]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
Merge branch 'pm-pci'
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45         int ddir, bytes, bucket;
46
47         ddir = rq_data_dir(rq);
48         bytes = blk_rq_bytes(rq);
49
50         bucket = ddir + 2*(ilog2(bytes) - 9);
51
52         if (bucket < 0)
53                 return -1;
54         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57         return bucket;
58 }
59
60 /*
61  * Check if any of the ctx's have pending work in this hardware queue
62  */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65         return sbitmap_any_bit_set(&hctx->ctx_map) ||
66                         !list_empty_careful(&hctx->dispatch) ||
67                         blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71  * Mark this ctx as having pending work in this hardware queue
72  */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74                                      struct blk_mq_ctx *ctx)
75 {
76         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81                                       struct blk_mq_ctx *ctx)
82 {
83         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 void blk_freeze_queue_start(struct request_queue *q)
87 {
88         int freeze_depth;
89
90         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91         if (freeze_depth == 1) {
92                 percpu_ref_kill(&q->q_usage_counter);
93                 blk_mq_run_hw_queues(q, false);
94         }
95 }
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
97
98 void blk_mq_freeze_queue_wait(struct request_queue *q)
99 {
100         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
101 }
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
103
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105                                      unsigned long timeout)
106 {
107         return wait_event_timeout(q->mq_freeze_wq,
108                                         percpu_ref_is_zero(&q->q_usage_counter),
109                                         timeout);
110 }
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
112
113 /*
114  * Guarantee no request is in use, so we can change any data structure of
115  * the queue afterward.
116  */
117 void blk_freeze_queue(struct request_queue *q)
118 {
119         /*
120          * In the !blk_mq case we are only calling this to kill the
121          * q_usage_counter, otherwise this increases the freeze depth
122          * and waits for it to return to zero.  For this reason there is
123          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124          * exported to drivers as the only user for unfreeze is blk_mq.
125          */
126         blk_freeze_queue_start(q);
127         blk_mq_freeze_queue_wait(q);
128 }
129
130 void blk_mq_freeze_queue(struct request_queue *q)
131 {
132         /*
133          * ...just an alias to keep freeze and unfreeze actions balanced
134          * in the blk_mq_* namespace
135          */
136         blk_freeze_queue(q);
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142         int freeze_depth;
143
144         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145         WARN_ON_ONCE(freeze_depth < 0);
146         if (!freeze_depth) {
147                 percpu_ref_reinit(&q->q_usage_counter);
148                 wake_up_all(&q->mq_freeze_wq);
149         }
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
152
153 /*
154  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155  * mpt3sas driver such that this function can be removed.
156  */
157 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
158 {
159         unsigned long flags;
160
161         spin_lock_irqsave(q->queue_lock, flags);
162         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163         spin_unlock_irqrestore(q->queue_lock, flags);
164 }
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
166
167 /**
168  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169  * @q: request queue.
170  *
171  * Note: this function does not prevent that the struct request end_io()
172  * callback function is invoked. Once this function is returned, we make
173  * sure no dispatch can happen until the queue is unquiesced via
174  * blk_mq_unquiesce_queue().
175  */
176 void blk_mq_quiesce_queue(struct request_queue *q)
177 {
178         struct blk_mq_hw_ctx *hctx;
179         unsigned int i;
180         bool rcu = false;
181
182         blk_mq_quiesce_queue_nowait(q);
183
184         queue_for_each_hw_ctx(q, hctx, i) {
185                 if (hctx->flags & BLK_MQ_F_BLOCKING)
186                         synchronize_srcu(hctx->queue_rq_srcu);
187                 else
188                         rcu = true;
189         }
190         if (rcu)
191                 synchronize_rcu();
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
194
195 /*
196  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197  * @q: request queue.
198  *
199  * This function recovers queue into the state before quiescing
200  * which is done by blk_mq_quiesce_queue.
201  */
202 void blk_mq_unquiesce_queue(struct request_queue *q)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(q->queue_lock, flags);
207         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208         spin_unlock_irqrestore(q->queue_lock, flags);
209
210         /* dispatch requests which are inserted during quiescing */
211         blk_mq_run_hw_queues(q, true);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
214
215 void blk_mq_wake_waiters(struct request_queue *q)
216 {
217         struct blk_mq_hw_ctx *hctx;
218         unsigned int i;
219
220         queue_for_each_hw_ctx(q, hctx, i)
221                 if (blk_mq_hw_queue_mapped(hctx))
222                         blk_mq_tag_wakeup_all(hctx->tags, true);
223
224         /*
225          * If we are called because the queue has now been marked as
226          * dying, we need to ensure that processes currently waiting on
227          * the queue are notified as well.
228          */
229         wake_up_all(&q->mq_freeze_wq);
230 }
231
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
233 {
234         return blk_mq_has_free_tags(hctx->tags);
235 }
236 EXPORT_SYMBOL(blk_mq_can_queue);
237
238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239                 unsigned int tag, unsigned int op)
240 {
241         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242         struct request *rq = tags->static_rqs[tag];
243
244         rq->rq_flags = 0;
245
246         if (data->flags & BLK_MQ_REQ_INTERNAL) {
247                 rq->tag = -1;
248                 rq->internal_tag = tag;
249         } else {
250                 if (blk_mq_tag_busy(data->hctx)) {
251                         rq->rq_flags = RQF_MQ_INFLIGHT;
252                         atomic_inc(&data->hctx->nr_active);
253                 }
254                 rq->tag = tag;
255                 rq->internal_tag = -1;
256                 data->hctx->tags->rqs[rq->tag] = rq;
257         }
258
259         INIT_LIST_HEAD(&rq->queuelist);
260         /* csd/requeue_work/fifo_time is initialized before use */
261         rq->q = data->q;
262         rq->mq_ctx = data->ctx;
263         rq->cmd_flags = op;
264         if (blk_queue_io_stat(data->q))
265                 rq->rq_flags |= RQF_IO_STAT;
266         /* do not touch atomic flags, it needs atomic ops against the timer */
267         rq->cpu = -1;
268         INIT_HLIST_NODE(&rq->hash);
269         RB_CLEAR_NODE(&rq->rb_node);
270         rq->rq_disk = NULL;
271         rq->part = NULL;
272         rq->start_time = jiffies;
273 #ifdef CONFIG_BLK_CGROUP
274         rq->rl = NULL;
275         set_start_time_ns(rq);
276         rq->io_start_time_ns = 0;
277 #endif
278         rq->nr_phys_segments = 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280         rq->nr_integrity_segments = 0;
281 #endif
282         rq->special = NULL;
283         /* tag was already set */
284         rq->extra_len = 0;
285
286         INIT_LIST_HEAD(&rq->timeout_list);
287         rq->timeout = 0;
288
289         rq->end_io = NULL;
290         rq->end_io_data = NULL;
291         rq->next_rq = NULL;
292
293         data->ctx->rq_dispatched[op_is_sync(op)]++;
294         return rq;
295 }
296
297 static struct request *blk_mq_get_request(struct request_queue *q,
298                 struct bio *bio, unsigned int op,
299                 struct blk_mq_alloc_data *data)
300 {
301         struct elevator_queue *e = q->elevator;
302         struct request *rq;
303         unsigned int tag;
304
305         blk_queue_enter_live(q);
306         data->q = q;
307         if (likely(!data->ctx))
308                 data->ctx = blk_mq_get_ctx(q);
309         if (likely(!data->hctx))
310                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
311         if (op & REQ_NOWAIT)
312                 data->flags |= BLK_MQ_REQ_NOWAIT;
313
314         if (e) {
315                 data->flags |= BLK_MQ_REQ_INTERNAL;
316
317                 /*
318                  * Flush requests are special and go directly to the
319                  * dispatch list.
320                  */
321                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
322                         e->type->ops.mq.limit_depth(op, data);
323         }
324
325         tag = blk_mq_get_tag(data);
326         if (tag == BLK_MQ_TAG_FAIL) {
327                 blk_queue_exit(q);
328                 return NULL;
329         }
330
331         rq = blk_mq_rq_ctx_init(data, tag, op);
332         if (!op_is_flush(op)) {
333                 rq->elv.icq = NULL;
334                 if (e && e->type->ops.mq.prepare_request) {
335                         if (e->type->icq_cache && rq_ioc(bio))
336                                 blk_mq_sched_assign_ioc(rq, bio);
337
338                         e->type->ops.mq.prepare_request(rq, bio);
339                         rq->rq_flags |= RQF_ELVPRIV;
340                 }
341         }
342         data->hctx->queued++;
343         return rq;
344 }
345
346 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
347                 unsigned int flags)
348 {
349         struct blk_mq_alloc_data alloc_data = { .flags = flags };
350         struct request *rq;
351         int ret;
352
353         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
354         if (ret)
355                 return ERR_PTR(ret);
356
357         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
358
359         blk_mq_put_ctx(alloc_data.ctx);
360         blk_queue_exit(q);
361
362         if (!rq)
363                 return ERR_PTR(-EWOULDBLOCK);
364
365         rq->__data_len = 0;
366         rq->__sector = (sector_t) -1;
367         rq->bio = rq->biotail = NULL;
368         return rq;
369 }
370 EXPORT_SYMBOL(blk_mq_alloc_request);
371
372 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
373                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
374 {
375         struct blk_mq_alloc_data alloc_data = { .flags = flags };
376         struct request *rq;
377         unsigned int cpu;
378         int ret;
379
380         /*
381          * If the tag allocator sleeps we could get an allocation for a
382          * different hardware context.  No need to complicate the low level
383          * allocator for this for the rare use case of a command tied to
384          * a specific queue.
385          */
386         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
387                 return ERR_PTR(-EINVAL);
388
389         if (hctx_idx >= q->nr_hw_queues)
390                 return ERR_PTR(-EIO);
391
392         ret = blk_queue_enter(q, true);
393         if (ret)
394                 return ERR_PTR(ret);
395
396         /*
397          * Check if the hardware context is actually mapped to anything.
398          * If not tell the caller that it should skip this queue.
