q->requeue_list);
606         }
607         spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609         if (kick_requeue_list)
610                 blk_mq_kick_requeue_list(q);
611 }
612 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
613
614 void blk_mq_kick_requeue_list(struct request_queue *q)
615 {
616         kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 }
618 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
619
620 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
621                                     unsigned long msecs)
622 {
623         kblockd_schedule_delayed_work(&q->requeue_work,
624                                       msecs_to_jiffies(msecs));
625 }
626 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
627
628 void blk_mq_abort_requeue_list(struct request_queue *q)
629 {
630         unsigned long flags;
631         LIST_HEAD(rq_list);
632
633         spin_lock_irqsave(&q->requeue_lock, flags);
634         list_splice_init(&q->requeue_list, &rq_list);
635         spin_unlock_irqrestore(&q->requeue_lock, flags);
636
637         while (!list_empty(&rq_list)) {
638                 struct request *rq;
639
640                 rq = list_first_entry(&rq_list, struct request, queuelist);
641                 list_del_init(&rq->queuelist);
642                 rq->errors = -EIO;
643                 blk_mq_end_request(rq, rq->errors);
644         }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650         if (tag < tags->nr_tags) {
651                 prefetch(tags->rqs[tag]);
652                 return tags->rqs[tag];
653         }
654
655         return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660         unsigned long next;
661         unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666         const struct blk_mq_ops *ops = req->q->mq_ops;
667         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669         /*
670          * We know that complete is set at this point. If STARTED isn't set
671          * anymore, then the request isn't active and the "timeout" should
672          * just be ignored. This can happen due to the bitflag ordering.
673          * Timeout first checks if STARTED is set, and if it is, assumes
674          * the request is active. But if we race with completion, then
675          * both flags will get cleared. So check here again, and ignore
676          * a timeout event with a request that isn't active.
677          */
678         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679                 return;
680
681         if (ops->timeout)
682                 ret = ops->timeout(req, reserved);
683
684         switch (ret) {
685         case BLK_EH_HANDLED:
686                 __blk_mq_complete_request(req);
687                 break;
688         case BLK_EH_RESET_TIMER:
689                 blk_add_timer(req);
690                 blk_clear_rq_complete(req);
691                 break;
692         case BLK_EH_NOT_HANDLED:
693                 break;
694         default:
695                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696                 break;
697         }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701                 struct request *rq, void *priv, bool reserved)
702 {
703         struct blk_mq_timeout_data *data = priv;
704
705         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706                 return;
707
708         /*
709          * The rq being checked may have been freed and reallocated
710          * out already here, we avoid this race by checking rq->deadline
711          * and REQ_ATOM_COMPLETE flag together:
712          *
713          * - if rq->deadline is observed as new value because of
714          *   reusing, the rq won't be timed out because of timing.
715          * - if rq->deadline is observed as previous value,
716          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717          *   because we put a barrier between setting rq->deadline
718          *   and clearing the flag in blk_mq_start_request(), so
719          *   this rq won't be timed out too.
720          */
721         if (time_after_eq(jiffies, rq->deadline)) {
722                 if (!blk_mark_rq_complete(rq))
723                         blk_mq_rq_timed_out(rq, reserved);
724         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725                 data->next = rq->deadline;
726                 data->next_set = 1;
727         }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732         struct request_queue *q =
733                 container_of(work, struct request_queue, timeout_work);
734         struct blk_mq_timeout_data data = {
735                 .next           = 0,
736                 .next_set       = 0,
737         };
738         int i;
739
740         /* A deadlock might occur if a request is stuck requiring a
741          * timeout at the same time a queue freeze is waiting
742          * completion, since the timeout code would not be able to
743          * acquire the queue reference here.
744          *
745          * That's why we don't use blk_queue_enter here; instead, we use
746          * percpu_ref_tryget directly, because we need to be able to
747          * obtain a reference even in the short window between the queue
748          * starting to freeze, by dropping the first reference in
749          * blk_freeze_queue_start, and the moment the last request is
750          * consumed, marked by the instant q_usage_counter reaches
751          * zero.
752          */
753         if (!percpu_ref_tryget(&q->q_usage_counter))
754                 return;
755
756         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758         if (data.next_set) {
759                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760                 mod_timer(&q->timeout, data.next);
761         } else {
762                 struct blk_mq_hw_ctx *hctx;
763
764                 queue_for_each_hw_ctx(q, hctx, i) {
765                         /* the hctx may be unmapped, so check it here */
766                         if (blk_mq_hw_queue_mapped(hctx))
767                                 blk_mq_tag_idle(hctx);
768                 }
769         }
770         blk_queue_exit(q);
771 }
772
773 /*
774  * Reverse check our software queue for entries that we could potentially
775  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776  * too much time checking for merges.
777  */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779                                  struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781         struct request *rq;
782         int checked = 8;
783
784         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785                 bool merged = false;
786
787                 if (!checked--)
788                         break;
789
790                 if (!blk_rq_merge_ok(rq, bio))
791                         continue;
792
793                 switch (blk_try_merge(rq, bio)) {
794                 case ELEVATOR_BACK_MERGE:
795                         if (blk_mq_sched_allow_merge(q, rq, bio))
796                                 merged = bio_attempt_back_merge(q, rq, bio);
797                         break;
798                 case ELEVATOR_FRONT_MERGE:
799                         if (blk_mq_sched_allow_merge(q, rq, bio))
800                                 merged = bio_attempt_front_merge(q, rq, bio);
801                         break;
802                 case ELEVATOR_DISCARD_MERGE:
803                         merged = bio_attempt_discard_merge(q, rq, bio);
804                         break;
805                 default:
806                         continue;
807                 }
808
809                 if (merged)
810                         ctx->rq_merged++;
811                 return merged;
812         }
813
814         return false;
815 }
816
817 struct flush_busy_ctx_data {
818         struct blk_mq_hw_ctx *hctx;
819         struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824         struct flush_busy_ctx_data *flush_data = data;
825         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828         sbitmap_clear_bit(sb, bitnr);
829         spin_lock(&ctx->lock);
830         list_splice_tail_init(&ctx->rq_list, flush_data->list);
831         spin_unlock(&ctx->lock);
832         return true;
833 }
834
835 /*
836  * Process software queues that have been marked busy, splicing them
837  * to the for-dispatch
838  */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841         struct flush_busy_ctx_data data = {
842                 .hctx = hctx,
843                 .list = list,
844         };
845
846         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852         if (!queued)
853                 return 0;
854
855         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859                            bool wait)
860 {
861         struct blk_mq_alloc_data data = {
862                 .q = rq->q,
863                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865         };
866
867         if (rq->tag != -1) {
868 done:
869                 if (hctx)
870                         *hctx = data.hctx;
871                 return true;
872         }
873
874         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875                 data.flags |= BLK_MQ_REQ_RESERVED;
876
877         rq->tag = blk_mq_get_tag(&data);
878         if (rq->tag >= 0) {
879                 if (blk_mq_tag_busy(data.hctx)) {
880                         rq->rq_flags |= RQF_MQ_INFLIGHT;
881                         atomic_inc(&data.hctx->nr_active);
882                 }
883                 data.hctx->tags->rqs[rq->tag] = rq;
884                 goto done;
885         }
886
887         return false;
888 }
889
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891                                     struct request *rq)
892 {
893         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894         rq->tag = -1;
895
896         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898                 atomic_dec(&hctx->nr_active);
899         }
900 }
901
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903                                        struct request *rq)
904 {
905         if (rq->tag == -1 || rq->internal_tag == -1)
906                 return;
907
908         __blk_mq_put_driver_tag(hctx, rq);
909 }
910
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913         struct blk_mq_hw_ctx *hctx;
914
915         if (rq->tag == -1 || rq->internal_tag == -1)
916                 return;
917
918         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919         __blk_mq_put_driver_tag(hctx, rq);
920 }
921
922 /*
923  * If we fail getting a driver tag because all the driver tags are already
924  * assigned and on the dispatch list, BUT the first entry does not have a
925  * tag, then we could deadlock. For that case, move entries with assigned
926  * driver tags to the front, leaving the set of tagged requests in the
927  * same order, and the untagged set in the same order.
