]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262         POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344         spin_lock_irq(&dev_priv->irq_lock);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         I915_WRITE(reg, dev_priv->pm_rps_events);
347         POSTING_READ(reg);
348         dev_priv->rps.pm_iir = 0;
349         spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         spin_lock_irq(&dev_priv->irq_lock);
357
358         WARN_ON(dev_priv->rps.pm_iir);
359         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360         dev_priv->rps.interrupts_enabled = true;
361         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362                                 dev_priv->pm_rps_events);
363         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365         spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370         /*
371          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372          * if GEN6_PM_UP_EI_EXPIRED is masked.
373          *
374          * TODO: verify if this can be reproduced on VLV,CHV.
375          */
376         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379         if (INTEL_INFO(dev_priv)->gen >= 8)
380                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382         return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387         struct drm_i915_private *dev_priv = dev->dev_private;
388
389         spin_lock_irq(&dev_priv->irq_lock);
390         dev_priv->rps.interrupts_enabled = false;
391         spin_unlock_irq(&dev_priv->irq_lock);
392
393         cancel_work_sync(&dev_priv->rps.work);
394
395         spin_lock_irq(&dev_priv->irq_lock);
396
397         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401                                 ~dev_priv->pm_rps_events);
402
403         spin_unlock_irq(&dev_priv->irq_lock);
404
405         synchronize_irq(dev->irq);
406 }
407
408 /**
409  * bdw_update_port_irq - update DE port interrupt
410  * @dev_priv: driver private
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415                                 uint32_t interrupt_mask,
416                                 uint32_t enabled_irq_mask)
417 {
418         uint32_t new_val;
419         uint32_t old_val;
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426                 return;
427
428         old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430         new_val = old_val;
431         new_val &= ~interrupt_mask;
432         new_val |= (~enabled_irq_mask & interrupt_mask);
433
434         if (new_val != old_val) {
435                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436                 POSTING_READ(GEN8_DE_PORT_IMR);
437         }
438 }
439
440 /**
441  * bdw_update_pipe_irq - update DE pipe interrupt
442  * @dev_priv: driver private
443  * @pipe: pipe whose interrupt to update
444  * @interrupt_mask: mask of interrupt bits to update
445  * @enabled_irq_mask: mask of interrupt bits to enable
446  */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448                          enum pipe pipe,
449                          uint32_t interrupt_mask,
450                          uint32_t enabled_irq_mask)
451 {
452         uint32_t new_val;
453
454         assert_spin_locked(&dev_priv->irq_lock);
455
456         WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459                 return;
460
461         new_val = dev_priv->de_irq_mask[pipe];
462         new_val &= ~interrupt_mask;
463         new_val |= (~enabled_irq_mask & interrupt_mask);
464
465         if (new_val != dev_priv->de_irq_mask[pipe]) {
466                 dev_priv->de_irq_mask[pipe] = new_val;
467                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469         }
470 }
471
472 /**
473  * ibx_display_interrupt_update - update SDEIMR
474  * @dev_priv: driver private
475  * @interrupt_mask: mask of interrupt bits to update
476  * @enabled_irq_mask: mask of interrupt bits to enable
477  */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479                                   uint32_t interrupt_mask,
480                                   uint32_t enabled_irq_mask)
481 {
482         uint32_t sdeimr = I915_READ(SDEIMR);
483         sdeimr &= ~interrupt_mask;
484         sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486         WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488         assert_spin_locked(&dev_priv->irq_lock);
489
490         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491                 return;
492
493         I915_WRITE(SDEIMR, sdeimr);
494         POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499                        u32 enable_mask, u32 status_mask)
500 {
501         i915_reg_t reg = PIPESTAT(pipe);
502         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504         assert_spin_locked(&dev_priv->irq_lock);
505         WARN_ON(!intel_irqs_enabled(dev_priv));
506
507         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
509                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510                       pipe_name(pipe), enable_mask, status_mask))
511                 return;
512
513         if ((pipestat & enable_mask) == enable_mask)
514                 return;
515
516         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518         /* Enable the interrupt, clear any pending status */
519         pipestat |= enable_mask | status_mask;
520         I915_WRITE(reg, pipestat);
521         POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526                         u32 enable_mask, u32 status_mask)
527 {
528         i915_reg_t reg = PIPESTAT(pipe);
529         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531         assert_spin_locked(&dev_priv->irq_lock);
532         WARN_ON(!intel_irqs_enabled(dev_priv));
533
534         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
536                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537                       pipe_name(pipe), enable_mask, status_mask))
538                 return;
539
540         if ((pipestat & enable_mask) == 0)
541                 return;
542
543         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545         pipestat &= ~enable_mask;
546         I915_WRITE(reg, pipestat);
547         POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552         u32 enable_mask = status_mask << 16;
553
554         /*
555          * On pipe A we don't support the PSR interrupt yet,
556          * on pipe B and C the same bit MBZ.
557          */
558         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559                 return 0;
560         /*
561          * On pipe B and C we don't support the PSR interrupt yet, on pipe
562          * A the same bit is for perf counters which we don't use either.
563          */
564         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565                 return 0;
566
567         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568                          SPRITE0_FLIP_DONE_INT_EN_VLV |
569                          SPRITE1_FLIP_DONE_INT_EN_VLV);
570         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575         return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580                      u32 status_mask)
581 {
582         u32 enable_mask;
583
584         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586                                                            status_mask);
587         else
588                 enable_mask = status_mask << 16;
589         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594                       u32 status_mask)
595 {
596         u32 enable_mask;
597
598         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600                                                            status_mask);
601         else
602                 enable_mask = status_mask << 16;
603         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608  * @dev: drm device
609  */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612         struct drm_i915_private *dev_priv = dev->dev_private;
613
614         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615                 return;
616
617         spin_lock_irq(&dev_priv->irq_lock);
618
619         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620         if (INTEL_INFO(dev)->gen >= 4)
621                 i915_enable_pipestat(dev_priv, PIPE_A,
622                                      PIPE_LEGACY_BLC_EVENT_STATUS);
623
624         spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628  * This timing diagram depicts the video signal in and
629  * around the vertical blanking period.
630  *
631  * Assumptions about the fictitious mode used in this example:
632  *  vblank_start >= 3
633  *  vsync_start = vblank_start + 1
634  *  vsync_end = vblank_start + 2
635  *  vtotal = vblank_start + 3
636  *
637  *           start of vblank:
638  *           latch double buffered registers
639  *           increment frame counter (ctg+)
640  *           generate start of vblank interrupt (gen4+)
641  *           |
642  *           |          frame start:
643  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
644  *           |          may be shifted forward 1-3 extra lines via PIPECONF
645  *           |          |
646  *           |          |  start of vsync:
647  *           |          |  generate vsync interrupt
648  *           |          |  |
649  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
650  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
651  * ----va---> <-----------------vb--------------------> <--------va-------------
652  *       |          |       <----vs----->                     |
653  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656  *       |          |                                         |
657  *       last visible pixel                                   first visible pixel
658  *                  |                                         increment frame counter (gen3/4)
659  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
660  *
661  * x  = horizontal active
662  * _  = horizontal blanking
663  * hs = horizontal sync
664  * va = vertical active
665  * vb = vertical blanking
666  * vs = vertical sync
667  * vbs = vblank_start (number)
668  *
669  * Summary:
670  * - most events happen at the start of horizontal sync
671  * - frame start happens at the start of horizontal blank, 1-4 lines
672  *   (depending on PIPECONF settings) after the start of vblank
673  * - gen3/4 pixel and frame counter are synchronized with the start
674  *   of horizontal active on the first line of vertical active
675  */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679         /* Gen2 doesn't have a hardware frame counter */
680         return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684  * we use as a pipe index
685  */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688         struct drm_i915_private *dev_priv = dev->dev_private;
689         i915_reg_t high_frame, low_frame;
690         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691         struct intel_crtc *intel_crtc =
692                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695         htotal = mode->crtc_htotal;
696         hsync_start = mode->crtc_hsync_start;
697         vbl_start = mode->crtc_vblank_start;
698         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701         /* Convert to pixel count */
702         vbl_start *= htotal;
703
704         /* Start of vblank event occurs at start of hsync */
705         vbl_start -= htotal - hsync_start;
706
707         high_frame = PIPEFRAME(pipe);
708         low_frame = PIPEFRAMEPIXEL(pipe);
709
710         /*
711          * High & low register fields aren't synchronized, so make sure
712          * we get a low value that's stable across two reads of the high
713          * register.
714          */
715         do {
716                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717                 low   = I915_READ(low_frame);
718                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719         } while (high1 != high2);
720
721         high1 >>= PIPE_FRAME_HIGH_SHIFT;
722         pixel = low & PIPE_PIXEL_MASK;
723         low >>= PIPE_FRAME_LOW_SHIFT;
724
725         /*
726          * The frame counter increments at beginning of active.
727          * Cook up a vblank counter by also checking the pixel
728          * counter against vblank start.
729          */
730         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736
737         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743         struct drm_device *dev = crtc->base.dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         const struct drm_display_mode *mode = &crtc->base.hwmode;
746         enum pipe pipe = crtc->pipe;
747         int position, vtotal;
748
749         vtotal = mode->crtc_vtotal;
750         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751                 vtotal /= 2;
752
753         if (IS_GEN2(dev))
754                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755         else
756                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758         /*
759          * On HSW, the DSL reg (0x70000) appears to return 0 if we
760          * read it just before the start of vblank.  So try it again
761          * so we don't accidentally end up spanning a vblank frame
762          * increment, causing the pipe_update_end() code to squak at us.
763          *
764          * The nature of this problem means we can't simply check the ISR
765          * bit and return the vblank start value; nor can we use the scanline
766          * debug register in the transcoder as it appears to have the same
767          * problem.  We may need to extend this to include other platforms,
768          * but so far testing only shows the problem on HSW.
769          */
770         if (HAS_DDI(dev) && !position) {
771                 int i, temp;
772
773                 for (i = 0; i < 100; i++) {
774                         udelay(1);
775                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776                                 DSL_LINEMASK_GEN3;
777                         if (temp != position) {
778                                 position = temp;
779                                 break;
780                         }
781                 }
782         }
783
784         /*
785          * See update_scanline_offset() for the details on the
786          * scanline_offset adjustment.
787          */
788         return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792                                     unsigned int flags, int *vpos, int *hpos,
793                                     ktime_t *stime, ktime_t *etime,
794                                     const struct drm_display_mode *mode)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799         int position;
800         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801         bool in_vbl = true;
802         int ret = 0;
803         unsigned long irqflags;
804
805         if (WARN_ON(!mode->crtc_clock)) {
806                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807                                  "pipe %c\n", pipe_name(pipe));
808                 return 0;
809         }
810
811         htotal = mode->crtc_htotal;
812         hsync_start = mode->crtc_hsync_start;
813         vtotal = mode->crtc_vtotal;
814         vbl_start = mode->crtc_vblank_start;
815         vbl_end = mode->crtc_vblank_end;
816
817         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819                 vbl_end /= 2;
820                 vtotal /= 2;
821         }
822
823         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825         /*
826          * Lock uncore.lock, as we will do multiple timing critical raw
827          * register reads, potentially with preemption disabled, so the
828          * following code must not block on uncore.lock.
829          */
830         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834         /* Get optional system timestamp before query. */
835         if (stime)
836                 *stime = ktime_get();
837
838         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839                 /* No obvious pixelcount register. Only query vertical
840                  * scanout position from Display scan line register.
841                  */
842                 position = __intel_get_crtc_scanline(intel_crtc);
843         } else {
844                 /* Have access to pixelcount since start of frame.
845                  * We can split this into vertical and horizontal
846                  * scanout position.
847                  */
848                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850                 /* convert to pixel counts */
851                 vbl_start *= htotal;
852                 vbl_end *= htotal;
853                 vtotal *= htotal;
854
855                 /*
856                  * In interlaced modes, the pixel counter counts all pixels,
857                  * so one field will have htotal more pixels. In order to avoid
858                  * the reported position from jumping backwards when the pixel
859                  * counter is beyond the length of the shorter field, just
860                  * clamp the position the length of the shorter field. This
861                  * matches how the scanline counter based position works since
862                  * the scanline counter doesn't count the two half lines.
863                  */
864                 if (position >= vtotal)
865                         position = vtotal - 1;
866
867                 /*
868                  * Start of vblank interrupt is triggered at start of hsync,
869                  * just prior to the first active line of vblank. However we
870                  * consider lines to start at the leading edge of horizontal
871                  * active. So, should we get here before we've crossed into
872                  * the horizontal active of the first line in vblank, we would
873                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874                  * always add htotal-hsync_start to the current pixel position.
875                  */
876                 position = (position + htotal - hsync_start) % vtotal;
877         }
878
879         /* Get optional system timestamp after query. */
880         if (etime)
881                 *etime = ktime_get();
882
883         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887         in_vbl = position >= vbl_start && position < vbl_end;
888
889         /*
890          * While in vblank, position will be negative
891          * counting up towards 0 at vbl_end. And outside
892          * vblank, position will be positive counting
893          * up since vbl_end.
894          */
895         if (position >= vbl_start)
896                 position -= vbl_end;
897         else
898                 position += vtotal - vbl_end;
899
900         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901                 *vpos = position;
902                 *hpos = 0;
903         } else {
904                 *vpos = position / htotal;
905                 *hpos = position - (*vpos * htotal);
906         }
907
908         /* In vblank? */
909         if (in_vbl)
910                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912         return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918         unsigned long irqflags;
919         int position;
920
921         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922         position = __intel_get_crtc_scanline(crtc);
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929                               int *max_error,
930                               struct timeval *vblank_time,
931                               unsigned flags)
932 {
933         struct drm_crtc *crtc;
934
935         if (pipe >= INTEL_INFO(dev)->num_pipes) {
936                 DRM_ERROR("Invalid crtc %u\n", pipe);
937                 return -EINVAL;
938         }
939
940         /* Get drm_crtc to timestamp: */
941         crtc = intel_get_crtc_for_pipe(dev, pipe);
942         if (crtc == NULL) {
943                 DRM_ERROR("Invalid crtc %u\n", pipe);
944                 return -EINVAL;
945         }
946
947         if (!crtc->hwmode.crtc_clock) {
948                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949                 return -EBUSY;
950         }
951
952         /* Helper routine in DRM core does all the work: */
953         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954                                                      vblank_time, flags,
955                                                      &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 busy_up, busy_down, max_avg, min_avg;
962         u8 new_delay;
963
964         spin_lock(&mchdev_lock);
965
966         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968         new_delay = dev_priv->ips.cur_delay;
969
970         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971         busy_up = I915_READ(RCPREVBSYTUPAVG);
972         busy_down = I915_READ(RCPREVBSYTDNAVG);
973         max_avg = I915_READ(RCBMAXAVG);
974         min_avg = I915_READ(RCBMINAVG);
975
976         /* Handle RCS change request from hw */
977         if (busy_up > max_avg) {
978                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979                         new_delay = dev_priv->ips.cur_delay - 1;
980                 if (new_delay < dev_priv->ips.max_delay)
981                         new_delay = dev_priv->ips.max_delay;
982         } else if (busy_down < min_avg) {
983                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984                         new_delay = dev_priv->ips.cur_delay + 1;
985                 if (new_delay > dev_priv->ips.min_delay)
986                         new_delay = dev_priv->ips.min_delay;
987         }
988
989         if (ironlake_set_drps(dev, new_delay))
990                 dev_priv->ips.cur_delay = new_delay;
991
992         spin_unlock(&mchdev_lock);
993
994         return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999         if (!intel_engine_initialized(engine))
1000                 return;
1001
1002         trace_i915_gem_request_notify(engine);
1003         engine->user_interrupts++;
1004
1005         wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009                         struct intel_rps_ei *ei)
1010 {
1011         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017                          const struct intel_rps_ei *old,
1018                          const struct intel_rps_ei *now,
1019                          int threshold)
1020 {
1021         u64 time, c0;
1022         unsigned int mul = 100;
1023
1024         if (old->cz_clock == 0)
1025                 return false;
1026
1027         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028                 mul <<= 8;
1029
1030         time = now->cz_clock - old->cz_clock;
1031         time *= threshold * dev_priv->czclk_freq;
1032
1033         /* Workload can be split between render + media, e.g. SwapBuffers
1034          * being blitted in X after being rendered in mesa. To account for
1035          * this we need to combine both engines into our activity counter.
