]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/sb_edac.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/processor.h>
27 #include <asm/mce.h>
28
29 #include "edac_core.h"
30
31 /* Static vars */
32 static LIST_HEAD(sbridge_edac_list);
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 static const u32 knl_dram_rule[] = {
69         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75
76 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
78
79 static char *show_dram_attr(u32 attr)
80 {
81         switch (attr) {
82                 case 0:
83                         return "DRAM";
84                 case 1:
85                         return "MMCFG";
86                 case 2:
87                         return "NXM";
88                 default:
89                         return "unknown";
90         }
91 }
92
93 static const u32 sbridge_interleave_list[] = {
94         0x84, 0x8c, 0x94, 0x9c, 0xa4,
95         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97
98 static const u32 ibridge_interleave_list[] = {
99         0x64, 0x6c, 0x74, 0x7c, 0x84,
100         0x8c, 0x94, 0x9c, 0xa4, 0xac,
101         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104
105 static const u32 knl_interleave_list[] = {
106         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112
113 struct interleave_pkg {
114         unsigned char start;
115         unsigned char end;
116 };
117
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119         { 0, 2 },
120         { 3, 5 },
121         { 8, 10 },
122         { 11, 13 },
123         { 16, 18 },
124         { 19, 21 },
125         { 24, 26 },
126         { 27, 29 },
127 };
128
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130         { 0, 3 },
131         { 4, 7 },
132         { 8, 11 },
133         { 12, 15 },
134         { 16, 19 },
135         { 20, 23 },
136         { 24, 27 },
137         { 28, 31 },
138 };
139
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141                           int interleave)
142 {
143         return GET_BITFIELD(reg, table[interleave].start,
144                             table[interleave].end);
145 }
146
147 /* Devices 12 Function 7 */
148
149 #define TOLM            0x80
150 #define TOHM            0x84
151 #define HASWELL_TOLM    0xd0
152 #define HASWELL_TOHM_0  0xd4
153 #define HASWELL_TOHM_1  0xd8
154 #define KNL_TOLM        0xd0
155 #define KNL_TOHM_0      0xd4
156 #define KNL_TOHM_1      0xd8
157
158 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160
161 /* Device 13 Function 6 */
162
163 #define SAD_TARGET      0xf0
164
165 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
166
167 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
168
169 #define SAD_CONTROL     0xf4
170
171 /* Device 14 function 0 */
172
173 static const u32 tad_dram_rule[] = {
174         0x40, 0x44, 0x48, 0x4c,
175         0x50, 0x54, 0x58, 0x5c,
176         0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
179
180 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
187
188 /* Device 15, function 0 */
189
190 #define MCMTR                   0x7c
191 #define KNL_MCMTR               0x624
192
193 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
196
197 /* Device 15, function 1 */
198
199 #define RASENABLES              0xac
200 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
201
202 /* Device 15, functions 2-5 */
203
204 static const int mtr_regs[] = {
205         0x80, 0x84, 0x88,
206 };
207
208 static const int knl_mtr_reg = 0xb60;
209
210 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
215
216 static const u32 tad_ch_nilv_offset[] = {
217         0x90, 0x94, 0x98, 0x9c,
218         0xa0, 0xa4, 0xa8, 0xac,
219         0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
223
224 static const u32 rir_way_limit[] = {
225         0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228
229 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
231
232 #define MAX_RIR_WAY     8
233
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241
242 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
243         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
244
245 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
246         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
247
248 /* Device 16, functions 2-7 */
249
250 /*
251  * FIXME: Implement the error count reads directly
252  */
253
254 static const u32 correrrcnt[] = {
255         0x104, 0x108, 0x10c, 0x110,
256 };
257
258 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
259 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
261 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
262
263 static const u32 correrrthrsld[] = {
264         0x11c, 0x120, 0x124, 0x128,
265 };
266
267 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
268 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
269
270
271 /* Device 17, function 0 */
272
273 #define SB_RANK_CFG_A           0x0328
274
275 #define IB_RANK_CFG_A           0x0320
276
277 /*
278  * sbridge structs
279  */
280
281 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
282 #define MAX_DIMMS               3       /* Max DIMMS per channel */
283 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
284 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
285 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
286 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
287
288 enum type {
289         SANDY_BRIDGE,
290         IVY_BRIDGE,
291         HASWELL,
292         BROADWELL,
293         KNIGHTS_LANDING,
294 };
295
296 struct sbridge_pvt;
297 struct sbridge_info {
298         enum type       type;
299         u32             mcmtr;
300         u32             rankcfgr;
301         u64             (*get_tolm)(struct sbridge_pvt *pvt);
302         u64             (*get_tohm)(struct sbridge_pvt *pvt);
303         u64             (*rir_limit)(u32 reg);
304         u64             (*sad_limit)(u32 reg);
305         u32             (*interleave_mode)(u32 reg);
306         char*           (*show_interleave_mode)(u32 reg);
307         u32             (*dram_attr)(u32 reg);
308         const u32       *dram_rule;
309         const u32       *interleave_list;
310         const struct interleave_pkg *interleave_pkg;
311         u8              max_sad;
312         u8              max_interleave;
313         u8              (*get_node_id)(struct sbridge_pvt *pvt);
314         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
315         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
316         struct pci_dev  *pci_vtd;
317 };
318
319 struct sbridge_channel {
320         u32             ranks;
321         u32             dimms;
322 };
323
324 struct pci_id_descr {
325         int                     dev_id;
326         int                     optional;
327 };
328
329 struct pci_id_table {
330         const struct pci_id_descr       *descr;
331         int                             n_devs;
332         enum type                       type;
333 };
334
335 struct sbridge_dev {
336         struct list_head        list;
337         u8                      bus, mc;
338         u8                      node_id, source_id;
339         struct pci_dev          **pdev;
340         int                     n_devs;
341         struct mem_ctl_info     *mci;
342 };
343
344 struct knl_pvt {
345         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
346         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
347         struct pci_dev          *pci_mc0;
348         struct pci_dev          *pci_mc1;
349         struct pci_dev          *pci_mc0_misc;
350         struct pci_dev          *pci_mc1_misc;
351         struct pci_dev          *pci_mc_info; /* tolm, tohm */
352 };
353
354 struct sbridge_pvt {
355         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
356         struct pci_dev          *pci_sad0, *pci_sad1;
357         struct pci_dev          *pci_ha0, *pci_ha1;
358         struct pci_dev          *pci_br0, *pci_br1;
359         struct pci_dev          *pci_ha1_ta;
360         struct pci_dev          *pci_tad[NUM_CHANNELS];
361
362         struct sbridge_dev      *sbridge_dev;
363
364         struct sbridge_info     info;
365         struct sbridge_channel  channel[NUM_CHANNELS];
366
367         /* Memory type detection */
368         bool                    is_mirrored, is_lockstep, is_close_pg;
369         bool                    is_chan_hash;
370
371         /* Memory description */
372         u64                     tolm, tohm;
373         struct knl_pvt knl;
374 };
375
376 #define PCI_DESCR(device_id, opt)       \
377         .dev_id = (device_id),          \
378         .optional = opt
379
380 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
381                 /* Processor Home Agent */
382         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
383
384                 /* Memory controller */
385         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
386         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
387         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
388         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
389         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
390         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
391         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
392
393                 /* System Address Decoder */
394         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
395         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
396
397                 /* Broadcast Registers */
398         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
399 };
400
401 #define PCI_ID_TABLE_ENTRY(A, T) {      \
402         .descr = A,                     \
403         .n_devs = ARRAY_SIZE(A),        \
404         .type = T                       \
405 }
406
407 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
408         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, SANDY_BRIDGE),
409         {0,}                    /* 0 terminated list. */
410 };
411
412 /* This changes depending if 1HA or 2HA:
413  * 1HA:
414  *      0x0eb8 (17.0) is DDRIO0
415  * 2HA:
416  *      0x0ebc (17.4) is DDRIO0
417  */
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
420
421 /* pci ids */
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
439
440 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
441                 /* Processor Home Agent */
442         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
443
444                 /* Memory controller */
445         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
446         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
448         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
449         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
450         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
451
452                 /* System Address Decoder */
453         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
454
455                 /* Broadcast Registers */
456         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
458
459                 /* Optional, mode 2HA */
460         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
461 #if 0
462         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
463         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
464 #endif
465         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
466         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
467         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
469
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
472 };
473
474 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
475         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, IVY_BRIDGE),
476         {0,}                    /* 0 terminated list. */
477 };
478
479 /* Haswell support */
480 /* EN processor:
481  *      - 1 IMC
482  *      - 3 DDR3 channels, 2 DPC per channel
483  * EP processor:
484  *      - 1 or 2 IMC
485  *      - 4 DDR4 channels, 3 DPC per channel
486  * EP 4S processor:
487  *      - 2 IMC
488  *      - 4 DDR4 channels, 3 DPC per channel
489  * EX processor:
490  *      - 2 IMC
491  *      - each IMC interfaces with a SMI 2 channel
492  *      - each SMI channel interfaces with a scalable memory buffer
493  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
494  */
495 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
496 #define HASWELL_HASYSDEFEATURE2 0x84
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
518 static const struct pci_id_descr pci_dev_descr_haswell[] = {
519         /* first item must be the HA */
520         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
521
522         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
523         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
524
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
526
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
529         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
533
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
536         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
537         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
538
539         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
540         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
541         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
542         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
543         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
545 };
546
547 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
548         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, HASWELL),
549         {0,}                    /* 0 terminated list. */
550 };
551
552 /* Knight's Landing Support */
553 /*
554  * KNL's memory channels are swizzled between memory controllers.
555  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
556  */
557 #define knl_channel_remap(channel) ((channel + 3) % 6)
558
559 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
561 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
563 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
564 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
565 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
566 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
567 /* SAD target - 1-29-1 (1 of these) */
568 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
569 /* Caching / Home Agent */
570 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
571 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
573
574 /*
575  * KNL differs from SB, IB, and Haswell in that it has multiple
576  * instances of the same device with the same device ID, so we handle that
577  * by creating as many copies in the table as we expect to find.
578  * (Like device ID must be grouped together.)
579  */
580
581 static const struct pci_id_descr pci_dev_descr_knl[] = {
582         [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
583         [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
584         [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
585         [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
586         [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
587         [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
588         [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
589 };
590
591 static const struct pci_id_table pci_dev_descr_knl_table[] = {
592         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, KNIGHTS_LANDING),
593         {0,}
594 };
595
596 /*
597  * Broadwell support
598  *
599  * DE processor:
600  *      - 1 IMC
601  *      - 2 DDR3 channels, 2 DPC per channel
602  * EP processor:
603  *      - 1 or 2 IMC
604  *      - 4 DDR4 channels, 3 DPC per channel
605  * EP 4S processor:
606  *      - 2 IMC
607  *      - 4 DDR4 channels, 3 DPC per channel
608  * EX processor:
609  *      - 2 IMC
610  *      - each IMC interfaces with a SMI 2 channel
611  *      - each SMI channel interfaces with a scalable memory buffer
612  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
613  */
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
632
633 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
634         /* first item must be the HA */
635         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
636
637         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
638         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
639
640         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
641
642         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
643         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
644         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
645         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
646         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
647         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
648
649         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
650
651         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
652         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
653         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
654         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
655         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
656         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
657 };
658
659 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
660         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, BROADWELL),
661         {0,}                    /* 0 terminated list. */
662 };
663
664
665 /****************************************************************************
666                         Ancillary status routines
667  ****************************************************************************/
668
669 static inline int numrank(enum type type, u32 mtr)
670 {
671         int ranks = (1 << RANK_CNT_BITS(mtr));
672         int max = 4;
673
674         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
675                 max = 8;
676
677         if (ranks > max) {
678                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
679                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
680                 return -EINVAL;
681         }
682
683         return ranks;
684 }
685
686 static inline int numrow(u32 mtr)
687 {
688         int rows = (RANK_WIDTH_BITS(mtr) + 12);
689
690         if (rows < 13 || rows > 18) {
691                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
692                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
693                 return -EINVAL;
694         }
695
696         return 1 << rows;
697 }
698
699 static inline int numcol(u32 mtr)
700 {
701         int cols = (COL_WIDTH_BITS(mtr) + 10);
702
703         if (cols > 12) {
704                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
705                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
706                 return -EINVAL;
707         }
708
709         return 1 << cols;
710 }
711
712 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
713 {
714         struct sbridge_dev *sbridge_dev;
715
716         /*
717          * If we have devices scattered across several busses that pertain
718          * to the same memory controller, we'll lump them all together.