399          */
400         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
401         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
402                 blk_queue_exit(q);
403                 return ERR_PTR(-EXDEV);
404         }
405         cpu = cpumask_first(alloc_data.hctx->cpumask);
406         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
407
408         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
410         blk_queue_exit(q);
411
412         if (!rq)
413                 return ERR_PTR(-EWOULDBLOCK);
414
415         return rq;
416 }
417 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
418
419 void blk_mq_free_request(struct request *rq)
420 {
421         struct request_queue *q = rq->q;
422         struct elevator_queue *e = q->elevator;
423         struct blk_mq_ctx *ctx = rq->mq_ctx;
424         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
425         const int sched_tag = rq->internal_tag;
426
427         if (rq->rq_flags & RQF_ELVPRIV) {
428                 if (e && e->type->ops.mq.finish_request)
429                         e->type->ops.mq.finish_request(rq);
430                 if (rq->elv.icq) {
431                         put_io_context(rq->elv.icq->ioc);
432                         rq->elv.icq = NULL;
433                 }
434         }
435
436         ctx->rq_completed[rq_is_sync(rq)]++;
437         if (rq->rq_flags & RQF_MQ_INFLIGHT)
438                 atomic_dec(&hctx->nr_active);
439
440         wbt_done(q->rq_wb, &rq->issue_stat);
441
442         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
444         if (rq->tag != -1)
445                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
446         if (sched_tag != -1)
447                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
448         blk_mq_sched_restart(hctx);
449         blk_queue_exit(q);
450 }
451 EXPORT_SYMBOL_GPL(blk_mq_free_request);
452
453 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
454 {
455         blk_account_io_done(rq);
456
457         if (rq->end_io) {
458                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
459                 rq->end_io(rq, error);
460         } else {
461                 if (unlikely(blk_bidi_rq(rq)))
462                         blk_mq_free_request(rq->next_rq);
463                 blk_mq_free_request(rq);
464         }
465 }
466 EXPORT_SYMBOL(__blk_mq_end_request);
467
468 void blk_mq_end_request(struct request *rq, blk_status_t error)
469 {
470         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
471                 BUG();
472         __blk_mq_end_request(rq, error);
473 }
474 EXPORT_SYMBOL(blk_mq_end_request);
475
476 static void __blk_mq_complete_request_remote(void *data)
477 {
478         struct request *rq = data;
479
480         rq->q->softirq_done_fn(rq);
481 }
482
483 static void __blk_mq_complete_request(struct request *rq)
484 {
485         struct blk_mq_ctx *ctx = rq->mq_ctx;
486         bool shared = false;
487         int cpu;
488
489         if (rq->internal_tag != -1)
490                 blk_mq_sched_completed_request(rq);
491         if (rq->rq_flags & RQF_STATS) {
492                 blk_mq_poll_stats_start(rq->q);
493                 blk_stat_add(rq);
494         }
495
496         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
497                 rq->q->softirq_done_fn(rq);
498                 return;
499         }
500
501         cpu = get_cpu();
502         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
503                 shared = cpus_share_cache(cpu, ctx->cpu);
504
505         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
506                 rq->csd.func = __blk_mq_complete_request_remote;
507                 rq->csd.info = rq;
508                 rq->csd.flags = 0;
509                 smp_call_function_single_async(ctx->cpu, &rq->csd);
510         } else {
511                 rq->q->softirq_done_fn(rq);
512         }
513         put_cpu();
514 }
515
516 /**
517  * blk_mq_complete_request - end I/O on a request
518  * @rq:         the request being processed
519  *
520  * Description:
521  *      Ends all I/O on a request. It does not handle partial completions.
522  *      The actual completion happens out-of-order, through a IPI handler.
523  **/
524 void blk_mq_complete_request(struct request *rq)
525 {
526         struct request_queue *q = rq->q;
527
528         if (unlikely(blk_should_fake_timeout(q)))
529                 return;
530         if (!blk_mark_rq_complete(rq))
531                 __blk_mq_complete_request(rq);
532 }
533 EXPORT_SYMBOL(blk_mq_complete_request);
534
535 int blk_mq_request_started(struct request *rq)
536 {
537         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_request_started);
540
541 void blk_mq_start_request(struct request *rq)
542 {
543         struct request_queue *q = rq->q;
544
545         blk_mq_sched_started_request(rq);
546
547         trace_block_rq_issue(q, rq);
548
549         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
550                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
551                 rq->rq_flags |= RQF_STATS;
552                 wbt_issue(q->rq_wb, &rq->issue_stat);
553         }
554
555         blk_add_timer(rq);
556
557         /*
558          * Ensure that ->deadline is visible before set the started
559          * flag and clear the completed flag.
560          */
561         smp_mb__before_atomic();
562
563         /*
564          * Mark us as started and clear complete. Complete might have been
565          * set if requeue raced with timeout, which then marked it as
566          * complete. So be sure to clear complete again when we start
567          * the request, otherwise we'll ignore the completion event.
568          */
569         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
570                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
571         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
572                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
573
574         if (q->dma_drain_size && blk_rq_bytes(rq)) {
575                 /*
576                  * Make sure space for the drain appears.  We know we can do
577                  * this because max_hw_segments has been adjusted to be one
578                  * fewer than the device can handle.
579                  */
580                 rq->nr_phys_segments++;
581         }
582 }
583 EXPORT_SYMBOL(blk_mq_start_request);
584
585 /*
586  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
587  * flag isn't set yet, so there may be race with timeout handler,
588  * but given rq->deadline is just set in .queue_rq() under
589  * this situation, the race won't be possible in reality because
590  * rq->timeout should be set as big enough to cover the window
591  * between blk_mq_start_request() called from .queue_rq() and
592  * clearing REQ_ATOM_STARTED here.
593  */
594 static void __blk_mq_requeue_request(struct request *rq)
595 {
596         struct request_queue *q = rq->q;
597
598         trace_block_rq_requeue(q, rq);
599         wbt_requeue(q->rq_wb, &rq->issue_stat);
600         blk_mq_sched_requeue_request(rq);
601
602         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
603                 if (q->dma_drain_size && blk_rq_bytes(rq))
604                         rq->nr_phys_segments--;
605         }
606 }
607
608 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
609 {
610         __blk_mq_requeue_request(rq);
611
612         BUG_ON(blk_queued_rq(rq));
613         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
614 }
615 EXPORT_SYMBOL(blk_mq_requeue_request);
616
617 static void blk_mq_requeue_work(struct work_struct *work)
618 {
619         struct request_queue *q =
620                 container_of(work, struct request_queue, requeue_work.work);
621         LIST_HEAD(rq_list);
622         struct request *rq, *next;
623         unsigned long flags;
624
625         spin_lock_irqsave(&q->requeue_lock, flags);
626         list_splice_init(&q->requeue_list, &rq_list);
627         spin_unlock_irqrestore(&q->requeue_lock, flags);
628
629         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
630                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
631                         continue;
632
633                 rq->rq_flags &= ~RQF_SOFTBARRIER;
634                 list_del_init(&rq->queuelist);
635                 blk_mq_sched_insert_request(rq, true, false, false, true);
636         }
637
638         while (!list_empty(&rq_list)) {
639                 rq = list_entry(rq_list.next, struct request, queuelist);
640                 list_del_init(&rq->queuelist);
641                 blk_mq_sched_insert_request(rq, false, false, false, true);
642         }
643
644         blk_mq_run_hw_queues(q, false);
645 }
646
647 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
648                                 bool kick_requeue_list)
649 {
650         struct request_queue *q = rq->q;
651         unsigned long flags;
652
653         /*
654          * We abuse this flag that is otherwise used by the I/O scheduler to
655          * request head insertation from the workqueue.
656          */
657         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
658
659         spin_lock_irqsave(&q->requeue_lock, flags);
660         if (at_head) {
661                 rq->rq_flags |= RQF_SOFTBARRIER;
662                 list_add(&rq->queuelist, &q->requeue_list);
663         } else {
664                 list_add_tail(&rq->queuelist, &q->requeue_list);
665         }
666         spin_unlock_irqrestore(&q->requeue_lock, flags);
667
668         if (kick_requeue_list)
669                 blk_mq_kick_requeue_list(q);
670 }
671 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
672
673 void blk_mq_kick_requeue_list(struct request_queue *q)
674 {
675         kblockd_schedule_delayed_work(&q->requeue_work, 0);
676 }
677 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
678
679 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
680                                     unsigned long msecs)
681 {
682         kblockd_schedule_delayed_work(&q->requeue_work,
683                                       msecs_to_jiffies(msecs));
684 }
685 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
686
687 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
688 {
689         if (tag < tags->nr_tags) {
690                 prefetch(tags->rqs[tag]);
691                 return tags->rqs[tag];
692         }
693
694         return NULL;
695 }
696 EXPORT_SYMBOL(blk_mq_tag_to_rq);
697
698 struct blk_mq_timeout_data {
699         unsigned long next;
700         unsigned int next_set;
701 };
702
703 void blk_mq_rq_timed_out(struct request *req, bool reserved)
704 {
705         const struct blk_mq_ops *ops = req->q->mq_ops;
706         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
707
708         /*
709          * We know that complete is set at this point. If STARTED isn't set
710          * anymore, then the request isn't active and the "timeout" should
711          * just be ignored. This can happen due to the bitflag ordering.
712          * Timeout first checks if STARTED is set, and if it is, assumes
713          * the request is active. But if we race with completion, then
714          * both flags will get cleared. So check here again, and ignore
715          * a timeout event with a request that isn't active.
716          */
717         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
718                 return;
719
720         if (ops->timeout)
721                 ret = ops->timeout(req, reserved);
722
723         switch (ret) {
724         case BLK_EH_HANDLED:
725                 __blk_mq_complete_request(req);
726                 break;
727         case BLK_EH_RESET_TIMER:
728                 blk_add_timer(req);
729                 blk_clear_rq_complete(req);
730                 break;
731         case BLK_EH_NOT_HANDLED:
732                 break;
733         default:
734                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
735                 break;
736         }
737 }
738
739 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
740                 struct request *rq, void *priv, bool reserved)
741 {
742         struct blk_mq_timeout_data *data = priv;
743
744         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
745                 return;
746
747         /*
748          * The rq being checked may have been freed and reallocated
749          * out already here, we avoid this race by checking rq->deadline
750          * and REQ_ATOM_COMPLETE flag together:
751          *
752          * - if rq->deadline is observed as new value because of
753          *   reusing, the rq won't be timed out because of timing.
