]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/base/dma-coherent.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / drivers / base / dma-coherent.c
1 /*
2  * Coherent per-device memory handling.
3  * Borrowed from i386
4  */
5 #include <linux/io.h>
6 #include <linux/slab.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/dma-mapping.h>
10
11 struct dma_coherent_mem {
12         void            *virt_base;
13         dma_addr_t      device_base;
14         unsigned long   pfn_base;
15         int             size;
16         int             flags;
17         unsigned long   *bitmap;
18         spinlock_t      spinlock;
19         bool            use_dev_dma_pfn_offset;
20 };
21
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26         if (dev && dev->dma_mem)
27                 return dev->dma_mem;
28         return NULL;
29 }
30
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32                                              struct dma_coherent_mem * mem)
33 {
34         if (mem->use_dev_dma_pfn_offset)
35                 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36         else
37                 return mem->device_base;
38 }
39
40 static bool dma_init_coherent_memory(
41         phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
42         struct dma_coherent_mem **mem)
43 {
44         struct dma_coherent_mem *dma_mem = NULL;
45         void __iomem *mem_base = NULL;
46         int pages = size >> PAGE_SHIFT;
47         int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48
49         if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
50                 goto out;
51         if (!size)
52                 goto out;
53
54         if (flags & DMA_MEMORY_MAP)
55                 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56         else
57                 mem_base = ioremap(phys_addr, size);
58         if (!mem_base)
59                 goto out;
60
61         dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
62         if (!dma_mem)
63                 goto out;
64         dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
65         if (!dma_mem->bitmap)
66                 goto out;
67
68         dma_mem->virt_base = mem_base;
69         dma_mem->device_base = device_addr;
70         dma_mem->pfn_base = PFN_DOWN(phys_addr);
71         dma_mem->size = pages;
72         dma_mem->flags = flags;
73         spin_lock_init(&dma_mem->spinlock);
74
75         *mem = dma_mem;
76         return true;
77
78 out:
79         kfree(dma_mem);
80         if (mem_base) {
81                 if (flags & DMA_MEMORY_MAP)
82                         memunmap(mem_base);
83                 else
84                         iounmap(mem_base);
85         }
86         return false;
87 }
88
89 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 {
91         if (!mem)
92                 return;
93
94         if (mem->flags & DMA_MEMORY_MAP)
95                 memunmap(mem->virt_base);
96         else
97                 iounmap(mem->virt_base);
98         kfree(mem->bitmap);
99         kfree(mem);
100 }
101
102 static int dma_assign_coherent_memory(struct device *dev,
103                                       struct dma_coherent_mem *mem)
104 {
105         if (!dev)
106                 return -ENODEV;
107
108         if (dev->dma_mem)
109                 return -EBUSY;
110
111         dev->dma_mem = mem;
112         /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
113
114         return 0;
115 }
116
117 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
118                                 dma_addr_t device_addr, size_t size, int flags)
119 {
120         struct dma_coherent_mem *mem;
121
122         if (!dma_init_coherent_memory(phys_addr, device_addr, size, flags,
123                                       &mem))
124                 return 0;
125
126         if (dma_assign_coherent_memory(dev, mem) == 0)
127                 return flags & DMA_MEMORY_MAP ? DMA_MEMORY_MAP : DMA_MEMORY_IO;
128
129         dma_release_coherent_memory(mem);
130         return 0;
131 }
132 EXPORT_SYMBOL(dma_declare_coherent_memory);
133
134 void dma_release_declared_memory(struct device *dev)
135 {
136         struct dma_coherent_mem *mem = dev->dma_mem;
137
138         if (!mem)
139                 return;
140         dma_release_coherent_memory(mem);
141         dev->dma_mem = NULL;
142 }
143 EXPORT_SYMBOL(dma_release_declared_memory);
144
145 void *dma_mark_declared_memory_occupied(struct device *dev,
146                                         dma_addr_t device_addr, size_t size)
147 {
148         struct dma_coherent_mem *mem = dev->dma_mem;
149         unsigned long flags;
150         int pos, err;
151
152         size += device_addr & ~PAGE_MASK;
153
154         if (!mem)
155                 return ERR_PTR(-EINVAL);
156
157         spin_lock_irqsave(&mem->spinlock, flags);
158         pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
159         err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
160         spin_unlock_irqrestore(&mem->spinlock, flags);
161
162         if (err != 0)
163                 return ERR_PTR(err);
164         return mem->virt_base + (pos << PAGE_SHIFT);
165 }
166 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
167
168 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
169                 ssize_t size, dma_addr_t *dma_handle)
170 {
171         int order = get_order(size);
172         unsigned long flags;
173         int pageno;
174         int dma_memory_map;
175         void *ret;
176
177         spin_lock_irqsave(&mem->spinlock, flags);
178
179         if (unlikely(size > (mem->size << PAGE_SHIFT)))
180                 goto err;
181
182         pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
183         if (unlikely(pageno < 0))
184                 goto err;
185
186         /*
187          * Memory was found in the coherent area.