719          */
720         if (multi_bus) {
721                 return list_first_entry_or_null(&sbridge_edac_list,
722                                 struct sbridge_dev, list);
723         }
724
725         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
726                 if (sbridge_dev->bus == bus)
727                         return sbridge_dev;
728         }
729
730         return NULL;
731 }
732
733 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
734                                            const struct pci_id_table *table)
735 {
736         struct sbridge_dev *sbridge_dev;
737
738         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
739         if (!sbridge_dev)
740                 return NULL;
741
742         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
743                                    GFP_KERNEL);
744         if (!sbridge_dev->pdev) {
745                 kfree(sbridge_dev);
746                 return NULL;
747         }
748
749         sbridge_dev->bus = bus;
750         sbridge_dev->n_devs = table->n_devs;
751         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
752
753         return sbridge_dev;
754 }
755
756 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
757 {
758         list_del(&sbridge_dev->list);
759         kfree(sbridge_dev->pdev);
760         kfree(sbridge_dev);
761 }
762
763 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
764 {
765         u32 reg;
766
767         /* Address range is 32:28 */
768         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
769         return GET_TOLM(reg);
770 }
771
772 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
773 {
774         u32 reg;
775
776         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
777         return GET_TOHM(reg);
778 }
779
780 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
781 {
782         u32 reg;
783
784         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
785
786         return GET_TOLM(reg);
787 }
788
789 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
790 {
791         u32 reg;
792
793         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
794
795         return GET_TOHM(reg);
796 }
797
798 static u64 rir_limit(u32 reg)
799 {
800         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
801 }
802
803 static u64 sad_limit(u32 reg)
804 {
805         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
806 }
807
808 static u32 interleave_mode(u32 reg)
809 {
810         return GET_BITFIELD(reg, 1, 1);
811 }
812
813 char *show_interleave_mode(u32 reg)
814 {
815         return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
816 }
817
818 static u32 dram_attr(u32 reg)
819 {
820         return GET_BITFIELD(reg, 2, 3);
821 }
822
823 static u64 knl_sad_limit(u32 reg)
824 {
825         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
826 }
827
828 static u32 knl_interleave_mode(u32 reg)
829 {
830         return GET_BITFIELD(reg, 1, 2);
831 }
832
833 static char *knl_show_interleave_mode(u32 reg)
834 {
835         char *s;
836
837         switch (knl_interleave_mode(reg)) {
838         case 0:
839                 s = "use address bits [8:6]";
840                 break;
841         case 1:
842                 s = "use address bits [10:8]";
843                 break;
844         case 2:
845                 s = "use address bits [14:12]";
846                 break;
847         case 3:
848                 s = "use address bits [32:30]";
849                 break;
850         default:
851                 WARN_ON(1);
852                 break;
853         }
854
855         return s;
856 }
857
858 static u32 dram_attr_knl(u32 reg)
859 {
860         return GET_BITFIELD(reg, 3, 4);
861 }
862
863
864 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
865 {
866         u32 reg;
867         enum mem_type mtype;
868
869         if (pvt->pci_ddrio) {
870                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
871                                       &reg);
872                 if (GET_BITFIELD(reg, 11, 11))
873                         /* FIXME: Can also be LRDIMM */
874                         mtype = MEM_RDDR3;
875                 else
876                         mtype = MEM_DDR3;
877         } else
878                 mtype = MEM_UNKNOWN;
879
880         return mtype;
881 }
882
883 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
884 {
885         u32 reg;
886         bool registered = false;
887         enum mem_type mtype = MEM_UNKNOWN;
888
889         if (!pvt->pci_ddrio)
890                 goto out;
891
892         pci_read_config_dword(pvt->pci_ddrio,
893                               HASWELL_DDRCRCLKCONTROLS, &reg);
894         /* Is_Rdimm */
895         if (GET_BITFIELD(reg, 16, 16))
896                 registered = true;
897
898         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
899         if (GET_BITFIELD(reg, 14, 14)) {
900                 if (registered)
901                         mtype = MEM_RDDR4;
902                 else
903                         mtype = MEM_DDR4;
904         } else {
905                 if (registered)
906                         mtype = MEM_RDDR3;
907                 else
908                         mtype = MEM_DDR3;
909         }
910
911 out:
912         return mtype;
913 }
914
915 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
916 {
917         /* for KNL value is fixed */
918         return DEV_X16;
919 }
920
921 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
922 {
923         /* there's no way to figure out */
924         return DEV_UNKNOWN;
925 }
926
927 static enum dev_type __ibridge_get_width(u32 mtr)
928 {
929         enum dev_type type;
930
931         switch (mtr) {
932         case 3:
933                 type = DEV_UNKNOWN;
934                 break;
935         case 2:
936                 type = DEV_X16;
937                 break;
938         case 1:
939                 type = DEV_X8;
940                 break;
941         case 0:
942                 type = DEV_X4;
943                 break;
944         }
945
946         return type;
947 }
948
949 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
950 {
951         /*
952          * ddr3_width on the documentation but also valid for DDR4 on
953          * Haswell
954          */
955         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
956 }
957
958 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
959 {
960         /* ddr3_width on the documentation but also valid for DDR4 */
961         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
962 }
963
964 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
965 {
966         /* DDR4 RDIMMS and LRDIMMS are supported */
967         return MEM_RDDR4;
968 }
969
970 static u8 get_node_id(struct sbridge_pvt *pvt)
971 {
972         u32 reg;
973         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
974         return GET_BITFIELD(reg, 0, 2);
975 }
976
977 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
978 {
979         u32 reg;
980
981         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
982         return GET_BITFIELD(reg, 0, 3);
983 }
984
985 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
986 {
987         u32 reg;
988
989         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
990         return GET_BITFIELD(reg, 0, 2);
991 }
992
993
994 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
995 {
996         u32 reg;
997
998         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
999         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1000 }
1001
1002 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1003 {
1004         u64 rc;
1005         u32 reg;
1006
1007         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1008         rc = GET_BITFIELD(reg, 26, 31);
1009         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1010         rc = ((reg << 6) | rc) << 26;
1011
1012         return rc | 0x1ffffff;
1013 }
1014
1015 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1016 {
1017         u32 reg;
1018
1019         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1020         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1021 }
1022
1023 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1024 {
1025         u64 rc;
1026         u32 reg_lo, reg_hi;
1027
1028         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1029         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1030         rc = ((u64)reg_hi << 32) | reg_lo;
1031         return rc | 0x3ffffff;
1032 }
1033
1034
1035 static u64 haswell_rir_limit(u32 reg)
1036 {
1037         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1038 }
1039
1040 static inline u8 sad_pkg_socket(u8 pkg)
1041 {
1042         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1043         return ((pkg >> 3) << 2) | (pkg & 0x3);
1044 }
1045
1046 static inline u8 sad_pkg_ha(u8 pkg)
1047 {
1048         return (pkg >> 2) & 0x1;
1049 }
1050
1051 static int haswell_chan_hash(int idx, u64 addr)
1052 {
1053         int i;
1054
1055         /*
1056          * XOR even bits from 12:26 to bit0 of idx,
1057          *     odd bits from 13:27 to bit1
1058          */
1059         for (i = 12; i < 28; i += 2)
1060                 idx ^= (addr >> i) & 3;
1061
1062         return idx;
1063 }
1064
1065 /****************************************************************************
1066                         Memory check routines
1067  ****************************************************************************/
1068 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1069 {
1070         struct pci_dev *pdev = NULL;
1071
1072         do {
1073                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1074                 if (pdev && pdev->bus->number == bus)
1075                         break;
1076         } while (pdev);
1077
1078         return pdev;
1079 }
1080
1081 /**
1082  * check_if_ecc_is_active() - Checks if ECC is active
1083  * @bus:        Device bus
1084  * @type:       Memory controller type
1085  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1086  *          disabled
1087  */
1088 static int check_if_ecc_is_active(const u8 bus, enum type type)
1089 {
1090         struct pci_dev *pdev = NULL;
1091         u32 mcmtr, id;
1092
1093         switch (type) {
1094         case IVY_BRIDGE:
1095                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1096                 break;
1097         case HASWELL:
1098                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1099                 break;
1100         case SANDY_BRIDGE:
1101                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1102                 break;
1103         case BROADWELL:
1104                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1105                 break;
1106         case KNIGHTS_LANDING:
1107                 /*
1108                  * KNL doesn't group things by bus the same way
1109                  * SB/IB/Haswell does.
1110                  */
1111                 id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1112                 break;
1113         default:
1114                 return -ENODEV;
1115         }
1116
1117         if (type != KNIGHTS_LANDING)
1118                 pdev = get_pdev_same_bus(bus, id);
1119         else
1120                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1121
1122         if (!pdev) {
1123                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1124                                         "%04x:%04x! on bus %02d\n",
1125                                         PCI_VENDOR_ID_INTEL, id, bus);
1126                 return -ENODEV;
1127         }
1128
1129         pci_read_config_dword(pdev,
1130                         type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1131         if (!IS_ECC_ENABLED(mcmtr)) {
1132                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1133                 return -ENODEV;
1134         }
1135         return 0;
1136 }
1137
1138 /* Low bits of TAD limit, and some metadata. */
1139 static const u32 knl_tad_dram_limit_lo[] = {
1140         0x400, 0x500, 0x600, 0x700,
1141         0x800, 0x900, 0xa00, 0xb00,
1142 };
1143
1144 /* Low bits of TAD offset. */
1145 static const u32 knl_tad_dram_offset_lo[] = {
1146         0x404, 0x504, 0x604, 0x704,
1147         0x804, 0x904, 0xa04, 0xb04,
1148 };
1149
1150 /* High 16 bits of TAD limit and offset. */
1151 static const u32 knl_tad_dram_hi[] = {
1152         0x408, 0x508, 0x608, 0x708,
1153         0x808, 0x908, 0xa08, 0xb08,
1154 };
1155
1156 /* Number of ways a tad entry is interleaved. */
1157 static const u32 knl_tad_ways[] = {
1158         8, 6, 4, 3, 2, 1,
1159 };
1160
1161 /*
1162  * Retrieve the n'th Target Address Decode table entry
1163  * from the memory controller's TAD table.
1164  *
1165  * @pvt:        driver private data
1166  * @entry:      which entry you want to retrieve
1167  * @mc:         which memory controller (0 or 1)
1168  * @offset:     output tad range offset
1169  * @limit:      output address of first byte above tad range
1170  * @ways:       output number of interleave ways
1171  *
1172  * The offset value has curious semantics.  It's a sort of running total
1173  * of the sizes of all the memory regions that aren't mapped in this
1174  * tad table.