754          * - if rq->deadline is observed as previous value,
755          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
756          *   because we put a barrier between setting rq->deadline
757          *   and clearing the flag in blk_mq_start_request(), so
758          *   this rq won't be timed out too.
759          */
760         if (time_after_eq(jiffies, rq->deadline)) {
761                 if (!blk_mark_rq_complete(rq))
762                         blk_mq_rq_timed_out(rq, reserved);
763         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
764                 data->next = rq->deadline;
765                 data->next_set = 1;
766         }
767 }
768
769 static void blk_mq_timeout_work(struct work_struct *work)
770 {
771         struct request_queue *q =
772                 container_of(work, struct request_queue, timeout_work);
773         struct blk_mq_timeout_data data = {
774                 .next           = 0,
775                 .next_set       = 0,
776         };
777         int i;
778
779         /* A deadlock might occur if a request is stuck requiring a
780          * timeout at the same time a queue freeze is waiting
781          * completion, since the timeout code would not be able to
782          * acquire the queue reference here.
783          *
784          * That's why we don't use blk_queue_enter here; instead, we use
785          * percpu_ref_tryget directly, because we need to be able to
786          * obtain a reference even in the short window between the queue
787          * starting to freeze, by dropping the first reference in
788          * blk_freeze_queue_start, and the moment the last request is
789          * consumed, marked by the instant q_usage_counter reaches
790          * zero.
791          */
792         if (!percpu_ref_tryget(&q->q_usage_counter))
793                 return;
794
795         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
796
797         if (data.next_set) {
798                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
799                 mod_timer(&q->timeout, data.next);
800         } else {
801                 struct blk_mq_hw_ctx *hctx;
802
803                 queue_for_each_hw_ctx(q, hctx, i) {
804                         /* the hctx may be unmapped, so check it here */
805                         if (blk_mq_hw_queue_mapped(hctx))
806                                 blk_mq_tag_idle(hctx);
807                 }
808         }
809         blk_queue_exit(q);
810 }
811
812 struct flush_busy_ctx_data {
813         struct blk_mq_hw_ctx *hctx;
814         struct list_head *list;
815 };
816
817 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
818 {
819         struct flush_busy_ctx_data *flush_data = data;
820         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
821         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
822
823         sbitmap_clear_bit(sb, bitnr);
824         spin_lock(&ctx->lock);
825         list_splice_tail_init(&ctx->rq_list, flush_data->list);
826         spin_unlock(&ctx->lock);
827         return true;
828 }
829
830 /*
831  * Process software queues that have been marked busy, splicing them
832  * to the for-dispatch
833  */
834 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
835 {
836         struct flush_busy_ctx_data data = {
837                 .hctx = hctx,
838                 .list = list,
839         };
840
841         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
842 }
843 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
844
845 static inline unsigned int queued_to_index(unsigned int queued)
846 {
847         if (!queued)
848                 return 0;
849
850         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
851 }
852
853 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
854                            bool wait)
855 {
856         struct blk_mq_alloc_data data = {
857                 .q = rq->q,
858                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
859                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
860         };
861
862         might_sleep_if(wait);
863
864         if (rq->tag != -1)
865                 goto done;
866
867         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
868                 data.flags |= BLK_MQ_REQ_RESERVED;
869
870         rq->tag = blk_mq_get_tag(&data);
871         if (rq->tag >= 0) {
872                 if (blk_mq_tag_busy(data.hctx)) {
873                         rq->rq_flags |= RQF_MQ_INFLIGHT;
874                         atomic_inc(&data.hctx->nr_active);
875                 }
876                 data.hctx->tags->rqs[rq->tag] = rq;
877         }
878
879 done:
880         if (hctx)
881                 *hctx = data.hctx;
882         return rq->tag != -1;
883 }
884
885 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
886                                     struct request *rq)
887 {
888         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
889         rq->tag = -1;
890
891         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
892                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
893                 atomic_dec(&hctx->nr_active);
894         }
895 }
896
897 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
898                                        struct request *rq)
899 {
900         if (rq->tag == -1 || rq->internal_tag == -1)
901                 return;
902
903         __blk_mq_put_driver_tag(hctx, rq);
904 }
905
906 static void blk_mq_put_driver_tag(struct request *rq)
907 {
908         struct blk_mq_hw_ctx *hctx;
909
910         if (rq->tag == -1 || rq->internal_tag == -1)
911                 return;
912
913         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
914         __blk_mq_put_driver_tag(hctx, rq);
915 }
916
917 /*
918  * If we fail getting a driver tag because all the driver tags are already
919  * assigned and on the dispatch list, BUT the first entry does not have a
920  * tag, then we could deadlock. For that case, move entries with assigned
921  * driver tags to the front, leaving the set of tagged requests in the
922  * same order, and the untagged set in the same order.
923  */
924 static bool reorder_tags_to_front(struct list_head *list)
925 {
926         struct request *rq, *tmp, *first = NULL;
927
928         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
929                 if (rq == first)
930                         break;
931                 if (rq->tag != -1) {
932                         list_move(&rq->queuelist, list);
933                         if (!first)
934                                 first = rq;
935                 }
936         }
937
938         return first != NULL;
939 }
940
941 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
942                                 void *key)
943 {
944         struct blk_mq_hw_ctx *hctx;
945
946         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
947
948         list_del(&wait->entry);
949         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
950         blk_mq_run_hw_queue(hctx, true);
951         return 1;
952 }
953
954 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
955 {
956         struct sbq_wait_state *ws;
957
958         /*
959          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
960          * The thread which wins the race to grab this bit adds the hardware
961          * queue to the wait queue.
962          */
963         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
964             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
965                 return false;
966
967         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
968         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
969
970         /*
971          * As soon as this returns, it's no longer safe to fiddle with
972          * hctx->dispatch_wait, since a completion can wake up the wait queue
973          * and unlock the bit.
974          */
975         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
976         return true;
977 }
978
979 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
980 {
981         struct blk_mq_hw_ctx *hctx;
982         struct request *rq;
983         int errors, queued;
984
985         if (list_empty(list))
986                 return false;
987
988         /*
989          * Now process all the entries, sending them to the driver.
990          */
991         errors = queued = 0;
992         do {
993                 struct blk_mq_queue_data bd;
994                 blk_status_t ret;
995
996                 rq = list_first_entry(list, struct request, queuelist);
997                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998                         if (!queued && reorder_tags_to_front(list))
999                                 continue;
1000
1001                         /*
1002                          * The initial allocation attempt failed, so we need to
1003                          * rerun the hardware queue when a tag is freed.
1004                          */
1005                         if (!blk_mq_dispatch_wait_add(hctx))
1006                                 break;
1007
1008                         /*
1009                          * It's possible that a tag was freed in the window
1010                          * between the allocation failure and adding the
1011                          * hardware queue to the wait queue.
1012                          */
1013                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1014                                 break;
1015                 }
1016
1017                 list_del_init(&rq->queuelist);
1018
1019                 bd.rq = rq;
1020
1021                 /*
1022                  * Flag last if we have no more requests, or if we have more
1023                  * but can't assign a driver tag to it.
1024                  */
1025                 if (list_empty(list))
1026                         bd.last = true;
1027                 else {
1028                         struct request *nxt;
1029
1030                         nxt = list_first_entry(list, struct request, queuelist);
1031                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1032                 }
1033
1034                 ret = q->mq_ops->queue_rq(hctx, &bd);
1035                 if (ret == BLK_STS_RESOURCE) {
1036                         blk_mq_put_driver_tag_hctx(hctx, rq);
1037                         list_add(&rq->queuelist, list);
1038                         __blk_mq_requeue_request(rq);
1039                         break;
1040                 }
1041
1042                 if (unlikely(ret != BLK_STS_OK)) {
1043                         errors++;
1044                         blk_mq_end_request(rq, BLK_STS_IOERR);
1045                         continue;
1046                 }
1047
1048                 queued++;
1049         } while (!list_empty(list));
1050
1051         hctx->dispatched[queued_to_index(queued)]++;
1052
1053         /*
1054          * Any items that need requeuing? Stuff them into hctx->dispatch,
1055          * that is where we will continue on next queue run.
1056          */
1057         if (!list_empty(list)) {
1058                 /*
1059                  * If an I/O scheduler has been configured and we got a driver
1060                  * tag for the next request already, free it again.
1061                  */
1062                 rq = list_first_entry(list, struct request, queuelist);
1063                 blk_mq_put_driver_tag(rq);
1064
1065                 spin_lock(&hctx->lock);
1066                 list_splice_init(list, &hctx->dispatch);
1067                 spin_unlock(&hctx->lock);
1068
1069                 /*
1070                  * If SCHED_RESTART was set by the caller of this function and
1071                  * it is no longer set that means that it was cleared by another
1072                  * thread and hence that a queue rerun is needed.
1073                  *
1074                  * If TAG_WAITING is set that means that an I/O scheduler has
1075                  * been configured and another thread is waiting for a driver
1076                  * tag. To guarantee fairness, do not rerun this hardware queue
1077                  * but let the other thread grab the driver tag.
1078                  *
1079                  * If no I/O scheduler has been configured it is possible that
1080                  * the hardware queue got stopped and restarted before requests
1081                  * were pushed back onto the dispatch list. Rerun the queue to
1082                  * avoid starvation. Notes:
1083                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1084                  *   been stopped before rerunning a queue.
1085                  * - Some but not all block drivers stop a queue before
1086                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1087                  *   and dm-rq.