1036          */
1037         c0 = now->render_c0 - old->render_c0;
1038         c0 += now->media_c0 - old->media_c0;
1039         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041         return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052         struct intel_rps_ei now;
1053         u32 events = 0;
1054
1055         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056                 return 0;
1057
1058         vlv_c0_read(dev_priv, &now);
1059         if (now.cz_clock == 0)
1060                 return 0;
1061
1062         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063                 if (!vlv_c0_above(dev_priv,
1064                                   &dev_priv->rps.down_ei, &now,
1065                                   dev_priv->rps.down_threshold))
1066                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067                 dev_priv->rps.down_ei = now;
1068         }
1069
1070         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071                 if (vlv_c0_above(dev_priv,
1072                                  &dev_priv->rps.up_ei, &now,
1073                                  dev_priv->rps.up_threshold))
1074                         events |= GEN6_PM_RP_UP_THRESHOLD;
1075                 dev_priv->rps.up_ei = now;
1076         }
1077
1078         return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083         struct intel_engine_cs *engine;
1084
1085         for_each_engine(engine, dev_priv)
1086                 if (engine->irq_refcount)
1087                         return true;
1088
1089         return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094         struct drm_i915_private *dev_priv =
1095                 container_of(work, struct drm_i915_private, rps.work);
1096         bool client_boost;
1097         int new_delay, adj, min, max;
1098         u32 pm_iir;
1099
1100         spin_lock_irq(&dev_priv->irq_lock);
1101         /* Speed up work cancelation during disabling rps interrupts. */
1102         if (!dev_priv->rps.interrupts_enabled) {
1103                 spin_unlock_irq(&dev_priv->irq_lock);
1104                 return;
1105         }
1106
1107         /*
1108          * The RPS work is synced during runtime suspend, we don't require a
1109          * wakeref. TODO: instead of disabling the asserts make sure that we
1110          * always hold an RPM reference while the work is running.
1111          */
1112         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114         pm_iir = dev_priv->rps.pm_iir;
1115         dev_priv->rps.pm_iir = 0;
1116         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118         client_boost = dev_priv->rps.client_boost;
1119         dev_priv->rps.client_boost = false;
1120         spin_unlock_irq(&dev_priv->irq_lock);
1121
1122         /* Make sure we didn't queue anything we're not going to process. */
1123         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126                 goto out;
1127
1128         mutex_lock(&dev_priv->rps.hw_lock);
1129
1130         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132         adj = dev_priv->rps.last_adj;
1133         new_delay = dev_priv->rps.cur_freq;
1134         min = dev_priv->rps.min_freq_softlimit;
1135         max = dev_priv->rps.max_freq_softlimit;
1136
1137         if (client_boost) {
1138                 new_delay = dev_priv->rps.max_freq_softlimit;
1139                 adj = 0;
1140         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141                 if (adj > 0)
1142                         adj *= 2;
1143                 else /* CHV needs even encode values */
1144                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145                 /*
1146                  * For better performance, jump directly
1147                  * to RPe if we're below it.
1148                  */
1149                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150                         new_delay = dev_priv->rps.efficient_freq;
1151                         adj = 0;
1152                 }
1153         } else if (any_waiters(dev_priv)) {
1154                 adj = 0;
1155         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157                         new_delay = dev_priv->rps.efficient_freq;
1158                 else
1159                         new_delay = dev_priv->rps.min_freq_softlimit;
1160                 adj = 0;
1161         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162                 if (adj < 0)
1163                         adj *= 2;
1164                 else /* CHV needs even encode values */
1165                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166         } else { /* unknown event */
1167                 adj = 0;
1168         }
1169
1170         dev_priv->rps.last_adj = adj;
1171
1172         /* sysfs frequency interfaces may have snuck in while servicing the
1173          * interrupt
1174          */
1175         new_delay += adj;
1176         new_delay = clamp_t(int, new_delay, min, max);
1177
1178         intel_set_rps(dev_priv->dev, new_delay);
1179
1180         mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188  * occurred.
1189  * @work: workqueue struct
1190  *
1191  * Doesn't actually do anything except notify userspace. As a consequence of
1192  * this event, userspace should try to remap the bad rows since statistically
1193  * it is likely the same row is more likely to go bad again.
1194  */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197         struct drm_i915_private *dev_priv =
1198                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199         u32 error_status, row, bank, subbank;
1200         char *parity_event[6];
1201         uint32_t misccpctl;
1202         uint8_t slice = 0;
1203
1204         /* We must turn off DOP level clock gating to access the L3 registers.
1205          * In order to prevent a get/put style interface, acquire struct mutex
1206          * any time we access those registers.
1207          */
1208         mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210         /* If we've screwed up tracking, just let the interrupt fire again */
1211         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212                 goto out;
1213
1214         misccpctl = I915_READ(GEN7_MISCCPCTL);
1215         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216         POSTING_READ(GEN7_MISCCPCTL);
1217
1218         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219                 i915_reg_t reg;
1220
1221                 slice--;
1222                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223                         break;
1224
1225                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227                 reg = GEN7_L3CDERRST1(slice);
1228
1229                 error_status = I915_READ(reg);
1230                 row = GEN7_PARITY_ERROR_ROW(error_status);
1231                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235                 POSTING_READ(reg);
1236
1237                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242                 parity_event[5] = NULL;
1243
1244                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245                                    KOBJ_CHANGE, parity_event);
1246
1247                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248                           slice, row, bank, subbank);
1249
1250                 kfree(parity_event[4]);
1251                 kfree(parity_event[3]);
1252                 kfree(parity_event[2]);
1253                 kfree(parity_event[1]);
1254         }
1255
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259         WARN_ON(dev_priv->l3_parity.which_slice);
1260         spin_lock_irq(&dev_priv->irq_lock);
1261         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262         spin_unlock_irq(&dev_priv->irq_lock);
1263
1264         mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1268                                                u32 iir)
1269 {
1270         if (!HAS_L3_DPF(dev_priv))
1271                 return;
1272
1273         spin_lock(&dev_priv->irq_lock);
1274         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1275         spin_unlock(&dev_priv->irq_lock);
1276
1277         iir &= GT_PARITY_ERROR(dev_priv);
1278         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1279                 dev_priv->l3_parity.which_slice |= 1 << 1;
1280
1281         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1282                 dev_priv->l3_parity.which_slice |= 1 << 0;
1283
1284         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1285 }
1286
1287 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1288                                u32 gt_iir)
1289 {
1290         if (gt_iir &
1291             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1292                 notify_ring(&dev_priv->engine[RCS]);
1293         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1294                 notify_ring(&dev_priv->engine[VCS]);
1295 }
1296
1297 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1298                                u32 gt_iir)
1299 {
1300
1301         if (gt_iir &
1302             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1303                 notify_ring(&dev_priv->engine[RCS]);
1304         if (gt_iir & GT_BSD_USER_INTERRUPT)
1305                 notify_ring(&dev_priv->engine[VCS]);
1306         if (gt_iir & GT_BLT_USER_INTERRUPT)
1307                 notify_ring(&dev_priv->engine[BCS]);
1308
1309         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1310                       GT_BSD_CS_ERROR_INTERRUPT |
1311                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1312                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1313
1314         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1315                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1316 }
1317
1318 static __always_inline void
1319 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1320 {
1321         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1322                 notify_ring(engine);
1323         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1324                 tasklet_schedule(&engine->irq_tasklet);
1325 }
1326
1327 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1328                                    u32 master_ctl,
1329                                    u32 gt_iir[4])
1330 {
1331         irqreturn_t ret = IRQ_NONE;
1332
1333         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1334                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1335                 if (gt_iir[0]) {
1336                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1337                         ret = IRQ_HANDLED;
1338                 } else
1339                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1340         }
1341
1342         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1343                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1344                 if (gt_iir[1]) {
1345                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1346                         ret = IRQ_HANDLED;
1347                 } else
1348                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1349         }
1350
1351         if (master_ctl & GEN8_GT_VECS_IRQ) {
1352                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1353                 if (gt_iir[3]) {
1354                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1355                         ret = IRQ_HANDLED;
1356                 } else
1357                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1358         }
1359
1360         if (master_ctl & GEN8_GT_PM_IRQ) {
1361                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1362                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1363                         I915_WRITE_FW(GEN8_GT_IIR(2),
1364                                       gt_iir[2] & dev_priv->pm_rps_events);
1365                         ret = IRQ_HANDLED;
1366                 } else
1367                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1368         }
1369
1370         return ret;
1371 }
1372
1373 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1374                                 u32 gt_iir[4])
1375 {
1376         if (gt_iir[0]) {
1377                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1378                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1379                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1380                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1381         }
1382
1383         if (gt_iir[1]) {
1384                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1385                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1386                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1387                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1388         }
1389
1390         if (gt_iir[3])
1391                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1392                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1393
1394         if (gt_iir[2] & dev_priv->pm_rps_events)
1395                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1396 }
1397
1398 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1399 {
1400         switch (port) {
1401         case PORT_A:
1402                 return val & PORTA_HOTPLUG_LONG_DETECT;
1403         case PORT_B:
1404                 return val & PORTB_HOTPLUG_LONG_DETECT;
1405         case PORT_C:
1406                 return val & PORTC_HOTPLUG_LONG_DETECT;
1407         default:
1408                 return false;
1409         }
1410 }
1411
1412 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1413 {
1414         switch (port) {
1415         case PORT_E:
1416                 return val & PORTE_HOTPLUG_LONG_DETECT;
1417         default:
1418                 return false;
1419         }
1420 }
1421
1422 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1423 {
1424         switch (port) {
1425         case PORT_A:
1426                 return val & PORTA_HOTPLUG_LONG_DETECT;
1427         case PORT_B:
1428                 return val & PORTB_HOTPLUG_LONG_DETECT;
1429         case PORT_C:
1430                 return val & PORTC_HOTPLUG_LONG_DETECT;
1431         case PORT_D:
1432                 return val & PORTD_HOTPLUG_LONG_DETECT;
1433         default:
1434                 return false;
1435         }
1436 }
1437
1438 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1439 {
1440         switch (port) {
1441         case PORT_A:
1442                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1443         default:
1444                 return false;
1445         }
1446 }
1447
1448 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1449 {
1450         switch (port) {
1451         case PORT_B:
1452                 return val & PORTB_HOTPLUG_LONG_DETECT;
1453         case PORT_C:
1454                 return val & PORTC_HOTPLUG_LONG_DETECT;
1455         case PORT_D:
1456                 return val & PORTD_HOTPLUG_LONG_DETECT;
1457         default:
1458                 return false;
1459         }
1460 }
1461
1462 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1463 {
1464         switch (port) {
1465         case PORT_B:
1466                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1467         case PORT_C:
1468                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1469         case PORT_D:
1470                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1471         default:
1472                 return false;
1473         }
1474 }
1475
1476 /*
1477  * Get a bit mask of pins that have triggered, and which ones may be long.
1478  * This can be called multiple times with the same masks to accumulate
1479  * hotplug detection results from several registers.
1480  *
1481  * Note that the caller is expected to zero out the masks initially.
1482  */
1483 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1484                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1485                              const u32 hpd[HPD_NUM_PINS],
1486                              bool long_pulse_detect(enum port port, u32 val))
1487 {
1488         enum port port;
1489         int i;
1490
1491         for_each_hpd_pin(i) {
1492                 if ((hpd[i] & hotplug_trigger) == 0)
1493                         continue;
1494
1495                 *pin_mask |= BIT(i);
1496
1497                 if (!intel_hpd_pin_to_port(i, &port))
1498                         continue;
1499
1500                 if (long_pulse_detect(port, dig_hotplug_reg))
1501                         *long_mask |= BIT(i);
1502         }
1503
1504         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1505                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1506
1507 }
1508
1509 static void gmbus_irq_handler(struct drm_device *dev)
1510 {
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513         wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 static void dp_aux_irq_handler(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         wake_up_all(&dev_priv->gmbus_wait_queue);
1521 }
1522
1523 #if defined(CONFIG_DEBUG_FS)
1524 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1525                                          uint32_t crc0, uint32_t crc1,
1526                                          uint32_t crc2, uint32_t crc3,
1527                                          uint32_t crc4)
1528 {
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1531         struct intel_pipe_crc_entry *entry;
1532         int head, tail;
1533
1534         spin_lock(&pipe_crc->lock);
1535
1536         if (!pipe_crc->entries) {
1537                 spin_unlock(&pipe_crc->lock);
1538                 DRM_DEBUG_KMS("spurious interrupt\n");
1539                 return;
1540         }
1541
1542         head = pipe_crc->head;
1543         tail = pipe_crc->tail;
1544
1545         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1546                 spin_unlock(&pipe_crc->lock);
1547                 DRM_ERROR("CRC buffer overflowing\n");
1548                 return;
1549         }
1550
1551         entry = &pipe_crc->entries[head];
1552
1553         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1554         entry->crc[0] = crc0;
1555         entry->crc[1] = crc1;
1556         entry->crc[2] = crc2;
1557         entry->crc[3] = crc3;
1558         entry->crc[4] = crc4;
1559
1560         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1561         pipe_crc->head = head;
1562
1563         spin_unlock(&pipe_crc->lock);
1564
1565         wake_up_interruptible(&pipe_crc->wq);
1566 }
1567 #else
1568 static inline void
1569 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1570                              uint32_t crc0, uint32_t crc1,
1571                              uint32_t crc2, uint32_t crc3,
1572                              uint32_t crc4) {}
1573 #endif
1574
1575
1576 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1577 {
1578         struct drm_i915_private *dev_priv = dev->dev_private;
1579
1580         display_pipe_crc_irq_handler(dev, pipe,
1581                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1582                                      0, 0, 0, 0);
1583 }
1584
1585 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         display_pipe_crc_irq_handler(dev, pipe,
1590                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1591                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1592                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1593                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1594                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1595 }
1596
1597 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1598 {
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         uint32_t res1, res2;
1601
1602         if (INTEL_INFO(dev)->gen >= 3)
1603                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1604         else
1605                 res1 = 0;
1606
1607         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1608                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1609         else
1610                 res2 = 0;
1611
1612         display_pipe_crc_irq_handler(dev, pipe,
1613                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1614                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1615                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1616                                      res1, res2);
1617 }
1618
1619 /* The RPS events need forcewake, so we add them to a work queue and mask their
1620  * IMR bits until the work is done. Other interrupts can be processed without
1621  * the work queue. */
1622 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1623 {
1624         if (pm_iir & dev_priv->pm_rps_events) {
1625                 spin_lock(&dev_priv->irq_lock);
1626                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1627                 if (dev_priv->rps.interrupts_enabled) {
1628                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1629                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1630                 }
1631                 spin_unlock(&dev_priv->irq_lock);
1632         }
1633
1634         if (INTEL_INFO(dev_priv)->gen >= 8)
1635                 return;
1636
1637         if (HAS_VEBOX(dev_priv)) {
1638                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1639                         notify_ring(&dev_priv->engine[VECS]);
1640
1641                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1642                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1643         }
1644 }
1645
1646 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1647 {
1648         if (!drm_handle_vblank(dev, pipe))
1649                 return false;
1650
1651         return true;
1652 }
1653
1654 static void valleyview_pipestat_irq_ack(struct drm_device *dev, u32 iir,
1655                                         u32 pipe_stats[I915_MAX_PIPES])
1656 {
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         int pipe;
1659
1660         spin_lock(&dev_priv->irq_lock);
1661
1662         if (!dev_priv->display_irqs_enabled) {
1663                 spin_unlock(&dev_priv->irq_lock);
1664                 return;
1665         }
1666
1667         for_each_pipe(dev_priv, pipe) {
1668                 i915_reg_t reg;
1669                 u32 mask, iir_bit = 0;
1670
1671                 /*
1672                  * PIPESTAT bits get signalled even when the interrupt is
1673                  * disabled with the mask bits, and some of the status bits do
1674                  * not generate interrupts at all (like the underrun bit). Hence
1675                  * we need to be careful that we only handle what we want to
1676                  * handle.