1175  */
1176 static int knl_get_tad(const struct sbridge_pvt *pvt,
1177                 const int entry,
1178                 const int mc,
1179                 u64 *offset,
1180                 u64 *limit,
1181                 int *ways)
1182 {
1183         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1184         struct pci_dev *pci_mc;
1185         int way_id;
1186
1187         switch (mc) {
1188         case 0:
1189                 pci_mc = pvt->knl.pci_mc0;
1190                 break;
1191         case 1:
1192                 pci_mc = pvt->knl.pci_mc1;
1193                 break;
1194         default:
1195                 WARN_ON(1);
1196                 return -EINVAL;
1197         }
1198
1199         pci_read_config_dword(pci_mc,
1200                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1201         pci_read_config_dword(pci_mc,
1202                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1203         pci_read_config_dword(pci_mc,
1204                         knl_tad_dram_hi[entry], &reg_hi);
1205
1206         /* Is this TAD entry enabled? */
1207         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1208                 return -ENODEV;
1209
1210         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1211
1212         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1213                 *ways = knl_tad_ways[way_id];
1214         } else {
1215                 *ways = 0;
1216                 sbridge_printk(KERN_ERR,
1217                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1218                                 way_id);
1219                 return -ENODEV;
1220         }
1221
1222         /*
1223          * The least significant 6 bits of base and limit are truncated.
1224          * For limit, we fill the missing bits with 1s.
1225          */
1226         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1227                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1228         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1229                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1230
1231         return 0;
1232 }
1233
1234 /* Determine which memory controller is responsible for a given channel. */
1235 static int knl_channel_mc(int channel)
1236 {
1237         WARN_ON(channel < 0 || channel >= 6);
1238
1239         return channel < 3 ? 1 : 0;
1240 }
1241
1242 /*
1243  * Get the Nth entry from EDC_ROUTE_TABLE register.
1244  * (This is the per-tile mapping of logical interleave targets to
1245  *  physical EDC modules.)
1246  *
1247  * entry 0: 0:2
1248  *       1: 3:5
1249  *       2: 6:8
1250  *       3: 9:11
1251  *       4: 12:14
1252  *       5: 15:17
1253  *       6: 18:20
1254  *       7: 21:23
1255  * reserved: 24:31
1256  */
1257 static u32 knl_get_edc_route(int entry, u32 reg)
1258 {
1259         WARN_ON(entry >= KNL_MAX_EDCS);
1260         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1261 }
1262
1263 /*
1264  * Get the Nth entry from MC_ROUTE_TABLE register.
1265  * (This is the per-tile mapping of logical interleave targets to
1266  *  physical DRAM channels modules.)
1267  *
1268  * entry 0: mc 0:2   channel 18:19
1269  *       1: mc 3:5   channel 20:21
1270  *       2: mc 6:8   channel 22:23
1271  *       3: mc 9:11  channel 24:25
1272  *       4: mc 12:14 channel 26:27
1273  *       5: mc 15:17 channel 28:29
1274  * reserved: 30:31
1275  *
1276  * Though we have 3 bits to identify the MC, we should only see
1277  * the values 0 or 1.
1278  */
1279
1280 static u32 knl_get_mc_route(int entry, u32 reg)
1281 {
1282         int mc, chan;
1283
1284         WARN_ON(entry >= KNL_MAX_CHANNELS);
1285
1286         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1287         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1288
1289         return knl_channel_remap(mc*3 + chan);
1290 }
1291
1292 /*
1293  * Render the EDC_ROUTE register in human-readable form.
1294  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1295  */
1296 static void knl_show_edc_route(u32 reg, char *s)
1297 {
1298         int i;
1299
1300         for (i = 0; i < KNL_MAX_EDCS; i++) {
1301                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1302                 s[i*2+1] = '-';
1303         }
1304
1305         s[KNL_MAX_EDCS*2 - 1] = '\0';
1306 }
1307
1308 /*
1309  * Render the MC_ROUTE register in human-readable form.
1310  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1311  */
1312 static void knl_show_mc_route(u32 reg, char *s)
1313 {
1314         int i;
1315
1316         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1317                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1318                 s[i*2+1] = '-';
1319         }
1320
1321         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1322 }
1323
1324 #define KNL_EDC_ROUTE 0xb8
1325 #define KNL_MC_ROUTE 0xb4
1326
1327 /* Is this dram rule backed by regular DRAM in flat mode? */
1328 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1329
1330 /* Is this dram rule cached? */
1331 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1332
1333 /* Is this rule backed by edc ? */
1334 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1335
1336 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1337 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1338
1339 /* Is this rule mod3? */
1340 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1341
1342 /*
1343  * Figure out how big our RAM modules are.
1344  *
1345  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1346  * have to figure this out from the SAD rules, interleave lists, route tables,
1347  * and TAD rules.
1348  *
1349  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1350  * inspect the TAD rules to figure out how large the SAD regions really are.
1351  *
1352  * When we know the real size of a SAD region and how many ways it's
1353  * interleaved, we know the individual contribution of each channel to
1354  * TAD is size/ways.
1355  *
1356  * Finally, we have to check whether each channel participates in each SAD
1357  * region.
1358  *
1359  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1360  * much memory the channel uses, we know the DIMM is at least that large.
1361  * (The BIOS might possibly choose not to map all available memory, in which
1362  * case we will underreport the size of the DIMM.)
1363  *
1364  * In theory, we could try to determine the EDC sizes as well, but that would
1365  * only work in flat mode, not in cache mode.
1366  *
1367  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1368  *            elements)
1369  */
1370 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1371 {
1372         u64 sad_base, sad_size, sad_limit = 0;
1373         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1374         int sad_rule = 0;
1375         int tad_rule = 0;
1376         int intrlv_ways, tad_ways;
1377         u32 first_pkg, pkg;
1378         int i;
1379         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1380         u32 dram_rule, interleave_reg;
1381         u32 mc_route_reg[KNL_MAX_CHAS];
1382         u32 edc_route_reg[KNL_MAX_CHAS];
1383         int edram_only;
1384         char edc_route_string[KNL_MAX_EDCS*2];
1385         char mc_route_string[KNL_MAX_CHANNELS*2];
1386         int cur_reg_start;
1387         int mc;
1388         int channel;
1389         int way;
1390         int participants[KNL_MAX_CHANNELS];
1391         int participant_count = 0;
1392
1393         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1394                 mc_sizes[i] = 0;
1395
1396         /* Read the EDC route table in each CHA. */
1397         cur_reg_start = 0;
1398         for (i = 0; i < KNL_MAX_CHAS; i++) {
1399                 pci_read_config_dword(pvt->knl.pci_cha[i],
1400                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1401
1402                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1403                         knl_show_edc_route(edc_route_reg[i-1],
1404                                         edc_route_string);
1405                         if (cur_reg_start == i-1)
1406                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1407                                         cur_reg_start, edc_route_string);
1408                         else
1409                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1410                                         cur_reg_start, i-1, edc_route_string);
1411                         cur_reg_start = i;
1412                 }
1413         }
1414         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1415         if (cur_reg_start == i-1)
1416                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1417                         cur_reg_start, edc_route_string);
1418         else
1419                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1420                         cur_reg_start, i-1, edc_route_string);
1421
1422         /* Read the MC route table in each CHA. */
1423         cur_reg_start = 0;
1424         for (i = 0; i < KNL_MAX_CHAS; i++) {
1425                 pci_read_config_dword(pvt->knl.pci_cha[i],
1426                         KNL_MC_ROUTE, &mc_route_reg[i]);
1427
1428                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1429                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1430                         if (cur_reg_start == i-1)
1431                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1432                                         cur_reg_start, mc_route_string);
1433                         else
1434                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1435                                         cur_reg_start, i-1, mc_route_string);
1436                         cur_reg_start = i;
1437                 }
1438         }
1439         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1440         if (cur_reg_start == i-1)
1441                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1442                         cur_reg_start, mc_route_string);
1443         else
1444                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1445                         cur_reg_start, i-1, mc_route_string);
1446
1447         /* Process DRAM rules */
1448         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1449                 /* previous limit becomes the new base */
1450                 sad_base = sad_limit;
1451
1452                 pci_read_config_dword(pvt->pci_sad0,
1453                         pvt->info.dram_rule[sad_rule], &dram_rule);
1454
1455                 if (!DRAM_RULE_ENABLE(dram_rule))
1456                         break;
1457
1458                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1459
1460                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1461                 sad_size = sad_limit - sad_base;
1462
1463                 pci_read_config_dword(pvt->pci_sad0,
1464                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1465
1466                 /*
1467                  * Find out how many ways this dram rule is interleaved.
1468                  * We stop when we see the first channel again.
1469                  */
1470                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1471                                                 interleave_reg, 0);
1472                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1473                         pkg = sad_pkg(pvt->info.interleave_pkg,
1474                                                 interleave_reg, intrlv_ways);
1475
1476                         if ((pkg & 0x8) == 0) {
1477                                 /*
1478                                  * 0 bit means memory is non-local,
1479                                  * which KNL doesn't support
1480                                  */
1481                                 edac_dbg(0, "Unexpected interleave target %d\n",
1482                                         pkg);
1483                                 return -1;
1484                         }
1485
1486                         if (pkg == first_pkg)
1487                                 break;
1488                 }
1489                 if (KNL_MOD3(dram_rule))
1490                         intrlv_ways *= 3;
1491
1492                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1493                         sad_rule,
1494                         sad_base,
1495                         sad_limit,
1496                         intrlv_ways,
1497                         edram_only ? ", EDRAM" : "");
1498
1499                 /*
1500                  * Find out how big the SAD region really is by iterating
1501                  * over TAD tables (SAD regions may contain holes).
1502                  * Each memory controller might have a different TAD table, so
1503                  * we have to look at both.
1504                  *
1505                  * Livespace is the memory that's mapped in this TAD table,
1506                  * deadspace is the holes (this could be the MMIO hole, or it
1507                  * could be memory that's mapped by the other TAD table but
1508                  * not this one).
1509                  */
1510                 for (mc = 0; mc < 2; mc++) {
1511                         sad_actual_size[mc] = 0;
1512                         tad_livespace = 0;
1513                         for (tad_rule = 0;
1514                                         tad_rule < ARRAY_SIZE(
1515                                                 knl_tad_dram_limit_lo);
1516                                         tad_rule++) {
1517                                 if (knl_get_tad(pvt,
1518                                                 tad_rule,
1519                                                 mc,
1520                                                 &tad_deadspace,
1521                                                 &tad_limit,
1522                                                 &tad_ways))
1523                                         break;
1524
1525                                 tad_size = (tad_limit+1) -
1526                                         (tad_livespace + tad_deadspace);
1527                                 tad_livespace += tad_size;
1528                                 tad_base = (tad_limit+1) - tad_size;
1529
1530                                 if (tad_base < sad_base) {
1531                                         if (tad_limit > sad_base)
1532                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1533                                 } else if (tad_base < sad_limit) {
1534                                         if (tad_limit+1 > sad_limit) {
1535                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1536                                         } else {
1537                                                 /* TAD region is completely inside SAD region */
1538                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1539                                                         tad_rule, tad_base,
1540                                                         tad_limit, tad_size,
1541                                                         mc);
1542                                                 sad_actual_size[mc] += tad_size;
1543                                         }
1544                                 }
1545                                 tad_base = tad_limit+1;
1546                         }
1547                 }
1548
1549                 for (mc = 0; mc < 2; mc++) {
1550                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1551                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1552                 }
1553
1554                 /* Ignore EDRAM rule */
1555                 if (edram_only)
1556                         continue;
1557
1558                 /* Figure out which channels participate in interleave. */
1559                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1560                         participants[channel] = 0;
1561
1562                 /* For each channel, does at least one CHA have
1563                  * this channel mapped to the given target?
