]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101                                   struct drm_i915_gem_object *obj,
102                                   struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119                                     struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125
126 struct intel_limit {
127         struct {
128                 int min, max;
129         } dot, vco, n, m, m1, m2, p, p1;
130
131         struct {
132                 int dot_limit;
133                 int p2_slow, p2_fast;
134         } p2;
135 };
136
137 /* returns HPLL frequency in kHz */
138 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
139 {
140         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142         /* Obtain SKU information */
143         mutex_lock(&dev_priv->sb_lock);
144         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145                 CCK_FUSE_HPLL_FREQ_MASK;
146         mutex_unlock(&dev_priv->sb_lock);
147
148         return vco_freq[hpll_freq] * 1000;
149 }
150
151 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
152                       const char *name, u32 reg, int ref_freq)
153 {
154         u32 val;
155         int divider;
156
157         mutex_lock(&dev_priv->sb_lock);
158         val = vlv_cck_read(dev_priv, reg);
159         mutex_unlock(&dev_priv->sb_lock);
160
161         divider = val & CCK_FREQUENCY_VALUES;
162
163         WARN((val & CCK_FREQUENCY_STATUS) !=
164              (divider << CCK_FREQUENCY_STATUS_SHIFT),
165              "%s change in progress\n", name);
166
167         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
168 }
169
170 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
171                            const char *name, u32 reg)
172 {
173         if (dev_priv->hpll_freq == 0)
174                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
175
176         return vlv_get_cck_clock(dev_priv, name, reg,
177                                  dev_priv->hpll_freq);
178 }
179
180 static void intel_update_czclk(struct drm_i915_private *dev_priv)
181 {
182         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
183                 return;
184
185         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
186                                                       CCK_CZ_CLOCK_CONTROL);
187
188         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
189 }
190
191 static inline u32 /* units of 100MHz */
192 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
193                     const struct intel_crtc_state *pipe_config)
194 {
195         if (HAS_DDI(dev_priv))
196                 return pipe_config->port_clock; /* SPLL */
197         else if (IS_GEN5(dev_priv))
198                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
199         else
200                 return 270000;
201 }
202
203 static const struct intel_limit intel_limits_i8xx_dac = {
204         .dot = { .min = 25000, .max = 350000 },
205         .vco = { .min = 908000, .max = 1512000 },
206         .n = { .min = 2, .max = 16 },
207         .m = { .min = 96, .max = 140 },
208         .m1 = { .min = 18, .max = 26 },
209         .m2 = { .min = 6, .max = 16 },
210         .p = { .min = 4, .max = 128 },
211         .p1 = { .min = 2, .max = 33 },
212         .p2 = { .dot_limit = 165000,
213                 .p2_slow = 4, .p2_fast = 2 },
214 };
215
216 static const struct intel_limit intel_limits_i8xx_dvo = {
217         .dot = { .min = 25000, .max = 350000 },
218         .vco = { .min = 908000, .max = 1512000 },
219         .n = { .min = 2, .max = 16 },
220         .m = { .min = 96, .max = 140 },
221         .m1 = { .min = 18, .max = 26 },
222         .m2 = { .min = 6, .max = 16 },
223         .p = { .min = 4, .max = 128 },
224         .p1 = { .min = 2, .max = 33 },
225         .p2 = { .dot_limit = 165000,
226                 .p2_slow = 4, .p2_fast = 4 },
227 };
228
229 static const struct intel_limit intel_limits_i8xx_lvds = {
230         .dot = { .min = 25000, .max = 350000 },
231         .vco = { .min = 908000, .max = 1512000 },
232         .n = { .min = 2, .max = 16 },
233         .m = { .min = 96, .max = 140 },
234         .m1 = { .min = 18, .max = 26 },
235         .m2 = { .min = 6, .max = 16 },
236         .p = { .min = 4, .max = 128 },
237         .p1 = { .min = 1, .max = 6 },
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 14, .p2_fast = 7 },
240 };
241
242 static const struct intel_limit intel_limits_i9xx_sdvo = {
243         .dot = { .min = 20000, .max = 400000 },
244         .vco = { .min = 1400000, .max = 2800000 },
245         .n = { .min = 1, .max = 6 },
246         .m = { .min = 70, .max = 120 },
247         .m1 = { .min = 8, .max = 18 },
248         .m2 = { .min = 3, .max = 7 },
249         .p = { .min = 5, .max = 80 },
250         .p1 = { .min = 1, .max = 8 },
251         .p2 = { .dot_limit = 200000,
252                 .p2_slow = 10, .p2_fast = 5 },
253 };
254
255 static const struct intel_limit intel_limits_i9xx_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1400000, .max = 2800000 },
258         .n = { .min = 1, .max = 6 },
259         .m = { .min = 70, .max = 120 },
260         .m1 = { .min = 8, .max = 18 },
261         .m2 = { .min = 3, .max = 7 },
262         .p = { .min = 7, .max = 98 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 7 },
266 };
267
268
269 static const struct intel_limit intel_limits_g4x_sdvo = {
270         .dot = { .min = 25000, .max = 270000 },
271         .vco = { .min = 1750000, .max = 3500000},
272         .n = { .min = 1, .max = 4 },
273         .m = { .min = 104, .max = 138 },
274         .m1 = { .min = 17, .max = 23 },
275         .m2 = { .min = 5, .max = 11 },
276         .p = { .min = 10, .max = 30 },
277         .p1 = { .min = 1, .max = 3},
278         .p2 = { .dot_limit = 270000,
279                 .p2_slow = 10,
280                 .p2_fast = 10
281         },
282 };
283
284 static const struct intel_limit intel_limits_g4x_hdmi = {
285         .dot = { .min = 22000, .max = 400000 },
286         .vco = { .min = 1750000, .max = 3500000},
287         .n = { .min = 1, .max = 4 },
288         .m = { .min = 104, .max = 138 },
289         .m1 = { .min = 16, .max = 23 },
290         .m2 = { .min = 5, .max = 11 },
291         .p = { .min = 5, .max = 80 },
292         .p1 = { .min = 1, .max = 8},
293         .p2 = { .dot_limit = 165000,
294                 .p2_slow = 10, .p2_fast = 5 },
295 };
296
297 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
298         .dot = { .min = 20000, .max = 115000 },
299         .vco = { .min = 1750000, .max = 3500000 },
300         .n = { .min = 1, .max = 3 },
301         .m = { .min = 104, .max = 138 },
302         .m1 = { .min = 17, .max = 23 },
303         .m2 = { .min = 5, .max = 11 },
304         .p = { .min = 28, .max = 112 },
305         .p1 = { .min = 2, .max = 8 },
306         .p2 = { .dot_limit = 0,
307                 .p2_slow = 14, .p2_fast = 14
308         },
309 };
310
311 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
312         .dot = { .min = 80000, .max = 224000 },
313         .vco = { .min = 1750000, .max = 3500000 },
314         .n = { .min = 1, .max = 3 },
315         .m = { .min = 104, .max = 138 },
316         .m1 = { .min = 17, .max = 23 },
317         .m2 = { .min = 5, .max = 11 },
318         .p = { .min = 14, .max = 42 },
319         .p1 = { .min = 2, .max = 6 },
320         .p2 = { .dot_limit = 0,
321                 .p2_slow = 7, .p2_fast = 7
322         },
323 };
324
325 static const struct intel_limit intel_limits_pineview_sdvo = {
326         .dot = { .min = 20000, .max = 400000},
327         .vco = { .min = 1700000, .max = 3500000 },
328         /* Pineview's Ncounter is a ring counter */
329         .n = { .min = 3, .max = 6 },
330         .m = { .min = 2, .max = 256 },
331         /* Pineview only has one combined m divider, which we treat as m2. */
332         .m1 = { .min = 0, .max = 0 },
333         .m2 = { .min = 0, .max = 254 },
334         .p = { .min = 5, .max = 80 },
335         .p1 = { .min = 1, .max = 8 },
336         .p2 = { .dot_limit = 200000,
337                 .p2_slow = 10, .p2_fast = 5 },
338 };
339
340 static const struct intel_limit intel_limits_pineview_lvds = {
341         .dot = { .min = 20000, .max = 400000 },
342         .vco = { .min = 1700000, .max = 3500000 },
343         .n = { .min = 3, .max = 6 },
344         .m = { .min = 2, .max = 256 },
345         .m1 = { .min = 0, .max = 0 },
346         .m2 = { .min = 0, .max = 254 },
347         .p = { .min = 7, .max = 112 },
348         .p1 = { .min = 1, .max = 8 },
349         .p2 = { .dot_limit = 112000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 /* Ironlake / Sandybridge
354  *
355  * We calculate clock using (register_value + 2) for N/M1/M2, so here
356  * the range value for them is (actual_value - 2).
357  */
358 static const struct intel_limit intel_limits_ironlake_dac = {
359         .dot = { .min = 25000, .max = 350000 },
360         .vco = { .min = 1760000, .max = 3510000 },
361         .n = { .min = 1, .max = 5 },
362         .m = { .min = 79, .max = 127 },
363         .m1 = { .min = 12, .max = 22 },
364         .m2 = { .min = 5, .max = 9 },
365         .p = { .min = 5, .max = 80 },
366         .p1 = { .min = 1, .max = 8 },
367         .p2 = { .dot_limit = 225000,
368                 .p2_slow = 10, .p2_fast = 5 },
369 };
370
371 static const struct intel_limit intel_limits_ironlake_single_lvds = {
372         .dot = { .min = 25000, .max = 350000 },
373         .vco = { .min = 1760000, .max = 3510000 },
374         .n = { .min = 1, .max = 3 },
375         .m = { .min = 79, .max = 118 },
376         .m1 = { .min = 12, .max = 22 },
377         .m2 = { .min = 5, .max = 9 },
378         .p = { .min = 28, .max = 112 },
379         .p1 = { .min = 2, .max = 8 },
380         .p2 = { .dot_limit = 225000,
381                 .p2_slow = 14, .p2_fast = 14 },
382 };
383
384 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
385         .dot = { .min = 25000, .max = 350000 },
386         .vco = { .min = 1760000, .max = 3510000 },
387         .n = { .min = 1, .max = 3 },
388         .m = { .min = 79, .max = 127 },
389         .m1 = { .min = 12, .max = 22 },
390         .m2 = { .min = 5, .max = 9 },
391         .p = { .min = 14, .max = 56 },
392         .p1 = { .min = 2, .max = 8 },
393         .p2 = { .dot_limit = 225000,
394                 .p2_slow = 7, .p2_fast = 7 },
395 };
396
397 /* LVDS 100mhz refclk limits. */
398 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
399         .dot = { .min = 25000, .max = 350000 },
400         .vco = { .min = 1760000, .max = 3510000 },
401         .n = { .min = 1, .max = 2 },
402         .m = { .min = 79, .max = 126 },
403         .m1 = { .min = 12, .max = 22 },
404         .m2 = { .min = 5, .max = 9 },
405         .p = { .min = 28, .max = 112 },
406         .p1 = { .min = 2, .max = 8 },
407         .p2 = { .dot_limit = 225000,
408                 .p2_slow = 14, .p2_fast = 14 },
409 };
410
411 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
412         .dot = { .min = 25000, .max = 350000 },
413         .vco = { .min = 1760000, .max = 3510000 },
414         .n = { .min = 1, .max = 3 },
415         .m = { .min = 79, .max = 126 },
416         .m1 = { .min = 12, .max = 22 },
417         .m2 = { .min = 5, .max = 9 },
418         .p = { .min = 14, .max = 42 },
419         .p1 = { .min = 2, .max = 6 },
420         .p2 = { .dot_limit = 225000,
421                 .p2_slow = 7, .p2_fast = 7 },
422 };
423
424 static const struct intel_limit intel_limits_vlv = {
425          /*
426           * These are the data rate limits (measured in fast clocks)
427           * since those are the strictest limits we have. The fast
428           * clock and actual rate limits are more relaxed, so checking
429           * them would make no difference.
430           */
431         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
432         .vco = { .min = 4000000, .max = 6000000 },
433         .n = { .min = 1, .max = 7 },
434         .m1 = { .min = 2, .max = 3 },
435         .m2 = { .min = 11, .max = 156 },
436         .p1 = { .min = 2, .max = 3 },
437         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
438 };
439
440 static const struct intel_limit intel_limits_chv = {
441         /*
442          * These are the data rate limits (measured in fast clocks)
443          * since those are the strictest limits we have.  The fast
444          * clock and actual rate limits are more relaxed, so checking
445          * them would make no difference.
446          */
447         .dot = { .min = 25000 * 5, .max = 540000 * 5},
448         .vco = { .min = 4800000, .max = 6480000 },
449         .n = { .min = 1, .max = 1 },
450         .m1 = { .min = 2, .max = 2 },
451         .m2 = { .min = 24 << 22, .max = 175 << 22 },
452         .p1 = { .min = 2, .max = 4 },
453         .p2 = { .p2_slow = 1, .p2_fast = 14 },
454 };
455
456 static const struct intel_limit intel_limits_bxt = {
457         /* FIXME: find real dot limits */
458         .dot = { .min = 0, .max = INT_MAX },
459         .vco = { .min = 4800000, .max = 6700000 },
460         .n = { .min = 1, .max = 1 },
461         .m1 = { .min = 2, .max = 2 },
462         /* FIXME: find real m2 limits */
463         .m2 = { .min = 2 << 22, .max = 255 << 22 },
464         .p1 = { .min = 2, .max = 4 },
465         .p2 = { .p2_slow = 1, .p2_fast = 20 },
466 };
467
468 static bool
469 needs_modeset(struct drm_crtc_state *state)
470 {
471         return drm_atomic_crtc_needs_modeset(state);
472 }
473
474 /*
475  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
476  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
477  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
478  * The helpers' return value is the rate of the clock that is fed to the
479  * display engine's pipe which can be the above fast dot clock rate or a
480  * divided-down version of it.
481  */
482 /* m1 is reserved as 0 in Pineview, n is a ring counter */
483 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
484 {
485         clock->m = clock->m2 + 2;
486         clock->p = clock->p1 * clock->p2;
487         if (WARN_ON(clock->n == 0 || clock->p == 0))
488                 return 0;
489         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
490         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
491
492         return clock->dot;
493 }
494
495 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
496 {
497         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
498 }
499
500 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
501 {
502         clock->m = i9xx_dpll_compute_m(clock);
503         clock->p = clock->p1 * clock->p2;
504         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
505                 return 0;
506         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
507         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
508
509         return clock->dot;
510 }
511
512 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
513 {
514         clock->m = clock->m1 * clock->m2;
515         clock->p = clock->p1 * clock->p2;
516         if (WARN_ON(clock->n == 0 || clock->p == 0))
517                 return 0;
518         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
519         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
520
521         return clock->dot / 5;
522 }
523
524 int chv_calc_dpll_params(int refclk, struct dpll *clock)
525 {
526         clock->m = clock->m1 * clock->m2;
527         clock->p = clock->p1 * clock->p2;
528         if (WARN_ON(clock->n == 0 || clock->p == 0))
529                 return 0;
530         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
531                         clock->n << 22);
532         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534         return clock->dot / 5;
535 }
536
537 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
538 /**
539  * Returns whether the given set of divisors are valid for a given refclk with
540  * the given connectors.
541  */
542
543 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
544                                const struct intel_limit *limit,
545                                const struct dpll *clock)
546 {
547         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
548                 INTELPllInvalid("n out of range\n");
549         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
550                 INTELPllInvalid("p1 out of range\n");
551         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
552                 INTELPllInvalid("m2 out of range\n");
553         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
554                 INTELPllInvalid("m1 out of range\n");
555
556         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
557             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
558                 if (clock->m1 <= clock->m2)
559                         INTELPllInvalid("m1 <= m2\n");
560
561         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
562             !IS_GEN9_LP(dev_priv)) {
563                 if (clock->p < limit->p.min || limit->p.max < clock->p)
564                         INTELPllInvalid("p out of range\n");
565                 if (clock->m < limit->m.min || limit->m.max < clock->m)
566                         INTELPllInvalid("m out of range\n");
567         }
568
569         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
570                 INTELPllInvalid("vco out of range\n");
571         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
572          * connector, etc., rather than just a single range.
573          */
574         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
575                 INTELPllInvalid("dot out of range\n");
576
577         return true;
578 }
579
580 static int
581 i9xx_select_p2_div(const struct intel_limit *limit,
582                    const struct intel_crtc_state *crtc_state,
583                    int target)
584 {
585         struct drm_device *dev = crtc_state->base.crtc->dev;
586
587         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         return limit->p2.p2_fast;
595                 else
596                         return limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         return limit->p2.p2_slow;
600                 else
601                         return limit->p2.p2_fast;
602         }
603 }
604
605 /*
606  * Returns a set of divisors for the desired target clock with the given
607  * refclk, or FALSE.  The returned values represent the clock equation:
608  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
609  *
610  * Target and reference clocks are specified in kHz.
611  *
612  * If match_clock is provided, then best_clock P divider must match the P
613  * divider from @match_clock used for LVDS downclocking.
614  */
615 static bool
616 i9xx_find_best_dpll(const struct intel_limit *limit,
617                     struct intel_crtc_state *crtc_state,
618                     int target, int refclk, struct dpll *match_clock,
619                     struct dpll *best_clock)
620 {
621         struct drm_device *dev = crtc_state->base.crtc->dev;
622         struct dpll clock;
623         int err = target;
624
625         memset(best_clock, 0, sizeof(*best_clock));
626
627         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
628
629         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630              clock.m1++) {
631                 for (clock.m2 = limit->m2.min;
632                      clock.m2 <= limit->m2.max; clock.m2++) {
633                         if (clock.m2 >= clock.m1)
634                                 break;
635                         for (clock.n = limit->n.min;
636                              clock.n <= limit->n.max; clock.n++) {
637                                 for (clock.p1 = limit->p1.min;
638                                         clock.p1 <= limit->p1.max; clock.p1++) {
639                                         int this_err;
640
641                                         i9xx_calc_dpll_params(refclk, &clock);
642                                         if (!intel_PLL_is_valid(to_i915(dev),
643                                                                 limit,
644                                                                 &clock))
645                                                 continue;
646                                         if (match_clock &&
647                                             clock.p != match_clock->p)
648                                                 continue;
649
650                                         this_err = abs(clock.dot - target);
651                                         if (this_err < err) {
652                                                 *best_clock = clock;
653                                                 err = this_err;
654                                         }
655                                 }
656                         }
657                 }
658         }
659
660         return (err != target);
661 }
662
663 /*
664  * Returns a set of divisors for the desired target clock with the given
665  * refclk, or FALSE.  The returned values represent the clock equation:
666  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667  *
668  * Target and reference clocks are specified in kHz.
669  *
670  * If match_clock is provided, then best_clock P divider must match the P
671  * divider from @match_clock used for LVDS downclocking.
672  */
673 static bool
674 pnv_find_best_dpll(const struct intel_limit *limit,
675                    struct intel_crtc_state *crtc_state,
676                    int target, int refclk, struct dpll *match_clock,
677                    struct dpll *best_clock)
678 {
679         struct drm_device *dev = crtc_state->base.crtc->dev;
680         struct dpll clock;
681         int err = target;
682
683         memset(best_clock, 0, sizeof(*best_clock));
684
685         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pnv_calc_dpll_params(refclk, &clock);
698                                         if (!intel_PLL_is_valid(to_i915(dev),
699                                                                 limit,
700                                                                 &clock))
701                                                 continue;
702                                         if (match_clock &&
703                                             clock.p != match_clock->p)
704                                                 continue;
705
706                                         this_err = abs(clock.dot - target);
707                                         if (this_err < err) {
708                                                 *best_clock = clock;
709                                                 err = this_err;
710                                         }
711                                 }
712                         }
713                 }
714         }
715
716         return (err != target);
717 }
718
719 /*
720  * Returns a set of divisors for the desired target clock with the given
721  * refclk, or FALSE.  The returned values represent the clock equation:
722  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
723  *
724  * Target and reference clocks are specified in kHz.
725  *
726  * If match_clock is provided, then best_clock P divider must match the P
727  * divider from @match_clock used for LVDS downclocking.
728  */
729 static bool
730 g4x_find_best_dpll(const struct intel_limit *limit,
731                    struct intel_crtc_state *crtc_state,
732                    int target, int refclk, struct dpll *match_clock,
733                    struct dpll *best_clock)
734 {
735         struct drm_device *dev = crtc_state->base.crtc->dev;
736         struct dpll clock;
737         int max_n;
738         bool found = false;
739         /* approximately equals target * 0.00585 */
740         int err_most = (target >> 8) + (target >> 9);
741
742         memset(best_clock, 0, sizeof(*best_clock));
743
744         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
745
746         max_n = limit->n.max;
747         /* based on hardware requirement, prefer smaller n to precision */
748         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749                 /* based on hardware requirement, prefere larger m1,m2 */
750                 for (clock.m1 = limit->m1.max;
751                      clock.m1 >= limit->m1.min; clock.m1--) {
752                         for (clock.m2 = limit->m2.max;
753                              clock.m2 >= limit->m2.min; clock.m2--) {
754                                 for (clock.p1 = limit->p1.max;
755                                      clock.p1 >= limit->p1.min; clock.p1--) {
756                                         int this_err;
757
758                                         i9xx_calc_dpll_params(refclk, &clock);
759                                         if (!intel_PLL_is_valid(to_i915(dev),
760                                                                 limit,
761                                                                 &clock))
762                                                 continue;
763
764                                         this_err = abs(clock.dot - target);
765                                         if (this_err < err_most) {
766                                                 *best_clock = clock;
767                                                 err_most = this_err;
768                                                 max_n = clock.n;
769                                                 found = true;
770                                         }
771                                 }
772                         }
773                 }
774         }
775         return found;
776 }
777
778 /*
779  * Check if the calculated PLL configuration is more optimal compared to the
780  * best configuration and error found so far. Return the calculated error.
