]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/drbd/drbd_main.c
Merge branch 'for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[karo-tx-linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <asm/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70               "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82  * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details;       /* Detail level in proc drbd*/
108
109 /* Module parameter for setting the user mode helper program
110  * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116  * as member "struct gendisk *vdisk;"
117  */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 struct mutex resources_mutex;
121
122 struct kmem_cache *drbd_request_cache;
123 struct kmem_cache *drbd_ee_cache;       /* peer requests */
124 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
125 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
126 mempool_t *drbd_request_mempool;
127 mempool_t *drbd_ee_mempool;
128 mempool_t *drbd_md_io_page_pool;
129 struct bio_set *drbd_md_io_bio_set;
130
131 /* I do not use a standard mempool, because:
132    1) I want to hand out the pre-allocated objects first.
133    2) I want to be able to interrupt sleeping allocation with a signal.
134    Note: This is a single linked list, the next pointer is the private
135          member of struct page.
136  */
137 struct page *drbd_pp_pool;
138 spinlock_t   drbd_pp_lock;
139 int          drbd_pp_vacant;
140 wait_queue_head_t drbd_pp_wait;
141
142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
143
144 static const struct block_device_operations drbd_ops = {
145         .owner =   THIS_MODULE,
146         .open =    drbd_open,
147         .release = drbd_release,
148 };
149
150 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
151 {
152         struct bio *bio;
153
154         if (!drbd_md_io_bio_set)
155                 return bio_alloc(gfp_mask, 1);
156
157         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
158         if (!bio)
159                 return NULL;
160         return bio;
161 }
162
163 #ifdef __CHECKER__
164 /* When checking with sparse, and this is an inline function, sparse will
165    give tons of false positives. When this is a real functions sparse works.
166  */
167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
168 {
169         int io_allowed;
170
171         atomic_inc(&device->local_cnt);
172         io_allowed = (device->state.disk >= mins);
173         if (!io_allowed) {
174                 if (atomic_dec_and_test(&device->local_cnt))
175                         wake_up(&device->misc_wait);
176         }
177         return io_allowed;
178 }
179
180 #endif
181
182 /**
183  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
184  * @connection: DRBD connection.
185  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
186  * @set_size:   Expected number of requests before that barrier.
187  *
188  * In case the passed barrier_nr or set_size does not match the oldest
189  * epoch of not yet barrier-acked requests, this function will cause a
190  * termination of the connection.
191  */
192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
193                 unsigned int set_size)
194 {
195         struct drbd_request *r;
196         struct drbd_request *req = NULL;
197         int expect_epoch = 0;
198         int expect_size = 0;
199
200         spin_lock_irq(&connection->resource->req_lock);
201
202         /* find oldest not yet barrier-acked write request,
203          * count writes in its epoch. */
204         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
205                 const unsigned s = r->rq_state;
206                 if (!req) {
207                         if (!(s & RQ_WRITE))
208                                 continue;
209                         if (!(s & RQ_NET_MASK))
210                                 continue;
211                         if (s & RQ_NET_DONE)
212                                 continue;
213                         req = r;
214                         expect_epoch = req->epoch;
215                         expect_size ++;
216                 } else {
217                         if (r->epoch != expect_epoch)
218                                 break;
219                         if (!(s & RQ_WRITE))
220                                 continue;
221                         /* if (s & RQ_DONE): not expected */
222                         /* if (!(s & RQ_NET_MASK)): not expected */
223                         expect_size++;
224                 }
225         }
226
227         /* first some paranoia code */
228         if (req == NULL) {
229                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
230                          barrier_nr);
231                 goto bail;
232         }
233         if (expect_epoch != barrier_nr) {
234                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
235                          barrier_nr, expect_epoch);
236                 goto bail;
237         }
238
239         if (expect_size != set_size) {
240                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
241                          barrier_nr, set_size, expect_size);
242                 goto bail;
243         }
244
245         /* Clean up list of requests processed during current epoch. */
246         /* this extra list walk restart is paranoia,
247          * to catch requests being barrier-acked "unexpectedly".
248          * It usually should find the same req again, or some READ preceding it. */
249         list_for_each_entry(req, &connection->transfer_log, tl_requests)
250                 if (req->epoch == expect_epoch)
251                         break;
252         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
253                 if (req->epoch != expect_epoch)
254                         break;
255                 _req_mod(req, BARRIER_ACKED);
256         }
257         spin_unlock_irq(&connection->resource->req_lock);
258
259         return;
260
261 bail:
262         spin_unlock_irq(&connection->resource->req_lock);
263         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
264 }
265
266
267 /**
268  * _tl_restart() - Walks the transfer log, and applies an action to all requests
269  * @connection: DRBD connection to operate on.
270  * @what:       The action/event to perform with all request objects
271  *
272  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
273  * RESTART_FROZEN_DISK_IO.
274  */
275 /* must hold resource->req_lock */
276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
277 {
278         struct drbd_request *req, *r;
279
280         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
281                 _req_mod(req, what);
282 }
283
284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
285 {
286         spin_lock_irq(&connection->resource->req_lock);
287         _tl_restart(connection, what);
288         spin_unlock_irq(&connection->resource->req_lock);
289 }
290
291 /**
292  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
293  * @device:     DRBD device.
294  *
295  * This is called after the connection to the peer was lost. The storage covered
296  * by the requests on the transfer gets marked as our of sync. Called from the
297  * receiver thread and the worker thread.
298  */
299 void tl_clear(struct drbd_connection *connection)
300 {
301         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
302 }
303
304 /**
305  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
306  * @device:     DRBD device.
307  */
308 void tl_abort_disk_io(struct drbd_device *device)
309 {
310         struct drbd_connection *connection = first_peer_device(device)->connection;
311         struct drbd_request *req, *r;
312
313         spin_lock_irq(&connection->resource->req_lock);
314         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
315                 if (!(req->rq_state & RQ_LOCAL_PENDING))
316                         continue;
317                 if (req->device != device)
318                         continue;
319                 _req_mod(req, ABORT_DISK_IO);
320         }
321         spin_unlock_irq(&connection->resource->req_lock);
322 }
323
324 static int drbd_thread_setup(void *arg)
325 {
326         struct drbd_thread *thi = (struct drbd_thread *) arg;
327         struct drbd_resource *resource = thi->resource;
328         unsigned long flags;
329         int retval;
330
331         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
332                  thi->name[0],
333                  resource->name);
334
335 restart:
336         retval = thi->function(thi);
337
338         spin_lock_irqsave(&thi->t_lock, flags);
339
340         /* if the receiver has been "EXITING", the last thing it did
341          * was set the conn state to "StandAlone",
342          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
343          * and receiver thread will be "started".
344          * drbd_thread_start needs to set "RESTARTING" in that case.
345          * t_state check and assignment needs to be within the same spinlock,
346          * so either thread_start sees EXITING, and can remap to RESTARTING,
347          * or thread_start see NONE, and can proceed as normal.
348          */
349
350         if (thi->t_state == RESTARTING) {
351                 drbd_info(resource, "Restarting %s thread\n", thi->name);
352                 thi->t_state = RUNNING;
353                 spin_unlock_irqrestore(&thi->t_lock, flags);
354                 goto restart;
355         }
356
357         thi->task = NULL;
358         thi->t_state = NONE;
359         smp_mb();
360         complete_all(&thi->stop);
361         spin_unlock_irqrestore(&thi->t_lock, flags);
362
363         drbd_info(resource, "Terminating %s\n", current->comm);
364
365         /* Release mod reference taken when thread was started */
366
367         if (thi->connection)
368                 kref_put(&thi->connection->kref, drbd_destroy_connection);
369         kref_put(&resource->kref, drbd_destroy_resource);
370         module_put(THIS_MODULE);
371         return retval;
372 }
373
374 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
375                              int (*func) (struct drbd_thread *), const char *name)
376 {
377         spin_lock_init(&thi->t_lock);
378         thi->task    = NULL;
379         thi->t_state = NONE;
380         thi->function = func;
381         thi->resource = resource;
382         thi->connection = NULL;
383         thi->name = name;
384 }
385
386 int drbd_thread_start(struct drbd_thread *thi)
387 {
388         struct drbd_resource *resource = thi->resource;
389         struct task_struct *nt;
390         unsigned long flags;
391
392         /* is used from state engine doing drbd_thread_stop_nowait,
393          * while holding the req lock irqsave */
394         spin_lock_irqsave(&thi->t_lock, flags);
395
396         switch (thi->t_state) {
397         case NONE:
398                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
399                          thi->name, current->comm, current->pid);
400
401                 /* Get ref on module for thread - this is released when thread exits */
402                 if (!try_module_get(THIS_MODULE)) {
403                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
404                         spin_unlock_irqrestore(&thi->t_lock, flags);
405                         return false;
406                 }
407
408                 kref_get(&resource->kref);
409                 if (thi->connection)
410                         kref_get(&thi->connection->kref);
411
412                 init_completion(&thi->stop);
413                 thi->reset_cpu_mask = 1;
414                 thi->t_state = RUNNING;
415                 spin_unlock_irqrestore(&thi->t_lock, flags);
416                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
417
418                 nt = kthread_create(drbd_thread_setup, (void *) thi,
419                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
420
421                 if (IS_ERR(nt)) {
422                         drbd_err(resource, "Couldn't start thread\n");
423
424                         if (thi->connection)
425                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
426                         kref_put(&resource->kref, drbd_destroy_resource);
427                         module_put(THIS_MODULE);
428                         return false;
429                 }
430                 spin_lock_irqsave(&thi->t_lock, flags);
431                 thi->task = nt;
432                 thi->t_state = RUNNING;
433                 spin_unlock_irqrestore(&thi->t_lock, flags);
434                 wake_up_process(nt);
435                 break;
436         case EXITING:
437                 thi->t_state = RESTARTING;
438                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
439                                 thi->name, current->comm, current->pid);
440                 /* fall through */
441         case RUNNING:
442         case RESTARTING:
443         default:
444                 spin_unlock_irqrestore(&thi->t_lock, flags);
445                 break;
446         }
447
448         return true;
449 }
450
451
452 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
453 {
454         unsigned long flags;
455
456         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
457
458         /* may be called from state engine, holding the req lock irqsave */
459         spin_lock_irqsave(&thi->t_lock, flags);
460
461         if (thi->t_state == NONE) {
462                 spin_unlock_irqrestore(&thi->t_lock, flags);
463                 if (restart)
464                         drbd_thread_start(thi);
465                 return;
466         }
467
468         if (thi->t_state != ns) {
469                 if (thi->task == NULL) {
470                         spin_unlock_irqrestore(&thi->t_lock, flags);
471                         return;
472                 }
473
474                 thi->t_state = ns;
475                 smp_mb();
476                 init_completion(&thi->stop);
477                 if (thi->task != current)
478                         force_sig(DRBD_SIGKILL, thi->task);
479         }
480
481         spin_unlock_irqrestore(&thi->t_lock, flags);
482
483         if (wait)
484                 wait_for_completion(&thi->stop);
485 }
486
487 int conn_lowest_minor(struct drbd_connection *connection)
488 {
489         struct drbd_peer_device *peer_device;
490         int vnr = 0, minor = -1;
491
492         rcu_read_lock();
493         peer_device = idr_get_next(&connection->peer_devices, &vnr);
494         if (peer_device)
495                 minor = device_to_minor(peer_device->device);
496         rcu_read_unlock();
497
498         return minor;
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
504  *
505  * Forces all threads of a resource onto the same CPU. This is beneficial for
506  * DRBD's performance. May be overwritten by user's configuration.
507  */
508 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
509 {
510         unsigned int *resources_per_cpu, min_index = ~0;
511
512         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
513         if (resources_per_cpu) {
514                 struct drbd_resource *resource;
515                 unsigned int cpu, min = ~0;
516
517                 rcu_read_lock();
518                 for_each_resource_rcu(resource, &drbd_resources) {
519                         for_each_cpu(cpu, resource->cpu_mask)
520                                 resources_per_cpu[cpu]++;
521                 }
522                 rcu_read_unlock();
523                 for_each_online_cpu(cpu) {
524                         if (resources_per_cpu[cpu] < min) {
525                                 min = resources_per_cpu[cpu];
526                                 min_index = cpu;
527                         }
528                 }
529                 kfree(resources_per_cpu);
530         }
531         if (min_index == ~0) {
532                 cpumask_setall(*cpu_mask);
533                 return;
534         }
535         cpumask_set_cpu(min_index, *cpu_mask);
536 }
537
538 /**
539  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
540  * @device:     DRBD device.
541  * @thi:        drbd_thread object
542  *
543  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
544  * prematurely.
545  */
546 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
547 {
548         struct drbd_resource *resource = thi->resource;
549         struct task_struct *p = current;
550
551         if (!thi->reset_cpu_mask)
552                 return;
553         thi->reset_cpu_mask = 0;
554         set_cpus_allowed_ptr(p, resource->cpu_mask);
555 }
556 #else
557 #define drbd_calc_cpu_mask(A) ({})
558 #endif
559
560 /**
561  * drbd_header_size  -  size of a packet header
562  *
563  * The header size is a multiple of 8, so any payload following the header is
564  * word aligned on 64-bit architectures.  (The bitmap send and receive code
565  * relies on this.)