1564                  */
1565                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1566                         for (way = 0; way < intrlv_ways; way++) {
1567                                 int target;
1568                                 int cha;
1569
1570                                 if (KNL_MOD3(dram_rule))
1571                                         target = way;
1572                                 else
1573                                         target = 0x7 & sad_pkg(
1574                                 pvt->info.interleave_pkg, interleave_reg, way);
1575
1576                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1577                                         if (knl_get_mc_route(target,
1578                                                 mc_route_reg[cha]) == channel
1579                                                 && !participants[channel]) {
1580                                                 participant_count++;
1581                                                 participants[channel] = 1;
1582                                                 break;
1583                                         }
1584                                 }
1585                         }
1586                 }
1587
1588                 if (participant_count != intrlv_ways)
1589                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1590                                 participant_count, intrlv_ways);
1591
1592                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1593                         mc = knl_channel_mc(channel);
1594                         if (participants[channel]) {
1595                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1596                                         channel,
1597                                         sad_actual_size[mc]/intrlv_ways,
1598                                         sad_rule);
1599                                 mc_sizes[channel] +=
1600                                         sad_actual_size[mc]/intrlv_ways;
1601                         }
1602                 }
1603         }
1604
1605         return 0;
1606 }
1607
1608 static int get_dimm_config(struct mem_ctl_info *mci)
1609 {
1610         struct sbridge_pvt *pvt = mci->pvt_info;
1611         struct dimm_info *dimm;
1612         unsigned i, j, banks, ranks, rows, cols, npages;
1613         u64 size;
1614         u32 reg;
1615         enum edac_type mode;
1616         enum mem_type mtype;
1617         int channels = pvt->info.type == KNIGHTS_LANDING ?
1618                 KNL_MAX_CHANNELS : NUM_CHANNELS;
1619         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1620
1621         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1622                 pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1623                 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1624         }
1625         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1626                         pvt->info.type == KNIGHTS_LANDING)
1627                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1628         else
1629                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1630
1631         if (pvt->info.type == KNIGHTS_LANDING)
1632                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1633         else
1634                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1635
1636         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1637         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1638                  pvt->sbridge_dev->mc,
1639                  pvt->sbridge_dev->node_id,
1640                  pvt->sbridge_dev->source_id);
1641
1642         /* KNL doesn't support mirroring or lockstep,
1643          * and is always closed page
1644          */
1645         if (pvt->info.type == KNIGHTS_LANDING) {
1646                 mode = EDAC_S4ECD4ED;
1647                 pvt->is_mirrored = false;
1648
1649                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1650                         return -1;
1651         } else {
1652                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1653                 if (IS_MIRROR_ENABLED(reg)) {
1654                         edac_dbg(0, "Memory mirror is enabled\n");
1655                         pvt->is_mirrored = true;
1656                 } else {
1657                         edac_dbg(0, "Memory mirror is disabled\n");
1658                         pvt->is_mirrored = false;
1659                 }
1660
1661                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1662                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1663                         edac_dbg(0, "Lockstep is enabled\n");
1664                         mode = EDAC_S8ECD8ED;
1665                         pvt->is_lockstep = true;
1666                 } else {
1667                         edac_dbg(0, "Lockstep is disabled\n");
1668                         mode = EDAC_S4ECD4ED;
1669                         pvt->is_lockstep = false;
1670                 }
1671                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1672                         edac_dbg(0, "address map is on closed page mode\n");
1673                         pvt->is_close_pg = true;
1674                 } else {
1675                         edac_dbg(0, "address map is on open page mode\n");
1676                         pvt->is_close_pg = false;
1677                 }
1678         }
1679
1680         mtype = pvt->info.get_memory_type(pvt);
1681         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1682                 edac_dbg(0, "Memory is registered\n");
1683         else if (mtype == MEM_UNKNOWN)
1684                 edac_dbg(0, "Cannot determine memory type\n");
1685         else
1686                 edac_dbg(0, "Memory is unregistered\n");
1687
1688         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1689                 banks = 16;
1690         else
1691                 banks = 8;
1692
1693         for (i = 0; i < channels; i++) {
1694                 u32 mtr;
1695
1696                 int max_dimms_per_channel;
1697
1698                 if (pvt->info.type == KNIGHTS_LANDING) {
1699                         max_dimms_per_channel = 1;
1700                         if (!pvt->knl.pci_channel[i])
1701                                 continue;
1702                 } else {
1703                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1704                         if (!pvt->pci_tad[i])
1705                                 continue;
1706                 }
1707
1708                 for (j = 0; j < max_dimms_per_channel; j++) {
1709                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1710                                        i, j, 0);
1711                         if (pvt->info.type == KNIGHTS_LANDING) {
1712                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1713                                         knl_mtr_reg, &mtr);
1714                         } else {
1715                                 pci_read_config_dword(pvt->pci_tad[i],
1716                                         mtr_regs[j], &mtr);
1717                         }
1718                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1719                         if (IS_DIMM_PRESENT(mtr)) {
1720                                 pvt->channel[i].dimms++;
1721
1722                                 ranks = numrank(pvt->info.type, mtr);
1723
1724                                 if (pvt->info.type == KNIGHTS_LANDING) {
1725                                         /* For DDR4, this is fixed. */
1726                                         cols = 1 << 10;
1727                                         rows = knl_mc_sizes[i] /
1728                                                 ((u64) cols * ranks * banks * 8);
1729                                 } else {
1730                                         rows = numrow(mtr);
1731                                         cols = numcol(mtr);
1732                                 }
1733
1734                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1735                                 npages = MiB_TO_PAGES(size);
1736
1737                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1738                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1739                                          size, npages,
1740                                          banks, ranks, rows, cols);
1741
1742                                 dimm->nr_pages = npages;
1743                                 dimm->grain = 32;
1744                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1745                                 dimm->mtype = mtype;
1746                                 dimm->edac_mode = mode;
1747                                 snprintf(dimm->label, sizeof(dimm->label),
1748                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1749                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1750                         }
1751                 }
1752         }
1753
1754         return 0;
1755 }
1756
1757 static void get_memory_layout(const struct mem_ctl_info *mci)
1758 {
1759         struct sbridge_pvt *pvt = mci->pvt_info;
1760         int i, j, k, n_sads, n_tads, sad_interl;
1761         u32 reg;
1762         u64 limit, prv = 0;
1763         u64 tmp_mb;
1764         u32 gb, mb;
1765         u32 rir_way;
1766
1767         /*
1768          * Step 1) Get TOLM/TOHM ranges
1769          */
1770
1771         pvt->tolm = pvt->info.get_tolm(pvt);
1772         tmp_mb = (1 + pvt->tolm) >> 20;
1773
1774         gb = div_u64_rem(tmp_mb, 1024, &mb);
1775         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1777
1778         /* Address range is already 45:25 */
1779         pvt->tohm = pvt->info.get_tohm(pvt);
1780         tmp_mb = (1 + pvt->tohm) >> 20;
1781
1782         gb = div_u64_rem(tmp_mb, 1024, &mb);
1783         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1785
1786         /*
1787          * Step 2) Get SAD range and SAD Interleave list
1788          * TAD registers contain the interleave wayness. However, it
1789          * seems simpler to just discover it indirectly, with the
1790          * algorithm bellow.
1791          */
1792         prv = 0;
1793         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1794                 /* SAD_LIMIT Address range is 45:26 */
1795                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1796                                       &reg);
1797                 limit = pvt->info.sad_limit(reg);
1798
1799                 if (!DRAM_RULE_ENABLE(reg))
1800                         continue;
1801
1802                 if (limit <= prv)
1803                         break;
1804
1805                 tmp_mb = (limit + 1) >> 20;
1806                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1807                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1808                          n_sads,
1809                          show_dram_attr(pvt->info.dram_attr(reg)),
1810                          gb, (mb*1000)/1024,
1811                          ((u64)tmp_mb) << 20L,
1812                          pvt->info.show_interleave_mode(reg),
1813                          reg);
1814                 prv = limit;
1815
1816                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1817                                       &reg);
1818                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1819                 for (j = 0; j < 8; j++) {
1820                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1821                         if (j > 0 && sad_interl == pkg)
1822                                 break;
1823
1824                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1825                                  n_sads, j, pkg);
1826                 }
1827         }
1828
1829         if (pvt->info.type == KNIGHTS_LANDING)
1830                 return;
1831
1832         /*
1833          * Step 3) Get TAD range
1834          */
1835         prv = 0;
1836         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1837                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1838                                       &reg);
1839                 limit = TAD_LIMIT(reg);
1840                 if (limit <= prv)
1841                         break;
1842                 tmp_mb = (limit + 1) >> 20;
1843
1844                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1845                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1846                          n_tads, gb, (mb*1000)/1024,
1847                          ((u64)tmp_mb) << 20L,
1848                          (u32)(1 << TAD_SOCK(reg)),
1849                          (u32)TAD_CH(reg) + 1,
1850                          (u32)TAD_TGT0(reg),
1851                          (u32)TAD_TGT1(reg),
1852                          (u32)TAD_TGT2(reg),
1853                          (u32)TAD_TGT3(reg),
1854                          reg);
1855                 prv = limit;
1856         }
1857
1858         /*
1859          * Step 4) Get TAD offsets, per each channel
1860          */
1861         for (i = 0; i < NUM_CHANNELS; i++) {
1862                 if (!pvt->channel[i].dimms)
1863                         continue;
1864                 for (j = 0; j < n_tads; j++) {
1865                         pci_read_config_dword(pvt->pci_tad[i],
1866                                               tad_ch_nilv_offset[j],
1867                                               &reg);
1868                         tmp_mb = TAD_OFFSET(reg) >> 20;
1869                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1870                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1871                                  i, j,
1872                                  gb, (mb*1000)/1024,
1873                                  ((u64)tmp_mb) << 20L,
1874                                  reg);
1875                 }
1876         }
1877
1878         /*
1879          * Step 6) Get RIR Wayness/Limit, per each channel
1880          */
1881         for (i = 0; i < NUM_CHANNELS; i++) {
1882                 if (!pvt->channel[i].dimms)
1883                         continue;
1884                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1885                         pci_read_config_dword(pvt->pci_tad[i],
1886                                               rir_way_limit[j],
1887                                               &reg);
1888
1889                         if (!IS_RIR_VALID(reg))
1890                                 continue;
1891
1892                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1893                         rir_way = 1 << RIR_WAY(reg);
1894                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1895                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1896                                  i, j,
1897                                  gb, (mb*1000)/1024,
1898                                  ((u64)tmp_mb) << 20L,
1899                                  rir_way,
1900                                  reg);
1901
1902                         for (k = 0; k < rir_way; k++) {
1903                                 pci_read_config_dword(pvt->pci_tad[i],
1904                                                       rir_offset[j][k],
1905                                                       &reg);
1906                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1907
1908                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1909                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1910                                          i, j, k,
1911                                          gb, (mb*1000)/1024,
1912                                          ((u64)tmp_mb) << 20L,
1913                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1914                                          reg);
1915                         }
1916                 }
1917         }
1918 }
1919
1920 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1921 {
1922         struct sbridge_dev *sbridge_dev;
1923
1924         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1925                 if (sbridge_dev->node_id == node_id)
1926                         return sbridge_dev->mci;
1927         }
1928         return NULL;
1929 }
1930
1931 static int get_memory_error_data(struct mem_ctl_info *mci,
1932                                  u64 addr,
1933                                  u8 *socket, u8 *ha,
1934                                  long *channel_mask,
1935                                  u8 *rank,
1936                                  char **area_type, char *msg)
1937 {
1938         struct mem_ctl_info     *new_mci;
1939         struct sbridge_pvt *pvt = mci->pvt_info;
1940         struct pci_dev          *pci_ha;
1941         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1942         int                     sad_interl, idx, base_ch;
1943         int                     interleave_mode, shiftup = 0;
1944         unsigned                sad_interleave[pvt->info.max_interleave];
1945         u32                     reg, dram_rule;
1946         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1947         u32                     tad_offset;
1948         u32                     rir_way;
1949         u32                     mb, gb;
1950         u64                     ch_addr, offset, limit = 0, prv = 0;
1951
1952
1953         /*
1954          * Step 0) Check if the address is at special memory ranges
1955          * The check bellow is probably enough to fill all cases where
1956          * the error is not inside a memory, except for the legacy
1957          * range (e. g. VGA addresses). It is unlikely, however, that the
1958          * memory controller would generate an error on that range.