781  */
782 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
783                                const struct dpll *calculated_clock,
784                                const struct dpll *best_clock,
785                                unsigned int best_error_ppm,
786                                unsigned int *error_ppm)
787 {
788         /*
789          * For CHV ignore the error and consider only the P value.
790          * Prefer a bigger P value based on HW requirements.
791          */
792         if (IS_CHERRYVIEW(to_i915(dev))) {
793                 *error_ppm = 0;
794
795                 return calculated_clock->p > best_clock->p;
796         }
797
798         if (WARN_ON_ONCE(!target_freq))
799                 return false;
800
801         *error_ppm = div_u64(1000000ULL *
802                                 abs(target_freq - calculated_clock->dot),
803                              target_freq);
804         /*
805          * Prefer a better P value over a better (smaller) error if the error
806          * is small. Ensure this preference for future configurations too by
807          * setting the error to 0.
808          */
809         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
810                 *error_ppm = 0;
811
812                 return true;
813         }
814
815         return *error_ppm + 10 < best_error_ppm;
816 }
817
818 /*
819  * Returns a set of divisors for the desired target clock with the given
820  * refclk, or FALSE.  The returned values represent the clock equation:
821  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
822  */
823 static bool
824 vlv_find_best_dpll(const struct intel_limit *limit,
825                    struct intel_crtc_state *crtc_state,
826                    int target, int refclk, struct dpll *match_clock,
827                    struct dpll *best_clock)
828 {
829         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
830         struct drm_device *dev = crtc->base.dev;
831         struct dpll clock;
832         unsigned int bestppm = 1000000;
833         /* min update 19.2 MHz */
834         int max_n = min(limit->n.max, refclk / 19200);
835         bool found = false;
836
837         target *= 5; /* fast clock */
838
839         memset(best_clock, 0, sizeof(*best_clock));
840
841         /* based on hardware requirement, prefer smaller n to precision */
842         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
843                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
844                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
845                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
846                                 clock.p = clock.p1 * clock.p2;
847                                 /* based on hardware requirement, prefer bigger m1,m2 values */
848                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
849                                         unsigned int ppm;
850
851                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
852                                                                      refclk * clock.m1);
853
854                                         vlv_calc_dpll_params(refclk, &clock);
855
856                                         if (!intel_PLL_is_valid(to_i915(dev),
857                                                                 limit,
858                                                                 &clock))
859                                                 continue;
860
861                                         if (!vlv_PLL_is_optimal(dev, target,
862                                                                 &clock,
863                                                                 best_clock,
864                                                                 bestppm, &ppm))
865                                                 continue;
866
867                                         *best_clock = clock;
868                                         bestppm = ppm;
869                                         found = true;
870                                 }
871                         }
872                 }
873         }
874
875         return found;
876 }
877
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 chv_find_best_dpll(const struct intel_limit *limit,
885                    struct intel_crtc_state *crtc_state,
886                    int target, int refclk, struct dpll *match_clock,
887                    struct dpll *best_clock)
888 {
889         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890         struct drm_device *dev = crtc->base.dev;
891         unsigned int best_error_ppm;
892         struct dpll clock;
893         uint64_t m2;
894         int found = false;
895
896         memset(best_clock, 0, sizeof(*best_clock));
897         best_error_ppm = 1000000;
898
899         /*
900          * Based on hardware doc, the n always set to 1, and m1 always
901          * set to 2.  If requires to support 200Mhz refclk, we need to
902          * revisit this because n may not 1 anymore.
903          */
904         clock.n = 1, clock.m1 = 2;
905         target *= 5;    /* fast clock */
906
907         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
908                 for (clock.p2 = limit->p2.p2_fast;
909                                 clock.p2 >= limit->p2.p2_slow;
910                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
911                         unsigned int error_ppm;
912
913                         clock.p = clock.p1 * clock.p2;
914
915                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
916                                         clock.n) << 22, refclk * clock.m1);
917
918                         if (m2 > INT_MAX/clock.m1)
919                                 continue;
920
921                         clock.m2 = m2;
922
923                         chv_calc_dpll_params(refclk, &clock);
924
925                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
926                                 continue;
927
928                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
929                                                 best_error_ppm, &error_ppm))
930                                 continue;
931
932                         *best_clock = clock;
933                         best_error_ppm = error_ppm;
934                         found = true;
935                 }
936         }
937
938         return found;
939 }
940
941 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
942                         struct dpll *best_clock)
943 {
944         int refclk = 100000;
945         const struct intel_limit *limit = &intel_limits_bxt;
946
947         return chv_find_best_dpll(limit, crtc_state,
948                                   target_clock, refclk, NULL, best_clock);
949 }
950
951 bool intel_crtc_active(struct intel_crtc *crtc)
952 {
953         /* Be paranoid as we can arrive here with only partial
954          * state retrieved from the hardware during setup.
955          *
956          * We can ditch the adjusted_mode.crtc_clock check as soon
957          * as Haswell has gained clock readout/fastboot support.
958          *
959          * We can ditch the crtc->primary->fb check as soon as we can
960          * properly reconstruct framebuffers.
961          *
962          * FIXME: The intel_crtc->active here should be switched to
963          * crtc->state->active once we have proper CRTC states wired up
964          * for atomic.
965          */
966         return crtc->active && crtc->base.primary->state->fb &&
967                 crtc->config->base.adjusted_mode.crtc_clock;
968 }
969
970 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
971                                              enum pipe pipe)
972 {
973         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
974
975         return crtc->config->cpu_transcoder;
976 }
977
978 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
979 {
980         i915_reg_t reg = PIPEDSL(pipe);
981         u32 line1, line2;
982         u32 line_mask;
983
984         if (IS_GEN2(dev_priv))
985                 line_mask = DSL_LINEMASK_GEN2;
986         else
987                 line_mask = DSL_LINEMASK_GEN3;
988
989         line1 = I915_READ(reg) & line_mask;
990         msleep(5);
991         line2 = I915_READ(reg) & line_mask;
992
993         return line1 == line2;
994 }
995
996 /*
997  * intel_wait_for_pipe_off - wait for pipe to turn off
998  * @crtc: crtc whose pipe to wait for
999  *
1000  * After disabling a pipe, we can't wait for vblank in the usual way,
1001  * spinning on the vblank interrupt status bit, since we won't actually
1002  * see an interrupt when the pipe is disabled.
1003  *
1004  * On Gen4 and above:
1005  *   wait for the pipe register state bit to turn off
1006  *
1007  * Otherwise:
1008  *   wait for the display line value to settle (it usually
1009  *   ends up stopping at the start of the next frame).
1010  *
1011  */
1012 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1013 {
1014         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1016         enum pipe pipe = crtc->pipe;
1017
1018         if (INTEL_GEN(dev_priv) >= 4) {
1019                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1020
1021                 /* Wait for the Pipe State to go off */
1022                 if (intel_wait_for_register(dev_priv,
1023                                             reg, I965_PIPECONF_ACTIVE, 0,
1024                                             100))
1025                         WARN(1, "pipe_off wait timed out\n");
1026         } else {
1027                 /* Wait for the display line to settle */
1028                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1029                         WARN(1, "pipe_off wait timed out\n");
1030         }
1031 }
1032
1033 /* Only for pre-ILK configs */
1034 void assert_pll(struct drm_i915_private *dev_priv,
1035                 enum pipe pipe, bool state)
1036 {
1037         u32 val;
1038         bool cur_state;
1039
1040         val = I915_READ(DPLL(pipe));
1041         cur_state = !!(val & DPLL_VCO_ENABLE);
1042         I915_STATE_WARN(cur_state != state,
1043              "PLL state assertion failure (expected %s, current %s)\n",
1044                         onoff(state), onoff(cur_state));
1045 }
1046
1047 /* XXX: the dsi pll is shared between MIPI DSI ports */
1048 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1049 {
1050         u32 val;
1051         bool cur_state;
1052
1053         mutex_lock(&dev_priv->sb_lock);
1054         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1055         mutex_unlock(&dev_priv->sb_lock);
1056
1057         cur_state = val & DSI_PLL_VCO_EN;
1058         I915_STATE_WARN(cur_state != state,
1059              "DSI PLL state assertion failure (expected %s, current %s)\n",
1060                         onoff(state), onoff(cur_state));
1061 }
1062
1063 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1064                           enum pipe pipe, bool state)
1065 {
1066         bool cur_state;
1067         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1068                                                                       pipe);
1069
1070         if (HAS_DDI(dev_priv)) {
1071                 /* DDI does not have a specific FDI_TX register */
1072                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1073                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1074         } else {
1075                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1076                 cur_state = !!(val & FDI_TX_ENABLE);
1077         }
1078         I915_STATE_WARN(cur_state != state,
1079              "FDI TX state assertion failure (expected %s, current %s)\n",
1080                         onoff(state), onoff(cur_state));
1081 }
1082 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1084
1085 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086                           enum pipe pipe, bool state)
1087 {
1088         u32 val;
1089         bool cur_state;
1090
1091         val = I915_READ(FDI_RX_CTL(pipe));
1092         cur_state = !!(val & FDI_RX_ENABLE);
1093         I915_STATE_WARN(cur_state != state,
1094              "FDI RX state assertion failure (expected %s, current %s)\n",
1095                         onoff(state), onoff(cur_state));
1096 }
1097 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1098 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1099
1100 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1101                                       enum pipe pipe)
1102 {
1103         u32 val;
1104
1105         /* ILK FDI PLL is always enabled */
1106         if (IS_GEN5(dev_priv))
1107                 return;
1108
1109         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1110         if (HAS_DDI(dev_priv))
1111                 return;
1112
1113         val = I915_READ(FDI_TX_CTL(pipe));
1114         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1115 }
1116
1117 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1118                        enum pipe pipe, bool state)
1119 {
1120         u32 val;
1121         bool cur_state;
1122
1123         val = I915_READ(FDI_RX_CTL(pipe));
1124         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1125         I915_STATE_WARN(cur_state != state,
1126              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1127                         onoff(state), onoff(cur_state));
1128 }
1129
1130 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1131 {
1132         i915_reg_t pp_reg;
1133         u32 val;
1134         enum pipe panel_pipe = PIPE_A;
1135         bool locked = true;
1136
1137         if (WARN_ON(HAS_DDI(dev_priv)))
1138                 return;
1139
1140         if (HAS_PCH_SPLIT(dev_priv)) {
1141                 u32 port_sel;
1142
1143                 pp_reg = PP_CONTROL(0);
1144                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1145
1146                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1147                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1148                         panel_pipe = PIPE_B;
1149                 /* XXX: else fix for eDP */
1150         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1151                 /* presumably write lock depends on pipe, not port select */
1152                 pp_reg = PP_CONTROL(pipe);
1153                 panel_pipe = pipe;
1154         } else {
1155                 pp_reg = PP_CONTROL(0);
1156                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1157                         panel_pipe = PIPE_B;
1158         }
1159
1160         val = I915_READ(pp_reg);
1161         if (!(val & PANEL_POWER_ON) ||
1162             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1163                 locked = false;
1164
1165         I915_STATE_WARN(panel_pipe == pipe && locked,
1166              "panel assertion failure, pipe %c regs locked\n",
1167              pipe_name(pipe));
1168 }
1169
1170 static void assert_cursor(struct drm_i915_private *dev_priv,
1171                           enum pipe pipe, bool state)
1172 {
1173         bool cur_state;
1174
1175         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1176                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1177         else
1178                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1179
1180         I915_STATE_WARN(cur_state != state,
1181              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1182                         pipe_name(pipe), onoff(state), onoff(cur_state));
1183 }
1184 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1185 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1186
1187 void assert_pipe(struct drm_i915_private *dev_priv,
1188                  enum pipe pipe, bool state)
1189 {
1190         bool cur_state;
1191         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                       pipe);
1193         enum intel_display_power_domain power_domain;
1194
1195         /* if we need the pipe quirk it must be always on */
1196         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1197             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1198                 state = true;
1199
1200         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203                 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205                 intel_display_power_put(dev_priv, power_domain);
1206         } else {
1207                 cur_state = false;
1208         }
1209
1210         I915_STATE_WARN(cur_state != state,
1211              "pipe %c assertion failure (expected %s, current %s)\n",
1212                         pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216                          enum plane plane, bool state)
1217 {
1218         u32 val;
1219         bool cur_state;
1220
1221         val = I915_READ(DSPCNTR(plane));
1222         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223         I915_STATE_WARN(cur_state != state,
1224              "plane %c assertion failure (expected %s, current %s)\n",
1225                         plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232                                    enum pipe pipe)
1233 {
1234         int i;
1235
1236         /* Primary planes are fixed to pipes on gen4+ */
1237         if (INTEL_GEN(dev_priv) >= 4) {
1238                 u32 val = I915_READ(DSPCNTR(pipe));
1239                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240                      "plane %c assertion failure, should be disabled but not\n",
1241                      plane_name(pipe));
1242                 return;
1243         }
1244
1245         /* Need to check both planes against the pipe */
1246         for_each_pipe(dev_priv, i) {
1247                 u32 val = I915_READ(DSPCNTR(i));
1248                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249                         DISPPLANE_SEL_PIPE_SHIFT;
1250                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252                      plane_name(i), pipe_name(pipe));
1253         }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257                                     enum pipe pipe)
1258 {
1259         int sprite;
1260
1261         if (INTEL_GEN(dev_priv) >= 9) {
1262                 for_each_sprite(dev_priv, pipe, sprite) {
1263                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266                              sprite, pipe_name(pipe));
1267                 }
1268         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269                 for_each_sprite(dev_priv, pipe, sprite) {
1270                         u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271                         I915_STATE_WARN(val & SP_ENABLE,
1272                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273                              sprite_name(pipe, sprite), pipe_name(pipe));
1274                 }
1275         } else if (INTEL_GEN(dev_priv) >= 7) {
1276                 u32 val = I915_READ(SPRCTL(pipe));
1277                 I915_STATE_WARN(val & SPRITE_ENABLE,
1278                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279                      plane_name(pipe), pipe_name(pipe));
1280         } else if (INTEL_GEN(dev_priv) >= 5) {
1281                 u32 val = I915_READ(DVSCNTR(pipe));
1282                 I915_STATE_WARN(val & DVS_ENABLE,
1283                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                      plane_name(pipe), pipe_name(pipe));
1285         }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291                 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295                                     enum pipe pipe)
1296 {
1297         u32 val;
1298         bool enabled;
1299
1300         val = I915_READ(PCH_TRANSCONF(pipe));
1301         enabled = !!(val & TRANS_ENABLE);
1302         I915_STATE_WARN(enabled,
1303              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304              pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308                             enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310         if ((val & DP_PORT_EN) == 0)
1311                 return false;
1312
1313         if (HAS_PCH_CPT(dev_priv)) {
1314                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else if (IS_CHERRYVIEW(dev_priv)) {
1318                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319                         return false;
1320         } else {
1321                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328                               enum pipe pipe, u32 val)
1329 {
1330         if ((val & SDVO_ENABLE) == 0)
1331                 return false;
1332
1333         if (HAS_PCH_CPT(dev_priv)) {
1334                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335                         return false;
1336         } else if (IS_CHERRYVIEW(dev_priv)) {
1337                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338                         return false;
1339         } else {
1340                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341                         return false;
1342         }
1343         return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347                               enum pipe pipe, u32 val)
1348 {
1349         if ((val & LVDS_PORT_EN) == 0)
1350                 return false;
1351
1352         if (HAS_PCH_CPT(dev_priv)) {
1353                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & ADPA_DAC_ENABLE) == 0)
1366                 return false;
1367         if (HAS_PCH_CPT(dev_priv)) {
1368                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369                         return false;
1370         } else {
1371                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372                         return false;
1373         }
1374         return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378                                    enum pipe pipe, i915_reg_t reg,
1379                                    u32 port_sel)
1380 {
1381         u32 val = I915_READ(reg);
1382         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384              i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387              && (val & DP_PIPEB_SELECT),
1388              "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392                                      enum pipe pipe, i915_reg_t reg)
1393 {
1394         u32 val = I915_READ(reg);
1395         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397              i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400              && (val & SDVO_PIPE_B_SELECT),
1401              "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405                                       enum pipe pipe)
1406 {
1407         u32 val;
1408
1409         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413         val = I915_READ(PCH_ADPA);
1414         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415              "PCH VGA enabled on transcoder %c, should be disabled\n",
1416              pipe_name(pipe));
1417
1418         val = I915_READ(PCH_LVDS);
1419         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421              pipe_name(pipe));
1422
1423         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429                             const struct intel_crtc_state *pipe_config)
1430 {
1431         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432         enum pipe pipe = crtc->pipe;
1433
1434         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435         POSTING_READ(DPLL(pipe));
1436         udelay(150);
1437
1438         if (intel_wait_for_register(dev_priv,
1439                                     DPLL(pipe),
1440                                     DPLL_LOCK_VLV,
1441                                     DPLL_LOCK_VLV,
1442                                     1))
1443                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447                            const struct intel_crtc_state *pipe_config)
1448 {
1449         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450         enum pipe pipe = crtc->pipe;
1451
1452         assert_pipe_disabled(dev_priv, pipe);
1453
1454         /* PLL is protected by panel, make sure we can write it */
1455         assert_panel_unlocked(dev_priv, pipe);
1456
1457         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458                 _vlv_enable_pll(crtc, pipe_config);
1459
1460         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461         POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466                             const struct intel_crtc_state *pipe_config)
1467 {
1468         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469         enum pipe pipe = crtc->pipe;
1470         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471         u32 tmp;
1472
1473         mutex_lock(&dev_priv->sb_lock);
1474
1475         /* Enable back the 10bit clock to display controller */
1476         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477         tmp |= DPIO_DCLKP_EN;
1478         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480         mutex_unlock(&dev_priv->sb_lock);
1481
1482         /*
1483          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484          */
1485         udelay(1);
1486
1487         /* Enable PLL */
1488         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490         /* Check PLL is locked */
1491         if (intel_wait_for_register(dev_priv,
1492                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493                                     1))
1494                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498                            const struct intel_crtc_state *pipe_config)
1499 {
1500         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501         enum pipe pipe = crtc->pipe;
1502
1503         assert_pipe_disabled(dev_priv, pipe);
1504
1505         /* PLL is protected by panel, make sure we can write it */
1506         assert_panel_unlocked(dev_priv, pipe);
1507
1508         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509                 _chv_enable_pll(crtc, pipe_config);
1510
1511         if (pipe != PIPE_A) {
1512                 /*
1513                  * WaPixelRepeatModeFixForC0:chv
1514                  *
1515                  * DPLLCMD is AWOL. Use chicken bits to propagate
1516                  * the value from DPLLBMD to either pipe B or C.
1517                  */
1518                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520                 I915_WRITE(CBR4_VLV, 0);
1521                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523                 /*
1524                  * DPLLB VGA mode also seems to cause problems.
1525                  * We should always have it disabled.
1526                  */
1527                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528         } else {
1529                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530                 POSTING_READ(DPLL_MD(pipe));
1531         }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536         struct intel_crtc *crtc;
1537         int count = 0;
1538
1539         for_each_intel_crtc(&dev_priv->drm, crtc) {
1540                 count += crtc->base.state->active &&
1541                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542         }
1543
1544         return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550         i915_reg_t reg = DPLL(crtc->pipe);
1551         u32 dpll = crtc->config->dpll_hw_state.dpll;
1552
1553         assert_pipe_disabled(dev_priv, crtc->pipe);
1554
1555         /* PLL is protected by panel, make sure we can write it */
1556         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1557                 assert_panel_unlocked(dev_priv, crtc->pipe);
1558
1559         /* Enable DVO 2x clock on both PLLs if necessary */
1560         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1561                 /*
1562                  * It appears to be important that we don't enable this
1563                  * for the current pipe before otherwise configuring the
1564                  * PLL. No idea how this should be handled if multiple
1565                  * DVO outputs are enabled simultaneosly.
1566                  */
1567                 dpll |= DPLL_DVO_2X_MODE;
1568                 I915_WRITE(DPLL(!crtc->pipe),
1569                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1570         }
1571
1572         /*
1573          * Apparently we need to have VGA mode enabled prior to changing
1574          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1575          * dividers, even though the register value does change.
1576          */
1577         I915_WRITE(reg, 0);
1578
1579         I915_WRITE(reg, dpll);
1580
1581         /* Wait for the clocks to stabilize. */
1582         POSTING_READ(reg);
1583         udelay(150);
1584
1585         if (INTEL_GEN(dev_priv) >= 4) {
1586                 I915_WRITE(DPLL_MD(crtc->pipe),
1587                            crtc->config->dpll_hw_state.dpll_md);
1588         } else {
1589                 /* The pixel multiplier can only be updated once the
1590                  * DPLL is enabled and the clocks are stable.
1591                  *
1592                  * So write it again.