928  */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931         struct request *rq, *tmp, *first = NULL;
932
933         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934                 if (rq == first)
935                         break;
936                 if (rq->tag != -1) {
937                         list_move(&rq->queuelist, list);
938                         if (!first)
939                                 first = rq;
940                 }
941         }
942
943         return first != NULL;
944 }
945
946 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947                                 void *key)
948 {
949         struct blk_mq_hw_ctx *hctx;
950
951         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953         list_del(&wait->task_list);
954         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955         blk_mq_run_hw_queue(hctx, true);
956         return 1;
957 }
958
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961         struct sbq_wait_state *ws;
962
963         /*
964          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965          * The thread which wins the race to grab this bit adds the hardware
966          * queue to the wait queue.
967          */
968         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970                 return false;
971
972         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975         /*
976          * As soon as this returns, it's no longer safe to fiddle with
977          * hctx->dispatch_wait, since a completion can wake up the wait queue
978          * and unlock the bit.
979          */
980         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981         return true;
982 }
983
984 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
985 {
986         struct request_queue *q = hctx->queue;
987         struct request *rq;
988         LIST_HEAD(driver_list);
989         struct list_head *dptr;
990         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
991
992         /*
993          * Start off with dptr being NULL, so we start the first request
994          * immediately, even if we have more pending.
995          */
996         dptr = NULL;
997
998         /*
999          * Now process all the entries, sending them to the driver.
1000          */
1001         errors = queued = 0;
1002         while (!list_empty(list)) {
1003                 struct blk_mq_queue_data bd;
1004
1005                 rq = list_first_entry(list, struct request, queuelist);
1006                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1007                         if (!queued && reorder_tags_to_front(list))
1008                                 continue;
1009
1010                         /*
1011                          * The initial allocation attempt failed, so we need to
1012                          * rerun the hardware queue when a tag is freed.
1013                          */
1014                         if (blk_mq_dispatch_wait_add(hctx)) {
1015                                 /*
1016                                  * It's possible that a tag was freed in the
1017                                  * window between the allocation failure and
1018                                  * adding the hardware queue to the wait queue.
1019                                  */
1020                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1021                                         break;
1022                         } else {
1023                                 break;
1024                         }
1025                 }
1026
1027                 list_del_init(&rq->queuelist);
1028
1029                 bd.rq = rq;
1030                 bd.list = dptr;
1031
1032                 /*
1033                  * Flag last if we have no more requests, or if we have more
1034                  * but can't assign a driver tag to it.
1035                  */
1036                 if (list_empty(list))
1037                         bd.last = true;
1038                 else {
1039                         struct request *nxt;
1040
1041                         nxt = list_first_entry(list, struct request, queuelist);
1042                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1043                 }
1044
1045                 ret = q->mq_ops->queue_rq(hctx, &bd);
1046                 switch (ret) {
1047                 case BLK_MQ_RQ_QUEUE_OK:
1048                         queued++;
1049                         break;
1050                 case BLK_MQ_RQ_QUEUE_BUSY:
1051                         blk_mq_put_driver_tag_hctx(hctx, rq);
1052                         list_add(&rq->queuelist, list);
1053                         __blk_mq_requeue_request(rq);
1054                         break;
1055                 default:
1056                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1057                 case BLK_MQ_RQ_QUEUE_ERROR:
1058                         errors++;
1059                         rq->errors = -EIO;
1060                         blk_mq_end_request(rq, rq->errors);
1061                         break;
1062                 }
1063
1064                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1065                         break;
1066
1067                 /*
1068                  * We've done the first request. If we have more than 1
1069                  * left in the list, set dptr to defer issue.
1070                  */
1071                 if (!dptr && list->next != list->prev)
1072                         dptr = &driver_list;
1073         }
1074
1075         hctx->dispatched[queued_to_index(queued)]++;
1076
1077         /*
1078          * Any items that need requeuing? Stuff them into hctx->dispatch,
1079          * that is where we will continue on next queue run.
1080          */
1081         if (!list_empty(list)) {
1082                 /*
1083                  * If we got a driver tag for the next request already,
1084                  * free it again.
1085                  */
1086                 rq = list_first_entry(list, struct request, queuelist);
1087                 blk_mq_put_driver_tag(rq);
1088
1089                 spin_lock(&hctx->lock);
1090                 list_splice_init(list, &hctx->dispatch);
1091                 spin_unlock(&hctx->lock);
1092
1093                 /*
1094                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1095                  * it's possible the queue is stopped and restarted again
1096                  * before this. Queue restart will dispatch requests. And since
1097                  * requests in rq_list aren't added into hctx->dispatch yet,
1098                  * the requests in rq_list might get lost.
1099                  *
1100                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1101                  *
1102                  * If RESTART or TAG_WAITING is set, then let completion restart
1103                  * the queue instead of potentially looping here.
1104                  */
1105                 if (!blk_mq_sched_needs_restart(hctx) &&
1106                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1107                         blk_mq_run_hw_queue(hctx, true);
1108         }
1109
1110         return (queued + errors) != 0;
1111 }
1112
1113 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1114 {
1115         int srcu_idx;
1116
1117         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1118                 cpu_online(hctx->next_cpu));
1119
1120         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1121                 rcu_read_lock();
1122                 blk_mq_sched_dispatch_requests(hctx);
1123                 rcu_read_unlock();
1124         } else {
1125                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1126                 blk_mq_sched_dispatch_requests(hctx);
1127                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1128         }
1129 }
1130
1131 /*
1132  * It'd be great if the workqueue API had a way to pass
1133  * in a mask and had some smarts for more clever placement.
1134  * For now we just round-robin here, switching for every
1135  * BLK_MQ_CPU_WORK_BATCH queued items.
1136  */
1137 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1138 {
1139         if (hctx->queue->nr_hw_queues == 1)
1140                 return WORK_CPU_UNBOUND;
1141
1142         if (--hctx->next_cpu_batch <= 0) {
1143                 int next_cpu;
1144
1145                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1146                 if (next_cpu >= nr_cpu_ids)
1147                         next_cpu = cpumask_first(hctx->cpumask);
1148
1149                 hctx->next_cpu = next_cpu;
1150                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1151         }
1152
1153         return hctx->next_cpu;
1154 }
1155
1156 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1157 {
1158         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1159                      !blk_mq_hw_queue_mapped(hctx)))
1160                 return;
1161
1162         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1163                 int cpu = get_cpu();
1164                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1165                         __blk_mq_run_hw_queue(hctx);
1166                         put_cpu();
1167                         return;
1168                 }
1169
1170                 put_cpu();
1171         }
1172
1173         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1174 }
1175
1176 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1177 {
1178         struct blk_mq_hw_ctx *hctx;
1179         int i;
1180
1181         queue_for_each_hw_ctx(q, hctx, i) {
1182                 if (!blk_mq_hctx_has_pending(hctx) ||
1183                     blk_mq_hctx_stopped(hctx))
1184                         continue;
1185
1186                 blk_mq_run_hw_queue(hctx, async);
1187         }
1188 }
1189 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1190
1191 /**
1192  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1193  * @q: request queue.
1194  *
1195  * The caller is responsible for serializing this function against
1196  * blk_mq_{start,stop}_hw_queue().
