]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "pp_debug.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40
41 union voltage_object_info {
42         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48                 uint8_t index,
49                 ATOM_INIT_REG_BLOCK *reg_block,
50                 pp_atomctrl_mc_reg_table *table)
51 {
52         uint32_t i, j;
53         uint8_t tmem_id;
54         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57         uint8_t num_ranges = 0;
58
59         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63                 if (index == tmem_id) {
64                         table->mc_reg_table_entry[num_ranges].mclk_max =
65                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66                                                 CLOCK_RANGE_SHIFT);
67
68                         for (i = 0, j = 1; i < table->last; i++) {
69                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
70                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
72                                                 (uint32_t)*((uint32_t *)reg_data + j);
73                                         j++;
74                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
77                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78                                 }
79                         }
80                         num_ranges++;
81                 }
82
83                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85         }
86
87         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88                         "Invalid VramInfo table.", return -1);
89         table->num_entries = num_ranges;
90
91         return 0;
92 }
93
94 /**
95  * Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
98  * @param    table the address of MCRegTable
99  * @return   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102                 ATOM_INIT_REG_BLOCK *reg_block,
103                 pp_atomctrl_mc_reg_table *table)
104 {
105         uint8_t i = 0;
106         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110         num_entries--;        /* subtract 1 data end mark entry */
111
112         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113                         "Invalid VramInfo table.", return -1);
114
115         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117                         (i < num_entries)) {
118                 table->mc_reg_address[i].s1 =
119                         (uint16_t)(le16_to_cpu(format->usRegIndex));
120                 table->mc_reg_address[i].uc_pre_reg_data =
121                         format->ucPreRegDataLength;
122
123                 i++;
124                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126         }
127
128         table->last = i;
129         return 0;
130 }
131
132
133 int atomctrl_initialize_mc_reg_table(
134                 struct pp_hwmgr *hwmgr,
135                 uint8_t module_index,
136                 pp_atomctrl_mc_reg_table *table)
137 {
138         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139         ATOM_INIT_REG_BLOCK *reg_block;
140         int result = 0;
141         u8 frev, crev;
142         u16 size;
143
144         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145                 cgs_atom_get_data_table(hwmgr->device,
146                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148         if (module_index >= vram_info->ucNumOfVRAMModule) {
149                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150                 result = -1;
151         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153                 result = -1;
154         }
155
156         if (0 == result) {
157                 reg_block = (ATOM_INIT_REG_BLOCK *)
158                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160         }
161
162         if (0 == result) {
163                 result = atomctrl_retrieve_ac_timing(module_index,
164                                         reg_block, table);
165         }
166
167         return result;
168 }
169
170 /**
171  * Set DRAM timings based on engine clock and memory clock.
172  */
173 int atomctrl_set_engine_dram_timings_rv770(
174                 struct pp_hwmgr *hwmgr,
175                 uint32_t engine_clock,
176                 uint32_t memory_clock)
177 {
178         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180         /* They are both in 10KHz Units. */
181         engine_clock_parameters.ulTargetEngineClock =
182                 (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
183         engine_clock_parameters.ulTargetEngineClock |=
184                 (COMPUTE_ENGINE_PLL_PARAM << 24);
185
186         /* in 10 khz units.*/
187         engine_clock_parameters.sReserved.ulClock =
188                 (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
189         return cgs_atom_exec_cmd_table(hwmgr->device,
190                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
191                         &engine_clock_parameters);
192 }
193
194 /**
195  * Private Function to get the PowerPlay Table Address.
196  * WARNING: The tabled returned by this function is in
197  * dynamically allocated memory.
198  * The caller has to release if by calling kfree.
199  */
200 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
201 {
202         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
203         u8 frev, crev;
204         u16 size;
205         union voltage_object_info *voltage_info;
206
207         voltage_info = (union voltage_object_info *)
208                 cgs_atom_get_data_table(device, index,
209                         &size, &frev, &crev);
210
211         if (voltage_info != NULL)
212                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
213         else
214                 return NULL;
215 }
216
217 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
218                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
219                 uint8_t voltage_type, uint8_t voltage_mode)
220 {
221         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
222         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
223         uint8_t *start = (uint8_t *)voltage_object_info_table;
224
225         while (offset < size) {
226                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
227                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
228
229                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
230                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
231                         return voltage_object;
232
233                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
234         }
235
236         return NULL;
237 }
238
239 /** atomctrl_get_memory_pll_dividers_si().