1593                  */
1594                 I915_WRITE(reg, dpll);
1595         }
1596
1597         /* We do this three times for luck */
1598         I915_WRITE(reg, dpll);
1599         POSTING_READ(reg);
1600         udelay(150); /* wait for warmup */
1601         I915_WRITE(reg, dpll);
1602         POSTING_READ(reg);
1603         udelay(150); /* wait for warmup */
1604         I915_WRITE(reg, dpll);
1605         POSTING_READ(reg);
1606         udelay(150); /* wait for warmup */
1607 }
1608
1609 /**
1610  * i9xx_disable_pll - disable a PLL
1611  * @dev_priv: i915 private structure
1612  * @pipe: pipe PLL to disable
1613  *
1614  * Disable the PLL for @pipe, making sure the pipe is off first.
1615  *
1616  * Note!  This is for pre-ILK only.
1617  */
1618 static void i9xx_disable_pll(struct intel_crtc *crtc)
1619 {
1620         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1621         enum pipe pipe = crtc->pipe;
1622
1623         /* Disable DVO 2x clock on both PLLs if necessary */
1624         if (IS_I830(dev_priv) &&
1625             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1626             !intel_num_dvo_pipes(dev_priv)) {
1627                 I915_WRITE(DPLL(PIPE_B),
1628                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1629                 I915_WRITE(DPLL(PIPE_A),
1630                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1631         }
1632
1633         /* Don't disable pipe or pipe PLLs if needed */
1634         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1635             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1636                 return;
1637
1638         /* Make sure the pipe isn't still relying on us */
1639         assert_pipe_disabled(dev_priv, pipe);
1640
1641         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1642         POSTING_READ(DPLL(pipe));
1643 }
1644
1645 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1646 {
1647         u32 val;
1648
1649         /* Make sure the pipe isn't still relying on us */
1650         assert_pipe_disabled(dev_priv, pipe);
1651
1652         val = DPLL_INTEGRATED_REF_CLK_VLV |
1653                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1654         if (pipe != PIPE_A)
1655                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1656
1657         I915_WRITE(DPLL(pipe), val);
1658         POSTING_READ(DPLL(pipe));
1659 }
1660
1661 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1662 {
1663         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1664         u32 val;
1665
1666         /* Make sure the pipe isn't still relying on us */
1667         assert_pipe_disabled(dev_priv, pipe);
1668
1669         val = DPLL_SSC_REF_CLK_CHV |
1670                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1671         if (pipe != PIPE_A)
1672                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1673
1674         I915_WRITE(DPLL(pipe), val);
1675         POSTING_READ(DPLL(pipe));
1676
1677         mutex_lock(&dev_priv->sb_lock);
1678
1679         /* Disable 10bit clock to display controller */
1680         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1681         val &= ~DPIO_DCLKP_EN;
1682         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1683
1684         mutex_unlock(&dev_priv->sb_lock);
1685 }
1686
1687 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1688                          struct intel_digital_port *dport,
1689                          unsigned int expected_mask)
1690 {
1691         u32 port_mask;
1692         i915_reg_t dpll_reg;
1693
1694         switch (dport->port) {
1695         case PORT_B:
1696                 port_mask = DPLL_PORTB_READY_MASK;
1697                 dpll_reg = DPLL(0);
1698                 break;
1699         case PORT_C:
1700                 port_mask = DPLL_PORTC_READY_MASK;
1701                 dpll_reg = DPLL(0);
1702                 expected_mask <<= 4;
1703                 break;
1704         case PORT_D:
1705                 port_mask = DPLL_PORTD_READY_MASK;
1706                 dpll_reg = DPIO_PHY_STATUS;
1707                 break;
1708         default:
1709                 BUG();
1710         }
1711
1712         if (intel_wait_for_register(dev_priv,
1713                                     dpll_reg, port_mask, expected_mask,
1714                                     1000))
1715                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1716                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1717 }
1718
1719 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1720                                            enum pipe pipe)
1721 {
1722         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1723                                                                 pipe);
1724         i915_reg_t reg;
1725         uint32_t val, pipeconf_val;
1726
1727         /* Make sure PCH DPLL is enabled */
1728         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1729
1730         /* FDI must be feeding us bits for PCH ports */
1731         assert_fdi_tx_enabled(dev_priv, pipe);
1732         assert_fdi_rx_enabled(dev_priv, pipe);
1733
1734         if (HAS_PCH_CPT(dev_priv)) {
1735                 /* Workaround: Set the timing override bit before enabling the
1736                  * pch transcoder. */
1737                 reg = TRANS_CHICKEN2(pipe);
1738                 val = I915_READ(reg);
1739                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1740                 I915_WRITE(reg, val);
1741         }
1742
1743         reg = PCH_TRANSCONF(pipe);
1744         val = I915_READ(reg);
1745         pipeconf_val = I915_READ(PIPECONF(pipe));
1746
1747         if (HAS_PCH_IBX(dev_priv)) {
1748                 /*
1749                  * Make the BPC in transcoder be consistent with
1750                  * that in pipeconf reg. For HDMI we must use 8bpc
1751                  * here for both 8bpc and 12bpc.
1752                  */
1753                 val &= ~PIPECONF_BPC_MASK;
1754                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1755                         val |= PIPECONF_8BPC;
1756                 else
1757                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1758         }
1759
1760         val &= ~TRANS_INTERLACE_MASK;
1761         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1762                 if (HAS_PCH_IBX(dev_priv) &&
1763                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1764                         val |= TRANS_LEGACY_INTERLACED_ILK;
1765                 else
1766                         val |= TRANS_INTERLACED;
1767         else
1768                 val |= TRANS_PROGRESSIVE;
1769
1770         I915_WRITE(reg, val | TRANS_ENABLE);
1771         if (intel_wait_for_register(dev_priv,
1772                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1773                                     100))
1774                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1775 }
1776
1777 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1778                                       enum transcoder cpu_transcoder)
1779 {
1780         u32 val, pipeconf_val;
1781
1782         /* FDI must be feeding us bits for PCH ports */
1783         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1784         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1785
1786         /* Workaround: set timing override bit. */
1787         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1788         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1789         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1790
1791         val = TRANS_ENABLE;
1792         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1793
1794         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1795             PIPECONF_INTERLACED_ILK)
1796                 val |= TRANS_INTERLACED;
1797         else
1798                 val |= TRANS_PROGRESSIVE;
1799
1800         I915_WRITE(LPT_TRANSCONF, val);
1801         if (intel_wait_for_register(dev_priv,
1802                                     LPT_TRANSCONF,
1803                                     TRANS_STATE_ENABLE,
1804                                     TRANS_STATE_ENABLE,
1805                                     100))
1806                 DRM_ERROR("Failed to enable PCH transcoder\n");
1807 }
1808
1809 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1810                                             enum pipe pipe)
1811 {
1812         i915_reg_t reg;
1813         uint32_t val;
1814
1815         /* FDI relies on the transcoder */
1816         assert_fdi_tx_disabled(dev_priv, pipe);
1817         assert_fdi_rx_disabled(dev_priv, pipe);
1818
1819         /* Ports must be off as well */
1820         assert_pch_ports_disabled(dev_priv, pipe);
1821
1822         reg = PCH_TRANSCONF(pipe);
1823         val = I915_READ(reg);
1824         val &= ~TRANS_ENABLE;
1825         I915_WRITE(reg, val);
1826         /* wait for PCH transcoder off, transcoder state */
1827         if (intel_wait_for_register(dev_priv,
1828                                     reg, TRANS_STATE_ENABLE, 0,
1829                                     50))
1830                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1831
1832         if (HAS_PCH_CPT(dev_priv)) {
1833                 /* Workaround: Clear the timing override chicken bit again. */
1834                 reg = TRANS_CHICKEN2(pipe);
1835                 val = I915_READ(reg);
1836                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1837                 I915_WRITE(reg, val);
1838         }
1839 }
1840
1841 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1842 {
1843         u32 val;
1844
1845         val = I915_READ(LPT_TRANSCONF);
1846         val &= ~TRANS_ENABLE;
1847         I915_WRITE(LPT_TRANSCONF, val);
1848         /* wait for PCH transcoder off, transcoder state */
1849         if (intel_wait_for_register(dev_priv,
1850                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1851                                     50))
1852                 DRM_ERROR("Failed to disable PCH transcoder\n");
1853
1854         /* Workaround: clear timing override bit. */
1855         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1857         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858 }
1859
1860 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1861 {
1862         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1863
1864         WARN_ON(!crtc->config->has_pch_encoder);
1865
1866         if (HAS_PCH_LPT(dev_priv))
1867                 return TRANSCODER_A;
1868         else
1869                 return (enum transcoder) crtc->pipe;
1870 }
1871
1872 /**
1873  * intel_enable_pipe - enable a pipe, asserting requirements
1874  * @crtc: crtc responsible for the pipe
1875  *
1876  * Enable @crtc's pipe, making sure that various hardware specific requirements
1877  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1878  */
1879 static void intel_enable_pipe(struct intel_crtc *crtc)
1880 {
1881         struct drm_device *dev = crtc->base.dev;
1882         struct drm_i915_private *dev_priv = to_i915(dev);
1883         enum pipe pipe = crtc->pipe;
1884         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1885         i915_reg_t reg;
1886         u32 val;
1887
1888         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1889
1890         assert_planes_disabled(dev_priv, pipe);
1891         assert_cursor_disabled(dev_priv, pipe);
1892         assert_sprites_disabled(dev_priv, pipe);
1893
1894         /*
1895          * A pipe without a PLL won't actually be able to drive bits from
1896          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1897          * need the check.
1898          */
1899         if (HAS_GMCH_DISPLAY(dev_priv)) {
1900                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1901                         assert_dsi_pll_enabled(dev_priv);
1902                 else
1903                         assert_pll_enabled(dev_priv, pipe);
1904         } else {
1905                 if (crtc->config->has_pch_encoder) {
1906                         /* if driving the PCH, we need FDI enabled */
1907                         assert_fdi_rx_pll_enabled(dev_priv,
1908                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1909                         assert_fdi_tx_pll_enabled(dev_priv,
1910                                                   (enum pipe) cpu_transcoder);
1911                 }
1912                 /* FIXME: assert CPU port conditions for SNB+ */
1913         }
1914
1915         reg = PIPECONF(cpu_transcoder);
1916         val = I915_READ(reg);
1917         if (val & PIPECONF_ENABLE) {
1918                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1919                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1920                 return;
1921         }
1922
1923         I915_WRITE(reg, val | PIPECONF_ENABLE);
1924         POSTING_READ(reg);
1925
1926         /*
1927          * Until the pipe starts DSL will read as 0, which would cause
1928          * an apparent vblank timestamp jump, which messes up also the
1929          * frame count when it's derived from the timestamps. So let's
1930          * wait for the pipe to start properly before we call
1931          * drm_crtc_vblank_on()
1932          */
1933         if (dev->max_vblank_count == 0 &&
1934             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1935                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1936 }
1937
1938 /**
1939  * intel_disable_pipe - disable a pipe, asserting requirements
1940  * @crtc: crtc whose pipes is to be disabled
1941  *
1942  * Disable the pipe of @crtc, making sure that various hardware
1943  * specific requirements are met, if applicable, e.g. plane
1944  * disabled, panel fitter off, etc.
1945  *
1946  * Will wait until the pipe has shut down before returning.
1947  */
1948 static void intel_disable_pipe(struct intel_crtc *crtc)
1949 {
1950         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1952         enum pipe pipe = crtc->pipe;
1953         i915_reg_t reg;
1954         u32 val;
1955
1956         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1957
1958         /*
1959          * Make sure planes won't keep trying to pump pixels to us,
1960          * or we might hang the display.
1961          */
1962         assert_planes_disabled(dev_priv, pipe);
1963         assert_cursor_disabled(dev_priv, pipe);
1964         assert_sprites_disabled(dev_priv, pipe);
1965
1966         reg = PIPECONF(cpu_transcoder);
1967         val = I915_READ(reg);
1968         if ((val & PIPECONF_ENABLE) == 0)
1969                 return;
1970
1971         /*
1972          * Double wide has implications for planes
1973          * so best keep it disabled when not needed.
1974          */
1975         if (crtc->config->double_wide)
1976                 val &= ~PIPECONF_DOUBLE_WIDE;
1977
1978         /* Don't disable pipe or pipe PLLs if needed */
1979         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
1980             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1981                 val &= ~PIPECONF_ENABLE;
1982
1983         I915_WRITE(reg, val);
1984         if ((val & PIPECONF_ENABLE) == 0)
1985                 intel_wait_for_pipe_off(crtc);
1986 }
1987
1988 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1989 {
1990         return IS_GEN2(dev_priv) ? 2048 : 4096;
1991 }
1992
1993 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
1994                                            uint64_t fb_modifier, unsigned int cpp)
1995 {
1996         switch (fb_modifier) {
1997         case DRM_FORMAT_MOD_NONE:
1998                 return cpp;
1999         case I915_FORMAT_MOD_X_TILED:
2000                 if (IS_GEN2(dev_priv))
2001                         return 128;
2002                 else
2003                         return 512;
2004         case I915_FORMAT_MOD_Y_TILED:
2005                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2006                         return 128;
2007                 else
2008                         return 512;
2009         case I915_FORMAT_MOD_Yf_TILED:
2010                 switch (cpp) {
2011                 case 1:
2012                         return 64;
2013                 case 2:
2014                 case 4:
2015                         return 128;
2016                 case 8:
2017                 case 16:
2018                         return 256;
2019                 default:
2020                         MISSING_CASE(cpp);
2021                         return cpp;
2022                 }
2023                 break;
2024         default:
2025                 MISSING_CASE(fb_modifier);
2026                 return cpp;
2027         }
2028 }
2029
2030 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2031                                uint64_t fb_modifier, unsigned int cpp)
2032 {
2033         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2034                 return 1;
2035         else
2036                 return intel_tile_size(dev_priv) /
2037                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2038 }
2039
2040 /* Return the tile dimensions in pixel units */
2041 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2042                             unsigned int *tile_width,
2043                             unsigned int *tile_height,
2044                             uint64_t fb_modifier,
2045                             unsigned int cpp)
2046 {
2047         unsigned int tile_width_bytes =
2048                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2049
2050         *tile_width = tile_width_bytes / cpp;
2051         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2052 }
2053
2054 unsigned int
2055 intel_fb_align_height(struct drm_i915_private *dev_priv,
2056                       unsigned int height,
2057                       uint32_t pixel_format,
2058                       uint64_t fb_modifier)
2059 {
2060         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2061         unsigned int tile_height = intel_tile_height(dev_priv, fb_modifier, cpp);
2062
2063         return ALIGN(height, tile_height);
2064 }
2065
2066 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2067 {
2068         unsigned int size = 0;
2069         int i;
2070
2071         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2072                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2073
2074         return size;
2075 }
2076
2077 static void
2078 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2079                         const struct drm_framebuffer *fb,
2080                         unsigned int rotation)
2081 {
2082         view->type = I915_GGTT_VIEW_NORMAL;
2083         if (drm_rotation_90_or_270(rotation)) {
2084                 view->type = I915_GGTT_VIEW_ROTATED;
2085                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2086         }
2087 }
2088
2089 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2090 {
2091         if (INTEL_INFO(dev_priv)->gen >= 9)
2092                 return 256 * 1024;
2093         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2094                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2095                 return 128 * 1024;
2096         else if (INTEL_INFO(dev_priv)->gen >= 4)
2097                 return 4 * 1024;
2098         else
2099                 return 0;
2100 }
2101
2102 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2103                                          uint64_t fb_modifier)
2104 {
2105         switch (fb_modifier) {
2106         case DRM_FORMAT_MOD_NONE:
2107                 return intel_linear_alignment(dev_priv);
2108         case I915_FORMAT_MOD_X_TILED:
2109                 if (INTEL_INFO(dev_priv)->gen >= 9)
2110                         return 256 * 1024;
2111                 return 0;
2112         case I915_FORMAT_MOD_Y_TILED:
2113         case I915_FORMAT_MOD_Yf_TILED:
2114                 return 1 * 1024 * 1024;
2115         default:
2116                 MISSING_CASE(fb_modifier);
2117                 return 0;
2118         }
2119 }
2120
2121 struct i915_vma *
2122 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2123 {
2124         struct drm_device *dev = fb->dev;
2125         struct drm_i915_private *dev_priv = to_i915(dev);
2126         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2127         struct i915_ggtt_view view;
2128         struct i915_vma *vma;
2129         u32 alignment;
2130
2131         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2132
2133         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2134
2135         intel_fill_fb_ggtt_view(&view, fb, rotation);
2136
2137         /* Note that the w/a also requires 64 PTE of padding following the
2138          * bo. We currently fill all unused PTE with the shadow page and so
2139          * we should always have valid PTE following the scanout preventing
2140          * the VT-d warning.
2141          */
2142         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2143                 alignment = 256 * 1024;
2144
2145         /*
2146          * Global gtt pte registers are special registers which actually forward
2147          * writes to a chunk of system memory. Which means that there is no risk
2148          * that the register values disappear as soon as we call
2149          * intel_runtime_pm_put(), so it is correct to wrap only the
2150          * pin/unpin/fence and not more.
2151          */
2152         intel_runtime_pm_get(dev_priv);
2153
2154         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2155         if (IS_ERR(vma))
2156                 goto err;
2157
2158         if (i915_vma_is_map_and_fenceable(vma)) {
2159                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2160                  * fence, whereas 965+ only requires a fence if using
2161                  * framebuffer compression.  For simplicity, we always, when
2162                  * possible, install a fence as the cost is not that onerous.
2163                  *
2164                  * If we fail to fence the tiled scanout, then either the
2165                  * modeset will reject the change (which is highly unlikely as
2166                  * the affected systems, all but one, do not have unmappable
2167                  * space) or we will not be able to enable full powersaving
2168                  * techniques (also likely not to apply due to various limits
2169                  * FBC and the like impose on the size of the buffer, which
2170                  * presumably we violated anyway with this unmappable buffer).
2171                  * Anyway, it is presumably better to stumble onwards with
2172                  * something and try to run the system in a "less than optimal"
2173                  * mode that matches the user configuration.
2174                  */
2175                 if (i915_vma_get_fence(vma) == 0)
2176                         i915_vma_pin_fence(vma);
2177         }
2178
2179         i915_vma_get(vma);
2180 err:
2181         intel_runtime_pm_put(dev_priv);
2182         return vma;
2183 }
2184
2185 void intel_unpin_fb_vma(struct i915_vma *vma)
2186 {
2187         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2188
2189         i915_vma_unpin_fence(vma);
2190         i915_gem_object_unpin_from_display_plane(vma);
2191         i915_vma_put(vma);
2192 }
2193
2194 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2195                           unsigned int rotation)
2196 {
2197         if (drm_rotation_90_or_270(rotation))
2198                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2199         else
2200                 return fb->pitches[plane];
2201 }
2202
2203 /*
2204  * Convert the x/y offsets into a linear offset.
2205  * Only valid with 0/180 degree rotation, which is fine since linear
2206  * offset is only used with linear buffers on pre-hsw and tiled buffers
2207  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2208  */
2209 u32 intel_fb_xy_to_linear(int x, int y,
2210                           const struct intel_plane_state *state,
2211                           int plane)
2212 {
2213         const struct drm_framebuffer *fb = state->base.fb;
2214         unsigned int cpp = fb->format->cpp[plane];
2215         unsigned int pitch = fb->pitches[plane];
2216
2217         return y * pitch + x * cpp;
2218 }
2219
2220 /*
2221  * Add the x/y offsets derived from fb->offsets[] to the user
2222  * specified plane src x/y offsets. The resulting x/y offsets
2223  * specify the start of scanout from the beginning of the gtt mapping.
2224  */
2225 void intel_add_fb_offsets(int *x, int *y,
2226                           const struct intel_plane_state *state,
2227                           int plane)
2228
2229 {
2230         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2231         unsigned int rotation = state->base.rotation;
2232
2233         if (drm_rotation_90_or_270(rotation)) {
2234                 *x += intel_fb->rotated[plane].x;
2235                 *y += intel_fb->rotated[plane].y;
2236         } else {
2237                 *x += intel_fb->normal[plane].x;
2238                 *y += intel_fb->normal[plane].y;
2239         }
2240 }
2241
2242 /*
2243  * Input tile dimensions and pitch must already be
2244  * rotated to match x and y, and in pixel units.
2245  */
2246 static u32 _intel_adjust_tile_offset(int *x, int *y,
2247                                      unsigned int tile_width,
2248                                      unsigned int tile_height,
2249                                      unsigned int tile_size,
2250                                      unsigned int pitch_tiles,
2251                                      u32 old_offset,
2252                                      u32 new_offset)
2253 {
2254         unsigned int pitch_pixels = pitch_tiles * tile_width;
2255         unsigned int tiles;
2256
2257         WARN_ON(old_offset & (tile_size - 1));
2258         WARN_ON(new_offset & (tile_size - 1));
2259         WARN_ON(new_offset > old_offset);
2260
2261         tiles = (old_offset - new_offset) / tile_size;
2262
2263         *y += tiles / pitch_tiles * tile_height;
2264         *x += tiles % pitch_tiles * tile_width;
2265
2266         /* minimize x in case it got needlessly big */
2267         *y += *x / pitch_pixels * tile_height;
2268         *x %= pitch_pixels;
2269
2270         return new_offset;
2271 }
2272
2273 /*
2274  * Adjust the tile offset by moving the difference into
2275  * the x/y offsets.
