]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
mtd: nand: atmel: Add ->setup_data_interface() hooks
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL      (50 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83         return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88         return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93         return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98         return div_ext_fp(percent, 100);
99 }
100
101 /**
102  * struct sample -      Store performance sample
103  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
104  *                      performance during last sample period
105  * @busy_scaled:        Scaled busy value which is used to calculate next
106  *                      P state. This can be different than core_avg_perf
107  *                      to account for cpu idle period
108  * @aperf:              Difference of actual performance frequency clock count
109  *                      read from APERF MSR between last and current sample
110  * @mperf:              Difference of maximum performance frequency clock count
111  *                      read from MPERF MSR between last and current sample
112  * @tsc:                Difference of time stamp counter between last and
113  *                      current sample
114  * @time:               Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120         int32_t core_avg_perf;
121         int32_t busy_scaled;
122         u64 aperf;
123         u64 mperf;
124         u64 tsc;
125         u64 time;
126 };
127
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:     Current requested P state
131  * @min_pstate:         Min P state possible for this platform
132  * @max_pstate:         Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *                      This can be higher than the max_pstate which can
135  *                      be limited by platform thermal design power limits
136  * @scaling:            Scaling factor to  convert frequency to cpufreq
137  *                      frequency units
138  * @turbo_pstate:       Max Turbo P state possible for this platform
139  * @max_freq:           @max_pstate frequency in cpufreq units
140  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145         int     current_pstate;
146         int     min_pstate;
147         int     max_pstate;
148         int     max_pstate_physical;
149         int     scaling;
150         int     turbo_pstate;
151         unsigned int max_freq;
152         unsigned int turbo_freq;
153 };
154
155 /**
156  * struct vid_data -    Stores voltage information data
157  * @min:                VID data for this platform corresponding to
158  *                      the lowest P state
159  * @max:                VID data corresponding to the highest P State.
160  * @turbo:              VID data for turbo P state
161  * @ratio:              Ratio of (vid max - vid min) /
162  *                      (max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169         int min;
170         int max;
171         int turbo;
172         int32_t ratio;
173 };
174
175 /**
176  * struct _pid -        Stores PID data
177  * @setpoint:           Target set point for busyness or performance
178  * @integral:           Storage for accumulated error values
179  * @p_gain:             PID proportional gain
180  * @i_gain:             PID integral gain
181  * @d_gain:             PID derivative gain
182  * @deadband:           PID deadband
183  * @last_err:           Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188         int setpoint;
189         int32_t integral;
190         int32_t p_gain;
191         int32_t i_gain;
192         int32_t d_gain;
193         int deadband;
194         int32_t last_err;
195 };
196
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:           Whether or not to use turbo P-states.
200  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
201  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
202  *                      not the maximum reported turbo P-state is different from
203  *                      the maximum reported non-turbo one.
204  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
205  *                      P-state capacity.
206  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
207  *                      P-state capacity.
208  */
209 struct global_params {
210         bool no_turbo;
211         bool turbo_disabled;
212         int max_perf_pct;
213         int min_perf_pct;
214 };
215
216 /**
217  * struct cpudata -     Per CPU instance data storage
218  * @cpu:                CPU number for this instance data
219  * @policy:             CPUFreq policy value
220  * @update_util:        CPUFreq utility callback information
221  * @update_util_set:    CPUFreq utility callback is set
222  * @iowait_boost:       iowait-related boost fraction
223  * @last_update:        Time of the last update.
224  * @pstate:             Stores P state limits for this CPU
225  * @vid:                Stores VID limits for this CPU
226  * @pid:                Stores PID parameters for this CPU
227  * @last_sample_time:   Last Sample time
228  * @prev_aperf:         Last APERF value read from APERF MSR
229  * @prev_mperf:         Last MPERF value read from MPERF MSR
230  * @prev_tsc:           Last timestamp counter (TSC) value
231  * @prev_cummulative_iowait: IO Wait time difference from last and
232  *                      current sample
233  * @sample:             Storage for storing last Sample data
234  * @min_perf:           Minimum capacity limit as a fraction of the maximum
235  *                      turbo P-state capacity.
236  * @max_perf:           Maximum capacity limit as a fraction of the maximum
237  *                      turbo P-state capacity.
238  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
239  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
240  * @epp_powersave:      Last saved HWP energy performance preference
241  *                      (EPP) or energy performance bias (EPB),
242  *                      when policy switched to performance
243  * @epp_policy:         Last saved policy used to set EPP/EPB
244  * @epp_default:        Power on default HWP energy performance
245  *                      preference/bias
246  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
247  *                      operation
248  *
249  * This structure stores per CPU instance data for all CPUs.
250  */
251 struct cpudata {
252         int cpu;
253
254         unsigned int policy;
255         struct update_util_data update_util;
256         bool   update_util_set;
257
258         struct pstate_data pstate;
259         struct vid_data vid;
260         struct _pid pid;
261
262         u64     last_update;
263         u64     last_sample_time;
264         u64     prev_aperf;
265         u64     prev_mperf;
266         u64     prev_tsc;
267         u64     prev_cummulative_iowait;
268         struct sample sample;
269         int32_t min_perf;
270         int32_t max_perf;
271 #ifdef CONFIG_ACPI
272         struct acpi_processor_performance acpi_perf_data;
273         bool valid_pss_table;
274 #endif
275         unsigned int iowait_boost;
276         s16 epp_powersave;
277         s16 epp_policy;
278         s16 epp_default;
279         s16 epp_saved;
280 };
281
282 static struct cpudata **all_cpu_data;
283
284 /**
285  * struct pstate_adjust_policy - Stores static PID configuration data
286  * @sample_rate_ms:     PID calculation sample rate in ms
287  * @sample_rate_ns:     Sample rate calculation in ns
288  * @deadband:           PID deadband
289  * @setpoint:           PID Setpoint
290  * @p_gain_pct:         PID proportional gain
291  * @i_gain_pct:         PID integral gain
292  * @d_gain_pct:         PID derivative gain
293  *
294  * Stores per CPU model static PID configuration data.
295  */
296 struct pstate_adjust_policy {
297         int sample_rate_ms;
298         s64 sample_rate_ns;
299         int deadband;
300         int setpoint;
301         int p_gain_pct;
302         int d_gain_pct;
303         int i_gain_pct;
304 };
305
306 /**
307  * struct pstate_funcs - Per CPU model specific callbacks
308  * @get_max:            Callback to get maximum non turbo effective P state
309  * @get_max_physical:   Callback to get maximum non turbo physical P state
310  * @get_min:            Callback to get minimum P state
311  * @get_turbo:          Callback to get turbo P state
312  * @get_scaling:        Callback to get frequency scaling factor
313  * @get_val:            Callback to convert P state to actual MSR write value
314  * @get_vid:            Callback to get VID data for Atom platforms
315  * @update_util:        Active mode utilization update callback.
316  *
317  * Core and Atom CPU models have different way to get P State limits. This
318  * structure is used to store those callbacks.
319  */
320 struct pstate_funcs {
321         int (*get_max)(void);
322         int (*get_max_physical)(void);
323         int (*get_min)(void);
324         int (*get_turbo)(void);
325         int (*get_scaling)(void);
326         u64 (*get_val)(struct cpudata*, int pstate);
327         void (*get_vid)(struct cpudata *);
328         void (*update_util)(struct update_util_data *data, u64 time,
329                             unsigned int flags);
330 };
331
332 static struct pstate_funcs pstate_funcs __read_mostly;
333 static struct pstate_adjust_policy pid_params __read_mostly = {
334         .sample_rate_ms = 10,
335         .sample_rate_ns = 10 * NSEC_PER_MSEC,
336         .deadband = 0,
337         .setpoint = 97,
338         .p_gain_pct = 20,
339         .d_gain_pct = 0,
340         .i_gain_pct = 0,
341 };
342
343 static int hwp_active __read_mostly;
344 static bool per_cpu_limits __read_mostly;
345
346 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
347
348 #ifdef CONFIG_ACPI
349 static bool acpi_ppc;
350 #endif
351
352 static struct global_params global;
353
354 static DEFINE_MUTEX(intel_pstate_driver_lock);
355 static DEFINE_MUTEX(intel_pstate_limits_lock);
356
357 #ifdef CONFIG_ACPI
358
359 static bool intel_pstate_get_ppc_enable_status(void)
360 {
361         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
362             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
363                 return true;
364
365         return acpi_ppc;
366 }
367
368 #ifdef CONFIG_ACPI_CPPC_LIB
369
370 /* The work item is needed to avoid CPU hotplug locking issues */
371 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
372 {
373         sched_set_itmt_support();
374 }
375
376 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
377
378 static void intel_pstate_set_itmt_prio(int cpu)
379 {
380         struct cppc_perf_caps cppc_perf;
381         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
382         int ret;
383
384         ret = cppc_get_perf_caps(cpu, &cppc_perf);
385         if (ret)
386                 return;
387
388         /*
389          * The priorities can be set regardless of whether or not
390          * sched_set_itmt_support(true) has been called and it is valid to
391          * update them at any time after it has been called.
