]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branch 'usb/usb-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->ring->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before = 0; /* Only to silence a compiler warning. */
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275                 /*
1276                  * Record current time in case interrupted by signal, or wedged.
1277                  */
1278                 before = ktime_get_raw_ns();
1279         }
1280
1281         if (INTEL_INFO(dev_priv)->gen >= 6)
1282                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284         trace_i915_gem_request_wait_begin(req);
1285
1286         /* Optimistic spin for the next jiffie before touching IRQs */
1287         ret = __i915_spin_request(req, state);
1288         if (ret == 0)
1289                 goto out;
1290
1291         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292                 ret = -ENODEV;
1293                 goto out;
1294         }
1295
1296         for (;;) {
1297                 struct timer_list timer;
1298
1299                 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301                 /* We need to check whether any gpu reset happened in between
1302                  * the caller grabbing the seqno and now ... */
1303                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305                          * is truely gone. */
1306                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307                         if (ret == 0)
1308                                 ret = -EAGAIN;
1309                         break;
1310                 }
1311
1312                 if (i915_gem_request_completed(req, false)) {
1313                         ret = 0;
1314                         break;
1315                 }
1316
1317                 if (signal_pending_state(state, current)) {
1318                         ret = -ERESTARTSYS;
1319                         break;
1320                 }
1321
1322                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323                         ret = -ETIME;
1324                         break;
1325                 }
1326
1327                 timer.function = NULL;
1328                 if (timeout || missed_irq(dev_priv, ring)) {
1329                         unsigned long expire;
1330
1331                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333                         mod_timer(&timer, expire);
1334                 }
1335
1336                 io_schedule();
1337
1338                 if (timer.function) {
1339                         del_singleshot_timer_sync(&timer);
1340                         destroy_timer_on_stack(&timer);
1341                 }
1342         }
1343         if (!irq_test_in_progress)
1344                 ring->irq_put(ring);
1345
1346         finish_wait(&ring->irq_queue, &wait);
1347
1348 out:
1349         trace_i915_gem_request_wait_end(req);
1350
1351         if (timeout) {
1352                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354                 *timeout = tres < 0 ? 0 : tres;
1355
1356                 /*
1357                  * Apparently ktime isn't accurate enough and occasionally has a
1358                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359                  * things up to make the test happy. We allow up to 1 jiffy.
1360                  *
1361                  * This is a regrssion from the timespec->ktime conversion.
1362                  */
1363                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364                         *timeout = 0;
1365         }
1366
1367         return ret;
1368 }
1369
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371                                    struct drm_file *file)
1372 {
1373         struct drm_i915_private *dev_private;
1374         struct drm_i915_file_private *file_priv;
1375
1376         WARN_ON(!req || !file || req->file_priv);
1377
1378         if (!req || !file)
1379                 return -EINVAL;
1380
1381         if (req->file_priv)
1382                 return -EINVAL;
1383
1384         dev_private = req->ring->dev->dev_private;
1385         file_priv = file->driver_priv;
1386
1387         spin_lock(&file_priv->mm.lock);
1388         req->file_priv = file_priv;
1389         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390         spin_unlock(&file_priv->mm.lock);
1391
1392         req->pid = get_pid(task_pid(current));
1393
1394         return 0;
1395 }
1396
1397 static inline void
1398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399 {
1400         struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402         if (!file_priv)
1403                 return;
1404
1405         spin_lock(&file_priv->mm.lock);
1406         list_del(&request->client_list);
1407         request->file_priv = NULL;
1408         spin_unlock(&file_priv->mm.lock);
1409
1410         put_pid(request->pid);
1411         request->pid = NULL;
1412 }
1413
1414 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415 {
1416         trace_i915_gem_request_retire(request);
1417
1418         /* We know the GPU must have read the request to have
1419          * sent us the seqno + interrupt, so use the position
1420          * of tail of the request to update the last known position
1421          * of the GPU head.
1422          *
1423          * Note this requires that we are always called in request
1424          * completion order.
1425          */
1426         request->ringbuf->last_retired_head = request->postfix;
1427
1428         list_del_init(&request->list);
1429         i915_gem_request_remove_from_client(request);
1430
1431         i915_gem_request_unreference(request);
1432 }
1433
1434 static void
1435 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436 {
1437         struct intel_engine_cs *engine = req->ring;
1438         struct drm_i915_gem_request *tmp;
1439
1440         lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442         if (list_empty(&req->list))
1443                 return;
1444
1445         do {
1446                 tmp = list_first_entry(&engine->request_list,
1447                                        typeof(*tmp), list);
1448
1449                 i915_gem_request_retire(tmp);
1450         } while (tmp != req);
1451
1452         WARN_ON(i915_verify_lists(engine->dev));
1453 }
1454
1455 /**
1456  * Waits for a request to be signaled, and cleans up the
1457  * request and object lists appropriately for that event.
1458  */
1459 int
1460 i915_wait_request(struct drm_i915_gem_request *req)
1461 {
1462         struct drm_device *dev;
1463         struct drm_i915_private *dev_priv;
1464         bool interruptible;
1465         int ret;
1466
1467         BUG_ON(req == NULL);
1468
1469         dev = req->ring->dev;
1470         dev_priv = dev->dev_private;
1471         interruptible = dev_priv->mm.interruptible;
1472
1473         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476         if (ret)
1477                 return ret;
1478
1479         ret = __i915_wait_request(req,
1480                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1481                                   interruptible, NULL, NULL);
1482         if (ret)
1483                 return ret;
1484
1485         __i915_gem_request_retire__upto(req);
1486         return 0;
1487 }
1488
1489 /**
1490  * Ensures that all rendering to the object has completed and the object is
1491  * safe to unbind from the GTT or access from the CPU.
1492  */
1493 int
1494 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495                                bool readonly)
1496 {
1497         int ret, i;
1498
1499         if (!obj->active)
1500                 return 0;
1501
1502         if (readonly) {
1503                 if (obj->last_write_req != NULL) {
1504                         ret = i915_wait_request(obj->last_write_req);
1505                         if (ret)
1506                                 return ret;
1507
1508                         i = obj->last_write_req->ring->id;
1509                         if (obj->last_read_req[i] == obj->last_write_req)
1510                                 i915_gem_object_retire__read(obj, i);
1511                         else
1512                                 i915_gem_object_retire__write(obj);
1513                 }
1514         } else {
1515                 for (i = 0; i < I915_NUM_RINGS; i++) {
1516                         if (obj->last_read_req[i] == NULL)
1517                                 continue;
1518
1519                         ret = i915_wait_request(obj->last_read_req[i]);
1520                         if (ret)
1521                                 return ret;
1522
1523                         i915_gem_object_retire__read(obj, i);
1524                 }
1525                 RQ_BUG_ON(obj->active);
1526         }
1527
1528         return 0;
1529 }
1530
1531 static void
1532 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533                                struct drm_i915_gem_request *req)
1534 {
1535         int ring = req->ring->id;
1536
1537         if (obj->last_read_req[ring] == req)
1538                 i915_gem_object_retire__read(obj, ring);
1539         else if (obj->last_write_req == req)
1540                 i915_gem_object_retire__write(obj);
1541
1542         __i915_gem_request_retire__upto(req);
1543 }
1544
1545 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1546  * as the object state may change during this call.
1547  */
1548 static __must_check int
1549 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550                                             struct intel_rps_client *rps,
1551                                             bool readonly)
1552 {
1553         struct drm_device *dev = obj->base.dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556         unsigned reset_counter;
1557         int ret, i, n = 0;
1558
1559         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560         BUG_ON(!dev_priv->mm.interruptible);
1561
1562         if (!obj->active)
1563                 return 0;
1564
1565         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566         if (ret)
1567                 return ret;
1568
1569         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571         if (readonly) {
1572                 struct drm_i915_gem_request *req;
1573
1574                 req = obj->last_write_req;
1575                 if (req == NULL)
1576                         return 0;
1577
1578                 requests[n++] = i915_gem_request_reference(req);
1579         } else {
1580                 for (i = 0; i < I915_NUM_RINGS; i++) {
1581                         struct drm_i915_gem_request *req;
1582
1583                         req = obj->last_read_req[i];
1584                         if (req == NULL)
1585                                 continue;
1586
1587                         requests[n++] = i915_gem_request_reference(req);
1588                 }
1589         }
1590
1591         mutex_unlock(&dev->struct_mutex);
1592         for (i = 0; ret == 0 && i < n; i++)
1593                 ret = __i915_wait_request(requests[i], reset_counter, true,
1594                                           NULL, rps);
1595         mutex_lock(&dev->struct_mutex);
1596
1597         for (i = 0; i < n; i++) {
1598                 if (ret == 0)
1599                         i915_gem_object_retire_request(obj, requests[i]);
1600                 i915_gem_request_unreference(requests[i]);
1601         }
1602
1603         return ret;
1604 }
1605
1606 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607 {
1608         struct drm_i915_file_private *fpriv = file->driver_priv;
1609         return &fpriv->rps;
1610 }
1611
1612 /**
1613  * Called when user space prepares to use an object with the CPU, either
1614  * through the mmap ioctl's mapping or a GTT mapping.
1615  */
1616 int
1617 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618                           struct drm_file *file)
1619 {
1620         struct drm_i915_gem_set_domain *args = data;
1621         struct drm_i915_gem_object *obj;
1622         uint32_t read_domains = args->read_domains;
1623         uint32_t write_domain = args->write_domain;
1624         int ret;
1625
1626         /* Only handle setting domains to types used by the CPU. */
1627         if (write_domain & I915_GEM_GPU_DOMAINS)
1628                 return -EINVAL;
1629
1630         if (read_domains & I915_GEM_GPU_DOMAINS)
1631                 return -EINVAL;
1632
1633         /* Having something in the write domain implies it's in the read
1634          * domain, and only that read domain.  Enforce that in the request.
1635          */
1636         if (write_domain != 0 && read_domains != write_domain)
1637                 return -EINVAL;
1638
1639         ret = i915_mutex_lock_interruptible(dev);
1640         if (ret)
1641                 return ret;
1642
1643         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644         if (&obj->base == NULL) {
1645                 ret = -ENOENT;
1646                 goto unlock;
1647         }
1648
1649         /* Try to flush the object off the GPU without holding the lock.
1650          * We will repeat the flush holding the lock in the normal manner
1651          * to catch cases where we are gazumped.
1652          */
1653         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654                                                           to_rps_client(file),
1655                                                           !write_domain);
1656         if (ret)
1657                 goto unref;
1658
1659         if (read_domains & I915_GEM_DOMAIN_GTT)
1660                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661         else
1662                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664         if (write_domain != 0)
1665                 intel_fb_obj_invalidate(obj,
1666                                         write_domain == I915_GEM_DOMAIN_GTT ?
1667                                         ORIGIN_GTT : ORIGIN_CPU);
1668
1669 unref:
1670         drm_gem_object_unreference(&obj->base);
1671 unlock:
1672         mutex_unlock(&dev->struct_mutex);
1673         return ret;
1674 }
1675
1676 /**
1677  * Called when user space has done writes to this buffer
1678  */
1679 int
1680 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681                          struct drm_file *file)
1682 {
1683         struct drm_i915_gem_sw_finish *args = data;
1684         struct drm_i915_gem_object *obj;
1685         int ret = 0;
1686
1687         ret = i915_mutex_lock_interruptible(dev);
1688         if (ret)
1689                 return ret;
1690
1691         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692         if (&obj->base == NULL) {
1693                 ret = -ENOENT;
1694                 goto unlock;
1695         }
1696
1697         /* Pinned buffers may be scanout, so flush the cache */
1698         if (obj->pin_display)
1699                 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701         drm_gem_object_unreference(&obj->base);
1702 unlock:
1703         mutex_unlock(&dev->struct_mutex);
1704         return ret;
1705 }
1706
1707 /**
1708  * Maps the contents of an object, returning the address it is mapped
1709  * into.
1710  *
1711  * While the mapping holds a reference on the contents of the object, it doesn't
1712  * imply a ref on the object itself.
1713  *
1714  * IMPORTANT:
1715  *
1716  * DRM driver writers who look a this function as an example for how to do GEM
1717  * mmap support, please don't implement mmap support like here. The modern way
1718  * to implement DRM mmap support is with an mmap offset ioctl (like
1719  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720  * That way debug tooling like valgrind will understand what's going on, hiding
1721  * the mmap call in a driver private ioctl will break that. The i915 driver only
1722  * does cpu mmaps this way because we didn't know better.
1723  */
1724 int
1725 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726                     struct drm_file *file)
1727 {
1728         struct drm_i915_gem_mmap *args = data;
1729         struct drm_gem_object *obj;
1730         unsigned long addr;
1731
1732         if (args->flags & ~(I915_MMAP_WC))
1733                 return -EINVAL;
1734
1735         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736                 return -ENODEV;
1737
1738         obj = drm_gem_object_lookup(dev, file, args->handle);
1739         if (obj == NULL)
1740                 return -ENOENT;
1741
1742         /* prime objects have no backing filp to GEM mmap
1743          * pages from.
1744          */
1745         if (!obj->filp) {
1746                 drm_gem_object_unreference_unlocked(obj);
1747                 return -EINVAL;
1748         }
1749
1750         addr = vm_mmap(obj->filp, 0, args->size,
1751                        PROT_READ | PROT_WRITE, MAP_SHARED,
1752                        args->offset);
1753         if (args->flags & I915_MMAP_WC) {
1754                 struct mm_struct *mm = current->mm;
1755                 struct vm_area_struct *vma;
1756
1757                 down_write(&mm->mmap_sem);
1758                 vma = find_vma(mm, addr);
1759                 if (vma)
1760                         vma->vm_page_prot =
1761                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762                 else
1763                         addr = -ENOMEM;
1764                 up_write(&mm->mmap_sem);
1765         }
1766         drm_gem_object_unreference_unlocked(obj);
1767         if (IS_ERR((void *)addr))
1768                 return addr;
1769
1770         args->addr_ptr = (uint64_t) addr;
1771
1772         return 0;
1773 }
1774
1775 /**
1776  * i915_gem_fault - fault a page into the GTT
1777  * @vma: VMA in question
1778  * @vmf: fault info
1779  *
1780  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781  * from userspace.  The fault handler takes care of binding the object to
1782  * the GTT (if needed), allocating and programming a fence register (again,
1783  * only if needed based on whether the old reg is still valid or the object
1784  * is tiled) and inserting a new PTE into the faulting process.
1785  *
1786  * Note that the faulting process may involve evicting existing objects
1787  * from the GTT and/or fence registers to make room.  So performance may
1788  * suffer if the GTT working set is large or there are few fence registers
1789  * left.
