]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
drm/i915: Do not record a successful syncpoint for a dma-await
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return true;
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         RB_CLEAR_NODE(&pt->node);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Finally reset hw state */
217                 intel_engine_init_global_seqno(engine, seqno);
218                 tl->seqno = seqno;
219
220                 list_for_each_entry(timeline, &i915->gt.timelines, link)
221                         memset(timeline->engine[id].global_sync, 0,
222                                sizeof(timeline->engine[id].global_sync));
223         }
224
225         return 0;
226 }
227
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230         struct drm_i915_private *dev_priv = to_i915(dev);
231
232         lockdep_assert_held(&dev_priv->drm.struct_mutex);
233
234         if (seqno == 0)
235                 return -EINVAL;
236
237         /* HWS page needs to be set less than what we
238          * will inject to ring
239          */
240         return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245         u32 active = ++engine->timeline->inflight_seqnos;
246         u32 seqno = engine->timeline->seqno;
247         int ret;
248
249         /* Reservation is fine until we need to wrap around */
250         if (likely(!add_overflows(seqno, active)))
251                 return 0;
252
253         ret = reset_all_global_seqno(engine->i915, 0);
254         if (ret) {
255                 engine->timeline->inflight_seqnos--;
256                 return ret;
257         }
258
259         return 0;
260 }
261
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265         engine->timeline->inflight_seqnos--;
266 }
267
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269                           struct drm_i915_gem_request *request)
270 {
271         /* Space left intentionally blank */
272 }
273
274 static void advance_ring(struct drm_i915_gem_request *request)
275 {
276         unsigned int tail;
277
278         /* We know the GPU must have read the request to have
279          * sent us the seqno + interrupt, so use the position
280          * of tail of the request to update the last known position
281          * of the GPU head.
282          *
283          * Note this requires that we are always called in request
284          * completion order.
285          */
286         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
287                 /* We may race here with execlists resubmitting this request
288                  * as we retire it. The resubmission will move the ring->tail
289                  * forwards (to request->wa_tail). We either read the
290                  * current value that was written to hw, or the value that
291                  * is just about to be. Either works, if we miss the last two
292                  * noops - they are safe to be replayed on a reset.
293                  */
294                 tail = READ_ONCE(request->ring->tail);
295         } else {
296                 tail = request->postfix;
297         }
298         list_del(&request->ring_link);
299
300         request->ring->head = tail;
301 }
302
303 static void free_capture_list(struct drm_i915_gem_request *request)
304 {
305         struct i915_gem_capture_list *capture;
306
307         capture = request->capture_list;
308         while (capture) {
309                 struct i915_gem_capture_list *next = capture->next;
310
311                 kfree(capture);
312                 capture = next;
313         }
314 }
315
316 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
317 {
318         struct intel_engine_cs *engine = request->engine;
319         struct i915_gem_active *active, *next;
320
321         lockdep_assert_held(&request->i915->drm.struct_mutex);
322         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
323         GEM_BUG_ON(!i915_gem_request_completed(request));
324         GEM_BUG_ON(!request->i915->gt.active_requests);
325
326         trace_i915_gem_request_retire(request);
327
328         spin_lock_irq(&engine->timeline->lock);
329         list_del_init(&request->link);
330         spin_unlock_irq(&engine->timeline->lock);
331
332         if (!--request->i915->gt.active_requests) {
333                 GEM_BUG_ON(!request->i915->gt.awake);
334                 mod_delayed_work(request->i915->wq,
335                                  &request->i915->gt.idle_work,
336                                  msecs_to_jiffies(100));
337         }
338         unreserve_seqno(request->engine);
339         advance_ring(request);
340
341         free_capture_list(request);
342
343         /* Walk through the active list, calling retire on each. This allows
344          * objects to track their GPU activity and mark themselves as idle
345          * when their *last* active request is completed (updating state
346          * tracking lists for eviction, active references for GEM, etc).
347          *
348          * As the ->retire() may free the node, we decouple it first and
349          * pass along the auxiliary information (to avoid dereferencing
350          * the node after the callback).
351          */
352         list_for_each_entry_safe(active, next, &request->active_list, link) {
353                 /* In microbenchmarks or focusing upon time inside the kernel,
354                  * we may spend an inordinate amount of time simply handling
355                  * the retirement of requests and processing their callbacks.