392          */
393         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
394
395         if (max_highest_perf <= min_highest_perf) {
396                 if (cppc_perf.highest_perf > max_highest_perf)
397                         max_highest_perf = cppc_perf.highest_perf;
398
399                 if (cppc_perf.highest_perf < min_highest_perf)
400                         min_highest_perf = cppc_perf.highest_perf;
401
402                 if (max_highest_perf > min_highest_perf) {
403                         /*
404                          * This code can be run during CPU online under the
405                          * CPU hotplug locks, so sched_set_itmt_support()
406                          * cannot be called from here.  Queue up a work item
407                          * to invoke it.
408                          */
409                         schedule_work(&sched_itmt_work);
410                 }
411         }
412 }
413 #else
414 static void intel_pstate_set_itmt_prio(int cpu)
415 {
416 }
417 #endif
418
419 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
420 {
421         struct cpudata *cpu;
422         int ret;
423         int i;
424
425         if (hwp_active) {
426                 intel_pstate_set_itmt_prio(policy->cpu);
427                 return;
428         }
429
430         if (!intel_pstate_get_ppc_enable_status())
431                 return;
432
433         cpu = all_cpu_data[policy->cpu];
434
435         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
436                                                   policy->cpu);
437         if (ret)
438                 return;
439
440         /*
441          * Check if the control value in _PSS is for PERF_CTL MSR, which should
442          * guarantee that the states returned by it map to the states in our
443          * list directly.
444          */
445         if (cpu->acpi_perf_data.control_register.space_id !=
446                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
447                 goto err;
448
449         /*
450          * If there is only one entry _PSS, simply ignore _PSS and continue as
451          * usual without taking _PSS into account
452          */
453         if (cpu->acpi_perf_data.state_count < 2)
454                 goto err;
455
456         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
457         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
458                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
459                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
460                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
461                          (u32) cpu->acpi_perf_data.states[i].power,
462                          (u32) cpu->acpi_perf_data.states[i].control);
463         }
464
465         /*
466          * The _PSS table doesn't contain whole turbo frequency range.
467          * This just contains +1 MHZ above the max non turbo frequency,
468          * with control value corresponding to max turbo ratio. But
469          * when cpufreq set policy is called, it will call with this
470          * max frequency, which will cause a reduced performance as
471          * this driver uses real max turbo frequency as the max
472          * frequency. So correct this frequency in _PSS table to
473          * correct max turbo frequency based on the turbo state.
474          * Also need to convert to MHz as _PSS freq is in MHz.
475          */
476         if (!global.turbo_disabled)
477                 cpu->acpi_perf_data.states[0].core_frequency =
478                                         policy->cpuinfo.max_freq / 1000;
479         cpu->valid_pss_table = true;
480         pr_debug("_PPC limits will be enforced\n");
481
482         return;
483
484  err:
485         cpu->valid_pss_table = false;
486         acpi_processor_unregister_performance(policy->cpu);
487 }
488
489 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490 {
491         struct cpudata *cpu;
492
493         cpu = all_cpu_data[policy->cpu];
494         if (!cpu->valid_pss_table)
495                 return;
496
497         acpi_processor_unregister_performance(policy->cpu);
498 }
499 #else
500 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
501 {
502 }
503
504 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507 #endif
508
509 static signed int pid_calc(struct _pid *pid, int32_t busy)
510 {
511         signed int result;
512         int32_t pterm, dterm, fp_error;
513         int32_t integral_limit;
514
515         fp_error = pid->setpoint - busy;
516
517         if (abs(fp_error) <= pid->deadband)
518                 return 0;
519
520         pterm = mul_fp(pid->p_gain, fp_error);
521
522         pid->integral += fp_error;
523
524         /*
525          * We limit the integral here so that it will never
526          * get higher than 30.  This prevents it from becoming
527          * too large an input over long periods of time and allows
528          * it to get factored out sooner.
529          *
530          * The value of 30 was chosen through experimentation.
531          */
532         integral_limit = int_tofp(30);
533         if (pid->integral > integral_limit)
534                 pid->integral = integral_limit;
535         if (pid->integral < -integral_limit)
536                 pid->integral = -integral_limit;
537
538         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
539         pid->last_err = fp_error;
540
541         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
542         result = result + (1 << (FRAC_BITS-1));
543         return (signed int)fp_toint(result);
544 }
545
546 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
547 {
548         struct _pid *pid = &cpu->pid;
549
550         pid->p_gain = percent_fp(pid_params.p_gain_pct);
551         pid->d_gain = percent_fp(pid_params.d_gain_pct);
552         pid->i_gain = percent_fp(pid_params.i_gain_pct);
553         pid->setpoint = int_tofp(pid_params.setpoint);
554         pid->last_err  = pid->setpoint - int_tofp(100);
555         pid->deadband  = int_tofp(pid_params.deadband);
556         pid->integral  = 0;
557 }
558
559 static inline void update_turbo_state(void)
560 {
561         u64 misc_en;
562         struct cpudata *cpu;
563
564         cpu = all_cpu_data[0];
565         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
566         global.turbo_disabled =
567                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
568                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
569 }
570
571 static int min_perf_pct_min(void)
572 {
573         struct cpudata *cpu = all_cpu_data[0];
574
575         return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
576                             cpu->pstate.turbo_pstate);
577 }
578
579 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
580 {
581         u64 epb;
582         int ret;
583
584         if (!static_cpu_has(X86_FEATURE_EPB))
585                 return -ENXIO;
586
587         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
588         if (ret)
589                 return (s16)ret;
590
591         return (s16)(epb & 0x0f);
592 }
593
594 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
595 {
596         s16 epp;
597
598         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
599                 /*
600                  * When hwp_req_data is 0, means that caller didn't read
601                  * MSR_HWP_REQUEST, so need to read and get EPP.
602                  */
603                 if (!hwp_req_data) {
604                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
605                                             &hwp_req_data);
606                         if (epp)
607                                 return epp;
608                 }
609                 epp = (hwp_req_data >> 24) & 0xff;
610         } else {
611                 /* When there is no EPP present, HWP uses EPB settings */
612                 epp = intel_pstate_get_epb(cpu_data);
613         }
614
615         return epp;
616 }
617
618 static int intel_pstate_set_epb(int cpu, s16 pref)
619 {
620         u64 epb;
621         int ret;
622
623         if (!static_cpu_has(X86_FEATURE_EPB))
624                 return -ENXIO;
625
626         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
627         if (ret)
628                 return ret;
629
630         epb = (epb & ~0x0f) | pref;
631         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
632
633         return 0;
634 }
635
636 /*
637  * EPP/EPB display strings corresponding to EPP index in the
638  * energy_perf_strings[]
639  *      index           String
640  *-------------------------------------
641  *      0               default
642  *      1               performance
643  *      2               balance_performance
644  *      3               balance_power
645  *      4               power
646  */
647 static const char * const energy_perf_strings[] = {
648         "default",
649         "performance",
650         "balance_performance",
651         "balance_power",
652         "power",
653         NULL
654 };
655
656 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
657 {
658         s16 epp;
659         int index = -EINVAL;
660
661         epp = intel_pstate_get_epp(cpu_data, 0);
662         if (epp < 0)
663                 return epp;
664
665         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
666                 /*
667                  * Range:
668                  *      0x00-0x3F       :       Performance
669                  *      0x40-0x7F       :       Balance performance
670                  *      0x80-0xBF       :       Balance power
671                  *      0xC0-0xFF       :       Power
672                  * The EPP is a 8 bit value, but our ranges restrict the
673                  * value which can be set. Here only using top two bits
674                  * effectively.
675                  */
676                 index = (epp >> 6) + 1;
677         } else if (static_cpu_has(X86_FEATURE_EPB)) {
678                 /*
679                  * Range:
680                  *      0x00-0x03       :       Performance
681                  *      0x04-0x07       :       Balance performance
682                  *      0x08-0x0B       :       Balance power
683                  *      0x0C-0x0F       :       Power
684                  * The EPB is a 4 bit value, but our ranges restrict the
685                  * value which can be set. Here only using top two bits
686                  * effectively.
687                  */
688                 index = (epp >> 2) + 1;
689         }
690
691         return index;
692 }
693
694 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
695                                               int pref_index)
696 {
697         int epp = -EINVAL;
698         int ret;
699
700         if (!pref_index)
701                 epp = cpu_data->epp_default;
702
703         mutex_lock(&intel_pstate_limits_lock);
704
705         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
706                 u64 value;
707
708                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
709                 if (ret)
710                         goto return_pref;
711
712                 value &= ~GENMASK_ULL(31, 24);
713
714                 /*
715                  * If epp is not default, convert from index into
716                  * energy_perf_strings to epp value, by shifting 6
717                  * bits left to use only top two bits in epp.
718                  * The resultant epp need to shifted by 24 bits to
719                  * epp position in MSR_HWP_REQUEST.