1790  */
1791 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792 {
1793         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794         struct drm_device *dev = obj->base.dev;
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         struct i915_ggtt_view view = i915_ggtt_view_normal;
1797         pgoff_t page_offset;
1798         unsigned long pfn;
1799         int ret = 0;
1800         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802         intel_runtime_pm_get(dev_priv);
1803
1804         /* We don't use vmf->pgoff since that has the fake offset */
1805         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806                 PAGE_SHIFT;
1807
1808         ret = i915_mutex_lock_interruptible(dev);
1809         if (ret)
1810                 goto out;
1811
1812         trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814         /* Try to flush the object off the GPU first without holding the lock.
1815          * Upon reacquiring the lock, we will perform our sanity checks and then
1816          * repeat the flush holding the lock in the normal manner to catch cases
1817          * where we are gazumped.
1818          */
1819         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820         if (ret)
1821                 goto unlock;
1822
1823         /* Access to snoopable pages through the GTT is incoherent. */
1824         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825                 ret = -EFAULT;
1826                 goto unlock;
1827         }
1828
1829         /* Use a partial view if the object is bigger than the aperture. */
1830         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831             obj->tiling_mode == I915_TILING_NONE) {
1832                 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834                 memset(&view, 0, sizeof(view));
1835                 view.type = I915_GGTT_VIEW_PARTIAL;
1836                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837                 view.params.partial.size =
1838                         min_t(unsigned int,
1839                               chunk_size,
1840                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841                               view.params.partial.offset);
1842         }
1843
1844         /* Now pin it into the GTT if needed */
1845         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846         if (ret)
1847                 goto unlock;
1848
1849         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850         if (ret)
1851                 goto unpin;
1852
1853         ret = i915_gem_object_get_fence(obj);
1854         if (ret)
1855                 goto unpin;
1856
1857         /* Finally, remap it using the new GTT offset */
1858         pfn = dev_priv->gtt.mappable_base +
1859                 i915_gem_obj_ggtt_offset_view(obj, &view);
1860         pfn >>= PAGE_SHIFT;
1861
1862         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863                 /* Overriding existing pages in partial view does not cause
1864                  * us any trouble as TLBs are still valid because the fault
1865                  * is due to userspace losing part of the mapping or never
1866                  * having accessed it before (at this partials' range).
1867                  */
1868                 unsigned long base = vma->vm_start +
1869                                      (view.params.partial.offset << PAGE_SHIFT);
1870                 unsigned int i;
1871
1872                 for (i = 0; i < view.params.partial.size; i++) {
1873                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874                         if (ret)
1875                                 break;
1876                 }
1877
1878                 obj->fault_mappable = true;
1879         } else {
1880                 if (!obj->fault_mappable) {
1881                         unsigned long size = min_t(unsigned long,
1882                                                    vma->vm_end - vma->vm_start,
1883                                                    obj->base.size);
1884                         int i;
1885
1886                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887                                 ret = vm_insert_pfn(vma,
1888                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889                                                     pfn + i);
1890                                 if (ret)
1891                                         break;
1892                         }
1893
1894                         obj->fault_mappable = true;
1895                 } else
1896                         ret = vm_insert_pfn(vma,
1897                                             (unsigned long)vmf->virtual_address,
1898                                             pfn + page_offset);
1899         }
1900 unpin:
1901         i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903         mutex_unlock(&dev->struct_mutex);
1904 out:
1905         switch (ret) {
1906         case -EIO:
1907                 /*
1908                  * We eat errors when the gpu is terminally wedged to avoid
1909                  * userspace unduly crashing (gl has no provisions for mmaps to
1910                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911                  * and so needs to be reported.
1912                  */
1913                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914                         ret = VM_FAULT_SIGBUS;
1915                         break;
1916                 }
1917         case -EAGAIN:
1918                 /*
1919                  * EAGAIN means the gpu is hung and we'll wait for the error
1920                  * handler to reset everything when re-faulting in
1921                  * i915_mutex_lock_interruptible.
1922                  */
1923         case 0:
1924         case -ERESTARTSYS:
1925         case -EINTR:
1926         case -EBUSY:
1927                 /*
1928                  * EBUSY is ok: this just means that another thread
1929                  * already did the job.
1930                  */
1931                 ret = VM_FAULT_NOPAGE;
1932                 break;
1933         case -ENOMEM:
1934                 ret = VM_FAULT_OOM;
1935                 break;
1936         case -ENOSPC:
1937         case -EFAULT:
1938                 ret = VM_FAULT_SIGBUS;
1939                 break;
1940         default:
1941                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942                 ret = VM_FAULT_SIGBUS;
1943                 break;
1944         }
1945
1946         intel_runtime_pm_put(dev_priv);
1947         return ret;
1948 }
1949
1950 /**
1951  * i915_gem_release_mmap - remove physical page mappings
1952  * @obj: obj in question
1953  *
1954  * Preserve the reservation of the mmapping with the DRM core code, but
1955  * relinquish ownership of the pages back to the system.
1956  *
1957  * It is vital that we remove the page mapping if we have mapped a tiled
1958  * object through the GTT and then lose the fence register due to
1959  * resource pressure. Similarly if the object has been moved out of the
1960  * aperture, than pages mapped into userspace must be revoked. Removing the
1961  * mapping will then trigger a page fault on the next user access, allowing
1962  * fixup by i915_gem_fault().
1963  */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967         if (!obj->fault_mappable)
1968                 return;
1969
1970         drm_vma_node_unmap(&obj->base.vma_node,
1971                            obj->base.dev->anon_inode->i_mapping);
1972         obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978         struct drm_i915_gem_object *obj;
1979
1980         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981                 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987         uint32_t gtt_size;
1988
1989         if (INTEL_INFO(dev)->gen >= 4 ||
1990             tiling_mode == I915_TILING_NONE)
1991                 return size;
1992
1993         /* Previous chips need a power-of-two fence region when tiling */
1994         if (INTEL_INFO(dev)->gen == 3)
1995                 gtt_size = 1024*1024;
1996         else
1997                 gtt_size = 512*1024;
1998
1999         while (gtt_size < size)
2000                 gtt_size <<= 1;
2001
2002         return gtt_size;
2003 }
2004
2005 /**
2006  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007  * @obj: object to check
2008  *
2009  * Return the required GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014                            int tiling_mode, bool fenced)
2015 {
2016         /*
2017          * Minimum alignment is 4k (GTT page size), but might be greater
2018          * if a fence register is needed for the object.
2019          */
2020         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021             tiling_mode == I915_TILING_NONE)
2022                 return 4096;
2023
2024         /*
2025          * Previous chips need to be aligned to the size of the smallest
2026          * fence register that can contain the object.
2027          */
2028         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034         int ret;
2035
2036         if (drm_vma_node_has_offset(&obj->base.vma_node))
2037                 return 0;
2038
2039         dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041         ret = drm_gem_create_mmap_offset(&obj->base);
2042         if (ret != -ENOSPC)
2043                 goto out;
2044
2045         /* Badly fragmented mmap space? The only way we can recover
2046          * space is by destroying unwanted objects. We can't randomly release
2047          * mmap_offsets as userspace expects them to be persistent for the
2048          * lifetime of the objects. The closest we can is to release the
2049          * offsets on purgeable objects by truncating it and marking it purged,
2050          * which prevents userspace from ever using that object again.
2051          */
2052         i915_gem_shrink(dev_priv,
2053                         obj->base.size >> PAGE_SHIFT,
2054                         I915_SHRINK_BOUND |
2055                         I915_SHRINK_UNBOUND |
2056                         I915_SHRINK_PURGEABLE);
2057         ret = drm_gem_create_mmap_offset(&obj->base);
2058         if (ret != -ENOSPC)
2059                 goto out;
2060
2061         i915_gem_shrink_all(dev_priv);
2062         ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064         dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066         return ret;
2067 }
2068
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071         drm_gem_free_mmap_offset(&obj->base);
2072 }
2073
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076                   struct drm_device *dev,
2077                   uint32_t handle,
2078                   uint64_t *offset)
2079 {
2080         struct drm_i915_gem_object *obj;
2081         int ret;
2082
2083         ret = i915_mutex_lock_interruptible(dev);
2084         if (ret)
2085                 return ret;
2086
2087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088         if (&obj->base == NULL) {
2089                 ret = -ENOENT;
2090                 goto unlock;
2091         }
2092
2093         if (obj->madv != I915_MADV_WILLNEED) {
2094                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095                 ret = -EFAULT;
2096                 goto out;
2097         }
2098
2099         ret = i915_gem_object_create_mmap_offset(obj);
2100         if (ret)
2101                 goto out;
2102
2103         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105 out:
2106         drm_gem_object_unreference(&obj->base);
2107 unlock:
2108         mutex_unlock(&dev->struct_mutex);
2109         return ret;
2110 }
2111
2112 /**
2113  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114  * @dev: DRM device
2115  * @data: GTT mapping ioctl data
2116  * @file: GEM object info
2117  *
2118  * Simply returns the fake offset to userspace so it can mmap it.
2119  * The mmap call will end up in drm_gem_mmap(), which will set things
2120  * up so we can get faults in the handler above.
2121  *
2122  * The fault handler will take care of binding the object into the GTT
2123  * (since it may have been evicted to make room for something), allocating
2124  * a fence register, and mapping the appropriate aperture address into
2125  * userspace.
2126  */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129                         struct drm_file *file)
2130 {
2131         struct drm_i915_gem_mmap_gtt *args = data;
2132
2133         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140         i915_gem_object_free_mmap_offset(obj);
2141
2142         if (obj->base.filp == NULL)
2143                 return;
2144
2145         /* Our goal here is to return as much of the memory as
2146          * is possible back to the system as we are called from OOM.
2147          * To do this we must instruct the shmfs to drop all of its
2148          * backing pages, *now*.
2149          */
2150         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151         obj->madv = __I915_MADV_PURGED;
2152 }
2153
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158         struct address_space *mapping;
2159
2160         switch (obj->madv) {
2161         case I915_MADV_DONTNEED:
2162                 i915_gem_object_truncate(obj);
2163         case __I915_MADV_PURGED:
2164                 return;
2165         }
2166
2167         if (obj->base.filp == NULL)
2168                 return;
2169
2170         mapping = file_inode(obj->base.filp)->i_mapping,
2171         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177         struct sg_page_iter sg_iter;
2178         int ret;
2179
2180         BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183         if (ret) {
2184                 /* In the event of a disaster, abandon all caches and
2185                  * hope for the best.
2186                  */
2187                 WARN_ON(ret != -EIO);
2188                 i915_gem_clflush_object(obj, true);
2189                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190         }
2191
2192         i915_gem_gtt_finish_object(obj);
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197         if (obj->madv == I915_MADV_DONTNEED)
2198                 obj->dirty = 0;
2199
2200         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201                 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203                 if (obj->dirty)
2204                         set_page_dirty(page);
2205
2206                 if (obj->madv == I915_MADV_WILLNEED)
2207                         mark_page_accessed(page);
2208
2209                 page_cache_release(page);
2210         }
2211         obj->dirty = 0;
2212
2213         sg_free_table(obj->pages);
2214         kfree(obj->pages);
2215 }
2216
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220         const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222         if (obj->pages == NULL)
2223                 return 0;
2224
2225         if (obj->pages_pin_count)
2226                 return -EBUSY;
2227
2228         BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230         /* ->put_pages might need to allocate memory for the bit17 swizzle
2231          * array, hence protect them from being reaped by removing them from gtt
2232          * lists early. */
2233         list_del(&obj->global_list);
2234
2235         ops->put_pages(obj);
2236         obj->pages = NULL;
2237
2238         i915_gem_object_invalidate(obj);
2239
2240         return 0;
2241 }
2242
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247         int page_count, i;
2248         struct address_space *mapping;
2249         struct sg_table *st;
2250         struct scatterlist *sg;
2251         struct sg_page_iter sg_iter;
2252         struct page *page;
2253         unsigned long last_pfn = 0;     /* suppress gcc warning */
2254         int ret;
2255         gfp_t gfp;
2256
2257         /* Assert that the object is not currently in any GPU domain. As it
2258          * wasn't in the GTT, there shouldn't be any way it could have been in
2259          * a GPU cache
2260          */
2261         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264         st = kmalloc(sizeof(*st), GFP_KERNEL);
2265         if (st == NULL)
2266                 return -ENOMEM;
2267
2268         page_count = obj->base.size / PAGE_SIZE;
2269         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270                 kfree(st);
2271                 return -ENOMEM;
2272         }
2273
2274         /* Get the list of pages out of our struct file.  They'll be pinned
2275          * at this point until we release them.
2276          *
2277          * Fail silently without starting the shrinker
2278          */
2279         mapping = file_inode(obj->base.filp)->i_mapping;
2280         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282         sg = st->sgl;
2283         st->nents = 0;
2284         for (i = 0; i < page_count; i++) {
2285                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286                 if (IS_ERR(page)) {
2287                         i915_gem_shrink(dev_priv,
2288                                         page_count,
2289                                         I915_SHRINK_BOUND |
2290                                         I915_SHRINK_UNBOUND |
2291                                         I915_SHRINK_PURGEABLE);
2292                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293                 }
2294                 if (IS_ERR(page)) {
2295                         /* We've tried hard to allocate the memory by reaping
2296                          * our own buffer, now let the real VM do its job and
2297                          * go down in flames if truly OOM.
2298                          */
2299                         i915_gem_shrink_all(dev_priv);
2300                         page = shmem_read_mapping_page(mapping, i);
2301                         if (IS_ERR(page)) {
2302                                 ret = PTR_ERR(page);
2303                                 goto err_pages;
2304                         }
2305                 }
2306 #ifdef CONFIG_SWIOTLB
2307                 if (swiotlb_nr_tbl()) {
2308                         st->nents++;
2309                         sg_set_page(sg, page, PAGE_SIZE, 0);
2310                         sg = sg_next(sg);
2311                         continue;
2312                 }
2313 #endif
2314                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315                         if (i)
2316                                 sg = sg_next(sg);
2317                         st->nents++;
2318                         sg_set_page(sg, page, PAGE_SIZE, 0);
2319                 } else {
2320                         sg->length += PAGE_SIZE;
2321                 }
2322                 last_pfn = page_to_pfn(page);
2323
2324                 /* Check that the i965g/gm workaround works. */
2325                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326         }
2327 #ifdef CONFIG_SWIOTLB
2328         if (!swiotlb_nr_tbl())
2329 #endif
2330                 sg_mark_end(sg);
2331         obj->pages = st;
2332
2333         ret = i915_gem_gtt_prepare_object(obj);
2334         if (ret)
2335                 goto err_pages;
2336
2337         if (i915_gem_object_needs_bit17_swizzle(obj))
2338                 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340         if (obj->tiling_mode != I915_TILING_NONE &&
2341             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342                 i915_gem_object_pin_pages(obj);
2343
2344         return 0;
2345
2346 err_pages:
2347         sg_mark_end(sg);
2348         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349                 page_cache_release(sg_page_iter_page(&sg_iter));
2350         sg_free_table(st);
2351         kfree(st);
2352
2353         /* shmemfs first checks if there is enough memory to allocate the page
2354          * and reports ENOSPC should there be insufficient, along with the usual
2355          * ENOMEM for a genuine allocation failure.