1959          */
1960         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1961                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1962                 return -EINVAL;
1963         }
1964         if (addr >= (u64)pvt->tohm) {
1965                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1966                 return -EINVAL;
1967         }
1968
1969         /*
1970          * Step 1) Get socket
1971          */
1972         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1973                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1974                                       &reg);
1975
1976                 if (!DRAM_RULE_ENABLE(reg))
1977                         continue;
1978
1979                 limit = pvt->info.sad_limit(reg);
1980                 if (limit <= prv) {
1981                         sprintf(msg, "Can't discover the memory socket");
1982                         return -EINVAL;
1983                 }
1984                 if  (addr <= limit)
1985                         break;
1986                 prv = limit;
1987         }
1988         if (n_sads == pvt->info.max_sad) {
1989                 sprintf(msg, "Can't discover the memory socket");
1990                 return -EINVAL;
1991         }
1992         dram_rule = reg;
1993         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1994         interleave_mode = pvt->info.interleave_mode(dram_rule);
1995
1996         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1997                               &reg);
1998
1999         if (pvt->info.type == SANDY_BRIDGE) {
2000                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2001                 for (sad_way = 0; sad_way < 8; sad_way++) {
2002                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2003                         if (sad_way > 0 && sad_interl == pkg)
2004                                 break;
2005                         sad_interleave[sad_way] = pkg;
2006                         edac_dbg(0, "SAD interleave #%d: %d\n",
2007                                  sad_way, sad_interleave[sad_way]);
2008                 }
2009                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2010                          pvt->sbridge_dev->mc,
2011                          n_sads,
2012                          addr,
2013                          limit,
2014                          sad_way + 7,
2015                          !interleave_mode ? "" : "XOR[18:16]");
2016                 if (interleave_mode)
2017                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2018                 else
2019                         idx = (addr >> 6) & 7;
2020                 switch (sad_way) {
2021                 case 1:
2022                         idx = 0;
2023                         break;
2024                 case 2:
2025                         idx = idx & 1;
2026                         break;
2027                 case 4:
2028                         idx = idx & 3;
2029                         break;
2030                 case 8:
2031                         break;
2032                 default:
2033                         sprintf(msg, "Can't discover socket interleave");
2034                         return -EINVAL;
2035                 }
2036                 *socket = sad_interleave[idx];
2037                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2038                          idx, sad_way, *socket);
2039         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2040                 int bits, a7mode = A7MODE(dram_rule);
2041
2042                 if (a7mode) {
2043                         /* A7 mode swaps P9 with P6 */
2044                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2045                         bits |= GET_BITFIELD(addr, 9, 9);
2046                 } else
2047                         bits = GET_BITFIELD(addr, 6, 8);
2048
2049                 if (interleave_mode == 0) {
2050                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2051                         idx = GET_BITFIELD(addr, 16, 18);
2052                         idx ^= bits;
2053                 } else
2054                         idx = bits;
2055
2056                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2057                 *socket = sad_pkg_socket(pkg);
2058                 sad_ha = sad_pkg_ha(pkg);
2059                 if (sad_ha)
2060                         ch_add = 4;
2061
2062                 if (a7mode) {
2063                         /* MCChanShiftUpEnable */
2064                         pci_read_config_dword(pvt->pci_ha0,
2065                                               HASWELL_HASYSDEFEATURE2, &reg);
2066                         shiftup = GET_BITFIELD(reg, 22, 22);
2067                 }
2068
2069                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2070                          idx, *socket, sad_ha, shiftup);
2071         } else {
2072                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2073                 idx = (addr >> 6) & 7;
2074                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2075                 *socket = sad_pkg_socket(pkg);
2076                 sad_ha = sad_pkg_ha(pkg);
2077                 if (sad_ha)
2078                         ch_add = 4;
2079                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2080                          idx, *socket, sad_ha);
2081         }
2082
2083         *ha = sad_ha;
2084
2085         /*
2086          * Move to the proper node structure, in order to access the
2087          * right PCI registers
2088          */
2089         new_mci = get_mci_for_node_id(*socket);
2090         if (!new_mci) {
2091                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2092                         *socket);
2093                 return -EINVAL;
2094         }
2095         mci = new_mci;
2096         pvt = mci->pvt_info;
2097
2098         /*
2099          * Step 2) Get memory channel
2100          */
2101         prv = 0;
2102         if (pvt->info.type == SANDY_BRIDGE)
2103                 pci_ha = pvt->pci_ha0;
2104         else {
2105                 if (sad_ha)
2106                         pci_ha = pvt->pci_ha1;
2107                 else
2108                         pci_ha = pvt->pci_ha0;
2109         }
2110         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2111                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2112                 limit = TAD_LIMIT(reg);
2113                 if (limit <= prv) {
2114                         sprintf(msg, "Can't discover the memory channel");
2115                         return -EINVAL;
2116                 }
2117                 if  (addr <= limit)
2118                         break;
2119                 prv = limit;
2120         }
2121         if (n_tads == MAX_TAD) {
2122                 sprintf(msg, "Can't discover the memory channel");
2123                 return -EINVAL;
2124         }
2125
2126         ch_way = TAD_CH(reg) + 1;
2127         sck_way = TAD_SOCK(reg);
2128
2129         if (ch_way == 3)
2130                 idx = addr >> 6;
2131         else {
2132                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2133                 if (pvt->is_chan_hash)
2134                         idx = haswell_chan_hash(idx, addr);
2135         }
2136         idx = idx % ch_way;
2137
2138         /*
2139          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2140          */
2141         switch (idx) {
2142         case 0:
2143                 base_ch = TAD_TGT0(reg);
2144                 break;
2145         case 1:
2146                 base_ch = TAD_TGT1(reg);
2147                 break;
2148         case 2:
2149                 base_ch = TAD_TGT2(reg);
2150                 break;
2151         case 3:
2152                 base_ch = TAD_TGT3(reg);
2153                 break;
2154         default:
2155                 sprintf(msg, "Can't discover the TAD target");
2156                 return -EINVAL;
2157         }
2158         *channel_mask = 1 << base_ch;
2159
2160         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2161                                 tad_ch_nilv_offset[n_tads],
2162                                 &tad_offset);
2163
2164         if (pvt->is_mirrored) {
2165                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2166                 switch(ch_way) {
2167                 case 2:
2168                 case 4:
2169                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2170                         break;
2171                 default:
2172                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2173                         return -EINVAL;
2174                 }
2175         } else
2176                 sck_xch = (1 << sck_way) * ch_way;
2177
2178         if (pvt->is_lockstep)
2179                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2180
2181         offset = TAD_OFFSET(tad_offset);
2182
2183         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2184                  n_tads,
2185                  addr,
2186                  limit,
2187                  sck_way,
2188                  ch_way,
2189                  offset,
2190                  idx,
2191                  base_ch,
2192                  *channel_mask);
2193
2194         /* Calculate channel address */
2195         /* Remove the TAD offset */
2196
2197         if (offset > addr) {
2198                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2199                         offset, addr);
2200                 return -EINVAL;
2201         }
2202
2203         ch_addr = addr - offset;
2204         ch_addr >>= (6 + shiftup);
2205         ch_addr /= sck_xch;
2206         ch_addr <<= (6 + shiftup);
2207         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2208
2209         /*
2210          * Step 3) Decode rank
2211          */
2212         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2213                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2214                                       rir_way_limit[n_rir],
2215                                       &reg);
2216
2217                 if (!IS_RIR_VALID(reg))
2218                         continue;
2219
2220                 limit = pvt->info.rir_limit(reg);
2221                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2222                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2223                          n_rir,
2224                          gb, (mb*1000)/1024,
2225                          limit,
2226                          1 << RIR_WAY(reg));
2227                 if  (ch_addr <= limit)
2228                         break;
2229         }
2230         if (n_rir == MAX_RIR_RANGES) {
2231                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2232                         ch_addr);
2233                 return -EINVAL;
2234         }
2235         rir_way = RIR_WAY(reg);
2236
2237         if (pvt->is_close_pg)
2238                 idx = (ch_addr >> 6);
2239         else
2240                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2241         idx %= 1 << rir_way;
2242
2243         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2244                               rir_offset[n_rir][idx],
2245                               &reg);
2246         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2247
2248         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2249                  n_rir,
2250                  ch_addr,
2251                  limit,
2252                  rir_way,
2253                  idx);
2254
2255         return 0;
2256 }
2257
2258 /****************************************************************************
2259         Device initialization routines: put/get, init/exit
2260  ****************************************************************************/
2261
2262 /*
2263  *      sbridge_put_all_devices 'put' all the devices that we have
2264  *                              reserved via 'get'
2265  */
2266 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2267 {
2268         int i;
2269
2270         edac_dbg(0, "\n");
2271         for (i = 0; i < sbridge_dev->n_devs; i++) {
2272                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2273                 if (!pdev)
2274                         continue;
2275                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2276                          pdev->bus->number,
2277                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2278                 pci_dev_put(pdev);
2279         }
2280 }
2281
2282 static void sbridge_put_all_devices(void)
2283 {
2284         struct sbridge_dev *sbridge_dev, *tmp;
2285
2286         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2287                 sbridge_put_devices(sbridge_dev);
2288                 free_sbridge_dev(sbridge_dev);
2289         }
2290 }
2291
2292 static int sbridge_get_onedevice(struct pci_dev **prev,
2293                                  u8 *num_mc,
2294                                  const struct pci_id_table *table,
2295                                  const unsigned devno,
2296                                  const int multi_bus)
2297 {
2298         struct sbridge_dev *sbridge_dev;
2299         const struct pci_id_descr *dev_descr = &table->descr[devno];
2300         struct pci_dev *pdev = NULL;
2301         u8 bus = 0;
2302
2303         sbridge_printk(KERN_DEBUG,
2304                 "Seeking for: PCI ID %04x:%04x\n",
2305                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2306
2307         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2308                               dev_descr->dev_id, *prev);
2309
2310         if (!pdev) {
2311                 if (*prev) {
2312                         *prev = pdev;
2313                         return 0;
2314                 }
2315
2316                 if (dev_descr->optional)
2317                         return 0;
2318
2319                 /* if the HA wasn't found */
2320                 if (devno == 0)
2321                         return -ENODEV;
2322
2323                 sbridge_printk(KERN_INFO,
2324                         "Device not found: %04x:%04x\n",
2325                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326
2327                 /* End of list, leave */
2328                 return -ENODEV;
2329         }
2330         bus = pdev->bus->number;
2331
2332         sbridge_dev = get_sbridge_dev(bus, multi_bus);
2333         if (!sbridge_dev) {
2334                 sbridge_dev = alloc_sbridge_dev(bus, table);
2335                 if (!sbridge_dev) {
2336                         pci_dev_put(pdev);
2337                         return -ENOMEM;
2338                 }
2339                 (*num_mc)++;
2340         }
2341
2342         if (sbridge_dev->pdev[devno]) {
2343                 sbridge_printk(KERN_ERR,
2344                         "Duplicated device for %04x:%04x\n",
2345                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2346                 pci_dev_put(pdev);
2347                 return -ENODEV;
2348         }
2349
2350         sbridge_dev->pdev[devno] = pdev;
2351
2352         /* Be sure that the device is enabled */
2353         if (unlikely(pci_enable_device(pdev) < 0)) {
2354                 sbridge_printk(KERN_ERR,
2355                         "Couldn't enable %04x:%04x\n",
2356                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2357                 return -ENODEV;
2358         }
2359
2360         edac_dbg(0, "Detected %04x:%04x\n",
2361                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2362
2363         /*
2364          * As stated on drivers/pci/search.c, the reference count for
2365          * @from is always decremented if it is not %NULL. So, as we need
2366          * to get all devices up to null, we need to do a get for the device
2367          */
2368         pci_dev_get(pdev);
2369
2370         *prev = pdev;
2371
2372         return 0;
2373 }
2374
2375 /*
2376  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2377  *                           devices we want to reference for this driver.