1677                  */
1678
1679                 /* fifo underruns are filterered in the underrun handler. */
1680                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1681
1682                 switch (pipe) {
1683                 case PIPE_A:
1684                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1685                         break;
1686                 case PIPE_B:
1687                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1688                         break;
1689                 case PIPE_C:
1690                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1691                         break;
1692                 }
1693                 if (iir & iir_bit)
1694                         mask |= dev_priv->pipestat_irq_mask[pipe];
1695
1696                 if (!mask)
1697                         continue;
1698
1699                 reg = PIPESTAT(pipe);
1700                 mask |= PIPESTAT_INT_ENABLE_MASK;
1701                 pipe_stats[pipe] = I915_READ(reg) & mask;
1702
1703                 /*
1704                  * Clear the PIPE*STAT regs before the IIR
1705                  */
1706                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1707                                         PIPESTAT_INT_STATUS_MASK))
1708                         I915_WRITE(reg, pipe_stats[pipe]);
1709         }
1710         spin_unlock(&dev_priv->irq_lock);
1711 }
1712
1713 static void valleyview_pipestat_irq_handler(struct drm_device *dev,
1714                                             u32 pipe_stats[I915_MAX_PIPES])
1715 {
1716         struct drm_i915_private *dev_priv = to_i915(dev);
1717         enum pipe pipe;
1718
1719         for_each_pipe(dev_priv, pipe) {
1720                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1721                     intel_pipe_handle_vblank(dev, pipe))
1722                         intel_check_page_flip(dev, pipe);
1723
1724                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1725                         intel_prepare_page_flip(dev, pipe);
1726                         intel_finish_page_flip(dev, pipe);
1727                 }
1728
1729                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1730                         i9xx_pipe_crc_irq_handler(dev, pipe);
1731
1732                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1733                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1734         }
1735
1736         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1737                 gmbus_irq_handler(dev);
1738 }
1739
1740 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1741 {
1742         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1743
1744         if (hotplug_status)
1745                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1746
1747         return hotplug_status;
1748 }
1749
1750 static void i9xx_hpd_irq_handler(struct drm_device *dev,
1751                                  u32 hotplug_status)
1752 {
1753         u32 pin_mask = 0, long_mask = 0;
1754
1755         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1756                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1757
1758                 if (hotplug_trigger) {
1759                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760                                            hotplug_trigger, hpd_status_g4x,
1761                                            i9xx_port_hotplug_long_detect);
1762
1763                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1764                 }
1765
1766                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1767                         dp_aux_irq_handler(dev);
1768         } else {
1769                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1770
1771                 if (hotplug_trigger) {
1772                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1773                                            hotplug_trigger, hpd_status_i915,
1774                                            i9xx_port_hotplug_long_detect);
1775                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1776                 }
1777         }
1778 }
1779
1780 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1781 {
1782         struct drm_device *dev = arg;
1783         struct drm_i915_private *dev_priv = dev->dev_private;
1784         irqreturn_t ret = IRQ_NONE;
1785
1786         if (!intel_irqs_enabled(dev_priv))
1787                 return IRQ_NONE;
1788
1789         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1790         disable_rpm_wakeref_asserts(dev_priv);
1791
1792         do {
1793                 u32 iir, gt_iir, pm_iir;
1794                 u32 pipe_stats[I915_MAX_PIPES] = {};
1795                 u32 hotplug_status = 0;
1796                 u32 ier = 0;
1797
1798                 gt_iir = I915_READ(GTIIR);
1799                 pm_iir = I915_READ(GEN6_PMIIR);
1800                 iir = I915_READ(VLV_IIR);
1801
1802                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1803                         break;
1804
1805                 ret = IRQ_HANDLED;
1806
1807                 /*
1808                  * Theory on interrupt generation, based on empirical evidence:
1809                  *
1810                  * x = ((VLV_IIR & VLV_IER) ||
1811                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1812                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1813                  *
1814                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1815                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1816                  * guarantee the CPU interrupt will be raised again even if we
1817                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1818                  * bits this time around.
1819                  */
1820                 I915_WRITE(VLV_MASTER_IER, 0);
1821                 ier = I915_READ(VLV_IER);
1822                 I915_WRITE(VLV_IER, 0);
1823
1824                 if (gt_iir)
1825                         I915_WRITE(GTIIR, gt_iir);
1826                 if (pm_iir)
1827                         I915_WRITE(GEN6_PMIIR, pm_iir);
1828
1829                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1830                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1831
1832                 /* Call regardless, as some status bits might not be
1833                  * signalled in iir */
1834                 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1835
1836                 /*
1837                  * VLV_IIR is single buffered, and reflects the level
1838                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1839                  */
1840                 if (iir)
1841                         I915_WRITE(VLV_IIR, iir);
1842
1843                 I915_WRITE(VLV_IER, ier);
1844                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1845                 POSTING_READ(VLV_MASTER_IER);
1846
1847                 if (gt_iir)
1848                         snb_gt_irq_handler(dev_priv, gt_iir);
1849                 if (pm_iir)
1850                         gen6_rps_irq_handler(dev_priv, pm_iir);
1851
1852                 if (hotplug_status)
1853                         i9xx_hpd_irq_handler(dev, hotplug_status);
1854
1855                 valleyview_pipestat_irq_handler(dev, pipe_stats);
1856         } while (0);
1857
1858         enable_rpm_wakeref_asserts(dev_priv);
1859
1860         return ret;
1861 }
1862
1863 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1864 {
1865         struct drm_device *dev = arg;
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         irqreturn_t ret = IRQ_NONE;
1868
1869         if (!intel_irqs_enabled(dev_priv))
1870                 return IRQ_NONE;
1871
1872         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1873         disable_rpm_wakeref_asserts(dev_priv);
1874
1875         do {
1876                 u32 master_ctl, iir;
1877                 u32 gt_iir[4] = {};
1878                 u32 pipe_stats[I915_MAX_PIPES] = {};
1879                 u32 hotplug_status = 0;
1880                 u32 ier = 0;
1881
1882                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1883                 iir = I915_READ(VLV_IIR);
1884
1885                 if (master_ctl == 0 && iir == 0)
1886                         break;
1887
1888                 ret = IRQ_HANDLED;
1889
1890                 /*
1891                  * Theory on interrupt generation, based on empirical evidence:
1892                  *
1893                  * x = ((VLV_IIR & VLV_IER) ||
1894                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1895                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1896                  *
1897                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1898                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1899                  * guarantee the CPU interrupt will be raised again even if we
1900                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1901                  * bits this time around.
1902                  */
1903                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1904                 ier = I915_READ(VLV_IER);
1905                 I915_WRITE(VLV_IER, 0);
1906
1907                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1908
1909                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1910                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1911
1912                 /* Call regardless, as some status bits might not be
1913                  * signalled in iir */
1914                 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1915
1916                 /*
1917                  * VLV_IIR is single buffered, and reflects the level
1918                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919                  */
1920                 if (iir)
1921                         I915_WRITE(VLV_IIR, iir);
1922
1923                 I915_WRITE(VLV_IER, ier);
1924                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1925                 POSTING_READ(GEN8_MASTER_IRQ);
1926
1927                 gen8_gt_irq_handler(dev_priv, gt_iir);
1928
1929                 if (hotplug_status)
1930                         i9xx_hpd_irq_handler(dev, hotplug_status);
1931
1932                 valleyview_pipestat_irq_handler(dev, pipe_stats);
1933         } while (0);
1934
1935         enable_rpm_wakeref_asserts(dev_priv);
1936
1937         return ret;
1938 }
1939
1940 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1941                                 const u32 hpd[HPD_NUM_PINS])
1942 {
1943         struct drm_i915_private *dev_priv = to_i915(dev);
1944         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1945
1946         /*
1947          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1948          * unless we touch the hotplug register, even if hotplug_trigger is
1949          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1950          * errors.
1951          */
1952         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1953         if (!hotplug_trigger) {
1954                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1955                         PORTD_HOTPLUG_STATUS_MASK |
1956                         PORTC_HOTPLUG_STATUS_MASK |
1957                         PORTB_HOTPLUG_STATUS_MASK;
1958                 dig_hotplug_reg &= ~mask;
1959         }
1960
1961         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1962         if (!hotplug_trigger)
1963                 return;
1964
1965         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1966                            dig_hotplug_reg, hpd,
1967                            pch_port_hotplug_long_detect);
1968
1969         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1970 }
1971
1972 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975         int pipe;
1976         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1977
1978         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1979
1980         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1981                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1982                                SDE_AUDIO_POWER_SHIFT);
1983                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1984                                  port_name(port));
1985         }
1986
1987         if (pch_iir & SDE_AUX_MASK)
1988                 dp_aux_irq_handler(dev);
1989
1990         if (pch_iir & SDE_GMBUS)
1991                 gmbus_irq_handler(dev);
1992
1993         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1994                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1995
1996         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1997                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1998
1999         if (pch_iir & SDE_POISON)
2000                 DRM_ERROR("PCH poison interrupt\n");
2001
2002         if (pch_iir & SDE_FDI_MASK)
2003                 for_each_pipe(dev_priv, pipe)
2004                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2005                                          pipe_name(pipe),
2006                                          I915_READ(FDI_RX_IIR(pipe)));
2007
2008         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2009                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2010
2011         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2012                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2013
2014         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2015                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016
2017         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2018                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019 }
2020
2021 static void ivb_err_int_handler(struct drm_device *dev)
2022 {
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         u32 err_int = I915_READ(GEN7_ERR_INT);
2025         enum pipe pipe;
2026
2027         if (err_int & ERR_INT_POISON)
2028                 DRM_ERROR("Poison interrupt\n");
2029
2030         for_each_pipe(dev_priv, pipe) {
2031                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2032                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2033
2034                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2035                         if (IS_IVYBRIDGE(dev))
2036                                 ivb_pipe_crc_irq_handler(dev, pipe);
2037                         else
2038                                 hsw_pipe_crc_irq_handler(dev, pipe);
2039                 }
2040         }
2041
2042         I915_WRITE(GEN7_ERR_INT, err_int);
2043 }
2044
2045 static void cpt_serr_int_handler(struct drm_device *dev)
2046 {
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         u32 serr_int = I915_READ(SERR_INT);
2049
2050         if (serr_int & SERR_INT_POISON)
2051                 DRM_ERROR("PCH poison interrupt\n");
2052
2053         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2054                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2055
2056         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2057                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2058
2059         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2060                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2061
2062         I915_WRITE(SERR_INT, serr_int);
2063 }
2064
2065 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         int pipe;
2069         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2070
2071         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2072
2073         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2074                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2075                                SDE_AUDIO_POWER_SHIFT_CPT);
2076                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2077                                  port_name(port));
2078         }
2079
2080         if (pch_iir & SDE_AUX_MASK_CPT)
2081                 dp_aux_irq_handler(dev);
2082
2083         if (pch_iir & SDE_GMBUS_CPT)
2084                 gmbus_irq_handler(dev);
2085
2086         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2087                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2088
2089         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2090                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2091
2092         if (pch_iir & SDE_FDI_MASK_CPT)
2093                 for_each_pipe(dev_priv, pipe)
2094                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2095                                          pipe_name(pipe),
2096                                          I915_READ(FDI_RX_IIR(pipe)));
2097
2098         if (pch_iir & SDE_ERROR_CPT)
2099                 cpt_serr_int_handler(dev);
2100 }
2101
2102 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2103 {
2104         struct drm_i915_private *dev_priv = dev->dev_private;
2105         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2106                 ~SDE_PORTE_HOTPLUG_SPT;
2107         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2108         u32 pin_mask = 0, long_mask = 0;
2109
2110         if (hotplug_trigger) {
2111                 u32 dig_hotplug_reg;
2112
2113                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2114                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2115
2116                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2117                                    dig_hotplug_reg, hpd_spt,
2118                                    spt_port_hotplug_long_detect);
2119         }
2120
2121         if (hotplug2_trigger) {
2122                 u32 dig_hotplug_reg;
2123
2124                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2125                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2126
2127                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2128                                    dig_hotplug_reg, hpd_spt,
2129                                    spt_port_hotplug2_long_detect);
2130         }
2131
2132         if (pin_mask)
2133                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2134
2135         if (pch_iir & SDE_GMBUS_CPT)
2136                 gmbus_irq_handler(dev);
2137 }
2138
2139 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2140                                 const u32 hpd[HPD_NUM_PINS])
2141 {
2142         struct drm_i915_private *dev_priv = to_i915(dev);
2143         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2144
2145         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2146         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2147
2148         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2149                            dig_hotplug_reg, hpd,
2150                            ilk_port_hotplug_long_detect);
2151
2152         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2153 }
2154
2155 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2156 {
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         enum pipe pipe;
2159         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2160
2161         if (hotplug_trigger)
2162                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2163
2164         if (de_iir & DE_AUX_CHANNEL_A)
2165                 dp_aux_irq_handler(dev);
2166
2167         if (de_iir & DE_GSE)
2168                 intel_opregion_asle_intr(dev);
2169
2170         if (de_iir & DE_POISON)
2171                 DRM_ERROR("Poison interrupt\n");
2172
2173         for_each_pipe(dev_priv, pipe) {
2174                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2175                     intel_pipe_handle_vblank(dev, pipe))
2176                         intel_check_page_flip(dev, pipe);
2177
2178                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2179                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2180
2181                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2182                         i9xx_pipe_crc_irq_handler(dev, pipe);
2183
2184                 /* plane/pipes map 1:1 on ilk+ */
2185                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2186                         intel_prepare_page_flip(dev, pipe);
2187                         intel_finish_page_flip_plane(dev, pipe);
2188                 }
2189         }
2190
2191         /* check event from PCH */
2192         if (de_iir & DE_PCH_EVENT) {
2193                 u32 pch_iir = I915_READ(SDEIIR);
2194
2195                 if (HAS_PCH_CPT(dev))
2196                         cpt_irq_handler(dev, pch_iir);
2197                 else
2198                         ibx_irq_handler(dev, pch_iir);
2199
2200                 /* should clear PCH hotplug event before clear CPU irq */
2201                 I915_WRITE(SDEIIR, pch_iir);
2202         }
2203
2204         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2205                 ironlake_rps_change_irq_handler(dev);
2206 }
2207
2208 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2209 {
2210         struct drm_i915_private *dev_priv = dev->dev_private;
2211         enum pipe pipe;
2212         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2213
2214         if (hotplug_trigger)
2215                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2216
2217         if (de_iir & DE_ERR_INT_IVB)
2218                 ivb_err_int_handler(dev);
2219
2220         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2221                 dp_aux_irq_handler(dev);
2222
2223         if (de_iir & DE_GSE_IVB)
2224                 intel_opregion_asle_intr(dev);
2225
2226         for_each_pipe(dev_priv, pipe) {
2227                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2228                     intel_pipe_handle_vblank(dev, pipe))
2229                         intel_check_page_flip(dev, pipe);
2230
2231                 /* plane/pipes map 1:1 on ilk+ */
2232                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2233                         intel_prepare_page_flip(dev, pipe);
2234                         intel_finish_page_flip_plane(dev, pipe);
2235                 }
2236         }
2237
2238         /* check event from PCH */
2239         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2240                 u32 pch_iir = I915_READ(SDEIIR);
2241
2242                 cpt_irq_handler(dev, pch_iir);
2243
2244                 /* clear PCH hotplug event before clear CPU irq */
2245                 I915_WRITE(SDEIIR, pch_iir);
2246         }
2247 }
2248
2249 /*
2250  * To handle irqs with the minimum potential races with fresh interrupts, we:
2251  * 1 - Disable Master Interrupt Control.