188          */
189         *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
190         ret = mem->virt_base + (pageno << PAGE_SHIFT);
191         dma_memory_map = (mem->flags & DMA_MEMORY_MAP);
192         spin_unlock_irqrestore(&mem->spinlock, flags);
193         if (dma_memory_map)
194                 memset(ret, 0, size);
195         else
196                 memset_io(ret, 0, size);
197
198         return ret;
199
200 err:
201         spin_unlock_irqrestore(&mem->spinlock, flags);
202         return NULL;
203 }
204
205 /**
206  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
207  * @dev:        device from which we allocate memory
208  * @size:       size of requested memory area
209  * @dma_handle: This will be filled with the correct dma handle
210  * @ret:        This pointer will be filled with the virtual address
211  *              to allocated area.
212  *
213  * This function should be only called from per-arch dma_alloc_coherent()
214  * to support allocation from per-device coherent memory pools.
215  *
216  * Returns 0 if dma_alloc_coherent should continue with allocating from
217  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
218  */
219 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
220                 dma_addr_t *dma_handle, void **ret)
221 {
222         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
223
224         if (!mem)
225                 return 0;
226
227         *ret = __dma_alloc_from_coherent(mem, size, dma_handle);
228         if (*ret)
229                 return 1;
230
231         /*
232          * In the case where the allocation can not be satisfied from the
233          * per-device area, try to fall back to generic memory if the
234          * constraints allow it.
235          */
236         return mem->flags & DMA_MEMORY_EXCLUSIVE;
237 }
238 EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
239
240 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
241 {
242         if (!dma_coherent_default_memory)
243                 return NULL;
244
245         return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
246                         dma_handle);
247 }
248
249 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
250                                        int order, void *vaddr)
251 {
252         if (mem && vaddr >= mem->virt_base && vaddr <
253                    (mem->virt_base + (mem->size << PAGE_SHIFT))) {
254                 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
255                 unsigned long flags;
256
257                 spin_lock_irqsave(&mem->spinlock, flags);
258                 bitmap_release_region(mem->bitmap, page, order);
259                 spin_unlock_irqrestore(&mem->spinlock, flags);
260                 return 1;
261         }
262         return 0;
263 }
264
265 /**
266  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
267  * @dev:        device from which the memory was allocated
268  * @order:      the order of pages allocated
269  * @vaddr:      virtual address of allocated pages
270  *
271  * This checks whether the memory was allocated from the per-device
272  * coherent memory pool and if so, releases that memory.
273  *
274  * Returns 1 if we correctly released the memory, or 0 if the caller should
275  * proceed with releasing memory from generic pools.