566  */
567 unsigned int drbd_header_size(struct drbd_connection *connection)
568 {
569         if (connection->agreed_pro_version >= 100) {
570                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
571                 return sizeof(struct p_header100);
572         } else {
573                 BUILD_BUG_ON(sizeof(struct p_header80) !=
574                              sizeof(struct p_header95));
575                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
576                 return sizeof(struct p_header80);
577         }
578 }
579
580 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
581 {
582         h->magic   = cpu_to_be32(DRBD_MAGIC);
583         h->command = cpu_to_be16(cmd);
584         h->length  = cpu_to_be16(size);
585         return sizeof(struct p_header80);
586 }
587
588 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
589 {
590         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
591         h->command = cpu_to_be16(cmd);
592         h->length = cpu_to_be32(size);
593         return sizeof(struct p_header95);
594 }
595
596 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
597                                       int size, int vnr)
598 {
599         h->magic = cpu_to_be32(DRBD_MAGIC_100);
600         h->volume = cpu_to_be16(vnr);
601         h->command = cpu_to_be16(cmd);
602         h->length = cpu_to_be32(size);
603         h->pad = 0;
604         return sizeof(struct p_header100);
605 }
606
607 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
608                                    void *buffer, enum drbd_packet cmd, int size)
609 {
610         if (connection->agreed_pro_version >= 100)
611                 return prepare_header100(buffer, cmd, size, vnr);
612         else if (connection->agreed_pro_version >= 95 &&
613                  size > DRBD_MAX_SIZE_H80_PACKET)
614                 return prepare_header95(buffer, cmd, size);
615         else
616                 return prepare_header80(buffer, cmd, size);
617 }
618
619 static void *__conn_prepare_command(struct drbd_connection *connection,
620                                     struct drbd_socket *sock)
621 {
622         if (!sock->socket)
623                 return NULL;
624         return sock->sbuf + drbd_header_size(connection);
625 }
626
627 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
628 {
629         void *p;
630
631         mutex_lock(&sock->mutex);
632         p = __conn_prepare_command(connection, sock);
633         if (!p)
634                 mutex_unlock(&sock->mutex);
635
636         return p;
637 }
638
639 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
640 {
641         return conn_prepare_command(peer_device->connection, sock);
642 }
643
644 static int __send_command(struct drbd_connection *connection, int vnr,
645                           struct drbd_socket *sock, enum drbd_packet cmd,
646                           unsigned int header_size, void *data,
647                           unsigned int size)
648 {
649         int msg_flags;
650         int err;
651
652         /*
653          * Called with @data == NULL and the size of the data blocks in @size
654          * for commands that send data blocks.  For those commands, omit the
655          * MSG_MORE flag: this will increase the likelihood that data blocks
656          * which are page aligned on the sender will end up page aligned on the
657          * receiver.
658          */
659         msg_flags = data ? MSG_MORE : 0;
660
661         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
662                                       header_size + size);
663         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
664                             msg_flags);
665         if (data && !err)
666                 err = drbd_send_all(connection, sock->socket, data, size, 0);
667         /* DRBD protocol "pings" are latency critical.
668          * This is supposed to trigger tcp_push_pending_frames() */
669         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
670                 drbd_tcp_nodelay(sock->socket);
671
672         return err;
673 }
674
675 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
676                                enum drbd_packet cmd, unsigned int header_size,
677                                void *data, unsigned int size)
678 {
679         return __send_command(connection, 0, sock, cmd, header_size, data, size);
680 }
681
682 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
683                       enum drbd_packet cmd, unsigned int header_size,
684                       void *data, unsigned int size)
685 {
686         int err;
687
688         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
689         mutex_unlock(&sock->mutex);
690         return err;
691 }
692
693 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
694                       enum drbd_packet cmd, unsigned int header_size,
695                       void *data, unsigned int size)
696 {
697         int err;
698
699         err = __send_command(peer_device->connection, peer_device->device->vnr,
700                              sock, cmd, header_size, data, size);
701         mutex_unlock(&sock->mutex);
702         return err;
703 }
704
705 int drbd_send_ping(struct drbd_connection *connection)
706 {
707         struct drbd_socket *sock;
708
709         sock = &connection->meta;
710         if (!conn_prepare_command(connection, sock))
711                 return -EIO;
712         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
713 }
714
715 int drbd_send_ping_ack(struct drbd_connection *connection)
716 {
717         struct drbd_socket *sock;
718
719         sock = &connection->meta;
720         if (!conn_prepare_command(connection, sock))
721                 return -EIO;
722         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
723 }
724
725 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
726 {
727         struct drbd_socket *sock;
728         struct p_rs_param_95 *p;
729         int size;
730         const int apv = peer_device->connection->agreed_pro_version;
731         enum drbd_packet cmd;
732         struct net_conf *nc;
733         struct disk_conf *dc;
734
735         sock = &peer_device->connection->data;
736         p = drbd_prepare_command(peer_device, sock);
737         if (!p)
738                 return -EIO;
739
740         rcu_read_lock();
741         nc = rcu_dereference(peer_device->connection->net_conf);
742
743         size = apv <= 87 ? sizeof(struct p_rs_param)
744                 : apv == 88 ? sizeof(struct p_rs_param)
745                         + strlen(nc->verify_alg) + 1
746                 : apv <= 94 ? sizeof(struct p_rs_param_89)
747                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
748
749         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
750
751         /* initialize verify_alg and csums_alg */
752         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
753
754         if (get_ldev(peer_device->device)) {
755                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
756                 p->resync_rate = cpu_to_be32(dc->resync_rate);
757                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
758                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
759                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
760                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
761                 put_ldev(peer_device->device);
762         } else {
763                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
764                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
765                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
766                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
767                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
768         }
769
770         if (apv >= 88)
771                 strcpy(p->verify_alg, nc->verify_alg);
772         if (apv >= 89)
773                 strcpy(p->csums_alg, nc->csums_alg);
774         rcu_read_unlock();
775
776         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
777 }
778
779 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
780 {
781         struct drbd_socket *sock;
782         struct p_protocol *p;
783         struct net_conf *nc;
784         int size, cf;
785
786         sock = &connection->data;
787         p = __conn_prepare_command(connection, sock);
788         if (!p)
789                 return -EIO;
790
791         rcu_read_lock();
792         nc = rcu_dereference(connection->net_conf);
793
794         if (nc->tentative && connection->agreed_pro_version < 92) {
795                 rcu_read_unlock();
796                 mutex_unlock(&sock->mutex);
797                 drbd_err(connection, "--dry-run is not supported by peer");
798                 return -EOPNOTSUPP;
799         }
800
801         size = sizeof(*p);
802         if (connection->agreed_pro_version >= 87)
803                 size += strlen(nc->integrity_alg) + 1;
804
805         p->protocol      = cpu_to_be32(nc->wire_protocol);
806         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
807         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
808         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
809         p->two_primaries = cpu_to_be32(nc->two_primaries);
810         cf = 0;
811         if (nc->discard_my_data)
812                 cf |= CF_DISCARD_MY_DATA;
813         if (nc->tentative)
814                 cf |= CF_DRY_RUN;
815         p->conn_flags    = cpu_to_be32(cf);
816
817         if (connection->agreed_pro_version >= 87)
818                 strcpy(p->integrity_alg, nc->integrity_alg);
819         rcu_read_unlock();
820
821         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
822 }
823
824 int drbd_send_protocol(struct drbd_connection *connection)
825 {
826         int err;
827
828         mutex_lock(&connection->data.mutex);
829         err = __drbd_send_protocol(connection, P_PROTOCOL);
830         mutex_unlock(&connection->data.mutex);
831
832         return err;
833 }
834
835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
836 {
837         struct drbd_device *device = peer_device->device;
838         struct drbd_socket *sock;
839         struct p_uuids *p;
840         int i;
841
842         if (!get_ldev_if_state(device, D_NEGOTIATING))
843                 return 0;
844
845         sock = &peer_device->connection->data;
846         p = drbd_prepare_command(peer_device, sock);
847         if (!p) {
848                 put_ldev(device);
849                 return -EIO;
850         }
851         spin_lock_irq(&device->ldev->md.uuid_lock);
852         for (i = UI_CURRENT; i < UI_SIZE; i++)
853                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
854         spin_unlock_irq(&device->ldev->md.uuid_lock);
855
856         device->comm_bm_set = drbd_bm_total_weight(device);
857         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
858         rcu_read_lock();
859         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
860         rcu_read_unlock();
861         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
862         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
863         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
864
865         put_ldev(device);
866         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
867 }
868
869 int drbd_send_uuids(struct drbd_peer_device *peer_device)
870 {
871         return _drbd_send_uuids(peer_device, 0);
872 }
873
874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
875 {
876         return _drbd_send_uuids(peer_device, 8);
877 }
878
879 void drbd_print_uuids(struct drbd_device *device, const char *text)
880 {
881         if (get_ldev_if_state(device, D_NEGOTIATING)) {
882                 u64 *uuid = device->ldev->md.uuid;
883                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
884                      text,
885                      (unsigned long long)uuid[UI_CURRENT],
886                      (unsigned long long)uuid[UI_BITMAP],
887                      (unsigned long long)uuid[UI_HISTORY_START],
888                      (unsigned long long)uuid[UI_HISTORY_END]);
889                 put_ldev(device);
890         } else {
891                 drbd_info(device, "%s effective data uuid: %016llX\n",
892                                 text,
893                                 (unsigned long long)device->ed_uuid);
894         }
895 }
896
897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
898 {
899         struct drbd_device *device = peer_device->device;
900         struct drbd_socket *sock;
901         struct p_rs_uuid *p;
902         u64 uuid;
903
904         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
905
906         uuid = device->ldev->md.uuid[UI_BITMAP];
907         if (uuid && uuid != UUID_JUST_CREATED)
908                 uuid = uuid + UUID_NEW_BM_OFFSET;
909         else
910                 get_random_bytes(&uuid, sizeof(u64));
911         drbd_uuid_set(device, UI_BITMAP, uuid);
912         drbd_print_uuids(device, "updated sync UUID");
913         drbd_md_sync(device);
914
915         sock = &peer_device->connection->data;
916         p = drbd_prepare_command(peer_device, sock);
917         if (p) {
918                 p->uuid = cpu_to_be64(uuid);
919                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
920         }
921 }
922
923 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
924 {
925         struct drbd_device *device = peer_device->device;
926         struct drbd_socket *sock;
927         struct p_sizes *p;
928         sector_t d_size, u_size;
929         int q_order_type;
930         unsigned int max_bio_size;
931
932         if (get_ldev_if_state(device, D_NEGOTIATING)) {
933                 D_ASSERT(device, device->ldev->backing_bdev);
934                 d_size = drbd_get_max_capacity(device->ldev);
935                 rcu_read_lock();
936                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
937                 rcu_read_unlock();
938                 q_order_type = drbd_queue_order_type(device);
939                 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
940                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
941                 put_ldev(device);
942         } else {
943                 d_size = 0;
944                 u_size = 0;
945                 q_order_type = QUEUE_ORDERED_NONE;
946                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
947         }
948
949         sock = &peer_device->connection->data;
950         p = drbd_prepare_command(peer_device, sock);
951         if (!p)
952                 return -EIO;
953
954         if (peer_device->connection->agreed_pro_version <= 94)
955                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
956         else if (peer_device->connection->agreed_pro_version < 100)
957                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
958
959         p->d_size = cpu_to_be64(d_size);
960         p->u_size = cpu_to_be64(u_size);
961         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
962         p->max_bio_size = cpu_to_be32(max_bio_size);
963         p->queue_order_type = cpu_to_be16(q_order_type);
964         p->dds_flags = cpu_to_be16(flags);
965         return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
966 }
967
968 /**
969  * drbd_send_current_state() - Sends the drbd state to the peer
970  * @peer_device:        DRBD peer device.
971  */
972 int drbd_send_current_state(struct drbd_peer_device *peer_device)
973 {
974         struct drbd_socket *sock;
975         struct p_state *p;
976
977         sock = &peer_device->connection->data;
978         p = drbd_prepare_command(peer_device, sock);
979         if (!p)
980                 return -EIO;
981         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
982         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
983 }
984
985 /**
986  * drbd_send_state() - After a state change, sends the new state to the peer
987  * @peer_device:      DRBD peer device.
988  * @state:     the state to send, not necessarily the current state.
989  *
990  * Each state change queues an "after_state_ch" work, which will eventually
991  * send the resulting new state to the peer. If more state changes happen
992  * between queuing and processing of the after_state_ch work, we still
993  * want to send each intermediary state in the order it occurred.
994  */
995 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
996 {
997         struct drbd_socket *sock;
998         struct p_state *p;
999
1000         sock = &peer_device->connection->data;
1001         p = drbd_prepare_command(peer_device, sock);
1002         if (!p)
1003                 return -EIO;
1004         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1005         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1006 }
1007
1008 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1009 {
1010         struct drbd_socket *sock;
1011         struct p_req_state *p;
1012
1013         sock = &peer_device->connection->data;
1014         p = drbd_prepare_command(peer_device, sock);
1015         if (!p)
1016                 return -EIO;
1017         p->mask = cpu_to_be32(mask.i);
1018         p->val = cpu_to_be32(val.i);
1019         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1020 }
1021
1022 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1023 {
1024         enum drbd_packet cmd;
1025         struct drbd_socket *sock;
1026         struct p_req_state *p;
1027
1028         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1029         sock = &connection->data;
1030         p = conn_prepare_command(connection, sock);
1031         if (!p)
1032                 return -EIO;
1033         p->mask = cpu_to_be32(mask.i);
1034         p->val = cpu_to_be32(val.i);
1035         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1036 }
1037
1038 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1039 {
1040         struct drbd_socket *sock;
1041         struct p_req_state_reply *p;
1042
1043         sock = &peer_device->connection->meta;
1044         p = drbd_prepare_command(peer_device, sock);
1045         if (p) {
1046                 p->retcode = cpu_to_be32(retcode);
1047                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1048         }
1049 }
1050
1051 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1052 {
1053         struct drbd_socket *sock;
1054         struct p_req_state_reply *p;
1055         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1056
1057         sock = &connection->meta;
1058         p = conn_prepare_command(connection, sock);
1059         if (p) {
1060                 p->retcode = cpu_to_be32(retcode);
1061                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1062         }
1063 }
1064
1065 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1066 {
1067         BUG_ON(code & ~0xf);
1068         p->encoding = (p->encoding & ~0xf) | code;
1069 }
1070
1071 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1072 {
1073         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1074 }
1075
1076 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1077 {
1078         BUG_ON(n & ~0x7);
1079         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1080 }
1081
1082 static int fill_bitmap_rle_bits(struct drbd_device *device,
1083                          struct p_compressed_bm *p,
1084                          unsigned int size,
1085                          struct bm_xfer_ctx *c)
1086 {
1087         struct bitstream bs;
1088         unsigned long plain_bits;
1089         unsigned long tmp;
1090         unsigned long rl;
1091         unsigned len;
1092         unsigned toggle;
1093         int bits, use_rle;
1094
1095         /* may we use this feature? */
1096         rcu_read_lock();
1097         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1098         rcu_read_unlock();
1099         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1100                 return 0;
1101
1102         if (c->bit_offset >= c->bm_bits)
1103                 return 0; /* nothing to do. */
1104
1105         /* use at most thus many bytes */
1106         bitstream_init(&bs, p->code, size, 0);
1107         memset(p->code, 0, size);
1108         /* plain bits covered in this code string */
1109         plain_bits = 0;
1110
1111         /* p->encoding & 0x80 stores whether the first run length is set.