2378  * @num_mc: pointer to the memory controllers count, to be incremented in case
2379  *          of success.
2380  * @table: model specific table
2381  *
2382  * returns 0 in case of success or error code
2383  */
2384 static int sbridge_get_all_devices(u8 *num_mc,
2385                                         const struct pci_id_table *table)
2386 {
2387         int i, rc;
2388         struct pci_dev *pdev = NULL;
2389         int allow_dups = 0;
2390         int multi_bus = 0;
2391
2392         if (table->type == KNIGHTS_LANDING)
2393                 allow_dups = multi_bus = 1;
2394         while (table && table->descr) {
2395                 for (i = 0; i < table->n_devs; i++) {
2396                         if (!allow_dups || i == 0 ||
2397                                         table->descr[i].dev_id !=
2398                                                 table->descr[i-1].dev_id) {
2399                                 pdev = NULL;
2400                         }
2401                         do {
2402                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2403                                                            table, i, multi_bus);
2404                                 if (rc < 0) {
2405                                         if (i == 0) {
2406                                                 i = table->n_devs;
2407                                                 break;
2408                                         }
2409                                         sbridge_put_all_devices();
2410                                         return -ENODEV;
2411                                 }
2412                         } while (pdev && !allow_dups);
2413                 }
2414                 table++;
2415         }
2416
2417         return 0;
2418 }
2419
2420 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2421                                  struct sbridge_dev *sbridge_dev)
2422 {
2423         struct sbridge_pvt *pvt = mci->pvt_info;
2424         struct pci_dev *pdev;
2425         u8 saw_chan_mask = 0;
2426         int i;
2427
2428         for (i = 0; i < sbridge_dev->n_devs; i++) {
2429                 pdev = sbridge_dev->pdev[i];
2430                 if (!pdev)
2431                         continue;
2432
2433                 switch (pdev->device) {
2434                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2435                         pvt->pci_sad0 = pdev;
2436                         break;
2437                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2438                         pvt->pci_sad1 = pdev;
2439                         break;
2440                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2441                         pvt->pci_br0 = pdev;
2442                         break;
2443                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2444                         pvt->pci_ha0 = pdev;
2445                         break;
2446                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2447                         pvt->pci_ta = pdev;
2448                         break;
2449                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2450                         pvt->pci_ras = pdev;
2451                         break;
2452                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2453                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2454                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2455                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2456                 {
2457                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2458                         pvt->pci_tad[id] = pdev;
2459                         saw_chan_mask |= 1 << id;
2460                 }
2461                         break;
2462                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2463                         pvt->pci_ddrio = pdev;
2464                         break;
2465                 default:
2466                         goto error;
2467                 }
2468
2469                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2470                          pdev->vendor, pdev->device,
2471                          sbridge_dev->bus,
2472                          pdev);
2473         }
2474
2475         /* Check if everything were registered */
2476         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2477             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2478                 goto enodev;
2479
2480         if (saw_chan_mask != 0x0f)
2481                 goto enodev;
2482         return 0;
2483
2484 enodev:
2485         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2486         return -ENODEV;
2487
2488 error:
2489         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2490                        PCI_VENDOR_ID_INTEL, pdev->device);
2491         return -EINVAL;
2492 }
2493
2494 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2495                                  struct sbridge_dev *sbridge_dev)
2496 {
2497         struct sbridge_pvt *pvt = mci->pvt_info;
2498         struct pci_dev *pdev;
2499         u8 saw_chan_mask = 0;
2500         int i;
2501
2502         for (i = 0; i < sbridge_dev->n_devs; i++) {
2503                 pdev = sbridge_dev->pdev[i];
2504                 if (!pdev)
2505                         continue;
2506
2507                 switch (pdev->device) {
2508                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2509                         pvt->pci_ha0 = pdev;
2510                         break;
2511                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2512                         pvt->pci_ta = pdev;
2513                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2514                         pvt->pci_ras = pdev;
2515                         break;
2516                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2517                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2518                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2519                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2520                 {
2521                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2522                         pvt->pci_tad[id] = pdev;
2523                         saw_chan_mask |= 1 << id;
2524                 }
2525                         break;
2526                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2527                         pvt->pci_ddrio = pdev;
2528                         break;
2529                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2530                         pvt->pci_ddrio = pdev;
2531                         break;
2532                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2533                         pvt->pci_sad0 = pdev;
2534                         break;
2535                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2536                         pvt->pci_br0 = pdev;
2537                         break;
2538                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2539                         pvt->pci_br1 = pdev;
2540                         break;
2541                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2542                         pvt->pci_ha1 = pdev;
2543                         break;
2544                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2545                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2546                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2547                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2548                 {
2549                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2550                         pvt->pci_tad[id] = pdev;
2551                         saw_chan_mask |= 1 << id;
2552                 }
2553                         break;
2554                 default:
2555                         goto error;
2556                 }
2557
2558                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2559                          sbridge_dev->bus,
2560                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2561                          pdev);
2562         }
2563
2564         /* Check if everything were registered */
2565         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2566             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2567             !pvt->pci_ta)
2568                 goto enodev;
2569
2570         if (saw_chan_mask != 0x0f && /* -EN */
2571             saw_chan_mask != 0x33 && /* -EP */
2572             saw_chan_mask != 0xff)   /* -EX */
2573                 goto enodev;
2574         return 0;
2575
2576 enodev:
2577         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2578         return -ENODEV;
2579
2580 error:
2581         sbridge_printk(KERN_ERR,
2582                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2583                         pdev->device);
2584         return -EINVAL;
2585 }
2586
2587 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2588                                  struct sbridge_dev *sbridge_dev)
2589 {
2590         struct sbridge_pvt *pvt = mci->pvt_info;
2591         struct pci_dev *pdev;
2592         u8 saw_chan_mask = 0;
2593         int i;
2594
2595         /* there's only one device per system; not tied to any bus */
2596         if (pvt->info.pci_vtd == NULL)
2597                 /* result will be checked later */
2598                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2599                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2600                                                    NULL);
2601
2602         for (i = 0; i < sbridge_dev->n_devs; i++) {
2603                 pdev = sbridge_dev->pdev[i];
2604                 if (!pdev)
2605                         continue;
2606
2607                 switch (pdev->device) {
2608                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2609                         pvt->pci_sad0 = pdev;
2610                         break;
2611                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2612                         pvt->pci_sad1 = pdev;
2613                         break;
2614                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2615                         pvt->pci_ha0 = pdev;
2616                         break;
2617                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2618                         pvt->pci_ta = pdev;
2619                         break;
2620                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2621                         pvt->pci_ras = pdev;
2622                         break;
2623                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2624                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2625                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2626                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2627                 {
2628                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2629
2630                         pvt->pci_tad[id] = pdev;
2631                         saw_chan_mask |= 1 << id;
2632                 }
2633                         break;
2634                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2635                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2636                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2637                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2638                 {
2639                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2640
2641                         pvt->pci_tad[id] = pdev;
2642                         saw_chan_mask |= 1 << id;
2643                 }
2644                         break;
2645                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2646                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2647                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2648                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2649                         if (!pvt->pci_ddrio)
2650                                 pvt->pci_ddrio = pdev;
2651                         break;
2652                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2653                         pvt->pci_ha1 = pdev;
2654                         break;
2655                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2656                         pvt->pci_ha1_ta = pdev;
2657                         break;
2658                 default:
2659                         break;
2660                 }
2661
2662                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2663                          sbridge_dev->bus,
2664                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2665                          pdev);
2666         }
2667
2668         /* Check if everything were registered */
2669         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2670             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2671                 goto enodev;
2672
2673         if (saw_chan_mask != 0x0f && /* -EN */
2674             saw_chan_mask != 0x33 && /* -EP */
2675             saw_chan_mask != 0xff)   /* -EX */
2676                 goto enodev;
2677         return 0;
2678
2679 enodev:
2680         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681         return -ENODEV;
2682 }
2683
2684 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2685                                  struct sbridge_dev *sbridge_dev)
2686 {
2687         struct sbridge_pvt *pvt = mci->pvt_info;
2688         struct pci_dev *pdev;
2689         u8 saw_chan_mask = 0;
2690         int i;
2691
2692         /* there's only one device per system; not tied to any bus */
2693         if (pvt->info.pci_vtd == NULL)
2694                 /* result will be checked later */
2695                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2696                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2697                                                    NULL);
2698
2699         for (i = 0; i < sbridge_dev->n_devs; i++) {
2700                 pdev = sbridge_dev->pdev[i];
2701                 if (!pdev)
2702                         continue;
2703
2704                 switch (pdev->device) {
2705                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2706                         pvt->pci_sad0 = pdev;
2707                         break;
2708                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2709                         pvt->pci_sad1 = pdev;
2710                         break;
2711                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2712                         pvt->pci_ha0 = pdev;
2713                         break;
2714                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2715                         pvt->pci_ta = pdev;
2716                         break;
2717                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2718                         pvt->pci_ras = pdev;
2719                         break;
2720                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2721                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2722                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2723                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2724                 {
2725                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2726                         pvt->pci_tad[id] = pdev;
2727                         saw_chan_mask |= 1 << id;
2728                 }
2729                         break;
2730                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2731                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2732                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2733                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2734                 {
2735                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2736                         pvt->pci_tad[id] = pdev;
2737                         saw_chan_mask |= 1 << id;
2738                 }
2739                         break;
2740                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2741                         pvt->pci_ddrio = pdev;
2742                         break;
2743                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2744                         pvt->pci_ha1 = pdev;
2745                         break;
2746                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2747                         pvt->pci_ha1_ta = pdev;
2748                         break;
2749                 default:
2750                         break;
2751                 }
2752
2753                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2754                          sbridge_dev->bus,
2755                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2756                          pdev);
2757         }
2758
2759         /* Check if everything were registered */
2760         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2761             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2762                 goto enodev;
2763
2764         if (saw_chan_mask != 0x0f && /* -EN */
2765             saw_chan_mask != 0x33 && /* -EP */
2766             saw_chan_mask != 0xff)   /* -EX */
2767                 goto enodev;
2768         return 0;
2769
2770 enodev:
2771         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2772         return -ENODEV;
2773 }
2774
2775 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2776                         struct sbridge_dev *sbridge_dev)
2777 {
2778         struct sbridge_pvt *pvt = mci->pvt_info;
2779         struct pci_dev *pdev;
2780         int dev, func;
2781
2782         int i;
2783         int devidx;
2784
2785         for (i = 0; i < sbridge_dev->n_devs; i++) {
2786                 pdev = sbridge_dev->pdev[i];
2787                 if (!pdev)
2788                         continue;
2789
2790                 /* Extract PCI device and function. */
2791                 dev = (pdev->devfn >> 3) & 0x1f;
2792                 func = pdev->devfn & 0x7;
2793
2794                 switch (pdev->device) {
2795                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2796                         if (dev == 8)
2797                                 pvt->knl.pci_mc0 = pdev;
2798                         else if (dev == 9)
2799                                 pvt->knl.pci_mc1 = pdev;
2800                         else {
2801                                 sbridge_printk(KERN_ERR,
2802                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2803                                         dev, func);
2804                                 continue;
2805                         }
2806                         break;
2807
2808                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2809                         pvt->pci_sad0 = pdev;
2810                         break;
2811
2812                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2813                         pvt->pci_sad1 = pdev;
2814                         break;
2815
2816                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2817                         /* There are one of these per tile, and range from
2818                          * 1.14.0 to 1.18.5.