240  *
241  * @param hwmgr                 input parameter: pointer to HwMgr
242  * @param clock_value             input parameter: memory clock
243  * @param dividers                 output parameter: memory PLL dividers
244  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
245  */
246 int atomctrl_get_memory_pll_dividers_si(
247                 struct pp_hwmgr *hwmgr,
248                 uint32_t clock_value,
249                 pp_atomctrl_memory_clock_param *mpll_param,
250                 bool strobe_mode)
251 {
252         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
253         int result;
254
255         mpll_parameters.ulClock = (uint32_t) clock_value;
256         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
257
258         result = cgs_atom_exec_cmd_table
259                 (hwmgr->device,
260                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
261                  &mpll_parameters);
262
263         if (0 == result) {
264                 mpll_param->mpll_fb_divider.clk_frac =
265                         mpll_parameters.ulFbDiv.usFbDivFrac;
266                 mpll_param->mpll_fb_divider.cl_kf =
267                         mpll_parameters.ulFbDiv.usFbDiv;
268                 mpll_param->mpll_post_divider =
269                         (uint32_t)mpll_parameters.ucPostDiv;
270                 mpll_param->vco_mode =
271                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
272                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
273                 mpll_param->yclk_sel =
274                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
275                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
276                 mpll_param->qdr =
277                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
278                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
279                 mpll_param->half_rate =
280                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
281                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
282                 mpll_param->dll_speed =
283                         (uint32_t)(mpll_parameters.ucDllSpeed);
284                 mpll_param->bw_ctrl =
285                         (uint32_t)(mpll_parameters.ucBWCntl);
286         }
287
288         return result;
289 }
290
291 /** atomctrl_get_memory_pll_dividers_vi().
292  *
293  * @param hwmgr                 input parameter: pointer to HwMgr
294  * @param clock_value             input parameter: memory clock
295  * @param dividers               output parameter: memory PLL dividers
296  */
297 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
298                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
299 {
300         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
301         int result;
302
303         mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
304
305         result = cgs_atom_exec_cmd_table(hwmgr->device,
306                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
307                         &mpll_parameters);
308
309         if (!result)
310                 mpll_param->mpll_post_divider =
311                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
312
313         return result;
314 }
315
316 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
317                                           uint32_t clock_value,
318                                           pp_atomctrl_clock_dividers_kong *dividers)
319 {
320         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
321         int result;
322
323         pll_parameters.ulClock = clock_value;
324
325         result = cgs_atom_exec_cmd_table
326                 (hwmgr->device,
327                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
328                  &pll_parameters);
329
330         if (0 == result) {
331                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
332                 dividers->real_clock = pll_parameters.ulClock;
333         }
334
335         return result;
336 }
337
338 int atomctrl_get_engine_pll_dividers_vi(
339                 struct pp_hwmgr *hwmgr,
340                 uint32_t clock_value,
341                 pp_atomctrl_clock_dividers_vi *dividers)
342 {
343         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
344         int result;
345
346         pll_patameters.ulClock.ulClock = clock_value;
347         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
348
349         result = cgs_atom_exec_cmd_table
350                 (hwmgr->device,
351                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
352                  &pll_patameters);
353
354         if (0 == result) {
355                 dividers->pll_post_divider =
356                         pll_patameters.ulClock.ucPostDiv;
357                 dividers->real_clock =
358                         pll_patameters.ulClock.ulClock;
359
360                 dividers->ul_fb_div.ul_fb_div_frac =
361                         pll_patameters.ulFbDiv.usFbDivFrac;
362                 dividers->ul_fb_div.ul_fb_div =
363                         pll_patameters.ulFbDiv.usFbDiv;
364
365                 dividers->uc_pll_ref_div =
366                         pll_patameters.ucPllRefDiv;
367                 dividers->uc_pll_post_div =
368                         pll_patameters.ucPllPostDiv;
369                 dividers->uc_pll_cntl_flag =
370                         pll_patameters.ucPllCntlFlag;
371         }
372
373         return result;
374 }
375
376 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
377                 uint32_t clock_value,
378                 pp_atomctrl_clock_dividers_ai *dividers)
379 {
380         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
381         int result;
382
383         pll_patameters.ulClock.ulClock = clock_value;
384         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
385
386         result = cgs_atom_exec_cmd_table
387                 (hwmgr->device,
388                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
389                  &pll_patameters);
390
391         if (0 == result) {
392                 dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
393                 dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
394                 dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
395                 dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
396                 dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
397                 dividers->ucSscEnable         = pll_patameters.ucSscEnable;