2252  * 2 - Find the source(s) of the interrupt.
2253  * 3 - Clear the Interrupt Identity bits (IIR).
2254  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2255  * 5 - Re-enable Master Interrupt Control.
2256  */
2257 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2258 {
2259         struct drm_device *dev = arg;
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2262         irqreturn_t ret = IRQ_NONE;
2263
2264         if (!intel_irqs_enabled(dev_priv))
2265                 return IRQ_NONE;
2266
2267         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2268         disable_rpm_wakeref_asserts(dev_priv);
2269
2270         /* disable master interrupt before clearing iir  */
2271         de_ier = I915_READ(DEIER);
2272         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2273         POSTING_READ(DEIER);
2274
2275         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2276          * interrupts will will be stored on its back queue, and then we'll be
2277          * able to process them after we restore SDEIER (as soon as we restore
2278          * it, we'll get an interrupt if SDEIIR still has something to process
2279          * due to its back queue). */
2280         if (!HAS_PCH_NOP(dev)) {
2281                 sde_ier = I915_READ(SDEIER);
2282                 I915_WRITE(SDEIER, 0);
2283                 POSTING_READ(SDEIER);
2284         }
2285
2286         /* Find, clear, then process each source of interrupt */
2287
2288         gt_iir = I915_READ(GTIIR);
2289         if (gt_iir) {
2290                 I915_WRITE(GTIIR, gt_iir);
2291                 ret = IRQ_HANDLED;
2292                 if (INTEL_INFO(dev)->gen >= 6)
2293                         snb_gt_irq_handler(dev_priv, gt_iir);
2294                 else
2295                         ilk_gt_irq_handler(dev_priv, gt_iir);
2296         }
2297
2298         de_iir = I915_READ(DEIIR);
2299         if (de_iir) {
2300                 I915_WRITE(DEIIR, de_iir);
2301                 ret = IRQ_HANDLED;
2302                 if (INTEL_INFO(dev)->gen >= 7)
2303                         ivb_display_irq_handler(dev, de_iir);
2304                 else
2305                         ilk_display_irq_handler(dev, de_iir);
2306         }
2307
2308         if (INTEL_INFO(dev)->gen >= 6) {
2309                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2310                 if (pm_iir) {
2311                         I915_WRITE(GEN6_PMIIR, pm_iir);
2312                         ret = IRQ_HANDLED;
2313                         gen6_rps_irq_handler(dev_priv, pm_iir);
2314                 }
2315         }
2316
2317         I915_WRITE(DEIER, de_ier);
2318         POSTING_READ(DEIER);
2319         if (!HAS_PCH_NOP(dev)) {
2320                 I915_WRITE(SDEIER, sde_ier);
2321                 POSTING_READ(SDEIER);
2322         }
2323
2324         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2325         enable_rpm_wakeref_asserts(dev_priv);
2326
2327         return ret;
2328 }
2329
2330 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2331                                 const u32 hpd[HPD_NUM_PINS])
2332 {
2333         struct drm_i915_private *dev_priv = to_i915(dev);
2334         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2335
2336         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2337         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2338
2339         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2340                            dig_hotplug_reg, hpd,
2341                            bxt_port_hotplug_long_detect);
2342
2343         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2344 }
2345
2346 static irqreturn_t
2347 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2348 {
2349         struct drm_device *dev = dev_priv->dev;
2350         irqreturn_t ret = IRQ_NONE;
2351         u32 iir;
2352         enum pipe pipe;
2353
2354         if (master_ctl & GEN8_DE_MISC_IRQ) {
2355                 iir = I915_READ(GEN8_DE_MISC_IIR);
2356                 if (iir) {
2357                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2358                         ret = IRQ_HANDLED;
2359                         if (iir & GEN8_DE_MISC_GSE)
2360                                 intel_opregion_asle_intr(dev);
2361                         else
2362                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2363                 }
2364                 else
2365                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2366         }
2367
2368         if (master_ctl & GEN8_DE_PORT_IRQ) {
2369                 iir = I915_READ(GEN8_DE_PORT_IIR);
2370                 if (iir) {
2371                         u32 tmp_mask;
2372                         bool found = false;
2373
2374                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2375                         ret = IRQ_HANDLED;
2376
2377                         tmp_mask = GEN8_AUX_CHANNEL_A;
2378                         if (INTEL_INFO(dev_priv)->gen >= 9)
2379                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2380                                             GEN9_AUX_CHANNEL_C |
2381                                             GEN9_AUX_CHANNEL_D;
2382
2383                         if (iir & tmp_mask) {
2384                                 dp_aux_irq_handler(dev);
2385                                 found = true;
2386                         }
2387
2388                         if (IS_BROXTON(dev_priv)) {
2389                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2390                                 if (tmp_mask) {
2391                                         bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2392                                         found = true;
2393                                 }
2394                         } else if (IS_BROADWELL(dev_priv)) {
2395                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2396                                 if (tmp_mask) {
2397                                         ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2398                                         found = true;
2399                                 }
2400                         }
2401
2402                         if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2403                                 gmbus_irq_handler(dev);
2404                                 found = true;
2405                         }
2406
2407                         if (!found)
2408                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2409                 }
2410                 else
2411                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2412         }
2413
2414         for_each_pipe(dev_priv, pipe) {
2415                 u32 flip_done, fault_errors;
2416
2417                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2418                         continue;
2419
2420                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2421                 if (!iir) {
2422                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2423                         continue;
2424                 }
2425
2426                 ret = IRQ_HANDLED;
2427                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2428
2429                 if (iir & GEN8_PIPE_VBLANK &&
2430                     intel_pipe_handle_vblank(dev, pipe))
2431                         intel_check_page_flip(dev, pipe);
2432
2433                 flip_done = iir;
2434                 if (INTEL_INFO(dev_priv)->gen >= 9)
2435                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2436                 else
2437                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2438
2439                 if (flip_done) {
2440                         intel_prepare_page_flip(dev, pipe);
2441                         intel_finish_page_flip_plane(dev, pipe);
2442                 }
2443
2444                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2445                         hsw_pipe_crc_irq_handler(dev, pipe);
2446
2447                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2448                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2449
2450                 fault_errors = iir;
2451                 if (INTEL_INFO(dev_priv)->gen >= 9)
2452                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2453                 else
2454                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2455
2456                 if (fault_errors)
2457                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2458                                   pipe_name(pipe),
2459                                   fault_errors);
2460         }
2461
2462         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2463             master_ctl & GEN8_DE_PCH_IRQ) {
2464                 /*
2465                  * FIXME(BDW): Assume for now that the new interrupt handling
2466                  * scheme also closed the SDE interrupt handling race we've seen
2467                  * on older pch-split platforms. But this needs testing.
2468                  */
2469                 iir = I915_READ(SDEIIR);
2470                 if (iir) {
2471                         I915_WRITE(SDEIIR, iir);
2472                         ret = IRQ_HANDLED;
2473
2474                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2475                                 spt_irq_handler(dev, iir);
2476                         else
2477                                 cpt_irq_handler(dev, iir);
2478                 } else {
2479                         /*
2480                          * Like on previous PCH there seems to be something
2481                          * fishy going on with forwarding PCH interrupts.
2482                          */
2483                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2484                 }
2485         }
2486
2487         return ret;
2488 }
2489
2490 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2491 {
2492         struct drm_device *dev = arg;
2493         struct drm_i915_private *dev_priv = dev->dev_private;
2494         u32 master_ctl;
2495         u32 gt_iir[4] = {};
2496         irqreturn_t ret;
2497
2498         if (!intel_irqs_enabled(dev_priv))
2499                 return IRQ_NONE;
2500
2501         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2502         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2503         if (!master_ctl)
2504                 return IRQ_NONE;
2505
2506         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2507
2508         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2509         disable_rpm_wakeref_asserts(dev_priv);
2510
2511         /* Find, clear, then process each source of interrupt */
2512         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2513         gen8_gt_irq_handler(dev_priv, gt_iir);
2514         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2515
2516         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2517         POSTING_READ_FW(GEN8_MASTER_IRQ);
2518
2519         enable_rpm_wakeref_asserts(dev_priv);
2520
2521         return ret;
2522 }
2523
2524 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2525                                bool reset_completed)
2526 {
2527         struct intel_engine_cs *engine;
2528
2529         /*
2530          * Notify all waiters for GPU completion events that reset state has
2531          * been changed, and that they need to restart their wait after
2532          * checking for potential errors (and bail out to drop locks if there is
2533          * a gpu reset pending so that i915_error_work_func can acquire them).
2534          */
2535
2536         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2537         for_each_engine(engine, dev_priv)
2538                 wake_up_all(&engine->irq_queue);
2539
2540         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2541         wake_up_all(&dev_priv->pending_flip_queue);
2542
2543         /*
2544          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2545          * reset state is cleared.
2546          */
2547         if (reset_completed)
2548                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2549 }
2550
2551 /**
2552  * i915_reset_and_wakeup - do process context error handling work
2553  * @dev: drm device
2554  *
2555  * Fire an error uevent so userspace can see that a hang or error
2556  * was detected.
2557  */
2558 static void i915_reset_and_wakeup(struct drm_device *dev)
2559 {
2560         struct drm_i915_private *dev_priv = to_i915(dev);
2561         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2562         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2563         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2564         int ret;
2565
2566         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2567
2568         /*
2569          * Note that there's only one work item which does gpu resets, so we
2570          * need not worry about concurrent gpu resets potentially incrementing
2571          * error->reset_counter twice. We only need to take care of another
2572          * racing irq/hangcheck declaring the gpu dead for a second time. A
2573          * quick check for that is good enough: schedule_work ensures the
2574          * correct ordering between hang detection and this work item, and since
2575          * the reset in-progress bit is only ever set by code outside of this
2576          * work we don't need to worry about any other races.
2577          */
2578         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2579                 DRM_DEBUG_DRIVER("resetting chip\n");
2580                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2581                                    reset_event);
2582
2583                 /*
2584                  * In most cases it's guaranteed that we get here with an RPM
2585                  * reference held, for example because there is a pending GPU
2586                  * request that won't finish until the reset is done. This
2587                  * isn't the case at least when we get here by doing a
2588                  * simulated reset via debugs, so get an RPM reference.
2589                  */
2590                 intel_runtime_pm_get(dev_priv);
2591
2592                 intel_prepare_reset(dev);
2593
2594                 /*
2595                  * All state reset _must_ be completed before we update the
2596                  * reset counter, for otherwise waiters might miss the reset
2597                  * pending state and not properly drop locks, resulting in
2598                  * deadlocks with the reset work.
2599                  */
2600                 ret = i915_reset(dev);
2601
2602                 intel_finish_reset(dev);
2603
2604                 intel_runtime_pm_put(dev_priv);
2605
2606                 if (ret == 0)
2607                         kobject_uevent_env(&dev->primary->kdev->kobj,
2608                                            KOBJ_CHANGE, reset_done_event);
2609
2610                 /*
2611                  * Note: The wake_up also serves as a memory barrier so that
2612                  * waiters see the update value of the reset counter atomic_t.
2613                  */
2614                 i915_error_wake_up(dev_priv, true);
2615         }
2616 }
2617
2618 static void i915_report_and_clear_eir(struct drm_device *dev)
2619 {
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621         uint32_t instdone[I915_NUM_INSTDONE_REG];
2622         u32 eir = I915_READ(EIR);
2623         int pipe, i;
2624
2625         if (!eir)
2626                 return;
2627
2628         pr_err("render error detected, EIR: 0x%08x\n", eir);
2629
2630         i915_get_extra_instdone(dev, instdone);
2631
2632         if (IS_G4X(dev)) {
2633                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2634                         u32 ipeir = I915_READ(IPEIR_I965);
2635
2636                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2637                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2638                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2639                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2640                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2641                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2642                         I915_WRITE(IPEIR_I965, ipeir);
2643                         POSTING_READ(IPEIR_I965);
2644                 }
2645                 if (eir & GM45_ERROR_PAGE_TABLE) {
2646                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2647                         pr_err("page table error\n");
2648                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2649                         I915_WRITE(PGTBL_ER, pgtbl_err);
2650                         POSTING_READ(PGTBL_ER);
2651                 }
2652         }
2653
2654         if (!IS_GEN2(dev)) {
2655                 if (eir & I915_ERROR_PAGE_TABLE) {
2656                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2657                         pr_err("page table error\n");
2658                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2659                         I915_WRITE(PGTBL_ER, pgtbl_err);
2660                         POSTING_READ(PGTBL_ER);
2661                 }
2662         }
2663
2664         if (eir & I915_ERROR_MEMORY_REFRESH) {
2665                 pr_err("memory refresh error:\n");
2666                 for_each_pipe(dev_priv, pipe)
2667                         pr_err("pipe %c stat: 0x%08x\n",
2668                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2669                 /* pipestat has already been acked */
2670         }
2671         if (eir & I915_ERROR_INSTRUCTION) {
2672                 pr_err("instruction error\n");
2673                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2674                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2675                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2676                 if (INTEL_INFO(dev)->gen < 4) {
2677                         u32 ipeir = I915_READ(IPEIR);
2678
2679                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2680                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2681                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2682                         I915_WRITE(IPEIR, ipeir);
2683                         POSTING_READ(IPEIR);
2684                 } else {
2685                         u32 ipeir = I915_READ(IPEIR_I965);
2686
2687                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2688                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2689                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2690                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2691                         I915_WRITE(IPEIR_I965, ipeir);
2692                         POSTING_READ(IPEIR_I965);
2693                 }
2694         }
2695
2696         I915_WRITE(EIR, eir);
2697         POSTING_READ(EIR);
2698         eir = I915_READ(EIR);
2699         if (eir) {
2700                 /*
2701                  * some errors might have become stuck,
2702                  * mask them.
