]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/qcom-timer.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / clocksource / qcom-timer.c
1 /*
2  *
3  * Copyright (C) 2007 Google, Inc.
4  * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/sched_clock.h>
28
29 #include <asm/delay.h>
30
31 #define TIMER_MATCH_VAL                 0x0000
32 #define TIMER_COUNT_VAL                 0x0004
33 #define TIMER_ENABLE                    0x0008
34 #define TIMER_ENABLE_CLR_ON_MATCH_EN    BIT(1)
35 #define TIMER_ENABLE_EN                 BIT(0)
36 #define TIMER_CLEAR                     0x000C
37 #define DGT_CLK_CTL                     0x10
38 #define DGT_CLK_CTL_DIV_4               0x3
39 #define TIMER_STS_GPT0_CLR_PEND         BIT(10)
40
41 #define GPT_HZ 32768
42
43 static void __iomem *event_base;
44 static void __iomem *sts_base;
45
46 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
47 {
48         struct clock_event_device *evt = dev_id;
49         /* Stop the timer tick */
50         if (clockevent_state_oneshot(evt)) {
51                 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
52                 ctrl &= ~TIMER_ENABLE_EN;
53                 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
54         }
55         evt->event_handler(evt);
56         return IRQ_HANDLED;
57 }
58
59 static int msm_timer_set_next_event(unsigned long cycles,
60                                     struct clock_event_device *evt)
61 {
62         u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
63
64         ctrl &= ~TIMER_ENABLE_EN;
65         writel_relaxed(ctrl, event_base + TIMER_ENABLE);
66
67         writel_relaxed(ctrl, event_base + TIMER_CLEAR);
68         writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
69
70         if (sts_base)
71                 while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
72                         cpu_relax();
73
74         writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
75         return 0;
76 }
77
78 static int msm_timer_shutdown(struct clock_event_device *evt)
79 {
80         u32 ctrl;
81
82         ctrl = readl_relaxed(event_base + TIMER_ENABLE);
83         ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
84         writel_relaxed(ctrl, event_base + TIMER_ENABLE);
85         return 0;
86 }
87
88 static struct clock_event_device __percpu *msm_evt;
89
90 static void __iomem *source_base;
91
92 static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
93 {
94         return readl_relaxed(source_base + TIMER_COUNT_VAL);
95 }
96
97 static struct clocksource msm_clocksource = {
98         .name   = "dg_timer",
99         .rating = 300,
100         .read   = msm_read_timer_count,
101         .mask   = CLOCKSOURCE_MASK(32),
102         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
103 };
104
105 static int msm_timer_irq;
106 static int msm_timer_has_ppi;
107
108 static int msm_local_timer_setup(struct clock_event_device *evt)
109 {
110         int cpu = smp_processor_id();
111         int err;
112
113         evt->irq = msm_timer_irq;
114         evt->name = "msm_timer";
115         evt->features = CLOCK_EVT_FEAT_ONESHOT;
116         evt->rating = 200;
117         evt->set_state_shutdown = msm_timer_shutdown;
118         evt->set_state_oneshot = msm_timer_shutdown;
119         evt->tick_resume = msm_timer_shutdown;
120         evt->set_next_event = msm_timer_set_next_event;
121         evt->cpumask = cpumask_of(cpu);
122
123         clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
124
125         if (msm_timer_has_ppi) {
126                 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
127         } else {
128                 err = request_irq(evt->irq, msm_timer_interrupt,
129                                 IRQF_TIMER | IRQF_NOBALANCING |
130                                 IRQF_TRIGGER_RISING, "gp_timer", evt);
131                 if (err)
132                         pr_err("request_irq failed\n");
133         }
134
135         return 0;
136 }
137
138 static void msm_local_timer_stop(struct clock_event_device *evt)
139 {
140         evt->set_state_shutdown(evt);
141         disable_percpu_irq(evt->irq);
142 }
143
144 static int msm_timer_cpu_notify(struct notifier_block *self,
145                                            unsigned long action, void *hcpu)
146 {