398                 dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
399                 dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
400                 dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
401                 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
402                 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
403         }
404         return result;
405 }
406
407 int atomctrl_get_dfs_pll_dividers_vi(
408                 struct pp_hwmgr *hwmgr,
409                 uint32_t clock_value,
410                 pp_atomctrl_clock_dividers_vi *dividers)
411 {
412         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
413         int result;
414
415         pll_patameters.ulClock.ulClock = clock_value;
416         pll_patameters.ulClock.ucPostDiv =
417                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
418
419         result = cgs_atom_exec_cmd_table
420                 (hwmgr->device,
421                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
422                  &pll_patameters);
423
424         if (0 == result) {
425                 dividers->pll_post_divider =
426                         pll_patameters.ulClock.ucPostDiv;
427                 dividers->real_clock =
428                         pll_patameters.ulClock.ulClock;
429
430                 dividers->ul_fb_div.ul_fb_div_frac =
431                         pll_patameters.ulFbDiv.usFbDivFrac;
432                 dividers->ul_fb_div.ul_fb_div =
433                         pll_patameters.ulFbDiv.usFbDiv;
434
435                 dividers->uc_pll_ref_div =
436                         pll_patameters.ucPllRefDiv;
437                 dividers->uc_pll_post_div =
438                         pll_patameters.ucPllPostDiv;
439                 dividers->uc_pll_cntl_flag =
440                         pll_patameters.ucPllCntlFlag;
441         }
442
443         return result;
444 }
445
446 /**
447  * Get the reference clock in 10KHz
448  */
449 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
450 {
451         ATOM_FIRMWARE_INFO *fw_info;
452         u8 frev, crev;
453         u16 size;
454         uint32_t clock;
455
456         fw_info = (ATOM_FIRMWARE_INFO *)
457                 cgs_atom_get_data_table(hwmgr->device,
458                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
459                         &size, &frev, &crev);
460
461         if (fw_info == NULL)
462                 clock = 2700;
463         else
464                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
465
466         return clock;
467 }
468
469 /**
470  * Returns true if the given voltage type is controlled by GPIO pins.
471  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
472  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
473  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
474  */
475 bool atomctrl_is_voltage_controled_by_gpio_v3(
476                 struct pp_hwmgr *hwmgr,
477                 uint8_t voltage_type,
478                 uint8_t voltage_mode)
479 {
480         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
481                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
482         bool ret;
483
484         PP_ASSERT_WITH_CODE((NULL != voltage_info),
485                         "Could not find Voltage Table in BIOS.", return false;);
486
487         ret = (NULL != atomctrl_lookup_voltage_type_v3
488                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
489
490         return ret;
491 }
492
493 int atomctrl_get_voltage_table_v3(
494                 struct pp_hwmgr *hwmgr,
495                 uint8_t voltage_type,
496                 uint8_t voltage_mode,
497                 pp_atomctrl_voltage_table *voltage_table)
498 {
499         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
500                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
501         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
502         unsigned int i;
503
504         PP_ASSERT_WITH_CODE((NULL != voltage_info),
505                         "Could not find Voltage Table in BIOS.", return -1;);
506
507         voltage_object = atomctrl_lookup_voltage_type_v3
508                 (voltage_info, voltage_type, voltage_mode);
509
510         if (voltage_object == NULL)
511                 return -1;
512
513         PP_ASSERT_WITH_CODE(
514                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
515                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
516                         "Too many voltage entries!",
517                         return -1;
518                         );
519
520         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
521                 voltage_table->entries[i].value =
522                         voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
523                 voltage_table->entries[i].smio_low =
524                         voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
525         }
526
527         voltage_table->mask_low    =
528                 voltage_object->asGpioVoltageObj.ulGpioMaskVal;
529         voltage_table->count      =
530                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
531         voltage_table->phase_delay =
532                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
533
534         return 0;
535 }
536
537 static bool atomctrl_lookup_gpio_pin(
538                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
539                 const uint32_t pinId,
540                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
541 {
542         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
543         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
544         uint8_t *start = (uint8_t *)gpio_lookup_table;
545
546         while (offset < size) {
547                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
548                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
549
550                 if (pinId == pin_assignment->ucGPIO_ID) {
551                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
552                                 pin_assignment->ucGpioPinBitShift;
553                         gpio_pin_assignment->us_gpio_pin_aindex =
554                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
555                         return false;
556                 }
557
558                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
559         }
560
561         return true;
562 }
563
564 /**
565  * Private Function to get the PowerPlay Table Address.