1088                  */
1089                 if (!blk_mq_sched_needs_restart(hctx) &&
1090                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1091                         blk_mq_run_hw_queue(hctx, true);
1092         }
1093
1094         return (queued + errors) != 0;
1095 }
1096
1097 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1098 {
1099         int srcu_idx;
1100
1101         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1102                 cpu_online(hctx->next_cpu));
1103
1104         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105                 rcu_read_lock();
1106                 blk_mq_sched_dispatch_requests(hctx);
1107                 rcu_read_unlock();
1108         } else {
1109                 might_sleep();
1110
1111                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1112                 blk_mq_sched_dispatch_requests(hctx);
1113                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1114         }
1115 }
1116
1117 /*
1118  * It'd be great if the workqueue API had a way to pass
1119  * in a mask and had some smarts for more clever placement.
1120  * For now we just round-robin here, switching for every
1121  * BLK_MQ_CPU_WORK_BATCH queued items.
1122  */
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124 {
1125         if (hctx->queue->nr_hw_queues == 1)
1126                 return WORK_CPU_UNBOUND;
1127
1128         if (--hctx->next_cpu_batch <= 0) {
1129                 int next_cpu;
1130
1131                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132                 if (next_cpu >= nr_cpu_ids)
1133                         next_cpu = cpumask_first(hctx->cpumask);
1134
1135                 hctx->next_cpu = next_cpu;
1136                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137         }
1138
1139         return hctx->next_cpu;
1140 }
1141
1142 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1143                                         unsigned long msecs)
1144 {
1145         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1146                 return;
1147
1148         if (unlikely(blk_mq_hctx_stopped(hctx)))
1149                 return;
1150
1151         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1152                 int cpu = get_cpu();
1153                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1154                         __blk_mq_run_hw_queue(hctx);
1155                         put_cpu();
1156                         return;
1157                 }
1158
1159                 put_cpu();
1160         }
1161
1162         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1163                                          &hctx->run_work,
1164                                          msecs_to_jiffies(msecs));
1165 }
1166
1167 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1168 {
1169         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1170 }
1171 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1172
1173 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1174 {
1175         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1176 }
1177 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1178
1179 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1180 {
1181         struct blk_mq_hw_ctx *hctx;
1182         int i;
1183
1184         queue_for_each_hw_ctx(q, hctx, i) {
1185                 if (!blk_mq_hctx_has_pending(hctx) ||
1186                     blk_mq_hctx_stopped(hctx))
1187                         continue;
1188
1189                 blk_mq_run_hw_queue(hctx, async);
1190         }
1191 }
1192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1193
1194 /**
1195  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1196  * @q: request queue.
1197  *
1198  * The caller is responsible for serializing this function against
1199  * blk_mq_{start,stop}_hw_queue().
1200  */
1201 bool blk_mq_queue_stopped(struct request_queue *q)
1202 {
1203         struct blk_mq_hw_ctx *hctx;
1204         int i;
1205
1206         queue_for_each_hw_ctx(q, hctx, i)
1207                 if (blk_mq_hctx_stopped(hctx))
1208                         return true;
1209
1210         return false;
1211 }
1212 EXPORT_SYMBOL(blk_mq_queue_stopped);
1213
1214 /*
1215  * This function is often used for pausing .queue_rq() by driver when
1216  * there isn't enough resource or some conditions aren't satisfied, and
1217  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1218  *
1219  * We do not guarantee that dispatch can be drained or blocked
1220  * after blk_mq_stop_hw_queue() returns. Please use
1221  * blk_mq_quiesce_queue() for that requirement.
1222  */
1223 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225         cancel_delayed_work(&hctx->run_work);
1226
1227         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1228 }
1229 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1230
1231 /*
1232  * This function is often used for pausing .queue_rq() by driver when
1233  * there isn't enough resource or some conditions aren't satisfied, and
1234  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1235  *
1236  * We do not guarantee that dispatch can be drained or blocked
1237  * after blk_mq_stop_hw_queues() returns. Please use
1238  * blk_mq_quiesce_queue() for that requirement.
1239  */
1240 void blk_mq_stop_hw_queues(struct request_queue *q)
1241 {
1242         struct blk_mq_hw_ctx *hctx;
1243         int i;
1244
1245         queue_for_each_hw_ctx(q, hctx, i)
1246                 blk_mq_stop_hw_queue(hctx);
1247 }
1248 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1249
1250 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1251 {
1252         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253
1254         blk_mq_run_hw_queue(hctx, false);
1255 }
1256 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1257
1258 void blk_mq_start_hw_queues(struct request_queue *q)
1259 {
1260         struct blk_mq_hw_ctx *hctx;
1261         int i;
1262
1263         queue_for_each_hw_ctx(q, hctx, i)
1264                 blk_mq_start_hw_queue(hctx);
1265 }
1266 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1267
1268 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1269 {
1270         if (!blk_mq_hctx_stopped(hctx))
1271                 return;
1272
1273         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1274         blk_mq_run_hw_queue(hctx, async);
1275 }
1276 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1277
1278 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1279 {
1280         struct blk_mq_hw_ctx *hctx;
1281         int i;
1282
1283         queue_for_each_hw_ctx(q, hctx, i)
1284                 blk_mq_start_stopped_hw_queue(hctx, async);
1285 }
1286 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1287
1288 static void blk_mq_run_work_fn(struct work_struct *work)
1289 {
1290         struct blk_mq_hw_ctx *hctx;
1291
1292         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1293
1294         /*
1295          * If we are stopped, don't run the queue. The exception is if
1296          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1297          * the STOPPED bit and run it.
1298          */
1299         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1300                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1301                         return;
1302
1303                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1304                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1305         }
1306
1307         __blk_mq_run_hw_queue(hctx);
1308 }
1309
1310
1311 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1312 {
1313         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1314                 return;
1315
1316         /*
1317          * Stop the hw queue, then modify currently delayed work.
1318          * This should prevent us from running the queue prematurely.
1319          * Mark the queue as auto-clearing STOPPED when it runs.
1320          */
1321         blk_mq_stop_hw_queue(hctx);
1322         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1323         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1324                                         &hctx->run_work,
1325                                         msecs_to_jiffies(msecs));
1326 }
1327 EXPORT_SYMBOL(blk_mq_delay_queue);
1328
1329 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1330                                             struct request *rq,
1331                                             bool at_head)
1332 {
1333         struct blk_mq_ctx *ctx = rq->mq_ctx;
1334
1335         lockdep_assert_held(&ctx->lock);
1336
1337         trace_block_rq_insert(hctx->queue, rq);
1338
1339         if (at_head)
1340                 list_add(&rq->queuelist, &ctx->rq_list);
1341         else
1342                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1343 }
1344
1345 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1346                              bool at_head)
1347 {
1348         struct blk_mq_ctx *ctx = rq->mq_ctx;
1349
1350         lockdep_assert_held(&ctx->lock);
1351
1352         __blk_mq_insert_req_list(hctx, rq, at_head);
1353         blk_mq_hctx_mark_pending(hctx, ctx);
1354 }
1355
1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1357                             struct list_head *list)
1358
1359 {
1360         /*
1361          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1362          * offline now
1363          */
1364         spin_lock(&ctx->lock);
1365         while (!list_empty(list)) {
1366                 struct request *rq;
1367
1368                 rq = list_first_entry(list, struct request, queuelist);
1369                 BUG_ON(rq->mq_ctx != ctx);
1370                 list_del_init(&rq->queuelist);
1371                 __blk_mq_insert_req_list(hctx, rq, false);
1372         }
1373         blk_mq_hctx_mark_pending(hctx, ctx);
1374         spin_unlock(&ctx->lock);
1375 }
1376
1377 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1378 {
1379         struct request *rqa = container_of(a, struct request, queuelist);
1380         struct request *rqb = container_of(b, struct request, queuelist);
1381
1382         return !(rqa->mq_ctx < rqb->mq_ctx ||
1383                  (rqa->mq_ctx == rqb->mq_ctx &&
1384                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1385 }
1386
1387 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1388 {
1389         struct blk_mq_ctx *this_ctx;
1390         struct request_queue *this_q;
1391         struct request *rq;
1392         LIST_HEAD(list);
1393         LIST_HEAD(ctx_list);
1394         unsigned int depth;
1395
1396         list_splice_init(&plug->mq_list, &list);
1397
1398         list_sort(NULL, &list, plug_ctx_cmp);
1399
1400         this_q = NULL;
1401         this_ctx = NULL;
1402         depth = 0;
1403
1404         while (!list_empty(&list)) {
1405                 rq = list_entry_rq(list.next);
1406                 list_del_init(&rq->queuelist);
1407                 BUG_ON(!rq->q);
1408                 if (rq->mq_ctx != this_ctx) {
1409                         if (this_ctx) {
1410                                 trace_block_unplug(this_q, depth, from_schedule);
1411                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1412                                                                 &ctx_list,
1413                                                                 from_schedule);
1414                         }
1415
1416                         this_ctx = rq->mq_ctx;
1417                         this_q = rq->q;
1418                         depth = 0;
1419                 }
1420
1421                 depth++;
1422                 list_add_tail(&rq->queuelist, &ctx_list);
1423         }
1424
1425         /*
1426          * If 'this_ctx' is set, we know we have entries to complete
1427          * on 'ctx_list'. Do those.