2703                  */
2704                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2705                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2706                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2707         }
2708 }
2709
2710 /**
2711  * i915_handle_error - handle a gpu error
2712  * @dev: drm device
2713  * @engine_mask: mask representing engines that are hung
2714  * Do some basic checking of register state at error time and
2715  * dump it to the syslog.  Also call i915_capture_error_state() to make
2716  * sure we get a record and make it available in debugfs.  Fire a uevent
2717  * so userspace knows something bad happened (should trigger collection
2718  * of a ring dump etc.).
2719  */
2720 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2721                        const char *fmt, ...)
2722 {
2723         struct drm_i915_private *dev_priv = dev->dev_private;
2724         va_list args;
2725         char error_msg[80];
2726
2727         va_start(args, fmt);
2728         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2729         va_end(args);
2730
2731         i915_capture_error_state(dev, engine_mask, error_msg);
2732         i915_report_and_clear_eir(dev);
2733
2734         if (engine_mask) {
2735                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2736                                 &dev_priv->gpu_error.reset_counter);
2737
2738                 /*
2739                  * Wakeup waiting processes so that the reset function
2740                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2741                  * various locks. By bumping the reset counter first, the woken
2742                  * processes will see a reset in progress and back off,
2743                  * releasing their locks and then wait for the reset completion.
2744                  * We must do this for _all_ gpu waiters that might hold locks
2745                  * that the reset work needs to acquire.
2746                  *
2747                  * Note: The wake_up serves as the required memory barrier to
2748                  * ensure that the waiters see the updated value of the reset
2749                  * counter atomic_t.
2750                  */
2751                 i915_error_wake_up(dev_priv, false);
2752         }
2753
2754         i915_reset_and_wakeup(dev);
2755 }
2756
2757 /* Called from drm generic code, passed 'crtc' which
2758  * we use as a pipe index
2759  */
2760 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         unsigned long irqflags;
2764
2765         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766         if (INTEL_INFO(dev)->gen >= 4)
2767                 i915_enable_pipestat(dev_priv, pipe,
2768                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2769         else
2770                 i915_enable_pipestat(dev_priv, pipe,
2771                                      PIPE_VBLANK_INTERRUPT_STATUS);
2772         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2773
2774         return 0;
2775 }
2776
2777 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2778 {
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         unsigned long irqflags;
2781         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2782                                                      DE_PIPE_VBLANK(pipe);
2783
2784         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785         ilk_enable_display_irq(dev_priv, bit);
2786         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787
2788         return 0;
2789 }
2790
2791 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793         struct drm_i915_private *dev_priv = dev->dev_private;
2794         unsigned long irqflags;
2795
2796         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797         i915_enable_pipestat(dev_priv, pipe,
2798                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2799         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800
2801         return 0;
2802 }
2803
2804 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2805 {
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807         unsigned long irqflags;
2808
2809         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2810         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2811         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2812
2813         return 0;
2814 }
2815
2816 /* Called from drm generic code, passed 'crtc' which
2817  * we use as a pipe index
2818  */
2819 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         unsigned long irqflags;
2823
2824         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825         i915_disable_pipestat(dev_priv, pipe,
2826                               PIPE_VBLANK_INTERRUPT_STATUS |
2827                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2828         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2829 }
2830
2831 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2832 {
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834         unsigned long irqflags;
2835         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2836                                                      DE_PIPE_VBLANK(pipe);
2837
2838         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2839         ilk_disable_display_irq(dev_priv, bit);
2840         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2841 }
2842
2843 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         unsigned long irqflags;
2847
2848         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849         i915_disable_pipestat(dev_priv, pipe,
2850                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2851         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2852 }
2853
2854 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2855 {
2856         struct drm_i915_private *dev_priv = dev->dev_private;
2857         unsigned long irqflags;
2858
2859         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2860         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2861         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2862 }
2863
2864 static bool
2865 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2866 {
2867         return i915_seqno_passed(seqno,
2868                                  READ_ONCE(engine->last_submitted_seqno));
2869 }
2870
2871 static bool
2872 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2873 {
2874         if (INTEL_INFO(dev)->gen >= 8) {
2875                 return (ipehr >> 23) == 0x1c;
2876         } else {
2877                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2878                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2879                                  MI_SEMAPHORE_REGISTER);
2880         }
2881 }
2882
2883 static struct intel_engine_cs *
2884 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2885                                  u64 offset)
2886 {
2887         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2888         struct intel_engine_cs *signaller;
2889
2890         if (INTEL_INFO(dev_priv)->gen >= 8) {
2891                 for_each_engine(signaller, dev_priv) {
2892                         if (engine == signaller)
2893                                 continue;
2894
2895                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2896                                 return signaller;
2897                 }
2898         } else {
2899                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2900
2901                 for_each_engine(signaller, dev_priv) {
2902                         if(engine == signaller)
2903                                 continue;
2904
2905                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2906                                 return signaller;
2907                 }
2908         }
2909
2910         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2911                   engine->id, ipehr, offset);
2912
2913         return NULL;
2914 }
2915
2916 static struct intel_engine_cs *
2917 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2918 {
2919         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2920         u32 cmd, ipehr, head;
2921         u64 offset = 0;
2922         int i, backwards;
2923
2924         /*
2925          * This function does not support execlist mode - any attempt to
2926          * proceed further into this function will result in a kernel panic
2927          * when dereferencing ring->buffer, which is not set up in execlist
2928          * mode.
2929          *
2930          * The correct way of doing it would be to derive the currently
2931          * executing ring buffer from the current context, which is derived
2932          * from the currently running request. Unfortunately, to get the
2933          * current request we would have to grab the struct_mutex before doing
2934          * anything else, which would be ill-advised since some other thread
2935          * might have grabbed it already and managed to hang itself, causing
2936          * the hang checker to deadlock.
2937          *
2938          * Therefore, this function does not support execlist mode in its
2939          * current form. Just return NULL and move on.
2940          */
2941         if (engine->buffer == NULL)
2942                 return NULL;
2943
2944         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2945         if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2946                 return NULL;
2947
2948         /*
2949          * HEAD is likely pointing to the dword after the actual command,
2950          * so scan backwards until we find the MBOX. But limit it to just 3
2951          * or 4 dwords depending on the semaphore wait command size.
2952          * Note that we don't care about ACTHD here since that might
2953          * point at at batch, and semaphores are always emitted into the
2954          * ringbuffer itself.
2955          */
2956         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2957         backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2958
2959         for (i = backwards; i; --i) {
2960                 /*
2961                  * Be paranoid and presume the hw has gone off into the wild -
2962                  * our ring is smaller than what the hardware (and hence
2963                  * HEAD_ADDR) allows. Also handles wrap-around.
2964                  */
2965                 head &= engine->buffer->size - 1;
2966
2967                 /* This here seems to blow up */
2968                 cmd = ioread32(engine->buffer->virtual_start + head);
2969                 if (cmd == ipehr)
2970                         break;
2971
2972                 head -= 4;
2973         }
2974
2975         if (!i)
2976                 return NULL;
2977
2978         *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2979         if (INTEL_INFO(engine->dev)->gen >= 8) {
2980                 offset = ioread32(engine->buffer->virtual_start + head + 12);
2981                 offset <<= 32;
2982                 offset = ioread32(engine->buffer->virtual_start + head + 8);
2983         }
2984         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2985 }
2986
2987 static int semaphore_passed(struct intel_engine_cs *engine)
2988 {
2989         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2990         struct intel_engine_cs *signaller;
2991         u32 seqno;
2992
2993         engine->hangcheck.deadlock++;
2994
2995         signaller = semaphore_waits_for(engine, &seqno);
2996         if (signaller == NULL)
2997                 return -1;
2998
2999         /* Prevent pathological recursion due to driver bugs */
3000         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
3001                 return -1;
3002
3003         if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
3004                 return 1;
3005
3006         /* cursory check for an unkickable deadlock */
3007         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3008             semaphore_passed(signaller) < 0)
3009                 return -1;
3010
3011         return 0;
3012 }
3013
3014 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3015 {
3016         struct intel_engine_cs *engine;
3017
3018         for_each_engine(engine, dev_priv)
3019                 engine->hangcheck.deadlock = 0;
3020 }
3021
3022 static bool subunits_stuck(struct intel_engine_cs *engine)
3023 {
3024         u32 instdone[I915_NUM_INSTDONE_REG];
3025         bool stuck;
3026         int i;
3027
3028         if (engine->id != RCS)
3029                 return true;
3030
3031         i915_get_extra_instdone(engine->dev, instdone);
3032
3033         /* There might be unstable subunit states even when
3034          * actual head is not moving. Filter out the unstable ones by
3035          * accumulating the undone -> done transitions and only
3036          * consider those as progress.
3037          */
3038         stuck = true;
3039         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3040                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3041
3042                 if (tmp != engine->hangcheck.instdone[i])
3043                         stuck = false;
3044
3045                 engine->hangcheck.instdone[i] |= tmp;
3046         }
3047
3048         return stuck;
3049 }
3050
3051 static enum intel_ring_hangcheck_action
3052 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3053 {
3054         if (acthd != engine->hangcheck.acthd) {
3055
3056                 /* Clear subunit states on head movement */
3057                 memset(engine->hangcheck.instdone, 0,
3058                        sizeof(engine->hangcheck.instdone));
3059
3060                 return HANGCHECK_ACTIVE;
3061         }
3062
3063         if (!subunits_stuck(engine))
3064                 return HANGCHECK_ACTIVE;
3065
3066         return HANGCHECK_HUNG;
3067 }
3068
3069 static enum intel_ring_hangcheck_action
3070 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3071 {
3072         struct drm_device *dev = engine->dev;
3073         struct drm_i915_private *dev_priv = dev->dev_private;
3074         enum intel_ring_hangcheck_action ha;
3075         u32 tmp;
3076
3077         ha = head_stuck(engine, acthd);
3078         if (ha != HANGCHECK_HUNG)
3079                 return ha;
3080
3081         if (IS_GEN2(dev))
3082                 return HANGCHECK_HUNG;
3083
3084         /* Is the chip hanging on a WAIT_FOR_EVENT?
3085          * If so we can simply poke the RB_WAIT bit
3086          * and break the hang. This should work on
3087          * all but the second generation chipsets.
3088          */
3089         tmp = I915_READ_CTL(engine);
3090         if (tmp & RING_WAIT) {
3091                 i915_handle_error(dev, 0,
3092                                   "Kicking stuck wait on %s",
3093                                   engine->name);
3094                 I915_WRITE_CTL(engine, tmp);
3095                 return HANGCHECK_KICK;
3096         }
3097
3098         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3099                 switch (semaphore_passed(engine)) {
3100                 default:
3101                         return HANGCHECK_HUNG;
3102                 case 1:
3103                         i915_handle_error(dev, 0,
3104                                           "Kicking stuck semaphore on %s",
3105                                           engine->name);
3106                         I915_WRITE_CTL(engine, tmp);
3107                         return HANGCHECK_KICK;
3108                 case 0:
3109                         return HANGCHECK_WAIT;
3110                 }
3111         }
3112
3113         return HANGCHECK_HUNG;
3114 }
3115
3116 static unsigned kick_waiters(struct intel_engine_cs *engine)
3117 {
3118         struct drm_i915_private *i915 = to_i915(engine->dev);
3119         unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3120
3121         if (engine->hangcheck.user_interrupts == user_interrupts &&
3122             !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3123                 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3124                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3125                                   engine->name);
3126                 else
3127                         DRM_INFO("Fake missed irq on %s\n",
3128                                  engine->name);
3129                 wake_up_all(&engine->irq_queue);
3130         }
3131
3132         return user_interrupts;
3133 }
3134 /*
3135  * This is called when the chip hasn't reported back with completed
3136  * batchbuffers in a long time. We keep track per ring seqno progress and
3137  * if there are no progress, hangcheck score for that ring is increased.
3138  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3139  * we kick the ring. If we see no progress on three subsequent calls
3140  * we assume chip is wedged and try to fix it by resetting the chip.
3141  */
3142 static void i915_hangcheck_elapsed(struct work_struct *work)
3143 {
3144         struct drm_i915_private *dev_priv =
3145                 container_of(work, typeof(*dev_priv),
3146                              gpu_error.hangcheck_work.work);
3147         struct drm_device *dev = dev_priv->dev;
3148         struct intel_engine_cs *engine;
3149         enum intel_engine_id id;
3150         int busy_count = 0, rings_hung = 0;
3151         bool stuck[I915_NUM_ENGINES] = { 0 };
3152 #define BUSY 1
3153 #define KICK 5
3154 #define HUNG 20
3155 #define ACTIVE_DECAY 15
3156
3157         if (!i915.enable_hangcheck)
3158                 return;
3159
3160         /*
3161          * The hangcheck work is synced during runtime suspend, we don't
3162          * require a wakeref. TODO: instead of disabling the asserts make
3163          * sure that we hold a reference when this work is running.
3164          */
3165         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3166
3167         /* As enabling the GPU requires fairly extensive mmio access,
3168          * periodically arm the mmio checker to see if we are triggering
3169          * any invalid access.
3170          */
3171         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3172
3173         for_each_engine_id(engine, dev_priv, id) {
3174                 u64 acthd;
3175                 u32 seqno;
3176                 unsigned user_interrupts;
3177                 bool busy = true;
3178
3179                 semaphore_clear_deadlocks(dev_priv);
3180
3181                 /* We don't strictly need an irq-barrier here, as we are not
3182                  * serving an interrupt request, be paranoid in case the
3183                  * barrier has side-effects (such as preventing a broken
3184                  * cacheline snoop) and so be sure that we can see the seqno
3185                  * advance. If the seqno should stick, due to a stale
3186                  * cacheline, we would erroneously declare the GPU hung.
3187                  */
3188                 if (engine->irq_seqno_barrier)
3189                         engine->irq_seqno_barrier(engine);
3190
3191                 acthd = intel_ring_get_active_head(engine);
3192                 seqno = engine->get_seqno(engine);
3193
3194                 /* Reset stuck interrupts between batch advances */
3195                 user_interrupts = 0;
3196
3197                 if (engine->hangcheck.seqno == seqno) {
3198                         if (ring_idle(engine, seqno)) {
3199                                 engine->hangcheck.action = HANGCHECK_IDLE;
3200                                 if (waitqueue_active(&engine->irq_queue)) {
3201                                         /* Safeguard against driver failure */
3202                                         user_interrupts = kick_waiters(engine);
3203                                         engine->hangcheck.score += BUSY;
3204                                 } else
3205                                         busy = false;
3206                         } else {
3207                                 /* We always increment the hangcheck score
3208                                  * if the ring is busy and still processing
3209                                  * the same request, so that no single request
3210                                  * can run indefinitely (such as a chain of
3211                                  * batches). The only time we do not increment
3212                                  * the hangcheck score on this ring, if this
3213                                  * ring is in a legitimate wait for another
3214                                  * ring. In that case the waiting ring is a
3215                                  * victim and we want to be sure we catch the
3216                                  * right culprit. Then every time we do kick
3217                                  * the ring, add a small increment to the
3218                                  * score so that we can catch a batch that is
3219                                  * being repeatedly kicked and so responsible
3220                                  * for stalling the machine.