566  * WARNING: The tabled returned by this function is in
567  * dynamically allocated memory.
568  * The caller has to release if by calling kfree.
569  */
570 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
571 {
572         u8 frev, crev;
573         u16 size;
574         void *table_address;
575
576         table_address = (ATOM_GPIO_PIN_LUT *)
577                 cgs_atom_get_data_table(device,
578                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
579                                 &size, &frev, &crev);
580
581         PP_ASSERT_WITH_CODE((NULL != table_address),
582                         "Error retrieving BIOS Table Address!", return NULL;);
583
584         return (ATOM_GPIO_PIN_LUT *)table_address;
585 }
586
587 /**
588  * Returns 1 if the given pin id find in lookup table.
589  */
590 bool atomctrl_get_pp_assign_pin(
591                 struct pp_hwmgr *hwmgr,
592                 const uint32_t pinId,
593                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
594 {
595         bool bRet = 0;
596         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
597                 get_gpio_lookup_table(hwmgr->device);
598
599         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
600                         "Could not find GPIO lookup Table in BIOS.", return -1);
601
602         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
603                 gpio_pin_assignment);
604
605         return bRet;
606 }
607
608 int atomctrl_calculate_voltage_evv_on_sclk(
609                 struct pp_hwmgr *hwmgr,
610                 uint8_t voltage_type,
611                 uint32_t sclk,
612                 uint16_t virtual_voltage_Id,
613                 uint16_t *voltage,
614                 uint16_t dpm_level,
615                 bool debug)
616 {
617         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
618
619         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
620         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
621         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
622         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
623         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
624         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
625         EFUSE_INPUT_PARAMETER sInput_FuseValues;
626         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
627
628         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
629         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
630         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
631         fInt fLkg_FT, repeat;
632         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
633         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
634         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
635         fInt fSclk_margin, fSclk, fEVV_V;
636         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
637         uint32_t ul_FT_Lkg_V0NORM;
638         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
639         fInt fRoots[2];
640         fInt fStepSize = GetScaledFraction(625, 100000);
641
642         int result;
643
644         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
645                         cgs_atom_get_data_table(hwmgr->device,
646                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
647                                         NULL, NULL, NULL);
648
649         if (!getASICProfilingInfo)
650                 return -1;
651
652         if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
653                         (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
654                         getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
655                 return -1;
656
657         /*-----------------------------------------------------------
658          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
659          *-----------------------------------------------------------
660          */
661         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
662
663         switch (dpm_level) {
664         case 1:
665                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
666                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
667                 break;
668         case 2:
669                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
670                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
671                 break;
672         case 3:
673                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
674                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
675                 break;
676         case 4:
677                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
678                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
679                 break;
680         case 5:
681                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
682                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
683                 break;
684         case 6:
685                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
686                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
687                 break;
688         case 7:
689                 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
690                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
691                 break;
692         default:
693                 printk(KERN_ERR "DPM Level not supported\n");
694                 fPowerDPMx = Convert_ULONG_ToFraction(1);
695                 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
696         }
697
698         /*-------------------------
699          * DECODING FUSE VALUES
700          * ------------------------
701          */
702         /*Decode RO_Fused*/
703         sRO_fuse = getASICProfilingInfo->sRoFuse;
704
705         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
706         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
707         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
708
709         sOutput_FuseValues.sEfuse = sInput_FuseValues;
710
711         result = cgs_atom_exec_cmd_table(hwmgr->device,
712                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
713                         &sOutput_FuseValues);
714
715         if (result)
716                 return result;
717
718         /* Finally, the actual fuse value */
719         ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
720         fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
721         fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
722         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
723
724         sCACm_fuse = getASICProfilingInfo->sCACm;
725
726         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