2819                          */
2820                         devidx = ((dev-14)*8)+func;
2821
2822                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2823                                 sbridge_printk(KERN_ERR,
2824                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2825                                         dev, func);
2826                                 continue;
2827                         }
2828
2829                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2830
2831                         pvt->knl.pci_cha[devidx] = pdev;
2832                         break;
2833
2834                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2835                         devidx = -1;
2836
2837                         /*
2838                          *  MC0 channels 0-2 are device 9 function 2-4,
2839                          *  MC1 channels 3-5 are device 8 function 2-4.
2840                          */
2841
2842                         if (dev == 9)
2843                                 devidx = func-2;
2844                         else if (dev == 8)
2845                                 devidx = 3 + (func-2);
2846
2847                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2848                                 sbridge_printk(KERN_ERR,
2849                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2850                                         dev, func);
2851                                 continue;
2852                         }
2853
2854                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2855                         pvt->knl.pci_channel[devidx] = pdev;
2856                         break;
2857
2858                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2859                         pvt->knl.pci_mc_info = pdev;
2860                         break;
2861
2862                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2863                         pvt->pci_ta = pdev;
2864                         break;
2865
2866                 default:
2867                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2868                                 pdev->device);
2869                         break;
2870                 }
2871         }
2872
2873         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2874             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2875             !pvt->pci_ta) {
2876                 goto enodev;
2877         }
2878
2879         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2880                 if (!pvt->knl.pci_channel[i]) {
2881                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2882                         goto enodev;
2883                 }
2884         }
2885
2886         for (i = 0; i < KNL_MAX_CHAS; i++) {
2887                 if (!pvt->knl.pci_cha[i]) {
2888                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2889                         goto enodev;
2890                 }
2891         }
2892
2893         return 0;
2894
2895 enodev:
2896         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2897         return -ENODEV;
2898 }
2899
2900 /****************************************************************************
2901                         Error check routines
2902  ****************************************************************************/
2903
2904 /*
2905  * While Sandy Bridge has error count registers, SMI BIOS read values from
2906  * and resets the counters. So, they are not reliable for the OS to read
2907  * from them. So, we have no option but to just trust on whatever MCE is
2908  * telling us about the errors.
2909  */
2910 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2911                                     const struct mce *m)
2912 {
2913         struct mem_ctl_info *new_mci;
2914         struct sbridge_pvt *pvt = mci->pvt_info;
2915         enum hw_event_mc_err_type tp_event;
2916         char *type, *optype, msg[256];
2917         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2918         bool overflow = GET_BITFIELD(m->status, 62, 62);
2919         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2920         bool recoverable;
2921         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2922         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2923         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2924         u32 channel = GET_BITFIELD(m->status, 0, 3);
2925         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2926         long channel_mask, first_channel;
2927         u8  rank, socket, ha;
2928         int rc, dimm;
2929         char *area_type = NULL;
2930
2931         if (pvt->info.type != SANDY_BRIDGE)
2932                 recoverable = true;
2933         else
2934                 recoverable = GET_BITFIELD(m->status, 56, 56);
2935
2936         if (uncorrected_error) {
2937                 if (ripv) {
2938                         type = "FATAL";
2939                         tp_event = HW_EVENT_ERR_FATAL;
2940                 } else {
2941                         type = "NON_FATAL";
2942                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2943                 }
2944         } else {
2945                 type = "CORRECTED";
2946                 tp_event = HW_EVENT_ERR_CORRECTED;
2947         }
2948
2949         /*
2950          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2951          * memory errors should fit in this mask:
2952          *      000f 0000 1mmm cccc (binary)
2953          * where:
2954          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2955          *          won't be shown
2956          *      mmm = error type
2957          *      cccc = channel
2958          * If the mask doesn't match, report an error to the parsing logic
2959          */
2960         if (! ((errcode & 0xef80) == 0x80)) {
2961                 optype = "Can't parse: it is not a mem";
2962         } else {
2963                 switch (optypenum) {
2964                 case 0:
2965                         optype = "generic undef request error";
2966                         break;
2967                 case 1:
2968                         optype = "memory read error";
2969                         break;
2970                 case 2:
2971                         optype = "memory write error";
2972                         break;
2973                 case 3:
2974                         optype = "addr/cmd error";
2975                         break;
2976                 case 4:
2977                         optype = "memory scrubbing error";
2978                         break;
2979                 default:
2980                         optype = "reserved";
2981                         break;
2982                 }
2983         }
2984
2985         /* Only decode errors with an valid address (ADDRV) */
2986         if (!GET_BITFIELD(m->status, 58, 58))
2987                 return;
2988
2989         if (pvt->info.type == KNIGHTS_LANDING) {
2990                 if (channel == 14) {
2991                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2992                                 overflow ? " OVERFLOW" : "",
2993                                 (uncorrected_error && recoverable)
2994                                 ? " recoverable" : "",
2995                                 mscod, errcode,
2996                                 m->bank);
2997                 } else {
2998                         char A = *("A");
2999
3000                         channel = knl_channel_remap(channel);
3001                         channel_mask = 1 << channel;
3002                         snprintf(msg, sizeof(msg),
3003                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3004                                 overflow ? " OVERFLOW" : "",
3005                                 (uncorrected_error && recoverable)
3006                                 ? " recoverable" : " ",
3007                                 mscod, errcode, channel, A + channel);
3008                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3009                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3010                                 channel, 0, -1,
3011                                 optype, msg);
3012                 }
3013                 return;
3014         } else {
3015                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3016                                 &channel_mask, &rank, &area_type, msg);
3017         }
3018
3019         if (rc < 0)
3020                 goto err_parsing;
3021         new_mci = get_mci_for_node_id(socket);
3022         if (!new_mci) {
3023                 strcpy(msg, "Error: socket got corrupted!");
3024                 goto err_parsing;
3025         }
3026         mci = new_mci;
3027         pvt = mci->pvt_info;
3028
3029         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3030
3031         if (rank < 4)
3032                 dimm = 0;
3033         else if (rank < 8)
3034                 dimm = 1;
3035         else
3036                 dimm = 2;
3037
3038
3039         /*
3040          * FIXME: On some memory configurations (mirror, lockstep), the
3041          * Memory Controller can't point the error to a single DIMM. The
3042          * EDAC core should be handling the channel mask, in order to point
3043          * to the group of dimm's where the error may be happening.
3044          */
3045         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3046                 channel = first_channel;
3047
3048         snprintf(msg, sizeof(msg),
3049                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3050                  overflow ? " OVERFLOW" : "",
3051                  (uncorrected_error && recoverable) ? " recoverable" : "",
3052                  area_type,
3053                  mscod, errcode,
3054                  socket, ha,
3055                  channel_mask,
3056                  rank);
3057
3058         edac_dbg(0, "%s\n", msg);
3059
3060         /* FIXME: need support for channel mask */
3061
3062         if (channel == CHANNEL_UNSPECIFIED)
3063                 channel = -1;
3064
3065         /* Call the helper to output message */
3066         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3067                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3068                              4*ha+channel, dimm, -1,
3069                              optype, msg);
3070         return;
3071 err_parsing:
3072         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3073                              -1, -1, -1,
3074                              msg, "");
3075
3076 }
3077
3078 /*
3079  * Check that logging is enabled and that this is the right type
3080  * of error for us to handle.
3081  */
3082 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3083                                    void *data)
3084 {
3085         struct mce *mce = (struct mce *)data;
3086         struct mem_ctl_info *mci;
3087         struct sbridge_pvt *pvt;
3088         char *type;
3089
3090         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3091                 return NOTIFY_DONE;
3092
3093         mci = get_mci_for_node_id(mce->socketid);
3094         if (!mci)
3095                 return NOTIFY_DONE;
3096         pvt = mci->pvt_info;
3097
3098         /*
3099          * Just let mcelog handle it if the error is
3100          * outside the memory controller. A memory error
3101          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3102          * bit 12 has an special meaning.
3103          */
3104         if ((mce->status & 0xefff) >> 7 != 1)
3105                 return NOTIFY_DONE;
3106
3107         if (mce->mcgstatus & MCG_STATUS_MCIP)
3108                 type = "Exception";
3109         else
3110                 type = "Event";
3111
3112         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3113
3114         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3115                           "Bank %d: %016Lx\n", mce->extcpu, type,
3116                           mce->mcgstatus, mce->bank, mce->status);
3117         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3118         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3119         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3120
3121         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3122                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3123                           mce->time, mce->socketid, mce->apicid);
3124
3125         sbridge_mce_output_error(mci, mce);
3126
3127         /* Advice mcelog that the error were handled */
3128         return NOTIFY_STOP;
3129 }
3130
3131 static struct notifier_block sbridge_mce_dec = {
3132         .notifier_call      = sbridge_mce_check_error,
3133 };
3134
3135 /****************************************************************************
3136                         EDAC register/unregister logic
3137  ****************************************************************************/
3138
3139 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3140 {
3141         struct mem_ctl_info *mci = sbridge_dev->mci;
3142         struct sbridge_pvt *pvt;
3143
3144         if (unlikely(!mci || !mci->pvt_info)) {
3145                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3146
3147                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3148                 return;
3149         }
3150
3151         pvt = mci->pvt_info;
3152
3153         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3154                  mci, &sbridge_dev->pdev[0]->dev);
3155
3156         /* Remove MC sysfs nodes */
3157         edac_mc_del_mc(mci->pdev);
3158
3159         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3160         kfree(mci->ctl_name);
3161         edac_mc_free(mci);
3162         sbridge_dev->mci = NULL;
3163 }
3164
3165 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3166 {
3167         struct mem_ctl_info *mci;
3168         struct edac_mc_layer layers[2];
3169         struct sbridge_pvt *pvt;
3170         struct pci_dev *pdev = sbridge_dev->pdev[0];
3171         int rc;
3172
3173         /* Check the number of active and not disabled channels */
3174         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3175         if (unlikely(rc < 0))
3176                 return rc;
3177
3178         /* allocate a new MC control structure */
3179         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3180         layers[0].size = type == KNIGHTS_LANDING ?