720                  */
721                 if (epp == -EINVAL)
722                         epp = (pref_index - 1) << 6;
723
724                 value |= (u64)epp << 24;
725                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
726         } else {
727                 if (epp == -EINVAL)
728                         epp = (pref_index - 1) << 2;
729                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
730         }
731 return_pref:
732         mutex_unlock(&intel_pstate_limits_lock);
733
734         return ret;
735 }
736
737 static ssize_t show_energy_performance_available_preferences(
738                                 struct cpufreq_policy *policy, char *buf)
739 {
740         int i = 0;
741         int ret = 0;
742
743         while (energy_perf_strings[i] != NULL)
744                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
745
746         ret += sprintf(&buf[ret], "\n");
747
748         return ret;
749 }
750
751 cpufreq_freq_attr_ro(energy_performance_available_preferences);
752
753 static ssize_t store_energy_performance_preference(
754                 struct cpufreq_policy *policy, const char *buf, size_t count)
755 {
756         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
757         char str_preference[21];
758         int ret, i = 0;
759
760         ret = sscanf(buf, "%20s", str_preference);
761         if (ret != 1)
762                 return -EINVAL;
763
764         while (energy_perf_strings[i] != NULL) {
765                 if (!strcmp(str_preference, energy_perf_strings[i])) {
766                         intel_pstate_set_energy_pref_index(cpu_data, i);
767                         return count;
768                 }
769                 ++i;
770         }
771
772         return -EINVAL;
773 }
774
775 static ssize_t show_energy_performance_preference(
776                                 struct cpufreq_policy *policy, char *buf)
777 {
778         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
779         int preference;
780
781         preference = intel_pstate_get_energy_pref_index(cpu_data);
782         if (preference < 0)
783                 return preference;
784
785         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
786 }
787
788 cpufreq_freq_attr_rw(energy_performance_preference);
789
790 static struct freq_attr *hwp_cpufreq_attrs[] = {
791         &energy_performance_preference,
792         &energy_performance_available_preferences,
793         NULL,
794 };
795
796 static void intel_pstate_hwp_set(unsigned int cpu)
797 {
798         struct cpudata *cpu_data = all_cpu_data[cpu];
799         int min, hw_min, max, hw_max;
800         u64 value, cap;
801         s16 epp;
802
803         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
804         hw_min = HWP_LOWEST_PERF(cap);
805         if (global.no_turbo)
806                 hw_max = HWP_GUARANTEED_PERF(cap);
807         else
808                 hw_max = HWP_HIGHEST_PERF(cap);
809
810         max = fp_ext_toint(hw_max * cpu_data->max_perf);
811         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
812                 min = max;
813         else
814                 min = fp_ext_toint(hw_max * cpu_data->min_perf);
815
816         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
817
818         value &= ~HWP_MIN_PERF(~0L);
819         value |= HWP_MIN_PERF(min);
820
821         value &= ~HWP_MAX_PERF(~0L);
822         value |= HWP_MAX_PERF(max);
823
824         if (cpu_data->epp_policy == cpu_data->policy)
825                 goto skip_epp;
826
827         cpu_data->epp_policy = cpu_data->policy;
828
829         if (cpu_data->epp_saved >= 0) {
830                 epp = cpu_data->epp_saved;
831                 cpu_data->epp_saved = -EINVAL;
832                 goto update_epp;
833         }
834
835         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
836                 epp = intel_pstate_get_epp(cpu_data, value);
837                 cpu_data->epp_powersave = epp;
838                 /* If EPP read was failed, then don't try to write */
839                 if (epp < 0)
840                         goto skip_epp;
841
842                 epp = 0;
843         } else {
844                 /* skip setting EPP, when saved value is invalid */
845                 if (cpu_data->epp_powersave < 0)
846                         goto skip_epp;
847
848                 /*
849                  * No need to restore EPP when it is not zero. This
850                  * means:
851                  *  - Policy is not changed
852                  *  - user has manually changed
853                  *  - Error reading EPB
854                  */
855                 epp = intel_pstate_get_epp(cpu_data, value);
856                 if (epp)
857                         goto skip_epp;
858
859                 epp = cpu_data->epp_powersave;
860         }
861 update_epp:
862         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
863                 value &= ~GENMASK_ULL(31, 24);
864                 value |= (u64)epp << 24;
865         } else {
866                 intel_pstate_set_epb(cpu, epp);
867         }
868 skip_epp:
869         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
870 }
871
872 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
873 {
874         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
875
876         if (!hwp_active)
877                 return 0;
878
879         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
880
881         return 0;
882 }
883
884 static int intel_pstate_resume(struct cpufreq_policy *policy)
885 {
886         if (!hwp_active)
887                 return 0;
888
889         mutex_lock(&intel_pstate_limits_lock);
890
891         all_cpu_data[policy->cpu]->epp_policy = 0;
892         intel_pstate_hwp_set(policy->cpu);
893
894         mutex_unlock(&intel_pstate_limits_lock);
895
896         return 0;
897 }
898
899 static void intel_pstate_update_policies(void)
900 {
901         int cpu;
902
903         for_each_possible_cpu(cpu)
904                 cpufreq_update_policy(cpu);
905 }
906
907 /************************** debugfs begin ************************/
908 static int pid_param_set(void *data, u64 val)
909 {
910         unsigned int cpu;
911
912         *(u32 *)data = val;
913         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
914         for_each_possible_cpu(cpu)
915                 if (all_cpu_data[cpu])
916                         intel_pstate_pid_reset(all_cpu_data[cpu]);
917
918         return 0;
919 }
920
921 static int pid_param_get(void *data, u64 *val)
922 {
923         *val = *(u32 *)data;
924         return 0;
925 }
926 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
927
928 static struct dentry *debugfs_parent;
929
930 struct pid_param {
931         char *name;
932         void *value;
933         struct dentry *dentry;
934 };
935
936 static struct pid_param pid_files[] = {
937         {"sample_rate_ms", &pid_params.sample_rate_ms, },
938         {"d_gain_pct", &pid_params.d_gain_pct, },
939         {"i_gain_pct", &pid_params.i_gain_pct, },
940         {"deadband", &pid_params.deadband, },
941         {"setpoint", &pid_params.setpoint, },
942         {"p_gain_pct", &pid_params.p_gain_pct, },
943         {NULL, NULL, }
944 };
945
946 static void intel_pstate_debug_expose_params(void)
947 {
948         int i;
949
950         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
951         if (IS_ERR_OR_NULL(debugfs_parent))
952                 return;
953
954         for (i = 0; pid_files[i].name; i++) {
955                 struct dentry *dentry;
956
957                 dentry = debugfs_create_file(pid_files[i].name, 0660,
958                                              debugfs_parent, pid_files[i].value,
959                                              &fops_pid_param);
960                 if (!IS_ERR(dentry))
961                         pid_files[i].dentry = dentry;
962         }
963 }
964
965 static void intel_pstate_debug_hide_params(void)
966 {
967         int i;
968
969         if (IS_ERR_OR_NULL(debugfs_parent))
970                 return;
971
972         for (i = 0; pid_files[i].name; i++) {
973                 debugfs_remove(pid_files[i].dentry);
974                 pid_files[i].dentry = NULL;
975         }
976
977         debugfs_remove(debugfs_parent);
978         debugfs_parent = NULL;
979 }
980
981 /************************** debugfs end ************************/
982
983 /************************** sysfs begin ************************/
984 #define show_one(file_name, object)                                     \
985         static ssize_t show_##file_name                                 \
986         (struct kobject *kobj, struct attribute *attr, char *buf)       \
987         {                                                               \
988                 return sprintf(buf, "%u\n", global.object);             \
989         }
990
991 static ssize_t intel_pstate_show_status(char *buf);
992 static int intel_pstate_update_status(const char *buf, size_t size);
993
994 static ssize_t show_status(struct kobject *kobj,
995                            struct attribute *attr, char *buf)
996 {
997         ssize_t ret;
998
999         mutex_lock(&intel_pstate_driver_lock);
1000         ret = intel_pstate_show_status(buf);
1001         mutex_unlock(&intel_pstate_driver_lock);
1002
1003         return ret;
1004 }
1005
1006 static ssize_t store_status(struct kobject *a, struct attribute *b,
1007                             const char *buf, size_t count)
1008 {
1009         char *p = memchr(buf, '\n', count);
1010         int ret;
1011
1012         mutex_lock(&intel_pstate_driver_lock);
1013         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1014         mutex_unlock(&intel_pstate_driver_lock);
1015
1016         return ret < 0 ? ret : count;
1017 }
1018
1019 static ssize_t show_turbo_pct(struct kobject *kobj,
1020                                 struct attribute *attr, char *buf)
1021 {
1022         struct cpudata *cpu;
1023         int total, no_turbo, turbo_pct;
1024         uint32_t turbo_fp;
1025
1026         mutex_lock(&intel_pstate_driver_lock);
1027
1028         if (!intel_pstate_driver) {
1029                 mutex_unlock(&intel_pstate_driver_lock);
1030                 return -EAGAIN;
1031         }
1032
1033         cpu = all_cpu_data[0];
1034
1035         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1036         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1037         turbo_fp = div_fp(no_turbo, total);
1038         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1039