727         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
728         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
729
730         sOutput_FuseValues.sEfuse = sInput_FuseValues;
731
732         result = cgs_atom_exec_cmd_table(hwmgr->device,
733                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
734                         &sOutput_FuseValues);
735
736         if (result)
737                 return result;
738
739         ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
740         fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
741         fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
742
743         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
744
745         sCACb_fuse = getASICProfilingInfo->sCACb;
746
747         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
748         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
749         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
750         sOutput_FuseValues.sEfuse = sInput_FuseValues;
751
752         result = cgs_atom_exec_cmd_table(hwmgr->device,
753                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
754                         &sOutput_FuseValues);
755
756         if (result)
757                 return result;
758
759         ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
760         fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
761         fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
762
763         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
764
765         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
766
767         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
768         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
769         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
770
771         sOutput_FuseValues.sEfuse = sInput_FuseValues;
772
773         result = cgs_atom_exec_cmd_table(hwmgr->device,
774                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
775                         &sOutput_FuseValues);
776
777         if (result)
778                 return result;
779
780         ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
781         fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
782         fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
783
784         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
785                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
786
787         sKv_m_fuse = getASICProfilingInfo->sKv_m;
788
789         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
790         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
791         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
792
793         sOutput_FuseValues.sEfuse = sInput_FuseValues;
794
795         result = cgs_atom_exec_cmd_table(hwmgr->device,
796                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
797                         &sOutput_FuseValues);
798         if (result)
799                 return result;
800
801         ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
802         fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
803         fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
804         fRange = fMultiply(fRange, ConvertToFraction(-1));
805
806         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
807                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
808
809         sKv_b_fuse = getASICProfilingInfo->sKv_b;
810
811         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
812         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
813         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
814         sOutput_FuseValues.sEfuse = sInput_FuseValues;
815
816         result = cgs_atom_exec_cmd_table(hwmgr->device,
817                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
818                         &sOutput_FuseValues);
819
820         if (result)
821                 return result;
822
823         ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
824         fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
825         fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
826
827         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
828                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
829
830         /* Decoding the Leakage - No special struct container */
831         /*
832          * usLkgEuseIndex=56
833          * ucLkgEfuseBitLSB=6
834          * ucLkgEfuseLength=10
835          * ulLkgEncodeLn_MaxDivMin=69077
836          * ulLkgEncodeMax=1000000
837          * ulLkgEncodeMin=1000
838          * ulEfuseLogisticAlpha=13
839          */
840
841         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
842         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
843         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
844
845         sOutput_FuseValues.sEfuse = sInput_FuseValues;
846
847         result = cgs_atom_exec_cmd_table(hwmgr->device,
848                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
849                         &sOutput_FuseValues);
850
851         if (result)
852                 return result;
853
854         ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
855         fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
856         fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
857
858         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
859                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
860         fLkg_FT = fFT_Lkg_V0NORM;
861
862         /*-------------------------------------------
863          * PART 2 - Grabbing all required values
864          *-------------------------------------------
865          */
866         fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
867                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
868         fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
869                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
870         fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
871                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
872         fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
873                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
874         fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
875                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
876         fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
877                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
878         fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
879                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
880         fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