276  */
277 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
278 {
279         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
280
281         return __dma_release_from_coherent(mem, order, vaddr);
282 }
283 EXPORT_SYMBOL(dma_release_from_dev_coherent);
284
285 int dma_release_from_global_coherent(int order, void *vaddr)
286 {
287         if (!dma_coherent_default_memory)
288                 return 0;
289
290         return __dma_release_from_coherent(dma_coherent_default_memory, order,
291                         vaddr);
292 }
293
294 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
295                 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
296 {
297         if (mem && vaddr >= mem->virt_base && vaddr + size <=
298                    (mem->virt_base + (mem->size << PAGE_SHIFT))) {
299                 unsigned long off = vma->vm_pgoff;
300                 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
301                 int user_count = vma_pages(vma);
302                 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
303
304                 *ret = -ENXIO;
305                 if (off < count && user_count <= count - off) {
306                         unsigned long pfn = mem->pfn_base + start + off;
307                         *ret = remap_pfn_range(vma, vma->vm_start, pfn,
308                                                user_count << PAGE_SHIFT,
309                                                vma->vm_page_prot);
310                 }
311                 return 1;
312         }
313         return 0;
314 }
315
316 /**
317  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
318  * @dev:        device from which the memory was allocated
319  * @vma:        vm_area for the userspace memory
320  * @vaddr:      cpu address returned by dma_alloc_from_dev_coherent
321  * @size:       size of the memory buffer allocated
322  * @ret:        result from remap_pfn_range()
323  *
324  * This checks whether the memory was allocated from the per-device
325  * coherent memory pool and if so, maps that memory to the provided vma.
326  *
327  * Returns 1 if we correctly mapped the memory, or 0 if the caller should
328  * proceed with mapping memory from generic pools.
329  */
330 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
331                            void *vaddr, size_t size, int *ret)
332 {
333         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
334
335         return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
336 }
337 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
338
339 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
340                                    size_t size, int *ret)
341 {
342         if (!dma_coherent_default_memory)
343                 return 0;
344
345         return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
346                                         vaddr, size, ret);
347 }
348
349 /*
350  * Support for reserved memory regions defined in device tree
351  */
352 #ifdef CONFIG_OF_RESERVED_MEM
353 #include <linux/of.h>
354 #include <linux/of_fdt.h>
355 #include <linux/of_reserved_mem.h>
356
357 static struct reserved_mem *dma_reserved_default_memory __initdata;
358
359 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
360 {
361         struct dma_coherent_mem *mem = rmem->priv;
362
363         if (!mem &&
364             !dma_init_coherent_memory(rmem->base, rmem->base, rmem->size,
365                                       DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE,
366                                       &mem)) {
367                 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
368                         &rmem->base, (unsigned long)rmem->size / SZ_1M);
369                 return -ENODEV;
370         }
371         mem->use_dev_dma_pfn_offset = true;
372         rmem->priv = mem;
373         dma_assign_coherent_memory(dev, mem);
374         return 0;
375 }
376
377 static void rmem_dma_device_release(struct reserved_mem *rmem,
378                                     struct device *dev)
379 {
380         if (dev)
381                 dev->dma_mem = NULL;
382 }
383
384 static const struct reserved_mem_ops rmem_dma_ops = {
385         .device_init    = rmem_dma_device_init,
386         .device_release = rmem_dma_device_release,
387 };
388
389 static int __init rmem_dma_setup(struct reserved_mem *rmem)
390 {
391         unsigned long node = rmem->fdt_node;
392
393         if (of_get_flat_dt_prop(node, "reusable", NULL))
394                 return -EINVAL;
395
396 #ifdef CONFIG_ARM
397         if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
398                 pr_err("Reserved memory: regions without no-map are not yet supported\n");
399                 return -EINVAL;
400         }
401
402         if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
403                 WARN(dma_reserved_default_memory,
404                      "Reserved memory: region for default DMA coherent area is redefined\n");
405                 dma_reserved_default_memory = rmem;
406         }
407 #endif
408
409         rmem->ops = &rmem_dma_ops;
410         pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
411                 &rmem->base, (unsigned long)rmem->size / SZ_1M);
412         return 0;
413 }
414
415 static int __init dma_init_reserved_memory(void)
416 {
417         const struct reserved_mem_ops *ops;
418         int ret;
419
420         if (!dma_reserved_default_memory)
421                 return -ENOMEM;
422
423         ops = dma_reserved_default_memory->ops;
424
425         /*
426          * We rely on rmem_dma_device_init() does not propagate error of
427          * dma_assign_coherent_memory() for "NULL" device.
428          */
429         ret = ops->device_init(dma_reserved_default_memory, NULL);
430
431         if (!ret) {
432                 dma_coherent_default_memory = dma_reserved_default_memory->priv;
433                 pr_info("DMA: default coherent area is set\n");
434         }
435
436         return ret;
437 }
438
439 core_initcall(dma_init_reserved_memory);
440
441 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
442 #endif