1197  */
1198 bool blk_mq_queue_stopped(struct request_queue *q)
1199 {
1200         struct blk_mq_hw_ctx *hctx;
1201         int i;
1202
1203         queue_for_each_hw_ctx(q, hctx, i)
1204                 if (blk_mq_hctx_stopped(hctx))
1205                         return true;
1206
1207         return false;
1208 }
1209 EXPORT_SYMBOL(blk_mq_queue_stopped);
1210
1211 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1212 {
1213         cancel_work(&hctx->run_work);
1214         cancel_delayed_work(&hctx->delay_work);
1215         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1216 }
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1218
1219 void blk_mq_stop_hw_queues(struct request_queue *q)
1220 {
1221         struct blk_mq_hw_ctx *hctx;
1222         int i;
1223
1224         queue_for_each_hw_ctx(q, hctx, i)
1225                 blk_mq_stop_hw_queue(hctx);
1226 }
1227 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1228
1229 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1230 {
1231         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1232
1233         blk_mq_run_hw_queue(hctx, false);
1234 }
1235 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1236
1237 void blk_mq_start_hw_queues(struct request_queue *q)
1238 {
1239         struct blk_mq_hw_ctx *hctx;
1240         int i;
1241
1242         queue_for_each_hw_ctx(q, hctx, i)
1243                 blk_mq_start_hw_queue(hctx);
1244 }
1245 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1246
1247 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1248 {
1249         if (!blk_mq_hctx_stopped(hctx))
1250                 return;
1251
1252         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253         blk_mq_run_hw_queue(hctx, async);
1254 }
1255 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1256
1257 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1258 {
1259         struct blk_mq_hw_ctx *hctx;
1260         int i;
1261
1262         queue_for_each_hw_ctx(q, hctx, i)
1263                 blk_mq_start_stopped_hw_queue(hctx, async);
1264 }
1265 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1266
1267 static void blk_mq_run_work_fn(struct work_struct *work)
1268 {
1269         struct blk_mq_hw_ctx *hctx;
1270
1271         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1272
1273         __blk_mq_run_hw_queue(hctx);
1274 }
1275
1276 static void blk_mq_delay_work_fn(struct work_struct *work)
1277 {
1278         struct blk_mq_hw_ctx *hctx;
1279
1280         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1281
1282         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1283                 __blk_mq_run_hw_queue(hctx);
1284 }
1285
1286 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1287 {
1288         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1289                 return;
1290
1291         blk_mq_stop_hw_queue(hctx);
1292         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1293                         &hctx->delay_work, msecs_to_jiffies(msecs));
1294 }
1295 EXPORT_SYMBOL(blk_mq_delay_queue);
1296
1297 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1298                                             struct request *rq,
1299                                             bool at_head)
1300 {
1301         struct blk_mq_ctx *ctx = rq->mq_ctx;
1302
1303         trace_block_rq_insert(hctx->queue, rq);
1304
1305         if (at_head)
1306                 list_add(&rq->queuelist, &ctx->rq_list);
1307         else
1308                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1309 }
1310
1311 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1312                              bool at_head)
1313 {
1314         struct blk_mq_ctx *ctx = rq->mq_ctx;
1315
1316         __blk_mq_insert_req_list(hctx, rq, at_head);
1317         blk_mq_hctx_mark_pending(hctx, ctx);
1318 }
1319
1320 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1321                             struct list_head *list)
1322
1323 {
1324         /*
1325          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1326          * offline now
1327          */
1328         spin_lock(&ctx->lock);
1329         while (!list_empty(list)) {
1330                 struct request *rq;
1331
1332                 rq = list_first_entry(list, struct request, queuelist);
1333                 BUG_ON(rq->mq_ctx != ctx);
1334                 list_del_init(&rq->queuelist);
1335                 __blk_mq_insert_req_list(hctx, rq, false);
1336         }
1337         blk_mq_hctx_mark_pending(hctx, ctx);
1338         spin_unlock(&ctx->lock);
1339 }
1340
1341 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1342 {
1343         struct request *rqa = container_of(a, struct request, queuelist);
1344         struct request *rqb = container_of(b, struct request, queuelist);
1345
1346         return !(rqa->mq_ctx < rqb->mq_ctx ||
1347                  (rqa->mq_ctx == rqb->mq_ctx &&
1348                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1349 }
1350
1351 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1352 {
1353         struct blk_mq_ctx *this_ctx;
1354         struct request_queue *this_q;
1355         struct request *rq;
1356         LIST_HEAD(list);
1357         LIST_HEAD(ctx_list);
1358         unsigned int depth;
1359
1360         list_splice_init(&plug->mq_list, &list);
1361
1362         list_sort(NULL, &list, plug_ctx_cmp);
1363
1364         this_q = NULL;
1365         this_ctx = NULL;
1366         depth = 0;
1367
1368         while (!list_empty(&list)) {
1369                 rq = list_entry_rq(list.next);
1370                 list_del_init(&rq->queuelist);
1371                 BUG_ON(!rq->q);
1372                 if (rq->mq_ctx != this_ctx) {
1373                         if (this_ctx) {
1374                                 trace_block_unplug(this_q, depth, from_schedule);
1375                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1376                                                                 &ctx_list,
1377                                                                 from_schedule);
1378                         }
1379
1380                         this_ctx = rq->mq_ctx;
1381                         this_q = rq->q;
1382                         depth = 0;
1383                 }
1384
1385                 depth++;
1386                 list_add_tail(&rq->queuelist, &ctx_list);
1387         }
1388
1389         /*
1390          * If 'this_ctx' is set, we know we have entries to complete
1391          * on 'ctx_list'. Do those.
1392          */
1393         if (this_ctx) {
1394                 trace_block_unplug(this_q, depth, from_schedule);
1395                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1396                                                 from_schedule);
1397         }
1398 }
1399
1400 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1401 {
1402         init_request_from_bio(rq, bio);
1403
1404         blk_account_io_start(rq, true);
1405 }
1406
1407 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1408 {
1409         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1410                 !blk_queue_nomerges(hctx->queue);
1411 }
1412
1413 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1414                                          struct blk_mq_ctx *ctx,
1415                                          struct request *rq, struct bio *bio)
1416 {
1417         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1418                 blk_mq_bio_to_request(rq, bio);
1419                 spin_lock(&ctx->lock);
1420 insert_rq:
1421                 __blk_mq_insert_request(hctx, rq, false);
1422                 spin_unlock(&ctx->lock);
1423                 return false;
1424         } else {
1425                 struct request_queue *q = hctx->queue;
1426
1427                 spin_lock(&ctx->lock);
1428                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1429                         blk_mq_bio_to_request(rq, bio);
1430                         goto insert_rq;
1431                 }
1432
1433                 spin_unlock(&ctx->lock);
1434                 __blk_mq_finish_request(hctx, ctx, rq);
1435                 return true;
1436         }
1437 }
1438
1439 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1440 {
1441         if (rq->tag != -1)
1442                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1443
1444         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1445 }
1446
1447 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1448                                       bool may_sleep)
1449 {
1450         struct request_queue *q = rq->q;
1451         struct blk_mq_queue_data bd = {
1452                 .rq = rq,
1453                 .list = NULL,
1454                 .last = 1
1455         };
1456         struct blk_mq_hw_ctx *hctx;
1457         blk_qc_t new_cookie;
1458         int ret;
1459
1460         if (q->elevator)
1461                 goto insert;
1462
1463         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1464                 goto insert;
1465
1466         new_cookie = request_to_qc_t(hctx, rq);
1467
1468         /*
1469          * For OK queue, we are done. For error, kill it. Any other
1470          * error (busy), just add it to our list as we previously
1471          * would have done
1472          */
1473         ret = q->mq_ops->queue_rq(hctx, &bd);
1474         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1475                 *cookie = new_cookie;
1476                 return;
1477         }
1478
1479         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1480                 *cookie = BLK_QC_T_NONE;
1481                 rq->errors = -EIO;
1482                 blk_mq_end_request(rq, rq->errors);
1483                 return;
1484         }
1485
1486         __blk_mq_requeue_request(rq);
1487 insert:
1488         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1489 }
1490
1491 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1492                 struct request *rq, blk_qc_t *cookie)
1493 {
1494         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1495                 rcu_read_lock();
1496                 __blk_mq_try_issue_directly(rq, cookie, false);
1497                 rcu_read_unlock();
1498         } else {
1499                 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1500                 __blk_mq_try_issue_directly(rq, cookie, true);
1501                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1502         }
1503 }
1504
1505 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1506 {
1507         const int is_sync = op_is_sync(bio->bi_opf);
1508         const int is_flush_fua = op_is_flush(bio->bi_opf);
1509         struct blk_mq_alloc_data data = { .flags = 0 };
1510         struct request *rq;
1511         unsigned int request_count = 0;
1512         struct blk_plug *plug;
1513         struct request *same_queue_rq = NULL;
1514         blk_qc_t cookie;
1515         unsigned int wb_acct;
1516
1517         blk_queue_bounce(q, &bio);
1518
1519         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1520                 bio_io_error(bio);
1521                 return BLK_QC_T_NONE;
1522         }
1523
1524         blk_queue_split(q, &bio, q->bio_split);
1525
1526         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1527             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1528                 return BLK_QC_T_NONE;
1529
1530         if (blk_mq_sched_bio_merge(q, bio))
1531                 return BLK_QC_T_NONE;
1532
1533         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1534
1535         trace_block_getrq(q, bio, bio->bi_opf);
1536
1537         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1538         if (unlikely(!rq)) {
1539                 __wbt_done(q->rq_wb, wb_acct);
1540                 return BLK_QC_T_NONE;
1541         }
1542
1543         wbt_track(&rq->issue_stat, wb_acct);
1544
1545         cookie = request_to_qc_t(data.hctx, rq);
1546
1547         plug = current->plug;
1548         if (unlikely(is_flush_fua)) {
1549                 blk_mq_bio_to_request(rq, bio);
1550                 if (q->elevator) {
1551                         blk_mq_sched_insert_request(rq, false, true, true,
1552                                         true);
1553                 } else {
1554                         blk_insert_flush(rq);
1555                         blk_mq_run_hw_queue(data.hctx, true);
1556                 }
1557         } else if (plug && q->nr_hw_queues == 1) {
1558                 struct request *last = NULL;
1559
1560                 blk_mq_bio_to_request(rq, bio);
1561
1562                 /*
1563                  * @request_count may become stale because of schedule
1564                  * out, so check the list again.