356                  * Of which, this loop itself is particularly hot due to the
357                  * cache misses when jumping around the list of i915_gem_active.
358                  * So we try to keep this loop as streamlined as possible and
359                  * also prefetch the next i915_gem_active to try and hide
360                  * the likely cache miss.
361                  */
362                 prefetchw(next);
363
364                 INIT_LIST_HEAD(&active->link);
365                 RCU_INIT_POINTER(active->request, NULL);
366
367                 active->retire(active, request);
368         }
369
370         i915_gem_request_remove_from_client(request);
371
372         /* Retirement decays the ban score as it is a sign of ctx progress */
373         if (request->ctx->ban_score > 0)
374                 request->ctx->ban_score--;
375
376         /* The backing object for the context is done after switching to the
377          * *next* context. Therefore we cannot retire the previous context until
378          * the next context has already started running. However, since we
379          * cannot take the required locks at i915_gem_request_submit() we
380          * defer the unpinning of the active context to now, retirement of
381          * the subsequent request.
382          */
383         if (engine->last_retired_context)
384                 engine->context_unpin(engine, engine->last_retired_context);
385         engine->last_retired_context = request->ctx;
386
387         dma_fence_signal(&request->fence);
388
389         i915_priotree_fini(request->i915, &request->priotree);
390         i915_gem_request_put(request);
391 }
392
393 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
394 {
395         struct intel_engine_cs *engine = req->engine;
396         struct drm_i915_gem_request *tmp;
397
398         lockdep_assert_held(&req->i915->drm.struct_mutex);
399         GEM_BUG_ON(!i915_gem_request_completed(req));
400
401         if (list_empty(&req->link))
402                 return;
403
404         do {
405                 tmp = list_first_entry(&engine->timeline->requests,
406                                        typeof(*tmp), link);
407
408                 i915_gem_request_retire(tmp);
409         } while (tmp != req);
410 }
411
412 static u32 timeline_get_seqno(struct intel_timeline *tl)
413 {
414         return ++tl->seqno;
415 }
416
417 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
418 {
419         struct intel_engine_cs *engine = request->engine;
420         struct intel_timeline *timeline;
421         u32 seqno;
422
423         GEM_BUG_ON(!irqs_disabled());
424         lockdep_assert_held(&engine->timeline->lock);
425
426         trace_i915_gem_request_execute(request);
427
428         /* Transfer from per-context onto the global per-engine timeline */
429         timeline = engine->timeline;
430         GEM_BUG_ON(timeline == request->timeline);
431
432         seqno = timeline_get_seqno(timeline);
433         GEM_BUG_ON(!seqno);
434         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
435
436         /* We may be recursing from the signal callback of another i915 fence */
437         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
438         request->global_seqno = seqno;
439         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
440                 intel_engine_enable_signaling(request, false);
441         spin_unlock(&request->lock);
442
443         engine->emit_breadcrumb(request,
444                                 request->ring->vaddr + request->postfix);
445
446         spin_lock(&request->timeline->lock);
447         list_move_tail(&request->link, &timeline->requests);
448         spin_unlock(&request->timeline->lock);
449
450         wake_up_all(&request->execute);
451 }
452
453 void i915_gem_request_submit(struct drm_i915_gem_request *request)
454 {
455         struct intel_engine_cs *engine = request->engine;
456         unsigned long flags;
457
458         /* Will be called from irq-context when using foreign fences. */
459         spin_lock_irqsave(&engine->timeline->lock, flags);
460
461         __i915_gem_request_submit(request);
462
463         spin_unlock_irqrestore(&engine->timeline->lock, flags);
464 }
465
466 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
467 {
468         struct intel_engine_cs *engine = request->engine;
469         struct intel_timeline *timeline;
470
471         GEM_BUG_ON(!irqs_disabled());
472         lockdep_assert_held(&engine->timeline->lock);
473
474         /* Only unwind in reverse order, required so that the per-context list
475          * is kept in seqno/ring order.