2356          *
2357          * We use ENOSPC in our driver to mean that we have run out of aperture
2358          * space and so want to translate the error from shmemfs back to our
2359          * usual understanding of ENOMEM.
2360          */
2361         if (ret == -ENOSPC)
2362                 ret = -ENOMEM;
2363
2364         return ret;
2365 }
2366
2367 /* Ensure that the associated pages are gathered from the backing storage
2368  * and pinned into our object. i915_gem_object_get_pages() may be called
2369  * multiple times before they are released by a single call to
2370  * i915_gem_object_put_pages() - once the pages are no longer referenced
2371  * either as a result of memory pressure (reaping pages under the shrinker)
2372  * or as the object is itself released.
2373  */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378         const struct drm_i915_gem_object_ops *ops = obj->ops;
2379         int ret;
2380
2381         if (obj->pages)
2382                 return 0;
2383
2384         if (obj->madv != I915_MADV_WILLNEED) {
2385                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386                 return -EFAULT;
2387         }
2388
2389         BUG_ON(obj->pages_pin_count);
2390
2391         ret = ops->get_pages(obj);
2392         if (ret)
2393                 return ret;
2394
2395         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397         obj->get_page.sg = obj->pages->sgl;
2398         obj->get_page.last = 0;
2399
2400         return 0;
2401 }
2402
2403 void i915_vma_move_to_active(struct i915_vma *vma,
2404                              struct drm_i915_gem_request *req)
2405 {
2406         struct drm_i915_gem_object *obj = vma->obj;
2407         struct intel_engine_cs *ring;
2408
2409         ring = i915_gem_request_get_ring(req);
2410
2411         /* Add a reference if we're newly entering the active list. */
2412         if (obj->active == 0)
2413                 drm_gem_object_reference(&obj->base);
2414         obj->active |= intel_ring_flag(ring);
2415
2416         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2420 }
2421
2422 static void
2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424 {
2425         RQ_BUG_ON(obj->last_write_req == NULL);
2426         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428         i915_gem_request_assign(&obj->last_write_req, NULL);
2429         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430 }
2431
2432 static void
2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434 {
2435         struct i915_vma *vma;
2436
2437         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438         RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440         list_del_init(&obj->ring_list[ring]);
2441         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444                 i915_gem_object_retire__write(obj);
2445
2446         obj->active &= ~(1 << ring);
2447         if (obj->active)
2448                 return;
2449
2450         /* Bump our place on the bound list to keep it roughly in LRU order
2451          * so that we don't steal from recently used but inactive objects
2452          * (unless we are forced to ofc!)
2453          */
2454         list_move_tail(&obj->global_list,
2455                        &to_i915(obj->base.dev)->mm.bound_list);
2456
2457         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2458                 if (!list_empty(&vma->mm_list))
2459                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2460         }
2461
2462         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463         drm_gem_object_unreference(&obj->base);
2464 }
2465
2466 static int
2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468 {
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_engine_cs *ring;
2471         int ret, i, j;
2472
2473         /* Carefully retire all requests without writing to the rings */
2474         for_each_ring(ring, dev_priv, i) {
2475                 ret = intel_ring_idle(ring);
2476                 if (ret)
2477                         return ret;
2478         }
2479         i915_gem_retire_requests(dev);
2480
2481         /* Finally reset hw state */
2482         for_each_ring(ring, dev_priv, i) {
2483                 intel_ring_init_seqno(ring, seqno);
2484
2485                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486                         ring->semaphore.sync_seqno[j] = 0;
2487         }
2488
2489         return 0;
2490 }
2491
2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494         struct drm_i915_private *dev_priv = dev->dev_private;
2495         int ret;
2496
2497         if (seqno == 0)
2498                 return -EINVAL;
2499
2500         /* HWS page needs to be set less than what we
2501          * will inject to ring
2502          */
2503         ret = i915_gem_init_seqno(dev, seqno - 1);
2504         if (ret)
2505                 return ret;
2506
2507         /* Carefully set the last_seqno value so that wrap
2508          * detection still works
2509          */
2510         dev_priv->next_seqno = seqno;
2511         dev_priv->last_seqno = seqno - 1;
2512         if (dev_priv->last_seqno == 0)
2513                 dev_priv->last_seqno--;
2514
2515         return 0;
2516 }
2517
2518 int
2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523         /* reserve 0 for non-seqno */
2524         if (dev_priv->next_seqno == 0) {
2525                 int ret = i915_gem_init_seqno(dev, 0);
2526                 if (ret)
2527                         return ret;
2528
2529                 dev_priv->next_seqno = 1;
2530         }
2531
2532         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533         return 0;
2534 }
2535
2536 /*
2537  * NB: This function is not allowed to fail. Doing so would mean the the
2538  * request is not being tracked for completion but the work itself is
2539  * going to happen on the hardware. This would be a Bad Thing(tm).
2540  */
2541 void __i915_add_request(struct drm_i915_gem_request *request,
2542                         struct drm_i915_gem_object *obj,
2543                         bool flush_caches)
2544 {
2545         struct intel_engine_cs *ring;
2546         struct drm_i915_private *dev_priv;
2547         struct intel_ringbuffer *ringbuf;
2548         u32 request_start;
2549         int ret;
2550
2551         if (WARN_ON(request == NULL))
2552                 return;
2553
2554         ring = request->ring;
2555         dev_priv = ring->dev->dev_private;
2556         ringbuf = request->ringbuf;
2557
2558         /*
2559          * To ensure that this call will not fail, space for its emissions
2560          * should already have been reserved in the ring buffer. Let the ring
2561          * know that it is time to use that space up.
2562          */
2563         intel_ring_reserved_space_use(ringbuf);
2564
2565         request_start = intel_ring_get_tail(ringbuf);
2566         /*
2567          * Emit any outstanding flushes - execbuf can fail to emit the flush
2568          * after having emitted the batchbuffer command. Hence we need to fix
2569          * things up similar to emitting the lazy request. The difference here
2570          * is that the flush _must_ happen before the next request, no matter
2571          * what.
2572          */
2573         if (flush_caches) {
2574                 if (i915.enable_execlists)
2575                         ret = logical_ring_flush_all_caches(request);
2576                 else
2577                         ret = intel_ring_flush_all_caches(request);
2578                 /* Not allowed to fail! */
2579                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580         }
2581
2582         /* Record the position of the start of the request so that
2583          * should we detect the updated seqno part-way through the
2584          * GPU processing the request, we never over-estimate the
2585          * position of the head.
2586          */
2587         request->postfix = intel_ring_get_tail(ringbuf);
2588
2589         if (i915.enable_execlists)
2590                 ret = ring->emit_request(request);
2591         else {
2592                 ret = ring->add_request(request);
2593
2594                 request->tail = intel_ring_get_tail(ringbuf);
2595         }
2596         /* Not allowed to fail! */
2597         WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599         request->head = request_start;
2600
2601         /* Whilst this request exists, batch_obj will be on the
2602          * active_list, and so will hold the active reference. Only when this
2603          * request is retired will the the batch_obj be moved onto the
2604          * inactive_list and lose its active reference. Hence we do not need
2605          * to explicitly hold another reference here.
2606          */
2607         request->batch_obj = obj;
2608
2609         request->emitted_jiffies = jiffies;
2610         request->previous_seqno = ring->last_submitted_seqno;
2611         ring->last_submitted_seqno = request->seqno;
2612         list_add_tail(&request->list, &ring->request_list);
2613
2614         trace_i915_gem_request_add(request);
2615
2616         i915_queue_hangcheck(ring->dev);
2617
2618         queue_delayed_work(dev_priv->wq,
2619                            &dev_priv->mm.retire_work,
2620                            round_jiffies_up_relative(HZ));
2621         intel_mark_busy(dev_priv->dev);
2622
2623         /* Sanity check that the reserved size was large enough. */
2624         intel_ring_reserved_space_end(ringbuf);
2625 }
2626
2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628                                    const struct intel_context *ctx)
2629 {
2630         unsigned long elapsed;
2631
2632         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634         if (ctx->hang_stats.banned)
2635                 return true;
2636
2637         if (ctx->hang_stats.ban_period_seconds &&
2638             elapsed <= ctx->hang_stats.ban_period_seconds) {
2639                 if (!i915_gem_context_is_default(ctx)) {
2640                         DRM_DEBUG("context hanging too fast, banning!\n");
2641                         return true;
2642                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643                         if (i915_stop_ring_allow_warn(dev_priv))
2644                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2645                         return true;
2646                 }
2647         }
2648
2649         return false;
2650 }
2651
2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653                                   struct intel_context *ctx,
2654                                   const bool guilty)
2655 {
2656         struct i915_ctx_hang_stats *hs;
2657
2658         if (WARN_ON(!ctx))
2659                 return;
2660
2661         hs = &ctx->hang_stats;
2662
2663         if (guilty) {
2664                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665                 hs->batch_active++;
2666                 hs->guilty_ts = get_seconds();
2667         } else {
2668                 hs->batch_pending++;
2669         }
2670 }
2671
2672 void i915_gem_request_free(struct kref *req_ref)
2673 {
2674         struct drm_i915_gem_request *req = container_of(req_ref,
2675                                                  typeof(*req), ref);
2676         struct intel_context *ctx = req->ctx;
2677
2678         if (req->file_priv)
2679                 i915_gem_request_remove_from_client(req);
2680
2681         if (ctx) {
2682                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683                         intel_lr_context_unpin(ctx, req->ring);
2684
2685                 i915_gem_context_unreference(ctx);
2686         }
2687
2688         kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 static inline int
2692 __i915_gem_request_alloc(struct intel_engine_cs *ring,
2693                          struct intel_context *ctx,
2694                          struct drm_i915_gem_request **req_out)
2695 {
2696         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697         struct drm_i915_gem_request *req;
2698         int ret;
2699
2700         if (!req_out)
2701                 return -EINVAL;
2702
2703         *req_out = NULL;
2704
2705         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706         if (req == NULL)
2707                 return -ENOMEM;
2708
2709         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710         if (ret)
2711                 goto err;
2712
2713         kref_init(&req->ref);
2714         req->i915 = dev_priv;
2715         req->ring = ring;
2716         req->ctx  = ctx;
2717         i915_gem_context_reference(req->ctx);
2718
2719         if (i915.enable_execlists)
2720                 ret = intel_logical_ring_alloc_request_extras(req);
2721         else
2722                 ret = intel_ring_alloc_request_extras(req);
2723         if (ret) {
2724                 i915_gem_context_unreference(req->ctx);
2725                 goto err;
2726         }
2727
2728         /*
2729          * Reserve space in the ring buffer for all the commands required to
2730          * eventually emit this request. This is to guarantee that the
2731          * i915_add_request() call can't fail. Note that the reserve may need
2732          * to be redone if the request is not actually submitted straight
2733          * away, e.g. because a GPU scheduler has deferred it.
2734          */
2735         if (i915.enable_execlists)
2736                 ret = intel_logical_ring_reserve_space(req);
2737         else
2738                 ret = intel_ring_reserve_space(req);
2739         if (ret) {
2740                 /*
2741                  * At this point, the request is fully allocated even if not
2742                  * fully prepared. Thus it can be cleaned up using the proper
2743                  * free code.
2744                  */
2745                 i915_gem_request_cancel(req);
2746                 return ret;
2747         }
2748
2749         *req_out = req;
2750         return 0;
2751
2752 err:
2753         kmem_cache_free(dev_priv->requests, req);
2754         return ret;
2755 }
2756
2757 /**
2758  * i915_gem_request_alloc - allocate a request structure
2759  *
2760  * @engine: engine that we wish to issue the request on.
2761  * @ctx: context that the request will be associated with.
2762  *       This can be NULL if the request is not directly related to
2763  *       any specific user context, in which case this function will
2764  *       choose an appropriate context to use.
2765  *
2766  * Returns a pointer to the allocated request if successful,
2767  * or an error code if not.
2768  */
2769 struct drm_i915_gem_request *
2770 i915_gem_request_alloc(struct intel_engine_cs *engine,
2771                        struct intel_context *ctx)
2772 {
2773         struct drm_i915_gem_request *req;
2774         int err;
2775
2776         if (ctx == NULL)
2777                 ctx = to_i915(engine->dev)->kernel_context;
2778         err = __i915_gem_request_alloc(engine, ctx, &req);
2779         return err ? ERR_PTR(err) : req;
2780 }
2781
2782 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783 {
2784         intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786         i915_gem_request_unreference(req);
2787 }
2788
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *ring)
2791 {
2792         struct drm_i915_gem_request *request;
2793
2794         list_for_each_entry(request, &ring->request_list, list) {
2795                 if (i915_gem_request_completed(request, false))
2796                         continue;
2797
2798                 return request;
2799         }
2800
2801         return NULL;
2802 }
2803
2804 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805                                        struct intel_engine_cs *ring)
2806 {
2807         struct drm_i915_gem_request *request;
2808         bool ring_hung;
2809
2810         request = i915_gem_find_active_request(ring);
2811
2812         if (request == NULL)
2813                 return;
2814
2815         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819         list_for_each_entry_continue(request, &ring->request_list, list)
2820                 i915_set_reset_status(dev_priv, request->ctx, false);
2821 }
2822
2823 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824                                         struct intel_engine_cs *ring)
2825 {
2826         struct intel_ringbuffer *buffer;
2827
2828         while (!list_empty(&ring->active_list)) {
2829                 struct drm_i915_gem_object *obj;
2830
2831                 obj = list_first_entry(&ring->active_list,
2832                                        struct drm_i915_gem_object,
2833                                        ring_list[ring->id]);
2834
2835                 i915_gem_object_retire__read(obj, ring->id);
2836         }
2837
2838         /*
2839          * Clear the execlists queue up before freeing the requests, as those
2840          * are the ones that keep the context and ringbuffer backing objects
2841          * pinned in place.
2842          */
2843
2844         if (i915.enable_execlists) {
2845                 spin_lock_irq(&ring->execlist_lock);
2846
2847                 /* list_splice_tail_init checks for empty lists */
2848                 list_splice_tail_init(&ring->execlist_queue,
2849                                       &ring->execlist_retired_req_list);
2850
2851                 spin_unlock_irq(&ring->execlist_lock);
2852                 intel_execlists_retire_requests(ring);
2853         }
2854
2855         /*
2856          * We must free the requests after all the corresponding objects have
2857          * been moved off active lists. Which is the same order as the normal
2858          * retire_requests function does. This is important if object hold
2859          * implicit references on things like e.g. ppgtt address spaces through
2860          * the request.