1040         mutex_unlock(&intel_pstate_driver_lock);
1041
1042         return sprintf(buf, "%u\n", turbo_pct);
1043 }
1044
1045 static ssize_t show_num_pstates(struct kobject *kobj,
1046                                 struct attribute *attr, char *buf)
1047 {
1048         struct cpudata *cpu;
1049         int total;
1050
1051         mutex_lock(&intel_pstate_driver_lock);
1052
1053         if (!intel_pstate_driver) {
1054                 mutex_unlock(&intel_pstate_driver_lock);
1055                 return -EAGAIN;
1056         }
1057
1058         cpu = all_cpu_data[0];
1059         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060
1061         mutex_unlock(&intel_pstate_driver_lock);
1062
1063         return sprintf(buf, "%u\n", total);
1064 }
1065
1066 static ssize_t show_no_turbo(struct kobject *kobj,
1067                              struct attribute *attr, char *buf)
1068 {
1069         ssize_t ret;
1070
1071         mutex_lock(&intel_pstate_driver_lock);
1072
1073         if (!intel_pstate_driver) {
1074                 mutex_unlock(&intel_pstate_driver_lock);
1075                 return -EAGAIN;
1076         }
1077
1078         update_turbo_state();
1079         if (global.turbo_disabled)
1080                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1081         else
1082                 ret = sprintf(buf, "%u\n", global.no_turbo);
1083
1084         mutex_unlock(&intel_pstate_driver_lock);
1085
1086         return ret;
1087 }
1088
1089 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1090                               const char *buf, size_t count)
1091 {
1092         unsigned int input;
1093         int ret;
1094
1095         ret = sscanf(buf, "%u", &input);
1096         if (ret != 1)
1097                 return -EINVAL;
1098
1099         mutex_lock(&intel_pstate_driver_lock);
1100
1101         if (!intel_pstate_driver) {
1102                 mutex_unlock(&intel_pstate_driver_lock);
1103                 return -EAGAIN;
1104         }
1105
1106         mutex_lock(&intel_pstate_limits_lock);
1107
1108         update_turbo_state();
1109         if (global.turbo_disabled) {
1110                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1111                 mutex_unlock(&intel_pstate_limits_lock);
1112                 mutex_unlock(&intel_pstate_driver_lock);
1113                 return -EPERM;
1114         }
1115
1116         global.no_turbo = clamp_t(int, input, 0, 1);
1117
1118         if (global.no_turbo) {
1119                 struct cpudata *cpu = all_cpu_data[0];
1120                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1121
1122                 /* Squash the global minimum into the permitted range. */
1123                 if (global.min_perf_pct > pct)
1124                         global.min_perf_pct = pct;
1125         }
1126
1127         mutex_unlock(&intel_pstate_limits_lock);
1128
1129         intel_pstate_update_policies();
1130
1131         mutex_unlock(&intel_pstate_driver_lock);
1132
1133         return count;
1134 }
1135
1136 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1137                                   const char *buf, size_t count)
1138 {
1139         unsigned int input;
1140         int ret;
1141
1142         ret = sscanf(buf, "%u", &input);
1143         if (ret != 1)
1144                 return -EINVAL;
1145
1146         mutex_lock(&intel_pstate_driver_lock);
1147
1148         if (!intel_pstate_driver) {
1149                 mutex_unlock(&intel_pstate_driver_lock);
1150                 return -EAGAIN;
1151         }
1152
1153         mutex_lock(&intel_pstate_limits_lock);
1154
1155         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1156
1157         mutex_unlock(&intel_pstate_limits_lock);
1158
1159         intel_pstate_update_policies();
1160
1161         mutex_unlock(&intel_pstate_driver_lock);
1162
1163         return count;
1164 }
1165
1166 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1167                                   const char *buf, size_t count)
1168 {
1169         unsigned int input;
1170         int ret;
1171
1172         ret = sscanf(buf, "%u", &input);
1173         if (ret != 1)
1174                 return -EINVAL;
1175
1176         mutex_lock(&intel_pstate_driver_lock);
1177
1178         if (!intel_pstate_driver) {
1179                 mutex_unlock(&intel_pstate_driver_lock);
1180                 return -EAGAIN;
1181         }
1182
1183         mutex_lock(&intel_pstate_limits_lock);
1184
1185         global.min_perf_pct = clamp_t(int, input,
1186                                       min_perf_pct_min(), global.max_perf_pct);
1187
1188         mutex_unlock(&intel_pstate_limits_lock);
1189
1190         intel_pstate_update_policies();
1191
1192         mutex_unlock(&intel_pstate_driver_lock);
1193
1194         return count;
1195 }
1196
1197 show_one(max_perf_pct, max_perf_pct);
1198 show_one(min_perf_pct, min_perf_pct);
1199
1200 define_one_global_rw(status);
1201 define_one_global_rw(no_turbo);
1202 define_one_global_rw(max_perf_pct);
1203 define_one_global_rw(min_perf_pct);
1204 define_one_global_ro(turbo_pct);
1205 define_one_global_ro(num_pstates);
1206
1207 static struct attribute *intel_pstate_attributes[] = {
1208         &status.attr,
1209         &no_turbo.attr,
1210         &turbo_pct.attr,
1211         &num_pstates.attr,
1212         NULL
1213 };
1214
1215 static struct attribute_group intel_pstate_attr_group = {
1216         .attrs = intel_pstate_attributes,
1217 };
1218
1219 static void __init intel_pstate_sysfs_expose_params(void)
1220 {
1221         struct kobject *intel_pstate_kobject;
1222         int rc;
1223
1224         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1225                                                 &cpu_subsys.dev_root->kobj);
1226         if (WARN_ON(!intel_pstate_kobject))
1227                 return;
1228
1229         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1230         if (WARN_ON(rc))
1231                 return;
1232
1233         /*
1234          * If per cpu limits are enforced there are no global limits, so
1235          * return without creating max/min_perf_pct attributes
1236          */
1237         if (per_cpu_limits)
1238                 return;
1239
1240         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1241         WARN_ON(rc);
1242
1243         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1244         WARN_ON(rc);
1245
1246 }
1247 /************************** sysfs end ************************/
1248
1249 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1250 {
1251         /* First disable HWP notification interrupt as we don't process them */
1252         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1253                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1254
1255         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1256         cpudata->epp_policy = 0;
1257         if (cpudata->epp_default == -EINVAL)
1258                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1259 }
1260
1261 #define MSR_IA32_POWER_CTL_BIT_EE       19
1262
1263 /* Disable energy efficiency optimization */
1264 static void intel_pstate_disable_ee(int cpu)
1265 {
1266         u64 power_ctl;
1267         int ret;
1268
1269         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1270         if (ret)
1271                 return;
1272
1273         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1274                 pr_info("Disabling energy efficiency optimization\n");
1275                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1276                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1277         }
1278 }
1279
1280 static int atom_get_min_pstate(void)
1281 {
1282         u64 value;
1283
1284         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1285         return (value >> 8) & 0x7F;
1286 }
1287
1288 static int atom_get_max_pstate(void)
1289 {
1290         u64 value;
1291
1292         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1293         return (value >> 16) & 0x7F;
1294 }
1295
1296 static int atom_get_turbo_pstate(void)
1297 {
1298         u64 value;
1299
1300         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1301         return value & 0x7F;
1302 }
1303
1304 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1305 {
1306         u64 val;
1307         int32_t vid_fp;
1308         u32 vid;
1309
1310         val = (u64)pstate << 8;
1311         if (global.no_turbo && !global.turbo_disabled)
1312                 val |= (u64)1 << 32;
1313
1314         vid_fp = cpudata->vid.min + mul_fp(
1315                 int_tofp(pstate - cpudata->pstate.min_pstate),
1316                 cpudata->vid.ratio);
1317
1318         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1319         vid = ceiling_fp(vid_fp);
1320
1321         if (pstate > cpudata->pstate.max_pstate)
1322                 vid = cpudata->vid.turbo;
1323
1324         return val | vid;
1325 }
1326
1327 static int silvermont_get_scaling(void)
1328 {
1329         u64 value;
1330         int i;
1331         /* Defined in Table 35-6 from SDM (Sept 2015) */
1332         static int silvermont_freq_table[] = {
1333                 83300, 100000, 133300, 116700, 80000};
1334
1335         rdmsrl(MSR_FSB_FREQ, value);
1336         i = value & 0x7;
1337         WARN_ON(i > 4);
1338
1339         return silvermont_freq_table[i];
1340 }
1341
1342 static int airmont_get_scaling(void)
1343 {
1344         u64 value;
1345         int i;
1346         /* Defined in Table 35-10 from SDM (Sept 2015) */
1347         static int airmont_freq_table[] = {
1348                 83300, 100000, 133300, 116700, 80000,
1349                 93300, 90000, 88900, 87500};
1350
1351         rdmsrl(MSR_FSB_FREQ, value);
1352         i = value & 0xF;
1353         WARN_ON(i > 8);
1354
1355         return airmont_freq_table[i];
1356 }
1357
1358 static void atom_get_vid(struct cpudata *cpudata)
1359 {
1360         u64 value;
1361
1362         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1363         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1364         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1365         cpudata->vid.ratio = div_fp(
1366                 cpudata->vid.max - cpudata->vid.min,
1367                 int_tofp(cpudata->pstate.max_pstate -
1368                         cpudata->pstate.min_pstate));
1369
1370         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1371         cpudata->vid.turbo = value & 0x7f;
1372 }
1373
1374 static int core_get_min_pstate(void)
1375 {