476          */
477         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
478         engine->timeline->seqno--;
479
480         /* We may be recursing from the signal callback of another i915 fence */
481         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
482         request->global_seqno = 0;
483         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
484                 intel_engine_cancel_signaling(request);
485         spin_unlock(&request->lock);
486
487         /* Transfer back from the global per-engine timeline to per-context */
488         timeline = request->timeline;
489         GEM_BUG_ON(timeline == engine->timeline);
490
491         spin_lock(&timeline->lock);
492         list_move(&request->link, &timeline->requests);
493         spin_unlock(&timeline->lock);
494
495         /* We don't need to wake_up any waiters on request->execute, they
496          * will get woken by any other event or us re-adding this request
497          * to the engine timeline (__i915_gem_request_submit()). The waiters
498          * should be quite adapt at finding that the request now has a new
499          * global_seqno to the one they went to sleep on.
500          */
501 }
502
503 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
504 {
505         struct intel_engine_cs *engine = request->engine;
506         unsigned long flags;
507
508         /* Will be called from irq-context when using foreign fences. */
509         spin_lock_irqsave(&engine->timeline->lock, flags);
510
511         __i915_gem_request_unsubmit(request);
512
513         spin_unlock_irqrestore(&engine->timeline->lock, flags);
514 }
515
516 static int __i915_sw_fence_call
517 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
518 {
519         struct drm_i915_gem_request *request =
520                 container_of(fence, typeof(*request), submit);
521
522         switch (state) {
523         case FENCE_COMPLETE:
524                 trace_i915_gem_request_submit(request);
525                 request->engine->submit_request(request);
526                 break;
527
528         case FENCE_FREE:
529                 i915_gem_request_put(request);
530                 break;
531         }
532
533         return NOTIFY_DONE;
534 }
535
536 /**
537  * i915_gem_request_alloc - allocate a request structure
538  *
539  * @engine: engine that we wish to issue the request on.
540  * @ctx: context that the request will be associated with.
541  *       This can be NULL if the request is not directly related to
542  *       any specific user context, in which case this function will
543  *       choose an appropriate context to use.
544  *
545  * Returns a pointer to the allocated request if successful,
546  * or an error code if not.
547  */
548 struct drm_i915_gem_request *
549 i915_gem_request_alloc(struct intel_engine_cs *engine,
550                        struct i915_gem_context *ctx)
551 {
552         struct drm_i915_private *dev_priv = engine->i915;
553         struct drm_i915_gem_request *req;
554         int ret;
555
556         lockdep_assert_held(&dev_priv->drm.struct_mutex);
557
558         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
559          * EIO if the GPU is already wedged.
560          */
561         if (i915_terminally_wedged(&dev_priv->gpu_error))
562                 return ERR_PTR(-EIO);
563
564         /* Pinning the contexts may generate requests in order to acquire
565          * GGTT space, so do this first before we reserve a seqno for
566          * ourselves.
567          */
568         ret = engine->context_pin(engine, ctx);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         ret = reserve_seqno(engine);
573         if (ret)
574                 goto err_unpin;
575
576         /* Move the oldest request to the slab-cache (if not in use!) */
577         req = list_first_entry_or_null(&engine->timeline->requests,
578                                        typeof(*req), link);
579         if (req && i915_gem_request_completed(req))
580                 i915_gem_request_retire(req);
581
582         /* Beware: Dragons be flying overhead.
583          *
584          * We use RCU to look up requests in flight. The lookups may
585          * race with the request being allocated from the slab freelist.
586          * That is the request we are writing to here, may be in the process
587          * of being read by __i915_gem_active_get_rcu(). As such,
588          * we have to be very careful when overwriting the contents. During
589          * the RCU lookup, we change chase the request->engine pointer,
590          * read the request->global_seqno and increment the reference count.
591          *
592          * The reference count is incremented atomically. If it is zero,
593          * the lookup knows the request is unallocated and complete. Otherwise,
594          * it is either still in use, or has been reallocated and reset
595          * with dma_fence_init(). This increment is safe for release as we
596          * check that the request we have a reference to and matches the active
597          * request.
598          *
599          * Before we increment the refcount, we chase the request->engine
600          * pointer. We must not call kmem_cache_zalloc() or else we set
601          * that pointer to NULL and cause a crash during the lookup. If
602          * we see the request is completed (based on the value of the
603          * old engine and seqno), the lookup is complete and reports NULL.
604          * If we decide the request is not completed (new engine or seqno),
605          * then we grab a reference and double check that it is still the
606          * active request - which it won't be and restart the lookup.