2276  */
2277 static u32 intel_adjust_tile_offset(int *x, int *y,
2278                                     const struct intel_plane_state *state, int plane,
2279                                     u32 old_offset, u32 new_offset)
2280 {
2281         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2282         const struct drm_framebuffer *fb = state->base.fb;
2283         unsigned int cpp = fb->format->cpp[plane];
2284         unsigned int rotation = state->base.rotation;
2285         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2286
2287         WARN_ON(new_offset > old_offset);
2288
2289         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2290                 unsigned int tile_size, tile_width, tile_height;
2291                 unsigned int pitch_tiles;
2292
2293                 tile_size = intel_tile_size(dev_priv);
2294                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2295                                 fb->modifier, cpp);
2296
2297                 if (drm_rotation_90_or_270(rotation)) {
2298                         pitch_tiles = pitch / tile_height;
2299                         swap(tile_width, tile_height);
2300                 } else {
2301                         pitch_tiles = pitch / (tile_width * cpp);
2302                 }
2303
2304                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2305                                           tile_size, pitch_tiles,
2306                                           old_offset, new_offset);
2307         } else {
2308                 old_offset += *y * pitch + *x * cpp;
2309
2310                 *y = (old_offset - new_offset) / pitch;
2311                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2312         }
2313
2314         return new_offset;
2315 }
2316
2317 /*
2318  * Computes the linear offset to the base tile and adjusts
2319  * x, y. bytes per pixel is assumed to be a power-of-two.
2320  *
2321  * In the 90/270 rotated case, x and y are assumed
2322  * to be already rotated to match the rotated GTT view, and
2323  * pitch is the tile_height aligned framebuffer height.
2324  *
2325  * This function is used when computing the derived information
2326  * under intel_framebuffer, so using any of that information
2327  * here is not allowed. Anything under drm_framebuffer can be
2328  * used. This is why the user has to pass in the pitch since it
2329  * is specified in the rotated orientation.
2330  */
2331 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2332                                       int *x, int *y,
2333                                       const struct drm_framebuffer *fb, int plane,
2334                                       unsigned int pitch,
2335                                       unsigned int rotation,
2336                                       u32 alignment)
2337 {
2338         uint64_t fb_modifier = fb->modifier;
2339         unsigned int cpp = fb->format->cpp[plane];
2340         u32 offset, offset_aligned;
2341
2342         if (alignment)
2343                 alignment--;
2344
2345         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2346                 unsigned int tile_size, tile_width, tile_height;
2347                 unsigned int tile_rows, tiles, pitch_tiles;
2348
2349                 tile_size = intel_tile_size(dev_priv);
2350                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2351                                 fb_modifier, cpp);
2352
2353                 if (drm_rotation_90_or_270(rotation)) {
2354                         pitch_tiles = pitch / tile_height;
2355                         swap(tile_width, tile_height);
2356                 } else {
2357                         pitch_tiles = pitch / (tile_width * cpp);
2358                 }
2359
2360                 tile_rows = *y / tile_height;
2361                 *y %= tile_height;
2362
2363                 tiles = *x / tile_width;
2364                 *x %= tile_width;
2365
2366                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2367                 offset_aligned = offset & ~alignment;
2368
2369                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2370                                           tile_size, pitch_tiles,
2371                                           offset, offset_aligned);
2372         } else {
2373                 offset = *y * pitch + *x * cpp;
2374                 offset_aligned = offset & ~alignment;
2375
2376                 *y = (offset & alignment) / pitch;
2377                 *x = ((offset & alignment) - *y * pitch) / cpp;
2378         }
2379
2380         return offset_aligned;
2381 }
2382
2383 u32 intel_compute_tile_offset(int *x, int *y,
2384                               const struct intel_plane_state *state,
2385                               int plane)
2386 {
2387         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2388         const struct drm_framebuffer *fb = state->base.fb;
2389         unsigned int rotation = state->base.rotation;
2390         int pitch = intel_fb_pitch(fb, plane, rotation);
2391         u32 alignment;
2392
2393         /* AUX_DIST needs only 4K alignment */
2394         if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2395                 alignment = 4096;
2396         else
2397                 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2398
2399         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2400                                           rotation, alignment);
2401 }
2402
2403 /* Convert the fb->offset[] linear offset into x/y offsets */
2404 static void intel_fb_offset_to_xy(int *x, int *y,
2405                                   const struct drm_framebuffer *fb, int plane)
2406 {
2407         unsigned int cpp = fb->format->cpp[plane];
2408         unsigned int pitch = fb->pitches[plane];
2409         u32 linear_offset = fb->offsets[plane];
2410
2411         *y = linear_offset / pitch;
2412         *x = linear_offset % pitch / cpp;
2413 }
2414
2415 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2416 {
2417         switch (fb_modifier) {
2418         case I915_FORMAT_MOD_X_TILED:
2419                 return I915_TILING_X;
2420         case I915_FORMAT_MOD_Y_TILED:
2421                 return I915_TILING_Y;
2422         default:
2423                 return I915_TILING_NONE;
2424         }
2425 }
2426
2427 static int
2428 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2429                    struct drm_framebuffer *fb)
2430 {
2431         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2432         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2433         u32 gtt_offset_rotated = 0;
2434         unsigned int max_size = 0;
2435         int i, num_planes = fb->format->num_planes;
2436         unsigned int tile_size = intel_tile_size(dev_priv);
2437
2438         for (i = 0; i < num_planes; i++) {
2439                 unsigned int width, height;
2440                 unsigned int cpp, size;
2441                 u32 offset;
2442                 int x, y;
2443
2444                 cpp = fb->format->cpp[i];
2445                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2446                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2447
2448                 intel_fb_offset_to_xy(&x, &y, fb, i);
2449
2450                 /*
2451                  * The fence (if used) is aligned to the start of the object
2452                  * so having the framebuffer wrap around across the edge of the
2453                  * fenced region doesn't really work. We have no API to configure
2454                  * the fence start offset within the object (nor could we probably
2455                  * on gen2/3). So it's just easier if we just require that the
2456                  * fb layout agrees with the fence layout. We already check that the
2457                  * fb stride matches the fence stride elsewhere.
2458                  */
2459                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2460                     (x + width) * cpp > fb->pitches[i]) {
2461                         DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2462                                   i, fb->offsets[i]);
2463                         return -EINVAL;
2464                 }
2465
2466                 /*
2467                  * First pixel of the framebuffer from
2468                  * the start of the normal gtt mapping.
2469                  */
2470                 intel_fb->normal[i].x = x;
2471                 intel_fb->normal[i].y = y;
2472
2473                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2474                                                     fb, 0, fb->pitches[i],
2475                                                     DRM_ROTATE_0, tile_size);
2476                 offset /= tile_size;
2477
2478                 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2479                         unsigned int tile_width, tile_height;
2480                         unsigned int pitch_tiles;
2481                         struct drm_rect r;
2482
2483                         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2484                                         fb->modifier, cpp);
2485
2486                         rot_info->plane[i].offset = offset;
2487                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2488                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2489                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2490
2491                         intel_fb->rotated[i].pitch =
2492                                 rot_info->plane[i].height * tile_height;
2493
2494                         /* how many tiles does this plane need */
2495                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2496                         /*
2497                          * If the plane isn't horizontally tile aligned,
2498                          * we need one more tile.
2499                          */
2500                         if (x != 0)
2501                                 size++;
2502
2503                         /* rotate the x/y offsets to match the GTT view */
2504                         r.x1 = x;
2505                         r.y1 = y;
2506                         r.x2 = x + width;
2507                         r.y2 = y + height;
2508                         drm_rect_rotate(&r,
2509                                         rot_info->plane[i].width * tile_width,
2510                                         rot_info->plane[i].height * tile_height,
2511                                         DRM_ROTATE_270);
2512                         x = r.x1;
2513                         y = r.y1;
2514
2515                         /* rotate the tile dimensions to match the GTT view */
2516                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2517                         swap(tile_width, tile_height);
2518
2519                         /*
2520                          * We only keep the x/y offsets, so push all of the
2521                          * gtt offset into the x/y offsets.
2522                          */
2523                         _intel_adjust_tile_offset(&x, &y,
2524                                                   tile_width, tile_height,
2525                                                   tile_size, pitch_tiles,
2526                                                   gtt_offset_rotated * tile_size, 0);
2527
2528                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2529
2530                         /*
2531                          * First pixel of the framebuffer from
2532                          * the start of the rotated gtt mapping.
2533                          */
2534                         intel_fb->rotated[i].x = x;
2535                         intel_fb->rotated[i].y = y;
2536                 } else {
2537                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2538                                             x * cpp, tile_size);
2539                 }
2540
2541                 /* how many tiles in total needed in the bo */
2542                 max_size = max(max_size, offset + size);
2543         }
2544
2545         if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2546                 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2547                           max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2548                 return -EINVAL;
2549         }
2550
2551         return 0;
2552 }
2553
2554 static int i9xx_format_to_fourcc(int format)
2555 {
2556         switch (format) {
2557         case DISPPLANE_8BPP:
2558                 return DRM_FORMAT_C8;
2559         case DISPPLANE_BGRX555:
2560                 return DRM_FORMAT_XRGB1555;
2561         case DISPPLANE_BGRX565:
2562                 return DRM_FORMAT_RGB565;
2563         default:
2564         case DISPPLANE_BGRX888:
2565                 return DRM_FORMAT_XRGB8888;
2566         case DISPPLANE_RGBX888:
2567                 return DRM_FORMAT_XBGR8888;
2568         case DISPPLANE_BGRX101010:
2569                 return DRM_FORMAT_XRGB2101010;
2570         case DISPPLANE_RGBX101010:
2571                 return DRM_FORMAT_XBGR2101010;
2572         }
2573 }
2574
2575 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2576 {
2577         switch (format) {
2578         case PLANE_CTL_FORMAT_RGB_565:
2579                 return DRM_FORMAT_RGB565;
2580         default:
2581         case PLANE_CTL_FORMAT_XRGB_8888:
2582                 if (rgb_order) {
2583                         if (alpha)
2584                                 return DRM_FORMAT_ABGR8888;
2585                         else
2586                                 return DRM_FORMAT_XBGR8888;
2587                 } else {
2588                         if (alpha)
2589                                 return DRM_FORMAT_ARGB8888;
2590                         else
2591                                 return DRM_FORMAT_XRGB8888;
2592                 }
2593         case PLANE_CTL_FORMAT_XRGB_2101010:
2594                 if (rgb_order)
2595                         return DRM_FORMAT_XBGR2101010;
2596                 else
2597                         return DRM_FORMAT_XRGB2101010;
2598         }
2599 }
2600
2601 static bool
2602 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2603                               struct intel_initial_plane_config *plane_config)
2604 {
2605         struct drm_device *dev = crtc->base.dev;
2606         struct drm_i915_private *dev_priv = to_i915(dev);
2607         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2608         struct drm_i915_gem_object *obj = NULL;
2609         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2610         struct drm_framebuffer *fb = &plane_config->fb->base;
2611         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2612         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2613                                     PAGE_SIZE);
2614
2615         size_aligned -= base_aligned;
2616
2617         if (plane_config->size == 0)
2618                 return false;
2619
2620         /* If the FB is too big, just don't use it since fbdev is not very
2621          * important and we should probably use that space with FBC or other
2622          * features. */
2623         if (size_aligned * 2 > ggtt->stolen_usable_size)
2624                 return false;
2625
2626         mutex_lock(&dev->struct_mutex);
2627         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2628                                                              base_aligned,
2629                                                              base_aligned,
2630                                                              size_aligned);
2631         mutex_unlock(&dev->struct_mutex);
2632         if (!obj)
2633                 return false;
2634
2635         if (plane_config->tiling == I915_TILING_X)
2636                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2637
2638         mode_cmd.pixel_format = fb->format->format;
2639         mode_cmd.width = fb->width;
2640         mode_cmd.height = fb->height;
2641         mode_cmd.pitches[0] = fb->pitches[0];
2642         mode_cmd.modifier[0] = fb->modifier;
2643         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2644
2645         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2646                 DRM_DEBUG_KMS("intel fb init failed\n");
2647                 goto out_unref_obj;
2648         }
2649
2650
2651         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2652         return true;
2653
2654 out_unref_obj:
2655         i915_gem_object_put(obj);
2656         return false;
2657 }
2658
2659 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2660 static void
2661 update_state_fb(struct drm_plane *plane)
2662 {
2663         if (plane->fb == plane->state->fb)
2664                 return;
2665
2666         if (plane->state->fb)
2667                 drm_framebuffer_unreference(plane->state->fb);
2668         plane->state->fb = plane->fb;
2669         if (plane->state->fb)
2670                 drm_framebuffer_reference(plane->state->fb);
2671 }
2672
2673 static void
2674 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2675                         struct intel_plane_state *plane_state,
2676                         bool visible)
2677 {
2678         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2679
2680         plane_state->base.visible = visible;
2681
2682         /* FIXME pre-g4x don't work like this */
2683         if (visible) {
2684                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2685                 crtc_state->active_planes |= BIT(plane->id);
2686         } else {
2687                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2688                 crtc_state->active_planes &= ~BIT(plane->id);
2689         }
2690
2691         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2692                       crtc_state->base.crtc->name,
2693                       crtc_state->active_planes);
2694 }
2695
2696 static void
2697 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2698                              struct intel_initial_plane_config *plane_config)
2699 {
2700         struct drm_device *dev = intel_crtc->base.dev;
2701         struct drm_i915_private *dev_priv = to_i915(dev);
2702         struct drm_crtc *c;
2703         struct drm_i915_gem_object *obj;
2704         struct drm_plane *primary = intel_crtc->base.primary;
2705         struct drm_plane_state *plane_state = primary->state;
2706         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2707         struct intel_plane *intel_plane = to_intel_plane(primary);
2708         struct intel_plane_state *intel_state =
2709                 to_intel_plane_state(plane_state);
2710         struct drm_framebuffer *fb;
2711
2712         if (!plane_config->fb)
2713                 return;
2714
2715         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2716                 fb = &plane_config->fb->base;
2717                 goto valid_fb;
2718         }
2719
2720         kfree(plane_config->fb);
2721
2722         /*
2723          * Failed to alloc the obj, check to see if we should share
2724          * an fb with another CRTC instead
2725          */
2726         for_each_crtc(dev, c) {
2727                 struct intel_plane_state *state;
2728
2729                 if (c == &intel_crtc->base)
2730                         continue;
2731
2732                 if (!to_intel_crtc(c)->active)
2733                         continue;
2734
2735                 state = to_intel_plane_state(c->primary->state);
2736                 if (!state->vma)
2737                         continue;
2738
2739                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2740                         fb = c->primary->fb;
2741                         drm_framebuffer_reference(fb);
2742                         goto valid_fb;
2743                 }
2744         }
2745
2746         /*
2747          * We've failed to reconstruct the BIOS FB.  Current display state
2748          * indicates that the primary plane is visible, but has a NULL FB,
2749          * which will lead to problems later if we don't fix it up.  The
2750          * simplest solution is to just disable the primary plane now and
2751          * pretend the BIOS never had it enabled.
2752          */
2753         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2754                                 to_intel_plane_state(plane_state),
2755                                 false);
2756         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2757         trace_intel_disable_plane(primary, intel_crtc);
2758         intel_plane->disable_plane(primary, &intel_crtc->base);
2759
2760         return;
2761
2762 valid_fb:
2763         mutex_lock(&dev->struct_mutex);
2764         intel_state->vma =
2765                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2766         mutex_unlock(&dev->struct_mutex);
2767         if (IS_ERR(intel_state->vma)) {
2768                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2769                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2770
2771                 intel_state->vma = NULL;
2772                 drm_framebuffer_unreference(fb);
2773                 return;
2774         }
2775
2776         plane_state->src_x = 0;
2777         plane_state->src_y = 0;
2778         plane_state->src_w = fb->width << 16;
2779         plane_state->src_h = fb->height << 16;
2780
2781         plane_state->crtc_x = 0;
2782         plane_state->crtc_y = 0;
2783         plane_state->crtc_w = fb->width;
2784         plane_state->crtc_h = fb->height;
2785
2786         intel_state->base.src = drm_plane_state_src(plane_state);
2787         intel_state->base.dst = drm_plane_state_dest(plane_state);
2788
2789         obj = intel_fb_obj(fb);
2790         if (i915_gem_object_is_tiled(obj))
2791                 dev_priv->preserve_bios_swizzle = true;
2792
2793         drm_framebuffer_reference(fb);
2794         primary->fb = primary->state->fb = fb;
2795         primary->crtc = primary->state->crtc = &intel_crtc->base;
2796
2797         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2798                                 to_intel_plane_state(plane_state),
2799                                 true);
2800
2801         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2802                   &obj->frontbuffer_bits);
2803 }
2804
2805 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2806                                unsigned int rotation)
2807 {
2808         int cpp = fb->format->cpp[plane];
2809
2810         switch (fb->modifier) {
2811         case DRM_FORMAT_MOD_NONE:
2812         case I915_FORMAT_MOD_X_TILED:
2813                 switch (cpp) {
2814                 case 8:
2815                         return 4096;
2816                 case 4:
2817                 case 2:
2818                 case 1:
2819                         return 8192;
2820                 default:
2821                         MISSING_CASE(cpp);
2822                         break;
2823                 }
2824                 break;
2825         case I915_FORMAT_MOD_Y_TILED:
2826         case I915_FORMAT_MOD_Yf_TILED:
2827                 switch (cpp) {
2828                 case 8:
2829                         return 2048;
2830                 case 4:
2831                         return 4096;
2832                 case 2:
2833                 case 1:
2834                         return 8192;
2835                 default:
2836                         MISSING_CASE(cpp);
2837                         break;
2838                 }
2839                 break;
2840         default:
2841                 MISSING_CASE(fb->modifier);
2842         }
2843
2844         return 2048;
2845 }
2846
2847 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2848 {
2849         const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2850         const struct drm_framebuffer *fb = plane_state->base.fb;
2851         unsigned int rotation = plane_state->base.rotation;
2852         int x = plane_state->base.src.x1 >> 16;
2853         int y = plane_state->base.src.y1 >> 16;
2854         int w = drm_rect_width(&plane_state->base.src) >> 16;
2855         int h = drm_rect_height(&plane_state->base.src) >> 16;
2856         int max_width = skl_max_plane_width(fb, 0, rotation);
2857         int max_height = 4096;
2858         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2859
2860         if (w > max_width || h > max_height) {
2861                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2862                               w, h, max_width, max_height);
2863                 return -EINVAL;
2864         }
2865
2866         intel_add_fb_offsets(&x, &y, plane_state, 0);
2867         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2868
2869         alignment = intel_surf_alignment(dev_priv, fb->modifier);
2870
2871         /*
2872          * AUX surface offset is specified as the distance from the
2873          * main surface offset, and it must be non-negative. Make
2874          * sure that is what we will get.
2875          */
2876         if (offset > aux_offset)
2877                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2878                                                   offset, aux_offset & ~(alignment - 1));
2879
2880         /*
2881          * When using an X-tiled surface, the plane blows up
2882          * if the x offset + width exceed the stride.
2883          *
2884          * TODO: linear and Y-tiled seem fine, Yf untested,
2885          */
2886         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2887                 int cpp = fb->format->cpp[0];
2888
2889                 while ((x + w) * cpp > fb->pitches[0]) {
2890                         if (offset == 0) {
2891                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2892                                 return -EINVAL;
2893                         }
2894
2895                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2896                                                           offset, offset - alignment);
2897                 }
2898         }
2899
2900         plane_state->main.offset = offset;
2901         plane_state->main.x = x;
2902         plane_state->main.y = y;
2903
2904         return 0;
2905 }
2906
2907 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2908 {
2909         const struct drm_framebuffer *fb = plane_state->base.fb;
2910         unsigned int rotation = plane_state->base.rotation;
2911         int max_width = skl_max_plane_width(fb, 1, rotation);
2912         int max_height = 4096;
2913         int x = plane_state->base.src.x1 >> 17;
2914         int y = plane_state->base.src.y1 >> 17;
2915         int w = drm_rect_width(&plane_state->base.src) >> 17;
2916         int h = drm_rect_height(&plane_state->base.src) >> 17;
2917         u32 offset;
2918
2919         intel_add_fb_offsets(&x, &y, plane_state, 1);
2920         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2921
2922         /* FIXME not quite sure how/if these apply to the chroma plane */
2923         if (w > max_width || h > max_height) {
2924                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2925                               w, h, max_width, max_height);
2926                 return -EINVAL;
2927         }
2928
2929         plane_state->aux.offset = offset;
2930         plane_state->aux.x = x;
2931         plane_state->aux.y = y;
2932
2933         return 0;
2934 }
2935
2936 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2937 {
2938         const struct drm_framebuffer *fb = plane_state->base.fb;
2939         unsigned int rotation = plane_state->base.rotation;
2940         int ret;
2941
2942         if (!plane_state->base.visible)
2943                 return 0;
2944
2945         /* Rotate src coordinates to match rotated GTT view */
2946         if (drm_rotation_90_or_270(rotation))
2947                 drm_rect_rotate(&plane_state->base.src,
2948                                 fb->width << 16, fb->height << 16,
2949                                 DRM_ROTATE_270);
2950
2951         /*
2952          * Handle the AUX surface first since
2953          * the main surface setup depends on it.