1112          * bit offset is implicit.
1113          * start with toggle == 2 to be able to tell the first iteration */
1114         toggle = 2;
1115
1116         /* see how much plain bits we can stuff into one packet
1117          * using RLE and VLI. */
1118         do {
1119                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1120                                     : _drbd_bm_find_next(device, c->bit_offset);
1121                 if (tmp == -1UL)
1122                         tmp = c->bm_bits;
1123                 rl = tmp - c->bit_offset;
1124
1125                 if (toggle == 2) { /* first iteration */
1126                         if (rl == 0) {
1127                                 /* the first checked bit was set,
1128                                  * store start value, */
1129                                 dcbp_set_start(p, 1);
1130                                 /* but skip encoding of zero run length */
1131                                 toggle = !toggle;
1132                                 continue;
1133                         }
1134                         dcbp_set_start(p, 0);
1135                 }
1136
1137                 /* paranoia: catch zero runlength.
1138                  * can only happen if bitmap is modified while we scan it. */
1139                 if (rl == 0) {
1140                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1141                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1142                         return -1;
1143                 }
1144
1145                 bits = vli_encode_bits(&bs, rl);
1146                 if (bits == -ENOBUFS) /* buffer full */
1147                         break;
1148                 if (bits <= 0) {
1149                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1150                         return 0;
1151                 }
1152
1153                 toggle = !toggle;
1154                 plain_bits += rl;
1155                 c->bit_offset = tmp;
1156         } while (c->bit_offset < c->bm_bits);
1157
1158         len = bs.cur.b - p->code + !!bs.cur.bit;
1159
1160         if (plain_bits < (len << 3)) {
1161                 /* incompressible with this method.
1162                  * we need to rewind both word and bit position. */
1163                 c->bit_offset -= plain_bits;
1164                 bm_xfer_ctx_bit_to_word_offset(c);
1165                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1166                 return 0;
1167         }
1168
1169         /* RLE + VLI was able to compress it just fine.
1170          * update c->word_offset. */
1171         bm_xfer_ctx_bit_to_word_offset(c);
1172
1173         /* store pad_bits */
1174         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1175
1176         return len;
1177 }
1178
1179 /**
1180  * send_bitmap_rle_or_plain
1181  *
1182  * Return 0 when done, 1 when another iteration is needed, and a negative error
1183  * code upon failure.
1184  */
1185 static int
1186 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1187 {
1188         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1189         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1190         struct p_compressed_bm *p = sock->sbuf + header_size;
1191         int len, err;
1192
1193         len = fill_bitmap_rle_bits(device, p,
1194                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1195         if (len < 0)
1196                 return -EIO;
1197
1198         if (len) {
1199                 dcbp_set_code(p, RLE_VLI_Bits);
1200                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1201                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1202                                      NULL, 0);
1203                 c->packets[0]++;
1204                 c->bytes[0] += header_size + sizeof(*p) + len;
1205
1206                 if (c->bit_offset >= c->bm_bits)
1207                         len = 0; /* DONE */
1208         } else {
1209                 /* was not compressible.
1210                  * send a buffer full of plain text bits instead. */
1211                 unsigned int data_size;
1212                 unsigned long num_words;
1213                 unsigned long *p = sock->sbuf + header_size;
1214
1215                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1216                 num_words = min_t(size_t, data_size / sizeof(*p),
1217                                   c->bm_words - c->word_offset);
1218                 len = num_words * sizeof(*p);
1219                 if (len)
1220                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1221                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1222                 c->word_offset += num_words;
1223                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1224
1225                 c->packets[1]++;
1226                 c->bytes[1] += header_size + len;
1227
1228                 if (c->bit_offset > c->bm_bits)
1229                         c->bit_offset = c->bm_bits;
1230         }
1231         if (!err) {
1232                 if (len == 0) {
1233                         INFO_bm_xfer_stats(device, "send", c);
1234                         return 0;
1235                 } else
1236                         return 1;
1237         }
1238         return -EIO;
1239 }
1240
1241 /* See the comment at receive_bitmap() */
1242 static int _drbd_send_bitmap(struct drbd_device *device)
1243 {
1244         struct bm_xfer_ctx c;
1245         int err;
1246
1247         if (!expect(device->bitmap))
1248                 return false;
1249
1250         if (get_ldev(device)) {
1251                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1252                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1253                         drbd_bm_set_all(device);
1254                         if (drbd_bm_write(device)) {
1255                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1256                                  * but otherwise process as per normal - need to tell other
1257                                  * side that a full resync is required! */
1258                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1259                         } else {
1260                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1261                                 drbd_md_sync(device);
1262                         }
1263                 }
1264                 put_ldev(device);
1265         }
1266
1267         c = (struct bm_xfer_ctx) {
1268                 .bm_bits = drbd_bm_bits(device),
1269                 .bm_words = drbd_bm_words(device),
1270         };
1271
1272         do {
1273                 err = send_bitmap_rle_or_plain(device, &c);
1274         } while (err > 0);
1275
1276         return err == 0;
1277 }
1278
1279 int drbd_send_bitmap(struct drbd_device *device)
1280 {
1281         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1282         int err = -1;
1283
1284         mutex_lock(&sock->mutex);
1285         if (sock->socket)
1286                 err = !_drbd_send_bitmap(device);
1287         mutex_unlock(&sock->mutex);
1288         return err;
1289 }
1290
1291 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1292 {
1293         struct drbd_socket *sock;
1294         struct p_barrier_ack *p;
1295
1296         if (connection->cstate < C_WF_REPORT_PARAMS)
1297                 return;
1298
1299         sock = &connection->meta;
1300         p = conn_prepare_command(connection, sock);
1301         if (!p)
1302                 return;
1303         p->barrier = barrier_nr;
1304         p->set_size = cpu_to_be32(set_size);
1305         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1306 }
1307
1308 /**
1309  * _drbd_send_ack() - Sends an ack packet
1310  * @device:     DRBD device.
1311  * @cmd:        Packet command code.
1312  * @sector:     sector, needs to be in big endian byte order
1313  * @blksize:    size in byte, needs to be in big endian byte order
1314  * @block_id:   Id, big endian byte order
1315  */
1316 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1317                           u64 sector, u32 blksize, u64 block_id)
1318 {
1319         struct drbd_socket *sock;
1320         struct p_block_ack *p;
1321
1322         if (peer_device->device->state.conn < C_CONNECTED)
1323                 return -EIO;
1324
1325         sock = &peer_device->connection->meta;
1326         p = drbd_prepare_command(peer_device, sock);
1327         if (!p)
1328                 return -EIO;
1329         p->sector = sector;
1330         p->block_id = block_id;
1331         p->blksize = blksize;
1332         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1333         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1334 }
1335
1336 /* dp->sector and dp->block_id already/still in network byte order,
1337  * data_size is payload size according to dp->head,
1338  * and may need to be corrected for digest size. */
1339 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1340                       struct p_data *dp, int data_size)
1341 {
1342         if (peer_device->connection->peer_integrity_tfm)
1343                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1344         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1345                        dp->block_id);
1346 }
1347
1348 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1349                       struct p_block_req *rp)
1350 {
1351         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1352 }
1353
1354 /**
1355  * drbd_send_ack() - Sends an ack packet
1356  * @device:     DRBD device
1357  * @cmd:        packet command code
1358  * @peer_req:   peer request
1359  */
1360 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1361                   struct drbd_peer_request *peer_req)
1362 {
1363         return _drbd_send_ack(peer_device, cmd,
1364                               cpu_to_be64(peer_req->i.sector),
1365                               cpu_to_be32(peer_req->i.size),
1366                               peer_req->block_id);
1367 }
1368
1369 /* This function misuses the block_id field to signal if the blocks
1370  * are is sync or not. */
1371 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1372                      sector_t sector, int blksize, u64 block_id)
1373 {
1374         return _drbd_send_ack(peer_device, cmd,
1375                               cpu_to_be64(sector),
1376                               cpu_to_be32(blksize),
1377                               cpu_to_be64(block_id));
1378 }
1379
1380 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1381                        sector_t sector, int size, u64 block_id)
1382 {
1383         struct drbd_socket *sock;
1384         struct p_block_req *p;
1385
1386         sock = &peer_device->connection->data;
1387         p = drbd_prepare_command(peer_device, sock);
1388         if (!p)
1389                 return -EIO;
1390         p->sector = cpu_to_be64(sector);
1391         p->block_id = block_id;
1392         p->blksize = cpu_to_be32(size);
1393         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1394 }
1395
1396 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1397                             void *digest, int digest_size, enum drbd_packet cmd)
1398 {
1399         struct drbd_socket *sock;
1400         struct p_block_req *p;
1401
1402         /* FIXME: Put the digest into the preallocated socket buffer.  */
1403
1404         sock = &peer_device->connection->data;
1405         p = drbd_prepare_command(peer_device, sock);
1406         if (!p)
1407                 return -EIO;
1408         p->sector = cpu_to_be64(sector);
1409         p->block_id = ID_SYNCER /* unused */;
1410         p->blksize = cpu_to_be32(size);
1411         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1412 }
1413
1414 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1415 {
1416         struct drbd_socket *sock;
1417         struct p_block_req *p;
1418
1419         sock = &peer_device->connection->data;
1420         p = drbd_prepare_command(peer_device, sock);
1421         if (!p)
1422                 return -EIO;
1423         p->sector = cpu_to_be64(sector);
1424         p->block_id = ID_SYNCER /* unused */;
1425         p->blksize = cpu_to_be32(size);
1426         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1427 }
1428
1429 /* called on sndtimeo
1430  * returns false if we should retry,
1431  * true if we think connection is dead
1432  */
1433 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1434 {
1435         int drop_it;
1436         /* long elapsed = (long)(jiffies - device->last_received); */
1437
1438         drop_it =   connection->meta.socket == sock
1439                 || !connection->ack_receiver.task
1440                 || get_t_state(&connection->ack_receiver) != RUNNING
1441                 || connection->cstate < C_WF_REPORT_PARAMS;
1442
1443         if (drop_it)
1444                 return true;
1445
1446         drop_it = !--connection->ko_count;
1447         if (!drop_it) {
1448                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1449                          current->comm, current->pid, connection->ko_count);
1450                 request_ping(connection);
1451         }
1452
1453         return drop_it; /* && (device->state == R_PRIMARY) */;
1454 }
1455
1456 static void drbd_update_congested(struct drbd_connection *connection)
1457 {
1458         struct sock *sk = connection->data.socket->sk;
1459         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1460                 set_bit(NET_CONGESTED, &connection->flags);
1461 }
1462
1463 /* The idea of sendpage seems to be to put some kind of reference
1464  * to the page into the skb, and to hand it over to the NIC. In
1465  * this process get_page() gets called.
1466  *
1467  * As soon as the page was really sent over the network put_page()
1468  * gets called by some part of the network layer. [ NIC driver? ]
1469  *
1470  * [ get_page() / put_page() increment/decrement the count. If count
1471  *   reaches 0 the page will be freed. ]
1472  *
1473  * This works nicely with pages from FSs.
1474  * But this means that in protocol A we might signal IO completion too early!
1475  *
1476  * In order not to corrupt data during a resync we must make sure
1477  * that we do not reuse our own buffer pages (EEs) to early, therefore
1478  * we have the net_ee list.
1479  *
1480  * XFS seems to have problems, still, it submits pages with page_count == 0!
1481  * As a workaround, we disable sendpage on pages
1482  * with page_count == 0 or PageSlab.
1483  */
1484 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1485                               int offset, size_t size, unsigned msg_flags)
1486 {
1487         struct socket *socket;
1488         void *addr;
1489         int err;
1490
1491         socket = peer_device->connection->data.socket;
1492         addr = kmap(page) + offset;
1493         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1494         kunmap(page);
1495         if (!err)
1496                 peer_device->device->send_cnt += size >> 9;
1497         return err;
1498 }
1499
1500 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1501                     int offset, size_t size, unsigned msg_flags)
1502 {
1503         struct socket *socket = peer_device->connection->data.socket;
1504         mm_segment_t oldfs = get_fs();
1505         int len = size;
1506         int err = -EIO;
1507
1508         /* e.g. XFS meta- & log-data is in slab pages, which have a
1509          * page_count of 0 and/or have PageSlab() set.
1510          * we cannot use send_page for those, as that does get_page();
1511          * put_page(); and would cause either a VM_BUG directly, or
1512          * __page_cache_release a page that would actually still be referenced
1513          * by someone, leading to some obscure delayed Oops somewhere else. */
1514         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1515                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1516
1517         msg_flags |= MSG_NOSIGNAL;
1518         drbd_update_congested(peer_device->connection);
1519         set_fs(KERNEL_DS);
1520         do {
1521                 int sent;
1522
1523                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1524                 if (sent <= 0) {
1525                         if (sent == -EAGAIN) {
1526                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1527                                         break;
1528                                 continue;
1529                         }
1530                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1531                              __func__, (int)size, len, sent);
1532                         if (sent < 0)
1533                                 err = sent;
1534                         break;
1535                 }
1536                 len    -= sent;
1537                 offset += sent;
1538         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1539         set_fs(oldfs);
1540         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1541
1542         if (len == 0) {
1543                 err = 0;
1544                 peer_device->device->send_cnt += size >> 9;
1545         }
1546         return err;
1547 }
1548
1549 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1550 {
1551         struct bio_vec bvec;
1552         struct bvec_iter iter;
1553
1554         /* hint all but last page with MSG_MORE */
1555         bio_for_each_segment(bvec, bio, iter) {
1556                 int err;
1557
1558                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1559                                          bvec.bv_offset, bvec.bv_len,
1560                                          bio_iter_last(bvec, iter)
1561                                          ? 0 : MSG_MORE);
1562                 if (err)
1563                         return err;
1564         }
1565         return 0;
1566 }
1567
1568 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1569 {
1570         struct bio_vec bvec;
1571         struct bvec_iter iter;
1572
1573         /* hint all but last page with MSG_MORE */
1574         bio_for_each_segment(bvec, bio, iter) {
1575                 int err;
1576
1577                 err = _drbd_send_page(peer_device, bvec.bv_page,
1578                                       bvec.bv_offset, bvec.bv_len,
1579                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1580                 if (err)
1581                         return err;
1582         }
1583         return 0;
1584 }
1585
1586 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1587                             struct drbd_peer_request *peer_req)
1588 {
1589         struct page *page = peer_req->pages;
1590         unsigned len = peer_req->i.size;
1591         int err;
1592
1593         /* hint all but last page with MSG_MORE */
1594         page_chain_for_each(page) {
1595                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1596
1597                 err = _drbd_send_page(peer_device, page, 0, l,
1598                                       page_chain_next(page) ? MSG_MORE : 0);
1599                 if (err)
1600                         return err;
1601                 len -= l;
1602         }
1603         return 0;
1604 }
1605
1606 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1607 {
1608         if (connection->agreed_pro_version >= 95)
1609                 return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1610                         (bi_rw & REQ_FUA ? DP_FUA : 0) |
1611                         (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1612                         (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1613         else
1614                 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1615 }
1616
1617 /* Used to send write or TRIM aka REQ_DISCARD requests
1618  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1619  */
1620 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1621 {
1622         struct drbd_device *device = peer_device->device;
1623         struct drbd_socket *sock;
1624         struct p_data *p;
1625         unsigned int dp_flags = 0;
1626         int digest_size;
1627         int err;
1628
1629         sock = &peer_device->connection->data;
1630         p = drbd_prepare_command(peer_device, sock);
1631         digest_size = peer_device->connection->integrity_tfm ?