881                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
882
883         fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
884         fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
885         fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
886
887         fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
888
889         fMargin_FMAX_mean = GetScaledFraction(
890                         getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
891         fMargin_Plat_mean = GetScaledFraction(
892                         getASICProfilingInfo->ulMargin_plat_mean, 10000);
893         fMargin_FMAX_sigma = GetScaledFraction(
894                         getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
895         fMargin_Plat_sigma = GetScaledFraction(
896                         getASICProfilingInfo->ulMargin_plat_sigma, 10000);
897
898         fMargin_DC_sigma = GetScaledFraction(
899                         getASICProfilingInfo->ulMargin_DC_sigma, 100);
900         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
901
902         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
903         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
904         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
905         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
906         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
907
908         fSclk = GetScaledFraction(sclk, 100);
909
910         fV_max = fDivide(GetScaledFraction(
911                         getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
912         fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
913         fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
914         fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
915         fV_FT = fDivide(GetScaledFraction(
916                         getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
917         fV_min = fDivide(GetScaledFraction(
918                         getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
919
920         /*-----------------------
921          * PART 3
922          *-----------------------
923          */
924
925         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
926         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
927         fC_Term = fAdd(fMargin_RO_c,
928                         fAdd(fMultiply(fSM_A0,fLkg_FT),
929                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
930                         fAdd(fMultiply(fSM_A3, fSclk),
931                         fSubtract(fSM_A7, fRO_fused)))));
932
933         fVDDC_base = fSubtract(fRO_fused,
934                         fSubtract(fMargin_RO_c,
935                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
936         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
937
938         repeat = fSubtract(fVDDC_base,
939                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
940
941         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
942                         fGetSquare(repeat)),
943                         fAdd(fMultiply(fMargin_RO_b, repeat),
944                         fMargin_RO_c));
945
946         fDC_SCLK = fSubtract(fRO_fused,
947                         fSubtract(fRO_DC_margin,
948                         fSubtract(fSM_A3,
949                         fMultiply(fSM_A2, repeat))));
950         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
951
952         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
953
954         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
955         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
956         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
957         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
958
959         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
960         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
961         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
962
963         fSclk_margin = fAdd(fMicro_FMAX,
964                         fAdd(fMicro_CR,
965                         fAdd(fMargin_fixed,
966                         fSqrt(fAdd(fSquared_Sigma_FMAX,
967                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
968         /*
969          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
970          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
971          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
972          */
973
974         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
975         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
976         fC_Term = fAdd(fRO_DC_margin,
977                         fAdd(fMultiply(fSM_A0, fLkg_FT),
978                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
979                         fAdd(fSclk, fSclk_margin)),
980                         fAdd(fMultiply(fSM_A3,
981                         fAdd(fSclk, fSclk_margin)),
982                         fSubtract(fSM_A7, fRO_fused)))));
983
984         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
985
986         if (GreaterThan(fRoots[0], fRoots[1]))
987                 fEVV_V = fRoots[1];
988         else
989                 fEVV_V = fRoots[0];
990
991         if (GreaterThan(fV_min, fEVV_V))
992                 fEVV_V = fV_min;
993         else if (GreaterThan(fEVV_V, fV_max))
994                 fEVV_V = fSubtract(fV_max, fStepSize);
995
996         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
997
998         /*-----------------
999          * PART 4
1000          *-----------------
1001          */
1002
1003         fV_x = fV_min;
1004
1005         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1006                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1007                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1008                                 fGetSquare(fV_x)), fDerateTDP);
1009
1010                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1011                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1012                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1013                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1014                                 fKt_Beta_fused, fT_prod)));
1015                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1017                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1018                                 fKt_Beta_fused, fT_FT)));
1019
1020                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1021
1022                 fTDP_Current = fDivide(fTDP_Power, fV_x);
1023
1024                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1025                                 ConvertToFraction(10)));
1026
1027                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1028