2954          */
2955         if (fb->format->format == DRM_FORMAT_NV12) {
2956                 ret = skl_check_nv12_aux_surface(plane_state);
2957                 if (ret)
2958                         return ret;
2959         } else {
2960                 plane_state->aux.offset = ~0xfff;
2961                 plane_state->aux.x = 0;
2962                 plane_state->aux.y = 0;
2963         }
2964
2965         ret = skl_check_main_surface(plane_state);
2966         if (ret)
2967                 return ret;
2968
2969         return 0;
2970 }
2971
2972 static void i9xx_update_primary_plane(struct drm_plane *primary,
2973                                       const struct intel_crtc_state *crtc_state,
2974                                       const struct intel_plane_state *plane_state)
2975 {
2976         struct drm_i915_private *dev_priv = to_i915(primary->dev);
2977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2978         struct drm_framebuffer *fb = plane_state->base.fb;
2979         int plane = intel_crtc->plane;
2980         u32 linear_offset;
2981         u32 dspcntr;
2982         i915_reg_t reg = DSPCNTR(plane);
2983         unsigned int rotation = plane_state->base.rotation;
2984         int x = plane_state->base.src.x1 >> 16;
2985         int y = plane_state->base.src.y1 >> 16;
2986
2987         dspcntr = DISPPLANE_GAMMA_ENABLE;
2988
2989         dspcntr |= DISPLAY_PLANE_ENABLE;
2990
2991         if (INTEL_GEN(dev_priv) < 4) {
2992                 if (intel_crtc->pipe == PIPE_B)
2993                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2994
2995                 /* pipesrc and dspsize control the size that is scaled from,
2996                  * which should always be the user's requested size.
2997                  */
2998                 I915_WRITE(DSPSIZE(plane),
2999                            ((crtc_state->pipe_src_h - 1) << 16) |
3000                            (crtc_state->pipe_src_w - 1));
3001                 I915_WRITE(DSPPOS(plane), 0);
3002         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3003                 I915_WRITE(PRIMSIZE(plane),
3004                            ((crtc_state->pipe_src_h - 1) << 16) |
3005                            (crtc_state->pipe_src_w - 1));
3006                 I915_WRITE(PRIMPOS(plane), 0);
3007                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3008         }
3009
3010         switch (fb->format->format) {
3011         case DRM_FORMAT_C8:
3012                 dspcntr |= DISPPLANE_8BPP;
3013                 break;
3014         case DRM_FORMAT_XRGB1555:
3015                 dspcntr |= DISPPLANE_BGRX555;
3016                 break;
3017         case DRM_FORMAT_RGB565:
3018                 dspcntr |= DISPPLANE_BGRX565;
3019                 break;
3020         case DRM_FORMAT_XRGB8888:
3021                 dspcntr |= DISPPLANE_BGRX888;
3022                 break;
3023         case DRM_FORMAT_XBGR8888:
3024                 dspcntr |= DISPPLANE_RGBX888;
3025                 break;
3026         case DRM_FORMAT_XRGB2101010:
3027                 dspcntr |= DISPPLANE_BGRX101010;
3028                 break;
3029         case DRM_FORMAT_XBGR2101010:
3030                 dspcntr |= DISPPLANE_RGBX101010;
3031                 break;
3032         default:
3033                 BUG();
3034         }
3035
3036         if (INTEL_GEN(dev_priv) >= 4 &&
3037             fb->modifier == I915_FORMAT_MOD_X_TILED)
3038                 dspcntr |= DISPPLANE_TILED;
3039
3040         if (rotation & DRM_ROTATE_180)
3041                 dspcntr |= DISPPLANE_ROTATE_180;
3042
3043         if (rotation & DRM_REFLECT_X)
3044                 dspcntr |= DISPPLANE_MIRROR;
3045
3046         if (IS_G4X(dev_priv))
3047                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3048
3049         intel_add_fb_offsets(&x, &y, plane_state, 0);
3050
3051         if (INTEL_GEN(dev_priv) >= 4)
3052                 intel_crtc->dspaddr_offset =
3053                         intel_compute_tile_offset(&x, &y, plane_state, 0);
3054
3055         if (rotation & DRM_ROTATE_180) {
3056                 x += crtc_state->pipe_src_w - 1;
3057                 y += crtc_state->pipe_src_h - 1;
3058         } else if (rotation & DRM_REFLECT_X) {
3059                 x += crtc_state->pipe_src_w - 1;
3060         }
3061
3062         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3063
3064         if (INTEL_GEN(dev_priv) < 4)
3065                 intel_crtc->dspaddr_offset = linear_offset;
3066
3067         intel_crtc->adjusted_x = x;
3068         intel_crtc->adjusted_y = y;
3069
3070         I915_WRITE(reg, dspcntr);
3071
3072         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3073         if (INTEL_GEN(dev_priv) >= 4) {
3074                 I915_WRITE(DSPSURF(plane),
3075                            intel_plane_ggtt_offset(plane_state) +
3076                            intel_crtc->dspaddr_offset);
3077                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3078                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3079         } else {
3080                 I915_WRITE(DSPADDR(plane),
3081                            intel_plane_ggtt_offset(plane_state) +
3082                            intel_crtc->dspaddr_offset);
3083         }
3084         POSTING_READ(reg);
3085 }
3086
3087 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3088                                        struct drm_crtc *crtc)
3089 {
3090         struct drm_device *dev = crtc->dev;
3091         struct drm_i915_private *dev_priv = to_i915(dev);
3092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3093         int plane = intel_crtc->plane;
3094
3095         I915_WRITE(DSPCNTR(plane), 0);
3096         if (INTEL_INFO(dev_priv)->gen >= 4)
3097                 I915_WRITE(DSPSURF(plane), 0);
3098         else
3099                 I915_WRITE(DSPADDR(plane), 0);
3100         POSTING_READ(DSPCNTR(plane));
3101 }
3102
3103 static void ironlake_update_primary_plane(struct drm_plane *primary,
3104                                           const struct intel_crtc_state *crtc_state,
3105                                           const struct intel_plane_state *plane_state)
3106 {
3107         struct drm_device *dev = primary->dev;
3108         struct drm_i915_private *dev_priv = to_i915(dev);
3109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3110         struct drm_framebuffer *fb = plane_state->base.fb;
3111         int plane = intel_crtc->plane;
3112         u32 linear_offset;
3113         u32 dspcntr;
3114         i915_reg_t reg = DSPCNTR(plane);
3115         unsigned int rotation = plane_state->base.rotation;
3116         int x = plane_state->base.src.x1 >> 16;
3117         int y = plane_state->base.src.y1 >> 16;
3118
3119         dspcntr = DISPPLANE_GAMMA_ENABLE;
3120         dspcntr |= DISPLAY_PLANE_ENABLE;
3121
3122         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3123                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3124
3125         switch (fb->format->format) {
3126         case DRM_FORMAT_C8:
3127                 dspcntr |= DISPPLANE_8BPP;
3128                 break;
3129         case DRM_FORMAT_RGB565:
3130                 dspcntr |= DISPPLANE_BGRX565;
3131                 break;
3132         case DRM_FORMAT_XRGB8888:
3133                 dspcntr |= DISPPLANE_BGRX888;
3134                 break;
3135         case DRM_FORMAT_XBGR8888:
3136                 dspcntr |= DISPPLANE_RGBX888;
3137                 break;
3138         case DRM_FORMAT_XRGB2101010:
3139                 dspcntr |= DISPPLANE_BGRX101010;
3140                 break;
3141         case DRM_FORMAT_XBGR2101010:
3142                 dspcntr |= DISPPLANE_RGBX101010;
3143                 break;
3144         default:
3145                 BUG();
3146         }
3147
3148         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3149                 dspcntr |= DISPPLANE_TILED;
3150
3151         if (rotation & DRM_ROTATE_180)
3152                 dspcntr |= DISPPLANE_ROTATE_180;
3153
3154         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3155                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3156
3157         intel_add_fb_offsets(&x, &y, plane_state, 0);
3158
3159         intel_crtc->dspaddr_offset =
3160                 intel_compute_tile_offset(&x, &y, plane_state, 0);
3161
3162         /* HSW+ does this automagically in hardware */
3163         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3164             rotation & DRM_ROTATE_180) {
3165                 x += crtc_state->pipe_src_w - 1;
3166                 y += crtc_state->pipe_src_h - 1;
3167         }
3168
3169         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3170
3171         intel_crtc->adjusted_x = x;
3172         intel_crtc->adjusted_y = y;
3173
3174         I915_WRITE(reg, dspcntr);
3175
3176         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3177         I915_WRITE(DSPSURF(plane),
3178                    intel_plane_ggtt_offset(plane_state) +
3179                    intel_crtc->dspaddr_offset);
3180         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3181                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3182         } else {
3183                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3184                 I915_WRITE(DSPLINOFF(plane), linear_offset);
3185         }
3186         POSTING_READ(reg);
3187 }
3188
3189 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3190                               uint64_t fb_modifier, uint32_t pixel_format)
3191 {
3192         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3193                 return 64;
3194         } else {
3195                 int cpp = drm_format_plane_cpp(pixel_format, 0);
3196
3197                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3198         }
3199 }
3200
3201 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3202 {
3203         struct drm_device *dev = intel_crtc->base.dev;
3204         struct drm_i915_private *dev_priv = to_i915(dev);
3205
3206         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3207         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3208         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3209 }
3210
3211 /*
3212  * This function detaches (aka. unbinds) unused scalers in hardware
3213  */
3214 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3215 {
3216         struct intel_crtc_scaler_state *scaler_state;
3217         int i;
3218
3219         scaler_state = &intel_crtc->config->scaler_state;
3220
3221         /* loop through and disable scalers that aren't in use */
3222         for (i = 0; i < intel_crtc->num_scalers; i++) {
3223                 if (!scaler_state->scalers[i].in_use)
3224                         skl_detach_scaler(intel_crtc, i);
3225         }
3226 }
3227
3228 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3229                      unsigned int rotation)
3230 {
3231         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3232         u32 stride = intel_fb_pitch(fb, plane, rotation);
3233
3234         /*
3235          * The stride is either expressed as a multiple of 64 bytes chunks for
3236          * linear buffers or in number of tiles for tiled buffers.
3237          */
3238         if (drm_rotation_90_or_270(rotation)) {
3239                 int cpp = fb->format->cpp[plane];
3240
3241                 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3242         } else {
3243                 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3244                                                     fb->format->format);
3245         }
3246
3247         return stride;
3248 }
3249
3250 u32 skl_plane_ctl_format(uint32_t pixel_format)
3251 {
3252         switch (pixel_format) {
3253         case DRM_FORMAT_C8:
3254                 return PLANE_CTL_FORMAT_INDEXED;
3255         case DRM_FORMAT_RGB565:
3256                 return PLANE_CTL_FORMAT_RGB_565;
3257         case DRM_FORMAT_XBGR8888:
3258                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3259         case DRM_FORMAT_XRGB8888:
3260                 return PLANE_CTL_FORMAT_XRGB_8888;
3261         /*
3262          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3263          * to be already pre-multiplied. We need to add a knob (or a different
3264          * DRM_FORMAT) for user-space to configure that.
3265          */
3266         case DRM_FORMAT_ABGR8888:
3267                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3268                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3269         case DRM_FORMAT_ARGB8888:
3270                 return PLANE_CTL_FORMAT_XRGB_8888 |
3271                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3272         case DRM_FORMAT_XRGB2101010:
3273                 return PLANE_CTL_FORMAT_XRGB_2101010;
3274         case DRM_FORMAT_XBGR2101010:
3275                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3276         case DRM_FORMAT_YUYV:
3277                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3278         case DRM_FORMAT_YVYU:
3279                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3280         case DRM_FORMAT_UYVY:
3281                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3282         case DRM_FORMAT_VYUY:
3283                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3284         default:
3285                 MISSING_CASE(pixel_format);
3286         }
3287
3288         return 0;
3289 }
3290
3291 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3292 {
3293         switch (fb_modifier) {
3294         case DRM_FORMAT_MOD_NONE:
3295                 break;
3296         case I915_FORMAT_MOD_X_TILED:
3297                 return PLANE_CTL_TILED_X;
3298         case I915_FORMAT_MOD_Y_TILED:
3299                 return PLANE_CTL_TILED_Y;
3300         case I915_FORMAT_MOD_Yf_TILED:
3301                 return PLANE_CTL_TILED_YF;
3302         default:
3303                 MISSING_CASE(fb_modifier);
3304         }
3305
3306         return 0;
3307 }
3308
3309 u32 skl_plane_ctl_rotation(unsigned int rotation)
3310 {
3311         switch (rotation) {
3312         case DRM_ROTATE_0:
3313                 break;
3314         /*
3315          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3316          * while i915 HW rotation is clockwise, thats why this swapping.
3317          */
3318         case DRM_ROTATE_90:
3319                 return PLANE_CTL_ROTATE_270;
3320         case DRM_ROTATE_180:
3321                 return PLANE_CTL_ROTATE_180;
3322         case DRM_ROTATE_270:
3323                 return PLANE_CTL_ROTATE_90;
3324         default:
3325                 MISSING_CASE(rotation);
3326         }
3327
3328         return 0;
3329 }
3330
3331 static void skylake_update_primary_plane(struct drm_plane *plane,
3332                                          const struct intel_crtc_state *crtc_state,
3333                                          const struct intel_plane_state *plane_state)
3334 {
3335         struct drm_device *dev = plane->dev;
3336         struct drm_i915_private *dev_priv = to_i915(dev);
3337         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3338         struct drm_framebuffer *fb = plane_state->base.fb;
3339         enum plane_id plane_id = to_intel_plane(plane)->id;
3340         enum pipe pipe = to_intel_plane(plane)->pipe;
3341         u32 plane_ctl;
3342         unsigned int rotation = plane_state->base.rotation;
3343         u32 stride = skl_plane_stride(fb, 0, rotation);
3344         u32 surf_addr = plane_state->main.offset;
3345         int scaler_id = plane_state->scaler_id;
3346         int src_x = plane_state->main.x;
3347         int src_y = plane_state->main.y;
3348         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3349         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3350         int dst_x = plane_state->base.dst.x1;
3351         int dst_y = plane_state->base.dst.y1;
3352         int dst_w = drm_rect_width(&plane_state->base.dst);
3353         int dst_h = drm_rect_height(&plane_state->base.dst);
3354
3355         plane_ctl = PLANE_CTL_ENABLE;
3356
3357         if (IS_GEMINILAKE(dev_priv)) {
3358                 I915_WRITE(PLANE_COLOR_CTL(pipe, plane_id),
3359                            PLANE_COLOR_PIPE_GAMMA_ENABLE |
3360                            PLANE_COLOR_PIPE_CSC_ENABLE |
3361                            PLANE_COLOR_PLANE_GAMMA_DISABLE);
3362         } else {
3363                 plane_ctl |=
3364                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3365                         PLANE_CTL_PIPE_CSC_ENABLE |
3366                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3367         }
3368
3369         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3370         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3371         plane_ctl |= skl_plane_ctl_rotation(rotation);
3372
3373         /* Sizes are 0 based */
3374         src_w--;
3375         src_h--;
3376         dst_w--;
3377         dst_h--;
3378
3379         intel_crtc->dspaddr_offset = surf_addr;
3380
3381         intel_crtc->adjusted_x = src_x;
3382         intel_crtc->adjusted_y = src_y;
3383
3384         I915_WRITE(PLANE_CTL(pipe, plane_id), plane_ctl);
3385         I915_WRITE(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3386         I915_WRITE(PLANE_STRIDE(pipe, plane_id), stride);
3387         I915_WRITE(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3388
3389         if (scaler_id >= 0) {
3390                 uint32_t ps_ctrl = 0;
3391
3392                 WARN_ON(!dst_w || !dst_h);
3393                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3394                         crtc_state->scaler_state.scalers[scaler_id].mode;
3395                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3396                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3397                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3398                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3399                 I915_WRITE(PLANE_POS(pipe, plane_id), 0);
3400         } else {
3401                 I915_WRITE(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3402         }
3403
3404         I915_WRITE(PLANE_SURF(pipe, plane_id),
3405                    intel_plane_ggtt_offset(plane_state) + surf_addr);
3406
3407         POSTING_READ(PLANE_SURF(pipe, plane_id));
3408 }
3409
3410 static void skylake_disable_primary_plane(struct drm_plane *primary,
3411                                           struct drm_crtc *crtc)
3412 {
3413         struct drm_device *dev = crtc->dev;
3414         struct drm_i915_private *dev_priv = to_i915(dev);
3415         enum plane_id plane_id = to_intel_plane(primary)->id;
3416         enum pipe pipe = to_intel_plane(primary)->pipe;
3417
3418         I915_WRITE(PLANE_CTL(pipe, plane_id), 0);
3419         I915_WRITE(PLANE_SURF(pipe, plane_id), 0);
3420         POSTING_READ(PLANE_SURF(pipe, plane_id));
3421 }
3422
3423 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3424 static int
3425 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3426                            int x, int y, enum mode_set_atomic state)
3427 {
3428         /* Support for kgdboc is disabled, this needs a major rework. */
3429         DRM_ERROR("legacy panic handler not supported any more.\n");
3430
3431         return -ENODEV;
3432 }
3433
3434 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3435 {
3436         struct intel_crtc *crtc;
3437
3438         for_each_intel_crtc(&dev_priv->drm, crtc)
3439                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3440 }
3441
3442 static void intel_update_primary_planes(struct drm_device *dev)
3443 {
3444         struct drm_crtc *crtc;
3445
3446         for_each_crtc(dev, crtc) {
3447                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3448                 struct intel_plane_state *plane_state =
3449                         to_intel_plane_state(plane->base.state);
3450
3451                 if (plane_state->base.visible) {
3452                         trace_intel_update_plane(&plane->base,
3453                                                  to_intel_crtc(crtc));
3454
3455                         plane->update_plane(&plane->base,
3456                                             to_intel_crtc_state(crtc->state),
3457                                             plane_state);
3458                 }
3459         }
3460 }
3461
3462 static int
3463 __intel_display_resume(struct drm_device *dev,
3464                        struct drm_atomic_state *state,
3465                        struct drm_modeset_acquire_ctx *ctx)
3466 {
3467         struct drm_crtc_state *crtc_state;
3468         struct drm_crtc *crtc;
3469         int i, ret;
3470
3471         intel_modeset_setup_hw_state(dev);
3472         i915_redisable_vga(to_i915(dev));
3473
3474         if (!state)
3475                 return 0;
3476
3477         for_each_crtc_in_state(state, crtc, crtc_state, i) {
3478                 /*
3479                  * Force recalculation even if we restore
3480                  * current state. With fast modeset this may not result
3481                  * in a modeset when the state is compatible.
3482                  */
3483                 crtc_state->mode_changed = true;
3484         }
3485
3486         /* ignore any reset values/BIOS leftovers in the WM registers */
3487         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3488                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3489
3490         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3491
3492         WARN_ON(ret == -EDEADLK);
3493         return ret;
3494 }
3495
3496 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3497 {
3498         return intel_has_gpu_reset(dev_priv) &&
3499                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3500 }
3501
3502 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3503 {
3504         struct drm_device *dev = &dev_priv->drm;
3505         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3506         struct drm_atomic_state *state;
3507         int ret;
3508
3509         /*
3510          * Need mode_config.mutex so that we don't
3511          * trample ongoing ->detect() and whatnot.
3512          */
3513         mutex_lock(&dev->mode_config.mutex);
3514         drm_modeset_acquire_init(ctx, 0);
3515         while (1) {
3516                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3517                 if (ret != -EDEADLK)
3518                         break;
3519
3520                 drm_modeset_backoff(ctx);
3521         }
3522
3523         /* reset doesn't touch the display, but flips might get nuked anyway, */
3524         if (!i915.force_reset_modeset_test &&
3525             !gpu_reset_clobbers_display(dev_priv))
3526                 return;
3527
3528         /*
3529          * Disabling the crtcs gracefully seems nicer. Also the
3530          * g33 docs say we should at least disable all the planes.
3531          */
3532         state = drm_atomic_helper_duplicate_state(dev, ctx);
3533         if (IS_ERR(state)) {
3534                 ret = PTR_ERR(state);
3535                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3536                 return;
3537         }
3538
3539         ret = drm_atomic_helper_disable_all(dev, ctx);
3540         if (ret) {
3541                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3542                 drm_atomic_state_put(state);
3543                 return;
3544         }
3545
3546         dev_priv->modeset_restore_state = state;
3547         state->acquire_ctx = ctx;
3548 }
3549
3550 void intel_finish_reset(struct drm_i915_private *dev_priv)
3551 {
3552         struct drm_device *dev = &dev_priv->drm;
3553         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3554         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3555         int ret;
3556
3557         /*
3558          * Flips in the rings will be nuked by the reset,
3559          * so complete all pending flips so that user space
3560          * will get its events and not get stuck.
3561          */
3562         intel_complete_page_flips(dev_priv);
3563
3564         dev_priv->modeset_restore_state = NULL;
3565
3566         /* reset doesn't touch the display */
3567         if (!gpu_reset_clobbers_display(dev_priv)) {
3568                 if (!state) {
3569                         /*
3570                          * Flips in the rings have been nuked by the reset,
3571                          * so update the base address of all primary
3572                          * planes to the the last fb to make sure we're
3573                          * showing the correct fb after a reset.
3574                          *
3575                          * FIXME: Atomic will make this obsolete since we won't schedule
3576                          * CS-based flips (which might get lost in gpu resets) any more.
3577                          */
3578                         intel_update_primary_planes(dev);
3579                 } else {
3580                         ret = __intel_display_resume(dev, state, ctx);
3581                         if (ret)
3582                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3583                 }
3584         } else {
3585                 /*
3586                  * The display has been reset as well,
3587                  * so need a full re-initialization.