3221                                  */
3222                                 engine->hangcheck.action = ring_stuck(engine,
3223                                                                       acthd);
3224
3225                                 switch (engine->hangcheck.action) {
3226                                 case HANGCHECK_IDLE:
3227                                 case HANGCHECK_WAIT:
3228                                         break;
3229                                 case HANGCHECK_ACTIVE:
3230                                         engine->hangcheck.score += BUSY;
3231                                         break;
3232                                 case HANGCHECK_KICK:
3233                                         engine->hangcheck.score += KICK;
3234                                         break;
3235                                 case HANGCHECK_HUNG:
3236                                         engine->hangcheck.score += HUNG;
3237                                         stuck[id] = true;
3238                                         break;
3239                                 }
3240                         }
3241                 } else {
3242                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3243
3244                         /* Gradually reduce the count so that we catch DoS
3245                          * attempts across multiple batches.
3246                          */
3247                         if (engine->hangcheck.score > 0)
3248                                 engine->hangcheck.score -= ACTIVE_DECAY;
3249                         if (engine->hangcheck.score < 0)
3250                                 engine->hangcheck.score = 0;
3251
3252                         /* Clear head and subunit states on seqno movement */
3253                         acthd = 0;
3254
3255                         memset(engine->hangcheck.instdone, 0,
3256                                sizeof(engine->hangcheck.instdone));
3257                 }
3258
3259                 engine->hangcheck.seqno = seqno;
3260                 engine->hangcheck.acthd = acthd;
3261                 engine->hangcheck.user_interrupts = user_interrupts;
3262                 busy_count += busy;
3263         }
3264
3265         for_each_engine_id(engine, dev_priv, id) {
3266                 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3267                         DRM_INFO("%s on %s\n",
3268                                  stuck[id] ? "stuck" : "no progress",
3269                                  engine->name);
3270                         rings_hung |= intel_engine_flag(engine);
3271                 }
3272         }
3273
3274         if (rings_hung) {
3275                 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3276                 goto out;
3277         }
3278
3279         if (busy_count)
3280                 /* Reset timer case chip hangs without another request
3281                  * being added */
3282                 i915_queue_hangcheck(dev);
3283
3284 out:
3285         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3286 }
3287
3288 void i915_queue_hangcheck(struct drm_device *dev)
3289 {
3290         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3291
3292         if (!i915.enable_hangcheck)
3293                 return;
3294
3295         /* Don't continually defer the hangcheck so that it is always run at
3296          * least once after work has been scheduled on any ring. Otherwise,
3297          * we will ignore a hung ring if a second ring is kept busy.
3298          */
3299
3300         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3301                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3302 }
3303
3304 static void ibx_irq_reset(struct drm_device *dev)
3305 {
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307
3308         if (HAS_PCH_NOP(dev))
3309                 return;
3310
3311         GEN5_IRQ_RESET(SDE);
3312
3313         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3314                 I915_WRITE(SERR_INT, 0xffffffff);
3315 }
3316
3317 /*
3318  * SDEIER is also touched by the interrupt handler to work around missed PCH
3319  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3320  * instead we unconditionally enable all PCH interrupt sources here, but then
3321  * only unmask them as needed with SDEIMR.
3322  *
3323  * This function needs to be called before interrupts are enabled.
3324  */
3325 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3326 {
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329         if (HAS_PCH_NOP(dev))
3330                 return;
3331
3332         WARN_ON(I915_READ(SDEIER) != 0);
3333         I915_WRITE(SDEIER, 0xffffffff);
3334         POSTING_READ(SDEIER);
3335 }
3336
3337 static void gen5_gt_irq_reset(struct drm_device *dev)
3338 {
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340
3341         GEN5_IRQ_RESET(GT);
3342         if (INTEL_INFO(dev)->gen >= 6)
3343                 GEN5_IRQ_RESET(GEN6_PM);
3344 }
3345
3346 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3347 {
3348         enum pipe pipe;
3349
3350         if (IS_CHERRYVIEW(dev_priv))
3351                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3352         else
3353                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3354
3355         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3356         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3357
3358         for_each_pipe(dev_priv, pipe) {
3359                 I915_WRITE(PIPESTAT(pipe),
3360                            PIPE_FIFO_UNDERRUN_STATUS |
3361                            PIPESTAT_INT_STATUS_MASK);
3362                 dev_priv->pipestat_irq_mask[pipe] = 0;
3363         }
3364
3365         GEN5_IRQ_RESET(VLV_);
3366         dev_priv->irq_mask = ~0;
3367 }
3368
3369 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3370 {
3371         u32 pipestat_mask;
3372         u32 enable_mask;
3373         enum pipe pipe;
3374
3375         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3376                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3377
3378         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3379         for_each_pipe(dev_priv, pipe)
3380                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3381
3382         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3383                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3384                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3385         if (IS_CHERRYVIEW(dev_priv))
3386                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3387
3388         WARN_ON(dev_priv->irq_mask != ~0);
3389
3390         dev_priv->irq_mask = ~enable_mask;
3391
3392         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3393 }
3394
3395 /* drm_dma.h hooks
3396 */
3397 static void ironlake_irq_reset(struct drm_device *dev)
3398 {
3399         struct drm_i915_private *dev_priv = dev->dev_private;
3400
3401         I915_WRITE(HWSTAM, 0xffffffff);
3402
3403         GEN5_IRQ_RESET(DE);
3404         if (IS_GEN7(dev))
3405                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3406
3407         gen5_gt_irq_reset(dev);
3408
3409         ibx_irq_reset(dev);
3410 }
3411
3412 static void valleyview_irq_preinstall(struct drm_device *dev)
3413 {
3414         struct drm_i915_private *dev_priv = dev->dev_private;
3415
3416         I915_WRITE(VLV_MASTER_IER, 0);
3417         POSTING_READ(VLV_MASTER_IER);
3418
3419         gen5_gt_irq_reset(dev);
3420
3421         spin_lock_irq(&dev_priv->irq_lock);
3422         if (dev_priv->display_irqs_enabled)
3423                 vlv_display_irq_reset(dev_priv);
3424         spin_unlock_irq(&dev_priv->irq_lock);
3425 }
3426
3427 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3428 {
3429         GEN8_IRQ_RESET_NDX(GT, 0);
3430         GEN8_IRQ_RESET_NDX(GT, 1);
3431         GEN8_IRQ_RESET_NDX(GT, 2);
3432         GEN8_IRQ_RESET_NDX(GT, 3);
3433 }
3434
3435 static void gen8_irq_reset(struct drm_device *dev)
3436 {
3437         struct drm_i915_private *dev_priv = dev->dev_private;
3438         int pipe;
3439
3440         I915_WRITE(GEN8_MASTER_IRQ, 0);
3441         POSTING_READ(GEN8_MASTER_IRQ);
3442
3443         gen8_gt_irq_reset(dev_priv);
3444
3445         for_each_pipe(dev_priv, pipe)
3446                 if (intel_display_power_is_enabled(dev_priv,
3447                                                    POWER_DOMAIN_PIPE(pipe)))
3448                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3449
3450         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3451         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3452         GEN5_IRQ_RESET(GEN8_PCU_);
3453
3454         if (HAS_PCH_SPLIT(dev))
3455                 ibx_irq_reset(dev);
3456 }
3457
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3459                                      unsigned int pipe_mask)
3460 {
3461         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3462         enum pipe pipe;
3463
3464         spin_lock_irq(&dev_priv->irq_lock);
3465         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3466                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3467                                   dev_priv->de_irq_mask[pipe],
3468                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3469         spin_unlock_irq(&dev_priv->irq_lock);
3470 }
3471
3472 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3473                                      unsigned int pipe_mask)
3474 {
3475         enum pipe pipe;
3476
3477         spin_lock_irq(&dev_priv->irq_lock);
3478         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3479                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3480         spin_unlock_irq(&dev_priv->irq_lock);
3481
3482         /* make sure we're done processing display irqs */
3483         synchronize_irq(dev_priv->dev->irq);
3484 }
3485
3486 static void cherryview_irq_preinstall(struct drm_device *dev)
3487 {
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490         I915_WRITE(GEN8_MASTER_IRQ, 0);
3491         POSTING_READ(GEN8_MASTER_IRQ);
3492
3493         gen8_gt_irq_reset(dev_priv);
3494
3495         GEN5_IRQ_RESET(GEN8_PCU_);
3496
3497         spin_lock_irq(&dev_priv->irq_lock);
3498         if (dev_priv->display_irqs_enabled)
3499                 vlv_display_irq_reset(dev_priv);
3500         spin_unlock_irq(&dev_priv->irq_lock);
3501 }
3502
3503 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3504                                   const u32 hpd[HPD_NUM_PINS])
3505 {
3506         struct drm_i915_private *dev_priv = to_i915(dev);
3507         struct intel_encoder *encoder;
3508         u32 enabled_irqs = 0;
3509
3510         for_each_intel_encoder(dev, encoder)
3511                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3512                         enabled_irqs |= hpd[encoder->hpd_pin];
3513
3514         return enabled_irqs;
3515 }
3516
3517 static void ibx_hpd_irq_setup(struct drm_device *dev)
3518 {
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520         u32 hotplug_irqs, hotplug, enabled_irqs;
3521
3522         if (HAS_PCH_IBX(dev)) {
3523                 hotplug_irqs = SDE_HOTPLUG_MASK;
3524                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3525         } else {
3526                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3527                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3528         }
3529
3530         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3531
3532         /*
3533          * Enable digital hotplug on the PCH, and configure the DP short pulse
3534          * duration to 2ms (which is the minimum in the Display Port spec).
3535          * The pulse duration bits are reserved on LPT+.
3536          */
3537         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3539         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3540         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3541         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3542         /*
3543          * When CPU and PCH are on the same package, port A
3544          * HPD must be enabled in both north and south.
3545          */
3546         if (HAS_PCH_LPT_LP(dev))
3547                 hotplug |= PORTA_HOTPLUG_ENABLE;
3548         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3549 }
3550
3551 static void spt_hpd_irq_setup(struct drm_device *dev)
3552 {
3553         struct drm_i915_private *dev_priv = dev->dev_private;
3554         u32 hotplug_irqs, hotplug, enabled_irqs;
3555
3556         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3557         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3558
3559         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3560
3561         /* Enable digital hotplug on the PCH */
3562         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3563         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3564                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3565         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3566
3567         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3568         hotplug |= PORTE_HOTPLUG_ENABLE;
3569         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3570 }
3571
3572 static void ilk_hpd_irq_setup(struct drm_device *dev)
3573 {
3574         struct drm_i915_private *dev_priv = dev->dev_private;
3575         u32 hotplug_irqs, hotplug, enabled_irqs;
3576
3577         if (INTEL_INFO(dev)->gen >= 8) {
3578                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3579                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3580
3581                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3582         } else if (INTEL_INFO(dev)->gen >= 7) {
3583                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3584                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3585
3586                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3587         } else {
3588                 hotplug_irqs = DE_DP_A_HOTPLUG;
3589                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3590
3591                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3592         }
3593
3594         /*
3595          * Enable digital hotplug on the CPU, and configure the DP short pulse
3596          * duration to 2ms (which is the minimum in the Display Port spec)
3597          * The pulse duration bits are reserved on HSW+.
3598          */
3599         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3600         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3601         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3602         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3603
3604         ibx_hpd_irq_setup(dev);
3605 }
3606
3607 static void bxt_hpd_irq_setup(struct drm_device *dev)
3608 {
3609         struct drm_i915_private *dev_priv = dev->dev_private;
3610         u32 hotplug_irqs, hotplug, enabled_irqs;
3611
3612         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3613         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3614
3615         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3616
3617         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3618         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3619                 PORTA_HOTPLUG_ENABLE;
3620
3621         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3622                       hotplug, enabled_irqs);
3623         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3624
3625         /*
3626          * For BXT invert bit has to be set based on AOB design
3627          * for HPD detection logic, update it based on VBT fields.
3628          */
3629
3630         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3631             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3632                 hotplug |= BXT_DDIA_HPD_INVERT;
3633         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3634             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3635                 hotplug |= BXT_DDIB_HPD_INVERT;
3636         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3637             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3638                 hotplug |= BXT_DDIC_HPD_INVERT;
3639
3640         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3641 }
3642
3643 static void ibx_irq_postinstall(struct drm_device *dev)
3644 {
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         u32 mask;
3647
3648         if (HAS_PCH_NOP(dev))
3649                 return;
3650
3651         if (HAS_PCH_IBX(dev))
3652                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3653         else
3654                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3655
3656         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3657         I915_WRITE(SDEIMR, ~mask);
3658 }
3659
3660 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3661 {
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         u32 pm_irqs, gt_irqs;
3664
3665         pm_irqs = gt_irqs = 0;
3666
3667         dev_priv->gt_irq_mask = ~0;
3668         if (HAS_L3_DPF(dev)) {
3669                 /* L3 parity interrupt is always unmasked. */
3670                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3671                 gt_irqs |= GT_PARITY_ERROR(dev);
3672         }
3673
3674         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3675         if (IS_GEN5(dev)) {
3676                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3677                            ILK_BSD_USER_INTERRUPT;
3678         } else {
3679                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3680         }
3681
3682         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3683
3684         if (INTEL_INFO(dev)->gen >= 6) {
3685                 /*
3686                  * RPS interrupts will get enabled/disabled on demand when RPS
3687                  * itself is enabled/disabled.
3688                  */
3689                 if (HAS_VEBOX(dev))
3690                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3691
3692                 dev_priv->pm_irq_mask = 0xffffffff;
3693                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3694         }
3695 }
3696
3697 static int ironlake_irq_postinstall(struct drm_device *dev)
3698 {
3699         struct drm_i915_private *dev_priv = dev->dev_private;
3700         u32 display_mask, extra_mask;
3701
3702         if (INTEL_INFO(dev)->gen >= 7) {
3703                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3704                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3705                                 DE_PLANEB_FLIP_DONE_IVB |
3706                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3707                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3708                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3709                               DE_DP_A_HOTPLUG_IVB);
3710         } else {
3711                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3712                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3713                                 DE_AUX_CHANNEL_A |
3714                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3715                                 DE_POISON);
3716                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3717                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3718                               DE_DP_A_HOTPLUG);
3719         }
3720
3721         dev_priv->irq_mask = ~display_mask;
3722
3723         I915_WRITE(HWSTAM, 0xeffe);
3724
3725         ibx_irq_pre_postinstall(dev);
3726
3727         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3728
3729         gen5_gt_irq_postinstall(dev);
3730
3731         ibx_irq_postinstall(dev);
3732
3733         if (IS_IRONLAKE_M(dev)) {
3734                 /* Enable PCU event interrupts
3735                  *
3736                  * spinlocking not required here for correctness since interrupt
3737                  * setup is guaranteed to run in single-threaded context. But we
3738                  * need it to make the assert_spin_locked happy. */
3739                 spin_lock_irq(&dev_priv->irq_lock);
3740                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3741                 spin_unlock_irq(&dev_priv->irq_lock);
3742         }
3743
3744         return 0;
3745 }
3746
3747 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3748 {
3749         assert_spin_locked(&dev_priv->irq_lock);
3750
3751         if (dev_priv->display_irqs_enabled)
3752                 return;
3753
3754         dev_priv->display_irqs_enabled = true;
3755
3756         if (intel_irqs_enabled(dev_priv)) {
3757                 vlv_display_irq_reset(dev_priv);
3758                 vlv_display_irq_postinstall(dev_priv);
3759         }
3760 }
3761
3762 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3763 {
3764         assert_spin_locked(&dev_priv->irq_lock);
3765
3766         if (!dev_priv->display_irqs_enabled)
3767                 return;
3768
3769         dev_priv->display_irqs_enabled = false;
3770
3771         if (intel_irqs_enabled(dev_priv))
3772                 vlv_display_irq_reset(dev_priv);
3773 }
3774
3775
3776 static int valleyview_irq_postinstall(struct drm_device *dev)
3777 {
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780         gen5_gt_irq_postinstall(dev);
3781
3782         spin_lock_irq(&dev_priv->irq_lock);
3783         if (dev_priv->display_irqs_enabled)
3784                 vlv_display_irq_postinstall(dev_priv);
3785         spin_unlock_irq(&dev_priv->irq_lock);
3786
3787         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3788         POSTING_READ(VLV_MASTER_IER);
3789
3790         return 0;
3791 }
3792
3793 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795         /* These are interrupts we'll toggle with the ring mask register */
3796         uint32_t gt_interrupts[] = {
3797                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3798                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3799                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3800                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3801                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3802                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3803                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3804                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3805                 0,
3806                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3807                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3808                 };
3809
3810         if (HAS_L3_DPF(dev_priv))
3811                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3812
3813         dev_priv->pm_irq_mask = 0xffffffff;
3814         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3815         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3816         /*
3817          * RPS interrupts will get enabled/disabled on demand when RPS itself
3818          * is enabled/disabled.