1376         u64 value;
1377
1378         rdmsrl(MSR_PLATFORM_INFO, value);
1379         return (value >> 40) & 0xFF;
1380 }
1381
1382 static int core_get_max_pstate_physical(void)
1383 {
1384         u64 value;
1385
1386         rdmsrl(MSR_PLATFORM_INFO, value);
1387         return (value >> 8) & 0xFF;
1388 }
1389
1390 static int core_get_tdp_ratio(u64 plat_info)
1391 {
1392         /* Check how many TDP levels present */
1393         if (plat_info & 0x600000000) {
1394                 u64 tdp_ctrl;
1395                 u64 tdp_ratio;
1396                 int tdp_msr;
1397                 int err;
1398
1399                 /* Get the TDP level (0, 1, 2) to get ratios */
1400                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1401                 if (err)
1402                         return err;
1403
1404                 /* TDP MSR are continuous starting at 0x648 */
1405                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1406                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1407                 if (err)
1408                         return err;
1409
1410                 /* For level 1 and 2, bits[23:16] contain the ratio */
1411                 if (tdp_ctrl & 0x03)
1412                         tdp_ratio >>= 16;
1413
1414                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1415                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1416
1417                 return (int)tdp_ratio;
1418         }
1419
1420         return -ENXIO;
1421 }
1422
1423 static int core_get_max_pstate(void)
1424 {
1425         u64 tar;
1426         u64 plat_info;
1427         int max_pstate;
1428         int tdp_ratio;
1429         int err;
1430
1431         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1432         max_pstate = (plat_info >> 8) & 0xFF;
1433
1434         tdp_ratio = core_get_tdp_ratio(plat_info);
1435         if (tdp_ratio <= 0)
1436                 return max_pstate;
1437
1438         if (hwp_active) {
1439                 /* Turbo activation ratio is not used on HWP platforms */
1440                 return tdp_ratio;
1441         }
1442
1443         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1444         if (!err) {
1445                 int tar_levels;
1446
1447                 /* Do some sanity checking for safety */
1448                 tar_levels = tar & 0xff;
1449                 if (tdp_ratio - 1 == tar_levels) {
1450                         max_pstate = tar_levels;
1451                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1452                 }
1453         }
1454
1455         return max_pstate;
1456 }
1457
1458 static int core_get_turbo_pstate(void)
1459 {
1460         u64 value;
1461         int nont, ret;
1462
1463         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1464         nont = core_get_max_pstate();
1465         ret = (value) & 255;
1466         if (ret <= nont)
1467                 ret = nont;
1468         return ret;
1469 }
1470
1471 static inline int core_get_scaling(void)
1472 {
1473         return 100000;
1474 }
1475
1476 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1477 {
1478         u64 val;
1479
1480         val = (u64)pstate << 8;
1481         if (global.no_turbo && !global.turbo_disabled)
1482                 val |= (u64)1 << 32;
1483
1484         return val;
1485 }
1486
1487 static int knl_get_turbo_pstate(void)
1488 {
1489         u64 value;
1490         int nont, ret;
1491
1492         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493         nont = core_get_max_pstate();
1494         ret = (((value) >> 8) & 0xFF);
1495         if (ret <= nont)
1496                 ret = nont;
1497         return ret;
1498 }
1499
1500 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1501 {
1502         return global.no_turbo || global.turbo_disabled ?
1503                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1504 }
1505
1506 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1507 {
1508         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1509         cpu->pstate.current_pstate = pstate;
1510         /*
1511          * Generally, there is no guarantee that this code will always run on
1512          * the CPU being updated, so force the register update to run on the
1513          * right CPU.
1514          */
1515         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1516                       pstate_funcs.get_val(cpu, pstate));
1517 }
1518
1519 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1520 {
1521         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1522 }
1523
1524 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1525 {
1526         int pstate;
1527
1528         update_turbo_state();
1529         pstate = intel_pstate_get_base_pstate(cpu);
1530         pstate = max(cpu->pstate.min_pstate,
1531                      fp_ext_toint(pstate * cpu->max_perf));
1532         intel_pstate_set_pstate(cpu, pstate);
1533 }
1534
1535 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1536 {
1537         cpu->pstate.min_pstate = pstate_funcs.get_min();
1538         cpu->pstate.max_pstate = pstate_funcs.get_max();
1539         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1540         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1541         cpu->pstate.scaling = pstate_funcs.get_scaling();
1542         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1543         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1544
1545         if (pstate_funcs.get_vid)
1546                 pstate_funcs.get_vid(cpu);
1547
1548         intel_pstate_set_min_pstate(cpu);
1549 }
1550
1551 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1552 {
1553         struct sample *sample = &cpu->sample;
1554
1555         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1556 }
1557
1558 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1559 {
1560         u64 aperf, mperf;
1561         unsigned long flags;
1562         u64 tsc;
1563
1564         local_irq_save(flags);
1565         rdmsrl(MSR_IA32_APERF, aperf);
1566         rdmsrl(MSR_IA32_MPERF, mperf);
1567         tsc = rdtsc();
1568         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1569                 local_irq_restore(flags);
1570                 return false;
1571         }
1572         local_irq_restore(flags);
1573
1574         cpu->last_sample_time = cpu->sample.time;
1575         cpu->sample.time = time;
1576         cpu->sample.aperf = aperf;
1577         cpu->sample.mperf = mperf;
1578         cpu->sample.tsc =  tsc;
1579         cpu->sample.aperf -= cpu->prev_aperf;
1580         cpu->sample.mperf -= cpu->prev_mperf;
1581         cpu->sample.tsc -= cpu->prev_tsc;
1582
1583         cpu->prev_aperf = aperf;
1584         cpu->prev_mperf = mperf;
1585         cpu->prev_tsc = tsc;
1586         /*
1587          * First time this function is invoked in a given cycle, all of the
1588          * previous sample data fields are equal to zero or stale and they must
1589          * be populated with meaningful numbers for things to work, so assume
1590          * that sample.time will always be reset before setting the utilization
1591          * update hook and make the caller skip the sample then.
1592          */
1593         if (cpu->last_sample_time) {
1594                 intel_pstate_calc_avg_perf(cpu);
1595                 return true;
1596         }
1597         return false;
1598 }
1599
1600 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1601 {
1602         return mul_ext_fp(cpu->sample.core_avg_perf,
1603                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1604 }
1605
1606 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1607 {
1608         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1609                           cpu->sample.core_avg_perf);
1610 }
1611
1612 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1613 {
1614         struct sample *sample = &cpu->sample;
1615         int32_t busy_frac, boost;
1616         int target, avg_pstate;
1617
1618         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1619                 return cpu->pstate.turbo_pstate;
1620
1621         busy_frac = div_fp(sample->mperf, sample->tsc);
1622
1623         boost = cpu->iowait_boost;
1624         cpu->iowait_boost >>= 1;
1625
1626         if (busy_frac < boost)
1627                 busy_frac = boost;
1628
1629         sample->busy_scaled = busy_frac * 100;
1630
1631         target = global.no_turbo || global.turbo_disabled ?
1632                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1633         target += target >> 2;
1634         target = mul_fp(target, busy_frac);
1635         if (target < cpu->pstate.min_pstate)
1636                 target = cpu->pstate.min_pstate;
1637
1638         /*
1639          * If the average P-state during the previous cycle was higher than the
1640          * current target, add 50% of the difference to the target to reduce
1641          * possible performance oscillations and offset possible performance
1642          * loss related to moving the workload from one CPU to another within
1643          * a package/module.
1644          */
1645         avg_pstate = get_avg_pstate(cpu);
1646         if (avg_pstate > target)
1647                 target += (avg_pstate - target) >> 1;
1648
1649         return target;
1650 }
1651
1652 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1653 {
1654         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1655         u64 duration_ns;
1656
1657         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1658                 return cpu->pstate.turbo_pstate;
1659
1660         /*
1661          * perf_scaled is the ratio of the average P-state during the last
1662          * sampling period to the P-state requested last time (in percent).
1663          *
1664          * That measures the system's response to the previous P-state
1665          * selection.
1666          */
1667         max_pstate = cpu->pstate.max_pstate_physical;
1668         current_pstate = cpu->pstate.current_pstate;
1669         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1670                                div_fp(100 * max_pstate, current_pstate));
1671
1672         /*
1673          * Since our utilization update callback will not run unless we are
1674          * in C0, check if the actual elapsed time is significantly greater (3x)
1675          * than our sample interval.  If it is, then we were idle for a long
1676          * enough period of time to adjust our performance metric.