2861          */
2862         while (!list_empty(&ring->request_list)) {
2863                 struct drm_i915_gem_request *request;
2864
2865                 request = list_first_entry(&ring->request_list,
2866                                            struct drm_i915_gem_request,
2867                                            list);
2868
2869                 i915_gem_request_retire(request);
2870         }
2871
2872         /* Having flushed all requests from all queues, we know that all
2873          * ringbuffers must now be empty. However, since we do not reclaim
2874          * all space when retiring the request (to prevent HEADs colliding
2875          * with rapid ringbuffer wraparound) the amount of available space
2876          * upon reset is less than when we start. Do one more pass over
2877          * all the ringbuffers to reset last_retired_head.
2878          */
2879         list_for_each_entry(buffer, &ring->buffers, link) {
2880                 buffer->last_retired_head = buffer->tail;
2881                 intel_ring_update_space(buffer);
2882         }
2883 }
2884
2885 void i915_gem_reset(struct drm_device *dev)
2886 {
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_engine_cs *ring;
2889         int i;
2890
2891         /*
2892          * Before we free the objects from the requests, we need to inspect
2893          * them for finding the guilty party. As the requests only borrow
2894          * their reference to the objects, the inspection must be done first.
2895          */
2896         for_each_ring(ring, dev_priv, i)
2897                 i915_gem_reset_ring_status(dev_priv, ring);
2898
2899         for_each_ring(ring, dev_priv, i)
2900                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902         i915_gem_context_reset(dev);
2903
2904         i915_gem_restore_fences(dev);
2905
2906         WARN_ON(i915_verify_lists(dev));
2907 }
2908
2909 /**
2910  * This function clears the request list as sequence numbers are passed.
2911  */
2912 void
2913 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914 {
2915         WARN_ON(i915_verify_lists(ring->dev));
2916
2917         /* Retire requests first as we use it above for the early return.
2918          * If we retire requests last, we may use a later seqno and so clear
2919          * the requests lists without clearing the active list, leading to
2920          * confusion.
2921          */
2922         while (!list_empty(&ring->request_list)) {
2923                 struct drm_i915_gem_request *request;
2924
2925                 request = list_first_entry(&ring->request_list,
2926                                            struct drm_i915_gem_request,
2927                                            list);
2928
2929                 if (!i915_gem_request_completed(request, true))
2930                         break;
2931
2932                 i915_gem_request_retire(request);
2933         }
2934
2935         /* Move any buffers on the active list that are no longer referenced
2936          * by the ringbuffer to the flushing/inactive lists as appropriate,
2937          * before we free the context associated with the requests.
2938          */
2939         while (!list_empty(&ring->active_list)) {
2940                 struct drm_i915_gem_object *obj;
2941
2942                 obj = list_first_entry(&ring->active_list,
2943                                       struct drm_i915_gem_object,
2944                                       ring_list[ring->id]);
2945
2946                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2947                         break;
2948
2949                 i915_gem_object_retire__read(obj, ring->id);
2950         }
2951
2952         if (unlikely(ring->trace_irq_req &&
2953                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2954                 ring->irq_put(ring);
2955                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956         }
2957
2958         WARN_ON(i915_verify_lists(ring->dev));
2959 }
2960
2961 bool
2962 i915_gem_retire_requests(struct drm_device *dev)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_engine_cs *ring;
2966         bool idle = true;
2967         int i;
2968
2969         for_each_ring(ring, dev_priv, i) {
2970                 i915_gem_retire_requests_ring(ring);
2971                 idle &= list_empty(&ring->request_list);
2972                 if (i915.enable_execlists) {
2973                         unsigned long flags;
2974
2975                         spin_lock_irqsave(&ring->execlist_lock, flags);
2976                         idle &= list_empty(&ring->execlist_queue);
2977                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2978
2979                         intel_execlists_retire_requests(ring);
2980                 }
2981         }
2982
2983         if (idle)
2984                 mod_delayed_work(dev_priv->wq,
2985                                    &dev_priv->mm.idle_work,
2986                                    msecs_to_jiffies(100));
2987
2988         return idle;
2989 }
2990
2991 static void
2992 i915_gem_retire_work_handler(struct work_struct *work)
2993 {
2994         struct drm_i915_private *dev_priv =
2995                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2996         struct drm_device *dev = dev_priv->dev;
2997         bool idle;
2998
2999         /* Come back later if the device is busy... */
3000         idle = false;
3001         if (mutex_trylock(&dev->struct_mutex)) {
3002                 idle = i915_gem_retire_requests(dev);
3003                 mutex_unlock(&dev->struct_mutex);
3004         }
3005         if (!idle)
3006                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3007                                    round_jiffies_up_relative(HZ));
3008 }
3009
3010 static void
3011 i915_gem_idle_work_handler(struct work_struct *work)
3012 {
3013         struct drm_i915_private *dev_priv =
3014                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3015         struct drm_device *dev = dev_priv->dev;
3016         struct intel_engine_cs *ring;
3017         int i;
3018
3019         for_each_ring(ring, dev_priv, i)
3020                 if (!list_empty(&ring->request_list))
3021                         return;
3022
3023         /* we probably should sync with hangcheck here, using cancel_work_sync.
3024          * Also locking seems to be fubar here, ring->request_list is protected
3025          * by dev->struct_mutex. */
3026
3027         intel_mark_idle(dev);
3028
3029         if (mutex_trylock(&dev->struct_mutex)) {
3030                 struct intel_engine_cs *ring;
3031                 int i;
3032
3033                 for_each_ring(ring, dev_priv, i)
3034                         i915_gem_batch_pool_fini(&ring->batch_pool);
3035
3036                 mutex_unlock(&dev->struct_mutex);
3037         }
3038 }
3039
3040 /**
3041  * Ensures that an object will eventually get non-busy by flushing any required
3042  * write domains, emitting any outstanding lazy request and retiring and
3043  * completed requests.
3044  */
3045 static int
3046 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3047 {
3048         int i;
3049
3050         if (!obj->active)
3051                 return 0;
3052
3053         for (i = 0; i < I915_NUM_RINGS; i++) {
3054                 struct drm_i915_gem_request *req;
3055
3056                 req = obj->last_read_req[i];
3057                 if (req == NULL)
3058                         continue;
3059
3060                 if (list_empty(&req->list))
3061                         goto retire;
3062
3063                 if (i915_gem_request_completed(req, true)) {
3064                         __i915_gem_request_retire__upto(req);
3065 retire:
3066                         i915_gem_object_retire__read(obj, i);
3067                 }
3068         }
3069
3070         return 0;
3071 }
3072
3073 /**
3074  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3075  * @DRM_IOCTL_ARGS: standard ioctl arguments
3076  *
3077  * Returns 0 if successful, else an error is returned with the remaining time in
3078  * the timeout parameter.
3079  *  -ETIME: object is still busy after timeout
3080  *  -ERESTARTSYS: signal interrupted the wait
3081  *  -ENONENT: object doesn't exist
3082  * Also possible, but rare:
3083  *  -EAGAIN: GPU wedged
3084  *  -ENOMEM: damn
3085  *  -ENODEV: Internal IRQ fail
3086  *  -E?: The add request failed
3087  *
3088  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3089  * non-zero timeout parameter the wait ioctl will wait for the given number of
3090  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3091  * without holding struct_mutex the object may become re-busied before this
3092  * function completes. A similar but shorter * race condition exists in the busy
3093  * ioctl
3094  */
3095 int
3096 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3097 {
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099         struct drm_i915_gem_wait *args = data;
3100         struct drm_i915_gem_object *obj;
3101         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3102         unsigned reset_counter;
3103         int i, n = 0;
3104         int ret;
3105
3106         if (args->flags != 0)
3107                 return -EINVAL;
3108
3109         ret = i915_mutex_lock_interruptible(dev);
3110         if (ret)
3111                 return ret;
3112
3113         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3114         if (&obj->base == NULL) {
3115                 mutex_unlock(&dev->struct_mutex);
3116                 return -ENOENT;
3117         }
3118
3119         /* Need to make sure the object gets inactive eventually. */
3120         ret = i915_gem_object_flush_active(obj);
3121         if (ret)
3122                 goto out;
3123
3124         if (!obj->active)
3125                 goto out;
3126
3127         /* Do this after OLR check to make sure we make forward progress polling
3128          * on this IOCTL with a timeout == 0 (like busy ioctl)
3129          */
3130         if (args->timeout_ns == 0) {
3131                 ret = -ETIME;
3132                 goto out;
3133         }
3134
3135         drm_gem_object_unreference(&obj->base);
3136         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3137
3138         for (i = 0; i < I915_NUM_RINGS; i++) {
3139                 if (obj->last_read_req[i] == NULL)
3140                         continue;
3141
3142                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3143         }
3144
3145         mutex_unlock(&dev->struct_mutex);
3146
3147         for (i = 0; i < n; i++) {
3148                 if (ret == 0)
3149                         ret = __i915_wait_request(req[i], reset_counter, true,
3150                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3151                                                   to_rps_client(file));
3152                 i915_gem_request_unreference__unlocked(req[i]);
3153         }
3154         return ret;
3155
3156 out:
3157         drm_gem_object_unreference(&obj->base);
3158         mutex_unlock(&dev->struct_mutex);
3159         return ret;
3160 }
3161
3162 static int
3163 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3164                        struct intel_engine_cs *to,
3165                        struct drm_i915_gem_request *from_req,
3166                        struct drm_i915_gem_request **to_req)
3167 {
3168         struct intel_engine_cs *from;
3169         int ret;
3170
3171         from = i915_gem_request_get_ring(from_req);
3172         if (to == from)
3173                 return 0;
3174
3175         if (i915_gem_request_completed(from_req, true))
3176                 return 0;
3177
3178         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3179                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3180                 ret = __i915_wait_request(from_req,
3181                                           atomic_read(&i915->gpu_error.reset_counter),
3182                                           i915->mm.interruptible,
3183                                           NULL,
3184                                           &i915->rps.semaphores);
3185                 if (ret)
3186                         return ret;
3187
3188                 i915_gem_object_retire_request(obj, from_req);
3189         } else {
3190                 int idx = intel_ring_sync_index(from, to);
3191                 u32 seqno = i915_gem_request_get_seqno(from_req);
3192
3193                 WARN_ON(!to_req);
3194
3195                 if (seqno <= from->semaphore.sync_seqno[idx])
3196                         return 0;
3197
3198                 if (*to_req == NULL) {
3199                         struct drm_i915_gem_request *req;
3200
3201                         req = i915_gem_request_alloc(to, NULL);
3202                         if (IS_ERR(req))
3203                                 return PTR_ERR(req);
3204
3205                         *to_req = req;
3206                 }
3207
3208                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3209                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3210                 if (ret)
3211                         return ret;
3212
3213                 /* We use last_read_req because sync_to()
3214                  * might have just caused seqno wrap under
3215                  * the radar.
3216                  */
3217                 from->semaphore.sync_seqno[idx] =
3218                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3219         }
3220
3221         return 0;
3222 }
3223
3224 /**
3225  * i915_gem_object_sync - sync an object to a ring.
3226  *
3227  * @obj: object which may be in use on another ring.
3228  * @to: ring we wish to use the object on. May be NULL.
3229  * @to_req: request we wish to use the object for. See below.
3230  *          This will be allocated and returned if a request is
3231  *          required but not passed in.
3232  *
3233  * This code is meant to abstract object synchronization with the GPU.
3234  * Calling with NULL implies synchronizing the object with the CPU
3235  * rather than a particular GPU ring. Conceptually we serialise writes
3236  * between engines inside the GPU. We only allow one engine to write
3237  * into a buffer at any time, but multiple readers. To ensure each has
3238  * a coherent view of memory, we must:
3239  *
3240  * - If there is an outstanding write request to the object, the new
3241  *   request must wait for it to complete (either CPU or in hw, requests
3242  *   on the same ring will be naturally ordered).
3243  *
3244  * - If we are a write request (pending_write_domain is set), the new
3245  *   request must wait for outstanding read requests to complete.
3246  *
3247  * For CPU synchronisation (NULL to) no request is required. For syncing with
3248  * rings to_req must be non-NULL. However, a request does not have to be
3249  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3250  * request will be allocated automatically and returned through *to_req. Note
3251  * that it is not guaranteed that commands will be emitted (because the system
3252  * might already be idle). Hence there is no need to create a request that
3253  * might never have any work submitted. Note further that if a request is
3254  * returned in *to_req, it is the responsibility of the caller to submit
3255  * that request (after potentially adding more work to it).
3256  *
3257  * Returns 0 if successful, else propagates up the lower layer error.
3258  */
3259 int
3260 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3261                      struct intel_engine_cs *to,
3262                      struct drm_i915_gem_request **to_req)
3263 {
3264         const bool readonly = obj->base.pending_write_domain == 0;
3265         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3266         int ret, i, n;
3267
3268         if (!obj->active)
3269                 return 0;
3270
3271         if (to == NULL)
3272                 return i915_gem_object_wait_rendering(obj, readonly);
3273
3274         n = 0;
3275         if (readonly) {
3276                 if (obj->last_write_req)
3277                         req[n++] = obj->last_write_req;
3278         } else {
3279                 for (i = 0; i < I915_NUM_RINGS; i++)
3280                         if (obj->last_read_req[i])
3281                                 req[n++] = obj->last_read_req[i];
3282         }
3283         for (i = 0; i < n; i++) {
3284                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3285                 if (ret)
3286                         return ret;
3287         }
3288
3289         return 0;
3290 }
3291
3292 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3293 {
3294         u32 old_write_domain, old_read_domains;
3295
3296         /* Force a pagefault for domain tracking on next user access */
3297         i915_gem_release_mmap(obj);
3298
3299         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3300                 return;
3301
3302         /* Wait for any direct GTT access to complete */
3303         mb();
3304
3305         old_read_domains = obj->base.read_domains;
3306         old_write_domain = obj->base.write_domain;
3307
3308         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3309         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3310
3311         trace_i915_gem_object_change_domain(obj,
3312                                             old_read_domains,
3313                                             old_write_domain);
3314 }
3315
3316 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3317 {
3318         struct drm_i915_gem_object *obj = vma->obj;
3319         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3320         int ret;
3321
3322         if (list_empty(&vma->vma_link))
3323                 return 0;
3324
3325         if (!drm_mm_node_allocated(&vma->node)) {
3326                 i915_gem_vma_destroy(vma);
3327                 return 0;
3328         }
3329
3330         if (vma->pin_count)
3331                 return -EBUSY;
3332
3333         BUG_ON(obj->pages == NULL);
3334
3335         if (wait) {
3336                 ret = i915_gem_object_wait_rendering(obj, false);
3337                 if (ret)
3338                         return ret;
3339         }
3340
3341         if (i915_is_ggtt(vma->vm) &&
3342             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3343                 i915_gem_object_finish_gtt(obj);
3344
3345                 /* release the fence reg _after_ flushing */
3346                 ret = i915_gem_object_put_fence(obj);
3347                 if (ret)
3348                         return ret;
3349         }
3350
3351         trace_i915_vma_unbind(vma);
3352
3353         vma->vm->unbind_vma(vma);
3354         vma->bound = 0;
3355
3356         list_del_init(&vma->mm_list);
3357         if (i915_is_ggtt(vma->vm)) {
3358                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3359                         obj->map_and_fenceable = false;
3360                 } else if (vma->ggtt_view.pages) {
3361                         sg_free_table(vma->ggtt_view.pages);
3362                         kfree(vma->ggtt_view.pages);
3363                 }
3364                 vma->ggtt_view.pages = NULL;
3365         }
3366
3367         drm_mm_remove_node(&vma->node);
3368         i915_gem_vma_destroy(vma);
3369
3370         /* Since the unbound list is global, only move to that list if
3371          * no more VMAs exist. */
3372         if (list_empty(&obj->vma_list))
3373                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3374
3375         /* And finally now the object is completely decoupled from this vma,
3376          * we can drop its hold on the backing storage and allow it to be
3377          * reaped by the shrinker.