3819          */
3820         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3821         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3822 }
3823
3824 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3825 {
3826         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3827         uint32_t de_pipe_enables;
3828         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3829         u32 de_port_enables;
3830         enum pipe pipe;
3831
3832         if (INTEL_INFO(dev_priv)->gen >= 9) {
3833                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3834                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3835                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3836                                   GEN9_AUX_CHANNEL_D;
3837                 if (IS_BROXTON(dev_priv))
3838                         de_port_masked |= BXT_DE_PORT_GMBUS;
3839         } else {
3840                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3841                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3842         }
3843
3844         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3845                                            GEN8_PIPE_FIFO_UNDERRUN;
3846
3847         de_port_enables = de_port_masked;
3848         if (IS_BROXTON(dev_priv))
3849                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3850         else if (IS_BROADWELL(dev_priv))
3851                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3852
3853         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3854         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3855         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3856
3857         for_each_pipe(dev_priv, pipe)
3858                 if (intel_display_power_is_enabled(dev_priv,
3859                                 POWER_DOMAIN_PIPE(pipe)))
3860                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3861                                           dev_priv->de_irq_mask[pipe],
3862                                           de_pipe_enables);
3863
3864         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3865 }
3866
3867 static int gen8_irq_postinstall(struct drm_device *dev)
3868 {
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870
3871         if (HAS_PCH_SPLIT(dev))
3872                 ibx_irq_pre_postinstall(dev);
3873
3874         gen8_gt_irq_postinstall(dev_priv);
3875         gen8_de_irq_postinstall(dev_priv);
3876
3877         if (HAS_PCH_SPLIT(dev))
3878                 ibx_irq_postinstall(dev);
3879
3880         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3881         POSTING_READ(GEN8_MASTER_IRQ);
3882
3883         return 0;
3884 }
3885
3886 static int cherryview_irq_postinstall(struct drm_device *dev)
3887 {
3888         struct drm_i915_private *dev_priv = dev->dev_private;
3889
3890         gen8_gt_irq_postinstall(dev_priv);
3891
3892         spin_lock_irq(&dev_priv->irq_lock);
3893         if (dev_priv->display_irqs_enabled)
3894                 vlv_display_irq_postinstall(dev_priv);
3895         spin_unlock_irq(&dev_priv->irq_lock);
3896
3897         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3898         POSTING_READ(GEN8_MASTER_IRQ);
3899
3900         return 0;
3901 }
3902
3903 static void gen8_irq_uninstall(struct drm_device *dev)
3904 {
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906
3907         if (!dev_priv)
3908                 return;
3909
3910         gen8_irq_reset(dev);
3911 }
3912
3913 static void valleyview_irq_uninstall(struct drm_device *dev)
3914 {
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917         if (!dev_priv)
3918                 return;
3919
3920         I915_WRITE(VLV_MASTER_IER, 0);
3921         POSTING_READ(VLV_MASTER_IER);
3922
3923         gen5_gt_irq_reset(dev);
3924
3925         I915_WRITE(HWSTAM, 0xffffffff);
3926
3927         spin_lock_irq(&dev_priv->irq_lock);
3928         if (dev_priv->display_irqs_enabled)
3929                 vlv_display_irq_reset(dev_priv);
3930         spin_unlock_irq(&dev_priv->irq_lock);
3931 }
3932
3933 static void cherryview_irq_uninstall(struct drm_device *dev)
3934 {
3935         struct drm_i915_private *dev_priv = dev->dev_private;
3936
3937         if (!dev_priv)
3938                 return;
3939
3940         I915_WRITE(GEN8_MASTER_IRQ, 0);
3941         POSTING_READ(GEN8_MASTER_IRQ);
3942
3943         gen8_gt_irq_reset(dev_priv);
3944
3945         GEN5_IRQ_RESET(GEN8_PCU_);
3946
3947         spin_lock_irq(&dev_priv->irq_lock);
3948         if (dev_priv->display_irqs_enabled)
3949                 vlv_display_irq_reset(dev_priv);
3950         spin_unlock_irq(&dev_priv->irq_lock);
3951 }
3952
3953 static void ironlake_irq_uninstall(struct drm_device *dev)
3954 {
3955         struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957         if (!dev_priv)
3958                 return;
3959
3960         ironlake_irq_reset(dev);
3961 }
3962
3963 static void i8xx_irq_preinstall(struct drm_device * dev)
3964 {
3965         struct drm_i915_private *dev_priv = dev->dev_private;
3966         int pipe;
3967
3968         for_each_pipe(dev_priv, pipe)
3969                 I915_WRITE(PIPESTAT(pipe), 0);
3970         I915_WRITE16(IMR, 0xffff);
3971         I915_WRITE16(IER, 0x0);
3972         POSTING_READ16(IER);
3973 }
3974
3975 static int i8xx_irq_postinstall(struct drm_device *dev)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979         I915_WRITE16(EMR,
3980                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3981
3982         /* Unmask the interrupts that we always want on. */
3983         dev_priv->irq_mask =
3984                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3985                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3986                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3987                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3988         I915_WRITE16(IMR, dev_priv->irq_mask);
3989
3990         I915_WRITE16(IER,
3991                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3992                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3993                      I915_USER_INTERRUPT);
3994         POSTING_READ16(IER);
3995
3996         /* Interrupt setup is already guaranteed to be single-threaded, this is
3997          * just to make the assert_spin_locked check happy. */
3998         spin_lock_irq(&dev_priv->irq_lock);
3999         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4000         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4001         spin_unlock_irq(&dev_priv->irq_lock);
4002
4003         return 0;
4004 }
4005
4006 /*
4007  * Returns true when a page flip has completed.
4008  */
4009 static bool i8xx_handle_vblank(struct drm_device *dev,
4010                                int plane, int pipe, u32 iir)
4011 {
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4014
4015         if (!intel_pipe_handle_vblank(dev, pipe))
4016                 return false;
4017
4018         if ((iir & flip_pending) == 0)
4019                 goto check_page_flip;
4020
4021         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4022          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4023          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4024          * the flip is completed (no longer pending). Since this doesn't raise
4025          * an interrupt per se, we watch for the change at vblank.
4026          */
4027         if (I915_READ16(ISR) & flip_pending)
4028                 goto check_page_flip;
4029
4030         intel_prepare_page_flip(dev, plane);
4031         intel_finish_page_flip(dev, pipe);
4032         return true;
4033
4034 check_page_flip:
4035         intel_check_page_flip(dev, pipe);
4036         return false;
4037 }
4038
4039 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4040 {
4041         struct drm_device *dev = arg;
4042         struct drm_i915_private *dev_priv = dev->dev_private;
4043         u16 iir, new_iir;
4044         u32 pipe_stats[2];
4045         int pipe;
4046         u16 flip_mask =
4047                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4048                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4049         irqreturn_t ret;
4050
4051         if (!intel_irqs_enabled(dev_priv))
4052                 return IRQ_NONE;
4053
4054         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4055         disable_rpm_wakeref_asserts(dev_priv);
4056
4057         ret = IRQ_NONE;
4058         iir = I915_READ16(IIR);
4059         if (iir == 0)
4060                 goto out;
4061
4062         while (iir & ~flip_mask) {
4063                 /* Can't rely on pipestat interrupt bit in iir as it might
4064                  * have been cleared after the pipestat interrupt was received.
4065                  * It doesn't set the bit in iir again, but it still produces
4066                  * interrupts (for non-MSI).
4067                  */
4068                 spin_lock(&dev_priv->irq_lock);
4069                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4070                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4071
4072                 for_each_pipe(dev_priv, pipe) {
4073                         i915_reg_t reg = PIPESTAT(pipe);
4074                         pipe_stats[pipe] = I915_READ(reg);
4075
4076                         /*
4077                          * Clear the PIPE*STAT regs before the IIR
4078                          */
4079                         if (pipe_stats[pipe] & 0x8000ffff)
4080                                 I915_WRITE(reg, pipe_stats[pipe]);
4081                 }
4082                 spin_unlock(&dev_priv->irq_lock);
4083
4084                 I915_WRITE16(IIR, iir & ~flip_mask);
4085                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4086
4087                 if (iir & I915_USER_INTERRUPT)
4088                         notify_ring(&dev_priv->engine[RCS]);
4089
4090                 for_each_pipe(dev_priv, pipe) {
4091                         int plane = pipe;
4092                         if (HAS_FBC(dev))
4093                                 plane = !plane;
4094
4095                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4096                             i8xx_handle_vblank(dev, plane, pipe, iir))
4097                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4098
4099                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4100                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4101
4102                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4103                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4104                                                                     pipe);
4105                 }
4106
4107                 iir = new_iir;
4108         }
4109         ret = IRQ_HANDLED;
4110
4111 out:
4112         enable_rpm_wakeref_asserts(dev_priv);
4113
4114         return ret;
4115 }
4116
4117 static void i8xx_irq_uninstall(struct drm_device * dev)
4118 {
4119         struct drm_i915_private *dev_priv = dev->dev_private;
4120         int pipe;
4121
4122         for_each_pipe(dev_priv, pipe) {
4123                 /* Clear enable bits; then clear status bits */
4124                 I915_WRITE(PIPESTAT(pipe), 0);
4125                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4126         }
4127         I915_WRITE16(IMR, 0xffff);
4128         I915_WRITE16(IER, 0x0);
4129         I915_WRITE16(IIR, I915_READ16(IIR));
4130 }
4131
4132 static void i915_irq_preinstall(struct drm_device * dev)
4133 {
4134         struct drm_i915_private *dev_priv = dev->dev_private;
4135         int pipe;
4136
4137         if (I915_HAS_HOTPLUG(dev)) {
4138                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4139                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4140         }
4141
4142         I915_WRITE16(HWSTAM, 0xeffe);
4143         for_each_pipe(dev_priv, pipe)
4144                 I915_WRITE(PIPESTAT(pipe), 0);
4145         I915_WRITE(IMR, 0xffffffff);
4146         I915_WRITE(IER, 0x0);
4147         POSTING_READ(IER);
4148 }
4149
4150 static int i915_irq_postinstall(struct drm_device *dev)
4151 {
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         u32 enable_mask;
4154
4155         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4156
4157         /* Unmask the interrupts that we always want on. */
4158         dev_priv->irq_mask =
4159                 ~(I915_ASLE_INTERRUPT |
4160                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4161                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4162                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4163                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4164
4165         enable_mask =
4166                 I915_ASLE_INTERRUPT |
4167                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4168                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4169                 I915_USER_INTERRUPT;
4170
4171         if (I915_HAS_HOTPLUG(dev)) {
4172                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4173                 POSTING_READ(PORT_HOTPLUG_EN);
4174
4175                 /* Enable in IER... */
4176                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4177                 /* and unmask in IMR */
4178                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4179         }
4180
4181         I915_WRITE(IMR, dev_priv->irq_mask);
4182         I915_WRITE(IER, enable_mask);
4183         POSTING_READ(IER);
4184
4185         i915_enable_asle_pipestat(dev);
4186
4187         /* Interrupt setup is already guaranteed to be single-threaded, this is
4188          * just to make the assert_spin_locked check happy. */
4189         spin_lock_irq(&dev_priv->irq_lock);
4190         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192         spin_unlock_irq(&dev_priv->irq_lock);
4193
4194         return 0;
4195 }
4196
4197 /*
4198  * Returns true when a page flip has completed.
4199  */
4200 static bool i915_handle_vblank(struct drm_device *dev,
4201                                int plane, int pipe, u32 iir)
4202 {
4203         struct drm_i915_private *dev_priv = dev->dev_private;
4204         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4205
4206         if (!intel_pipe_handle_vblank(dev, pipe))
4207                 return false;
4208
4209         if ((iir & flip_pending) == 0)
4210                 goto check_page_flip;
4211
4212         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4213          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4214          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4215          * the flip is completed (no longer pending). Since this doesn't raise
4216          * an interrupt per se, we watch for the change at vblank.
4217          */
4218         if (I915_READ(ISR) & flip_pending)
4219                 goto check_page_flip;
4220
4221         intel_prepare_page_flip(dev, plane);
4222         intel_finish_page_flip(dev, pipe);
4223         return true;
4224
4225 check_page_flip:
4226         intel_check_page_flip(dev, pipe);
4227         return false;
4228 }
4229
4230 static irqreturn_t i915_irq_handler(int irq, void *arg)
4231 {
4232         struct drm_device *dev = arg;
4233         struct drm_i915_private *dev_priv = dev->dev_private;
4234         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4235         u32 flip_mask =
4236                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4237                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4238         int pipe, ret = IRQ_NONE;
4239
4240         if (!intel_irqs_enabled(dev_priv))
4241                 return IRQ_NONE;
4242
4243         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4244         disable_rpm_wakeref_asserts(dev_priv);
4245
4246         iir = I915_READ(IIR);
4247         do {
4248                 bool irq_received = (iir & ~flip_mask) != 0;
4249                 bool blc_event = false;
4250
4251                 /* Can't rely on pipestat interrupt bit in iir as it might
4252                  * have been cleared after the pipestat interrupt was received.
4253                  * It doesn't set the bit in iir again, but it still produces
4254                  * interrupts (for non-MSI).
4255                  */
4256                 spin_lock(&dev_priv->irq_lock);
4257                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4258                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4259
4260                 for_each_pipe(dev_priv, pipe) {
4261                         i915_reg_t reg = PIPESTAT(pipe);
4262                         pipe_stats[pipe] = I915_READ(reg);
4263
4264                         /* Clear the PIPE*STAT regs before the IIR */
4265                         if (pipe_stats[pipe] & 0x8000ffff) {
4266                                 I915_WRITE(reg, pipe_stats[pipe]);
4267                                 irq_received = true;
4268                         }
4269                 }
4270                 spin_unlock(&dev_priv->irq_lock);
4271
4272                 if (!irq_received)
4273                         break;
4274
4275                 /* Consume port.  Then clear IIR or we'll miss events */
4276                 if (I915_HAS_HOTPLUG(dev) &&
4277                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4278                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4279                         if (hotplug_status)
4280                                 i9xx_hpd_irq_handler(dev, hotplug_status);
4281                 }
4282
4283                 I915_WRITE(IIR, iir & ~flip_mask);
4284                 new_iir = I915_READ(IIR); /* Flush posted writes */
4285
4286                 if (iir & I915_USER_INTERRUPT)
4287                         notify_ring(&dev_priv->engine[RCS]);
4288
4289                 for_each_pipe(dev_priv, pipe) {
4290                         int plane = pipe;
4291                         if (HAS_FBC(dev))
4292                                 plane = !plane;
4293
4294                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4295                             i915_handle_vblank(dev, plane, pipe, iir))
4296                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4297
4298                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4299                                 blc_event = true;
4300
4301                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4302                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4303
4304                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4305                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4306                                                                     pipe);
4307                 }
4308
4309                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4310                         intel_opregion_asle_intr(dev);
4311
4312                 /* With MSI, interrupts are only generated when iir
4313                  * transitions from zero to nonzero.  If another bit got
4314                  * set while we were handling the existing iir bits, then
4315                  * we would never get another interrupt.