1632                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1633
1634         if (!p)
1635                 return -EIO;
1636         p->sector = cpu_to_be64(req->i.sector);
1637         p->block_id = (unsigned long)req;
1638         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1639         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1640         if (device->state.conn >= C_SYNC_SOURCE &&
1641             device->state.conn <= C_PAUSED_SYNC_T)
1642                 dp_flags |= DP_MAY_SET_IN_SYNC;
1643         if (peer_device->connection->agreed_pro_version >= 100) {
1644                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1645                         dp_flags |= DP_SEND_RECEIVE_ACK;
1646                 /* During resync, request an explicit write ack,
1647                  * even in protocol != C */
1648                 if (req->rq_state & RQ_EXP_WRITE_ACK
1649                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1650                         dp_flags |= DP_SEND_WRITE_ACK;
1651         }
1652         p->dp_flags = cpu_to_be32(dp_flags);
1653
1654         if (dp_flags & DP_DISCARD) {
1655                 struct p_trim *t = (struct p_trim*)p;
1656                 t->size = cpu_to_be32(req->i.size);
1657                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1658                 goto out;
1659         }
1660
1661         /* our digest is still only over the payload.
1662          * TRIM does not carry any payload. */
1663         if (digest_size)
1664                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1665         err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
1666         if (!err) {
1667                 /* For protocol A, we have to memcpy the payload into
1668                  * socket buffers, as we may complete right away
1669                  * as soon as we handed it over to tcp, at which point the data
1670                  * pages may become invalid.
1671                  *
1672                  * For data-integrity enabled, we copy it as well, so we can be
1673                  * sure that even if the bio pages may still be modified, it
1674                  * won't change the data on the wire, thus if the digest checks
1675                  * out ok after sending on this side, but does not fit on the
1676                  * receiving side, we sure have detected corruption elsewhere.
1677                  */
1678                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1679                         err = _drbd_send_bio(peer_device, req->master_bio);
1680                 else
1681                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1682
1683                 /* double check digest, sometimes buffers have been modified in flight. */
1684                 if (digest_size > 0 && digest_size <= 64) {
1685                         /* 64 byte, 512 bit, is the largest digest size
1686                          * currently supported in kernel crypto. */
1687                         unsigned char digest[64];
1688                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1689                         if (memcmp(p + 1, digest, digest_size)) {
1690                                 drbd_warn(device,
1691                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1692                                         (unsigned long long)req->i.sector, req->i.size);
1693                         }
1694                 } /* else if (digest_size > 64) {
1695                      ... Be noisy about digest too large ...
1696                 } */
1697         }
1698 out:
1699         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1700
1701         return err;
1702 }
1703
1704 /* answer packet, used to send data back for read requests:
1705  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1706  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1707  */
1708 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1709                     struct drbd_peer_request *peer_req)
1710 {
1711         struct drbd_device *device = peer_device->device;
1712         struct drbd_socket *sock;
1713         struct p_data *p;
1714         int err;
1715         int digest_size;
1716
1717         sock = &peer_device->connection->data;
1718         p = drbd_prepare_command(peer_device, sock);
1719
1720         digest_size = peer_device->connection->integrity_tfm ?
1721                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1722
1723         if (!p)
1724                 return -EIO;
1725         p->sector = cpu_to_be64(peer_req->i.sector);
1726         p->block_id = peer_req->block_id;
1727         p->seq_num = 0;  /* unused */
1728         p->dp_flags = 0;
1729         if (digest_size)
1730                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1731         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1732         if (!err)
1733                 err = _drbd_send_zc_ee(peer_device, peer_req);
1734         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1735
1736         return err;
1737 }
1738
1739 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1740 {
1741         struct drbd_socket *sock;
1742         struct p_block_desc *p;
1743
1744         sock = &peer_device->connection->data;
1745         p = drbd_prepare_command(peer_device, sock);
1746         if (!p)
1747                 return -EIO;
1748         p->sector = cpu_to_be64(req->i.sector);
1749         p->blksize = cpu_to_be32(req->i.size);
1750         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1751 }
1752
1753 /*
1754   drbd_send distinguishes two cases:
1755
1756   Packets sent via the data socket "sock"
1757   and packets sent via the meta data socket "msock"
1758
1759                     sock                      msock
1760   -----------------+-------------------------+------------------------------
1761   timeout           conf.timeout / 2          conf.timeout / 2
1762   timeout action    send a ping via msock     Abort communication
1763                                               and close all sockets
1764 */
1765
1766 /*
1767  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1768  */
1769 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1770               void *buf, size_t size, unsigned msg_flags)
1771 {
1772         struct kvec iov;
1773         struct msghdr msg;
1774         int rv, sent = 0;
1775
1776         if (!sock)
1777                 return -EBADR;
1778
1779         /* THINK  if (signal_pending) return ... ? */
1780
1781         iov.iov_base = buf;
1782         iov.iov_len  = size;
1783
1784         msg.msg_name       = NULL;
1785         msg.msg_namelen    = 0;
1786         msg.msg_control    = NULL;
1787         msg.msg_controllen = 0;
1788         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1789
1790         if (sock == connection->data.socket) {
1791                 rcu_read_lock();
1792                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1793                 rcu_read_unlock();
1794                 drbd_update_congested(connection);
1795         }
1796         do {
1797                 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1798                 if (rv == -EAGAIN) {
1799                         if (we_should_drop_the_connection(connection, sock))
1800                                 break;
1801                         else
1802                                 continue;
1803                 }
1804                 if (rv == -EINTR) {
1805                         flush_signals(current);
1806                         rv = 0;
1807                 }
1808                 if (rv < 0)
1809                         break;
1810                 sent += rv;
1811                 iov.iov_base += rv;
1812                 iov.iov_len  -= rv;
1813         } while (sent < size);
1814
1815         if (sock == connection->data.socket)
1816                 clear_bit(NET_CONGESTED, &connection->flags);
1817
1818         if (rv <= 0) {
1819                 if (rv != -EAGAIN) {
1820                         drbd_err(connection, "%s_sendmsg returned %d\n",
1821                                  sock == connection->meta.socket ? "msock" : "sock",
1822                                  rv);
1823                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1824                 } else
1825                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1826         }
1827
1828         return sent;
1829 }
1830
1831 /**
1832  * drbd_send_all  -  Send an entire buffer
1833  *
1834  * Returns 0 upon success and a negative error value otherwise.
1835  */
1836 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1837                   size_t size, unsigned msg_flags)
1838 {
1839         int err;
1840
1841         err = drbd_send(connection, sock, buffer, size, msg_flags);
1842         if (err < 0)
1843                 return err;
1844         if (err != size)
1845                 return -EIO;
1846         return 0;
1847 }
1848
1849 static int drbd_open(struct block_device *bdev, fmode_t mode)
1850 {
1851         struct drbd_device *device = bdev->bd_disk->private_data;
1852         unsigned long flags;
1853         int rv = 0;
1854
1855         mutex_lock(&drbd_main_mutex);
1856         spin_lock_irqsave(&device->resource->req_lock, flags);
1857         /* to have a stable device->state.role
1858          * and no race with updating open_cnt */
1859
1860         if (device->state.role != R_PRIMARY) {
1861                 if (mode & FMODE_WRITE)
1862                         rv = -EROFS;
1863                 else if (!allow_oos)
1864                         rv = -EMEDIUMTYPE;
1865         }
1866
1867         if (!rv)
1868                 device->open_cnt++;
1869         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1870         mutex_unlock(&drbd_main_mutex);
1871
1872         return rv;
1873 }
1874
1875 static void drbd_release(struct gendisk *gd, fmode_t mode)
1876 {
1877         struct drbd_device *device = gd->private_data;
1878         mutex_lock(&drbd_main_mutex);
1879         device->open_cnt--;
1880         mutex_unlock(&drbd_main_mutex);
1881 }
1882
1883 static void drbd_set_defaults(struct drbd_device *device)
1884 {
1885         /* Beware! The actual layout differs
1886          * between big endian and little endian */
1887         device->state = (union drbd_dev_state) {
1888                 { .role = R_SECONDARY,
1889                   .peer = R_UNKNOWN,
1890                   .conn = C_STANDALONE,
1891                   .disk = D_DISKLESS,
1892                   .pdsk = D_UNKNOWN,
1893                 } };
1894 }
1895
1896 void drbd_init_set_defaults(struct drbd_device *device)
1897 {
1898         /* the memset(,0,) did most of this.
1899          * note: only assignments, no allocation in here */
1900
1901         drbd_set_defaults(device);
1902
1903         atomic_set(&device->ap_bio_cnt, 0);
1904         atomic_set(&device->ap_actlog_cnt, 0);
1905         atomic_set(&device->ap_pending_cnt, 0);
1906         atomic_set(&device->rs_pending_cnt, 0);
1907         atomic_set(&device->unacked_cnt, 0);
1908         atomic_set(&device->local_cnt, 0);
1909         atomic_set(&device->pp_in_use_by_net, 0);
1910         atomic_set(&device->rs_sect_in, 0);
1911         atomic_set(&device->rs_sect_ev, 0);
1912         atomic_set(&device->ap_in_flight, 0);
1913         atomic_set(&device->md_io.in_use, 0);
1914
1915         mutex_init(&device->own_state_mutex);
1916         device->state_mutex = &device->own_state_mutex;
1917
1918         spin_lock_init(&device->al_lock);
1919         spin_lock_init(&device->peer_seq_lock);
1920
1921         INIT_LIST_HEAD(&device->active_ee);
1922         INIT_LIST_HEAD(&device->sync_ee);
1923         INIT_LIST_HEAD(&device->done_ee);
1924         INIT_LIST_HEAD(&device->read_ee);
1925         INIT_LIST_HEAD(&device->net_ee);
1926         INIT_LIST_HEAD(&device->resync_reads);
1927         INIT_LIST_HEAD(&device->resync_work.list);
1928         INIT_LIST_HEAD(&device->unplug_work.list);
1929         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1930         INIT_LIST_HEAD(&device->pending_master_completion[0]);
1931         INIT_LIST_HEAD(&device->pending_master_completion[1]);
1932         INIT_LIST_HEAD(&device->pending_completion[0]);
1933         INIT_LIST_HEAD(&device->pending_completion[1]);
1934
1935         device->resync_work.cb  = w_resync_timer;
1936         device->unplug_work.cb  = w_send_write_hint;
1937         device->bm_io_work.w.cb = w_bitmap_io;
1938
1939         init_timer(&device->resync_timer);
1940         init_timer(&device->md_sync_timer);
1941         init_timer(&device->start_resync_timer);
1942         init_timer(&device->request_timer);
1943         device->resync_timer.function = resync_timer_fn;
1944         device->resync_timer.data = (unsigned long) device;
1945         device->md_sync_timer.function = md_sync_timer_fn;
1946         device->md_sync_timer.data = (unsigned long) device;
1947         device->start_resync_timer.function = start_resync_timer_fn;
1948         device->start_resync_timer.data = (unsigned long) device;
1949         device->request_timer.function = request_timer_fn;
1950         device->request_timer.data = (unsigned long) device;
1951
1952         init_waitqueue_head(&device->misc_wait);
1953         init_waitqueue_head(&device->state_wait);
1954         init_waitqueue_head(&device->ee_wait);
1955         init_waitqueue_head(&device->al_wait);
1956         init_waitqueue_head(&device->seq_wait);
1957
1958         device->resync_wenr = LC_FREE;
1959         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1960         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1961 }
1962
1963 void drbd_device_cleanup(struct drbd_device *device)
1964 {
1965         int i;
1966         if (first_peer_device(device)->connection->receiver.t_state != NONE)
1967                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1968                                 first_peer_device(device)->connection->receiver.t_state);
1969
1970         device->al_writ_cnt  =
1971         device->bm_writ_cnt  =
1972         device->read_cnt     =
1973         device->recv_cnt     =
1974         device->send_cnt     =
1975         device->writ_cnt     =
1976         device->p_size       =
1977         device->rs_start     =
1978         device->rs_total     =
1979         device->rs_failed    = 0;
1980         device->rs_last_events = 0;
1981         device->rs_last_sect_ev = 0;
1982         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1983                 device->rs_mark_left[i] = 0;
1984                 device->rs_mark_time[i] = 0;
1985         }
1986         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1987
1988         drbd_set_my_capacity(device, 0);