3181                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3182         layers[0].is_virt_csrow = false;
3183         layers[1].type = EDAC_MC_LAYER_SLOT;
3184         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3185         layers[1].is_virt_csrow = true;
3186         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3187                             sizeof(*pvt));
3188
3189         if (unlikely(!mci))
3190                 return -ENOMEM;
3191
3192         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3193                  mci, &pdev->dev);
3194
3195         pvt = mci->pvt_info;
3196         memset(pvt, 0, sizeof(*pvt));
3197
3198         /* Associate sbridge_dev and mci for future usage */
3199         pvt->sbridge_dev = sbridge_dev;
3200         sbridge_dev->mci = mci;
3201
3202         mci->mtype_cap = type == KNIGHTS_LANDING ?
3203                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3204         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3205         mci->edac_cap = EDAC_FLAG_NONE;
3206         mci->mod_name = "sbridge_edac.c";
3207         mci->mod_ver = SBRIDGE_REVISION;
3208         mci->dev_name = pci_name(pdev);
3209         mci->ctl_page_to_phys = NULL;
3210
3211         pvt->info.type = type;
3212         switch (type) {
3213         case IVY_BRIDGE:
3214                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3215                 pvt->info.get_tolm = ibridge_get_tolm;
3216                 pvt->info.get_tohm = ibridge_get_tohm;
3217                 pvt->info.dram_rule = ibridge_dram_rule;
3218                 pvt->info.get_memory_type = get_memory_type;
3219                 pvt->info.get_node_id = get_node_id;
3220                 pvt->info.rir_limit = rir_limit;
3221                 pvt->info.sad_limit = sad_limit;
3222                 pvt->info.interleave_mode = interleave_mode;
3223                 pvt->info.show_interleave_mode = show_interleave_mode;
3224                 pvt->info.dram_attr = dram_attr;
3225                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3226                 pvt->info.interleave_list = ibridge_interleave_list;
3227                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3228                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3229                 pvt->info.get_width = ibridge_get_width;
3230                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3231
3232                 /* Store pci devices at mci for faster access */
3233                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3234                 if (unlikely(rc < 0))
3235                         goto fail0;
3236                 break;
3237         case SANDY_BRIDGE:
3238                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3239                 pvt->info.get_tolm = sbridge_get_tolm;
3240                 pvt->info.get_tohm = sbridge_get_tohm;
3241                 pvt->info.dram_rule = sbridge_dram_rule;
3242                 pvt->info.get_memory_type = get_memory_type;
3243                 pvt->info.get_node_id = get_node_id;
3244                 pvt->info.rir_limit = rir_limit;
3245                 pvt->info.sad_limit = sad_limit;
3246                 pvt->info.interleave_mode = interleave_mode;
3247                 pvt->info.show_interleave_mode = show_interleave_mode;
3248                 pvt->info.dram_attr = dram_attr;
3249                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3250                 pvt->info.interleave_list = sbridge_interleave_list;
3251                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3252                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3253                 pvt->info.get_width = sbridge_get_width;
3254                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3255
3256                 /* Store pci devices at mci for faster access */
3257                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3258                 if (unlikely(rc < 0))
3259                         goto fail0;
3260                 break;
3261         case HASWELL:
3262                 /* rankcfgr isn't used */
3263                 pvt->info.get_tolm = haswell_get_tolm;
3264                 pvt->info.get_tohm = haswell_get_tohm;
3265                 pvt->info.dram_rule = ibridge_dram_rule;
3266                 pvt->info.get_memory_type = haswell_get_memory_type;
3267                 pvt->info.get_node_id = haswell_get_node_id;
3268                 pvt->info.rir_limit = haswell_rir_limit;
3269                 pvt->info.sad_limit = sad_limit;
3270                 pvt->info.interleave_mode = interleave_mode;
3271                 pvt->info.show_interleave_mode = show_interleave_mode;
3272                 pvt->info.dram_attr = dram_attr;
3273                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3274                 pvt->info.interleave_list = ibridge_interleave_list;
3275                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3276                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3277                 pvt->info.get_width = ibridge_get_width;
3278                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3279
3280                 /* Store pci devices at mci for faster access */
3281                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3282                 if (unlikely(rc < 0))
3283                         goto fail0;
3284                 break;
3285         case BROADWELL:
3286                 /* rankcfgr isn't used */
3287                 pvt->info.get_tolm = haswell_get_tolm;
3288                 pvt->info.get_tohm = haswell_get_tohm;
3289                 pvt->info.dram_rule = ibridge_dram_rule;
3290                 pvt->info.get_memory_type = haswell_get_memory_type;
3291                 pvt->info.get_node_id = haswell_get_node_id;
3292                 pvt->info.rir_limit = haswell_rir_limit;
3293                 pvt->info.sad_limit = sad_limit;
3294                 pvt->info.interleave_mode = interleave_mode;
3295                 pvt->info.show_interleave_mode = show_interleave_mode;
3296                 pvt->info.dram_attr = dram_attr;
3297                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3298                 pvt->info.interleave_list = ibridge_interleave_list;
3299                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3300                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3301                 pvt->info.get_width = broadwell_get_width;
3302                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3303
3304                 /* Store pci devices at mci for faster access */
3305                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3306                 if (unlikely(rc < 0))
3307                         goto fail0;
3308                 break;
3309         case KNIGHTS_LANDING:
3310                 /* pvt->info.rankcfgr == ??? */
3311                 pvt->info.get_tolm = knl_get_tolm;
3312                 pvt->info.get_tohm = knl_get_tohm;
3313                 pvt->info.dram_rule = knl_dram_rule;
3314                 pvt->info.get_memory_type = knl_get_memory_type;
3315                 pvt->info.get_node_id = knl_get_node_id;
3316                 pvt->info.rir_limit = NULL;
3317                 pvt->info.sad_limit = knl_sad_limit;
3318                 pvt->info.interleave_mode = knl_interleave_mode;
3319                 pvt->info.show_interleave_mode = knl_show_interleave_mode;
3320                 pvt->info.dram_attr = dram_attr_knl;
3321                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3322                 pvt->info.interleave_list = knl_interleave_list;
3323                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3324                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3325                 pvt->info.get_width = knl_get_width;
3326                 mci->ctl_name = kasprintf(GFP_KERNEL,
3327                         "Knights Landing Socket#%d", mci->mc_idx);
3328
3329                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3330                 if (unlikely(rc < 0))
3331                         goto fail0;
3332                 break;
3333         }
3334
3335         /* Get dimm basic config and the memory layout */
3336         get_dimm_config(mci);
3337         get_memory_layout(mci);
3338
3339         /* record ptr to the generic device */
3340         mci->pdev = &pdev->dev;
3341
3342         /* add this new MC control structure to EDAC's list of MCs */
3343         if (unlikely(edac_mc_add_mc(mci))) {
3344                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3345                 rc = -EINVAL;
3346                 goto fail0;
3347         }
3348
3349         return 0;
3350
3351 fail0:
3352         kfree(mci->ctl_name);
3353         edac_mc_free(mci);
3354         sbridge_dev->mci = NULL;
3355         return rc;
3356 }
3357
3358 #define ICPU(model, table) \
3359         { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3360
3361 static const struct x86_cpu_id sbridge_cpuids[] = {
3362         ICPU(0x2d, pci_dev_descr_sbridge_table),        /* SANDY_BRIDGE */
3363         ICPU(0x3e, pci_dev_descr_ibridge_table),        /* IVY_BRIDGE */
3364         ICPU(0x3f, pci_dev_descr_haswell_table),        /* HASWELL */
3365         ICPU(0x4f, pci_dev_descr_broadwell_table),      /* BROADWELL */
3366         ICPU(0x56, pci_dev_descr_broadwell_table),      /* BROADWELL-DE */
3367         ICPU(0x57, pci_dev_descr_knl_table),            /* KNIGHTS_LANDING */
3368         { }
3369 };
3370 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3371
3372 /*
3373  *      sbridge_probe   Get all devices and register memory controllers
3374  *                      present.
3375  *      return:
3376  *              0 for FOUND a device
3377  *              < 0 for error code
3378  */
3379
3380 static int sbridge_probe(const struct x86_cpu_id *id)
3381 {
3382         int rc = -ENODEV;
3383         u8 mc, num_mc = 0;
3384         struct sbridge_dev *sbridge_dev;
3385         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3386
3387         /* get the pci devices we want to reserve for our use */
3388         rc = sbridge_get_all_devices(&num_mc, ptable);
3389
3390         if (unlikely(rc < 0)) {
3391                 edac_dbg(0, "couldn't get all devices\n");
3392                 goto fail0;
3393         }
3394
3395         mc = 0;
3396
3397         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3398                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3399                          mc, mc + 1, num_mc);
3400
3401                 sbridge_dev->mc = mc++;
3402                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3403                 if (unlikely(rc < 0))
3404                         goto fail1;
3405         }
3406
3407         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3408
3409         return 0;
3410
3411 fail1:
3412         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3413                 sbridge_unregister_mci(sbridge_dev);
3414
3415         sbridge_put_all_devices();
3416 fail0:
3417         return rc;
3418 }
3419
3420 /*
3421  *      sbridge_remove  cleanup
3422  *
3423  */
3424 static void sbridge_remove(void)
3425 {
3426         struct sbridge_dev *sbridge_dev;
3427
3428         edac_dbg(0, "\n");
3429
3430         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3431                 sbridge_unregister_mci(sbridge_dev);
3432
3433         /* Release PCI resources */
3434         sbridge_put_all_devices();
3435 }
3436
3437 /*
3438  *      sbridge_init            Module entry function
3439  *                      Try to initialize this module for its devices
3440  */
3441 static int __init sbridge_init(void)
3442 {
3443         const struct x86_cpu_id *id;
3444         int rc;
3445
3446         edac_dbg(2, "\n");
3447
3448         id = x86_match_cpu(sbridge_cpuids);
3449         if (!id)
3450                 return -ENODEV;
3451
3452         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3453         opstate_init();
3454
3455         rc = sbridge_probe(id);
3456
3457         if (rc >= 0) {
3458                 mce_register_decode_chain(&sbridge_mce_dec);
3459                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3460                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3461                 return 0;
3462         }
3463
3464         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3465                       rc);
3466
3467         return rc;
3468 }
3469
3470 /*
3471  *      sbridge_exit()  Module exit function
3472  *                      Unregister the driver
3473  */
3474 static void __exit sbridge_exit(void)
3475 {
3476         edac_dbg(2, "\n");
3477         sbridge_remove();
3478         mce_unregister_decode_chain(&sbridge_mce_dec);
3479 }
3480
3481 module_init(sbridge_init);
3482 module_exit(sbridge_exit);
3483
3484 module_param(edac_op_state, int, 0444);
3485 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3486
3487 MODULE_LICENSE("GPL");
3488 MODULE_AUTHOR("Mauro Carvalho Chehab");
3489 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3490 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3491                    SBRIDGE_REVISION);