1565                  */
1566                 if (list_empty(&plug->mq_list))
1567                         request_count = 0;
1568                 else if (blk_queue_nomerges(q))
1569                         request_count = blk_plug_queued_count(q);
1570
1571                 if (!request_count)
1572                         trace_block_plug(q);
1573                 else
1574                         last = list_entry_rq(plug->mq_list.prev);
1575
1576                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1577                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1578                         blk_flush_plug_list(plug, false);
1579                         trace_block_plug(q);
1580                 }
1581
1582                 list_add_tail(&rq->queuelist, &plug->mq_list);
1583         } else if (plug && !blk_queue_nomerges(q)) {
1584                 blk_mq_bio_to_request(rq, bio);
1585
1586                 /*
1587                  * We do limited plugging. If the bio can be merged, do that.
1588                  * Otherwise the existing request in the plug list will be
1589                  * issued. So the plug list will have one request at most
1590                  * The plug list might get flushed before this. If that happens,
1591                  * the plug list is empty, and same_queue_rq is invalid.
1592                  */
1593                 if (list_empty(&plug->mq_list))
1594                         same_queue_rq = NULL;
1595                 if (same_queue_rq)
1596                         list_del_init(&same_queue_rq->queuelist);
1597                 list_add_tail(&rq->queuelist, &plug->mq_list);
1598
1599                 if (same_queue_rq)
1600                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1601                                         &cookie);
1602         } else if (q->nr_hw_queues > 1 && is_sync) {
1603                 blk_mq_bio_to_request(rq, bio);
1604                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1605         } else if (q->elevator) {
1606                 blk_mq_bio_to_request(rq, bio);
1607                 blk_mq_sched_insert_request(rq, false, true, true, true);
1608         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1609                 blk_mq_run_hw_queue(data.hctx, true);
1610         }
1611
1612         blk_mq_put_ctx(data.ctx);
1613         return cookie;
1614 }
1615
1616 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1617                      unsigned int hctx_idx)
1618 {
1619         struct page *page;
1620
1621         if (tags->rqs && set->ops->exit_request) {
1622                 int i;
1623
1624                 for (i = 0; i < tags->nr_tags; i++) {
1625                         struct request *rq = tags->static_rqs[i];
1626
1627                         if (!rq)
1628                                 continue;
1629                         set->ops->exit_request(set->driver_data, rq,
1630                                                 hctx_idx, i);
1631                         tags->static_rqs[i] = NULL;
1632                 }
1633         }
1634
1635         while (!list_empty(&tags->page_list)) {
1636                 page = list_first_entry(&tags->page_list, struct page, lru);
1637                 list_del_init(&page->lru);
1638                 /*
1639                  * Remove kmemleak object previously allocated in
1640                  * blk_mq_init_rq_map().
1641                  */
1642                 kmemleak_free(page_address(page));
1643                 __free_pages(page, page->private);
1644         }
1645 }
1646
1647 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1648 {
1649         kfree(tags->rqs);
1650         tags->rqs = NULL;
1651         kfree(tags->static_rqs);
1652         tags->static_rqs = NULL;
1653
1654         blk_mq_free_tags(tags);
1655 }
1656
1657 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1658                                         unsigned int hctx_idx,
1659                                         unsigned int nr_tags,
1660                                         unsigned int reserved_tags)
1661 {
1662         struct blk_mq_tags *tags;
1663         int node;
1664
1665         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1666         if (node == NUMA_NO_NODE)
1667                 node = set->numa_node;
1668
1669         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1670                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1671         if (!tags)
1672                 return NULL;
1673
1674         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1675                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1676                                  node);
1677         if (!tags->rqs) {
1678                 blk_mq_free_tags(tags);
1679                 return NULL;
1680         }
1681
1682         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1683                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1684                                  node);
1685         if (!tags->static_rqs) {
1686                 kfree(tags->rqs);
1687                 blk_mq_free_tags(tags);
1688                 return NULL;
1689         }
1690
1691         return tags;
1692 }
1693
1694 static size_t order_to_size(unsigned int order)
1695 {
1696         return (size_t)PAGE_SIZE << order;
1697 }
1698
1699 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1700                      unsigned int hctx_idx, unsigned int depth)
1701 {
1702         unsigned int i, j, entries_per_page, max_order = 4;
1703         size_t rq_size, left;
1704         int node;
1705
1706         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1707         if (node == NUMA_NO_NODE)
1708                 node = set->numa_node;
1709
1710         INIT_LIST_HEAD(&tags->page_list);
1711
1712         /*
1713          * rq_size is the size of the request plus driver payload, rounded
1714          * to the cacheline size
1715          */
1716         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1717                                 cache_line_size());
1718         left = rq_size * depth;
1719
1720         for (i = 0; i < depth; ) {
1721                 int this_order = max_order;
1722                 struct page *page;
1723                 int to_do;
1724                 void *p;
1725
1726                 while (this_order && left < order_to_size(this_order - 1))
1727                         this_order--;
1728
1729                 do {
1730                         page = alloc_pages_node(node,
1731                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1732                                 this_order);
1733                         if (page)
1734                                 break;
1735                         if (!this_order--)
1736                                 break;
1737                         if (order_to_size(this_order) < rq_size)
1738                                 break;
1739                 } while (1);
1740
1741                 if (!page)
1742                         goto fail;
1743
1744                 page->private = this_order;
1745                 list_add_tail(&page->lru, &tags->page_list);
1746
1747                 p = page_address(page);
1748                 /*
1749                  * Allow kmemleak to scan these pages as they contain pointers
1750                  * to additional allocations like via ops->init_request().