3588                  */
3589                 intel_runtime_pm_disable_interrupts(dev_priv);
3590                 intel_runtime_pm_enable_interrupts(dev_priv);
3591
3592                 intel_pps_unlock_regs_wa(dev_priv);
3593                 intel_modeset_init_hw(dev);
3594
3595                 spin_lock_irq(&dev_priv->irq_lock);
3596                 if (dev_priv->display.hpd_irq_setup)
3597                         dev_priv->display.hpd_irq_setup(dev_priv);
3598                 spin_unlock_irq(&dev_priv->irq_lock);
3599
3600                 ret = __intel_display_resume(dev, state, ctx);
3601                 if (ret)
3602                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3603
3604                 intel_hpd_init(dev_priv);
3605         }
3606
3607         if (state)
3608                 drm_atomic_state_put(state);
3609         drm_modeset_drop_locks(ctx);
3610         drm_modeset_acquire_fini(ctx);
3611         mutex_unlock(&dev->mode_config.mutex);
3612 }
3613
3614 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3615 {
3616         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3617
3618         if (i915_reset_in_progress(error))
3619                 return true;
3620
3621         if (crtc->reset_count != i915_reset_count(error))
3622                 return true;
3623
3624         return false;
3625 }
3626
3627 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3628 {
3629         struct drm_device *dev = crtc->dev;
3630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631         bool pending;
3632
3633         if (abort_flip_on_reset(intel_crtc))
3634                 return false;
3635
3636         spin_lock_irq(&dev->event_lock);
3637         pending = to_intel_crtc(crtc)->flip_work != NULL;
3638         spin_unlock_irq(&dev->event_lock);
3639
3640         return pending;
3641 }
3642
3643 static void intel_update_pipe_config(struct intel_crtc *crtc,
3644                                      struct intel_crtc_state *old_crtc_state)
3645 {
3646         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3647         struct intel_crtc_state *pipe_config =
3648                 to_intel_crtc_state(crtc->base.state);
3649
3650         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3651         crtc->base.mode = crtc->base.state->mode;
3652
3653         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3654                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3655                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3656
3657         /*
3658          * Update pipe size and adjust fitter if needed: the reason for this is
3659          * that in compute_mode_changes we check the native mode (not the pfit
3660          * mode) to see if we can flip rather than do a full mode set. In the
3661          * fastboot case, we'll flip, but if we don't update the pipesrc and
3662          * pfit state, we'll end up with a big fb scanned out into the wrong
3663          * sized surface.
3664          */
3665
3666         I915_WRITE(PIPESRC(crtc->pipe),
3667                    ((pipe_config->pipe_src_w - 1) << 16) |
3668                    (pipe_config->pipe_src_h - 1));
3669
3670         /* on skylake this is done by detaching scalers */
3671         if (INTEL_GEN(dev_priv) >= 9) {
3672                 skl_detach_scalers(crtc);
3673
3674                 if (pipe_config->pch_pfit.enabled)
3675                         skylake_pfit_enable(crtc);
3676         } else if (HAS_PCH_SPLIT(dev_priv)) {
3677                 if (pipe_config->pch_pfit.enabled)
3678                         ironlake_pfit_enable(crtc);
3679                 else if (old_crtc_state->pch_pfit.enabled)
3680                         ironlake_pfit_disable(crtc, true);
3681         }
3682 }
3683
3684 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3685 {
3686         struct drm_device *dev = crtc->base.dev;
3687         struct drm_i915_private *dev_priv = to_i915(dev);
3688         int pipe = crtc->pipe;
3689         i915_reg_t reg;
3690         u32 temp;
3691
3692         /* enable normal train */
3693         reg = FDI_TX_CTL(pipe);
3694         temp = I915_READ(reg);
3695         if (IS_IVYBRIDGE(dev_priv)) {
3696                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3697                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3698         } else {
3699                 temp &= ~FDI_LINK_TRAIN_NONE;
3700                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3701         }
3702         I915_WRITE(reg, temp);
3703
3704         reg = FDI_RX_CTL(pipe);
3705         temp = I915_READ(reg);
3706         if (HAS_PCH_CPT(dev_priv)) {
3707                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3708                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3709         } else {
3710                 temp &= ~FDI_LINK_TRAIN_NONE;
3711                 temp |= FDI_LINK_TRAIN_NONE;
3712         }
3713         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3714
3715         /* wait one idle pattern time */
3716         POSTING_READ(reg);
3717         udelay(1000);
3718
3719         /* IVB wants error correction enabled */
3720         if (IS_IVYBRIDGE(dev_priv))
3721                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3722                            FDI_FE_ERRC_ENABLE);
3723 }
3724
3725 /* The FDI link training functions for ILK/Ibexpeak. */
3726 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3727                                     const struct intel_crtc_state *crtc_state)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = to_i915(dev);
3731         int pipe = crtc->pipe;
3732         i915_reg_t reg;
3733         u32 temp, tries;
3734
3735         /* FDI needs bits from pipe first */
3736         assert_pipe_enabled(dev_priv, pipe);
3737
3738         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3739            for train result */
3740         reg = FDI_RX_IMR(pipe);
3741         temp = I915_READ(reg);
3742         temp &= ~FDI_RX_SYMBOL_LOCK;
3743         temp &= ~FDI_RX_BIT_LOCK;
3744         I915_WRITE(reg, temp);
3745         I915_READ(reg);
3746         udelay(150);
3747
3748         /* enable CPU FDI TX and PCH FDI RX */
3749         reg = FDI_TX_CTL(pipe);
3750         temp = I915_READ(reg);
3751         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3752         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3753         temp &= ~FDI_LINK_TRAIN_NONE;
3754         temp |= FDI_LINK_TRAIN_PATTERN_1;
3755         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3756
3757         reg = FDI_RX_CTL(pipe);
3758         temp = I915_READ(reg);
3759         temp &= ~FDI_LINK_TRAIN_NONE;
3760         temp |= FDI_LINK_TRAIN_PATTERN_1;
3761         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3762
3763         POSTING_READ(reg);
3764         udelay(150);
3765
3766         /* Ironlake workaround, enable clock pointer after FDI enable*/
3767         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3768         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3769                    FDI_RX_PHASE_SYNC_POINTER_EN);
3770
3771         reg = FDI_RX_IIR(pipe);
3772         for (tries = 0; tries < 5; tries++) {
3773                 temp = I915_READ(reg);
3774                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3775
3776                 if ((temp & FDI_RX_BIT_LOCK)) {
3777                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3778                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3779                         break;
3780                 }
3781         }
3782         if (tries == 5)
3783                 DRM_ERROR("FDI train 1 fail!\n");
3784
3785         /* Train 2 */
3786         reg = FDI_TX_CTL(pipe);
3787         temp = I915_READ(reg);
3788         temp &= ~FDI_LINK_TRAIN_NONE;
3789         temp |= FDI_LINK_TRAIN_PATTERN_2;
3790         I915_WRITE(reg, temp);
3791
3792         reg = FDI_RX_CTL(pipe);
3793         temp = I915_READ(reg);
3794         temp &= ~FDI_LINK_TRAIN_NONE;
3795         temp |= FDI_LINK_TRAIN_PATTERN_2;
3796         I915_WRITE(reg, temp);
3797
3798         POSTING_READ(reg);
3799         udelay(150);
3800
3801         reg = FDI_RX_IIR(pipe);
3802         for (tries = 0; tries < 5; tries++) {
3803                 temp = I915_READ(reg);
3804                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3805
3806                 if (temp & FDI_RX_SYMBOL_LOCK) {
3807                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3808                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3809                         break;
3810                 }
3811         }
3812         if (tries == 5)
3813                 DRM_ERROR("FDI train 2 fail!\n");
3814
3815         DRM_DEBUG_KMS("FDI train done\n");
3816
3817 }
3818
3819 static const int snb_b_fdi_train_param[] = {
3820         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3821         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3822         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3823         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3824 };
3825
3826 /* The FDI link training functions for SNB/Cougarpoint. */
3827 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3828                                 const struct intel_crtc_state *crtc_state)
3829 {
3830         struct drm_device *dev = crtc->base.dev;
3831         struct drm_i915_private *dev_priv = to_i915(dev);
3832         int pipe = crtc->pipe;
3833         i915_reg_t reg;
3834         u32 temp, i, retry;
3835
3836         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3837            for train result */
3838         reg = FDI_RX_IMR(pipe);
3839         temp = I915_READ(reg);
3840         temp &= ~FDI_RX_SYMBOL_LOCK;
3841         temp &= ~FDI_RX_BIT_LOCK;
3842         I915_WRITE(reg, temp);
3843
3844         POSTING_READ(reg);
3845         udelay(150);
3846
3847         /* enable CPU FDI TX and PCH FDI RX */
3848         reg = FDI_TX_CTL(pipe);
3849         temp = I915_READ(reg);
3850         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3851         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3852         temp &= ~FDI_LINK_TRAIN_NONE;
3853         temp |= FDI_LINK_TRAIN_PATTERN_1;
3854         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3855         /* SNB-B */
3856         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3857         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3858
3859         I915_WRITE(FDI_RX_MISC(pipe),
3860                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3861
3862         reg = FDI_RX_CTL(pipe);
3863         temp = I915_READ(reg);
3864         if (HAS_PCH_CPT(dev_priv)) {
3865                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3866                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3867         } else {
3868                 temp &= ~FDI_LINK_TRAIN_NONE;
3869                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3870         }
3871         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3872
3873         POSTING_READ(reg);
3874         udelay(150);
3875
3876         for (i = 0; i < 4; i++) {
3877                 reg = FDI_TX_CTL(pipe);
3878                 temp = I915_READ(reg);
3879                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3880                 temp |= snb_b_fdi_train_param[i];
3881                 I915_WRITE(reg, temp);
3882
3883                 POSTING_READ(reg);
3884                 udelay(500);
3885
3886                 for (retry = 0; retry < 5; retry++) {
3887                         reg = FDI_RX_IIR(pipe);
3888                         temp = I915_READ(reg);
3889                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3890                         if (temp & FDI_RX_BIT_LOCK) {
3891                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3892                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3893                                 break;
3894                         }
3895                         udelay(50);
3896                 }
3897                 if (retry < 5)
3898                         break;
3899         }
3900         if (i == 4)
3901                 DRM_ERROR("FDI train 1 fail!\n");
3902
3903         /* Train 2 */
3904         reg = FDI_TX_CTL(pipe);
3905         temp = I915_READ(reg);
3906         temp &= ~FDI_LINK_TRAIN_NONE;
3907         temp |= FDI_LINK_TRAIN_PATTERN_2;
3908         if (IS_GEN6(dev_priv)) {
3909                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3910                 /* SNB-B */
3911                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3912         }
3913         I915_WRITE(reg, temp);
3914
3915         reg = FDI_RX_CTL(pipe);
3916         temp = I915_READ(reg);
3917         if (HAS_PCH_CPT(dev_priv)) {
3918                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3919                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3920         } else {
3921                 temp &= ~FDI_LINK_TRAIN_NONE;
3922                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3923         }
3924         I915_WRITE(reg, temp);
3925
3926         POSTING_READ(reg);
3927         udelay(150);
3928
3929         for (i = 0; i < 4; i++) {
3930                 reg = FDI_TX_CTL(pipe);
3931                 temp = I915_READ(reg);
3932                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3933                 temp |= snb_b_fdi_train_param[i];
3934                 I915_WRITE(reg, temp);
3935
3936                 POSTING_READ(reg);
3937                 udelay(500);
3938
3939                 for (retry = 0; retry < 5; retry++) {
3940                         reg = FDI_RX_IIR(pipe);
3941                         temp = I915_READ(reg);
3942                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3943                         if (temp & FDI_RX_SYMBOL_LOCK) {
3944                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3945                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3946                                 break;
3947                         }
3948                         udelay(50);
3949                 }
3950                 if (retry < 5)
3951                         break;
3952         }
3953         if (i == 4)
3954                 DRM_ERROR("FDI train 2 fail!\n");
3955
3956         DRM_DEBUG_KMS("FDI train done.\n");
3957 }
3958
3959 /* Manual link training for Ivy Bridge A0 parts */
3960 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3961                                       const struct intel_crtc_state *crtc_state)
3962 {
3963         struct drm_device *dev = crtc->base.dev;
3964         struct drm_i915_private *dev_priv = to_i915(dev);
3965         int pipe = crtc->pipe;
3966         i915_reg_t reg;
3967         u32 temp, i, j;
3968
3969         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3970            for train result */
3971         reg = FDI_RX_IMR(pipe);
3972         temp = I915_READ(reg);
3973         temp &= ~FDI_RX_SYMBOL_LOCK;
3974         temp &= ~FDI_RX_BIT_LOCK;
3975         I915_WRITE(reg, temp);
3976
3977         POSTING_READ(reg);
3978         udelay(150);
3979
3980         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3981                       I915_READ(FDI_RX_IIR(pipe)));
3982
3983         /* Try each vswing and preemphasis setting twice before moving on */
3984         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3985                 /* disable first in case we need to retry */
3986                 reg = FDI_TX_CTL(pipe);
3987                 temp = I915_READ(reg);
3988                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3989                 temp &= ~FDI_TX_ENABLE;
3990                 I915_WRITE(reg, temp);
3991
3992                 reg = FDI_RX_CTL(pipe);
3993                 temp = I915_READ(reg);
3994                 temp &= ~FDI_LINK_TRAIN_AUTO;
3995                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3996                 temp &= ~FDI_RX_ENABLE;
3997                 I915_WRITE(reg, temp);
3998
3999                 /* enable CPU FDI TX and PCH FDI RX */
4000                 reg = FDI_TX_CTL(pipe);
4001                 temp = I915_READ(reg);
4002                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4003                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4004                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4005                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4006                 temp |= snb_b_fdi_train_param[j/2];
4007                 temp |= FDI_COMPOSITE_SYNC;
4008                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4009
4010                 I915_WRITE(FDI_RX_MISC(pipe),
4011                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4012
4013                 reg = FDI_RX_CTL(pipe);
4014                 temp = I915_READ(reg);
4015                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4016                 temp |= FDI_COMPOSITE_SYNC;
4017                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4018
4019                 POSTING_READ(reg);
4020                 udelay(1); /* should be 0.5us */
4021
4022                 for (i = 0; i < 4; i++) {
4023                         reg = FDI_RX_IIR(pipe);
4024                         temp = I915_READ(reg);
4025                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4026
4027                         if (temp & FDI_RX_BIT_LOCK ||
4028                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4029                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4030                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4031                                               i);
4032                                 break;
4033                         }
4034                         udelay(1); /* should be 0.5us */
4035                 }
4036                 if (i == 4) {
4037                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4038                         continue;
4039                 }
4040
4041                 /* Train 2 */
4042                 reg = FDI_TX_CTL(pipe);
4043                 temp = I915_READ(reg);
4044                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4045                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4046                 I915_WRITE(reg, temp);
4047
4048                 reg = FDI_RX_CTL(pipe);
4049                 temp = I915_READ(reg);
4050                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4051                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4052                 I915_WRITE(reg, temp);
4053
4054                 POSTING_READ(reg);
4055                 udelay(2); /* should be 1.5us */
4056
4057                 for (i = 0; i < 4; i++) {
4058                         reg = FDI_RX_IIR(pipe);
4059                         temp = I915_READ(reg);
4060                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4061
4062                         if (temp & FDI_RX_SYMBOL_LOCK ||
4063                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4064                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4065                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4066                                               i);
4067                                 goto train_done;
4068                         }
4069                         udelay(2); /* should be 1.5us */
4070                 }
4071                 if (i == 4)
4072                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4073         }
4074
4075 train_done:
4076         DRM_DEBUG_KMS("FDI train done.\n");
4077 }
4078
4079 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4080 {
4081         struct drm_device *dev = intel_crtc->base.dev;
4082         struct drm_i915_private *dev_priv = to_i915(dev);
4083         int pipe = intel_crtc->pipe;
4084         i915_reg_t reg;
4085         u32 temp;
4086
4087         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4088         reg = FDI_RX_CTL(pipe);
4089         temp = I915_READ(reg);
4090         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4091         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4092         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4093         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4094
4095         POSTING_READ(reg);
4096         udelay(200);
4097
4098         /* Switch from Rawclk to PCDclk */
4099         temp = I915_READ(reg);
4100         I915_WRITE(reg, temp | FDI_PCDCLK);
4101
4102         POSTING_READ(reg);
4103         udelay(200);
4104
4105         /* Enable CPU FDI TX PLL, always on for Ironlake */
4106         reg = FDI_TX_CTL(pipe);
4107         temp = I915_READ(reg);
4108         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4109                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4110
4111                 POSTING_READ(reg);
4112                 udelay(100);
4113         }
4114 }
4115
4116 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4117 {
4118         struct drm_device *dev = intel_crtc->base.dev;
4119         struct drm_i915_private *dev_priv = to_i915(dev);
4120         int pipe = intel_crtc->pipe;
4121         i915_reg_t reg;
4122         u32 temp;
4123
4124         /* Switch from PCDclk to Rawclk */
4125         reg = FDI_RX_CTL(pipe);
4126         temp = I915_READ(reg);
4127         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4128
4129         /* Disable CPU FDI TX PLL */
4130         reg = FDI_TX_CTL(pipe);
4131         temp = I915_READ(reg);
4132         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4133
4134         POSTING_READ(reg);
4135         udelay(100);
4136
4137         reg = FDI_RX_CTL(pipe);
4138         temp = I915_READ(reg);
4139         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4140
4141         /* Wait for the clocks to turn off. */
4142         POSTING_READ(reg);
4143         udelay(100);
4144 }
4145
4146 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4147 {
4148         struct drm_device *dev = crtc->dev;
4149         struct drm_i915_private *dev_priv = to_i915(dev);
4150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151         int pipe = intel_crtc->pipe;
4152         i915_reg_t reg;
4153         u32 temp;
4154
4155         /* disable CPU FDI tx and PCH FDI rx */
4156         reg = FDI_TX_CTL(pipe);
4157         temp = I915_READ(reg);
4158         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4159         POSTING_READ(reg);
4160
4161         reg = FDI_RX_CTL(pipe);
4162         temp = I915_READ(reg);
4163         temp &= ~(0x7 << 16);
4164         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4165         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4166
4167         POSTING_READ(reg);
4168         udelay(100);
4169
4170         /* Ironlake workaround, disable clock pointer after downing FDI */
4171         if (HAS_PCH_IBX(dev_priv))
4172                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4173
4174         /* still set train pattern 1 */
4175         reg = FDI_TX_CTL(pipe);
4176         temp = I915_READ(reg);
4177         temp &= ~FDI_LINK_TRAIN_NONE;
4178         temp |= FDI_LINK_TRAIN_PATTERN_1;
4179         I915_WRITE(reg, temp);
4180
4181         reg = FDI_RX_CTL(pipe);
4182         temp = I915_READ(reg);
4183         if (HAS_PCH_CPT(dev_priv)) {
4184                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4185                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4186         } else {
4187                 temp &= ~FDI_LINK_TRAIN_NONE;
4188                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4189         }
4190         /* BPC in FDI rx is consistent with that in PIPECONF */
4191         temp &= ~(0x07 << 16);
4192         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4193         I915_WRITE(reg, temp);
4194
4195         POSTING_READ(reg);
4196         udelay(100);
4197 }
4198
4199 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4200 {
4201         struct intel_crtc *crtc;
4202
4203         /* Note that we don't need to be called with mode_config.lock here
4204          * as our list of CRTC objects is static for the lifetime of the
4205          * device and so cannot disappear as we iterate. Similarly, we can
4206          * happily treat the predicates as racy, atomic checks as userspace
4207          * cannot claim and pin a new fb without at least acquring the
4208          * struct_mutex and so serialising with us.
4209          */
4210         for_each_intel_crtc(&dev_priv->drm, crtc) {
4211                 if (atomic_read(&crtc->unpin_work_count) == 0)
4212                         continue;
4213
4214                 if (crtc->flip_work)
4215                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4216
4217                 return true;
4218         }
4219
4220         return false;
4221 }
4222
4223 static void page_flip_completed(struct intel_crtc *intel_crtc)
4224 {
4225         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4226         struct intel_flip_work *work = intel_crtc->flip_work;
4227
4228         intel_crtc->flip_work = NULL;
4229
4230         if (work->event)
4231                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4232
4233         drm_crtc_vblank_put(&intel_crtc->base);
4234
4235         wake_up_all(&dev_priv->pending_flip_queue);
4236         trace_i915_flip_complete(intel_crtc->plane,
4237                                  work->pending_flip_obj);
4238
4239         queue_work(dev_priv->wq, &work->unpin_work);
4240 }
4241
4242 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4243 {
4244         struct drm_device *dev = crtc->dev;
4245         struct drm_i915_private *dev_priv = to_i915(dev);
4246         long ret;
4247
4248         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4249
4250         ret = wait_event_interruptible_timeout(
4251                                         dev_priv->pending_flip_queue,
4252                                         !intel_crtc_has_pending_flip(crtc),
4253                                         60*HZ);
4254
4255         if (ret < 0)
4256                 return ret;
4257
4258         if (ret == 0) {
4259                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4260                 struct intel_flip_work *work;
4261
4262                 spin_lock_irq(&dev->event_lock);
4263                 work = intel_crtc->flip_work;
4264                 if (work && !is_mmio_work(work)) {
4265                         WARN_ONCE(1, "Removing stuck page flip\n");
4266                         page_flip_completed(intel_crtc);
4267                 }
4268                 spin_unlock_irq(&dev->event_lock);
4269         }
4270
4271         return 0;
4272 }
4273
4274 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4275 {
4276         u32 temp;
4277
4278         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4279
4280         mutex_lock(&dev_priv->sb_lock);
4281
4282         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4283         temp |= SBI_SSCCTL_DISABLE;
4284         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4285
4286         mutex_unlock(&dev_priv->sb_lock);
4287 }
4288
4289 /* Program iCLKIP clock to the desired frequency */
4290 static void lpt_program_iclkip(struct intel_crtc *crtc)
4291 {
4292         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4293         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4294         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4295         u32 temp;
4296
4297         lpt_disable_iclkip(dev_priv);
4298
4299         /* The iCLK virtual clock root frequency is in MHz,
4300          * but the adjusted_mode->crtc_clock in in KHz. To get the
4301          * divisors, it is necessary to divide one by another, so we
4302          * convert the virtual clock precision to KHz here for higher
4303          * precision.