607          *
608          * Do not use kmem_cache_zalloc() here!
609          */
610         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
611         if (!req) {
612                 ret = -ENOMEM;
613                 goto err_unreserve;
614         }
615
616         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
617         GEM_BUG_ON(req->timeline == engine->timeline);
618
619         spin_lock_init(&req->lock);
620         dma_fence_init(&req->fence,
621                        &i915_fence_ops,
622                        &req->lock,
623                        req->timeline->fence_context,
624                        timeline_get_seqno(req->timeline));
625
626         /* We bump the ref for the fence chain */
627         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
628         init_waitqueue_head(&req->execute);
629
630         i915_priotree_init(&req->priotree);
631
632         INIT_LIST_HEAD(&req->active_list);
633         req->i915 = dev_priv;
634         req->engine = engine;
635         req->ctx = ctx;
636
637         /* No zalloc, must clear what we need by hand */
638         req->global_seqno = 0;
639         req->file_priv = NULL;
640         req->batch = NULL;
641         req->capture_list = NULL;
642
643         /*
644          * Reserve space in the ring buffer for all the commands required to
645          * eventually emit this request. This is to guarantee that the
646          * i915_add_request() call can't fail. Note that the reserve may need
647          * to be redone if the request is not actually submitted straight
648          * away, e.g. because a GPU scheduler has deferred it.
649          */
650         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
651         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
652
653         ret = engine->request_alloc(req);
654         if (ret)
655                 goto err_ctx;
656
657         /* Record the position of the start of the request so that
658          * should we detect the updated seqno part-way through the
659          * GPU processing the request, we never over-estimate the
660          * position of the head.
661          */
662         req->head = req->ring->emit;
663
664         /* Check that we didn't interrupt ourselves with a new request */
665         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
666         return req;
667
668 err_ctx:
669         /* Make sure we didn't add ourselves to external state before freeing */
670         GEM_BUG_ON(!list_empty(&req->active_list));
671         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
672         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
673
674         kmem_cache_free(dev_priv->requests, req);
675 err_unreserve:
676         unreserve_seqno(engine);
677 err_unpin:
678         engine->context_unpin(engine, ctx);
679         return ERR_PTR(ret);
680 }
681
682 static int
683 i915_gem_request_await_request(struct drm_i915_gem_request *to,
684                                struct drm_i915_gem_request *from)
685 {
686         u32 seqno;
687         int ret;
688
689         GEM_BUG_ON(to == from);
690         GEM_BUG_ON(to->timeline == from->timeline);
691
692         if (i915_gem_request_completed(from))
693                 return 0;
694
695         if (to->engine->schedule) {
696                 ret = i915_priotree_add_dependency(to->i915,
697                                                    &to->priotree,
698                                                    &from->priotree);
699                 if (ret < 0)
700                         return ret;
701         }
702
703         if (to->engine == from->engine) {
704                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
705                                                        &from->submit,
706                                                        GFP_KERNEL);
707                 return ret < 0 ? ret : 0;
708         }
709
710         seqno = i915_gem_request_global_seqno(from);
711         if (!seqno)
712                 goto await_dma_fence;
713
714         if (!i915.semaphores) {
715                 if (!__i915_gem_request_started(from, seqno))
716                         goto await_dma_fence;
717
718                 if (!__i915_spin_request(from, seqno, TASK_INTERRUPTIBLE, 2))
719                         goto await_dma_fence;
720         } else {
721                 if (seqno <= to->timeline->global_sync[from->engine->id])
722                         return 0;
723
724                 trace_i915_gem_ring_sync_to(to, from);
725                 ret = to->engine->semaphore.sync_to(to, from);
726                 if (ret)
727                         return ret;
728
729                 to->timeline->global_sync[from->engine->id] = seqno;
730         }
731
732         return 0;
733
734 await_dma_fence:
735         ret = i915_sw_fence_await_dma_fence(&to->submit,
736                                             &from->fence, 0,
737                                             GFP_KERNEL);
738         return ret < 0 ? ret : 0;
739 }
740
741 int
742 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
743                                  struct dma_fence *fence)
744 {
745         struct dma_fence **child = &fence;
746         unsigned int nchild = 1;
747         int ret;
748
749         /* Note that if the fence-array was created in signal-on-any mode,
750          * we should *not* decompose it into its individual fences. However,
751          * we don't currently store which mode the fence-array is operating
752          * in. Fortunately, the only user of signal-on-any is private to
753          * amdgpu and we should not see any incoming fence-array from
754          * sync-file being in signal-on-any mode.