1751                  */
1752                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1753                 entries_per_page = order_to_size(this_order) / rq_size;
1754                 to_do = min(entries_per_page, depth - i);
1755                 left -= to_do * rq_size;
1756                 for (j = 0; j < to_do; j++) {
1757                         struct request *rq = p;
1758
1759                         tags->static_rqs[i] = rq;
1760                         if (set->ops->init_request) {
1761                                 if (set->ops->init_request(set->driver_data,
1762                                                 rq, hctx_idx, i,
1763                                                 node)) {
1764                                         tags->static_rqs[i] = NULL;
1765                                         goto fail;
1766                                 }
1767                         }
1768
1769                         p += rq_size;
1770                         i++;
1771                 }
1772         }
1773         return 0;
1774
1775 fail:
1776         blk_mq_free_rqs(set, tags, hctx_idx);
1777         return -ENOMEM;
1778 }
1779
1780 /*
1781  * 'cpu' is going away. splice any existing rq_list entries from this
1782  * software queue to the hw queue dispatch list, and ensure that it
1783  * gets run.
1784  */
1785 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1786 {
1787         struct blk_mq_hw_ctx *hctx;
1788         struct blk_mq_ctx *ctx;
1789         LIST_HEAD(tmp);
1790
1791         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1792         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1793
1794         spin_lock(&ctx->lock);
1795         if (!list_empty(&ctx->rq_list)) {
1796                 list_splice_init(&ctx->rq_list, &tmp);
1797                 blk_mq_hctx_clear_pending(hctx, ctx);
1798         }
1799         spin_unlock(&ctx->lock);
1800
1801         if (list_empty(&tmp))
1802                 return 0;
1803
1804         spin_lock(&hctx->lock);
1805         list_splice_tail_init(&tmp, &hctx->dispatch);
1806         spin_unlock(&hctx->lock);
1807
1808         blk_mq_run_hw_queue(hctx, true);
1809         return 0;
1810 }
1811
1812 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1813 {
1814         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1815                                             &hctx->cpuhp_dead);
1816 }
1817
1818 /* hctx->ctxs will be freed in queue's release handler */
1819 static void blk_mq_exit_hctx(struct request_queue *q,
1820                 struct blk_mq_tag_set *set,
1821                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1822 {
1823         unsigned flush_start_tag = set->queue_depth;
1824
1825         blk_mq_tag_idle(hctx);
1826
1827         if (set->ops->exit_request)
1828                 set->ops->exit_request(set->driver_data,
1829                                        hctx->fq->flush_rq, hctx_idx,
1830                                        flush_start_tag + hctx_idx);
1831
1832         if (set->ops->exit_hctx)
1833                 set->ops->exit_hctx(hctx, hctx_idx);
1834
1835         if (hctx->flags & BLK_MQ_F_BLOCKING)
1836                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1837
1838         blk_mq_remove_cpuhp(hctx);
1839         blk_free_flush_queue(hctx->fq);
1840         sbitmap_free(&hctx->ctx_map);
1841 }
1842
1843 static void blk_mq_exit_hw_queues(struct request_queue *q,
1844                 struct blk_mq_tag_set *set, int nr_queue)
1845 {
1846         struct blk_mq_hw_ctx *hctx;
1847         unsigned int i;
1848
1849         queue_for_each_hw_ctx(q, hctx, i) {
1850                 if (i == nr_queue)
1851                         break;
1852                 blk_mq_exit_hctx(q, set, hctx, i);
1853         }
1854 }
1855
1856 static int blk_mq_init_hctx(struct request_queue *q,
1857                 struct blk_mq_tag_set *set,
1858                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1859 {
1860         int node;
1861         unsigned flush_start_tag = set->queue_depth;
1862
1863         node = hctx->numa_node;
1864         if (node == NUMA_NO_NODE)
1865                 node = hctx->numa_node = set->numa_node;
1866
1867         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1868         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1869         spin_lock_init(&hctx->lock);
1870         INIT_LIST_HEAD(&hctx->dispatch);
1871         hctx->queue = q;
1872         hctx->queue_num = hctx_idx;
1873         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1874
1875         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1876
1877         hctx->tags = set->tags[hctx_idx];
1878
1879         /*
1880          * Allocate space for all possible cpus to avoid allocation at
1881          * runtime
1882          */
1883         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1884                                         GFP_KERNEL, node);
1885         if (!hctx->ctxs)
1886                 goto unregister_cpu_notifier;
1887
1888         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1889                               node))
1890                 goto free_ctxs;
1891
1892         hctx->nr_ctx = 0;
1893
1894         if (set->ops->init_hctx &&
1895             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1896                 goto free_bitmap;
1897
1898         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1899         if (!hctx->fq)
1900                 goto exit_hctx;
1901
1902         if (set->ops->init_request &&
1903             set->ops->init_request(set->driver_data,
1904                                    hctx->fq->flush_rq, hctx_idx,
1905                                    flush_start_tag + hctx_idx, node))
1906                 goto free_fq;
1907
1908         if (hctx->flags & BLK_MQ_F_BLOCKING)
1909                 init_srcu_struct(&hctx->queue_rq_srcu);
1910
1911         return 0;
1912
1913  free_fq:
1914         kfree(hctx->fq);
1915  exit_hctx:
1916         if (set->ops->exit_hctx)
1917                 set->ops->exit_hctx(hctx, hctx_idx);
1918  free_bitmap:
1919         sbitmap_free(&hctx->ctx_map);
1920  free_ctxs:
1921         kfree(hctx->ctxs);
1922  unregister_cpu_notifier:
1923         blk_mq_remove_cpuhp(hctx);
1924         return -1;
1925 }
1926
1927 static void blk_mq_init_cpu_queues(struct request_queue *q,
1928                                    unsigned int nr_hw_queues)
1929 {
1930         unsigned int i;
1931
1932         for_each_possible_cpu(i) {
1933                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1934                 struct blk_mq_hw_ctx *hctx;
1935
1936                 __ctx->cpu = i;
1937                 spin_lock_init(&__ctx->lock);
1938                 INIT_LIST_HEAD(&__ctx->rq_list);
1939                 __ctx->queue = q;
1940
1941                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1942                 if (!cpu_online(i))
1943                         continue;
1944
1945                 hctx = blk_mq_map_queue(q, i);
1946
1947                 /*
1948                  * Set local node, IFF we have more than one hw queue. If
1949                  * not, we remain on the home node of the device
1950                  */
1951                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1952                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1953         }
1954 }
1955
1956 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1957 {
1958         int ret = 0;
1959
1960         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1961                                         set->queue_depth, set->reserved_tags);
1962         if (!set->tags[hctx_idx])
1963                 return false;
1964
1965         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1966                                 set->queue_depth);
1967         if (!ret)
1968                 return true;
1969
1970         blk_mq_free_rq_map(set->tags[hctx_idx]);
1971         set->tags[hctx_idx] = NULL;
1972         return false;
1973 }
1974
1975 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1976                                          unsigned int hctx_idx)
1977 {
1978         if (set->tags[hctx_idx]) {
1979                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1980                 blk_mq_free_rq_map(set->tags[hctx_idx]);
1981                 set->tags[hctx_idx] = NULL;
1982         }
1983 }
1984
1985 static void blk_mq_map_swqueue(struct request_queue *q,
1986                                const struct cpumask *online_mask)
1987 {
1988         unsigned int i, hctx_idx;
1989         struct blk_mq_hw_ctx *hctx;
1990         struct blk_mq_ctx *ctx;
1991         struct blk_mq_tag_set *set = q->tag_set;
1992
1993         /*
1994          * Avoid others reading imcomplete hctx->cpumask through sysfs
1995          */
1996         mutex_lock(&q->sysfs_lock);
1997
1998         queue_for_each_hw_ctx(q, hctx, i) {
1999                 cpumask_clear(hctx->cpumask);
2000                 hctx->nr_ctx = 0;
2001         }
2002
2003         /*
2004          * Map software to hardware queues
2005          */
2006         for_each_possible_cpu(i) {
2007                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2008                 if (!cpumask_test_cpu(i, online_mask))
2009                         continue;
2010
2011                 hctx_idx = q->mq_map[i];
2012                 /* unmapped hw queue can be remapped after CPU topo changed */
2013                 if (!set->tags[hctx_idx] &&
2014                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2015                         /*
2016                          * If tags initialization fail for some hctx,
2017                          * that hctx won't be brought online.  In this
2018                          * case, remap the current ctx to hctx[0] which
2019                          * is guaranteed to always have tags allocated
2020                          */
2021                         q->mq_map[i] = 0;
2022                 }
2023
2024                 ctx = per_cpu_ptr(q->queue_ctx, i);
2025                 hctx = blk_mq_map_queue(q, i);
2026
2027                 cpumask_set_cpu(i, hctx->cpumask);
2028                 ctx->index_hw = hctx->nr_ctx;
2029                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2030         }
2031
2032         mutex_unlock(&q->sysfs_lock);
2033
2034         queue_for_each_hw_ctx(q, hctx, i) {
2035                 /*
2036                  * If no software queues are mapped to this hardware queue,
2037                  * disable it and free the request entries.