3378          */
3379         i915_gem_object_unpin_pages(obj);
3380
3381         return 0;
3382 }
3383
3384 int i915_vma_unbind(struct i915_vma *vma)
3385 {
3386         return __i915_vma_unbind(vma, true);
3387 }
3388
3389 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3390 {
3391         return __i915_vma_unbind(vma, false);
3392 }
3393
3394 int i915_gpu_idle(struct drm_device *dev)
3395 {
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         struct intel_engine_cs *ring;
3398         int ret, i;
3399
3400         /* Flush everything onto the inactive list. */
3401         for_each_ring(ring, dev_priv, i) {
3402                 if (!i915.enable_execlists) {
3403                         struct drm_i915_gem_request *req;
3404
3405                         req = i915_gem_request_alloc(ring, NULL);
3406                         if (IS_ERR(req))
3407                                 return PTR_ERR(req);
3408
3409                         ret = i915_switch_context(req);
3410                         if (ret) {
3411                                 i915_gem_request_cancel(req);
3412                                 return ret;
3413                         }
3414
3415                         i915_add_request_no_flush(req);
3416                 }
3417
3418                 ret = intel_ring_idle(ring);
3419                 if (ret)
3420                         return ret;
3421         }
3422
3423         WARN_ON(i915_verify_lists(dev));
3424         return 0;
3425 }
3426
3427 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3428                                      unsigned long cache_level)
3429 {
3430         struct drm_mm_node *gtt_space = &vma->node;
3431         struct drm_mm_node *other;
3432
3433         /*
3434          * On some machines we have to be careful when putting differing types
3435          * of snoopable memory together to avoid the prefetcher crossing memory
3436          * domains and dying. During vm initialisation, we decide whether or not
3437          * these constraints apply and set the drm_mm.color_adjust
3438          * appropriately.
3439          */
3440         if (vma->vm->mm.color_adjust == NULL)
3441                 return true;
3442
3443         if (!drm_mm_node_allocated(gtt_space))
3444                 return true;
3445
3446         if (list_empty(&gtt_space->node_list))
3447                 return true;
3448
3449         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3450         if (other->allocated && !other->hole_follows && other->color != cache_level)
3451                 return false;
3452
3453         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3454         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3455                 return false;
3456
3457         return true;
3458 }
3459
3460 /**
3461  * Finds free space in the GTT aperture and binds the object or a view of it
3462  * there.
3463  */
3464 static struct i915_vma *
3465 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3466                            struct i915_address_space *vm,
3467                            const struct i915_ggtt_view *ggtt_view,
3468                            unsigned alignment,
3469                            uint64_t flags)
3470 {
3471         struct drm_device *dev = obj->base.dev;
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473         u32 fence_alignment, unfenced_alignment;
3474         u32 search_flag, alloc_flag;
3475         u64 start, end;
3476         u64 size, fence_size;
3477         struct i915_vma *vma;
3478         int ret;
3479
3480         if (i915_is_ggtt(vm)) {
3481                 u32 view_size;
3482
3483                 if (WARN_ON(!ggtt_view))
3484                         return ERR_PTR(-EINVAL);
3485
3486                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3487
3488                 fence_size = i915_gem_get_gtt_size(dev,
3489                                                    view_size,
3490                                                    obj->tiling_mode);
3491                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3492                                                              view_size,
3493                                                              obj->tiling_mode,
3494                                                              true);
3495                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3496                                                                 view_size,
3497                                                                 obj->tiling_mode,
3498                                                                 false);
3499                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3500         } else {
3501                 fence_size = i915_gem_get_gtt_size(dev,
3502                                                    obj->base.size,
3503                                                    obj->tiling_mode);
3504                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3505                                                              obj->base.size,
3506                                                              obj->tiling_mode,
3507                                                              true);
3508                 unfenced_alignment =
3509                         i915_gem_get_gtt_alignment(dev,
3510                                                    obj->base.size,
3511                                                    obj->tiling_mode,
3512                                                    false);
3513                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3514         }
3515
3516         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3517         end = vm->total;
3518         if (flags & PIN_MAPPABLE)
3519                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3520         if (flags & PIN_ZONE_4G)
3521                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3522
3523         if (alignment == 0)
3524                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3525                                                 unfenced_alignment;
3526         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3527                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3528                           ggtt_view ? ggtt_view->type : 0,
3529                           alignment);
3530                 return ERR_PTR(-EINVAL);
3531         }
3532
3533         /* If binding the object/GGTT view requires more space than the entire
3534          * aperture has, reject it early before evicting everything in a vain
3535          * attempt to find space.
3536          */
3537         if (size > end) {
3538                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3539                           ggtt_view ? ggtt_view->type : 0,
3540                           size,
3541                           flags & PIN_MAPPABLE ? "mappable" : "total",
3542                           end);
3543                 return ERR_PTR(-E2BIG);
3544         }
3545
3546         ret = i915_gem_object_get_pages(obj);
3547         if (ret)
3548                 return ERR_PTR(ret);
3549
3550         i915_gem_object_pin_pages(obj);
3551
3552         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3553                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3554
3555         if (IS_ERR(vma))
3556                 goto err_unpin;
3557
3558         if (flags & PIN_OFFSET_FIXED) {
3559                 uint64_t offset = flags & PIN_OFFSET_MASK;
3560
3561                 if (offset & (alignment - 1) || offset + size > end) {
3562                         ret = -EINVAL;
3563                         goto err_free_vma;
3564                 }
3565                 vma->node.start = offset;
3566                 vma->node.size = size;
3567                 vma->node.color = obj->cache_level;
3568                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3569                 if (ret) {
3570                         ret = i915_gem_evict_for_vma(vma);
3571                         if (ret == 0)
3572                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3573                 }
3574                 if (ret)
3575                         goto err_free_vma;
3576         } else {
3577                 if (flags & PIN_HIGH) {
3578                         search_flag = DRM_MM_SEARCH_BELOW;
3579                         alloc_flag = DRM_MM_CREATE_TOP;
3580                 } else {
3581                         search_flag = DRM_MM_SEARCH_DEFAULT;
3582                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3583                 }
3584
3585 search_free:
3586                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3587                                                           size, alignment,
3588                                                           obj->cache_level,
3589                                                           start, end,
3590                                                           search_flag,
3591                                                           alloc_flag);
3592                 if (ret) {
3593                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3594                                                        obj->cache_level,
3595                                                        start, end,
3596                                                        flags);
3597                         if (ret == 0)
3598                                 goto search_free;
3599
3600                         goto err_free_vma;
3601                 }
3602         }
3603         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3604                 ret = -EINVAL;
3605                 goto err_remove_node;
3606         }
3607
3608         trace_i915_vma_bind(vma, flags);
3609         ret = i915_vma_bind(vma, obj->cache_level, flags);
3610         if (ret)
3611                 goto err_remove_node;
3612
3613         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3614         list_add_tail(&vma->mm_list, &vm->inactive_list);
3615
3616         return vma;
3617
3618 err_remove_node:
3619         drm_mm_remove_node(&vma->node);
3620 err_free_vma:
3621         i915_gem_vma_destroy(vma);
3622         vma = ERR_PTR(ret);
3623 err_unpin:
3624         i915_gem_object_unpin_pages(obj);
3625         return vma;
3626 }
3627
3628 bool
3629 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3630                         bool force)
3631 {
3632         /* If we don't have a page list set up, then we're not pinned
3633          * to GPU, and we can ignore the cache flush because it'll happen
3634          * again at bind time.
3635          */
3636         if (obj->pages == NULL)
3637                 return false;
3638
3639         /*
3640          * Stolen memory is always coherent with the GPU as it is explicitly
3641          * marked as wc by the system, or the system is cache-coherent.
3642          */
3643         if (obj->stolen || obj->phys_handle)
3644                 return false;
3645
3646         /* If the GPU is snooping the contents of the CPU cache,
3647          * we do not need to manually clear the CPU cache lines.  However,
3648          * the caches are only snooped when the render cache is
3649          * flushed/invalidated.  As we always have to emit invalidations
3650          * and flushes when moving into and out of the RENDER domain, correct
3651          * snooping behaviour occurs naturally as the result of our domain
3652          * tracking.
3653          */
3654         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3655                 obj->cache_dirty = true;
3656                 return false;
3657         }
3658
3659         trace_i915_gem_object_clflush(obj);
3660         drm_clflush_sg(obj->pages);
3661         obj->cache_dirty = false;
3662
3663         return true;
3664 }
3665
3666 /** Flushes the GTT write domain for the object if it's dirty. */
3667 static void
3668 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3669 {
3670         uint32_t old_write_domain;
3671
3672         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3673                 return;
3674
3675         /* No actual flushing is required for the GTT write domain.  Writes
3676          * to it immediately go to main memory as far as we know, so there's
3677          * no chipset flush.  It also doesn't land in render cache.
3678          *
3679          * However, we do have to enforce the order so that all writes through
3680          * the GTT land before any writes to the device, such as updates to
3681          * the GATT itself.
3682          */
3683         wmb();
3684
3685         old_write_domain = obj->base.write_domain;
3686         obj->base.write_domain = 0;
3687
3688         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3689
3690         trace_i915_gem_object_change_domain(obj,
3691                                             obj->base.read_domains,
3692                                             old_write_domain);
3693 }
3694
3695 /** Flushes the CPU write domain for the object if it's dirty. */
3696 static void
3697 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3698 {
3699         uint32_t old_write_domain;
3700
3701         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3702                 return;
3703
3704         if (i915_gem_clflush_object(obj, obj->pin_display))
3705                 i915_gem_chipset_flush(obj->base.dev);
3706
3707         old_write_domain = obj->base.write_domain;
3708         obj->base.write_domain = 0;
3709
3710         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3711
3712         trace_i915_gem_object_change_domain(obj,
3713                                             obj->base.read_domains,
3714                                             old_write_domain);
3715 }
3716
3717 /**
3718  * Moves a single object to the GTT read, and possibly write domain.
3719  *
3720  * This function returns when the move is complete, including waiting on
3721  * flushes to occur.
3722  */
3723 int
3724 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3725 {
3726         uint32_t old_write_domain, old_read_domains;
3727         struct i915_vma *vma;
3728         int ret;
3729
3730         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3731                 return 0;
3732
3733         ret = i915_gem_object_wait_rendering(obj, !write);
3734         if (ret)
3735                 return ret;
3736
3737         /* Flush and acquire obj->pages so that we are coherent through
3738          * direct access in memory with previous cached writes through
3739          * shmemfs and that our cache domain tracking remains valid.
3740          * For example, if the obj->filp was moved to swap without us
3741          * being notified and releasing the pages, we would mistakenly
3742          * continue to assume that the obj remained out of the CPU cached
3743          * domain.
3744          */
3745         ret = i915_gem_object_get_pages(obj);
3746         if (ret)
3747                 return ret;
3748
3749         i915_gem_object_flush_cpu_write_domain(obj);
3750
3751         /* Serialise direct access to this object with the barriers for
3752          * coherent writes from the GPU, by effectively invalidating the
3753          * GTT domain upon first access.
3754          */
3755         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3756                 mb();
3757
3758         old_write_domain = obj->base.write_domain;
3759         old_read_domains = obj->base.read_domains;
3760
3761         /* It should now be out of any other write domains, and we can update
3762          * the domain values for our changes.
3763          */
3764         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3765         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3766         if (write) {
3767                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3768                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3769                 obj->dirty = 1;
3770         }
3771
3772         trace_i915_gem_object_change_domain(obj,
3773                                             old_read_domains,
3774                                             old_write_domain);
3775
3776         /* And bump the LRU for this access */
3777         vma = i915_gem_obj_to_ggtt(obj);
3778         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3779                 list_move_tail(&vma->mm_list,
3780                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3781
3782         return 0;
3783 }
3784
3785 /**
3786  * Changes the cache-level of an object across all VMA.
3787  *
3788  * After this function returns, the object will be in the new cache-level
3789  * across all GTT and the contents of the backing storage will be coherent,
3790  * with respect to the new cache-level. In order to keep the backing storage
3791  * coherent for all users, we only allow a single cache level to be set
3792  * globally on the object and prevent it from being changed whilst the
3793  * hardware is reading from the object. That is if the object is currently
3794  * on the scanout it will be set to uncached (or equivalent display
3795  * cache coherency) and all non-MOCS GPU access will also be uncached so
3796  * that all direct access to the scanout remains coherent.
3797  */
3798 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3799                                     enum i915_cache_level cache_level)
3800 {
3801         struct drm_device *dev = obj->base.dev;
3802         struct i915_vma *vma, *next;
3803         bool bound = false;
3804         int ret = 0;
3805
3806         if (obj->cache_level == cache_level)
3807                 goto out;
3808
3809         /* Inspect the list of currently bound VMA and unbind any that would
3810          * be invalid given the new cache-level. This is principally to
3811          * catch the issue of the CS prefetch crossing page boundaries and
3812          * reading an invalid PTE on older architectures.
3813          */
3814         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3815                 if (!drm_mm_node_allocated(&vma->node))
3816                         continue;
3817
3818                 if (vma->pin_count) {
3819                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3820                         return -EBUSY;
3821                 }
3822
3823                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3824                         ret = i915_vma_unbind(vma);
3825                         if (ret)
3826                                 return ret;
3827                 } else
3828                         bound = true;
3829         }
3830
3831         /* We can reuse the existing drm_mm nodes but need to change the
3832          * cache-level on the PTE. We could simply unbind them all and
3833          * rebind with the correct cache-level on next use. However since
3834          * we already have a valid slot, dma mapping, pages etc, we may as
3835          * rewrite the PTE in the belief that doing so tramples upon less
3836          * state and so involves less work.