1677          */
1678         duration_ns = cpu->sample.time - cpu->last_sample_time;
1679         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1680                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1681                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1682         } else {
1683                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1684                 if (sample_ratio < int_tofp(1))
1685                         perf_scaled = 0;
1686         }
1687
1688         cpu->sample.busy_scaled = perf_scaled;
1689         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1690 }
1691
1692 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1693 {
1694         int max_pstate = intel_pstate_get_base_pstate(cpu);
1695         int min_pstate;
1696
1697         min_pstate = max(cpu->pstate.min_pstate,
1698                          fp_ext_toint(max_pstate * cpu->min_perf));
1699         max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1700         return clamp_t(int, pstate, min_pstate, max_pstate);
1701 }
1702
1703 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1704 {
1705         if (pstate == cpu->pstate.current_pstate)
1706                 return;
1707
1708         cpu->pstate.current_pstate = pstate;
1709         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1710 }
1711
1712 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1713 {
1714         int from = cpu->pstate.current_pstate;
1715         struct sample *sample;
1716
1717         update_turbo_state();
1718
1719         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1720         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1721         intel_pstate_update_pstate(cpu, target_pstate);
1722
1723         sample = &cpu->sample;
1724         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1725                 fp_toint(sample->busy_scaled),
1726                 from,
1727                 cpu->pstate.current_pstate,
1728                 sample->mperf,
1729                 sample->aperf,
1730                 sample->tsc,
1731                 get_avg_frequency(cpu),
1732                 fp_toint(cpu->iowait_boost * 100));
1733 }
1734
1735 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1736                                          u64 time, unsigned int flags)
1737 {
1738         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1739         u64 delta_ns = time - cpu->sample.time;
1740
1741         if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1742                 intel_pstate_sample(cpu, time);
1743 }
1744
1745 static void intel_pstate_update_util_pid(struct update_util_data *data,
1746                                          u64 time, unsigned int flags)
1747 {
1748         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1749         u64 delta_ns = time - cpu->sample.time;
1750
1751         if ((s64)delta_ns < pid_params.sample_rate_ns)
1752                 return;
1753
1754         if (intel_pstate_sample(cpu, time)) {
1755                 int target_pstate;
1756
1757                 target_pstate = get_target_pstate_use_performance(cpu);
1758                 intel_pstate_adjust_pstate(cpu, target_pstate);
1759         }
1760 }
1761
1762 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1763                                      unsigned int flags)
1764 {
1765         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1766         u64 delta_ns;
1767
1768         if (flags & SCHED_CPUFREQ_IOWAIT) {
1769                 cpu->iowait_boost = int_tofp(1);
1770         } else if (cpu->iowait_boost) {
1771                 /* Clear iowait_boost if the CPU may have been idle. */
1772                 delta_ns = time - cpu->last_update;
1773                 if (delta_ns > TICK_NSEC)
1774                         cpu->iowait_boost = 0;
1775         }
1776         cpu->last_update = time;
1777         delta_ns = time - cpu->sample.time;
1778         if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1779                 return;
1780
1781         if (intel_pstate_sample(cpu, time)) {
1782                 int target_pstate;
1783
1784                 target_pstate = get_target_pstate_use_cpu_load(cpu);
1785                 intel_pstate_adjust_pstate(cpu, target_pstate);
1786         }
1787 }
1788
1789 static struct pstate_funcs core_funcs = {
1790         .get_max = core_get_max_pstate,
1791         .get_max_physical = core_get_max_pstate_physical,
1792         .get_min = core_get_min_pstate,
1793         .get_turbo = core_get_turbo_pstate,
1794         .get_scaling = core_get_scaling,
1795         .get_val = core_get_val,
1796         .update_util = intel_pstate_update_util_pid,
1797 };
1798
1799 static const struct pstate_funcs silvermont_funcs = {
1800         .get_max = atom_get_max_pstate,
1801         .get_max_physical = atom_get_max_pstate,
1802         .get_min = atom_get_min_pstate,
1803         .get_turbo = atom_get_turbo_pstate,
1804         .get_val = atom_get_val,
1805         .get_scaling = silvermont_get_scaling,
1806         .get_vid = atom_get_vid,
1807         .update_util = intel_pstate_update_util,
1808 };
1809
1810 static const struct pstate_funcs airmont_funcs = {
1811         .get_max = atom_get_max_pstate,
1812         .get_max_physical = atom_get_max_pstate,
1813         .get_min = atom_get_min_pstate,
1814         .get_turbo = atom_get_turbo_pstate,
1815         .get_val = atom_get_val,
1816         .get_scaling = airmont_get_scaling,
1817         .get_vid = atom_get_vid,
1818         .update_util = intel_pstate_update_util,
1819 };
1820
1821 static const struct pstate_funcs knl_funcs = {
1822         .get_max = core_get_max_pstate,
1823         .get_max_physical = core_get_max_pstate_physical,
1824         .get_min = core_get_min_pstate,
1825         .get_turbo = knl_get_turbo_pstate,
1826         .get_scaling = core_get_scaling,
1827         .get_val = core_get_val,
1828         .update_util = intel_pstate_update_util_pid,
1829 };
1830
1831 static const struct pstate_funcs bxt_funcs = {
1832         .get_max = core_get_max_pstate,
1833         .get_max_physical = core_get_max_pstate_physical,
1834         .get_min = core_get_min_pstate,
1835         .get_turbo = core_get_turbo_pstate,
1836         .get_scaling = core_get_scaling,
1837         .get_val = core_get_val,
1838         .update_util = intel_pstate_update_util,
1839 };
1840
1841 #define ICPU(model, policy) \
1842         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1843                         (unsigned long)&policy }
1844
1845 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1847         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1848         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1849         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1850         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1851         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1852         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1853         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1854         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1855         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1856         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1857         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1858         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1859         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1860         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1861         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1862         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1863         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1864         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_funcs),
1865         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866         {}
1867 };
1868 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1869
1870 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1872         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1873         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874         {}
1875 };
1876
1877 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879         {}
1880 };
1881
1882 static bool pid_in_use(void);
1883
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886         struct cpudata *cpu;
1887
1888         cpu = all_cpu_data[cpunum];
1889
1890         if (!cpu) {
1891                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892                 if (!cpu)
1893                         return -ENOMEM;
1894
1895                 all_cpu_data[cpunum] = cpu;
1896
1897                 cpu->epp_default = -EINVAL;
1898                 cpu->epp_powersave = -EINVAL;
1899                 cpu->epp_saved = -EINVAL;
1900         }
1901
1902         cpu = all_cpu_data[cpunum];
1903
1904         cpu->cpu = cpunum;
1905
1906         if (hwp_active) {
1907                 const struct x86_cpu_id *id;
1908
1909                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910                 if (id)
1911                         intel_pstate_disable_ee(cpunum);
1912
1913                 intel_pstate_hwp_enable(cpu);
1914         } else if (pid_in_use()) {
1915                 intel_pstate_pid_reset(cpu);
1916         }
1917
1918         intel_pstate_get_cpu_pstates(cpu);
1919
1920         pr_debug("controlling: cpu %d\n", cpunum);
1921
1922         return 0;
1923 }
1924
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927         struct cpudata *cpu = all_cpu_data[cpu_num];
1928
1929         return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934         struct cpudata *cpu = all_cpu_data[cpu_num];
1935
1936         if (cpu->update_util_set)
1937                 return;
1938
1939         /* Prevent intel_pstate_update_util() from using stale data. */
1940         cpu->sample.time = 0;
1941         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1942                                      pstate_funcs.update_util);
1943         cpu->update_util_set = true;
1944 }
1945
1946 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947 {
1948         struct cpudata *cpu_data = all_cpu_data[cpu];
1949
1950         if (!cpu_data->update_util_set)
1951                 return;
1952
1953         cpufreq_remove_update_util_hook(cpu);
1954         cpu_data->update_util_set = false;
1955         synchronize_sched();
1956 }
1957
1958 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959 {
1960         return global.turbo_disabled || global.no_turbo ?
1961                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962 }
1963
1964 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965                                             struct cpudata *cpu)
1966 {
1967         int max_freq = intel_pstate_get_max_freq(cpu);
1968         int32_t max_policy_perf, min_policy_perf;
1969
1970         max_policy_perf = div_ext_fp(policy->max, max_freq);
1971         max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972         if (policy->max == policy->min) {
1973                 min_policy_perf = max_policy_perf;
1974         } else {
1975                 min_policy_perf = div_ext_fp(policy->min, max_freq);
1976                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1977                                           0, max_policy_perf);
1978         }
1979
1980         /* Normalize user input to [min_perf, max_perf] */
1981         if (per_cpu_limits) {
1982                 cpu->min_perf = min_policy_perf;
1983                 cpu->max_perf = max_policy_perf;
1984         } else {
1985                 int32_t global_min, global_max;
1986
1987                 /* Global limits are in percent of the maximum turbo P-state. */
1988                 global_max = percent_ext_fp(global.max_perf_pct);
1989                 global_min = percent_ext_fp(global.min_perf_pct);
1990                 if (max_freq != cpu->pstate.turbo_freq) {
1991                         int32_t turbo_factor;
1992
1993                         turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1994                                                   cpu->pstate.max_pstate);
1995                         global_min = mul_ext_fp(global_min, turbo_factor);
1996                         global_max = mul_ext_fp(global_max, turbo_factor);
1997                 }
1998                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1999
2000                 cpu->min_perf = max(min_policy_perf, global_min);
2001                 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2002                 cpu->max_perf = min(max_policy_perf, global_max);
2003                 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004
2005                 /* Make sure min_perf <= max_perf */
2006                 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007         }
2008
2009         cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2010         cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011
2012         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013                  fp_ext_toint(cpu->max_perf * 100),
2014                  fp_ext_toint(cpu->min_perf * 100));
2015 }
2016
2017 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018 {
2019         struct cpudata *cpu;
2020
2021         if (!policy->cpuinfo.max_freq)
2022                 return -ENODEV;
2023
2024         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025                  policy->cpuinfo.max_freq, policy->max);
2026
2027         cpu = all_cpu_data[policy->cpu];
2028         cpu->policy = policy->policy;
2029
2030         mutex_lock(&intel_pstate_limits_lock);
2031
2032         intel_pstate_update_perf_limits(policy, cpu);
2033
2034         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035                 /*
2036                  * NOHZ_FULL CPUs need this as the governor callback may not
2037                  * be invoked on them.