2038                  */
2039                 if (!hctx->nr_ctx) {
2040                         /* Never unmap queue 0.  We need it as a
2041                          * fallback in case of a new remap fails
2042                          * allocation
2043                          */
2044                         if (i && set->tags[i])
2045                                 blk_mq_free_map_and_requests(set, i);
2046
2047                         hctx->tags = NULL;
2048                         continue;
2049                 }
2050
2051                 hctx->tags = set->tags[i];
2052                 WARN_ON(!hctx->tags);
2053
2054                 /*
2055                  * Set the map size to the number of mapped software queues.
2056                  * This is more accurate and more efficient than looping
2057                  * over all possibly mapped software queues.
2058                  */
2059                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2060
2061                 /*
2062                  * Initialize batch roundrobin counts
2063                  */
2064                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2065                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2066         }
2067 }
2068
2069 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2070 {
2071         struct blk_mq_hw_ctx *hctx;
2072         int i;
2073
2074         queue_for_each_hw_ctx(q, hctx, i) {
2075                 if (shared)
2076                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2077                 else
2078                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2079         }
2080 }
2081
2082 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2083 {
2084         struct request_queue *q;
2085
2086         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2087                 blk_mq_freeze_queue(q);
2088                 queue_set_hctx_shared(q, shared);
2089                 blk_mq_unfreeze_queue(q);
2090         }
2091 }
2092
2093 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2094 {
2095         struct blk_mq_tag_set *set = q->tag_set;
2096
2097         mutex_lock(&set->tag_list_lock);
2098         list_del_init(&q->tag_set_list);
2099         if (list_is_singular(&set->tag_list)) {
2100                 /* just transitioned to unshared */
2101                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2102                 /* update existing queue */
2103                 blk_mq_update_tag_set_depth(set, false);
2104         }
2105         mutex_unlock(&set->tag_list_lock);
2106 }
2107
2108 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2109                                      struct request_queue *q)
2110 {
2111         q->tag_set = set;
2112
2113         mutex_lock(&set->tag_list_lock);
2114
2115         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2116         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2117                 set->flags |= BLK_MQ_F_TAG_SHARED;
2118                 /* update existing queue */
2119                 blk_mq_update_tag_set_depth(set, true);
2120         }
2121         if (set->flags & BLK_MQ_F_TAG_SHARED)
2122                 queue_set_hctx_shared(q, true);
2123         list_add_tail(&q->tag_set_list, &set->tag_list);
2124
2125         mutex_unlock(&set->tag_list_lock);
2126 }
2127
2128 /*
2129  * It is the actual release handler for mq, but we do it from
2130  * request queue's release handler for avoiding use-after-free
2131  * and headache because q->mq_kobj shouldn't have been introduced,
2132  * but we can't group ctx/kctx kobj without it.
2133  */
2134 void blk_mq_release(struct request_queue *q)
2135 {
2136         struct blk_mq_hw_ctx *hctx;
2137         unsigned int i;
2138
2139         blk_mq_sched_teardown(q);
2140
2141         /* hctx kobj stays in hctx */
2142         queue_for_each_hw_ctx(q, hctx, i) {
2143                 if (!hctx)
2144                         continue;
2145                 kobject_put(&hctx->kobj);
2146         }
2147
2148         q->mq_map = NULL;
2149
2150         kfree(q->queue_hw_ctx);
2151
2152         /*
2153          * release .mq_kobj and sw queue's kobject now because
2154          * both share lifetime with request queue.
2155          */
2156         blk_mq_sysfs_deinit(q);
2157
2158         free_percpu(q->queue_ctx);
2159 }
2160
2161 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2162 {
2163         struct request_queue *uninit_q, *q;
2164
2165         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2166         if (!uninit_q)
2167                 return ERR_PTR(-ENOMEM);
2168
2169         q = blk_mq_init_allocated_queue(set, uninit_q);
2170         if (IS_ERR(q))
2171                 blk_cleanup_queue(uninit_q);
2172
2173         return q;
2174 }
2175 EXPORT_SYMBOL(blk_mq_init_queue);
2176
2177 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2178                                                 struct request_queue *q)
2179 {
2180         int i, j;
2181         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2182
2183         blk_mq_sysfs_unregister(q);
2184         for (i = 0; i < set->nr_hw_queues; i++) {
2185                 int node;
2186
2187                 if (hctxs[i])
2188                         continue;
2189
2190                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2191                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2192                                         GFP_KERNEL, node);
2193                 if (!hctxs[i])
2194                         break;
2195
2196                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2197                                                 node)) {
2198                         kfree(hctxs[i]);
2199                         hctxs[i] = NULL;
2200                         break;
2201                 }
2202
2203                 atomic_set(&hctxs[i]->nr_active, 0);
2204                 hctxs[i]->numa_node = node;
2205                 hctxs[i]->queue_num = i;
2206
2207                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2208                         free_cpumask_var(hctxs[i]->cpumask);
2209                         kfree(hctxs[i]);
2210                         hctxs[i] = NULL;
2211                         break;
2212                 }
2213                 blk_mq_hctx_kobj_init(hctxs[i]);
2214         }
2215         for (j = i; j < q->nr_hw_queues; j++) {
2216                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2217
2218                 if (hctx) {
2219                         if (hctx->tags)
2220                                 blk_mq_free_map_and_requests(set, j);
2221                         blk_mq_exit_hctx(q, set, hctx, j);
2222                         kobject_put(&hctx->kobj);
2223                         hctxs[j] = NULL;
2224
2225                 }
2226         }
2227         q->nr_hw_queues = i;
2228         blk_mq_sysfs_register(q);
2229 }
2230
2231 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2232                                                   struct request_queue *q)
2233 {
2234         /* mark the queue as mq asap */
2235         q->mq_ops = set->ops;
2236
2237         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2238                                              blk_stat_rq_ddir, 2, q);
2239         if (!q->poll_cb)
2240                 goto err_exit;
2241
2242         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2243         if (!q->queue_ctx)
2244                 goto err_exit;
2245
2246         /* init q->mq_kobj and sw queues' kobjects */
2247         blk_mq_sysfs_init(q);
2248
2249         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2250                                                 GFP_KERNEL, set->numa_node);
2251         if (!q->queue_hw_ctx)
2252                 goto err_percpu;
2253
2254         q->mq_map = set->mq_map;
2255
2256         blk_mq_realloc_hw_ctxs(set, q);
2257         if (!q->nr_hw_queues)
2258                 goto err_hctxs;
2259
2260         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2261         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2262
2263         q->nr_queues = nr_cpu_ids;
2264
2265         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2266
2267         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2268                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2269
2270         q->sg_reserved_size = INT_MAX;
2271
2272         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2273         INIT_LIST_HEAD(&q->requeue_list);
2274         spin_lock_init(&q->requeue_lock);
2275
2276         blk_queue_make_request(q, blk_mq_make_request);
2277
2278         /*
2279          * Do this after blk_queue_make_request() overrides it...