3837          */
3838         if (bound) {
3839                 /* Before we change the PTE, the GPU must not be accessing it.
3840                  * If we wait upon the object, we know that all the bound
3841                  * VMA are no longer active.
3842                  */
3843                 ret = i915_gem_object_wait_rendering(obj, false);
3844                 if (ret)
3845                         return ret;
3846
3847                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3848                         /* Access to snoopable pages through the GTT is
3849                          * incoherent and on some machines causes a hard
3850                          * lockup. Relinquish the CPU mmaping to force
3851                          * userspace to refault in the pages and we can
3852                          * then double check if the GTT mapping is still
3853                          * valid for that pointer access.
3854                          */
3855                         i915_gem_release_mmap(obj);
3856
3857                         /* As we no longer need a fence for GTT access,
3858                          * we can relinquish it now (and so prevent having
3859                          * to steal a fence from someone else on the next
3860                          * fence request). Note GPU activity would have
3861                          * dropped the fence as all snoopable access is
3862                          * supposed to be linear.
3863                          */
3864                         ret = i915_gem_object_put_fence(obj);
3865                         if (ret)
3866                                 return ret;
3867                 } else {
3868                         /* We either have incoherent backing store and
3869                          * so no GTT access or the architecture is fully
3870                          * coherent. In such cases, existing GTT mmaps
3871                          * ignore the cache bit in the PTE and we can
3872                          * rewrite it without confusing the GPU or having
3873                          * to force userspace to fault back in its mmaps.
3874                          */
3875                 }
3876
3877                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3878                         if (!drm_mm_node_allocated(&vma->node))
3879                                 continue;
3880
3881                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3882                         if (ret)
3883                                 return ret;
3884                 }
3885         }
3886
3887         list_for_each_entry(vma, &obj->vma_list, vma_link)
3888                 vma->node.color = cache_level;
3889         obj->cache_level = cache_level;
3890
3891 out:
3892         /* Flush the dirty CPU caches to the backing storage so that the
3893          * object is now coherent at its new cache level (with respect
3894          * to the access domain).
3895          */
3896         if (obj->cache_dirty &&
3897             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3898             cpu_write_needs_clflush(obj)) {
3899                 if (i915_gem_clflush_object(obj, true))
3900                         i915_gem_chipset_flush(obj->base.dev);
3901         }
3902
3903         return 0;
3904 }
3905
3906 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3907                                struct drm_file *file)
3908 {
3909         struct drm_i915_gem_caching *args = data;
3910         struct drm_i915_gem_object *obj;
3911
3912         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913         if (&obj->base == NULL)
3914                 return -ENOENT;
3915
3916         switch (obj->cache_level) {
3917         case I915_CACHE_LLC:
3918         case I915_CACHE_L3_LLC:
3919                 args->caching = I915_CACHING_CACHED;
3920                 break;
3921
3922         case I915_CACHE_WT:
3923                 args->caching = I915_CACHING_DISPLAY;
3924                 break;
3925
3926         default:
3927                 args->caching = I915_CACHING_NONE;
3928                 break;
3929         }
3930
3931         drm_gem_object_unreference_unlocked(&obj->base);
3932         return 0;
3933 }
3934
3935 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3936                                struct drm_file *file)
3937 {
3938         struct drm_i915_private *dev_priv = dev->dev_private;
3939         struct drm_i915_gem_caching *args = data;
3940         struct drm_i915_gem_object *obj;
3941         enum i915_cache_level level;
3942         int ret;
3943
3944         switch (args->caching) {
3945         case I915_CACHING_NONE:
3946                 level = I915_CACHE_NONE;
3947                 break;
3948         case I915_CACHING_CACHED:
3949                 /*
3950                  * Due to a HW issue on BXT A stepping, GPU stores via a
3951                  * snooped mapping may leave stale data in a corresponding CPU
3952                  * cacheline, whereas normally such cachelines would get
3953                  * invalidated.
3954                  */
3955                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3956                         return -ENODEV;
3957
3958                 level = I915_CACHE_LLC;
3959                 break;
3960         case I915_CACHING_DISPLAY:
3961                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3962                 break;
3963         default:
3964                 return -EINVAL;
3965         }
3966
3967         intel_runtime_pm_get(dev_priv);
3968
3969         ret = i915_mutex_lock_interruptible(dev);
3970         if (ret)
3971                 goto rpm_put;
3972
3973         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3974         if (&obj->base == NULL) {
3975                 ret = -ENOENT;
3976                 goto unlock;
3977         }
3978
3979         ret = i915_gem_object_set_cache_level(obj, level);
3980
3981         drm_gem_object_unreference(&obj->base);
3982 unlock:
3983         mutex_unlock(&dev->struct_mutex);
3984 rpm_put:
3985         intel_runtime_pm_put(dev_priv);
3986
3987         return ret;
3988 }
3989
3990 /*
3991  * Prepare buffer for display plane (scanout, cursors, etc).
3992  * Can be called from an uninterruptible phase (modesetting) and allows
3993  * any flushes to be pipelined (for pageflips).
3994  */
3995 int
3996 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3997                                      u32 alignment,
3998                                      const struct i915_ggtt_view *view)
3999 {
4000         u32 old_read_domains, old_write_domain;
4001         int ret;
4002
4003         /* Mark the pin_display early so that we account for the
4004          * display coherency whilst setting up the cache domains.
4005          */
4006         obj->pin_display++;
4007
4008         /* The display engine is not coherent with the LLC cache on gen6.  As
4009          * a result, we make sure that the pinning that is about to occur is
4010          * done with uncached PTEs. This is lowest common denominator for all
4011          * chipsets.
4012          *
4013          * However for gen6+, we could do better by using the GFDT bit instead
4014          * of uncaching, which would allow us to flush all the LLC-cached data
4015          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4016          */
4017         ret = i915_gem_object_set_cache_level(obj,
4018                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4019         if (ret)
4020                 goto err_unpin_display;
4021
4022         /* As the user may map the buffer once pinned in the display plane
4023          * (e.g. libkms for the bootup splash), we have to ensure that we
4024          * always use map_and_fenceable for all scanout buffers.
4025          */
4026         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4027                                        view->type == I915_GGTT_VIEW_NORMAL ?
4028                                        PIN_MAPPABLE : 0);
4029         if (ret)
4030                 goto err_unpin_display;
4031
4032         i915_gem_object_flush_cpu_write_domain(obj);
4033
4034         old_write_domain = obj->base.write_domain;
4035         old_read_domains = obj->base.read_domains;
4036
4037         /* It should now be out of any other write domains, and we can update
4038          * the domain values for our changes.
4039          */
4040         obj->base.write_domain = 0;
4041         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4042
4043         trace_i915_gem_object_change_domain(obj,
4044                                             old_read_domains,
4045                                             old_write_domain);
4046
4047         return 0;
4048
4049 err_unpin_display:
4050         obj->pin_display--;
4051         return ret;
4052 }
4053
4054 void
4055 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4056                                          const struct i915_ggtt_view *view)
4057 {
4058         if (WARN_ON(obj->pin_display == 0))
4059                 return;
4060
4061         i915_gem_object_ggtt_unpin_view(obj, view);
4062
4063         obj->pin_display--;
4064 }
4065
4066 /**
4067  * Moves a single object to the CPU read, and possibly write domain.
4068  *
4069  * This function returns when the move is complete, including waiting on
4070  * flushes to occur.
4071  */
4072 int
4073 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4074 {
4075         uint32_t old_write_domain, old_read_domains;
4076         int ret;
4077
4078         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4079                 return 0;
4080
4081         ret = i915_gem_object_wait_rendering(obj, !write);
4082         if (ret)
4083                 return ret;
4084
4085         i915_gem_object_flush_gtt_write_domain(obj);
4086
4087         old_write_domain = obj->base.write_domain;
4088         old_read_domains = obj->base.read_domains;
4089
4090         /* Flush the CPU cache if it's still invalid. */
4091         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4092                 i915_gem_clflush_object(obj, false);
4093
4094                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4095         }
4096
4097         /* It should now be out of any other write domains, and we can update
4098          * the domain values for our changes.
4099          */
4100         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4101
4102         /* If we're writing through the CPU, then the GPU read domains will
4103          * need to be invalidated at next use.
4104          */
4105         if (write) {
4106                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4107                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4108         }
4109
4110         trace_i915_gem_object_change_domain(obj,
4111                                             old_read_domains,
4112                                             old_write_domain);
4113
4114         return 0;
4115 }
4116
4117 /* Throttle our rendering by waiting until the ring has completed our requests
4118  * emitted over 20 msec ago.
4119  *
4120  * Note that if we were to use the current jiffies each time around the loop,
4121  * we wouldn't escape the function with any frames outstanding if the time to
4122  * render a frame was over 20ms.
4123  *
4124  * This should get us reasonable parallelism between CPU and GPU but also
4125  * relatively low latency when blocking on a particular request to finish.
4126  */
4127 static int
4128 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4129 {
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         struct drm_i915_file_private *file_priv = file->driver_priv;
4132         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4133         struct drm_i915_gem_request *request, *target = NULL;
4134         unsigned reset_counter;
4135         int ret;
4136
4137         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4138         if (ret)
4139                 return ret;
4140
4141         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4142         if (ret)
4143                 return ret;
4144
4145         spin_lock(&file_priv->mm.lock);
4146         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4147                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4148                         break;
4149
4150                 /*
4151                  * Note that the request might not have been submitted yet.
4152                  * In which case emitted_jiffies will be zero.
4153                  */
4154                 if (!request->emitted_jiffies)
4155                         continue;
4156
4157                 target = request;
4158         }
4159         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4160         if (target)
4161                 i915_gem_request_reference(target);
4162         spin_unlock(&file_priv->mm.lock);
4163
4164         if (target == NULL)
4165                 return 0;
4166
4167         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4168         if (ret == 0)
4169                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4170
4171         i915_gem_request_unreference__unlocked(target);
4172
4173         return ret;
4174 }
4175
4176 static bool
4177 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4178 {
4179         struct drm_i915_gem_object *obj = vma->obj;
4180
4181         if (alignment &&
4182             vma->node.start & (alignment - 1))
4183                 return true;
4184
4185         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4186                 return true;
4187
4188         if (flags & PIN_OFFSET_BIAS &&
4189             vma->node.start < (flags & PIN_OFFSET_MASK))
4190                 return true;
4191
4192         if (flags & PIN_OFFSET_FIXED &&
4193             vma->node.start != (flags & PIN_OFFSET_MASK))
4194                 return true;
4195
4196         return false;
4197 }
4198
4199 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4200 {
4201         struct drm_i915_gem_object *obj = vma->obj;
4202         bool mappable, fenceable;
4203         u32 fence_size, fence_alignment;
4204
4205         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4206                                            obj->base.size,
4207                                            obj->tiling_mode);
4208         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4209                                                      obj->base.size,
4210                                                      obj->tiling_mode,
4211                                                      true);
4212
4213         fenceable = (vma->node.size == fence_size &&
4214                      (vma->node.start & (fence_alignment - 1)) == 0);
4215
4216         mappable = (vma->node.start + fence_size <=
4217                     to_i915(obj->base.dev)->gtt.mappable_end);
4218
4219         obj->map_and_fenceable = mappable && fenceable;
4220 }
4221
4222 static int
4223 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4224                        struct i915_address_space *vm,
4225                        const struct i915_ggtt_view *ggtt_view,
4226                        uint32_t alignment,
4227                        uint64_t flags)
4228 {
4229         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4230         struct i915_vma *vma;
4231         unsigned bound;
4232         int ret;
4233
4234         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4235                 return -ENODEV;
4236
4237         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4238                 return -EINVAL;
4239
4240         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4241                 return -EINVAL;
4242
4243         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4244                 return -EINVAL;
4245
4246         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4247                           i915_gem_obj_to_vma(obj, vm);
4248
4249         if (IS_ERR(vma))
4250                 return PTR_ERR(vma);
4251
4252         if (vma) {
4253                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4254                         return -EBUSY;
4255
4256                 if (i915_vma_misplaced(vma, alignment, flags)) {
4257                         WARN(vma->pin_count,
4258                              "bo is already pinned in %s with incorrect alignment:"
4259                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4260                              " obj->map_and_fenceable=%d\n",
4261                              ggtt_view ? "ggtt" : "ppgtt",
4262                              upper_32_bits(vma->node.start),
4263                              lower_32_bits(vma->node.start),
4264                              alignment,
4265                              !!(flags & PIN_MAPPABLE),
4266                              obj->map_and_fenceable);
4267                         ret = i915_vma_unbind(vma);
4268                         if (ret)
4269                                 return ret;
4270
4271                         vma = NULL;
4272                 }
4273         }
4274
4275         bound = vma ? vma->bound : 0;
4276         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4277                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4278                                                  flags);
4279                 if (IS_ERR(vma))
4280                         return PTR_ERR(vma);
4281         } else {
4282                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4283                 if (ret)
4284                         return ret;
4285         }
4286
4287         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4288             (bound ^ vma->bound) & GLOBAL_BIND) {
4289                 __i915_vma_set_map_and_fenceable(vma);
4290                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4291         }
4292
4293         vma->pin_count++;
4294         return 0;
4295 }
4296
4297 int
4298 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4299                     struct i915_address_space *vm,
4300                     uint32_t alignment,
4301                     uint64_t flags)
4302 {
4303         return i915_gem_object_do_pin(obj, vm,
4304                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4305                                       alignment, flags);
4306 }
4307
4308 int
4309 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4310                          const struct i915_ggtt_view *view,
4311                          uint32_t alignment,
4312                          uint64_t flags)
4313 {
4314         if (WARN_ONCE(!view, "no view specified"))
4315                 return -EINVAL;
4316
4317         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4318                                       alignment, flags | PIN_GLOBAL);
4319 }
4320
4321 void
4322 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4323                                 const struct i915_ggtt_view *view)
4324 {
4325         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4326
4327         BUG_ON(!vma);
4328         WARN_ON(vma->pin_count == 0);
4329         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4330
4331         --vma->pin_count;
4332 }
4333
4334 int
4335 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4336                     struct drm_file *file)
4337 {
4338         struct drm_i915_gem_busy *args = data;
4339         struct drm_i915_gem_object *obj;
4340         int ret;
4341
4342         ret = i915_mutex_lock_interruptible(dev);
4343         if (ret)
4344                 return ret;
4345
4346         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4347         if (&obj->base == NULL) {
4348                 ret = -ENOENT;
4349                 goto unlock;
4350         }
4351
4352         /* Count all active objects as busy, even if they are currently not used
4353          * by the gpu. Users of this interface expect objects to eventually
4354          * become non-busy without any further actions, therefore emit any
4355          * necessary flushes here.