755          */
756         if (dma_fence_is_array(fence)) {
757                 struct dma_fence_array *array = to_dma_fence_array(fence);
758
759                 child = array->fences;
760                 nchild = array->num_fences;
761                 GEM_BUG_ON(!nchild);
762         }
763
764         do {
765                 fence = *child++;
766                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
767                         continue;
768
769                 /*
770                  * Requests on the same timeline are explicitly ordered, along
771                  * with their dependencies, by i915_add_request() which ensures
772                  * that requests are submitted in-order through each ring.
773                  */
774                 if (fence->context == req->fence.context)
775                         continue;
776
777                 /* Squash repeated waits to the same timelines */
778                 if (fence->context != req->i915->mm.unordered_timeline &&
779                     intel_timeline_sync_is_later(req->timeline, fence))
780                         continue;
781
782                 if (dma_fence_is_i915(fence))
783                         ret = i915_gem_request_await_request(req,
784                                                              to_request(fence));
785                 else
786                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
787                                                             I915_FENCE_TIMEOUT,
788                                                             GFP_KERNEL);
789                 if (ret < 0)
790                         return ret;
791
792                 /* Record the latest fence used against each timeline */
793                 if (fence->context != req->i915->mm.unordered_timeline)
794                         intel_timeline_sync_set(req->timeline, fence);
795         } while (--nchild);
796
797         return 0;
798 }
799
800 /**
801  * i915_gem_request_await_object - set this request to (async) wait upon a bo
802  *
803  * @to: request we are wishing to use
804  * @obj: object which may be in use on another ring.
805  *
806  * This code is meant to abstract object synchronization with the GPU.
807  * Conceptually we serialise writes between engines inside the GPU.
808  * We only allow one engine to write into a buffer at any time, but
809  * multiple readers. To ensure each has a coherent view of memory, we must:
810  *
811  * - If there is an outstanding write request to the object, the new
812  *   request must wait for it to complete (either CPU or in hw, requests
813  *   on the same ring will be naturally ordered).
814  *
815  * - If we are a write request (pending_write_domain is set), the new
816  *   request must wait for outstanding read requests to complete.
817  *
818  * Returns 0 if successful, else propagates up the lower layer error.
819  */
820 int
821 i915_gem_request_await_object(struct drm_i915_gem_request *to,
822                               struct drm_i915_gem_object *obj,
823                               bool write)
824 {
825         struct dma_fence *excl;
826         int ret = 0;
827
828         if (write) {
829                 struct dma_fence **shared;
830                 unsigned int count, i;
831
832                 ret = reservation_object_get_fences_rcu(obj->resv,
833                                                         &excl, &count, &shared);
834                 if (ret)
835                         return ret;
836
837                 for (i = 0; i < count; i++) {
838                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
839                         if (ret)
840                                 break;
841
842                         dma_fence_put(shared[i]);
843                 }
844
845                 for (; i < count; i++)
846                         dma_fence_put(shared[i]);
847                 kfree(shared);
848         } else {
849                 excl = reservation_object_get_excl_rcu(obj->resv);
850         }
851
852         if (excl) {
853                 if (ret == 0)
854                         ret = i915_gem_request_await_dma_fence(to, excl);
855
856                 dma_fence_put(excl);
857         }
858
859         return ret;
860 }
861
862 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
863 {
864         struct drm_i915_private *dev_priv = engine->i915;
865
866         if (dev_priv->gt.awake)
867                 return;
868
869         GEM_BUG_ON(!dev_priv->gt.active_requests);
870
871         intel_runtime_pm_get_noresume(dev_priv);
872         dev_priv->gt.awake = true;
873
874         intel_enable_gt_powersave(dev_priv);
875         i915_update_gfx_val(dev_priv);
876         if (INTEL_GEN(dev_priv) >= 6)
877                 gen6_rps_busy(dev_priv);
878
879         queue_delayed_work(dev_priv->wq,
880                            &dev_priv->gt.retire_work,
881                            round_jiffies_up_relative(HZ));
882 }
883
884 /*
885  * NB: This function is not allowed to fail. Doing so would mean the the
886  * request is not being tracked for completion but the work itself is
887  * going to happen on the hardware. This would be a Bad Thing(tm).