1029                 if (GreaterThan(fV_max, fV_NL) &&
1030                         (GreaterThan(fV_NL, fEVV_V) ||
1031                         Equal(fV_NL, fEVV_V))) {
1032                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1033
1034                         *voltage = (uint16_t)fV_NL.partial.real;
1035                         break;
1036                 } else
1037                         fV_x = fAdd(fV_x, fStepSize);
1038         }
1039
1040         return result;
1041 }
1042
1043 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1044  * @param hwmgr input: pointer to hwManager
1045  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1046  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1047  *              which is define in PPTable SCLK/VDDC dependence
1048  *                              table associated with this virtual_voltage_Id
1049  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1050  * @param voltage                      output: real voltage level in unit of mv
1051  */
1052 int atomctrl_get_voltage_evv_on_sclk(
1053                 struct pp_hwmgr *hwmgr,
1054                 uint8_t voltage_type,
1055                 uint32_t sclk, uint16_t virtual_voltage_Id,
1056                 uint16_t *voltage)
1057 {
1058         int result;
1059         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1060
1061         get_voltage_info_param_space.ucVoltageType   =
1062                 voltage_type;
1063         get_voltage_info_param_space.ucVoltageMode   =
1064                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1065         get_voltage_info_param_space.usVoltageLevel  =
1066                 virtual_voltage_Id;
1067         get_voltage_info_param_space.ulSCLKFreq      =
1068                 sclk;
1069
1070         result = cgs_atom_exec_cmd_table(hwmgr->device,
1071                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1072                         &get_voltage_info_param_space);
1073
1074         if (0 != result)
1075                 return result;
1076
1077         *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1078                         (&get_voltage_info_param_space))->usVoltageLevel;
1079
1080         return result;
1081 }
1082
1083 /**
1084  * Get the mpll reference clock in 10KHz
1085  */
1086 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1087 {
1088         ATOM_COMMON_TABLE_HEADER *fw_info;
1089         uint32_t clock;
1090         u8 frev, crev;
1091         u16 size;
1092
1093         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1094                 cgs_atom_get_data_table(hwmgr->device,
1095                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1096                                 &size, &frev, &crev);
1097
1098         if (fw_info == NULL)
1099                 clock = 2700;
1100         else {
1101                 if ((fw_info->ucTableFormatRevision == 2) &&
1102                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1103                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1104                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1105                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1106                 } else {
1107                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1108                                 (ATOM_FIRMWARE_INFO *)fw_info;
1109                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1110                 }
1111         }
1112
1113         return clock;
1114 }
1115
1116 /**
1117  * Get the asic internal spread spectrum table
1118  */
1119 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1120 {
1121         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1122         u8 frev, crev;
1123         u16 size;
1124
1125         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1126                 cgs_atom_get_data_table(device,
1127                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1128                         &size, &frev, &crev);
1129
1130         return table;
1131 }
1132
1133 /**
1134  * Get the asic internal spread spectrum assignment
1135  */
1136 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1137                 const uint8_t clockSource,
1138                 const uint32_t clockSpeed,
1139                 pp_atomctrl_internal_ss_info *ssEntry)
1140 {
1141         ATOM_ASIC_INTERNAL_SS_INFO *table;
1142         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1143         int entry_found = 0;
1144
1145         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1146
1147         table = asic_internal_ss_get_ss_table(hwmgr->device);
1148
1149         if (NULL == table)
1150                 return -1;
1151
1152         ssInfo = &table->asSpreadSpectrum[0];
1153
1154         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1155                 le16_to_cpu(table->sHeader.usStructureSize)) {
1156                 if ((clockSource == ssInfo->ucClockIndication) &&
1157                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1158                         entry_found = 1;
1159                         break;
1160                 }
1161
1162                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1163                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1164         }
1165
1166         if (entry_found) {
1167                 ssEntry->speed_spectrum_percentage =
1168                         ssInfo->usSpreadSpectrumPercentage;
1169                 ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1170
1171                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1172                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1173                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1174                         ssEntry->speed_spectrum_rate /= 100;
1175                 }
1176
1177                 switch (ssInfo->ucSpreadSpectrumMode) {
1178                 case 0:
1179                         ssEntry->speed_spectrum_mode =
1180                                 pp_atomctrl_spread_spectrum_mode_down;
1181                         break;
1182                 case 1:
1183                         ssEntry->speed_spectrum_mode =
1184                                 pp_atomctrl_spread_spectrum_mode_center;
1185                         break;
1186                 default:
1187                         ssEntry->speed_spectrum_mode =
1188                                 pp_atomctrl_spread_spectrum_mode_down;
1189                         break;
1190                 }
1191         }
1192
1193         return entry_found ? 0 : 1;
1194 }
1195
1196 /**
1197  * Get the memory clock spread spectrum info
1198  */
1199 int atomctrl_get_memory_clock_spread_spectrum(
1200                 struct pp_hwmgr *hwmgr,