1989         if (device->bitmap) {
1990                 /* maybe never allocated. */
1991                 drbd_bm_resize(device, 0, 1);
1992                 drbd_bm_cleanup(device);
1993         }
1994
1995         drbd_backing_dev_free(device, device->ldev);
1996         device->ldev = NULL;
1997
1998         clear_bit(AL_SUSPENDED, &device->flags);
1999
2000         D_ASSERT(device, list_empty(&device->active_ee));
2001         D_ASSERT(device, list_empty(&device->sync_ee));
2002         D_ASSERT(device, list_empty(&device->done_ee));
2003         D_ASSERT(device, list_empty(&device->read_ee));
2004         D_ASSERT(device, list_empty(&device->net_ee));
2005         D_ASSERT(device, list_empty(&device->resync_reads));
2006         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2007         D_ASSERT(device, list_empty(&device->resync_work.list));
2008         D_ASSERT(device, list_empty(&device->unplug_work.list));
2009
2010         drbd_set_defaults(device);
2011 }
2012
2013
2014 static void drbd_destroy_mempools(void)
2015 {
2016         struct page *page;
2017
2018         while (drbd_pp_pool) {
2019                 page = drbd_pp_pool;
2020                 drbd_pp_pool = (struct page *)page_private(page);
2021                 __free_page(page);
2022                 drbd_pp_vacant--;
2023         }
2024
2025         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2026
2027         if (drbd_md_io_bio_set)
2028                 bioset_free(drbd_md_io_bio_set);
2029         if (drbd_md_io_page_pool)
2030                 mempool_destroy(drbd_md_io_page_pool);
2031         if (drbd_ee_mempool)
2032                 mempool_destroy(drbd_ee_mempool);
2033         if (drbd_request_mempool)
2034                 mempool_destroy(drbd_request_mempool);
2035         if (drbd_ee_cache)
2036                 kmem_cache_destroy(drbd_ee_cache);
2037         if (drbd_request_cache)
2038                 kmem_cache_destroy(drbd_request_cache);
2039         if (drbd_bm_ext_cache)
2040                 kmem_cache_destroy(drbd_bm_ext_cache);
2041         if (drbd_al_ext_cache)
2042                 kmem_cache_destroy(drbd_al_ext_cache);
2043
2044         drbd_md_io_bio_set   = NULL;
2045         drbd_md_io_page_pool = NULL;
2046         drbd_ee_mempool      = NULL;
2047         drbd_request_mempool = NULL;
2048         drbd_ee_cache        = NULL;
2049         drbd_request_cache   = NULL;
2050         drbd_bm_ext_cache    = NULL;
2051         drbd_al_ext_cache    = NULL;
2052
2053         return;
2054 }
2055
2056 static int drbd_create_mempools(void)
2057 {
2058         struct page *page;
2059         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2060         int i;
2061
2062         /* prepare our caches and mempools */
2063         drbd_request_mempool = NULL;
2064         drbd_ee_cache        = NULL;
2065         drbd_request_cache   = NULL;
2066         drbd_bm_ext_cache    = NULL;
2067         drbd_al_ext_cache    = NULL;
2068         drbd_pp_pool         = NULL;
2069         drbd_md_io_page_pool = NULL;
2070         drbd_md_io_bio_set   = NULL;
2071
2072         /* caches */
2073         drbd_request_cache = kmem_cache_create(
2074                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2075         if (drbd_request_cache == NULL)
2076                 goto Enomem;
2077
2078         drbd_ee_cache = kmem_cache_create(
2079                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2080         if (drbd_ee_cache == NULL)
2081                 goto Enomem;
2082
2083         drbd_bm_ext_cache = kmem_cache_create(
2084                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2085         if (drbd_bm_ext_cache == NULL)
2086                 goto Enomem;
2087
2088         drbd_al_ext_cache = kmem_cache_create(
2089                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2090         if (drbd_al_ext_cache == NULL)
2091                 goto Enomem;
2092
2093         /* mempools */
2094         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2095         if (drbd_md_io_bio_set == NULL)
2096                 goto Enomem;
2097
2098         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2099         if (drbd_md_io_page_pool == NULL)
2100                 goto Enomem;
2101
2102         drbd_request_mempool = mempool_create_slab_pool(number,
2103                 drbd_request_cache);
2104         if (drbd_request_mempool == NULL)
2105                 goto Enomem;
2106
2107         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2108         if (drbd_ee_mempool == NULL)
2109                 goto Enomem;
2110
2111         /* drbd's page pool */
2112         spin_lock_init(&drbd_pp_lock);
2113
2114         for (i = 0; i < number; i++) {
2115                 page = alloc_page(GFP_HIGHUSER);
2116                 if (!page)
2117                         goto Enomem;
2118                 set_page_private(page, (unsigned long)drbd_pp_pool);
2119                 drbd_pp_pool = page;
2120         }
2121         drbd_pp_vacant = number;
2122
2123         return 0;
2124
2125 Enomem:
2126         drbd_destroy_mempools(); /* in case we allocated some */
2127         return -ENOMEM;
2128 }
2129
2130 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2131 {
2132         int rr;
2133
2134         rr = drbd_free_peer_reqs(device, &device->active_ee);
2135         if (rr)
2136                 drbd_err(device, "%d EEs in active list found!\n", rr);
2137
2138         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2139         if (rr)
2140                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2141
2142         rr = drbd_free_peer_reqs(device, &device->read_ee);
2143         if (rr)
2144                 drbd_err(device, "%d EEs in read list found!\n", rr);
2145
2146         rr = drbd_free_peer_reqs(device, &device->done_ee);
2147         if (rr)
2148                 drbd_err(device, "%d EEs in done list found!\n", rr);
2149
2150         rr = drbd_free_peer_reqs(device, &device->net_ee);
2151         if (rr)
2152                 drbd_err(device, "%d EEs in net list found!\n", rr);
2153 }
2154
2155 /* caution. no locking. */
2156 void drbd_destroy_device(struct kref *kref)
2157 {
2158         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2159         struct drbd_resource *resource = device->resource;
2160         struct drbd_peer_device *peer_device, *tmp_peer_device;
2161
2162         del_timer_sync(&device->request_timer);
2163
2164         /* paranoia asserts */
2165         D_ASSERT(device, device->open_cnt == 0);
2166         /* end paranoia asserts */
2167
2168         /* cleanup stuff that may have been allocated during
2169          * device (re-)configuration or state changes */
2170
2171         if (device->this_bdev)
2172                 bdput(device->this_bdev);
2173
2174         drbd_backing_dev_free(device, device->ldev);
2175         device->ldev = NULL;
2176
2177         drbd_release_all_peer_reqs(device);
2178
2179         lc_destroy(device->act_log);
2180         lc_destroy(device->resync);
2181
2182         kfree(device->p_uuid);
2183         /* device->p_uuid = NULL; */
2184
2185         if (device->bitmap) /* should no longer be there. */
2186                 drbd_bm_cleanup(device);
2187         __free_page(device->md_io.page);
2188         put_disk(device->vdisk);
2189         blk_cleanup_queue(device->rq_queue);
2190         kfree(device->rs_plan_s);
2191
2192         /* not for_each_connection(connection, resource):
2193          * those may have been cleaned up and disassociated already.
2194          */
2195         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2196                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2197                 kfree(peer_device);
2198         }
2199         memset(device, 0xfd, sizeof(*device));
2200         kfree(device);
2201         kref_put(&resource->kref, drbd_destroy_resource);
2202 }
2203
2204 /* One global retry thread, if we need to push back some bio and have it
2205  * reinserted through our make request function.
2206  */
2207 static struct retry_worker {
2208         struct workqueue_struct *wq;
2209         struct work_struct worker;
2210
2211         spinlock_t lock;
2212         struct list_head writes;
2213 } retry;
2214
2215 static void do_retry(struct work_struct *ws)
2216 {
2217         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2218         LIST_HEAD(writes);
2219         struct drbd_request *req, *tmp;
2220
2221         spin_lock_irq(&retry->lock);
2222         list_splice_init(&retry->writes, &writes);
2223         spin_unlock_irq(&retry->lock);
2224
2225         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2226                 struct drbd_device *device = req->device;
2227                 struct bio *bio = req->master_bio;
2228                 unsigned long start_jif = req->start_jif;
2229                 bool expected;
2230
2231                 expected =
2232                         expect(atomic_read(&req->completion_ref) == 0) &&
2233                         expect(req->rq_state & RQ_POSTPONED) &&
2234                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2235                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2236
2237                 if (!expected)
2238                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2239                                 req, atomic_read(&req->completion_ref),
2240                                 req->rq_state);
2241
2242                 /* We still need to put one kref associated with the
2243                  * "completion_ref" going zero in the code path that queued it
2244                  * here.  The request object may still be referenced by a
2245                  * frozen local req->private_bio, in case we force-detached.
2246                  */
2247                 kref_put(&req->kref, drbd_req_destroy);
2248
2249                 /* A single suspended or otherwise blocking device may stall
2250                  * all others as well.  Fortunately, this code path is to
2251                  * recover from a situation that "should not happen":
2252                  * concurrent writes in multi-primary setup.
2253                  * In a "normal" lifecycle, this workqueue is supposed to be
2254                  * destroyed without ever doing anything.
2255                  * If it turns out to be an issue anyways, we can do per
2256                  * resource (replication group) or per device (minor) retry
2257                  * workqueues instead.
2258                  */
2259
2260                 /* We are not just doing generic_make_request(),
2261                  * as we want to keep the start_time information. */
2262                 inc_ap_bio(device);
2263                 __drbd_make_request(device, bio, start_jif);
2264         }
2265 }
2266
2267 /* called via drbd_req_put_completion_ref(),
2268  * holds resource->req_lock */
2269 void drbd_restart_request(struct drbd_request *req)
2270 {
2271         unsigned long flags;
2272         spin_lock_irqsave(&retry.lock, flags);
2273         list_move_tail(&req->tl_requests, &retry.writes);
2274         spin_unlock_irqrestore(&retry.lock, flags);
2275
2276         /* Drop the extra reference that would otherwise
2277          * have been dropped by complete_master_bio.
2278          * do_retry() needs to grab a new one. */
2279         dec_ap_bio(req->device);
2280
2281         queue_work(retry.wq, &retry.worker);
2282 }
2283
2284 void drbd_destroy_resource(struct kref *kref)
2285 {
2286         struct drbd_resource *resource =
2287                 container_of(kref, struct drbd_resource, kref);
2288
2289         idr_destroy(&resource->devices);
2290         free_cpumask_var(resource->cpu_mask);
2291         kfree(resource->name);
2292         memset(resource, 0xf2, sizeof(*resource));
2293         kfree(resource);
2294 }
2295
2296 void drbd_free_resource(struct drbd_resource *resource)
2297 {
2298         struct drbd_connection *connection, *tmp;
2299
2300         for_each_connection_safe(connection, tmp, resource) {
2301                 list_del(&connection->connections);
2302                 drbd_debugfs_connection_cleanup(connection);
2303                 kref_put(&connection->kref, drbd_destroy_connection);
2304         }
2305         drbd_debugfs_resource_cleanup(resource);
2306         kref_put(&resource->kref, drbd_destroy_resource);
2307 }
2308
2309 static void drbd_cleanup(void)
2310 {
2311         unsigned int i;
2312         struct drbd_device *device;
2313         struct drbd_resource *resource, *tmp;
2314
2315         /* first remove proc,
2316          * drbdsetup uses it's presence to detect
2317          * whether DRBD is loaded.
2318          * If we would get stuck in proc removal,
2319          * but have netlink already deregistered,
2320          * some drbdsetup commands may wait forever
2321          * for an answer.
2322          */
2323         if (drbd_proc)
2324                 remove_proc_entry("drbd", NULL);
2325
2326         if (retry.wq)
2327                 destroy_workqueue(retry.wq);
2328
2329         drbd_genl_unregister();
2330         drbd_debugfs_cleanup();
2331
2332         idr_for_each_entry(&drbd_devices, device, i)
2333                 drbd_delete_device(device);
2334
2335         /* not _rcu since, no other updater anymore. Genl already unregistered */
2336         for_each_resource_safe(resource, tmp, &drbd_resources) {
2337                 list_del(&resource->resources);
2338                 drbd_free_resource(resource);
2339         }
2340
2341         drbd_destroy_mempools();
2342         unregister_blkdev(DRBD_MAJOR, "drbd");
2343
2344         idr_destroy(&drbd_devices);
2345
2346         pr_info("module cleanup done.\n");
2347 }
2348
2349 /**
2350  * drbd_congested() - Callback for the flusher thread
2351  * @congested_data:     User data
2352  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2353  *
2354  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2355  */
2356 static int drbd_congested(void *congested_data, int bdi_bits)
2357 {
2358         struct drbd_device *device = congested_data;
2359         struct request_queue *q;
2360         char reason = '-';
2361         int r = 0;
2362
2363         if (!may_inc_ap_bio(device)) {
2364                 /* DRBD has frozen IO */
2365                 r = bdi_bits;
2366                 reason = 'd';
2367                 goto out;
2368         }
2369
2370         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2371                 r |= (1 << WB_async_congested);
2372                 /* Without good local data, we would need to read from remote,
2373                  * and that would need the worker thread as well, which is
2374                  * currently blocked waiting for that usermode helper to
2375                  * finish.