1428          */
1429         if (this_ctx) {
1430                 trace_block_unplug(this_q, depth, from_schedule);
1431                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1432                                                 from_schedule);
1433         }
1434 }
1435
1436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1437 {
1438         blk_init_request_from_bio(rq, bio);
1439
1440         blk_account_io_start(rq, true);
1441 }
1442
1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1444 {
1445         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1446                 !blk_queue_nomerges(hctx->queue);
1447 }
1448
1449 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1450                                    struct blk_mq_ctx *ctx,
1451                                    struct request *rq)
1452 {
1453         spin_lock(&ctx->lock);
1454         __blk_mq_insert_request(hctx, rq, false);
1455         spin_unlock(&ctx->lock);
1456 }
1457
1458 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1459 {
1460         if (rq->tag != -1)
1461                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1462
1463         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1464 }
1465
1466 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1467                                         struct request *rq,
1468                                         blk_qc_t *cookie, bool may_sleep)
1469 {
1470         struct request_queue *q = rq->q;
1471         struct blk_mq_queue_data bd = {
1472                 .rq = rq,
1473                 .last = true,
1474         };
1475         blk_qc_t new_cookie;
1476         blk_status_t ret;
1477         bool run_queue = true;
1478
1479         /* RCU or SRCU read lock is needed before checking quiesced flag */
1480         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1481                 run_queue = false;
1482                 goto insert;
1483         }
1484
1485         if (q->elevator)
1486                 goto insert;
1487
1488         if (!blk_mq_get_driver_tag(rq, NULL, false))
1489                 goto insert;
1490
1491         new_cookie = request_to_qc_t(hctx, rq);
1492
1493         /*
1494          * For OK queue, we are done. For error, kill it. Any other
1495          * error (busy), just add it to our list as we previously
1496          * would have done
1497          */
1498         ret = q->mq_ops->queue_rq(hctx, &bd);
1499         switch (ret) {
1500         case BLK_STS_OK:
1501                 *cookie = new_cookie;
1502                 return;
1503         case BLK_STS_RESOURCE:
1504                 __blk_mq_requeue_request(rq);
1505                 goto insert;
1506         default:
1507                 *cookie = BLK_QC_T_NONE;
1508                 blk_mq_end_request(rq, ret);
1509                 return;
1510         }
1511
1512 insert:
1513         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1514 }
1515
1516 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1517                 struct request *rq, blk_qc_t *cookie)
1518 {
1519         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1520                 rcu_read_lock();
1521                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1522                 rcu_read_unlock();
1523         } else {
1524                 unsigned int srcu_idx;
1525
1526                 might_sleep();
1527
1528                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1529                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1530                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1531         }
1532 }
1533
1534 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1535 {
1536         const int is_sync = op_is_sync(bio->bi_opf);
1537         const int is_flush_fua = op_is_flush(bio->bi_opf);
1538         struct blk_mq_alloc_data data = { .flags = 0 };
1539         struct request *rq;
1540         unsigned int request_count = 0;
1541         struct blk_plug *plug;
1542         struct request *same_queue_rq = NULL;
1543         blk_qc_t cookie;
1544         unsigned int wb_acct;
1545
1546         blk_queue_bounce(q, &bio);
1547
1548         blk_queue_split(q, &bio);
1549
1550         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1551                 bio_io_error(bio);
1552                 return BLK_QC_T_NONE;
1553         }
1554
1555         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1556             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1557                 return BLK_QC_T_NONE;
1558
1559         if (blk_mq_sched_bio_merge(q, bio))
1560                 return BLK_QC_T_NONE;
1561
1562         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1563
1564         trace_block_getrq(q, bio, bio->bi_opf);
1565
1566         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1567         if (unlikely(!rq)) {
1568                 __wbt_done(q->rq_wb, wb_acct);
1569                 if (bio->bi_opf & REQ_NOWAIT)
1570                         bio_wouldblock_error(bio);
1571                 return BLK_QC_T_NONE;
1572         }
1573
1574         wbt_track(&rq->issue_stat, wb_acct);
1575
1576         cookie = request_to_qc_t(data.hctx, rq);
1577
1578         plug = current->plug;
1579         if (unlikely(is_flush_fua)) {
1580                 blk_mq_put_ctx(data.ctx);
1581                 blk_mq_bio_to_request(rq, bio);
1582                 if (q->elevator) {
1583                         blk_mq_sched_insert_request(rq, false, true, true,
1584                                         true);
1585                 } else {
1586                         blk_insert_flush(rq);
1587                         blk_mq_run_hw_queue(data.hctx, true);
1588                 }
1589         } else if (plug && q->nr_hw_queues == 1) {
1590                 struct request *last = NULL;
1591
1592                 blk_mq_put_ctx(data.ctx);
1593                 blk_mq_bio_to_request(rq, bio);
1594
1595                 /*
1596                  * @request_count may become stale because of schedule
1597                  * out, so check the list again.
1598                  */
1599                 if (list_empty(&plug->mq_list))
1600                         request_count = 0;
1601                 else if (blk_queue_nomerges(q))
1602                         request_count = blk_plug_queued_count(q);
1603
1604                 if (!request_count)
1605                         trace_block_plug(q);
1606                 else
1607                         last = list_entry_rq(plug->mq_list.prev);
1608
1609                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1610                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1611                         blk_flush_plug_list(plug, false);
1612                         trace_block_plug(q);
1613                 }
1614
1615                 list_add_tail(&rq->queuelist, &plug->mq_list);
1616         } else if (plug && !blk_queue_nomerges(q)) {
1617                 blk_mq_bio_to_request(rq, bio);
1618
1619                 /*
1620                  * We do limited plugging. If the bio can be merged, do that.
1621                  * Otherwise the existing request in the plug list will be
1622                  * issued. So the plug list will have one request at most
1623                  * The plug list might get flushed before this. If that happens,
1624                  * the plug list is empty, and same_queue_rq is invalid.
1625                  */
1626                 if (list_empty(&plug->mq_list))
1627                         same_queue_rq = NULL;
1628                 if (same_queue_rq)
1629                         list_del_init(&same_queue_rq->queuelist);
1630                 list_add_tail(&rq->queuelist, &plug->mq_list);
1631
1632                 blk_mq_put_ctx(data.ctx);
1633
1634                 if (same_queue_rq) {
1635                         data.hctx = blk_mq_map_queue(q,
1636                                         same_queue_rq->mq_ctx->cpu);
1637                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1638                                         &cookie);
1639                 }
1640         } else if (q->nr_hw_queues > 1 && is_sync) {
1641                 blk_mq_put_ctx(data.ctx);
1642                 blk_mq_bio_to_request(rq, bio);
1643                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1644         } else if (q->elevator) {
1645                 blk_mq_put_ctx(data.ctx);
1646                 blk_mq_bio_to_request(rq, bio);
1647                 blk_mq_sched_insert_request(rq, false, true, true, true);
1648         } else {
1649                 blk_mq_put_ctx(data.ctx);
1650                 blk_mq_bio_to_request(rq, bio);
1651                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1652                 blk_mq_run_hw_queue(data.hctx, true);
1653         }
1654
1655         return cookie;
1656 }
1657
1658 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1659                      unsigned int hctx_idx)
1660 {
1661         struct page *page;
1662
1663         if (tags->rqs && set->ops->exit_request) {
1664                 int i;
1665
1666                 for (i = 0; i < tags->nr_tags; i++) {
1667                         struct request *rq = tags->static_rqs[i];
1668
1669                         if (!rq)
1670                                 continue;
1671                         set->ops->exit_request(set, rq, hctx_idx);
1672                         tags->static_rqs[i] = NULL;
1673                 }
1674         }
1675
1676         while (!list_empty(&tags->page_list)) {
1677                 page = list_first_entry(&tags->page_list, struct page, lru);
1678                 list_del_init(&page->lru);
1679                 /*
1680                  * Remove kmemleak object previously allocated in
1681                  * blk_mq_init_rq_map().
1682                  */
1683                 kmemleak_free(page_address(page));
1684                 __free_pages(page, page->private);
1685         }
1686 }
1687
1688 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1689 {
1690         kfree(tags->rqs);
1691         tags->rqs = NULL;
1692         kfree(tags->static_rqs);
1693         tags->static_rqs = NULL;
1694
1695         blk_mq_free_tags(tags);
1696 }
1697
1698 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1699                                         unsigned int hctx_idx,
1700                                         unsigned int nr_tags,
1701                                         unsigned int reserved_tags)
1702 {
1703         struct blk_mq_tags *tags;
1704         int node;
1705
1706         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1707         if (node == NUMA_NO_NODE)
1708                 node = set->numa_node;
1709
1710         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1711                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1712         if (!tags)
1713                 return NULL;
1714
1715         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1716                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1717                                  node);
1718         if (!tags->rqs) {
1719                 blk_mq_free_tags(tags);
1720                 return NULL;
1721         }
1722
1723         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1724                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1725                                  node);
1726         if (!tags->static_rqs) {
1727                 kfree(tags->rqs);
1728                 blk_mq_free_tags(tags);
1729                 return NULL;
1730         }
1731
1732         return tags;
1733 }
1734
1735 static size_t order_to_size(unsigned int order)
1736 {
1737         return (size_t)PAGE_SIZE << order;
1738 }
1739
1740 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1741                      unsigned int hctx_idx, unsigned int depth)
1742 {
1743         unsigned int i, j, entries_per_page, max_order = 4;
1744         size_t rq_size, left;
1745         int node;
1746
1747         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1748         if (node == NUMA_NO_NODE)
1749                 node = set->numa_node;
1750
1751         INIT_LIST_HEAD(&tags->page_list);
1752
1753         /*
1754          * rq_size is the size of the request plus driver payload, rounded
1755          * to the cacheline size
1756          */
1757         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1758                                 cache_line_size());
1759         left = rq_size * depth;
1760
1761         for (i = 0; i < depth; ) {
1762                 int this_order = max_order;
1763                 struct page *page;
1764                 int to_do;
1765                 void *p;
1766
1767                 while (this_order && left < order_to_size(this_order - 1))
1768                         this_order--;
1769
1770                 do {
1771                         page = alloc_pages_node(node,
1772                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1773                                 this_order);
1774                         if (page)
1775                                 break;
1776                         if (!this_order--)
1777                                 break;
1778                         if (order_to_size(this_order) < rq_size)
1779                                 break;
1780                 } while (1);
1781
1782                 if (!page)
1783                         goto fail;
1784
1785                 page->private = this_order;
1786                 list_add_tail(&page->lru, &tags->page_list);
1787
1788                 p = page_address(page);
1789                 /*
1790                  * Allow kmemleak to scan these pages as they contain pointers
1791                  * to additional allocations like via ops->init_request().