1201                 const uint32_t memory_clock,
1202                 pp_atomctrl_internal_ss_info *ssInfo)
1203 {
1204         return asic_internal_ss_get_ss_asignment(hwmgr,
1205                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1206 }
1207 /**
1208  * Get the engine clock spread spectrum info
1209  */
1210 int atomctrl_get_engine_clock_spread_spectrum(
1211                 struct pp_hwmgr *hwmgr,
1212                 const uint32_t engine_clock,
1213                 pp_atomctrl_internal_ss_info *ssInfo)
1214 {
1215         return asic_internal_ss_get_ss_asignment(hwmgr,
1216                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1217 }
1218
1219 int atomctrl_read_efuse(void *device, uint16_t start_index,
1220                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1221 {
1222         int result;
1223         READ_EFUSE_VALUE_PARAMETER efuse_param;
1224
1225         efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1226         efuse_param.sEfuse.ucBitShift = (uint8_t)
1227                         (start_index - ((start_index / 32) * 32));
1228         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1229                         ((end_index - start_index) + 1);
1230
1231         result = cgs_atom_exec_cmd_table(device,
1232                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1233                         &efuse_param);
1234         if (!result)
1235                 *efuse = efuse_param.ulEfuseValue & mask;
1236
1237         return result;
1238 }
1239
1240 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1241                                                                 uint8_t level)
1242 {
1243         DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1244         int result;
1245
1246         memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = memory_clock & SET_CLOCK_FREQ_MASK;
1247         memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = ADJUST_MC_SETTING_PARAM;
1248         memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1249
1250         result = cgs_atom_exec_cmd_table
1251                 (hwmgr->device,
1252                  GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1253                  &memory_clock_parameters);
1254
1255         return result;
1256 }
1257
1258 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1259                                 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1260 {
1261
1262         int result;
1263         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1264
1265         get_voltage_info_param_space.ucVoltageType = voltage_type;
1266         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1267         get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id;
1268         get_voltage_info_param_space.ulSCLKFreq = sclk;
1269
1270         result = cgs_atom_exec_cmd_table(hwmgr->device,
1271                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1272                         &get_voltage_info_param_space);
1273
1274         if (0 != result)
1275                 return result;
1276
1277         *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel;
1278
1279         return result;
1280 }
1281
1282 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1283 {
1284
1285         int i;
1286         u8 frev, crev;
1287         u16 size;
1288
1289         ATOM_SMU_INFO_V2_1 *psmu_info =
1290                 (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1291                         GetIndexIntoMasterTable(DATA, SMU_Info),
1292                         &size, &frev, &crev);
1293
1294
1295         for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1296                 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1297                 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1298                 table->entry[i].usFcw_pcc = psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc;
1299                 table->entry[i].usFcw_trans_upper = psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper;
1300                 table->entry[i].usRcw_trans_lower = psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower;
1301         }
1302
1303         return 0;
1304 }
1305
1306 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl__avfs_parameters *param)
1307 {
1308         ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1309
1310         if (param == NULL)
1311                 return -EINVAL;
1312
1313         profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1314                         cgs_atom_get_data_table(hwmgr->device,
1315                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1316                                         NULL, NULL, NULL);
1317         if (!profile)
1318                 return -1;
1319
1320         param->ulAVFS_meanNsigma_Acontant0 = profile->ulAVFS_meanNsigma_Acontant0;
1321         param->ulAVFS_meanNsigma_Acontant1 = profile->ulAVFS_meanNsigma_Acontant1;
1322         param->ulAVFS_meanNsigma_Acontant2 = profile->ulAVFS_meanNsigma_Acontant2;
1323         param->usAVFS_meanNsigma_DC_tol_sigma = profile->usAVFS_meanNsigma_DC_tol_sigma;
1324         param->usAVFS_meanNsigma_Platform_mean = profile->usAVFS_meanNsigma_Platform_mean;
1325         param->usAVFS_meanNsigma_Platform_sigma = profile->usAVFS_meanNsigma_Platform_sigma;
1326         param->ulGB_VDROOP_TABLE_CKSOFF_a0 = profile->ulGB_VDROOP_TABLE_CKSOFF_a0;
1327         param->ulGB_VDROOP_TABLE_CKSOFF_a1 = profile->ulGB_VDROOP_TABLE_CKSOFF_a1;
1328         param->ulGB_VDROOP_TABLE_CKSOFF_a2 = profile->ulGB_VDROOP_TABLE_CKSOFF_a2;
1329         param->ulGB_VDROOP_TABLE_CKSON_a0 = profile->ulGB_VDROOP_TABLE_CKSON_a0;
1330         param->ulGB_VDROOP_TABLE_CKSON_a1 = profile->ulGB_VDROOP_TABLE_CKSON_a1;
1331         param->ulGB_VDROOP_TABLE_CKSON_a2 = profile->ulGB_VDROOP_TABLE_CKSON_a2;
1332         param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
1333         param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2;
1334         param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b;
1335         param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSON_m1;
1336         param->usAVFSGB_FUSE_TABLE_CKSON_m2 = profile->usAVFSGB_FUSE_TABLE_CKSON_m2;
1337         param->ulAVFSGB_FUSE_TABLE_CKSON_b = profile->ulAVFSGB_FUSE_TABLE_CKSON_b;
1338         param->usMaxVoltage_0_25mv = profile->usMaxVoltage_0_25mv;
1339         param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1340         param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1341         param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1342         param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1343         param->usPSM_Age_ComFactor = profile->usPSM_Age_ComFactor;
1344         param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1345
1346         return 0;
1347 }