2038                  */
2039                 intel_pstate_clear_update_util_hook(policy->cpu);
2040                 intel_pstate_max_within_limits(cpu);
2041         }
2042
2043         intel_pstate_set_update_util_hook(policy->cpu);
2044
2045         if (hwp_active)
2046                 intel_pstate_hwp_set(policy->cpu);
2047
2048         mutex_unlock(&intel_pstate_limits_lock);
2049
2050         return 0;
2051 }
2052
2053 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054                                          struct cpudata *cpu)
2055 {
2056         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057             policy->max < policy->cpuinfo.max_freq &&
2058             policy->max > cpu->pstate.max_freq) {
2059                 pr_debug("policy->max > max non turbo frequency\n");
2060                 policy->max = policy->cpuinfo.max_freq;
2061         }
2062 }
2063
2064 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065 {
2066         struct cpudata *cpu = all_cpu_data[policy->cpu];
2067
2068         update_turbo_state();
2069         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070                                      intel_pstate_get_max_freq(cpu));
2071
2072         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074                 return -EINVAL;
2075
2076         intel_pstate_adjust_policy_max(policy, cpu);
2077
2078         return 0;
2079 }
2080
2081 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082 {
2083         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084 }
2085
2086 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087 {
2088         pr_debug("CPU %d exiting\n", policy->cpu);
2089
2090         intel_pstate_clear_update_util_hook(policy->cpu);
2091         if (hwp_active)
2092                 intel_pstate_hwp_save_state(policy);
2093         else
2094                 intel_cpufreq_stop_cpu(policy);
2095 }
2096
2097 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098 {
2099         intel_pstate_exit_perf_limits(policy);
2100
2101         policy->fast_switch_possible = false;
2102
2103         return 0;
2104 }
2105
2106 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 {
2108         struct cpudata *cpu;
2109         int rc;
2110
2111         rc = intel_pstate_init_cpu(policy->cpu);
2112         if (rc)
2113                 return rc;
2114
2115         cpu = all_cpu_data[policy->cpu];
2116
2117         cpu->max_perf = int_ext_tofp(1);
2118         cpu->min_perf = 0;
2119
2120         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122
2123         /* cpuinfo and default policy values */
2124         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125         update_turbo_state();
2126         policy->cpuinfo.max_freq = global.turbo_disabled ?
2127                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129
2130         intel_pstate_init_acpi_perf_limits(policy);
2131         cpumask_set_cpu(policy->cpu, policy->cpus);
2132
2133         policy->fast_switch_possible = true;
2134
2135         return 0;
2136 }
2137
2138 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139 {
2140         int ret = __intel_pstate_cpu_init(policy);
2141
2142         if (ret)
2143                 return ret;
2144
2145         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148         else
2149                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150
2151         return 0;
2152 }
2153
2154 static struct cpufreq_driver intel_pstate = {
2155         .flags          = CPUFREQ_CONST_LOOPS,
2156         .verify         = intel_pstate_verify_policy,
2157         .setpolicy      = intel_pstate_set_policy,
2158         .suspend        = intel_pstate_hwp_save_state,
2159         .resume         = intel_pstate_resume,
2160         .get            = intel_pstate_get,
2161         .init           = intel_pstate_cpu_init,
2162         .exit           = intel_pstate_cpu_exit,
2163         .stop_cpu       = intel_pstate_stop_cpu,
2164         .name           = "intel_pstate",
2165 };
2166
2167 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168 {
2169         struct cpudata *cpu = all_cpu_data[policy->cpu];
2170
2171         update_turbo_state();
2172         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173                                      intel_pstate_get_max_freq(cpu));
2174
2175         intel_pstate_adjust_policy_max(policy, cpu);
2176
2177         intel_pstate_update_perf_limits(policy, cpu);
2178
2179         return 0;
2180 }
2181
2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183                                 unsigned int target_freq,
2184                                 unsigned int relation)
2185 {
2186         struct cpudata *cpu = all_cpu_data[policy->cpu];
2187         struct cpufreq_freqs freqs;
2188         int target_pstate;
2189
2190         update_turbo_state();
2191
2192         freqs.old = policy->cur;
2193         freqs.new = target_freq;
2194
2195         cpufreq_freq_transition_begin(policy, &freqs);
2196         switch (relation) {
2197         case CPUFREQ_RELATION_L:
2198                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199                 break;
2200         case CPUFREQ_RELATION_H:
2201                 target_pstate = freqs.new / cpu->pstate.scaling;
2202                 break;
2203         default:
2204                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205                 break;
2206         }
2207         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208         if (target_pstate != cpu->pstate.current_pstate) {
2209                 cpu->pstate.current_pstate = target_pstate;
2210                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211                               pstate_funcs.get_val(cpu, target_pstate));
2212         }
2213         freqs.new = target_pstate * cpu->pstate.scaling;
2214         cpufreq_freq_transition_end(policy, &freqs, false);
2215
2216         return 0;
2217 }
2218
2219 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220                                               unsigned int target_freq)
2221 {
2222         struct cpudata *cpu = all_cpu_data[policy->cpu];
2223         int target_pstate;
2224
2225         update_turbo_state();
2226
2227         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229         intel_pstate_update_pstate(cpu, target_pstate);
2230         return target_pstate * cpu->pstate.scaling;
2231 }
2232
2233 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234 {
2235         int ret = __intel_pstate_cpu_init(policy);
2236
2237         if (ret)
2238                 return ret;
2239
2240         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2242         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2243         policy->cur = policy->cpuinfo.min_freq;
2244
2245         return 0;
2246 }
2247
2248 static struct cpufreq_driver intel_cpufreq = {
2249         .flags          = CPUFREQ_CONST_LOOPS,
2250         .verify         = intel_cpufreq_verify_policy,
2251         .target         = intel_cpufreq_target,
2252         .fast_switch    = intel_cpufreq_fast_switch,
2253         .init           = intel_cpufreq_cpu_init,
2254         .exit           = intel_pstate_cpu_exit,
2255         .stop_cpu       = intel_cpufreq_stop_cpu,
2256         .name           = "intel_cpufreq",
2257 };
2258
2259 static struct cpufreq_driver *default_driver = &intel_pstate;
2260
2261 static bool pid_in_use(void)
2262 {
2263         return intel_pstate_driver == &intel_pstate &&
2264                 pstate_funcs.update_util == intel_pstate_update_util_pid;
2265 }
2266
2267 static void intel_pstate_driver_cleanup(void)
2268 {
2269         unsigned int cpu;
2270
2271         get_online_cpus();
2272         for_each_online_cpu(cpu) {
2273                 if (all_cpu_data[cpu]) {
2274                         if (intel_pstate_driver == &intel_pstate)
2275                                 intel_pstate_clear_update_util_hook(cpu);
2276
2277                         kfree(all_cpu_data[cpu]);
2278                         all_cpu_data[cpu] = NULL;
2279                 }
2280         }
2281         put_online_cpus();
2282         intel_pstate_driver = NULL;
2283 }
2284
2285 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2286 {
2287         int ret;
2288
2289         memset(&global, 0, sizeof(global));
2290         global.max_perf_pct = 100;
2291
2292         intel_pstate_driver = driver;
2293         ret = cpufreq_register_driver(intel_pstate_driver);
2294         if (ret) {
2295                 intel_pstate_driver_cleanup();
2296                 return ret;
2297         }
2298
2299         global.min_perf_pct = min_perf_pct_min();
2300
2301         if (pid_in_use())
2302                 intel_pstate_debug_expose_params();
2303
2304         return 0;
2305 }
2306
2307 static int intel_pstate_unregister_driver(void)
2308 {
2309         if (hwp_active)
2310                 return -EBUSY;
2311
2312         if (pid_in_use())
2313                 intel_pstate_debug_hide_params();
2314
2315         cpufreq_unregister_driver(intel_pstate_driver);
2316         intel_pstate_driver_cleanup();
2317
2318         return 0;
2319 }
2320
2321 static ssize_t intel_pstate_show_status(char *buf)
2322 {
2323         if (!intel_pstate_driver)
2324                 return sprintf(buf, "off\n");
2325
2326         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2327                                         "active" : "passive");
2328 }
2329
2330 static int intel_pstate_update_status(const char *buf, size_t size)
2331 {
2332         int ret;
2333
2334         if (size == 3 && !strncmp(buf, "off", size))
2335                 return intel_pstate_driver ?