4304          */
4305         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4306                 u32 iclk_virtual_root_freq = 172800 * 1000;
4307                 u32 iclk_pi_range = 64;
4308                 u32 desired_divisor;
4309
4310                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4311                                                     clock << auxdiv);
4312                 divsel = (desired_divisor / iclk_pi_range) - 2;
4313                 phaseinc = desired_divisor % iclk_pi_range;
4314
4315                 /*
4316                  * Near 20MHz is a corner case which is
4317                  * out of range for the 7-bit divisor
4318                  */
4319                 if (divsel <= 0x7f)
4320                         break;
4321         }
4322
4323         /* This should not happen with any sane values */
4324         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4325                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4326         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4327                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4328
4329         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4330                         clock,
4331                         auxdiv,
4332                         divsel,
4333                         phasedir,
4334                         phaseinc);
4335
4336         mutex_lock(&dev_priv->sb_lock);
4337
4338         /* Program SSCDIVINTPHASE6 */
4339         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4340         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4341         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4342         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4343         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4344         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4345         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4346         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4347
4348         /* Program SSCAUXDIV */
4349         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4350         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4351         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4352         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4353
4354         /* Enable modulator and associated divider */
4355         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4356         temp &= ~SBI_SSCCTL_DISABLE;
4357         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4358
4359         mutex_unlock(&dev_priv->sb_lock);
4360
4361         /* Wait for initialization time */
4362         udelay(24);
4363
4364         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4365 }
4366
4367 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4368 {
4369         u32 divsel, phaseinc, auxdiv;
4370         u32 iclk_virtual_root_freq = 172800 * 1000;
4371         u32 iclk_pi_range = 64;
4372         u32 desired_divisor;
4373         u32 temp;
4374
4375         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4376                 return 0;
4377
4378         mutex_lock(&dev_priv->sb_lock);
4379
4380         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4381         if (temp & SBI_SSCCTL_DISABLE) {
4382                 mutex_unlock(&dev_priv->sb_lock);
4383                 return 0;
4384         }
4385
4386         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4387         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4388                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4389         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4390                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4391
4392         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4393         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4394                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4395
4396         mutex_unlock(&dev_priv->sb_lock);
4397
4398         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4399
4400         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4401                                  desired_divisor << auxdiv);
4402 }
4403
4404 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4405                                                 enum pipe pch_transcoder)
4406 {
4407         struct drm_device *dev = crtc->base.dev;
4408         struct drm_i915_private *dev_priv = to_i915(dev);
4409         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4410
4411         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4412                    I915_READ(HTOTAL(cpu_transcoder)));
4413         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4414                    I915_READ(HBLANK(cpu_transcoder)));
4415         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4416                    I915_READ(HSYNC(cpu_transcoder)));
4417
4418         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4419                    I915_READ(VTOTAL(cpu_transcoder)));
4420         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4421                    I915_READ(VBLANK(cpu_transcoder)));
4422         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4423                    I915_READ(VSYNC(cpu_transcoder)));
4424         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4425                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4426 }
4427
4428 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4429 {
4430         struct drm_i915_private *dev_priv = to_i915(dev);
4431         uint32_t temp;
4432
4433         temp = I915_READ(SOUTH_CHICKEN1);
4434         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4435                 return;
4436
4437         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4438         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4439
4440         temp &= ~FDI_BC_BIFURCATION_SELECT;
4441         if (enable)
4442                 temp |= FDI_BC_BIFURCATION_SELECT;
4443
4444         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4445         I915_WRITE(SOUTH_CHICKEN1, temp);
4446         POSTING_READ(SOUTH_CHICKEN1);
4447 }
4448
4449 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4450 {
4451         struct drm_device *dev = intel_crtc->base.dev;
4452
4453         switch (intel_crtc->pipe) {
4454         case PIPE_A:
4455                 break;
4456         case PIPE_B:
4457                 if (intel_crtc->config->fdi_lanes > 2)
4458                         cpt_set_fdi_bc_bifurcation(dev, false);
4459                 else
4460                         cpt_set_fdi_bc_bifurcation(dev, true);
4461
4462                 break;
4463         case PIPE_C:
4464                 cpt_set_fdi_bc_bifurcation(dev, true);
4465
4466                 break;
4467         default:
4468                 BUG();
4469         }
4470 }
4471
4472 /* Return which DP Port should be selected for Transcoder DP control */
4473 static enum port
4474 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4475 {
4476         struct drm_device *dev = crtc->base.dev;
4477         struct intel_encoder *encoder;
4478
4479         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4480                 if (encoder->type == INTEL_OUTPUT_DP ||
4481                     encoder->type == INTEL_OUTPUT_EDP)
4482                         return enc_to_dig_port(&encoder->base)->port;
4483         }
4484
4485         return -1;
4486 }
4487
4488 /*
4489  * Enable PCH resources required for PCH ports:
4490  *   - PCH PLLs
4491  *   - FDI training & RX/TX
4492  *   - update transcoder timings
4493  *   - DP transcoding bits
4494  *   - transcoder
4495  */
4496 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4497 {
4498         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4499         struct drm_device *dev = crtc->base.dev;
4500         struct drm_i915_private *dev_priv = to_i915(dev);
4501         int pipe = crtc->pipe;
4502         u32 temp;
4503
4504         assert_pch_transcoder_disabled(dev_priv, pipe);
4505
4506         if (IS_IVYBRIDGE(dev_priv))
4507                 ivybridge_update_fdi_bc_bifurcation(crtc);
4508
4509         /* Write the TU size bits before fdi link training, so that error
4510          * detection works. */
4511         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4512                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4513
4514         /* For PCH output, training FDI link */
4515         dev_priv->display.fdi_link_train(crtc, crtc_state);
4516
4517         /* We need to program the right clock selection before writing the pixel
4518          * mutliplier into the DPLL. */
4519         if (HAS_PCH_CPT(dev_priv)) {
4520                 u32 sel;
4521
4522                 temp = I915_READ(PCH_DPLL_SEL);
4523                 temp |= TRANS_DPLL_ENABLE(pipe);
4524                 sel = TRANS_DPLLB_SEL(pipe);
4525                 if (crtc_state->shared_dpll ==
4526                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4527                         temp |= sel;
4528                 else
4529                         temp &= ~sel;
4530                 I915_WRITE(PCH_DPLL_SEL, temp);
4531         }
4532
4533         /* XXX: pch pll's can be enabled any time before we enable the PCH
4534          * transcoder, and we actually should do this to not upset any PCH
4535          * transcoder that already use the clock when we share it.
4536          *
4537          * Note that enable_shared_dpll tries to do the right thing, but
4538          * get_shared_dpll unconditionally resets the pll - we need that to have
4539          * the right LVDS enable sequence. */
4540         intel_enable_shared_dpll(crtc);
4541
4542         /* set transcoder timing, panel must allow it */
4543         assert_panel_unlocked(dev_priv, pipe);
4544         ironlake_pch_transcoder_set_timings(crtc, pipe);
4545
4546         intel_fdi_normal_train(crtc);
4547
4548         /* For PCH DP, enable TRANS_DP_CTL */
4549         if (HAS_PCH_CPT(dev_priv) &&
4550             intel_crtc_has_dp_encoder(crtc_state)) {
4551                 const struct drm_display_mode *adjusted_mode =
4552                         &crtc_state->base.adjusted_mode;
4553                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4554                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4555                 temp = I915_READ(reg);
4556                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4557                           TRANS_DP_SYNC_MASK |
4558                           TRANS_DP_BPC_MASK);
4559                 temp |= TRANS_DP_OUTPUT_ENABLE;
4560                 temp |= bpc << 9; /* same format but at 11:9 */
4561
4562                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4563                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4564                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4565                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4566
4567                 switch (intel_trans_dp_port_sel(crtc)) {
4568                 case PORT_B:
4569                         temp |= TRANS_DP_PORT_SEL_B;
4570                         break;
4571                 case PORT_C:
4572                         temp |= TRANS_DP_PORT_SEL_C;
4573                         break;
4574                 case PORT_D:
4575                         temp |= TRANS_DP_PORT_SEL_D;
4576                         break;
4577                 default:
4578                         BUG();
4579                 }
4580
4581                 I915_WRITE(reg, temp);
4582         }
4583
4584         ironlake_enable_pch_transcoder(dev_priv, pipe);
4585 }
4586
4587 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4588 {
4589         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4590         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4591         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4592
4593         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4594
4595         lpt_program_iclkip(crtc);
4596
4597         /* Set transcoder timing. */
4598         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4599
4600         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4601 }
4602
4603 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4604 {
4605         struct drm_i915_private *dev_priv = to_i915(dev);
4606         i915_reg_t dslreg = PIPEDSL(pipe);
4607         u32 temp;
4608
4609         temp = I915_READ(dslreg);
4610         udelay(500);
4611         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4612                 if (wait_for(I915_READ(dslreg) != temp, 5))
4613                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4614         }
4615 }
4616
4617 static int
4618 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4619                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4620                   int src_w, int src_h, int dst_w, int dst_h)
4621 {
4622         struct intel_crtc_scaler_state *scaler_state =
4623                 &crtc_state->scaler_state;
4624         struct intel_crtc *intel_crtc =
4625                 to_intel_crtc(crtc_state->base.crtc);
4626         int need_scaling;
4627
4628         need_scaling = drm_rotation_90_or_270(rotation) ?
4629                 (src_h != dst_w || src_w != dst_h):
4630                 (src_w != dst_w || src_h != dst_h);
4631
4632         /*
4633          * if plane is being disabled or scaler is no more required or force detach
4634          *  - free scaler binded to this plane/crtc
4635          *  - in order to do this, update crtc->scaler_usage
4636          *
4637          * Here scaler state in crtc_state is set free so that
4638          * scaler can be assigned to other user. Actual register
4639          * update to free the scaler is done in plane/panel-fit programming.
4640          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4641          */
4642         if (force_detach || !need_scaling) {
4643                 if (*scaler_id >= 0) {
4644                         scaler_state->scaler_users &= ~(1 << scaler_user);
4645                         scaler_state->scalers[*scaler_id].in_use = 0;
4646
4647                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4648                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4649                                 intel_crtc->pipe, scaler_user, *scaler_id,
4650                                 scaler_state->scaler_users);
4651                         *scaler_id = -1;
4652                 }
4653                 return 0;
4654         }
4655
4656         /* range checks */
4657         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4658                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4659
4660                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4661                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4662                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4663                         "size is out of scaler range\n",
4664                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4665                 return -EINVAL;
4666         }
4667
4668         /* mark this plane as a scaler user in crtc_state */
4669         scaler_state->scaler_users |= (1 << scaler_user);
4670         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4671                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4672                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4673                 scaler_state->scaler_users);
4674
4675         return 0;
4676 }
4677
4678 /**
4679  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4680  *
4681  * @state: crtc's scaler state
4682  *
4683  * Return
4684  *     0 - scaler_usage updated successfully
4685  *    error - requested scaling cannot be supported or other error condition
4686  */
4687 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4688 {
4689         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4690
4691         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4692                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4693                 state->pipe_src_w, state->pipe_src_h,
4694                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4695 }
4696
4697 /**
4698  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4699  *
4700  * @state: crtc's scaler state
4701  * @plane_state: atomic plane state to update
4702  *
4703  * Return
4704  *     0 - scaler_usage updated successfully
4705  *    error - requested scaling cannot be supported or other error condition
4706  */
4707 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4708                                    struct intel_plane_state *plane_state)
4709 {
4710
4711         struct intel_plane *intel_plane =
4712                 to_intel_plane(plane_state->base.plane);
4713         struct drm_framebuffer *fb = plane_state->base.fb;
4714         int ret;
4715
4716         bool force_detach = !fb || !plane_state->base.visible;
4717
4718         ret = skl_update_scaler(crtc_state, force_detach,
4719                                 drm_plane_index(&intel_plane->base),
4720                                 &plane_state->scaler_id,
4721                                 plane_state->base.rotation,
4722                                 drm_rect_width(&plane_state->base.src) >> 16,
4723                                 drm_rect_height(&plane_state->base.src) >> 16,
4724                                 drm_rect_width(&plane_state->base.dst),
4725                                 drm_rect_height(&plane_state->base.dst));
4726
4727         if (ret || plane_state->scaler_id < 0)
4728                 return ret;
4729
4730         /* check colorkey */
4731         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4732                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4733                               intel_plane->base.base.id,
4734                               intel_plane->base.name);
4735                 return -EINVAL;
4736         }
4737
4738         /* Check src format */
4739         switch (fb->format->format) {
4740         case DRM_FORMAT_RGB565:
4741         case DRM_FORMAT_XBGR8888:
4742         case DRM_FORMAT_XRGB8888:
4743         case DRM_FORMAT_ABGR8888:
4744         case DRM_FORMAT_ARGB8888:
4745         case DRM_FORMAT_XRGB2101010:
4746         case DRM_FORMAT_XBGR2101010:
4747         case DRM_FORMAT_YUYV:
4748         case DRM_FORMAT_YVYU:
4749         case DRM_FORMAT_UYVY:
4750         case DRM_FORMAT_VYUY:
4751                 break;
4752         default:
4753                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4754                               intel_plane->base.base.id, intel_plane->base.name,
4755                               fb->base.id, fb->format->format);
4756                 return -EINVAL;
4757         }
4758
4759         return 0;
4760 }
4761
4762 static void skylake_scaler_disable(struct intel_crtc *crtc)
4763 {
4764         int i;
4765
4766         for (i = 0; i < crtc->num_scalers; i++)
4767                 skl_detach_scaler(crtc, i);
4768 }
4769
4770 static void skylake_pfit_enable(struct intel_crtc *crtc)
4771 {
4772         struct drm_device *dev = crtc->base.dev;
4773         struct drm_i915_private *dev_priv = to_i915(dev);
4774         int pipe = crtc->pipe;
4775         struct intel_crtc_scaler_state *scaler_state =
4776                 &crtc->config->scaler_state;
4777
4778         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4779
4780         if (crtc->config->pch_pfit.enabled) {
4781                 int id;
4782
4783                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4784                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4785                         return;
4786                 }
4787
4788                 id = scaler_state->scaler_id;
4789                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4790                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4791                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4792                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4793
4794                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4795         }
4796 }
4797
4798 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4799 {
4800         struct drm_device *dev = crtc->base.dev;
4801         struct drm_i915_private *dev_priv = to_i915(dev);
4802         int pipe = crtc->pipe;
4803
4804         if (crtc->config->pch_pfit.enabled) {
4805                 /* Force use of hard-coded filter coefficients
4806                  * as some pre-programmed values are broken,
4807                  * e.g. x201.
4808                  */
4809                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4810                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4811                                                  PF_PIPE_SEL_IVB(pipe));
4812                 else
4813                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4814                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4815                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4816         }
4817 }
4818
4819 void hsw_enable_ips(struct intel_crtc *crtc)
4820 {
4821         struct drm_device *dev = crtc->base.dev;
4822         struct drm_i915_private *dev_priv = to_i915(dev);
4823
4824         if (!crtc->config->ips_enabled)
4825                 return;
4826
4827         /*
4828          * We can only enable IPS after we enable a plane and wait for a vblank
4829          * This function is called from post_plane_update, which is run after
4830          * a vblank wait.
4831          */
4832
4833         assert_plane_enabled(dev_priv, crtc->plane);
4834         if (IS_BROADWELL(dev_priv)) {
4835                 mutex_lock(&dev_priv->rps.hw_lock);
4836                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4837                 mutex_unlock(&dev_priv->rps.hw_lock);
4838                 /* Quoting Art Runyan: "its not safe to expect any particular
4839                  * value in IPS_CTL bit 31 after enabling IPS through the
4840                  * mailbox." Moreover, the mailbox may return a bogus state,
4841                  * so we need to just enable it and continue on.
4842                  */
4843         } else {
4844                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4845                 /* The bit only becomes 1 in the next vblank, so this wait here
4846                  * is essentially intel_wait_for_vblank. If we don't have this
4847                  * and don't wait for vblanks until the end of crtc_enable, then
4848                  * the HW state readout code will complain that the expected
4849                  * IPS_CTL value is not the one we read. */
4850                 if (intel_wait_for_register(dev_priv,
4851                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4852                                             50))
4853                         DRM_ERROR("Timed out waiting for IPS enable\n");
4854         }
4855 }
4856
4857 void hsw_disable_ips(struct intel_crtc *crtc)
4858 {
4859         struct drm_device *dev = crtc->base.dev;
4860         struct drm_i915_private *dev_priv = to_i915(dev);
4861
4862         if (!crtc->config->ips_enabled)
4863                 return;
4864
4865         assert_plane_enabled(dev_priv, crtc->plane);
4866         if (IS_BROADWELL(dev_priv)) {
4867                 mutex_lock(&dev_priv->rps.hw_lock);
4868                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4869                 mutex_unlock(&dev_priv->rps.hw_lock);
4870                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4871                 if (intel_wait_for_register(dev_priv,
4872                                             IPS_CTL, IPS_ENABLE, 0,
4873                                             42))
4874                         DRM_ERROR("Timed out waiting for IPS disable\n");
4875         } else {
4876                 I915_WRITE(IPS_CTL, 0);
4877                 POSTING_READ(IPS_CTL);
4878         }
4879
4880         /* We need to wait for a vblank before we can disable the plane. */
4881         intel_wait_for_vblank(dev_priv, crtc->pipe);
4882 }
4883
4884 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4885 {
4886         if (intel_crtc->overlay) {
4887                 struct drm_device *dev = intel_crtc->base.dev;
4888                 struct drm_i915_private *dev_priv = to_i915(dev);
4889
4890                 mutex_lock(&dev->struct_mutex);
4891                 dev_priv->mm.interruptible = false;
4892                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4893                 dev_priv->mm.interruptible = true;
4894                 mutex_unlock(&dev->struct_mutex);
4895         }
4896
4897         /* Let userspace switch the overlay on again. In most cases userspace
4898          * has to recompute where to put it anyway.
4899          */
4900 }
4901
4902 /**
4903  * intel_post_enable_primary - Perform operations after enabling primary plane
4904  * @crtc: the CRTC whose primary plane was just enabled
4905  *
4906  * Performs potentially sleeping operations that must be done after the primary
4907  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4908  * called due to an explicit primary plane update, or due to an implicit
4909  * re-enable that is caused when a sprite plane is updated to no longer
4910  * completely hide the primary plane.
4911  */
4912 static void
4913 intel_post_enable_primary(struct drm_crtc *crtc)
4914 {
4915         struct drm_device *dev = crtc->dev;
4916         struct drm_i915_private *dev_priv = to_i915(dev);
4917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918         int pipe = intel_crtc->pipe;
4919
4920         /*
4921          * FIXME IPS should be fine as long as one plane is
4922          * enabled, but in practice it seems to have problems
4923          * when going from primary only to sprite only and vice
4924          * versa.
4925          */
4926         hsw_enable_ips(intel_crtc);
4927
4928         /*
4929          * Gen2 reports pipe underruns whenever all planes are disabled.
4930          * So don't enable underrun reporting before at least some planes
4931          * are enabled.
4932          * FIXME: Need to fix the logic to work when we turn off all planes
4933          * but leave the pipe running.
4934          */
4935         if (IS_GEN2(dev_priv))
4936                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937
4938         /* Underruns don't always raise interrupts, so check manually. */
4939         intel_check_cpu_fifo_underruns(dev_priv);
4940         intel_check_pch_fifo_underruns(dev_priv);
4941 }
4942
4943 /* FIXME move all this to pre_plane_update() with proper state tracking */
4944 static void
4945 intel_pre_disable_primary(struct drm_crtc *crtc)
4946 {
4947         struct drm_device *dev = crtc->dev;
4948         struct drm_i915_private *dev_priv = to_i915(dev);
4949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4950         int pipe = intel_crtc->pipe;
4951
4952         /*
4953          * Gen2 reports pipe underruns whenever all planes are disabled.
4954          * So diasble underrun reporting before all the planes get disabled.
4955          * FIXME: Need to fix the logic to work when we turn off all planes
4956          * but leave the pipe running.
4957          */
4958         if (IS_GEN2(dev_priv))
4959                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4960
4961         /*
4962          * FIXME IPS should be fine as long as one plane is
4963          * enabled, but in practice it seems to have problems
4964          * when going from primary only to sprite only and vice
4965          * versa.