4356          */
4357         ret = i915_gem_object_flush_active(obj);
4358         if (ret)
4359                 goto unref;
4360
4361         args->busy = 0;
4362         if (obj->active) {
4363                 int i;
4364
4365                 for (i = 0; i < I915_NUM_RINGS; i++) {
4366                         struct drm_i915_gem_request *req;
4367
4368                         req = obj->last_read_req[i];
4369                         if (req)
4370                                 args->busy |= 1 << (16 + req->ring->exec_id);
4371                 }
4372                 if (obj->last_write_req)
4373                         args->busy |= obj->last_write_req->ring->exec_id;
4374         }
4375
4376 unref:
4377         drm_gem_object_unreference(&obj->base);
4378 unlock:
4379         mutex_unlock(&dev->struct_mutex);
4380         return ret;
4381 }
4382
4383 int
4384 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4385                         struct drm_file *file_priv)
4386 {
4387         return i915_gem_ring_throttle(dev, file_priv);
4388 }
4389
4390 int
4391 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4392                        struct drm_file *file_priv)
4393 {
4394         struct drm_i915_private *dev_priv = dev->dev_private;
4395         struct drm_i915_gem_madvise *args = data;
4396         struct drm_i915_gem_object *obj;
4397         int ret;
4398
4399         switch (args->madv) {
4400         case I915_MADV_DONTNEED:
4401         case I915_MADV_WILLNEED:
4402             break;
4403         default:
4404             return -EINVAL;
4405         }
4406
4407         ret = i915_mutex_lock_interruptible(dev);
4408         if (ret)
4409                 return ret;
4410
4411         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4412         if (&obj->base == NULL) {
4413                 ret = -ENOENT;
4414                 goto unlock;
4415         }
4416
4417         if (i915_gem_obj_is_pinned(obj)) {
4418                 ret = -EINVAL;
4419                 goto out;
4420         }
4421
4422         if (obj->pages &&
4423             obj->tiling_mode != I915_TILING_NONE &&
4424             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4425                 if (obj->madv == I915_MADV_WILLNEED)
4426                         i915_gem_object_unpin_pages(obj);
4427                 if (args->madv == I915_MADV_WILLNEED)
4428                         i915_gem_object_pin_pages(obj);
4429         }
4430
4431         if (obj->madv != __I915_MADV_PURGED)
4432                 obj->madv = args->madv;
4433
4434         /* if the object is no longer attached, discard its backing storage */
4435         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4436                 i915_gem_object_truncate(obj);
4437
4438         args->retained = obj->madv != __I915_MADV_PURGED;
4439
4440 out:
4441         drm_gem_object_unreference(&obj->base);
4442 unlock:
4443         mutex_unlock(&dev->struct_mutex);
4444         return ret;
4445 }
4446
4447 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4448                           const struct drm_i915_gem_object_ops *ops)
4449 {
4450         int i;
4451
4452         INIT_LIST_HEAD(&obj->global_list);
4453         for (i = 0; i < I915_NUM_RINGS; i++)
4454                 INIT_LIST_HEAD(&obj->ring_list[i]);
4455         INIT_LIST_HEAD(&obj->obj_exec_link);
4456         INIT_LIST_HEAD(&obj->vma_list);
4457         INIT_LIST_HEAD(&obj->batch_pool_link);
4458
4459         obj->ops = ops;
4460
4461         obj->fence_reg = I915_FENCE_REG_NONE;
4462         obj->madv = I915_MADV_WILLNEED;
4463
4464         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4465 }
4466
4467 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4468         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4469         .get_pages = i915_gem_object_get_pages_gtt,
4470         .put_pages = i915_gem_object_put_pages_gtt,
4471 };
4472
4473 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4474                                                   size_t size)
4475 {
4476         struct drm_i915_gem_object *obj;
4477         struct address_space *mapping;
4478         gfp_t mask;
4479
4480         obj = i915_gem_object_alloc(dev);
4481         if (obj == NULL)
4482                 return NULL;
4483
4484         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4485                 i915_gem_object_free(obj);
4486                 return NULL;
4487         }
4488
4489         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4490         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4491                 /* 965gm cannot relocate objects above 4GiB. */
4492                 mask &= ~__GFP_HIGHMEM;
4493                 mask |= __GFP_DMA32;
4494         }
4495
4496         mapping = file_inode(obj->base.filp)->i_mapping;
4497         mapping_set_gfp_mask(mapping, mask);
4498
4499         i915_gem_object_init(obj, &i915_gem_object_ops);
4500
4501         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4502         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4503
4504         if (HAS_LLC(dev)) {
4505                 /* On some devices, we can have the GPU use the LLC (the CPU
4506                  * cache) for about a 10% performance improvement
4507                  * compared to uncached.  Graphics requests other than
4508                  * display scanout are coherent with the CPU in
4509                  * accessing this cache.  This means in this mode we
4510                  * don't need to clflush on the CPU side, and on the
4511                  * GPU side we only need to flush internal caches to
4512                  * get data visible to the CPU.
4513                  *
4514                  * However, we maintain the display planes as UC, and so
4515                  * need to rebind when first used as such.
4516                  */
4517                 obj->cache_level = I915_CACHE_LLC;
4518         } else
4519                 obj->cache_level = I915_CACHE_NONE;
4520
4521         trace_i915_gem_object_create(obj);
4522
4523         return obj;
4524 }
4525
4526 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4527 {
4528         /* If we are the last user of the backing storage (be it shmemfs
4529          * pages or stolen etc), we know that the pages are going to be
4530          * immediately released. In this case, we can then skip copying
4531          * back the contents from the GPU.
4532          */
4533
4534         if (obj->madv != I915_MADV_WILLNEED)
4535                 return false;
4536
4537         if (obj->base.filp == NULL)
4538                 return true;
4539
4540         /* At first glance, this looks racy, but then again so would be
4541          * userspace racing mmap against close. However, the first external
4542          * reference to the filp can only be obtained through the
4543          * i915_gem_mmap_ioctl() which safeguards us against the user
4544          * acquiring such a reference whilst we are in the middle of
4545          * freeing the object.
4546          */
4547         return atomic_long_read(&obj->base.filp->f_count) == 1;
4548 }
4549
4550 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4551 {
4552         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4553         struct drm_device *dev = obj->base.dev;
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         struct i915_vma *vma, *next;
4556
4557         intel_runtime_pm_get(dev_priv);
4558
4559         trace_i915_gem_object_destroy(obj);
4560
4561         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4562                 int ret;
4563
4564                 vma->pin_count = 0;
4565                 ret = i915_vma_unbind(vma);
4566                 if (WARN_ON(ret == -ERESTARTSYS)) {
4567                         bool was_interruptible;
4568
4569                         was_interruptible = dev_priv->mm.interruptible;
4570                         dev_priv->mm.interruptible = false;
4571
4572                         WARN_ON(i915_vma_unbind(vma));
4573
4574                         dev_priv->mm.interruptible = was_interruptible;
4575                 }
4576         }
4577
4578         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4579          * before progressing. */
4580         if (obj->stolen)
4581                 i915_gem_object_unpin_pages(obj);
4582
4583         WARN_ON(obj->frontbuffer_bits);
4584
4585         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4586             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4587             obj->tiling_mode != I915_TILING_NONE)
4588                 i915_gem_object_unpin_pages(obj);
4589
4590         if (WARN_ON(obj->pages_pin_count))
4591                 obj->pages_pin_count = 0;
4592         if (discard_backing_storage(obj))
4593                 obj->madv = I915_MADV_DONTNEED;
4594         i915_gem_object_put_pages(obj);
4595         i915_gem_object_free_mmap_offset(obj);
4596
4597         BUG_ON(obj->pages);
4598
4599         if (obj->base.import_attach)
4600                 drm_prime_gem_destroy(&obj->base, NULL);
4601
4602         if (obj->ops->release)
4603                 obj->ops->release(obj);
4604
4605         drm_gem_object_release(&obj->base);
4606         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4607
4608         kfree(obj->bit_17);
4609         i915_gem_object_free(obj);
4610
4611         intel_runtime_pm_put(dev_priv);
4612 }
4613
4614 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4615                                      struct i915_address_space *vm)
4616 {
4617         struct i915_vma *vma;
4618         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4619                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4620                     vma->vm == vm)
4621                         return vma;
4622         }
4623         return NULL;
4624 }
4625
4626 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4627                                            const struct i915_ggtt_view *view)
4628 {
4629         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4630         struct i915_vma *vma;
4631
4632         if (WARN_ONCE(!view, "no view specified"))
4633                 return ERR_PTR(-EINVAL);
4634
4635         list_for_each_entry(vma, &obj->vma_list, vma_link)
4636                 if (vma->vm == ggtt &&
4637                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4638                         return vma;
4639         return NULL;
4640 }
4641
4642 void i915_gem_vma_destroy(struct i915_vma *vma)
4643 {
4644         struct i915_address_space *vm = NULL;
4645         WARN_ON(vma->node.allocated);
4646
4647         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4648         if (!list_empty(&vma->exec_list))
4649                 return;
4650
4651         vm = vma->vm;
4652
4653         if (!i915_is_ggtt(vm))
4654                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4655
4656         list_del(&vma->vma_link);
4657
4658         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4659 }
4660
4661 static void
4662 i915_gem_stop_ringbuffers(struct drm_device *dev)
4663 {
4664         struct drm_i915_private *dev_priv = dev->dev_private;
4665         struct intel_engine_cs *ring;
4666         int i;
4667
4668         for_each_ring(ring, dev_priv, i)
4669                 dev_priv->gt.stop_ring(ring);
4670 }
4671
4672 int
4673 i915_gem_suspend(struct drm_device *dev)
4674 {
4675         struct drm_i915_private *dev_priv = dev->dev_private;
4676         int ret = 0;
4677
4678         mutex_lock(&dev->struct_mutex);
4679         ret = i915_gpu_idle(dev);
4680         if (ret)
4681                 goto err;
4682
4683         i915_gem_retire_requests(dev);
4684
4685         i915_gem_stop_ringbuffers(dev);
4686         mutex_unlock(&dev->struct_mutex);
4687
4688         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4689         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4690         flush_delayed_work(&dev_priv->mm.idle_work);
4691
4692         /* Assert that we sucessfully flushed all the work and
4693          * reset the GPU back to its idle, low power state.
4694          */
4695         WARN_ON(dev_priv->mm.busy);
4696
4697         return 0;
4698
4699 err:
4700         mutex_unlock(&dev->struct_mutex);
4701         return ret;
4702 }
4703
4704 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4705 {
4706         struct intel_engine_cs *ring = req->ring;
4707         struct drm_device *dev = ring->dev;
4708         struct drm_i915_private *dev_priv = dev->dev_private;
4709         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4710         int i, ret;
4711
4712         if (!HAS_L3_DPF(dev) || !remap_info)
4713                 return 0;
4714
4715         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4716         if (ret)
4717                 return ret;
4718
4719         /*
4720          * Note: We do not worry about the concurrent register cacheline hang
4721          * here because no other code should access these registers other than
4722          * at initialization time.
4723          */
4724         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4725                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4726                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4727                 intel_ring_emit(ring, remap_info[i]);
4728         }
4729
4730         intel_ring_advance(ring);
4731
4732         return ret;
4733 }
4734
4735 void i915_gem_init_swizzling(struct drm_device *dev)
4736 {
4737         struct drm_i915_private *dev_priv = dev->dev_private;
4738
4739         if (INTEL_INFO(dev)->gen < 5 ||
4740             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4741                 return;
4742
4743         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4744                                  DISP_TILE_SURFACE_SWIZZLING);
4745
4746         if (IS_GEN5(dev))
4747                 return;
4748
4749         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4750         if (IS_GEN6(dev))
4751                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4752         else if (IS_GEN7(dev))
4753                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4754         else if (IS_GEN8(dev))
4755                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4756         else
4757                 BUG();
4758 }
4759
4760 static void init_unused_ring(struct drm_device *dev, u32 base)
4761 {
4762         struct drm_i915_private *dev_priv = dev->dev_private;
4763
4764         I915_WRITE(RING_CTL(base), 0);
4765         I915_WRITE(RING_HEAD(base), 0);
4766         I915_WRITE(RING_TAIL(base), 0);
4767         I915_WRITE(RING_START(base), 0);
4768 }
4769
4770 static void init_unused_rings(struct drm_device *dev)
4771 {
4772         if (IS_I830(dev)) {
4773                 init_unused_ring(dev, PRB1_BASE);
4774                 init_unused_ring(dev, SRB0_BASE);
4775                 init_unused_ring(dev, SRB1_BASE);
4776                 init_unused_ring(dev, SRB2_BASE);
4777                 init_unused_ring(dev, SRB3_BASE);
4778         } else if (IS_GEN2(dev)) {
4779                 init_unused_ring(dev, SRB0_BASE);
4780                 init_unused_ring(dev, SRB1_BASE);
4781         } else if (IS_GEN3(dev)) {
4782                 init_unused_ring(dev, PRB1_BASE);
4783                 init_unused_ring(dev, PRB2_BASE);
4784         }
4785 }
4786
4787 int i915_gem_init_rings(struct drm_device *dev)
4788 {
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         int ret;
4791
4792         ret = intel_init_render_ring_buffer(dev);
4793         if (ret)
4794                 return ret;
4795
4796         if (HAS_BSD(dev)) {
4797                 ret = intel_init_bsd_ring_buffer(dev);
4798                 if (ret)
4799                         goto cleanup_render_ring;
4800         }
4801
4802         if (HAS_BLT(dev)) {
4803                 ret = intel_init_blt_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_bsd_ring;
4806         }
4807
4808         if (HAS_VEBOX(dev)) {
4809                 ret = intel_init_vebox_ring_buffer(dev);
4810                 if (ret)
4811                         goto cleanup_blt_ring;
4812         }
4813
4814         if (HAS_BSD2(dev)) {
4815                 ret = intel_init_bsd2_ring_buffer(dev);
4816                 if (ret)
4817                         goto cleanup_vebox_ring;
4818         }
4819
4820         return 0;
4821
4822 cleanup_vebox_ring:
4823         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4824 cleanup_blt_ring:
4825         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4826 cleanup_bsd_ring:
4827         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4828 cleanup_render_ring:
4829         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4830
4831         return ret;
4832 }
4833
4834 int
4835 i915_gem_init_hw(struct drm_device *dev)
4836 {
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         struct intel_engine_cs *ring;
4839         int ret, i, j;
4840
4841         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4842                 return -EIO;
4843
4844         /* Double layer security blanket, see i915_gem_init() */
4845         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846
4847         if (dev_priv->ellc_size)
4848                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4849
4850         if (IS_HASWELL(dev))
4851                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4853
4854         if (HAS_PCH_NOP(dev)) {
4855                 if (IS_IVYBRIDGE(dev)) {
4856                         u32 temp = I915_READ(GEN7_MSG_CTL);
4857                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858                         I915_WRITE(GEN7_MSG_CTL, temp);
4859                 } else if (INTEL_INFO(dev)->gen >= 7) {
4860                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863                 }
4864         }
4865
4866         i915_gem_init_swizzling(dev);
4867
4868         /*
4869          * At least 830 can leave some of the unused rings
4870          * "active" (ie. head != tail) after resume which
4871          * will prevent c3 entry. Makes sure all unused rings
4872          * are totally idle.