2336                         intel_pstate_unregister_driver() : -EINVAL;
2337
2338         if (size == 6 && !strncmp(buf, "active", size)) {
2339                 if (intel_pstate_driver) {
2340                         if (intel_pstate_driver == &intel_pstate)
2341                                 return 0;
2342
2343                         ret = intel_pstate_unregister_driver();
2344                         if (ret)
2345                                 return ret;
2346                 }
2347
2348                 return intel_pstate_register_driver(&intel_pstate);
2349         }
2350
2351         if (size == 7 && !strncmp(buf, "passive", size)) {
2352                 if (intel_pstate_driver) {
2353                         if (intel_pstate_driver == &intel_cpufreq)
2354                                 return 0;
2355
2356                         ret = intel_pstate_unregister_driver();
2357                         if (ret)
2358                                 return ret;
2359                 }
2360
2361                 return intel_pstate_register_driver(&intel_cpufreq);
2362         }
2363
2364         return -EINVAL;
2365 }
2366
2367 static int no_load __initdata;
2368 static int no_hwp __initdata;
2369 static int hwp_only __initdata;
2370 static unsigned int force_load __initdata;
2371
2372 static int __init intel_pstate_msrs_not_valid(void)
2373 {
2374         if (!pstate_funcs.get_max() ||
2375             !pstate_funcs.get_min() ||
2376             !pstate_funcs.get_turbo())
2377                 return -ENODEV;
2378
2379         return 0;
2380 }
2381
2382 #ifdef CONFIG_ACPI
2383 static void intel_pstate_use_acpi_profile(void)
2384 {
2385         switch (acpi_gbl_FADT.preferred_profile) {
2386         case PM_MOBILE:
2387         case PM_TABLET:
2388         case PM_APPLIANCE_PC:
2389         case PM_DESKTOP:
2390         case PM_WORKSTATION:
2391                 pstate_funcs.update_util = intel_pstate_update_util;
2392         }
2393 }
2394 #else
2395 static void intel_pstate_use_acpi_profile(void)
2396 {
2397 }
2398 #endif
2399
2400 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2401 {
2402         pstate_funcs.get_max   = funcs->get_max;
2403         pstate_funcs.get_max_physical = funcs->get_max_physical;
2404         pstate_funcs.get_min   = funcs->get_min;
2405         pstate_funcs.get_turbo = funcs->get_turbo;
2406         pstate_funcs.get_scaling = funcs->get_scaling;
2407         pstate_funcs.get_val   = funcs->get_val;
2408         pstate_funcs.get_vid   = funcs->get_vid;
2409         pstate_funcs.update_util = funcs->update_util;
2410
2411         intel_pstate_use_acpi_profile();
2412 }
2413
2414 #ifdef CONFIG_ACPI
2415
2416 static bool __init intel_pstate_no_acpi_pss(void)
2417 {
2418         int i;
2419
2420         for_each_possible_cpu(i) {
2421                 acpi_status status;
2422                 union acpi_object *pss;
2423                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2424                 struct acpi_processor *pr = per_cpu(processors, i);
2425
2426                 if (!pr)
2427                         continue;
2428
2429                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2430                 if (ACPI_FAILURE(status))
2431                         continue;
2432
2433                 pss = buffer.pointer;
2434                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2435                         kfree(pss);
2436                         return false;
2437                 }
2438
2439                 kfree(pss);
2440         }
2441
2442         return true;
2443 }
2444
2445 static bool __init intel_pstate_has_acpi_ppc(void)
2446 {
2447         int i;
2448
2449         for_each_possible_cpu(i) {
2450                 struct acpi_processor *pr = per_cpu(processors, i);
2451
2452                 if (!pr)
2453                         continue;
2454                 if (acpi_has_method(pr->handle, "_PPC"))
2455                         return true;
2456         }
2457         return false;
2458 }
2459
2460 enum {
2461         PSS,
2462         PPC,
2463 };
2464
2465 struct hw_vendor_info {
2466         u16  valid;
2467         char oem_id[ACPI_OEM_ID_SIZE];
2468         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2469         int  oem_pwr_table;
2470 };
2471
2472 /* Hardware vendor-specific info that has its own power management modes */
2473 static struct hw_vendor_info vendor_info[] __initdata = {
2474         {1, "HP    ", "ProLiant", PSS},
2475         {1, "ORACLE", "X4-2    ", PPC},
2476         {1, "ORACLE", "X4-2L   ", PPC},
2477         {1, "ORACLE", "X4-2B   ", PPC},
2478         {1, "ORACLE", "X3-2    ", PPC},
2479         {1, "ORACLE", "X3-2L   ", PPC},
2480         {1, "ORACLE", "X3-2B   ", PPC},
2481         {1, "ORACLE", "X4470M2 ", PPC},
2482         {1, "ORACLE", "X4270M3 ", PPC},
2483         {1, "ORACLE", "X4270M2 ", PPC},
2484         {1, "ORACLE", "X4170M2 ", PPC},
2485         {1, "ORACLE", "X4170 M3", PPC},
2486         {1, "ORACLE", "X4275 M3", PPC},
2487         {1, "ORACLE", "X6-2    ", PPC},
2488         {1, "ORACLE", "Sudbury ", PPC},
2489         {0, "", ""},
2490 };
2491
2492 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2493 {
2494         struct acpi_table_header hdr;
2495         struct hw_vendor_info *v_info;
2496         const struct x86_cpu_id *id;
2497         u64 misc_pwr;
2498
2499         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2500         if (id) {
2501                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2502                 if ( misc_pwr & (1 << 8))
2503                         return true;
2504         }
2505
2506         if (acpi_disabled ||
2507             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2508                 return false;
2509
2510         for (v_info = vendor_info; v_info->valid; v_info++) {
2511                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2512                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2513                                                 ACPI_OEM_TABLE_ID_SIZE))
2514                         switch (v_info->oem_pwr_table) {
2515                         case PSS:
2516                                 return intel_pstate_no_acpi_pss();
2517                         case PPC:
2518                                 return intel_pstate_has_acpi_ppc() &&
2519                                         (!force_load);
2520                         }
2521         }
2522
2523         return false;
2524 }
2525
2526 static void intel_pstate_request_control_from_smm(void)
2527 {
2528         /*
2529          * It may be unsafe to request P-states control from SMM if _PPC support
2530          * has not been enabled.
2531          */
2532         if (acpi_ppc)
2533                 acpi_processor_pstate_control();
2534 }
2535 #else /* CONFIG_ACPI not enabled */
2536 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2537 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2538 static inline void intel_pstate_request_control_from_smm(void) {}
2539 #endif /* CONFIG_ACPI */
2540
2541 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2542         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2543         {}
2544 };
2545
2546 static int __init intel_pstate_init(void)
2547 {
2548         int rc;
2549
2550         if (no_load)
2551                 return -ENODEV;
2552
2553         if (x86_match_cpu(hwp_support_ids)) {
2554                 copy_cpu_funcs(&core_funcs);
2555                 if (no_hwp) {
2556                         pstate_funcs.update_util = intel_pstate_update_util;
2557                 } else {
2558                         hwp_active++;
2559                         intel_pstate.attr = hwp_cpufreq_attrs;
2560                         pstate_funcs.update_util = intel_pstate_update_util_hwp;
2561                         goto hwp_cpu_matched;
2562                 }
2563         } else {
2564                 const struct x86_cpu_id *id;
2565
2566                 id = x86_match_cpu(intel_pstate_cpu_ids);
2567                 if (!id)
2568                         return -ENODEV;
2569
2570                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2571         }
2572
2573         if (intel_pstate_msrs_not_valid())
2574                 return -ENODEV;
2575
2576 hwp_cpu_matched:
2577         /*
2578          * The Intel pstate driver will be ignored if the platform
2579          * firmware has its own power management modes.
2580          */
2581         if (intel_pstate_platform_pwr_mgmt_exists())
2582                 return -ENODEV;
2583
2584         if (!hwp_active && hwp_only)
2585                 return -ENOTSUPP;
2586
2587         pr_info("Intel P-state driver initializing\n");
2588
2589         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2590         if (!all_cpu_data)
2591                 return -ENOMEM;
2592
2593         intel_pstate_request_control_from_smm();
2594
2595         intel_pstate_sysfs_expose_params();
2596
2597         mutex_lock(&intel_pstate_driver_lock);
2598         rc = intel_pstate_register_driver(default_driver);
2599         mutex_unlock(&intel_pstate_driver_lock);
2600         if (rc)
2601                 return rc;
2602
2603         if (hwp_active)
2604                 pr_info("HWP enabled\n");
2605
2606         return 0;
2607 }
2608 device_initcall(intel_pstate_init);
2609
2610 static int __init intel_pstate_setup(char *str)
2611 {
2612         if (!str)
2613                 return -EINVAL;
2614
2615         if (!strcmp(str, "disable")) {
2616                 no_load = 1;
2617         } else if (!strcmp(str, "passive")) {
2618                 pr_info("Passive mode enabled\n");
2619                 default_driver = &intel_cpufreq;
2620                 no_hwp = 1;
2621         }
2622         if (!strcmp(str, "no_hwp")) {
2623                 pr_info("HWP disabled\n");
2624                 no_hwp = 1;
2625         }
2626         if (!strcmp(str, "force"))
2627                 force_load = 1;
2628         if (!strcmp(str, "hwp_only"))
2629                 hwp_only = 1;
2630         if (!strcmp(str, "per_cpu_perf_limits"))
2631                 per_cpu_limits = true;
2632
2633 #ifdef CONFIG_ACPI
2634         if (!strcmp(str, "support_acpi_ppc"))
2635                 acpi_ppc = true;
2636 #endif
2637
2638         return 0;
2639 }
2640 early_param("intel_pstate", intel_pstate_setup);
2641
2642 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2643 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2644 MODULE_LICENSE("GPL");