1792                  */
1793                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1794                 entries_per_page = order_to_size(this_order) / rq_size;
1795                 to_do = min(entries_per_page, depth - i);
1796                 left -= to_do * rq_size;
1797                 for (j = 0; j < to_do; j++) {
1798                         struct request *rq = p;
1799
1800                         tags->static_rqs[i] = rq;
1801                         if (set->ops->init_request) {
1802                                 if (set->ops->init_request(set, rq, hctx_idx,
1803                                                 node)) {
1804                                         tags->static_rqs[i] = NULL;
1805                                         goto fail;
1806                                 }
1807                         }
1808
1809                         p += rq_size;
1810                         i++;
1811                 }
1812         }
1813         return 0;
1814
1815 fail:
1816         blk_mq_free_rqs(set, tags, hctx_idx);
1817         return -ENOMEM;
1818 }
1819
1820 /*
1821  * 'cpu' is going away. splice any existing rq_list entries from this
1822  * software queue to the hw queue dispatch list, and ensure that it
1823  * gets run.
1824  */
1825 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1826 {
1827         struct blk_mq_hw_ctx *hctx;
1828         struct blk_mq_ctx *ctx;
1829         LIST_HEAD(tmp);
1830
1831         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1832         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1833
1834         spin_lock(&ctx->lock);
1835         if (!list_empty(&ctx->rq_list)) {
1836                 list_splice_init(&ctx->rq_list, &tmp);
1837                 blk_mq_hctx_clear_pending(hctx, ctx);
1838         }
1839         spin_unlock(&ctx->lock);
1840
1841         if (list_empty(&tmp))
1842                 return 0;
1843
1844         spin_lock(&hctx->lock);
1845         list_splice_tail_init(&tmp, &hctx->dispatch);
1846         spin_unlock(&hctx->lock);
1847
1848         blk_mq_run_hw_queue(hctx, true);
1849         return 0;
1850 }
1851
1852 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1853 {
1854         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1855                                             &hctx->cpuhp_dead);
1856 }
1857
1858 /* hctx->ctxs will be freed in queue's release handler */
1859 static void blk_mq_exit_hctx(struct request_queue *q,
1860                 struct blk_mq_tag_set *set,
1861                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1862 {
1863         blk_mq_debugfs_unregister_hctx(hctx);
1864
1865         blk_mq_tag_idle(hctx);
1866
1867         if (set->ops->exit_request)
1868                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1869
1870         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1871
1872         if (set->ops->exit_hctx)
1873                 set->ops->exit_hctx(hctx, hctx_idx);
1874
1875         if (hctx->flags & BLK_MQ_F_BLOCKING)
1876                 cleanup_srcu_struct(hctx->queue_rq_srcu);
1877
1878         blk_mq_remove_cpuhp(hctx);
1879         blk_free_flush_queue(hctx->fq);
1880         sbitmap_free(&hctx->ctx_map);
1881 }
1882
1883 static void blk_mq_exit_hw_queues(struct request_queue *q,
1884                 struct blk_mq_tag_set *set, int nr_queue)
1885 {
1886         struct blk_mq_hw_ctx *hctx;
1887         unsigned int i;
1888
1889         queue_for_each_hw_ctx(q, hctx, i) {
1890                 if (i == nr_queue)
1891                         break;
1892                 blk_mq_exit_hctx(q, set, hctx, i);
1893         }
1894 }
1895
1896 static int blk_mq_init_hctx(struct request_queue *q,
1897                 struct blk_mq_tag_set *set,
1898                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1899 {
1900         int node;
1901
1902         node = hctx->numa_node;
1903         if (node == NUMA_NO_NODE)
1904                 node = hctx->numa_node = set->numa_node;
1905
1906         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1907         spin_lock_init(&hctx->lock);
1908         INIT_LIST_HEAD(&hctx->dispatch);
1909         hctx->queue = q;
1910         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1911
1912         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1913
1914         hctx->tags = set->tags[hctx_idx];
1915
1916         /*
1917          * Allocate space for all possible cpus to avoid allocation at
1918          * runtime
1919          */
1920         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1921                                         GFP_KERNEL, node);
1922         if (!hctx->ctxs)
1923                 goto unregister_cpu_notifier;
1924
1925         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1926                               node))
1927                 goto free_ctxs;
1928
1929         hctx->nr_ctx = 0;
1930
1931         if (set->ops->init_hctx &&
1932             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1933                 goto free_bitmap;
1934
1935         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1936                 goto exit_hctx;
1937
1938         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1939         if (!hctx->fq)
1940                 goto sched_exit_hctx;
1941
1942         if (set->ops->init_request &&
1943             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1944                                    node))
1945                 goto free_fq;
1946
1947         if (hctx->flags & BLK_MQ_F_BLOCKING)
1948                 init_srcu_struct(hctx->queue_rq_srcu);
1949
1950         blk_mq_debugfs_register_hctx(q, hctx);
1951
1952         return 0;
1953
1954  free_fq:
1955         kfree(hctx->fq);
1956  sched_exit_hctx:
1957         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1958  exit_hctx:
1959         if (set->ops->exit_hctx)
1960                 set->ops->exit_hctx(hctx, hctx_idx);
1961  free_bitmap:
1962         sbitmap_free(&hctx->ctx_map);
1963  free_ctxs:
1964         kfree(hctx->ctxs);
1965  unregister_cpu_notifier:
1966         blk_mq_remove_cpuhp(hctx);
1967         return -1;
1968 }
1969
1970 static void blk_mq_init_cpu_queues(struct request_queue *q,
1971                                    unsigned int nr_hw_queues)
1972 {
1973         unsigned int i;
1974
1975         for_each_possible_cpu(i) {
1976                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1977                 struct blk_mq_hw_ctx *hctx;
1978
1979                 __ctx->cpu = i;
1980                 spin_lock_init(&__ctx->lock);
1981                 INIT_LIST_HEAD(&__ctx->rq_list);
1982                 __ctx->queue = q;
1983
1984                 /* If the cpu isn't present, the cpu is mapped to first hctx */
1985                 if (!cpu_present(i))
1986                         continue;
1987
1988                 hctx = blk_mq_map_queue(q, i);
1989
1990                 /*
1991                  * Set local node, IFF we have more than one hw queue. If
1992                  * not, we remain on the home node of the device
1993                  */
1994                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1995                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1996         }
1997 }
1998
1999 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2000 {
2001         int ret = 0;
2002
2003         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2004                                         set->queue_depth, set->reserved_tags);
2005         if (!set->tags[hctx_idx])
2006                 return false;
2007
2008         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2009                                 set->queue_depth);
2010         if (!ret)
2011                 return true;
2012
2013         blk_mq_free_rq_map(set->tags[hctx_idx]);
2014         set->tags[hctx_idx] = NULL;
2015         return false;
2016 }
2017
2018 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2019                                          unsigned int hctx_idx)
2020 {
2021         if (set->tags[hctx_idx]) {
2022                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2023                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2024                 set->tags[hctx_idx] = NULL;
2025         }
2026 }
2027
2028 static void blk_mq_map_swqueue(struct request_queue *q)
2029 {
2030         unsigned int i, hctx_idx;
2031         struct blk_mq_hw_ctx *hctx;
2032         struct blk_mq_ctx *ctx;
2033         struct blk_mq_tag_set *set = q->tag_set;
2034
2035         /*
2036          * Avoid others reading imcomplete hctx->cpumask through sysfs
2037          */
2038         mutex_lock(&q->sysfs_lock);
2039
2040         queue_for_each_hw_ctx(q, hctx, i) {
2041                 cpumask_clear(hctx->cpumask);
2042                 hctx->nr_ctx = 0;
2043         }
2044
2045         /*
2046          * Map software to hardware queues.
2047          *
2048          * If the cpu isn't present, the cpu is mapped to first hctx.
2049          */
2050         for_each_present_cpu(i) {
2051                 hctx_idx = q->mq_map[i];
2052                 /* unmapped hw queue can be remapped after CPU topo changed */
2053                 if (!set->tags[hctx_idx] &&
2054                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2055                         /*
2056                          * If tags initialization fail for some hctx,
2057                          * that hctx won't be brought online.  In this
2058                          * case, remap the current ctx to hctx[0] which
2059                          * is guaranteed to always have tags allocated
2060                          */
2061                         q->mq_map[i] = 0;
2062                 }
2063
2064                 ctx = per_cpu_ptr(q->queue_ctx, i);
2065                 hctx = blk_mq_map_queue(q, i);
2066
2067                 cpumask_set_cpu(i, hctx->cpumask);
2068                 ctx->index_hw = hctx->nr_ctx;
2069                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2070         }
2071
2072         mutex_unlock(&q->sysfs_lock);
2073
2074         queue_for_each_hw_ctx(q, hctx, i) {
2075                 /*
2076                  * If no software queues are mapped to this hardware queue,
2077                  * disable it and free the request entries.
2078                  */
2079                 if (!hctx->nr_ctx) {
2080                         /* Never unmap queue 0.  We need it as a
2081                          * fallback in case of a new remap fails
2082                          * allocation
2083                          */
2084                         if (i && set->tags[i])
2085                                 blk_mq_free_map_and_requests(set, i);
2086
2087                         hctx->tags = NULL;
2088                         continue;
2089                 }
2090
2091                 hctx->tags = set->tags[i];
2092                 WARN_ON(!hctx->tags);
2093
2094                 /*
2095                  * Set the map size to the number of mapped software queues.
2096                  * This is more accurate and more efficient than looping
2097                  * over all possibly mapped software queues.
2098                  */
2099                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2100
2101                 /*
2102                  * Initialize batch roundrobin counts
2103                  */
2104                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2105                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2106         }
2107 }
2108
2109 /*
2110  * Caller needs to ensure that we're either frozen/quiesced, or that
2111  * the queue isn't live yet.