2376                  */
2377                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2378                         r |= (1 << WB_sync_congested);
2379                 else
2380                         put_ldev(device);
2381                 r &= bdi_bits;
2382                 reason = 'c';
2383                 goto out;
2384         }
2385
2386         if (get_ldev(device)) {
2387                 q = bdev_get_queue(device->ldev->backing_bdev);
2388                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2389                 put_ldev(device);
2390                 if (r)
2391                         reason = 'b';
2392         }
2393
2394         if (bdi_bits & (1 << WB_async_congested) &&
2395             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2396                 r |= (1 << WB_async_congested);
2397                 reason = reason == 'b' ? 'a' : 'n';
2398         }
2399
2400 out:
2401         device->congestion_reason = reason;
2402         return r;
2403 }
2404
2405 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2406 {
2407         spin_lock_init(&wq->q_lock);
2408         INIT_LIST_HEAD(&wq->q);
2409         init_waitqueue_head(&wq->q_wait);
2410 }
2411
2412 struct completion_work {
2413         struct drbd_work w;
2414         struct completion done;
2415 };
2416
2417 static int w_complete(struct drbd_work *w, int cancel)
2418 {
2419         struct completion_work *completion_work =
2420                 container_of(w, struct completion_work, w);
2421
2422         complete(&completion_work->done);
2423         return 0;
2424 }
2425
2426 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2427 {
2428         struct completion_work completion_work;
2429
2430         completion_work.w.cb = w_complete;
2431         init_completion(&completion_work.done);
2432         drbd_queue_work(work_queue, &completion_work.w);
2433         wait_for_completion(&completion_work.done);
2434 }
2435
2436 struct drbd_resource *drbd_find_resource(const char *name)
2437 {
2438         struct drbd_resource *resource;
2439
2440         if (!name || !name[0])
2441                 return NULL;
2442
2443         rcu_read_lock();
2444         for_each_resource_rcu(resource, &drbd_resources) {
2445                 if (!strcmp(resource->name, name)) {
2446                         kref_get(&resource->kref);
2447                         goto found;
2448                 }
2449         }
2450         resource = NULL;
2451 found:
2452         rcu_read_unlock();
2453         return resource;
2454 }
2455
2456 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2457                                      void *peer_addr, int peer_addr_len)
2458 {
2459         struct drbd_resource *resource;
2460         struct drbd_connection *connection;
2461
2462         rcu_read_lock();
2463         for_each_resource_rcu(resource, &drbd_resources) {
2464                 for_each_connection_rcu(connection, resource) {
2465                         if (connection->my_addr_len == my_addr_len &&
2466                             connection->peer_addr_len == peer_addr_len &&
2467                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2468                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2469                                 kref_get(&connection->kref);
2470                                 goto found;
2471                         }
2472                 }
2473         }
2474         connection = NULL;
2475 found:
2476         rcu_read_unlock();
2477         return connection;
2478 }
2479
2480 static int drbd_alloc_socket(struct drbd_socket *socket)
2481 {
2482         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2483         if (!socket->rbuf)
2484                 return -ENOMEM;
2485         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2486         if (!socket->sbuf)
2487                 return -ENOMEM;
2488         return 0;
2489 }
2490
2491 static void drbd_free_socket(struct drbd_socket *socket)
2492 {
2493         free_page((unsigned long) socket->sbuf);
2494         free_page((unsigned long) socket->rbuf);
2495 }
2496
2497 void conn_free_crypto(struct drbd_connection *connection)
2498 {
2499         drbd_free_sock(connection);
2500
2501         crypto_free_ahash(connection->csums_tfm);
2502         crypto_free_ahash(connection->verify_tfm);
2503         crypto_free_shash(connection->cram_hmac_tfm);
2504         crypto_free_ahash(connection->integrity_tfm);
2505         crypto_free_ahash(connection->peer_integrity_tfm);
2506         kfree(connection->int_dig_in);
2507         kfree(connection->int_dig_vv);
2508
2509         connection->csums_tfm = NULL;
2510         connection->verify_tfm = NULL;
2511         connection->cram_hmac_tfm = NULL;
2512         connection->integrity_tfm = NULL;
2513         connection->peer_integrity_tfm = NULL;
2514         connection->int_dig_in = NULL;
2515         connection->int_dig_vv = NULL;
2516 }
2517
2518 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2519 {
2520         struct drbd_connection *connection;
2521         cpumask_var_t new_cpu_mask;
2522         int err;
2523
2524         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2525                 return -ENOMEM;
2526
2527         /* silently ignore cpu mask on UP kernel */
2528         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2529                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2530                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2531                 if (err == -EOVERFLOW) {
2532                         /* So what. mask it out. */
2533                         cpumask_var_t tmp_cpu_mask;
2534                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2535                                 cpumask_setall(tmp_cpu_mask);
2536                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2537                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2538                                         res_opts->cpu_mask,
2539                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2540                                         nr_cpu_ids);
2541                                 free_cpumask_var(tmp_cpu_mask);
2542                                 err = 0;
2543                         }
2544                 }
2545                 if (err) {
2546                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2547                         /* retcode = ERR_CPU_MASK_PARSE; */
2548                         goto fail;
2549                 }
2550         }
2551         resource->res_opts = *res_opts;
2552         if (cpumask_empty(new_cpu_mask))
2553                 drbd_calc_cpu_mask(&new_cpu_mask);
2554         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2555                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2556                 for_each_connection_rcu(connection, resource) {
2557                         connection->receiver.reset_cpu_mask = 1;
2558                         connection->ack_receiver.reset_cpu_mask = 1;
2559                         connection->worker.reset_cpu_mask = 1;
2560                 }
2561         }
2562         err = 0;
2563
2564 fail:
2565         free_cpumask_var(new_cpu_mask);
2566         return err;
2567
2568 }
2569
2570 struct drbd_resource *drbd_create_resource(const char *name)
2571 {
2572         struct drbd_resource *resource;
2573
2574         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2575         if (!resource)
2576                 goto fail;
2577         resource->name = kstrdup(name, GFP_KERNEL);
2578         if (!resource->name)
2579                 goto fail_free_resource;
2580         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2581                 goto fail_free_name;
2582         kref_init(&resource->kref);
2583         idr_init(&resource->devices);
2584         INIT_LIST_HEAD(&resource->connections);
2585         resource->write_ordering = WO_BDEV_FLUSH;
2586         list_add_tail_rcu(&resource->resources, &drbd_resources);
2587         mutex_init(&resource->conf_update);
2588         mutex_init(&resource->adm_mutex);
2589         spin_lock_init(&resource->req_lock);
2590         drbd_debugfs_resource_add(resource);
2591         return resource;
2592
2593 fail_free_name:
2594         kfree(resource->name);
2595 fail_free_resource:
2596         kfree(resource);
2597 fail:
2598         return NULL;
2599 }
2600
2601 /* caller must be under adm_mutex */
2602 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2603 {
2604         struct drbd_resource *resource;
2605         struct drbd_connection *connection;
2606
2607         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2608         if (!connection)
2609                 return NULL;
2610
2611         if (drbd_alloc_socket(&connection->data))
2612                 goto fail;
2613         if (drbd_alloc_socket(&connection->meta))
2614                 goto fail;
2615
2616         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2617         if (!connection->current_epoch)
2618                 goto fail;
2619
2620         INIT_LIST_HEAD(&connection->transfer_log);
2621
2622         INIT_LIST_HEAD(&connection->current_epoch->list);
2623         connection->epochs = 1;
2624         spin_lock_init(&connection->epoch_lock);
2625
2626         connection->send.seen_any_write_yet = false;
2627         connection->send.current_epoch_nr = 0;
2628         connection->send.current_epoch_writes = 0;
2629
2630         resource = drbd_create_resource(name);
2631         if (!resource)
2632                 goto fail;
2633
2634         connection->cstate = C_STANDALONE;
2635         mutex_init(&connection->cstate_mutex);
2636         init_waitqueue_head(&connection->ping_wait);
2637         idr_init(&connection->peer_devices);
2638
2639         drbd_init_workqueue(&connection->sender_work);
2640         mutex_init(&connection->data.mutex);
2641         mutex_init(&connection->meta.mutex);
2642
2643         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2644         connection->receiver.connection = connection;
2645         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2646         connection->worker.connection = connection;
2647         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2648         connection->ack_receiver.connection = connection;
2649
2650         kref_init(&connection->kref);
2651
2652         connection->resource = resource;
2653
2654         if (set_resource_options(resource, res_opts))
2655                 goto fail_resource;
2656
2657         kref_get(&resource->kref);
2658         list_add_tail_rcu(&connection->connections, &resource->connections);
2659         drbd_debugfs_connection_add(connection);
2660         return connection;
2661
2662 fail_resource:
2663         list_del(&resource->resources);
2664         drbd_free_resource(resource);
2665 fail:
2666         kfree(connection->current_epoch);
2667         drbd_free_socket(&connection->meta);
2668         drbd_free_socket(&connection->data);
2669         kfree(connection);
2670         return NULL;
2671 }
2672
2673 void drbd_destroy_connection(struct kref *kref)
2674 {
2675         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2676         struct drbd_resource *resource = connection->resource;
2677
2678         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2679                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2680         kfree(connection->current_epoch);
2681
2682         idr_destroy(&connection->peer_devices);
2683
2684         drbd_free_socket(&connection->meta);
2685         drbd_free_socket(&connection->data);
2686         kfree(connection->int_dig_in);
2687         kfree(connection->int_dig_vv);
2688         memset(connection, 0xfc, sizeof(*connection));
2689         kfree(connection);
2690         kref_put(&resource->kref, drbd_destroy_resource);
2691 }
2692
2693 static int init_submitter(struct drbd_device *device)
2694 {
2695         /* opencoded create_singlethread_workqueue(),
2696          * to be able to say "drbd%d", ..., minor */
2697         device->submit.wq =
2698                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2699         if (!device->submit.wq)
2700                 return -ENOMEM;
2701
2702         INIT_WORK(&device->submit.worker, do_submit);
2703         INIT_LIST_HEAD(&device->submit.writes);
2704         return 0;
2705 }
2706
2707 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2708 {
2709         struct drbd_resource *resource = adm_ctx->resource;
2710         struct drbd_connection *connection;
2711         struct drbd_device *device;
2712         struct drbd_peer_device *peer_device, *tmp_peer_device;
2713         struct gendisk *disk;
2714         struct request_queue *q;
2715         int id;
2716         int vnr = adm_ctx->volume;
2717         enum drbd_ret_code err = ERR_NOMEM;
2718
2719         device = minor_to_device(minor);
2720         if (device)
2721                 return ERR_MINOR_OR_VOLUME_EXISTS;
2722
2723         /* GFP_KERNEL, we are outside of all write-out paths */
2724         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2725         if (!device)
2726                 return ERR_NOMEM;
2727         kref_init(&device->kref);
2728
2729         kref_get(&resource->kref);
2730         device->resource = resource;
2731         device->minor = minor;
2732         device->vnr = vnr;
2733
2734         drbd_init_set_defaults(device);
2735
2736         q = blk_alloc_queue(GFP_KERNEL);
2737         if (!q)
2738                 goto out_no_q;
2739         device->rq_queue = q;
2740         q->queuedata   = device;
2741
2742         disk = alloc_disk(1);
2743         if (!disk)
2744                 goto out_no_disk;
2745         device->vdisk = disk;
2746
2747         set_disk_ro(disk, true);
2748
2749         disk->queue = q;
2750         disk->major = DRBD_MAJOR;
2751         disk->first_minor = minor;
2752         disk->fops = &drbd_ops;
2753         sprintf(disk->disk_name, "drbd%d", minor);
2754         disk->private_data = device;
2755
2756         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2757         /* we have no partitions. we contain only ourselves. */
2758         device->this_bdev->bd_contains = device->this_bdev;
2759
2760         q->backing_dev_info.congested_fn = drbd_congested;
2761         q->backing_dev_info.congested_data = device;
2762
2763         blk_queue_make_request(q, drbd_make_request);
2764         blk_queue_write_cache(q, true, true);
2765         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2766            This triggers a max_bio_size message upon first attach or connect */
2767         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2768         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2769         q->queue_lock = &resource->req_lock;
2770
2771         device->md_io.page = alloc_page(GFP_KERNEL);
2772         if (!device->md_io.page)
2773                 goto out_no_io_page;
2774
2775         if (drbd_bm_init(device))
2776                 goto out_no_bitmap;
2777         device->read_requests = RB_ROOT;
2778         device->write_requests = RB_ROOT;
2779
2780         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2781         if (id < 0) {
2782                 if (id == -ENOSPC)
2783                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2784                 goto out_no_minor_idr;
2785         }
2786         kref_get(&device->kref);
2787
2788         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2789         if (id < 0) {
2790                 if (id == -ENOSPC)
2791                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2792                 goto out_idr_remove_minor;
2793         }
2794         kref_get(&device->kref);
2795
2796         INIT_LIST_HEAD(&device->peer_devices);
2797         INIT_LIST_HEAD(&device->pending_bitmap_io);
2798         for_each_connection(connection, resource) {
2799                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2800                 if (!peer_device)
2801                         goto out_idr_remove_from_resource;
2802                 peer_device->connection = connection;
2803                 peer_device->device = device;
2804
2805                 list_add(&peer_device->peer_devices, &device->peer_devices);
2806                 kref_get(&device->kref);
2807
2808                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2809                 if (id < 0) {
2810                         if (id == -ENOSPC)
2811                                 err = ERR_INVALID_REQUEST;
2812                         goto out_idr_remove_from_resource;
2813                 }
2814                 kref_get(&connection->kref);
2815                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2816         }
2817
2818         if (init_submitter(device)) {
2819                 err = ERR_NOMEM;
2820                 goto out_idr_remove_vol;
2821         }
2822
2823         add_disk(disk);
2824
2825         /* inherit the connection state */
2826         device->state.conn = first_connection(resource)->cstate;
2827         if (device->state.conn == C_WF_REPORT_PARAMS) {
2828                 for_each_peer_device(peer_device, device)
2829                         drbd_connected(peer_device);
2830         }
2831         /* move to create_peer_device() */
2832         for_each_peer_device(peer_device, device)
2833                 drbd_debugfs_peer_device_add(peer_device);
2834         drbd_debugfs_device_add(device);
2835         return NO_ERROR;
2836
2837 out_idr_remove_vol:
2838         idr_remove(&connection->peer_devices, vnr);
2839 out_idr_remove_from_resource:
2840         for_each_connection(connection, resource) {
2841                 peer_device = idr_find(&connection->peer_devices, vnr);
2842                 if (peer_device) {
2843                         idr_remove(&connection->peer_devices, vnr);
2844                         kref_put(&connection->kref, drbd_destroy_connection);
2845                 }
2846         }
2847         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2848                 list_del(&peer_device->peer_devices);
2849                 kfree(peer_device);
2850         }
2851         idr_remove(&resource->devices, vnr);
2852 out_idr_remove_minor:
2853         idr_remove(&drbd_devices, minor);
2854         synchronize_rcu();
2855 out_no_minor_idr:
2856         drbd_bm_cleanup(device);
2857 out_no_bitmap:
2858         __free_page(device->md_io.page);
2859 out_no_io_page:
2860         put_disk(disk);
2861 out_no_disk:
2862         blk_cleanup_queue(q);
2863 out_no_q:
2864         kref_put(&resource->kref, drbd_destroy_resource);
2865         kfree(device);
2866         return err;
2867 }
2868
2869 void drbd_delete_device(struct drbd_device *device)
2870 {
2871         struct drbd_resource *resource = device->resource;