2280          */
2281         q->nr_requests = set->queue_depth;
2282
2283         /*
2284          * Default to classic polling
2285          */
2286         q->poll_nsec = -1;
2287
2288         if (set->ops->complete)
2289                 blk_queue_softirq_done(q, set->ops->complete);
2290
2291         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2292
2293         get_online_cpus();
2294         mutex_lock(&all_q_mutex);
2295
2296         list_add_tail(&q->all_q_node, &all_q_list);
2297         blk_mq_add_queue_tag_set(set, q);
2298         blk_mq_map_swqueue(q, cpu_online_mask);
2299
2300         mutex_unlock(&all_q_mutex);
2301         put_online_cpus();
2302
2303         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2304                 int ret;
2305
2306                 ret = blk_mq_sched_init(q);
2307                 if (ret)
2308                         return ERR_PTR(ret);
2309         }
2310
2311         return q;
2312
2313 err_hctxs:
2314         kfree(q->queue_hw_ctx);
2315 err_percpu:
2316         free_percpu(q->queue_ctx);
2317 err_exit:
2318         q->mq_ops = NULL;
2319         return ERR_PTR(-ENOMEM);
2320 }
2321 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2322
2323 void blk_mq_free_queue(struct request_queue *q)
2324 {
2325         struct blk_mq_tag_set   *set = q->tag_set;
2326
2327         mutex_lock(&all_q_mutex);
2328         list_del_init(&q->all_q_node);
2329         mutex_unlock(&all_q_mutex);
2330
2331         blk_mq_del_queue_tag_set(q);
2332
2333         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2334 }
2335
2336 /* Basically redo blk_mq_init_queue with queue frozen */
2337 static void blk_mq_queue_reinit(struct request_queue *q,
2338                                 const struct cpumask *online_mask)
2339 {
2340         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2341
2342         blk_mq_sysfs_unregister(q);
2343
2344         /*
2345          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2346          * we should change hctx numa_node according to new topology (this
2347          * involves free and re-allocate memory, worthy doing?)
2348          */
2349
2350         blk_mq_map_swqueue(q, online_mask);
2351
2352         blk_mq_sysfs_register(q);
2353 }
2354
2355 /*
2356  * New online cpumask which is going to be set in this hotplug event.
2357  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2358  * one-by-one and dynamically allocating this could result in a failure.
2359  */
2360 static struct cpumask cpuhp_online_new;
2361
2362 static void blk_mq_queue_reinit_work(void)
2363 {
2364         struct request_queue *q;
2365
2366         mutex_lock(&all_q_mutex);
2367         /*
2368          * We need to freeze and reinit all existing queues.  Freezing
2369          * involves synchronous wait for an RCU grace period and doing it
2370          * one by one may take a long time.  Start freezing all queues in
2371          * one swoop and then wait for the completions so that freezing can
2372          * take place in parallel.
2373          */
2374         list_for_each_entry(q, &all_q_list, all_q_node)
2375                 blk_freeze_queue_start(q);
2376         list_for_each_entry(q, &all_q_list, all_q_node)
2377                 blk_mq_freeze_queue_wait(q);
2378
2379         list_for_each_entry(q, &all_q_list, all_q_node)
2380                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2381
2382         list_for_each_entry(q, &all_q_list, all_q_node)
2383                 blk_mq_unfreeze_queue(q);
2384
2385         mutex_unlock(&all_q_mutex);
2386 }
2387
2388 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2389 {
2390         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2391         blk_mq_queue_reinit_work();
2392         return 0;
2393 }
2394
2395 /*
2396  * Before hotadded cpu starts handling requests, new mappings must be
2397  * established.  Otherwise, these requests in hw queue might never be
2398  * dispatched.
2399  *
2400  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2401  * for CPU0, and ctx1 for CPU1).
2402  *
2403  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2404  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2405  *
2406  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2407  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2408  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2409  * ignored.
2410  */
2411 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2412 {
2413         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2414         cpumask_set_cpu(cpu, &cpuhp_online_new);
2415         blk_mq_queue_reinit_work();
2416         return 0;
2417 }
2418
2419 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2420 {
2421         int i;
2422
2423         for (i = 0; i < set->nr_hw_queues; i++)
2424                 if (!__blk_mq_alloc_rq_map(set, i))
2425                         goto out_unwind;
2426
2427         return 0;
2428
2429 out_unwind:
2430         while (--i >= 0)
2431                 blk_mq_free_rq_map(set->tags[i]);
2432
2433         return -ENOMEM;
2434 }
2435
2436 /*
2437  * Allocate the request maps associated with this tag_set. Note that this
2438  * may reduce the depth asked for, if memory is tight. set->queue_depth
2439  * will be updated to reflect the allocated depth.
2440  */
2441 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2442 {
2443         unsigned int depth;
2444         int err;
2445
2446         depth = set->queue_depth;
2447         do {
2448                 err = __blk_mq_alloc_rq_maps(set);
2449                 if (!err)
2450                         break;
2451
2452                 set->queue_depth >>= 1;
2453                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2454                         err = -ENOMEM;
2455                         break;
2456                 }
2457         } while (set->queue_depth);
2458
2459         if (!set->queue_depth || err) {
2460                 pr_err("blk-mq: failed to allocate request map\n");
2461                 return -ENOMEM;
2462         }
2463
2464         if (depth != set->queue_depth)
2465                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2466                                                 depth, set->queue_depth);
2467
2468         return 0;
2469 }
2470
2471 /*
2472  * Alloc a tag set to be associated with one or more request queues.
2473  * May fail with EINVAL for various error conditions. May adjust the
2474  * requested depth down, if if it too large. In that case, the set
2475  * value will be stored in set->queue_depth.
2476  */
2477 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2478 {
2479         int ret;
2480
2481         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2482
2483         if (!set->nr_hw_queues)
2484                 return -EINVAL;
2485         if (!set->queue_depth)
2486                 return -EINVAL;
2487         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2488                 return -EINVAL;
2489
2490         if (!set->ops->queue_rq)
2491                 return -EINVAL;
2492
2493         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2494                 pr_info("blk-mq: reduced tag depth to %u\n",
2495                         BLK_MQ_MAX_DEPTH);
2496                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2497         }
2498
2499         /*
2500          * If a crashdump is active, then we are potentially in a very
2501          * memory constrained environment. Limit us to 1 queue and
2502          * 64 tags to prevent using too much memory.
2503          */
2504         if (is_kdump_kernel()) {
2505                 set->nr_hw_queues = 1;
2506                 set->queue_depth = min(64U, set->queue_depth);
2507         }
2508         /*
2509          * There is no use for more h/w queues than cpus.
2510          */
2511         if (set->nr_hw_queues > nr_cpu_ids)
2512                 set->nr_hw_queues = nr_cpu_ids;
2513
2514         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2515                                  GFP_KERNEL, set->numa_node);
2516         if (!set->tags)
2517                 return -ENOMEM;
2518
2519         ret = -ENOMEM;
2520         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2521                         GFP_KERNEL, set->numa_node);
2522         if (!set->mq_map)
2523                 goto out_free_tags;
2524
2525         if (set->ops->map_queues)
2526                 ret = set->ops->map_queues(set);
2527         else
2528                 ret = blk_mq_map_queues(set);
2529         if (ret)
2530                 goto out_free_mq_map;
2531
2532         ret = blk_mq_alloc_rq_maps(set);
2533         if (ret)
2534                 goto out_free_mq_map;
2535
2536         mutex_init(&set->tag_list_lock);
2537         INIT_LIST_HEAD(&set->tag_list);
2538
2539         return 0;
2540
2541 out_free_mq_map:
2542         kfree(set->mq_map);
2543         set->mq_map = NULL;
2544 out_free_tags:
2545         kfree(set->tags);
2546         set->tags = NULL;
2547         return ret;
2548 }
2549 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2550
2551 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2552 {
2553         int i;
2554
2555         for (i = 0; i < nr_cpu_ids; i++)
2556                 blk_mq_free_map_and_requests(set, i);
2557
2558         kfree(set->mq_map);
2559         set->mq_map = NULL;
2560
2561         kfree(set->tags);
2562         set->tags = NULL;
2563 }
2564 EXPORT_SYMBOL(blk_mq_free_tag_set);
2565
2566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2567 {
2568         struct blk_mq_tag_set *set = q->tag_set;
2569         struct blk_mq_hw_ctx *hctx;
2570         int i, ret;
2571
2572         if (!set)
2573                 return -EINVAL;
2574
2575         blk_mq_freeze_queue(q);
2576         blk_mq_quiesce_queue(q);
2577
2578         ret = 0;
2579         queue_for_each_hw_ctx(q, hctx, i) {
2580                 if (!hctx->tags)
2581                         continue;
2582                 /*
2583                  * If we're using an MQ scheduler, just update the scheduler
2584                  * queue depth. This is similar to what the old code would do.