2112  */
2113 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2114 {
2115         struct blk_mq_hw_ctx *hctx;
2116         int i;
2117
2118         queue_for_each_hw_ctx(q, hctx, i) {
2119                 if (shared) {
2120                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2121                                 atomic_inc(&q->shared_hctx_restart);
2122                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2123                 } else {
2124                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2125                                 atomic_dec(&q->shared_hctx_restart);
2126                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2127                 }
2128         }
2129 }
2130
2131 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2132                                         bool shared)
2133 {
2134         struct request_queue *q;
2135
2136         lockdep_assert_held(&set->tag_list_lock);
2137
2138         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2139                 blk_mq_freeze_queue(q);
2140                 queue_set_hctx_shared(q, shared);
2141                 blk_mq_unfreeze_queue(q);
2142         }
2143 }
2144
2145 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2146 {
2147         struct blk_mq_tag_set *set = q->tag_set;
2148
2149         mutex_lock(&set->tag_list_lock);
2150         list_del_rcu(&q->tag_set_list);
2151         INIT_LIST_HEAD(&q->tag_set_list);
2152         if (list_is_singular(&set->tag_list)) {
2153                 /* just transitioned to unshared */
2154                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2155                 /* update existing queue */
2156                 blk_mq_update_tag_set_depth(set, false);
2157         }
2158         mutex_unlock(&set->tag_list_lock);
2159
2160         synchronize_rcu();
2161 }
2162
2163 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2164                                      struct request_queue *q)
2165 {
2166         q->tag_set = set;
2167
2168         mutex_lock(&set->tag_list_lock);
2169
2170         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2171         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2172                 set->flags |= BLK_MQ_F_TAG_SHARED;
2173                 /* update existing queue */
2174                 blk_mq_update_tag_set_depth(set, true);
2175         }
2176         if (set->flags & BLK_MQ_F_TAG_SHARED)
2177                 queue_set_hctx_shared(q, true);
2178         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2179
2180         mutex_unlock(&set->tag_list_lock);
2181 }
2182
2183 /*
2184  * It is the actual release handler for mq, but we do it from
2185  * request queue's release handler for avoiding use-after-free
2186  * and headache because q->mq_kobj shouldn't have been introduced,
2187  * but we can't group ctx/kctx kobj without it.
2188  */
2189 void blk_mq_release(struct request_queue *q)
2190 {
2191         struct blk_mq_hw_ctx *hctx;
2192         unsigned int i;
2193
2194         /* hctx kobj stays in hctx */
2195         queue_for_each_hw_ctx(q, hctx, i) {
2196                 if (!hctx)
2197                         continue;
2198                 kobject_put(&hctx->kobj);
2199         }
2200
2201         q->mq_map = NULL;
2202
2203         kfree(q->queue_hw_ctx);
2204
2205         /*
2206          * release .mq_kobj and sw queue's kobject now because
2207          * both share lifetime with request queue.
2208          */
2209         blk_mq_sysfs_deinit(q);
2210
2211         free_percpu(q->queue_ctx);
2212 }
2213
2214 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2215 {
2216         struct request_queue *uninit_q, *q;
2217
2218         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2219         if (!uninit_q)
2220                 return ERR_PTR(-ENOMEM);
2221
2222         q = blk_mq_init_allocated_queue(set, uninit_q);
2223         if (IS_ERR(q))
2224                 blk_cleanup_queue(uninit_q);
2225
2226         return q;
2227 }
2228 EXPORT_SYMBOL(blk_mq_init_queue);
2229
2230 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2231 {
2232         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2233
2234         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2235                            __alignof__(struct blk_mq_hw_ctx)) !=
2236                      sizeof(struct blk_mq_hw_ctx));
2237
2238         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2239                 hw_ctx_size += sizeof(struct srcu_struct);
2240
2241         return hw_ctx_size;
2242 }
2243
2244 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2245                                                 struct request_queue *q)
2246 {
2247         int i, j;
2248         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2249
2250         blk_mq_sysfs_unregister(q);
2251         for (i = 0; i < set->nr_hw_queues; i++) {
2252                 int node;
2253
2254                 if (hctxs[i])
2255                         continue;
2256
2257                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2258                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2259                                         GFP_KERNEL, node);
2260                 if (!hctxs[i])
2261                         break;
2262
2263                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2264                                                 node)) {
2265                         kfree(hctxs[i]);
2266                         hctxs[i] = NULL;
2267                         break;
2268                 }
2269
2270                 atomic_set(&hctxs[i]->nr_active, 0);
2271                 hctxs[i]->numa_node = node;
2272                 hctxs[i]->queue_num = i;
2273
2274                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2275                         free_cpumask_var(hctxs[i]->cpumask);
2276                         kfree(hctxs[i]);
2277                         hctxs[i] = NULL;
2278                         break;
2279                 }
2280                 blk_mq_hctx_kobj_init(hctxs[i]);
2281         }
2282         for (j = i; j < q->nr_hw_queues; j++) {
2283                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2284
2285                 if (hctx) {
2286                         if (hctx->tags)
2287                                 blk_mq_free_map_and_requests(set, j);
2288                         blk_mq_exit_hctx(q, set, hctx, j);
2289                         kobject_put(&hctx->kobj);
2290                         hctxs[j] = NULL;
2291
2292                 }
2293         }
2294         q->nr_hw_queues = i;
2295         blk_mq_sysfs_register(q);
2296 }
2297
2298 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2299                                                   struct request_queue *q)
2300 {
2301         /* mark the queue as mq asap */
2302         q->mq_ops = set->ops;
2303
2304         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2305                                              blk_mq_poll_stats_bkt,
2306                                              BLK_MQ_POLL_STATS_BKTS, q);
2307         if (!q->poll_cb)
2308                 goto err_exit;
2309
2310         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2311         if (!q->queue_ctx)
2312                 goto err_exit;
2313
2314         /* init q->mq_kobj and sw queues' kobjects */
2315         blk_mq_sysfs_init(q);
2316
2317         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2318                                                 GFP_KERNEL, set->numa_node);
2319         if (!q->queue_hw_ctx)
2320                 goto err_percpu;
2321
2322         q->mq_map = set->mq_map;
2323
2324         blk_mq_realloc_hw_ctxs(set, q);
2325         if (!q->nr_hw_queues)
2326                 goto err_hctxs;
2327
2328         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2329         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2330
2331         q->nr_queues = nr_cpu_ids;
2332
2333         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2334
2335         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2336                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2337
2338         q->sg_reserved_size = INT_MAX;
2339
2340         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2341         INIT_LIST_HEAD(&q->requeue_list);
2342         spin_lock_init(&q->requeue_lock);
2343
2344         blk_queue_make_request(q, blk_mq_make_request);
2345
2346         /*
2347          * Do this after blk_queue_make_request() overrides it...
2348          */
2349         q->nr_requests = set->queue_depth;
2350
2351         /*
2352          * Default to classic polling
2353          */
2354         q->poll_nsec = -1;
2355
2356         if (set->ops->complete)
2357                 blk_queue_softirq_done(q, set->ops->complete);
2358
2359         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2360         blk_mq_add_queue_tag_set(set, q);
2361         blk_mq_map_swqueue(q);
2362
2363         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2364                 int ret;
2365
2366                 ret = blk_mq_sched_init(q);
2367                 if (ret)
2368                         return ERR_PTR(ret);
2369         }
2370
2371         return q;
2372
2373 err_hctxs:
2374         kfree(q->queue_hw_ctx);
2375 err_percpu:
2376         free_percpu(q->queue_ctx);
2377 err_exit:
2378         q->mq_ops = NULL;
2379         return ERR_PTR(-ENOMEM);
2380 }
2381 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2382
2383 void blk_mq_free_queue(struct request_queue *q)
2384 {
2385         struct blk_mq_tag_set   *set = q->tag_set;
2386
2387         blk_mq_del_queue_tag_set(q);
2388         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2389 }
2390
2391 /* Basically redo blk_mq_init_queue with queue frozen */
2392 static void blk_mq_queue_reinit(struct request_queue *q)
2393 {
2394         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2395
2396         blk_mq_debugfs_unregister_hctxs(q);
2397         blk_mq_sysfs_unregister(q);
2398
2399         /*
2400          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2401          * we should change hctx numa_node according to new topology (this
2402          * involves free and re-allocate memory, worthy doing?)
2403          */
2404
2405         blk_mq_map_swqueue(q);
2406
2407         blk_mq_sysfs_register(q);
2408         blk_mq_debugfs_register_hctxs(q);
2409 }
2410
2411 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2412 {
2413         int i;
2414
2415         for (i = 0; i < set->nr_hw_queues; i++)
2416                 if (!__blk_mq_alloc_rq_map(set, i))
2417                         goto out_unwind;
2418
2419         return 0;
2420
2421 out_unwind:
2422         while (--i >= 0)
2423                 blk_mq_free_rq_map(set->tags[i]);
2424
2425         return -ENOMEM;
2426 }
2427
2428 /*
2429  * Allocate the request maps associated with this tag_set. Note that this
2430  * may reduce the depth asked for, if memory is tight. set->queue_depth
2431  * will be updated to reflect the allocated depth.
2432  */
2433 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2434 {
2435         unsigned int depth;
2436         int err;
2437
2438         depth = set->queue_depth;
2439         do {
2440                 err = __blk_mq_alloc_rq_maps(set);
2441                 if (!err)
2442                         break;
2443
2444                 set->queue_depth >>= 1;
2445                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2446                         err = -ENOMEM;
2447                         break;
2448                 }
2449         } while (set->queue_depth);
2450
2451         if (!set->queue_depth || err) {
2452                 pr_err("blk-mq: failed to allocate request map\n");
2453                 return -ENOMEM;
2454         }
2455
2456         if (depth != set->queue_depth)
2457                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2458                                                 depth, set->queue_depth);
2459
2460         return 0;
2461 }
2462
2463 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2464 {
2465         if (set->ops->map_queues)
2466                 return set->ops->map_queues(set);
2467         else
2468                 return blk_mq_map_queues(set);
2469 }
2470
2471 /*
2472  * Alloc a tag set to be associated with one or more request queues.
2473  * May fail with EINVAL for various error conditions. May adjust the
2474  * requested depth down, if if it too large. In that case, the set
2475  * value will be stored in set->queue_depth.