888  */
889 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
890 {
891         struct intel_engine_cs *engine = request->engine;
892         struct intel_ring *ring = request->ring;
893         struct intel_timeline *timeline = request->timeline;
894         struct drm_i915_gem_request *prev;
895         u32 *cs;
896         int err;
897
898         lockdep_assert_held(&request->i915->drm.struct_mutex);
899         trace_i915_gem_request_add(request);
900
901         /* Make sure that no request gazumped us - if it was allocated after
902          * our i915_gem_request_alloc() and called __i915_add_request() before
903          * us, the timeline will hold its seqno which is later than ours.
904          */
905         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
906
907         /*
908          * To ensure that this call will not fail, space for its emissions
909          * should already have been reserved in the ring buffer. Let the ring
910          * know that it is time to use that space up.
911          */
912         request->reserved_space = 0;
913
914         /*
915          * Emit any outstanding flushes - execbuf can fail to emit the flush
916          * after having emitted the batchbuffer command. Hence we need to fix
917          * things up similar to emitting the lazy request. The difference here
918          * is that the flush _must_ happen before the next request, no matter
919          * what.
920          */
921         if (flush_caches) {
922                 err = engine->emit_flush(request, EMIT_FLUSH);
923
924                 /* Not allowed to fail! */
925                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
926         }
927
928         /* Record the position of the start of the breadcrumb so that
929          * should we detect the updated seqno part-way through the
930          * GPU processing the request, we never over-estimate the
931          * position of the ring's HEAD.
932          */
933         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
934         GEM_BUG_ON(IS_ERR(cs));
935         request->postfix = intel_ring_offset(request, cs);
936
937         /* Seal the request and mark it as pending execution. Note that
938          * we may inspect this state, without holding any locks, during
939          * hangcheck. Hence we apply the barrier to ensure that we do not
940          * see a more recent value in the hws than we are tracking.
941          */
942
943         prev = i915_gem_active_raw(&timeline->last_request,
944                                    &request->i915->drm.struct_mutex);
945         if (prev) {
946                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
947                                              &request->submitq);
948                 if (engine->schedule)
949                         __i915_priotree_add_dependency(&request->priotree,
950                                                        &prev->priotree,
951                                                        &request->dep,
952                                                        0);
953         }
954
955         spin_lock_irq(&timeline->lock);
956         list_add_tail(&request->link, &timeline->requests);
957         spin_unlock_irq(&timeline->lock);
958
959         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
960         i915_gem_active_set(&timeline->last_request, request);
961
962         list_add_tail(&request->ring_link, &ring->request_list);
963         request->emitted_jiffies = jiffies;
964
965         if (!request->i915->gt.active_requests++)
966                 i915_gem_mark_busy(engine);
967
968         /* Let the backend know a new request has arrived that may need
969          * to adjust the existing execution schedule due to a high priority
970          * request - i.e. we may want to preempt the current request in order
971          * to run a high priority dependency chain *before* we can execute this
972          * request.
973          *
974          * This is called before the request is ready to run so that we can
975          * decide whether to preempt the entire chain so that it is ready to
976          * run at the earliest possible convenience.
977          */
978         if (engine->schedule)
979                 engine->schedule(request, request->ctx->priority);
980
981         local_bh_disable();
982         i915_sw_fence_commit(&request->submit);
983         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
984 }
985
986 static unsigned long local_clock_us(unsigned int *cpu)
987 {
988         unsigned long t;
989
990         /* Cheaply and approximately convert from nanoseconds to microseconds.
991          * The result and subsequent calculations are also defined in the same
992          * approximate microseconds units. The principal source of timing
993          * error here is from the simple truncation.
994          *
995          * Note that local_clock() is only defined wrt to the current CPU;
996          * the comparisons are no longer valid if we switch CPUs. Instead of
997          * blocking preemption for the entire busywait, we can detect the CPU
998          * switch and use that as indicator of system load and a reason to
999          * stop busywaiting, see busywait_stop().