147         /*
148          * Grab cpu pointer in each case to avoid spurious
149          * preemptible warnings
150          */
151         switch (action & ~CPU_TASKS_FROZEN) {
152         case CPU_STARTING:
153                 msm_local_timer_setup(this_cpu_ptr(msm_evt));
154                 break;
155         case CPU_DYING:
156                 msm_local_timer_stop(this_cpu_ptr(msm_evt));
157                 break;
158         }
159
160         return NOTIFY_OK;
161 }
162
163 static struct notifier_block msm_timer_cpu_nb = {
164         .notifier_call = msm_timer_cpu_notify,
165 };
166
167 static u64 notrace msm_sched_clock_read(void)
168 {
169         return msm_clocksource.read(&msm_clocksource);
170 }
171
172 static unsigned long msm_read_current_timer(void)
173 {
174         return msm_clocksource.read(&msm_clocksource);
175 }
176
177 static struct delay_timer msm_delay_timer = {
178         .read_current_timer = msm_read_current_timer,
179 };
180
181 static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
182                                   bool percpu)
183 {
184         struct clocksource *cs = &msm_clocksource;
185         int res = 0;
186
187         msm_timer_irq = irq;
188         msm_timer_has_ppi = percpu;
189
190         msm_evt = alloc_percpu(struct clock_event_device);
191         if (!msm_evt) {
192                 pr_err("memory allocation failed for clockevents\n");
193                 goto err;
194         }
195
196         if (percpu)
197                 res = request_percpu_irq(irq, msm_timer_interrupt,
198                                          "gp_timer", msm_evt);
199
200         if (res) {
201                 pr_err("request_percpu_irq failed\n");
202         } else {
203                 res = register_cpu_notifier(&msm_timer_cpu_nb);
204                 if (res) {
205                         free_percpu_irq(irq, msm_evt);
206                         goto err;
207                 }
208
209                 /* Immediately configure the timer on the boot CPU */
210                 msm_local_timer_setup(raw_cpu_ptr(msm_evt));
211         }
212
213 err:
214         writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
215         res = clocksource_register_hz(cs, dgt_hz);
216         if (res)
217                 pr_err("clocksource_register failed\n");
218         sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
219         msm_delay_timer.freq = dgt_hz;
220         register_current_timer_delay(&msm_delay_timer);
221
222         return res;
223 }
224
225 static int __init msm_dt_timer_init(struct device_node *np)
226 {
227         u32 freq;
228         int irq, ret;
229         struct resource res;
230         u32 percpu_offset;
231         void __iomem *base;
232         void __iomem *cpu0_base;
233
234         base = of_iomap(np, 0);
235         if (!base) {
236                 pr_err("Failed to map event base\n");
237                 return -ENXIO;
238         }
239
240         /* We use GPT0 for the clockevent */
241         irq = irq_of_parse_and_map(np, 1);
242         if (irq <= 0) {
243                 pr_err("Can't get irq\n");
244                 return -EINVAL;
245         }
246
247         /* We use CPU0's DGT for the clocksource */
248         if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
249                 percpu_offset = 0;
250
251         ret = of_address_to_resource(np, 0, &res);
252         if (ret) {
253                 pr_err("Failed to parse DGT resource\n");
254                 return ret;
255         }
256
257         cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
258         if (!cpu0_base) {
259                 pr_err("Failed to map source base\n");
260                 return -EINVAL;
261         }
262
263         if (of_property_read_u32(np, "clock-frequency", &freq)) {
264                 pr_err("Unknown frequency\n");
265                 return -EINVAL;
266         }
267
268         event_base = base + 0x4;
269         sts_base = base + 0x88;
270         source_base = cpu0_base + 0x24;
271         freq /= 4;
272         writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
273
274         return msm_timer_init(freq, 32, irq, !!percpu_offset);
275 }
276 CLOCKSOURCE_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
277 CLOCKSOURCE_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);