2476  */
2477 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2478 {
2479         int ret;
2480
2481         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2482
2483         if (!set->nr_hw_queues)
2484                 return -EINVAL;
2485         if (!set->queue_depth)
2486                 return -EINVAL;
2487         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2488                 return -EINVAL;
2489
2490         if (!set->ops->queue_rq)
2491                 return -EINVAL;
2492
2493         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2494                 pr_info("blk-mq: reduced tag depth to %u\n",
2495                         BLK_MQ_MAX_DEPTH);
2496                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2497         }
2498
2499         /*
2500          * If a crashdump is active, then we are potentially in a very
2501          * memory constrained environment. Limit us to 1 queue and
2502          * 64 tags to prevent using too much memory.
2503          */
2504         if (is_kdump_kernel()) {
2505                 set->nr_hw_queues = 1;
2506                 set->queue_depth = min(64U, set->queue_depth);
2507         }
2508         /*
2509          * There is no use for more h/w queues than cpus.
2510          */
2511         if (set->nr_hw_queues > nr_cpu_ids)
2512                 set->nr_hw_queues = nr_cpu_ids;
2513
2514         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2515                                  GFP_KERNEL, set->numa_node);
2516         if (!set->tags)
2517                 return -ENOMEM;
2518
2519         ret = -ENOMEM;
2520         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2521                         GFP_KERNEL, set->numa_node);
2522         if (!set->mq_map)
2523                 goto out_free_tags;
2524
2525         ret = blk_mq_update_queue_map(set);
2526         if (ret)
2527                 goto out_free_mq_map;
2528
2529         ret = blk_mq_alloc_rq_maps(set);
2530         if (ret)
2531                 goto out_free_mq_map;
2532
2533         mutex_init(&set->tag_list_lock);
2534         INIT_LIST_HEAD(&set->tag_list);
2535
2536         return 0;
2537
2538 out_free_mq_map:
2539         kfree(set->mq_map);
2540         set->mq_map = NULL;
2541 out_free_tags:
2542         kfree(set->tags);
2543         set->tags = NULL;
2544         return ret;
2545 }
2546 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2547
2548 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2549 {
2550         int i;
2551
2552         for (i = 0; i < nr_cpu_ids; i++)
2553                 blk_mq_free_map_and_requests(set, i);
2554
2555         kfree(set->mq_map);
2556         set->mq_map = NULL;
2557
2558         kfree(set->tags);
2559         set->tags = NULL;
2560 }
2561 EXPORT_SYMBOL(blk_mq_free_tag_set);
2562
2563 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2564 {
2565         struct blk_mq_tag_set *set = q->tag_set;
2566         struct blk_mq_hw_ctx *hctx;
2567         int i, ret;
2568
2569         if (!set)
2570                 return -EINVAL;
2571
2572         blk_mq_freeze_queue(q);
2573
2574         ret = 0;
2575         queue_for_each_hw_ctx(q, hctx, i) {
2576                 if (!hctx->tags)
2577                         continue;
2578                 /*
2579                  * If we're using an MQ scheduler, just update the scheduler
2580                  * queue depth. This is similar to what the old code would do.
2581                  */
2582                 if (!hctx->sched_tags) {
2583                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2584                                                         min(nr, set->queue_depth),
2585                                                         false);
2586                 } else {
2587                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2588                                                         nr, true);
2589                 }
2590                 if (ret)
2591                         break;
2592         }
2593
2594         if (!ret)
2595                 q->nr_requests = nr;
2596
2597         blk_mq_unfreeze_queue(q);
2598
2599         return ret;
2600 }
2601
2602 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2603                                                         int nr_hw_queues)
2604 {
2605         struct request_queue *q;
2606
2607         lockdep_assert_held(&set->tag_list_lock);
2608
2609         if (nr_hw_queues > nr_cpu_ids)
2610                 nr_hw_queues = nr_cpu_ids;
2611         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2612                 return;
2613
2614         list_for_each_entry(q, &set->tag_list, tag_set_list)
2615                 blk_mq_freeze_queue(q);
2616
2617         set->nr_hw_queues = nr_hw_queues;
2618         blk_mq_update_queue_map(set);
2619         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2620                 blk_mq_realloc_hw_ctxs(set, q);
2621                 blk_mq_queue_reinit(q);
2622         }
2623
2624         list_for_each_entry(q, &set->tag_list, tag_set_list)
2625                 blk_mq_unfreeze_queue(q);
2626 }
2627
2628 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2629 {
2630         mutex_lock(&set->tag_list_lock);
2631         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2632         mutex_unlock(&set->tag_list_lock);
2633 }
2634 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2635
2636 /* Enable polling stats and return whether they were already enabled. */
2637 static bool blk_poll_stats_enable(struct request_queue *q)
2638 {
2639         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2640             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2641                 return true;
2642         blk_stat_add_callback(q, q->poll_cb);
2643         return false;
2644 }
2645
2646 static void blk_mq_poll_stats_start(struct request_queue *q)
2647 {
2648         /*
2649          * We don't arm the callback if polling stats are not enabled or the
2650          * callback is already active.
2651          */
2652         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2653             blk_stat_is_active(q->poll_cb))
2654                 return;
2655
2656         blk_stat_activate_msecs(q->poll_cb, 100);
2657 }
2658
2659 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2660 {
2661         struct request_queue *q = cb->data;
2662         int bucket;
2663
2664         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2665                 if (cb->stat[bucket].nr_samples)
2666                         q->poll_stat[bucket] = cb->stat[bucket];
2667         }
2668 }
2669
2670 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2671                                        struct blk_mq_hw_ctx *hctx,
2672                                        struct request *rq)
2673 {
2674         unsigned long ret = 0;
2675         int bucket;
2676
2677         /*
2678          * If stats collection isn't on, don't sleep but turn it on for
2679          * future users
2680          */
2681         if (!blk_poll_stats_enable(q))
2682                 return 0;
2683
2684         /*
2685          * As an optimistic guess, use half of the mean service time
2686          * for this type of request. We can (and should) make this smarter.
2687          * For instance, if the completion latencies are tight, we can
2688          * get closer than just half the mean. This is especially
2689          * important on devices where the completion latencies are longer
2690          * than ~10 usec. We do use the stats for the relevant IO size
2691          * if available which does lead to better estimates.
2692          */
2693         bucket = blk_mq_poll_stats_bkt(rq);
2694         if (bucket < 0)
2695                 return ret;
2696
2697         if (q->poll_stat[bucket].nr_samples)
2698                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2699
2700         return ret;
2701 }
2702
2703 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2704                                      struct blk_mq_hw_ctx *hctx,
2705                                      struct request *rq)
2706 {
2707         struct hrtimer_sleeper hs;
2708         enum hrtimer_mode mode;
2709         unsigned int nsecs;
2710         ktime_t kt;
2711
2712         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2713                 return false;
2714
2715         /*
2716          * poll_nsec can be:
2717          *
2718          * -1:  don't ever hybrid sleep
2719          *  0:  use half of prev avg
2720          * >0:  use this specific value
2721          */
2722         if (q->poll_nsec == -1)
2723                 return false;
2724         else if (q->poll_nsec > 0)
2725                 nsecs = q->poll_nsec;
2726         else
2727                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2728
2729         if (!nsecs)
2730                 return false;
2731
2732         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2733
2734         /*
2735          * This will be replaced with the stats tracking code, using
2736          * 'avg_completion_time / 2' as the pre-sleep target.
2737          */
2738         kt = nsecs;
2739
2740         mode = HRTIMER_MODE_REL;
2741         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2742         hrtimer_set_expires(&hs.timer, kt);
2743
2744         hrtimer_init_sleeper(&hs, current);
2745         do {
2746                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2747                         break;
2748                 set_current_state(TASK_UNINTERRUPTIBLE);
2749                 hrtimer_start_expires(&hs.timer, mode);
2750                 if (hs.task)
2751                         io_schedule();
2752                 hrtimer_cancel(&hs.timer);
2753                 mode = HRTIMER_MODE_ABS;
2754         } while (hs.task && !signal_pending(current));
2755
2756         __set_current_state(TASK_RUNNING);
2757         destroy_hrtimer_on_stack(&hs.timer);
2758         return true;
2759 }
2760
2761 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2762 {
2763         struct request_queue *q = hctx->queue;
2764         long state;
2765
2766         /*
2767          * If we sleep, have the caller restart the poll loop to reset
2768          * the state. Like for the other success return cases, the
2769          * caller is responsible for checking if the IO completed. If
2770          * the IO isn't complete, we'll get called again and will go
2771          * straight to the busy poll loop.
2772          */
2773         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2774                 return true;
2775
2776         hctx->poll_considered++;
2777
2778         state = current->state;
2779         while (!need_resched()) {
2780                 int ret;
2781
2782                 hctx->poll_invoked++;
2783
2784                 ret = q->mq_ops->poll(hctx, rq->tag);
2785                 if (ret > 0) {
2786                         hctx->poll_success++;
2787                         set_current_state(TASK_RUNNING);
2788                         return true;
2789                 }
2790
2791                 if (signal_pending_state(state, current))
2792                         set_current_state(TASK_RUNNING);
2793
2794                 if (current->state == TASK_RUNNING)
2795                         return true;
2796                 if (ret < 0)
2797                         break;
2798                 cpu_relax();
2799         }
2800
2801         return false;
2802 }
2803
2804 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2805 {
2806         struct blk_mq_hw_ctx *hctx;
2807         struct blk_plug *plug;
2808         struct request *rq;
2809
2810         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2811             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2812                 return false;
2813
2814         plug = current->plug;
2815         if (plug)
2816                 blk_flush_plug_list(plug, false);
2817
2818         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2819         if (!blk_qc_t_is_internal(cookie))
2820                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2821         else {
2822                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2823                 /*
2824                  * With scheduling, if the request has completed, we'll
2825                  * get a NULL return here, as we clear the sched tag when
2826                  * that happens. The request still remains valid, like always,
2827                  * so we should be safe with just the NULL check.
2828                  */
2829                 if (!rq)
2830                         return false;
2831         }
2832
2833         return __blk_mq_poll(hctx, rq);
2834 }
2835 EXPORT_SYMBOL_GPL(blk_mq_poll);
2836
2837 static int __init blk_mq_init(void)
2838 {
2839         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2840                                 blk_mq_hctx_notify_dead);
2841         return 0;
2842 }
2843 subsys_initcall(blk_mq_init);