2872         struct drbd_connection *connection;
2873         struct drbd_peer_device *peer_device;
2874         int refs = 3;
2875
2876         /* move to free_peer_device() */
2877         for_each_peer_device(peer_device, device)
2878                 drbd_debugfs_peer_device_cleanup(peer_device);
2879         drbd_debugfs_device_cleanup(device);
2880         for_each_connection(connection, resource) {
2881                 idr_remove(&connection->peer_devices, device->vnr);
2882                 refs++;
2883         }
2884         idr_remove(&resource->devices, device->vnr);
2885         idr_remove(&drbd_devices, device_to_minor(device));
2886         del_gendisk(device->vdisk);
2887         synchronize_rcu();
2888         kref_sub(&device->kref, refs, drbd_destroy_device);
2889 }
2890
2891 static int __init drbd_init(void)
2892 {
2893         int err;
2894
2895         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2896                 pr_err("invalid minor_count (%d)\n", minor_count);
2897 #ifdef MODULE
2898                 return -EINVAL;
2899 #else
2900                 minor_count = DRBD_MINOR_COUNT_DEF;
2901 #endif
2902         }
2903
2904         err = register_blkdev(DRBD_MAJOR, "drbd");
2905         if (err) {
2906                 pr_err("unable to register block device major %d\n",
2907                        DRBD_MAJOR);
2908                 return err;
2909         }
2910
2911         /*
2912          * allocate all necessary structs
2913          */
2914         init_waitqueue_head(&drbd_pp_wait);
2915
2916         drbd_proc = NULL; /* play safe for drbd_cleanup */
2917         idr_init(&drbd_devices);
2918
2919         mutex_init(&resources_mutex);
2920         INIT_LIST_HEAD(&drbd_resources);
2921
2922         err = drbd_genl_register();
2923         if (err) {
2924                 pr_err("unable to register generic netlink family\n");
2925                 goto fail;
2926         }
2927
2928         err = drbd_create_mempools();
2929         if (err)
2930                 goto fail;
2931
2932         err = -ENOMEM;
2933         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2934         if (!drbd_proc) {
2935                 pr_err("unable to register proc file\n");
2936                 goto fail;
2937         }
2938
2939         retry.wq = create_singlethread_workqueue("drbd-reissue");
2940         if (!retry.wq) {
2941                 pr_err("unable to create retry workqueue\n");
2942                 goto fail;
2943         }
2944         INIT_WORK(&retry.worker, do_retry);
2945         spin_lock_init(&retry.lock);
2946         INIT_LIST_HEAD(&retry.writes);
2947
2948         if (drbd_debugfs_init())
2949                 pr_notice("failed to initialize debugfs -- will not be available\n");
2950
2951         pr_info("initialized. "
2952                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2953                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2954         pr_info("%s\n", drbd_buildtag());
2955         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2956         return 0; /* Success! */
2957
2958 fail:
2959         drbd_cleanup();
2960         if (err == -ENOMEM)
2961                 pr_err("ran out of memory\n");
2962         else
2963                 pr_err("initialization failure\n");
2964         return err;
2965 }
2966
2967 static void drbd_free_one_sock(struct drbd_socket *ds)
2968 {
2969         struct socket *s;
2970         mutex_lock(&ds->mutex);
2971         s = ds->socket;
2972         ds->socket = NULL;
2973         mutex_unlock(&ds->mutex);
2974         if (s) {
2975                 /* so debugfs does not need to mutex_lock() */
2976                 synchronize_rcu();
2977                 kernel_sock_shutdown(s, SHUT_RDWR);
2978                 sock_release(s);
2979         }
2980 }
2981
2982 void drbd_free_sock(struct drbd_connection *connection)
2983 {
2984         if (connection->data.socket)
2985                 drbd_free_one_sock(&connection->data);
2986         if (connection->meta.socket)
2987                 drbd_free_one_sock(&connection->meta);
2988 }
2989
2990 /* meta data management */
2991
2992 void conn_md_sync(struct drbd_connection *connection)
2993 {
2994         struct drbd_peer_device *peer_device;
2995         int vnr;
2996
2997         rcu_read_lock();
2998         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2999                 struct drbd_device *device = peer_device->device;
3000
3001                 kref_get(&device->kref);
3002                 rcu_read_unlock();
3003                 drbd_md_sync(device);
3004                 kref_put(&device->kref, drbd_destroy_device);
3005                 rcu_read_lock();
3006         }
3007         rcu_read_unlock();
3008 }
3009
3010 /* aligned 4kByte */
3011 struct meta_data_on_disk {
3012         u64 la_size_sect;      /* last agreed size. */
3013         u64 uuid[UI_SIZE];   /* UUIDs. */
3014         u64 device_uuid;
3015         u64 reserved_u64_1;
3016         u32 flags;             /* MDF */
3017         u32 magic;
3018         u32 md_size_sect;
3019         u32 al_offset;         /* offset to this block */
3020         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3021               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3022         u32 bm_offset;         /* offset to the bitmap, from here */
3023         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3024         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3025
3026         /* see al_tr_number_to_on_disk_sector() */
3027         u32 al_stripes;
3028         u32 al_stripe_size_4k;
3029
3030         u8 reserved_u8[4096 - (7*8 + 10*4)];
3031 } __packed;
3032
3033
3034
3035 void drbd_md_write(struct drbd_device *device, void *b)
3036 {
3037         struct meta_data_on_disk *buffer = b;
3038         sector_t sector;
3039         int i;
3040
3041         memset(buffer, 0, sizeof(*buffer));
3042
3043         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3044         for (i = UI_CURRENT; i < UI_SIZE; i++)
3045                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3046         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3047         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3048
3049         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3050         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3051         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3052         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3053         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3054
3055         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3056         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3057
3058         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3059         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3060
3061         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3062         sector = device->ldev->md.md_offset;
3063
3064         if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3065                 /* this was a try anyways ... */
3066                 drbd_err(device, "meta data update failed!\n");
3067                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3068         }
3069 }
3070
3071 /**
3072  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3073  * @device:     DRBD device.
3074  */
3075 void drbd_md_sync(struct drbd_device *device)
3076 {
3077         struct meta_data_on_disk *buffer;
3078
3079         /* Don't accidentally change the DRBD meta data layout. */
3080         BUILD_BUG_ON(UI_SIZE != 4);
3081         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3082
3083         del_timer(&device->md_sync_timer);
3084         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3085         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3086                 return;
3087
3088         /* We use here D_FAILED and not D_ATTACHING because we try to write
3089          * metadata even if we detach due to a disk failure! */
3090         if (!get_ldev_if_state(device, D_FAILED))
3091                 return;
3092
3093         buffer = drbd_md_get_buffer(device, __func__);
3094         if (!buffer)
3095                 goto out;
3096
3097         drbd_md_write(device, buffer);
3098
3099         /* Update device->ldev->md.la_size_sect,
3100          * since we updated it on metadata. */
3101         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3102
3103         drbd_md_put_buffer(device);
3104 out:
3105         put_ldev(device);
3106 }
3107
3108 static int check_activity_log_stripe_size(struct drbd_device *device,
3109                 struct meta_data_on_disk *on_disk,
3110                 struct drbd_md *in_core)
3111 {
3112         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3113         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3114         u64 al_size_4k;
3115
3116         /* both not set: default to old fixed size activity log */
3117         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3118                 al_stripes = 1;
3119                 al_stripe_size_4k = MD_32kB_SECT/8;
3120         }
3121
3122         /* some paranoia plausibility checks */
3123
3124         /* we need both values to be set */
3125         if (al_stripes == 0 || al_stripe_size_4k == 0)
3126                 goto err;
3127
3128         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3129
3130         /* Upper limit of activity log area, to avoid potential overflow
3131          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3132          * than 72 * 4k blocks total only increases the amount of history,
3133          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3134         if (al_size_4k > (16 * 1024 * 1024/4))
3135                 goto err;
3136
3137         /* Lower limit: we need at least 8 transaction slots (32kB)
3138          * to not break existing setups */
3139         if (al_size_4k < MD_32kB_SECT/8)
3140                 goto err;
3141
3142         in_core->al_stripe_size_4k = al_stripe_size_4k;
3143         in_core->al_stripes = al_stripes;
3144         in_core->al_size_4k = al_size_4k;
3145
3146         return 0;
3147 err:
3148         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3149                         al_stripes, al_stripe_size_4k);
3150         return -EINVAL;
3151 }
3152
3153 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3154 {
3155         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3156         struct drbd_md *in_core = &bdev->md;
3157         s32 on_disk_al_sect;
3158         s32 on_disk_bm_sect;
3159
3160         /* The on-disk size of the activity log, calculated from offsets, and
3161          * the size of the activity log calculated from the stripe settings,
3162          * should match.
3163          * Though we could relax this a bit: it is ok, if the striped activity log
3164          * fits in the available on-disk activity log size.
3165          * Right now, that would break how resize is implemented.
3166          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3167          * of possible unused padding space in the on disk layout. */
3168         if (in_core->al_offset < 0) {
3169                 if (in_core->bm_offset > in_core->al_offset)
3170                         goto err;
3171                 on_disk_al_sect = -in_core->al_offset;
3172                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3173         } else {
3174                 if (in_core->al_offset != MD_4kB_SECT)
3175                         goto err;
3176                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3177                         goto err;
3178
3179                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3180                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3181         }
3182
3183         /* old fixed size meta data is exactly that: fixed. */
3184         if (in_core->meta_dev_idx >= 0) {
3185                 if (in_core->md_size_sect != MD_128MB_SECT
3186                 ||  in_core->al_offset != MD_4kB_SECT
3187                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3188                 ||  in_core->al_stripes != 1
3189                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3190                         goto err;
3191         }
3192
3193         if (capacity < in_core->md_size_sect)
3194                 goto err;
3195         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3196                 goto err;
3197
3198         /* should be aligned, and at least 32k */
3199         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3200                 goto err;
3201
3202         /* should fit (for now: exactly) into the available on-disk space;
3203          * overflow prevention is in check_activity_log_stripe_size() above. */
3204         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3205                 goto err;
3206
3207         /* again, should be aligned */
3208         if (in_core->bm_offset & 7)
3209                 goto err;
3210
3211         /* FIXME check for device grow with flex external meta data? */
3212
3213         /* can the available bitmap space cover the last agreed device size? */
3214         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3215                 goto err;
3216
3217         return 0;
3218
3219 err:
3220         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3221                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3222                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3223                         in_core->meta_dev_idx,
3224                         in_core->al_stripes, in_core->al_stripe_size_4k,
3225                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3226                         (unsigned long long)in_core->la_size_sect,
3227                         (unsigned long long)capacity);
3228
3229         return -EINVAL;
3230 }
3231
3232
3233 /**
3234  * drbd_md_read() - Reads in the meta data super block
3235  * @device:     DRBD device.
3236  * @bdev:       Device from which the meta data should be read in.
3237  *
3238  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3239  * something goes wrong.
3240  *
3241  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3242  * even before @bdev is assigned to @device->ldev.
3243  */
3244 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3245 {
3246         struct meta_data_on_disk *buffer;
3247         u32 magic, flags;
3248         int i, rv = NO_ERROR;
3249
3250         if (device->state.disk != D_DISKLESS)
3251                 return ERR_DISK_CONFIGURED;
3252
3253         buffer = drbd_md_get_buffer(device, __func__);
3254         if (!buffer)
3255                 return ERR_NOMEM;
3256
3257         /* First, figure out where our meta data superblock is located,
3258          * and read it. */
3259         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3260         bdev->md.md_offset = drbd_md_ss(bdev);
3261         /* Even for (flexible or indexed) external meta data,
3262          * initially restrict us to the 4k superblock for now.
3263          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3264         bdev->md.md_size_sect = 8;
3265
3266         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3267                 /* NOTE: can't do normal error processing here as this is
3268                    called BEFORE disk is attached */
3269                 drbd_err(device, "Error while reading metadata.\n");
3270                 rv = ERR_IO_MD_DISK;
3271                 goto err;
3272         }
3273
3274         magic = be32_to_cpu(buffer->magic);
3275         flags = be32_to_cpu(buffer->flags);
3276         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3277             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3278                         /* btw: that's Activity Log clean, not "all" clean. */
3279                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3280                 rv = ERR_MD_UNCLEAN;
3281                 goto err;
3282         }
3283
3284         rv = ERR_MD_INVALID;
3285         if (magic != DRBD_MD_MAGIC_08) {
3286                 if (magic == DRBD_MD_MAGIC_07)
3287                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3288                 else
3289                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3290                 goto err;
3291         }
3292
3293         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3294                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3295                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3296                 goto err;
3297         }
3298
3299
3300         /* convert to in_core endian */
3301         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3302         for (i = UI_CURRENT; i < UI_SIZE; i++)
3303                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3304         bdev->md.flags = be32_to_cpu(buffer->flags);
3305         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3306
3307         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3308         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3309         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3310
3311         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3312                 goto err;
3313         if (check_offsets_and_sizes(device, bdev))
3314                 goto err;
3315
3316         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3317                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3318                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3319                 goto err;
3320         }
3321         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3322                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3323                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3324                 goto err;
3325         }
3326
3327         rv = NO_ERROR;
3328
3329         spin_lock_irq(&device->resource->req_lock);
3330         if (device->state.conn < C_CONNECTED) {
3331                 unsigned int peer;
3332                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3333                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3334                 device->peer_max_bio_size = peer;
3335         }
3336         spin_unlock_irq(&device->resource->req_lock);
3337
3338  err:
3339         drbd_md_put_buffer(device);
3340
3341         return rv;
3342 }
3343
3344 /**
3345  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3346  * @device:     DRBD device.
3347  *
3348  * Call this function if you change anything that should be written to
3349  * the meta-data super block. This function sets MD_DIRTY, and starts a
3350  * timer that ensures that within five seconds you have to call drbd_md_sync().