4873          */
4874         init_unused_rings(dev);
4875
4876         BUG_ON(!dev_priv->kernel_context);
4877
4878         ret = i915_ppgtt_init_hw(dev);
4879         if (ret) {
4880                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4881                 goto out;
4882         }
4883
4884         /* Need to do basic initialisation of all rings first: */
4885         for_each_ring(ring, dev_priv, i) {
4886                 ret = ring->init_hw(ring);
4887                 if (ret)
4888                         goto out;
4889         }
4890
4891         /* We can't enable contexts until all firmware is loaded */
4892         if (HAS_GUC_UCODE(dev)) {
4893                 ret = intel_guc_ucode_load(dev);
4894                 if (ret) {
4895                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4896                         ret = -EIO;
4897                         goto out;
4898                 }
4899         }
4900
4901         /*
4902          * Increment the next seqno by 0x100 so we have a visible break
4903          * on re-initialisation
4904          */
4905         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4906         if (ret)
4907                 goto out;
4908
4909         /* Now it is safe to go back round and do everything else: */
4910         for_each_ring(ring, dev_priv, i) {
4911                 struct drm_i915_gem_request *req;
4912
4913                 req = i915_gem_request_alloc(ring, NULL);
4914                 if (IS_ERR(req)) {
4915                         ret = PTR_ERR(req);
4916                         i915_gem_cleanup_engines(dev);
4917                         goto out;
4918                 }
4919
4920                 if (ring->id == RCS) {
4921                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4922                                 i915_gem_l3_remap(req, j);
4923                 }
4924
4925                 ret = i915_ppgtt_init_ring(req);
4926                 if (ret && ret != -EIO) {
4927                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4928                         i915_gem_request_cancel(req);
4929                         i915_gem_cleanup_engines(dev);
4930                         goto out;
4931                 }
4932
4933                 ret = i915_gem_context_enable(req);
4934                 if (ret && ret != -EIO) {
4935                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4936                         i915_gem_request_cancel(req);
4937                         i915_gem_cleanup_engines(dev);
4938                         goto out;
4939                 }
4940
4941                 i915_add_request_no_flush(req);
4942         }
4943
4944 out:
4945         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4946         return ret;
4947 }
4948
4949 int i915_gem_init(struct drm_device *dev)
4950 {
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952         int ret;
4953
4954         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4955                         i915.enable_execlists);
4956
4957         mutex_lock(&dev->struct_mutex);
4958
4959         if (!i915.enable_execlists) {
4960                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4961                 dev_priv->gt.init_rings = i915_gem_init_rings;
4962                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4963                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4964         } else {
4965                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4966                 dev_priv->gt.init_rings = intel_logical_rings_init;
4967                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4968                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4969         }
4970
4971         /* This is just a security blanket to placate dragons.
4972          * On some systems, we very sporadically observe that the first TLBs
4973          * used by the CS may be stale, despite us poking the TLB reset. If
4974          * we hold the forcewake during initialisation these problems
4975          * just magically go away.
4976          */
4977         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4978
4979         ret = i915_gem_init_userptr(dev);
4980         if (ret)
4981                 goto out_unlock;
4982
4983         i915_gem_init_global_gtt(dev);
4984
4985         ret = i915_gem_context_init(dev);
4986         if (ret)
4987                 goto out_unlock;
4988
4989         ret = dev_priv->gt.init_rings(dev);
4990         if (ret)
4991                 goto out_unlock;
4992
4993         ret = i915_gem_init_hw(dev);
4994         if (ret == -EIO) {
4995                 /* Allow ring initialisation to fail by marking the GPU as
4996                  * wedged. But we only want to do this where the GPU is angry,
4997                  * for all other failure, such as an allocation failure, bail.
4998                  */
4999                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5000                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5001                 ret = 0;
5002         }
5003
5004 out_unlock:
5005         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5006         mutex_unlock(&dev->struct_mutex);
5007
5008         return ret;
5009 }
5010
5011 void
5012 i915_gem_cleanup_engines(struct drm_device *dev)
5013 {
5014         struct drm_i915_private *dev_priv = dev->dev_private;
5015         struct intel_engine_cs *ring;
5016         int i;
5017
5018         for_each_ring(ring, dev_priv, i)
5019                 dev_priv->gt.cleanup_ring(ring);
5020
5021         if (i915.enable_execlists) {
5022                 /*
5023                  * Neither the BIOS, ourselves or any other kernel
5024                  * expects the system to be in execlists mode on startup,
5025                  * so we need to reset the GPU back to legacy mode.
5026                  */
5027                 intel_gpu_reset(dev);
5028         }
5029 }
5030
5031 static void
5032 init_ring_lists(struct intel_engine_cs *ring)
5033 {
5034         INIT_LIST_HEAD(&ring->active_list);
5035         INIT_LIST_HEAD(&ring->request_list);
5036 }
5037
5038 void
5039 i915_gem_load_init(struct drm_device *dev)
5040 {
5041         struct drm_i915_private *dev_priv = dev->dev_private;
5042         int i;
5043
5044         dev_priv->objects =
5045                 kmem_cache_create("i915_gem_object",
5046                                   sizeof(struct drm_i915_gem_object), 0,
5047                                   SLAB_HWCACHE_ALIGN,
5048                                   NULL);
5049         dev_priv->vmas =
5050                 kmem_cache_create("i915_gem_vma",
5051                                   sizeof(struct i915_vma), 0,
5052                                   SLAB_HWCACHE_ALIGN,
5053                                   NULL);
5054         dev_priv->requests =
5055                 kmem_cache_create("i915_gem_request",
5056                                   sizeof(struct drm_i915_gem_request), 0,
5057                                   SLAB_HWCACHE_ALIGN,
5058                                   NULL);
5059
5060         INIT_LIST_HEAD(&dev_priv->vm_list);
5061         INIT_LIST_HEAD(&dev_priv->context_list);
5062         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5063         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5064         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5065         for (i = 0; i < I915_NUM_RINGS; i++)
5066                 init_ring_lists(&dev_priv->ring[i]);
5067         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5068                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5069         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5070                           i915_gem_retire_work_handler);
5071         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5072                           i915_gem_idle_work_handler);
5073         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5074
5075         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5076
5077         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5078                 dev_priv->num_fence_regs = 32;
5079         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5080                 dev_priv->num_fence_regs = 16;
5081         else
5082                 dev_priv->num_fence_regs = 8;
5083
5084         if (intel_vgpu_active(dev))
5085                 dev_priv->num_fence_regs =
5086                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5087
5088         /*
5089          * Set initial sequence number for requests.
5090          * Using this number allows the wraparound to happen early,
5091          * catching any obvious problems.
5092          */
5093         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5094         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5095
5096         /* Initialize fence registers to zero */
5097         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5098         i915_gem_restore_fences(dev);
5099
5100         i915_gem_detect_bit_6_swizzle(dev);
5101         init_waitqueue_head(&dev_priv->pending_flip_queue);
5102
5103         dev_priv->mm.interruptible = true;
5104
5105         mutex_init(&dev_priv->fb_tracking.lock);
5106 }
5107
5108 void i915_gem_load_cleanup(struct drm_device *dev)
5109 {
5110         struct drm_i915_private *dev_priv = to_i915(dev);
5111
5112         kmem_cache_destroy(dev_priv->requests);
5113         kmem_cache_destroy(dev_priv->vmas);
5114         kmem_cache_destroy(dev_priv->objects);
5115 }
5116
5117 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5118 {
5119         struct drm_i915_file_private *file_priv = file->driver_priv;
5120
5121         /* Clean up our request list when the client is going away, so that
5122          * later retire_requests won't dereference our soon-to-be-gone
5123          * file_priv.
5124          */
5125         spin_lock(&file_priv->mm.lock);
5126         while (!list_empty(&file_priv->mm.request_list)) {
5127                 struct drm_i915_gem_request *request;
5128
5129                 request = list_first_entry(&file_priv->mm.request_list,
5130                                            struct drm_i915_gem_request,
5131                                            client_list);
5132                 list_del(&request->client_list);
5133                 request->file_priv = NULL;
5134         }
5135         spin_unlock(&file_priv->mm.lock);
5136
5137         if (!list_empty(&file_priv->rps.link)) {
5138                 spin_lock(&to_i915(dev)->rps.client_lock);
5139                 list_del(&file_priv->rps.link);
5140                 spin_unlock(&to_i915(dev)->rps.client_lock);
5141         }
5142 }
5143
5144 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5145 {
5146         struct drm_i915_file_private *file_priv;
5147         int ret;
5148
5149         DRM_DEBUG_DRIVER("\n");
5150
5151         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5152         if (!file_priv)
5153                 return -ENOMEM;
5154
5155         file->driver_priv = file_priv;
5156         file_priv->dev_priv = dev->dev_private;
5157         file_priv->file = file;
5158         INIT_LIST_HEAD(&file_priv->rps.link);
5159
5160         spin_lock_init(&file_priv->mm.lock);
5161         INIT_LIST_HEAD(&file_priv->mm.request_list);
5162
5163         file_priv->bsd_ring = -1;
5164
5165         ret = i915_gem_context_open(dev, file);
5166         if (ret)
5167                 kfree(file_priv);
5168
5169         return ret;
5170 }
5171
5172 /**
5173  * i915_gem_track_fb - update frontbuffer tracking
5174  * @old: current GEM buffer for the frontbuffer slots
5175  * @new: new GEM buffer for the frontbuffer slots
5176  * @frontbuffer_bits: bitmask of frontbuffer slots
5177  *
5178  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5179  * from @old and setting them in @new. Both @old and @new can be NULL.
5180  */
5181 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5182                        struct drm_i915_gem_object *new,
5183                        unsigned frontbuffer_bits)
5184 {
5185         if (old) {
5186                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5187                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5188                 old->frontbuffer_bits &= ~frontbuffer_bits;
5189         }
5190
5191         if (new) {
5192                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5193                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5194                 new->frontbuffer_bits |= frontbuffer_bits;
5195         }
5196 }
5197
5198 /* All the new VM stuff */
5199 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5200                         struct i915_address_space *vm)
5201 {
5202         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5203         struct i915_vma *vma;
5204
5205         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5206
5207         list_for_each_entry(vma, &o->vma_list, vma_link) {
5208                 if (i915_is_ggtt(vma->vm) &&
5209                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5210                         continue;
5211                 if (vma->vm == vm)
5212                         return vma->node.start;
5213         }
5214
5215         WARN(1, "%s vma for this object not found.\n",
5216              i915_is_ggtt(vm) ? "global" : "ppgtt");
5217         return -1;
5218 }
5219
5220 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5221                                   const struct i915_ggtt_view *view)
5222 {
5223         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5224         struct i915_vma *vma;
5225
5226         list_for_each_entry(vma, &o->vma_list, vma_link)
5227                 if (vma->vm == ggtt &&
5228                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5229                         return vma->node.start;
5230
5231         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5232         return -1;
5233 }
5234
5235 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5236                         struct i915_address_space *vm)
5237 {
5238         struct i915_vma *vma;
5239
5240         list_for_each_entry(vma, &o->vma_list, vma_link) {
5241                 if (i915_is_ggtt(vma->vm) &&
5242                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5243                         continue;
5244                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5245                         return true;
5246         }
5247
5248         return false;
5249 }
5250
5251 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5252                                   const struct i915_ggtt_view *view)
5253 {
5254         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5255         struct i915_vma *vma;
5256
5257         list_for_each_entry(vma, &o->vma_list, vma_link)
5258                 if (vma->vm == ggtt &&
5259                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5260                     drm_mm_node_allocated(&vma->node))
5261                         return true;
5262
5263         return false;
5264 }
5265
5266 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5267 {
5268         struct i915_vma *vma;
5269
5270         list_for_each_entry(vma, &o->vma_list, vma_link)
5271                 if (drm_mm_node_allocated(&vma->node))
5272                         return true;
5273
5274         return false;
5275 }
5276
5277 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5278                                 struct i915_address_space *vm)
5279 {
5280         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5281         struct i915_vma *vma;
5282
5283         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5284
5285         BUG_ON(list_empty(&o->vma_list));
5286
5287         list_for_each_entry(vma, &o->vma_list, vma_link) {
5288                 if (i915_is_ggtt(vma->vm) &&
5289                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5290                         continue;
5291                 if (vma->vm == vm)
5292                         return vma->node.size;
5293         }
5294         return 0;
5295 }
5296
5297 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5298 {
5299         struct i915_vma *vma;
5300         list_for_each_entry(vma, &obj->vma_list, vma_link)
5301                 if (vma->pin_count > 0)
5302                         return true;
5303
5304         return false;
5305 }
5306
5307 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5308 struct page *
5309 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5310 {
5311         struct page *page;
5312
5313         /* Only default objects have per-page dirty tracking */
5314         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5315                 return NULL;
5316
5317         page = i915_gem_object_get_page(obj, n);
5318         set_page_dirty(page);
5319         return page;
5320 }
5321
5322 /* Allocate a new GEM object and fill it with the supplied data */
5323 struct drm_i915_gem_object *
5324 i915_gem_object_create_from_data(struct drm_device *dev,
5325                                  const void *data, size_t size)
5326 {
5327         struct drm_i915_gem_object *obj;
5328         struct sg_table *sg;
5329         size_t bytes;
5330         int ret;
5331
5332         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5333         if (IS_ERR_OR_NULL(obj))
5334                 return obj;
5335
5336         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5337         if (ret)
5338                 goto fail;
5339
5340         ret = i915_gem_object_get_pages(obj);
5341         if (ret)
5342                 goto fail;
5343
5344         i915_gem_object_pin_pages(obj);
5345         sg = obj->pages;
5346         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5347         obj->dirty = 1;         /* Backing store is now out of date */
5348         i915_gem_object_unpin_pages(obj);
5349
5350         if (WARN_ON(bytes != size)) {
5351                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5352                 ret = -EFAULT;
5353                 goto fail;
5354         }
5355
5356         return obj;
5357
5358 fail:
5359         drm_gem_object_unreference(&obj->base);
5360         return ERR_PTR(ret);
5361 }