1000          */
1001         *cpu = get_cpu();
1002         t = local_clock() >> 10;
1003         put_cpu();
1004
1005         return t;
1006 }
1007
1008 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1009 {
1010         unsigned int this_cpu;
1011
1012         if (time_after(local_clock_us(&this_cpu), timeout))
1013                 return true;
1014
1015         return this_cpu != cpu;
1016 }
1017
1018 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1019                          u32 seqno, int state, unsigned long timeout_us)
1020 {
1021         struct intel_engine_cs *engine = req->engine;
1022         unsigned int irq, cpu;
1023
1024         /* When waiting for high frequency requests, e.g. during synchronous
1025          * rendering split between the CPU and GPU, the finite amount of time
1026          * required to set up the irq and wait upon it limits the response
1027          * rate. By busywaiting on the request completion for a short while we
1028          * can service the high frequency waits as quick as possible. However,
1029          * if it is a slow request, we want to sleep as quickly as possible.
1030          * The tradeoff between waiting and sleeping is roughly the time it
1031          * takes to sleep on a request, on the order of a microsecond.
1032          */
1033
1034         irq = atomic_read(&engine->irq_count);
1035         timeout_us += local_clock_us(&cpu);
1036         do {
1037                 if (seqno != i915_gem_request_global_seqno(req))
1038                         break;
1039
1040                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1041                                       seqno))
1042                         return true;
1043
1044                 /* Seqno are meant to be ordered *before* the interrupt. If
1045                  * we see an interrupt without a corresponding seqno advance,
1046                  * assume we won't see one in the near future but require
1047                  * the engine->seqno_barrier() to fixup coherency.
1048                  */
1049                 if (atomic_read(&engine->irq_count) != irq)
1050                         break;
1051
1052                 if (signal_pending_state(state, current))
1053                         break;
1054
1055                 if (busywait_stop(timeout_us, cpu))
1056                         break;
1057
1058                 cpu_relax();
1059         } while (!need_resched());
1060
1061         return false;
1062 }
1063
1064 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1065 {
1066         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1067                 return false;
1068
1069         __set_current_state(TASK_RUNNING);
1070         i915_reset(request->i915);
1071         return true;
1072 }
1073
1074 /**
1075  * i915_wait_request - wait until execution of request has finished
1076  * @req: the request to wait upon
1077  * @flags: how to wait
1078  * @timeout: how long to wait in jiffies
1079  *
1080  * i915_wait_request() waits for the request to be completed, for a
1081  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1082  * unbounded wait).
1083  *
1084  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1085  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1086  * must not specify that the wait is locked.
1087  *
1088  * Returns the remaining time (in jiffies) if the request completed, which may
1089  * be zero or -ETIME if the request is unfinished after the timeout expires.
1090  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1091  * pending before the request completes.
1092  */
1093 long i915_wait_request(struct drm_i915_gem_request *req,
1094                        unsigned int flags,
1095                        long timeout)
1096 {
1097         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1098                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1099         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1100         DEFINE_WAIT_FUNC(reset, default_wake_function);
1101         DEFINE_WAIT_FUNC(exec, default_wake_function);
1102         struct intel_wait wait;
1103
1104         might_sleep();
1105 #if IS_ENABLED(CONFIG_LOCKDEP)
1106         GEM_BUG_ON(debug_locks &&
1107                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1108                    !!(flags & I915_WAIT_LOCKED));
1109 #endif
1110         GEM_BUG_ON(timeout < 0);
1111
1112         if (i915_gem_request_completed(req))
1113                 return timeout;
1114
1115         if (!timeout)
1116                 return -ETIME;
1117
1118         trace_i915_gem_request_wait_begin(req, flags);
1119
1120         add_wait_queue(&req->execute, &exec);
1121         if (flags & I915_WAIT_LOCKED)
1122                 add_wait_queue(errq, &reset);
1123
1124         intel_wait_init(&wait, req);
1125
1126 restart:
1127         do {
1128                 set_current_state(state);
1129                 if (intel_wait_update_request(&wait, req))
1130                         break;
1131
1132                 if (flags & I915_WAIT_LOCKED &&
1133                     __i915_wait_request_check_and_reset(req))
1134                         continue;
1135
1136                 if (signal_pending_state(state, current)) {
1137                         timeout = -ERESTARTSYS;
1138                         goto complete;
1139                 }
1140
1141                 if (!timeout) {
1142                         timeout = -ETIME;
1143                         goto complete;
1144                 }
1145
1146                 timeout = io_schedule_timeout(timeout);
1147         } while (1);
1148
1149         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1150         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1151
1152         /* Optimistic short spin before touching IRQs */
1153         if (i915_spin_request(req, state, 5))
1154                 goto complete;
1155
1156         set_current_state(state);
1157         if (intel_engine_add_wait(req->engine, &wait))
1158                 /* In order to check that we haven't missed the interrupt
1159                  * as we enabled it, we need to kick ourselves to do a
1160                  * coherent check on the seqno before we sleep.