3351  */
3352 #ifdef DEBUG
3353 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3354 {
3355         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3356                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3357                 device->last_md_mark_dirty.line = line;
3358                 device->last_md_mark_dirty.func = func;
3359         }
3360 }
3361 #else
3362 void drbd_md_mark_dirty(struct drbd_device *device)
3363 {
3364         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3365                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3366 }
3367 #endif
3368
3369 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3370 {
3371         int i;
3372
3373         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3374                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3375 }
3376
3377 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3378 {
3379         if (idx == UI_CURRENT) {
3380                 if (device->state.role == R_PRIMARY)
3381                         val |= 1;
3382                 else
3383                         val &= ~((u64)1);
3384
3385                 drbd_set_ed_uuid(device, val);
3386         }
3387
3388         device->ldev->md.uuid[idx] = val;
3389         drbd_md_mark_dirty(device);
3390 }
3391
3392 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3393 {
3394         unsigned long flags;
3395         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3396         __drbd_uuid_set(device, idx, val);
3397         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3398 }
3399
3400 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3401 {
3402         unsigned long flags;
3403         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3404         if (device->ldev->md.uuid[idx]) {
3405                 drbd_uuid_move_history(device);
3406                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3407         }
3408         __drbd_uuid_set(device, idx, val);
3409         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3410 }
3411
3412 /**
3413  * drbd_uuid_new_current() - Creates a new current UUID
3414  * @device:     DRBD device.
3415  *
3416  * Creates a new current UUID, and rotates the old current UUID into
3417  * the bitmap slot. Causes an incremental resync upon next connect.
3418  */
3419 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3420 {
3421         u64 val;
3422         unsigned long long bm_uuid;
3423
3424         get_random_bytes(&val, sizeof(u64));
3425
3426         spin_lock_irq(&device->ldev->md.uuid_lock);
3427         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3428
3429         if (bm_uuid)
3430                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3431
3432         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3433         __drbd_uuid_set(device, UI_CURRENT, val);
3434         spin_unlock_irq(&device->ldev->md.uuid_lock);
3435
3436         drbd_print_uuids(device, "new current UUID");
3437         /* get it to stable storage _now_ */
3438         drbd_md_sync(device);
3439 }
3440
3441 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3442 {
3443         unsigned long flags;
3444         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3445                 return;
3446
3447         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3448         if (val == 0) {
3449                 drbd_uuid_move_history(device);
3450                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3451                 device->ldev->md.uuid[UI_BITMAP] = 0;
3452         } else {
3453                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3454                 if (bm_uuid)
3455                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3456
3457                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3458         }
3459         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3460
3461         drbd_md_mark_dirty(device);
3462 }
3463
3464 /**
3465  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3466  * @device:     DRBD device.
3467  *
3468  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3469  */
3470 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3471 {
3472         int rv = -EIO;
3473
3474         drbd_md_set_flag(device, MDF_FULL_SYNC);
3475         drbd_md_sync(device);
3476         drbd_bm_set_all(device);
3477
3478         rv = drbd_bm_write(device);
3479
3480         if (!rv) {
3481                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3482                 drbd_md_sync(device);
3483         }
3484
3485         return rv;
3486 }
3487
3488 /**
3489  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3490  * @device:     DRBD device.
3491  *
3492  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3493  */
3494 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3495 {
3496         drbd_resume_al(device);
3497         drbd_bm_clear_all(device);
3498         return drbd_bm_write(device);
3499 }
3500
3501 static int w_bitmap_io(struct drbd_work *w, int unused)
3502 {
3503         struct drbd_device *device =
3504                 container_of(w, struct drbd_device, bm_io_work.w);
3505         struct bm_io_work *work = &device->bm_io_work;
3506         int rv = -EIO;
3507
3508         D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3509
3510         if (get_ldev(device)) {
3511                 drbd_bm_lock(device, work->why, work->flags);
3512                 rv = work->io_fn(device);
3513                 drbd_bm_unlock(device);
3514                 put_ldev(device);
3515         }
3516
3517         clear_bit_unlock(BITMAP_IO, &device->flags);
3518         wake_up(&device->misc_wait);
3519
3520         if (work->done)
3521                 work->done(device, rv);
3522
3523         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3524         work->why = NULL;
3525         work->flags = 0;
3526
3527         return 0;
3528 }
3529
3530 /**
3531  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3532  * @device:     DRBD device.
3533  * @io_fn:      IO callback to be called when bitmap IO is possible
3534  * @done:       callback to be called after the bitmap IO was performed
3535  * @why:        Descriptive text of the reason for doing the IO
3536  *
3537  * While IO on the bitmap happens we freeze application IO thus we ensure
3538  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3539  * called from worker context. It MUST NOT be used while a previous such
3540  * work is still pending!
3541  *
3542  * Its worker function encloses the call of io_fn() by get_ldev() and
3543  * put_ldev().
3544  */
3545 void drbd_queue_bitmap_io(struct drbd_device *device,
3546                           int (*io_fn)(struct drbd_device *),
3547                           void (*done)(struct drbd_device *, int),
3548                           char *why, enum bm_flag flags)
3549 {
3550         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3551
3552         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3553         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3554         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3555         if (device->bm_io_work.why)
3556                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3557                         why, device->bm_io_work.why);
3558
3559         device->bm_io_work.io_fn = io_fn;
3560         device->bm_io_work.done = done;
3561         device->bm_io_work.why = why;
3562         device->bm_io_work.flags = flags;
3563
3564         spin_lock_irq(&device->resource->req_lock);
3565         set_bit(BITMAP_IO, &device->flags);
3566         /* don't wait for pending application IO if the caller indicates that
3567          * application IO does not conflict anyways. */
3568         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3569                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3570                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3571                                         &device->bm_io_work.w);
3572         }
3573         spin_unlock_irq(&device->resource->req_lock);
3574 }
3575
3576 /**
3577  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3578  * @device:     DRBD device.
3579  * @io_fn:      IO callback to be called when bitmap IO is possible
3580  * @why:        Descriptive text of the reason for doing the IO
3581  *
3582  * freezes application IO while that the actual IO operations runs. This
3583  * functions MAY NOT be called from worker context.
3584  */
3585 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3586                 char *why, enum bm_flag flags)
3587 {
3588         int rv;
3589
3590         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3591
3592         if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3593                 drbd_suspend_io(device);
3594
3595         drbd_bm_lock(device, why, flags);
3596         rv = io_fn(device);
3597         drbd_bm_unlock(device);
3598
3599         if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3600                 drbd_resume_io(device);
3601
3602         return rv;
3603 }
3604
3605 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3606 {
3607         if ((device->ldev->md.flags & flag) != flag) {
3608                 drbd_md_mark_dirty(device);
3609                 device->ldev->md.flags |= flag;
3610         }
3611 }
3612
3613 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3614 {
3615         if ((device->ldev->md.flags & flag) != 0) {
3616                 drbd_md_mark_dirty(device);
3617                 device->ldev->md.flags &= ~flag;
3618         }
3619 }
3620 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3621 {
3622         return (bdev->md.flags & flag) != 0;
3623 }
3624
3625 static void md_sync_timer_fn(unsigned long data)
3626 {
3627         struct drbd_device *device = (struct drbd_device *) data;
3628         drbd_device_post_work(device, MD_SYNC);
3629 }
3630
3631 const char *cmdname(enum drbd_packet cmd)
3632 {
3633         /* THINK may need to become several global tables
3634          * when we want to support more than
3635          * one PRO_VERSION */
3636         static const char *cmdnames[] = {
3637                 [P_DATA]                = "Data",
3638                 [P_DATA_REPLY]          = "DataReply",
3639                 [P_RS_DATA_REPLY]       = "RSDataReply",
3640                 [P_BARRIER]             = "Barrier",
3641                 [P_BITMAP]              = "ReportBitMap",
3642                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3643                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3644                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3645                 [P_DATA_REQUEST]        = "DataRequest",
3646                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3647                 [P_SYNC_PARAM]          = "SyncParam",
3648                 [P_SYNC_PARAM89]        = "SyncParam89",
3649                 [P_PROTOCOL]            = "ReportProtocol",
3650                 [P_UUIDS]               = "ReportUUIDs",
3651                 [P_SIZES]               = "ReportSizes",
3652                 [P_STATE]               = "ReportState",
3653                 [P_SYNC_UUID]           = "ReportSyncUUID",
3654                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3655                 [P_AUTH_RESPONSE]       = "AuthResponse",
3656                 [P_PING]                = "Ping",
3657                 [P_PING_ACK]            = "PingAck",
3658                 [P_RECV_ACK]            = "RecvAck",
3659                 [P_WRITE_ACK]           = "WriteAck",
3660                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3661                 [P_SUPERSEDED]          = "Superseded",
3662                 [P_NEG_ACK]             = "NegAck",
3663                 [P_NEG_DREPLY]          = "NegDReply",
3664                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3665                 [P_BARRIER_ACK]         = "BarrierAck",
3666                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3667                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3668                 [P_OV_REQUEST]          = "OVRequest",
3669                 [P_OV_REPLY]            = "OVReply",
3670                 [P_OV_RESULT]           = "OVResult",
3671                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3672                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3673                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3674                 [P_DELAY_PROBE]         = "DelayProbe",
3675                 [P_OUT_OF_SYNC]         = "OutOfSync",
3676                 [P_RETRY_WRITE]         = "RetryWrite",
3677                 [P_RS_CANCEL]           = "RSCancel",
3678                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3679                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3680                 [P_RETRY_WRITE]         = "retry_write",
3681                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3682
3683                 /* enum drbd_packet, but not commands - obsoleted flags:
3684                  *      P_MAY_IGNORE
3685                  *      P_MAX_OPT_CMD
3686                  */
3687         };
3688
3689         /* too big for the array: 0xfffX */
3690         if (cmd == P_INITIAL_META)
3691                 return "InitialMeta";
3692         if (cmd == P_INITIAL_DATA)
3693                 return "InitialData";
3694         if (cmd == P_CONNECTION_FEATURES)
3695                 return "ConnectionFeatures";
3696         if (cmd >= ARRAY_SIZE(cmdnames))
3697                 return "Unknown";
3698         return cmdnames[cmd];
3699 }
3700
3701 /**
3702  * drbd_wait_misc  -  wait for a request to make progress
3703  * @device:     device associated with the request
3704  * @i:          the struct drbd_interval embedded in struct drbd_request or
3705  *              struct drbd_peer_request
3706  */
3707 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3708 {
3709         struct net_conf *nc;
3710         DEFINE_WAIT(wait);
3711         long timeout;
3712
3713         rcu_read_lock();
3714         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3715         if (!nc) {
3716                 rcu_read_unlock();
3717                 return -ETIMEDOUT;
3718         }
3719         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3720         rcu_read_unlock();
3721
3722         /* Indicate to wake up device->misc_wait on progress.  */
3723         i->waiting = true;
3724         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3725         spin_unlock_irq(&device->resource->req_lock);
3726         timeout = schedule_timeout(timeout);
3727         finish_wait(&device->misc_wait, &wait);
3728         spin_lock_irq(&device->resource->req_lock);
3729         if (!timeout || device->state.conn < C_CONNECTED)
3730                 return -ETIMEDOUT;
3731         if (signal_pending(current))
3732                 return -ERESTARTSYS;
3733         return 0;
3734 }
3735
3736 void lock_all_resources(void)
3737 {
3738         struct drbd_resource *resource;
3739         int __maybe_unused i = 0;
3740
3741         mutex_lock(&resources_mutex);
3742         local_irq_disable();
3743         for_each_resource(resource, &drbd_resources)
3744                 spin_lock_nested(&resource->req_lock, i++);
3745 }
3746
3747 void unlock_all_resources(void)
3748 {
3749         struct drbd_resource *resource;
3750
3751         for_each_resource(resource, &drbd_resources)
3752                 spin_unlock(&resource->req_lock);
3753         local_irq_enable();
3754         mutex_unlock(&resources_mutex);
3755 }
3756
3757 #ifdef CONFIG_DRBD_FAULT_INJECTION
3758 /* Fault insertion support including random number generator shamelessly
3759  * stolen from kernel/rcutorture.c */
3760 struct fault_random_state {
3761         unsigned long state;
3762         unsigned long count;
3763 };
3764
3765 #define FAULT_RANDOM_MULT 39916801  /* prime */
3766 #define FAULT_RANDOM_ADD        479001701 /* prime */
3767 #define FAULT_RANDOM_REFRESH 10000
3768
3769 /*
3770  * Crude but fast random-number generator.  Uses a linear congruential
3771  * generator, with occasional help from get_random_bytes().
3772  */
3773 static unsigned long
3774 _drbd_fault_random(struct fault_random_state *rsp)
3775 {
3776         long refresh;
3777
3778         if (!rsp->count--) {
3779                 get_random_bytes(&refresh, sizeof(refresh));
3780                 rsp->state += refresh;
3781                 rsp->count = FAULT_RANDOM_REFRESH;
3782         }
3783         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3784         return swahw32(rsp->state);
3785 }
3786
3787 static char *
3788 _drbd_fault_str(unsigned int type) {
3789         static char *_faults[] = {
3790                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3791                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3792                 [DRBD_FAULT_RS_WR] = "Resync write",
3793                 [DRBD_FAULT_RS_RD] = "Resync read",
3794                 [DRBD_FAULT_DT_WR] = "Data write",
3795                 [DRBD_FAULT_DT_RD] = "Data read",
3796                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3797                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3798                 [DRBD_FAULT_AL_EE] = "EE allocation",
3799                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3800         };
3801
3802         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3803 }
3804
3805 unsigned int
3806 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3807 {
3808         static struct fault_random_state rrs = {0, 0};
3809
3810         unsigned int ret = (
3811                 (fault_devs == 0 ||
3812                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3813                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3814
3815         if (ret) {
3816                 fault_count++;
3817
3818                 if (__ratelimit(&drbd_ratelimit_state))
3819                         drbd_warn(device, "***Simulating %s failure\n",
3820                                 _drbd_fault_str(type));
3821         }
3822
3823         return ret;
3824 }
3825 #endif
3826
3827 const char *drbd_buildtag(void)
3828 {
3829         /* DRBD built from external sources has here a reference to the
3830            git hash of the source code. */
3831
3832         static char buildtag[38] = "\0uilt-in";
3833
3834         if (buildtag[0] == 0) {
3835 #ifdef MODULE
3836                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3837 #else
3838                 buildtag[0] = 'b';
3839 #endif
3840         }
3841
3842         return buildtag;
3843 }
3844
3845 module_init(drbd_init)
3846 module_exit(drbd_cleanup)
3847
3848 EXPORT_SYMBOL(drbd_conn_str);
3849 EXPORT_SYMBOL(drbd_role_str);
3850 EXPORT_SYMBOL(drbd_disk_str);
3851 EXPORT_SYMBOL(drbd_set_st_err_str);