4316                  *
4317                  * This is fine on non-MSI as well, as if we hit this path
4318                  * we avoid exiting the interrupt handler only to generate
4319                  * another one.
4320                  *
4321                  * Note that for MSI this could cause a stray interrupt report
4322                  * if an interrupt landed in the time between writing IIR and
4323                  * the posting read.  This should be rare enough to never
4324                  * trigger the 99% of 100,000 interrupts test for disabling
4325                  * stray interrupts.
4326                  */
4327                 ret = IRQ_HANDLED;
4328                 iir = new_iir;
4329         } while (iir & ~flip_mask);
4330
4331         enable_rpm_wakeref_asserts(dev_priv);
4332
4333         return ret;
4334 }
4335
4336 static void i915_irq_uninstall(struct drm_device * dev)
4337 {
4338         struct drm_i915_private *dev_priv = dev->dev_private;
4339         int pipe;
4340
4341         if (I915_HAS_HOTPLUG(dev)) {
4342                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4343                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4344         }
4345
4346         I915_WRITE16(HWSTAM, 0xffff);
4347         for_each_pipe(dev_priv, pipe) {
4348                 /* Clear enable bits; then clear status bits */
4349                 I915_WRITE(PIPESTAT(pipe), 0);
4350                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4351         }
4352         I915_WRITE(IMR, 0xffffffff);
4353         I915_WRITE(IER, 0x0);
4354
4355         I915_WRITE(IIR, I915_READ(IIR));
4356 }
4357
4358 static void i965_irq_preinstall(struct drm_device * dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361         int pipe;
4362
4363         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4364         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4365
4366         I915_WRITE(HWSTAM, 0xeffe);
4367         for_each_pipe(dev_priv, pipe)
4368                 I915_WRITE(PIPESTAT(pipe), 0);
4369         I915_WRITE(IMR, 0xffffffff);
4370         I915_WRITE(IER, 0x0);
4371         POSTING_READ(IER);
4372 }
4373
4374 static int i965_irq_postinstall(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         u32 enable_mask;
4378         u32 error_mask;
4379
4380         /* Unmask the interrupts that we always want on. */
4381         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4382                                I915_DISPLAY_PORT_INTERRUPT |
4383                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4384                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4385                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4386                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4387                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4388
4389         enable_mask = ~dev_priv->irq_mask;
4390         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4391                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4392         enable_mask |= I915_USER_INTERRUPT;
4393
4394         if (IS_G4X(dev))
4395                 enable_mask |= I915_BSD_USER_INTERRUPT;
4396
4397         /* Interrupt setup is already guaranteed to be single-threaded, this is
4398          * just to make the assert_spin_locked check happy. */
4399         spin_lock_irq(&dev_priv->irq_lock);
4400         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4401         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4402         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4403         spin_unlock_irq(&dev_priv->irq_lock);
4404
4405         /*
4406          * Enable some error detection, note the instruction error mask
4407          * bit is reserved, so we leave it masked.
4408          */
4409         if (IS_G4X(dev)) {
4410                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4411                                GM45_ERROR_MEM_PRIV |
4412                                GM45_ERROR_CP_PRIV |
4413                                I915_ERROR_MEMORY_REFRESH);
4414         } else {
4415                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4416                                I915_ERROR_MEMORY_REFRESH);
4417         }
4418         I915_WRITE(EMR, error_mask);
4419
4420         I915_WRITE(IMR, dev_priv->irq_mask);
4421         I915_WRITE(IER, enable_mask);
4422         POSTING_READ(IER);
4423
4424         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4425         POSTING_READ(PORT_HOTPLUG_EN);
4426
4427         i915_enable_asle_pipestat(dev);
4428
4429         return 0;
4430 }
4431
4432 static void i915_hpd_irq_setup(struct drm_device *dev)
4433 {
4434         struct drm_i915_private *dev_priv = dev->dev_private;
4435         u32 hotplug_en;
4436
4437         assert_spin_locked(&dev_priv->irq_lock);
4438
4439         /* Note HDMI and DP share hotplug bits */
4440         /* enable bits are the same for all generations */
4441         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4442         /* Programming the CRT detection parameters tends
4443            to generate a spurious hotplug event about three
4444            seconds later.  So just do it once.
4445         */
4446         if (IS_G4X(dev))
4447                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4448         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4449
4450         /* Ignore TV since it's buggy */
4451         i915_hotplug_interrupt_update_locked(dev_priv,
4452                                              HOTPLUG_INT_EN_MASK |
4453                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4454                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4455                                              hotplug_en);
4456 }
4457
4458 static irqreturn_t i965_irq_handler(int irq, void *arg)
4459 {
4460         struct drm_device *dev = arg;
4461         struct drm_i915_private *dev_priv = dev->dev_private;
4462         u32 iir, new_iir;
4463         u32 pipe_stats[I915_MAX_PIPES];
4464         int ret = IRQ_NONE, pipe;
4465         u32 flip_mask =
4466                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4467                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4468
4469         if (!intel_irqs_enabled(dev_priv))
4470                 return IRQ_NONE;
4471
4472         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4473         disable_rpm_wakeref_asserts(dev_priv);
4474
4475         iir = I915_READ(IIR);
4476
4477         for (;;) {
4478                 bool irq_received = (iir & ~flip_mask) != 0;
4479                 bool blc_event = false;
4480
4481                 /* Can't rely on pipestat interrupt bit in iir as it might
4482                  * have been cleared after the pipestat interrupt was received.
4483                  * It doesn't set the bit in iir again, but it still produces
4484                  * interrupts (for non-MSI).
4485                  */
4486                 spin_lock(&dev_priv->irq_lock);
4487                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4488                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4489
4490                 for_each_pipe(dev_priv, pipe) {
4491                         i915_reg_t reg = PIPESTAT(pipe);
4492                         pipe_stats[pipe] = I915_READ(reg);
4493
4494                         /*
4495                          * Clear the PIPE*STAT regs before the IIR
4496                          */
4497                         if (pipe_stats[pipe] & 0x8000ffff) {
4498                                 I915_WRITE(reg, pipe_stats[pipe]);
4499                                 irq_received = true;
4500                         }
4501                 }
4502                 spin_unlock(&dev_priv->irq_lock);
4503
4504                 if (!irq_received)
4505                         break;
4506
4507                 ret = IRQ_HANDLED;
4508
4509                 /* Consume port.  Then clear IIR or we'll miss events */
4510                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4511                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4512                         if (hotplug_status)
4513                                 i9xx_hpd_irq_handler(dev, hotplug_status);
4514                 }
4515
4516                 I915_WRITE(IIR, iir & ~flip_mask);
4517                 new_iir = I915_READ(IIR); /* Flush posted writes */
4518
4519                 if (iir & I915_USER_INTERRUPT)
4520                         notify_ring(&dev_priv->engine[RCS]);
4521                 if (iir & I915_BSD_USER_INTERRUPT)
4522                         notify_ring(&dev_priv->engine[VCS]);
4523
4524                 for_each_pipe(dev_priv, pipe) {
4525                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4526                             i915_handle_vblank(dev, pipe, pipe, iir))
4527                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4528
4529                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4530                                 blc_event = true;
4531
4532                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4533                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4534
4535                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4536                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4537                 }
4538
4539                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4540                         intel_opregion_asle_intr(dev);
4541
4542                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4543                         gmbus_irq_handler(dev);
4544
4545                 /* With MSI, interrupts are only generated when iir
4546                  * transitions from zero to nonzero.  If another bit got
4547                  * set while we were handling the existing iir bits, then
4548                  * we would never get another interrupt.
4549                  *
4550                  * This is fine on non-MSI as well, as if we hit this path
4551                  * we avoid exiting the interrupt handler only to generate
4552                  * another one.
4553                  *
4554                  * Note that for MSI this could cause a stray interrupt report
4555                  * if an interrupt landed in the time between writing IIR and
4556                  * the posting read.  This should be rare enough to never
4557                  * trigger the 99% of 100,000 interrupts test for disabling
4558                  * stray interrupts.
4559                  */
4560                 iir = new_iir;
4561         }
4562
4563         enable_rpm_wakeref_asserts(dev_priv);
4564
4565         return ret;
4566 }
4567
4568 static void i965_irq_uninstall(struct drm_device * dev)
4569 {
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         int pipe;
4572
4573         if (!dev_priv)
4574                 return;
4575
4576         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4577         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4578
4579         I915_WRITE(HWSTAM, 0xffffffff);
4580         for_each_pipe(dev_priv, pipe)
4581                 I915_WRITE(PIPESTAT(pipe), 0);
4582         I915_WRITE(IMR, 0xffffffff);
4583         I915_WRITE(IER, 0x0);
4584
4585         for_each_pipe(dev_priv, pipe)
4586                 I915_WRITE(PIPESTAT(pipe),
4587                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4588         I915_WRITE(IIR, I915_READ(IIR));
4589 }
4590
4591 /**
4592  * intel_irq_init - initializes irq support
4593  * @dev_priv: i915 device instance
4594  *
4595  * This function initializes all the irq support including work items, timers
4596  * and all the vtables. It does not setup the interrupt itself though.
4597  */
4598 void intel_irq_init(struct drm_i915_private *dev_priv)
4599 {
4600         struct drm_device *dev = dev_priv->dev;
4601
4602         intel_hpd_init_work(dev_priv);
4603
4604         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4605         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4606
4607         /* Let's track the enabled rps events */
4608         if (IS_VALLEYVIEW(dev_priv))
4609                 /* WaGsvRC0ResidencyMethod:vlv */
4610                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4611         else
4612                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4613
4614         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4615                           i915_hangcheck_elapsed);
4616
4617         if (IS_GEN2(dev_priv)) {
4618                 dev->max_vblank_count = 0;
4619                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4620         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4621                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4622                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4623         } else {
4624                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4625                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4626         }
4627
4628         /*
4629          * Opt out of the vblank disable timer on everything except gen2.
4630          * Gen2 doesn't have a hardware frame counter and so depends on
4631          * vblank interrupts to produce sane vblank seuquence numbers.
4632          */
4633         if (!IS_GEN2(dev_priv))
4634                 dev->vblank_disable_immediate = true;
4635
4636         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4637         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4638
4639         if (IS_CHERRYVIEW(dev_priv)) {
4640                 dev->driver->irq_handler = cherryview_irq_handler;
4641                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4642                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4643                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4644                 dev->driver->enable_vblank = valleyview_enable_vblank;
4645                 dev->driver->disable_vblank = valleyview_disable_vblank;
4646                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4647         } else if (IS_VALLEYVIEW(dev_priv)) {
4648                 dev->driver->irq_handler = valleyview_irq_handler;
4649                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4650                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4651                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4652                 dev->driver->enable_vblank = valleyview_enable_vblank;
4653                 dev->driver->disable_vblank = valleyview_disable_vblank;
4654                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4655         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4656                 dev->driver->irq_handler = gen8_irq_handler;
4657                 dev->driver->irq_preinstall = gen8_irq_reset;
4658                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4659                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4660                 dev->driver->enable_vblank = gen8_enable_vblank;
4661                 dev->driver->disable_vblank = gen8_disable_vblank;
4662                 if (IS_BROXTON(dev))
4663                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4664                 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4665                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4666                 else
4667                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4668         } else if (HAS_PCH_SPLIT(dev)) {
4669                 dev->driver->irq_handler = ironlake_irq_handler;
4670                 dev->driver->irq_preinstall = ironlake_irq_reset;
4671                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4672                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4673                 dev->driver->enable_vblank = ironlake_enable_vblank;
4674                 dev->driver->disable_vblank = ironlake_disable_vblank;
4675                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4676         } else {
4677                 if (INTEL_INFO(dev_priv)->gen == 2) {
4678                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4679                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4680                         dev->driver->irq_handler = i8xx_irq_handler;
4681                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4682                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4683                         dev->driver->irq_preinstall = i915_irq_preinstall;
4684                         dev->driver->irq_postinstall = i915_irq_postinstall;
4685                         dev->driver->irq_uninstall = i915_irq_uninstall;
4686                         dev->driver->irq_handler = i915_irq_handler;
4687                 } else {
4688                         dev->driver->irq_preinstall = i965_irq_preinstall;
4689                         dev->driver->irq_postinstall = i965_irq_postinstall;
4690                         dev->driver->irq_uninstall = i965_irq_uninstall;
4691                         dev->driver->irq_handler = i965_irq_handler;
4692                 }
4693                 if (I915_HAS_HOTPLUG(dev_priv))
4694                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4695                 dev->driver->enable_vblank = i915_enable_vblank;
4696                 dev->driver->disable_vblank = i915_disable_vblank;
4697         }
4698 }
4699
4700 /**
4701  * intel_irq_install - enables the hardware interrupt
4702  * @dev_priv: i915 device instance
4703  *
4704  * This function enables the hardware interrupt handling, but leaves the hotplug
4705  * handling still disabled. It is called after intel_irq_init().
4706  *
4707  * In the driver load and resume code we need working interrupts in a few places
4708  * but don't want to deal with the hassle of concurrent probe and hotplug
4709  * workers. Hence the split into this two-stage approach.
4710  */
4711 int intel_irq_install(struct drm_i915_private *dev_priv)
4712 {
4713         /*
4714          * We enable some interrupt sources in our postinstall hooks, so mark
4715          * interrupts as enabled _before_ actually enabling them to avoid
4716          * special cases in our ordering checks.
4717          */
4718         dev_priv->pm.irqs_enabled = true;
4719
4720         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4721 }
4722
4723 /**
4724  * intel_irq_uninstall - finilizes all irq handling
4725  * @dev_priv: i915 device instance
4726  *
4727  * This stops interrupt and hotplug handling and unregisters and frees all
4728  * resources acquired in the init functions.
4729  */
4730 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4731 {
4732         drm_irq_uninstall(dev_priv->dev);
4733         intel_hpd_cancel_work(dev_priv);
4734         dev_priv->pm.irqs_enabled = false;
4735 }
4736
4737 /**
4738  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4739  * @dev_priv: i915 device instance
4740  *
4741  * This function is used to disable interrupts at runtime, both in the runtime
4742  * pm and the system suspend/resume code.
4743  */
4744 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4745 {
4746         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4747         dev_priv->pm.irqs_enabled = false;
4748         synchronize_irq(dev_priv->dev->irq);
4749 }
4750
4751 /**
4752  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4753  * @dev_priv: i915 device instance
4754  *
4755  * This function is used to enable interrupts at runtime, both in the runtime
4756  * pm and the system suspend/resume code.
4757  */
4758 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4759 {
4760         dev_priv->pm.irqs_enabled = true;
4761         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4762         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4763 }