1161                  */
1162                 goto wakeup;
1163
1164         if (flags & I915_WAIT_LOCKED)
1165                 __i915_wait_request_check_and_reset(req);
1166
1167         for (;;) {
1168                 if (signal_pending_state(state, current)) {
1169                         timeout = -ERESTARTSYS;
1170                         break;
1171                 }
1172
1173                 if (!timeout) {
1174                         timeout = -ETIME;
1175                         break;
1176                 }
1177
1178                 timeout = io_schedule_timeout(timeout);
1179
1180                 if (intel_wait_complete(&wait) &&
1181                     intel_wait_check_request(&wait, req))
1182                         break;
1183
1184                 set_current_state(state);
1185
1186 wakeup:
1187                 /* Carefully check if the request is complete, giving time
1188                  * for the seqno to be visible following the interrupt.
1189                  * We also have to check in case we are kicked by the GPU
1190                  * reset in order to drop the struct_mutex.
1191                  */
1192                 if (__i915_request_irq_complete(req))
1193                         break;
1194
1195                 /* If the GPU is hung, and we hold the lock, reset the GPU
1196                  * and then check for completion. On a full reset, the engine's
1197                  * HW seqno will be advanced passed us and we are complete.
1198                  * If we do a partial reset, we have to wait for the GPU to
1199                  * resume and update the breadcrumb.
1200                  *
1201                  * If we don't hold the mutex, we can just wait for the worker
1202                  * to come along and update the breadcrumb (either directly
1203                  * itself, or indirectly by recovering the GPU).
1204                  */
1205                 if (flags & I915_WAIT_LOCKED &&
1206                     __i915_wait_request_check_and_reset(req))
1207                         continue;
1208
1209                 /* Only spin if we know the GPU is processing this request */
1210                 if (i915_spin_request(req, state, 2))
1211                         break;
1212
1213                 if (!intel_wait_check_request(&wait, req)) {
1214                         intel_engine_remove_wait(req->engine, &wait);
1215                         goto restart;
1216                 }
1217         }
1218
1219         intel_engine_remove_wait(req->engine, &wait);
1220 complete:
1221         __set_current_state(TASK_RUNNING);
1222         if (flags & I915_WAIT_LOCKED)
1223                 remove_wait_queue(errq, &reset);
1224         remove_wait_queue(&req->execute, &exec);
1225         trace_i915_gem_request_wait_end(req);
1226
1227         return timeout;
1228 }
1229
1230 static void engine_retire_requests(struct intel_engine_cs *engine)
1231 {
1232         struct drm_i915_gem_request *request, *next;
1233         u32 seqno = intel_engine_get_seqno(engine);
1234         LIST_HEAD(retire);
1235
1236         spin_lock_irq(&engine->timeline->lock);
1237         list_for_each_entry_safe(request, next,
1238                                  &engine->timeline->requests, link) {
1239                 if (!i915_seqno_passed(seqno, request->global_seqno))
1240                         break;
1241
1242                 list_move_tail(&request->link, &retire);
1243         }
1244         spin_unlock_irq(&engine->timeline->lock);
1245
1246         list_for_each_entry_safe(request, next, &retire, link)
1247                 i915_gem_request_retire(request);
1248 }
1249
1250 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1251 {
1252         struct intel_engine_cs *engine;
1253         enum intel_engine_id id;
1254
1255         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1256
1257         if (!dev_priv->gt.active_requests)
1258                 return;
1259
1260         for_each_engine(engine, dev_priv, id)
1261                 engine_retire_requests(engine);
1262 }
1263
1264 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1265 #include "selftests/mock_request.c"
1266 #include "selftests/i915_gem_request.c"
1267 #endif