2585                  */
2586                 if (!hctx->sched_tags) {
2587                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2588                                                         min(nr, set->queue_depth),
2589                                                         false);
2590                 } else {
2591                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2592                                                         nr, true);
2593                 }
2594                 if (ret)
2595                         break;
2596         }
2597
2598         if (!ret)
2599                 q->nr_requests = nr;
2600
2601         blk_mq_unfreeze_queue(q);
2602         blk_mq_start_stopped_hw_queues(q, true);
2603
2604         return ret;
2605 }
2606
2607 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2608 {
2609         struct request_queue *q;
2610
2611         if (nr_hw_queues > nr_cpu_ids)
2612                 nr_hw_queues = nr_cpu_ids;
2613         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2614                 return;
2615
2616         list_for_each_entry(q, &set->tag_list, tag_set_list)
2617                 blk_mq_freeze_queue(q);
2618
2619         set->nr_hw_queues = nr_hw_queues;
2620         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2621                 blk_mq_realloc_hw_ctxs(set, q);
2622                 blk_mq_queue_reinit(q, cpu_online_mask);
2623         }
2624
2625         list_for_each_entry(q, &set->tag_list, tag_set_list)
2626                 blk_mq_unfreeze_queue(q);
2627 }
2628 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2629
2630 /* Enable polling stats and return whether they were already enabled. */
2631 static bool blk_poll_stats_enable(struct request_queue *q)
2632 {
2633         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2634             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2635                 return true;
2636         blk_stat_add_callback(q, q->poll_cb);
2637         return false;
2638 }
2639
2640 static void blk_mq_poll_stats_start(struct request_queue *q)
2641 {
2642         /*
2643          * We don't arm the callback if polling stats are not enabled or the
2644          * callback is already active.
2645          */
2646         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2647             blk_stat_is_active(q->poll_cb))
2648                 return;
2649
2650         blk_stat_activate_msecs(q->poll_cb, 100);
2651 }
2652
2653 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2654 {
2655         struct request_queue *q = cb->data;
2656
2657         if (cb->stat[READ].nr_samples)
2658                 q->poll_stat[READ] = cb->stat[READ];
2659         if (cb->stat[WRITE].nr_samples)
2660                 q->poll_stat[WRITE] = cb->stat[WRITE];
2661 }
2662
2663 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2664                                        struct blk_mq_hw_ctx *hctx,
2665                                        struct request *rq)
2666 {
2667         unsigned long ret = 0;
2668
2669         /*
2670          * If stats collection isn't on, don't sleep but turn it on for
2671          * future users
2672          */
2673         if (!blk_poll_stats_enable(q))
2674                 return 0;
2675
2676         /*
2677          * As an optimistic guess, use half of the mean service time
2678          * for this type of request. We can (and should) make this smarter.
2679          * For instance, if the completion latencies are tight, we can
2680          * get closer than just half the mean. This is especially
2681          * important on devices where the completion latencies are longer
2682          * than ~10 usec.
2683          */
2684         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2685                 ret = (q->poll_stat[READ].mean + 1) / 2;
2686         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2687                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2688
2689         return ret;
2690 }
2691
2692 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2693                                      struct blk_mq_hw_ctx *hctx,
2694                                      struct request *rq)
2695 {
2696         struct hrtimer_sleeper hs;
2697         enum hrtimer_mode mode;
2698         unsigned int nsecs;
2699         ktime_t kt;
2700
2701         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2702                 return false;
2703
2704         /*
2705          * poll_nsec can be:
2706          *
2707          * -1:  don't ever hybrid sleep
2708          *  0:  use half of prev avg
2709          * >0:  use this specific value
2710          */
2711         if (q->poll_nsec == -1)
2712                 return false;
2713         else if (q->poll_nsec > 0)
2714                 nsecs = q->poll_nsec;
2715         else
2716                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2717
2718         if (!nsecs)
2719                 return false;
2720
2721         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2722
2723         /*
2724          * This will be replaced with the stats tracking code, using
2725          * 'avg_completion_time / 2' as the pre-sleep target.
2726          */
2727         kt = nsecs;
2728
2729         mode = HRTIMER_MODE_REL;
2730         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2731         hrtimer_set_expires(&hs.timer, kt);
2732
2733         hrtimer_init_sleeper(&hs, current);
2734         do {
2735                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2736                         break;
2737                 set_current_state(TASK_UNINTERRUPTIBLE);
2738                 hrtimer_start_expires(&hs.timer, mode);
2739                 if (hs.task)
2740                         io_schedule();
2741                 hrtimer_cancel(&hs.timer);
2742                 mode = HRTIMER_MODE_ABS;
2743         } while (hs.task && !signal_pending(current));
2744
2745         __set_current_state(TASK_RUNNING);
2746         destroy_hrtimer_on_stack(&hs.timer);
2747         return true;
2748 }
2749
2750 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2751 {
2752         struct request_queue *q = hctx->queue;
2753         long state;
2754
2755         /*
2756          * If we sleep, have the caller restart the poll loop to reset
2757          * the state. Like for the other success return cases, the
2758          * caller is responsible for checking if the IO completed. If
2759          * the IO isn't complete, we'll get called again and will go
2760          * straight to the busy poll loop.
2761          */
2762         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2763                 return true;
2764
2765         hctx->poll_considered++;
2766
2767         state = current->state;
2768         while (!need_resched()) {
2769                 int ret;
2770
2771                 hctx->poll_invoked++;
2772
2773                 ret = q->mq_ops->poll(hctx, rq->tag);
2774                 if (ret > 0) {
2775                         hctx->poll_success++;
2776                         set_current_state(TASK_RUNNING);
2777                         return true;
2778                 }
2779
2780                 if (signal_pending_state(state, current))
2781                         set_current_state(TASK_RUNNING);
2782
2783                 if (current->state == TASK_RUNNING)
2784                         return true;
2785                 if (ret < 0)
2786                         break;
2787                 cpu_relax();
2788         }
2789
2790         return false;
2791 }
2792
2793 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2794 {
2795         struct blk_mq_hw_ctx *hctx;
2796         struct blk_plug *plug;
2797         struct request *rq;
2798
2799         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2800             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2801                 return false;
2802
2803         plug = current->plug;
2804         if (plug)
2805                 blk_flush_plug_list(plug, false);
2806
2807         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2808         if (!blk_qc_t_is_internal(cookie))
2809                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2810         else
2811                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2812
2813         return __blk_mq_poll(hctx, rq);
2814 }
2815 EXPORT_SYMBOL_GPL(blk_mq_poll);
2816
2817 void blk_mq_disable_hotplug(void)
2818 {
2819         mutex_lock(&all_q_mutex);
2820 }
2821
2822 void blk_mq_enable_hotplug(void)
2823 {
2824         mutex_unlock(&all_q_mutex);
2825 }
2826
2827 static int __init blk_mq_init(void)
2828 {
2829         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2830                                 blk_mq_hctx_notify_dead);
2831
2832         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2833                                   blk_mq_queue_reinit_prepare,
2834                                   blk_mq_queue_reinit_dead);
2835         return 0;
2836 }
2837 subsys_initcall(blk_mq_init);