4966          */
4967         hsw_disable_ips(intel_crtc);
4968 }
4969
4970 /* FIXME get rid of this and use pre_plane_update */
4971 static void
4972 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4973 {
4974         struct drm_device *dev = crtc->dev;
4975         struct drm_i915_private *dev_priv = to_i915(dev);
4976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977         int pipe = intel_crtc->pipe;
4978
4979         intel_pre_disable_primary(crtc);
4980
4981         /*
4982          * Vblank time updates from the shadow to live plane control register
4983          * are blocked if the memory self-refresh mode is active at that
4984          * moment. So to make sure the plane gets truly disabled, disable
4985          * first the self-refresh mode. The self-refresh enable bit in turn
4986          * will be checked/applied by the HW only at the next frame start
4987          * event which is after the vblank start event, so we need to have a
4988          * wait-for-vblank between disabling the plane and the pipe.
4989          */
4990         if (HAS_GMCH_DISPLAY(dev_priv) &&
4991             intel_set_memory_cxsr(dev_priv, false))
4992                 intel_wait_for_vblank(dev_priv, pipe);
4993 }
4994
4995 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4996 {
4997         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4998         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4999         struct intel_crtc_state *pipe_config =
5000                 to_intel_crtc_state(crtc->base.state);
5001         struct drm_plane *primary = crtc->base.primary;
5002         struct drm_plane_state *old_pri_state =
5003                 drm_atomic_get_existing_plane_state(old_state, primary);
5004
5005         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5006
5007         if (pipe_config->update_wm_post && pipe_config->base.active)
5008                 intel_update_watermarks(crtc);
5009
5010         if (old_pri_state) {
5011                 struct intel_plane_state *primary_state =
5012                         to_intel_plane_state(primary->state);
5013                 struct intel_plane_state *old_primary_state =
5014                         to_intel_plane_state(old_pri_state);
5015
5016                 intel_fbc_post_update(crtc);
5017
5018                 if (primary_state->base.visible &&
5019                     (needs_modeset(&pipe_config->base) ||
5020                      !old_primary_state->base.visible))
5021                         intel_post_enable_primary(&crtc->base);
5022         }
5023 }
5024
5025 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5026 {
5027         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5028         struct drm_device *dev = crtc->base.dev;
5029         struct drm_i915_private *dev_priv = to_i915(dev);
5030         struct intel_crtc_state *pipe_config =
5031                 to_intel_crtc_state(crtc->base.state);
5032         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5033         struct drm_plane *primary = crtc->base.primary;
5034         struct drm_plane_state *old_pri_state =
5035                 drm_atomic_get_existing_plane_state(old_state, primary);
5036         bool modeset = needs_modeset(&pipe_config->base);
5037         struct intel_atomic_state *old_intel_state =
5038                 to_intel_atomic_state(old_state);
5039
5040         if (old_pri_state) {
5041                 struct intel_plane_state *primary_state =
5042                         to_intel_plane_state(primary->state);
5043                 struct intel_plane_state *old_primary_state =
5044                         to_intel_plane_state(old_pri_state);
5045
5046                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5047
5048                 if (old_primary_state->base.visible &&
5049                     (modeset || !primary_state->base.visible))
5050                         intel_pre_disable_primary(&crtc->base);
5051         }
5052
5053         /*
5054          * Vblank time updates from the shadow to live plane control register
5055          * are blocked if the memory self-refresh mode is active at that
5056          * moment. So to make sure the plane gets truly disabled, disable
5057          * first the self-refresh mode. The self-refresh enable bit in turn
5058          * will be checked/applied by the HW only at the next frame start
5059          * event which is after the vblank start event, so we need to have a
5060          * wait-for-vblank between disabling the plane and the pipe.
5061          */
5062         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5063             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5064                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5065
5066         /*
5067          * IVB workaround: must disable low power watermarks for at least
5068          * one frame before enabling scaling.  LP watermarks can be re-enabled
5069          * when scaling is disabled.
5070          *
5071          * WaCxSRDisabledForSpriteScaling:ivb
5072          */
5073         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5074                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5075
5076         /*
5077          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5078          * watermark programming here.
5079          */
5080         if (needs_modeset(&pipe_config->base))
5081                 return;
5082
5083         /*
5084          * For platforms that support atomic watermarks, program the
5085          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5086          * will be the intermediate values that are safe for both pre- and
5087          * post- vblank; when vblank happens, the 'active' values will be set
5088          * to the final 'target' values and we'll do this again to get the
5089          * optimal watermarks.  For gen9+ platforms, the values we program here
5090          * will be the final target values which will get automatically latched
5091          * at vblank time; no further programming will be necessary.
5092          *
5093          * If a platform hasn't been transitioned to atomic watermarks yet,
5094          * we'll continue to update watermarks the old way, if flags tell
5095          * us to.
5096          */
5097         if (dev_priv->display.initial_watermarks != NULL)
5098                 dev_priv->display.initial_watermarks(old_intel_state,
5099                                                      pipe_config);
5100         else if (pipe_config->update_wm_pre)
5101                 intel_update_watermarks(crtc);
5102 }
5103
5104 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5105 {
5106         struct drm_device *dev = crtc->dev;
5107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5108         struct drm_plane *p;
5109         int pipe = intel_crtc->pipe;
5110
5111         intel_crtc_dpms_overlay_disable(intel_crtc);
5112
5113         drm_for_each_plane_mask(p, dev, plane_mask)
5114                 to_intel_plane(p)->disable_plane(p, crtc);
5115
5116         /*
5117          * FIXME: Once we grow proper nuclear flip support out of this we need
5118          * to compute the mask of flip planes precisely. For the time being
5119          * consider this a flip to a NULL plane.
5120          */
5121         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5122 }
5123
5124 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5125                                           struct intel_crtc_state *crtc_state,
5126                                           struct drm_atomic_state *old_state)
5127 {
5128         struct drm_connector_state *old_conn_state;
5129         struct drm_connector *conn;
5130         int i;
5131
5132         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5133                 struct drm_connector_state *conn_state = conn->state;
5134                 struct intel_encoder *encoder =
5135                         to_intel_encoder(conn_state->best_encoder);
5136
5137                 if (conn_state->crtc != crtc)
5138                         continue;
5139
5140                 if (encoder->pre_pll_enable)
5141                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5142         }
5143 }
5144
5145 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5146                                       struct intel_crtc_state *crtc_state,
5147                                       struct drm_atomic_state *old_state)
5148 {
5149         struct drm_connector_state *old_conn_state;
5150         struct drm_connector *conn;
5151         int i;
5152
5153         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5154                 struct drm_connector_state *conn_state = conn->state;
5155                 struct intel_encoder *encoder =
5156                         to_intel_encoder(conn_state->best_encoder);
5157
5158                 if (conn_state->crtc != crtc)
5159                         continue;
5160
5161                 if (encoder->pre_enable)
5162                         encoder->pre_enable(encoder, crtc_state, conn_state);
5163         }
5164 }
5165
5166 static void intel_encoders_enable(struct drm_crtc *crtc,
5167                                   struct intel_crtc_state *crtc_state,
5168                                   struct drm_atomic_state *old_state)
5169 {
5170         struct drm_connector_state *old_conn_state;
5171         struct drm_connector *conn;
5172         int i;
5173
5174         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5175                 struct drm_connector_state *conn_state = conn->state;
5176                 struct intel_encoder *encoder =
5177                         to_intel_encoder(conn_state->best_encoder);
5178
5179                 if (conn_state->crtc != crtc)
5180                         continue;
5181
5182                 encoder->enable(encoder, crtc_state, conn_state);
5183                 intel_opregion_notify_encoder(encoder, true);
5184         }
5185 }
5186
5187 static void intel_encoders_disable(struct drm_crtc *crtc,
5188                                    struct intel_crtc_state *old_crtc_state,
5189                                    struct drm_atomic_state *old_state)
5190 {
5191         struct drm_connector_state *old_conn_state;
5192         struct drm_connector *conn;
5193         int i;
5194
5195         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5196                 struct intel_encoder *encoder =
5197                         to_intel_encoder(old_conn_state->best_encoder);
5198
5199                 if (old_conn_state->crtc != crtc)
5200                         continue;
5201
5202                 intel_opregion_notify_encoder(encoder, false);
5203                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5204         }
5205 }
5206
5207 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5208                                         struct intel_crtc_state *old_crtc_state,
5209                                         struct drm_atomic_state *old_state)
5210 {
5211         struct drm_connector_state *old_conn_state;
5212         struct drm_connector *conn;
5213         int i;
5214
5215         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5216                 struct intel_encoder *encoder =
5217                         to_intel_encoder(old_conn_state->best_encoder);
5218
5219                 if (old_conn_state->crtc != crtc)
5220                         continue;
5221
5222                 if (encoder->post_disable)
5223                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5224         }
5225 }
5226
5227 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5228                                             struct intel_crtc_state *old_crtc_state,
5229                                             struct drm_atomic_state *old_state)
5230 {
5231         struct drm_connector_state *old_conn_state;
5232         struct drm_connector *conn;
5233         int i;
5234
5235         for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5236                 struct intel_encoder *encoder =
5237                         to_intel_encoder(old_conn_state->best_encoder);
5238
5239                 if (old_conn_state->crtc != crtc)
5240                         continue;
5241
5242                 if (encoder->post_pll_disable)
5243                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5244         }
5245 }
5246
5247 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5248                                  struct drm_atomic_state *old_state)
5249 {
5250         struct drm_crtc *crtc = pipe_config->base.crtc;
5251         struct drm_device *dev = crtc->dev;
5252         struct drm_i915_private *dev_priv = to_i915(dev);
5253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5254         int pipe = intel_crtc->pipe;
5255         struct intel_atomic_state *old_intel_state =
5256                 to_intel_atomic_state(old_state);
5257
5258         if (WARN_ON(intel_crtc->active))
5259                 return;
5260
5261         /*
5262          * Sometimes spurious CPU pipe underruns happen during FDI
5263          * training, at least with VGA+HDMI cloning. Suppress them.
5264          *
5265          * On ILK we get an occasional spurious CPU pipe underruns
5266          * between eDP port A enable and vdd enable. Also PCH port
5267          * enable seems to result in the occasional CPU pipe underrun.
5268          *
5269          * Spurious PCH underruns also occur during PCH enabling.
5270          */
5271         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5272                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5273         if (intel_crtc->config->has_pch_encoder)
5274                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5275
5276         if (intel_crtc->config->has_pch_encoder)
5277                 intel_prepare_shared_dpll(intel_crtc);
5278
5279         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5280                 intel_dp_set_m_n(intel_crtc, M1_N1);
5281
5282         intel_set_pipe_timings(intel_crtc);
5283         intel_set_pipe_src_size(intel_crtc);
5284
5285         if (intel_crtc->config->has_pch_encoder) {
5286                 intel_cpu_transcoder_set_m_n(intel_crtc,
5287                                      &intel_crtc->config->fdi_m_n, NULL);
5288         }
5289
5290         ironlake_set_pipeconf(crtc);
5291
5292         intel_crtc->active = true;
5293
5294         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5295
5296         if (intel_crtc->config->has_pch_encoder) {
5297                 /* Note: FDI PLL enabling _must_ be done before we enable the
5298                  * cpu pipes, hence this is separate from all the other fdi/pch
5299                  * enabling. */
5300                 ironlake_fdi_pll_enable(intel_crtc);
5301         } else {
5302                 assert_fdi_tx_disabled(dev_priv, pipe);
5303                 assert_fdi_rx_disabled(dev_priv, pipe);
5304         }
5305
5306         ironlake_pfit_enable(intel_crtc);
5307
5308         /*
5309          * On ILK+ LUT must be loaded before the pipe is running but with
5310          * clocks enabled
5311          */
5312         intel_color_load_luts(&pipe_config->base);
5313
5314         if (dev_priv->display.initial_watermarks != NULL)
5315                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5316         intel_enable_pipe(intel_crtc);
5317
5318         if (intel_crtc->config->has_pch_encoder)
5319                 ironlake_pch_enable(pipe_config);
5320
5321         assert_vblank_disabled(crtc);
5322         drm_crtc_vblank_on(crtc);
5323
5324         intel_encoders_enable(crtc, pipe_config, old_state);
5325
5326         if (HAS_PCH_CPT(dev_priv))
5327                 cpt_verify_modeset(dev, intel_crtc->pipe);
5328
5329         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5330         if (intel_crtc->config->has_pch_encoder)
5331                 intel_wait_for_vblank(dev_priv, pipe);
5332         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5333         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5334 }
5335
5336 /* IPS only exists on ULT machines and is tied to pipe A. */
5337 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5338 {
5339         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5340 }
5341
5342 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5343                                 struct drm_atomic_state *old_state)
5344 {
5345         struct drm_crtc *crtc = pipe_config->base.crtc;
5346         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5349         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5350         struct intel_atomic_state *old_intel_state =
5351                 to_intel_atomic_state(old_state);
5352
5353         if (WARN_ON(intel_crtc->active))
5354                 return;
5355
5356         if (intel_crtc->config->has_pch_encoder)
5357                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5358                                                       false);
5359
5360         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5361
5362         if (intel_crtc->config->shared_dpll)
5363                 intel_enable_shared_dpll(intel_crtc);
5364
5365         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5366                 intel_dp_set_m_n(intel_crtc, M1_N1);
5367
5368         if (!transcoder_is_dsi(cpu_transcoder))
5369                 intel_set_pipe_timings(intel_crtc);
5370
5371         intel_set_pipe_src_size(intel_crtc);
5372
5373         if (cpu_transcoder != TRANSCODER_EDP &&
5374             !transcoder_is_dsi(cpu_transcoder)) {
5375                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5376                            intel_crtc->config->pixel_multiplier - 1);
5377         }
5378
5379         if (intel_crtc->config->has_pch_encoder) {
5380                 intel_cpu_transcoder_set_m_n(intel_crtc,
5381                                      &intel_crtc->config->fdi_m_n, NULL);
5382         }
5383
5384         if (!transcoder_is_dsi(cpu_transcoder))
5385                 haswell_set_pipeconf(crtc);
5386
5387         haswell_set_pipemisc(crtc);
5388
5389         intel_color_set_csc(&pipe_config->base);
5390
5391         intel_crtc->active = true;
5392
5393         if (intel_crtc->config->has_pch_encoder)
5394                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5395         else
5396                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5397
5398         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5399
5400         if (intel_crtc->config->has_pch_encoder)
5401                 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5402
5403         if (!transcoder_is_dsi(cpu_transcoder))
5404                 intel_ddi_enable_pipe_clock(pipe_config);
5405
5406         if (INTEL_GEN(dev_priv) >= 9)
5407                 skylake_pfit_enable(intel_crtc);
5408         else
5409                 ironlake_pfit_enable(intel_crtc);
5410
5411         /*
5412          * On ILK+ LUT must be loaded before the pipe is running but with
5413          * clocks enabled
5414          */
5415         intel_color_load_luts(&pipe_config->base);
5416
5417         intel_ddi_set_pipe_settings(pipe_config);
5418         if (!transcoder_is_dsi(cpu_transcoder))
5419                 intel_ddi_enable_transcoder_func(pipe_config);
5420
5421         if (dev_priv->display.initial_watermarks != NULL)
5422                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5423
5424         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5425         if (!transcoder_is_dsi(cpu_transcoder))
5426                 intel_enable_pipe(intel_crtc);
5427
5428         if (intel_crtc->config->has_pch_encoder)
5429                 lpt_pch_enable(pipe_config);
5430
5431         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5432                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5433
5434         assert_vblank_disabled(crtc);
5435         drm_crtc_vblank_on(crtc);
5436
5437         intel_encoders_enable(crtc, pipe_config, old_state);
5438
5439         if (intel_crtc->config->has_pch_encoder) {
5440                 intel_wait_for_vblank(dev_priv, pipe);
5441                 intel_wait_for_vblank(dev_priv, pipe);
5442                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5443                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5444                                                       true);
5445         }
5446
5447         /* If we change the relative order between pipe/planes enabling, we need
5448          * to change the workaround. */
5449         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5450         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5451                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5452                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5453         }
5454 }
5455
5456 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5457 {
5458         struct drm_device *dev = crtc->base.dev;
5459         struct drm_i915_private *dev_priv = to_i915(dev);
5460         int pipe = crtc->pipe;
5461
5462         /* To avoid upsetting the power well on haswell only disable the pfit if
5463          * it's in use. The hw state code will make sure we get this right. */
5464         if (force || crtc->config->pch_pfit.enabled) {
5465                 I915_WRITE(PF_CTL(pipe), 0);
5466                 I915_WRITE(PF_WIN_POS(pipe), 0);
5467                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5468         }
5469 }
5470
5471 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5472                                   struct drm_atomic_state *old_state)
5473 {
5474         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5475         struct drm_device *dev = crtc->dev;
5476         struct drm_i915_private *dev_priv = to_i915(dev);
5477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5478         int pipe = intel_crtc->pipe;
5479
5480         /*
5481          * Sometimes spurious CPU pipe underruns happen when the
5482          * pipe is already disabled, but FDI RX/TX is still enabled.
5483          * Happens at least with VGA+HDMI cloning. Suppress them.
5484          */
5485         if (intel_crtc->config->has_pch_encoder) {
5486                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5487                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5488         }
5489
5490         intel_encoders_disable(crtc, old_crtc_state, old_state);
5491
5492         drm_crtc_vblank_off(crtc);
5493         assert_vblank_disabled(crtc);
5494
5495         intel_disable_pipe(intel_crtc);
5496
5497         ironlake_pfit_disable(intel_crtc, false);
5498
5499         if (intel_crtc->config->has_pch_encoder)
5500                 ironlake_fdi_disable(crtc);
5501
5502         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5503
5504         if (intel_crtc->config->has_pch_encoder) {
5505                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5506
5507                 if (HAS_PCH_CPT(dev_priv)) {
5508                         i915_reg_t reg;
5509                         u32 temp;
5510
5511                         /* disable TRANS_DP_CTL */
5512                         reg = TRANS_DP_CTL(pipe);
5513                         temp = I915_READ(reg);
5514                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5515                                   TRANS_DP_PORT_SEL_MASK);
5516                         temp |= TRANS_DP_PORT_SEL_NONE;
5517                         I915_WRITE(reg, temp);
5518
5519                         /* disable DPLL_SEL */
5520                         temp = I915_READ(PCH_DPLL_SEL);
5521                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5522                         I915_WRITE(PCH_DPLL_SEL, temp);
5523                 }
5524
5525                 ironlake_fdi_pll_disable(intel_crtc);
5526         }
5527
5528         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5529         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5530 }
5531
5532 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5533                                  struct drm_atomic_state *old_state)
5534 {
5535         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5536         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5538         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5539
5540         if (intel_crtc->config->has_pch_encoder)
5541                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5542                                                       false);
5543
5544         intel_encoders_disable(crtc, old_crtc_state, old_state);
5545
5546         drm_crtc_vblank_off(crtc);
5547         assert_vblank_disabled(crtc);
5548
5549         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5550         if (!transcoder_is_dsi(cpu_transcoder))
5551                 intel_disable_pipe(intel_crtc);
5552
5553         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5554                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5555
5556         if (!transcoder_is_dsi(cpu_transcoder))
5557                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5558
5559         if (INTEL_GEN(dev_priv) >= 9)
5560                 skylake_scaler_disable(intel_crtc);
5561         else
5562                 ironlake_pfit_disable(intel_crtc, false);
5563
5564         if (!transcoder_is_dsi(cpu_transcoder))
5565                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5566
5567         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5568
5569         if (old_crtc_state->has_pch_encoder)
5570                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5571                                                       true);
5572 }
5573
5574 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5575 {
5576         struct drm_device *dev = crtc->base.dev;
5577         struct drm_i915_private *dev_priv = to_i915(dev);
5578         struct intel_crtc_state *pipe_config = crtc->config;
5579
5580         if (!pipe_config->gmch_pfit.control)
5581                 return;
5582
5583         /*
5584          * The panel fitter should only be adjusted whilst the pipe is disabled,
5585          * according to register description and PRM.
5586          */
5587         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5588         assert_pipe_disabled(dev_priv, crtc->pipe);
5589
5590         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5591         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5592
5593         /* Border color in case we don't scale up to the full screen. Black by
5594          * default, change to something else for debugging. */
5595         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5596 }
5597
5598 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5599 {
5600         switch (port) {
5601         case PORT_A:
5602                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5603         case PORT_B:
5604                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5605         case PORT_C:
5606                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5607         case PORT_D:
5608                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5609         case PORT_E:
5610                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5611         default:
5612                 MISSING_CASE(port);
5613                 return POWER_DOMAIN_PORT_OTHER;
5614         }
5615 }
5616
5617 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5618                                   struct intel_crtc_state *crtc_state)
5619 {
5620         struct drm_device *dev = crtc->dev;
5621         struct drm_i915_private *dev_priv = to_i915(dev);
5622         struct drm_encoder *encoder;
5623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5624         enum pipe pipe = intel_crtc->pipe;
5625         u64 mask;
5626         enum transcoder transcoder = crtc_state->cpu_transcoder;
5627
5628         if (!crtc_state->base.active)
5629                 return 0;
5630
5631         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5632         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5633         if (crtc_state->pch_pfit.enabled ||
5634             crtc_state->pch_pfit.force_thru)
5635                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5636
5637         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5638                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5639
5640                 mask |= BIT_ULL(intel_encoder->power_domain);
5641         }
5642
5643         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5644                 mask |= BIT(POWER_DOMAIN_AUDIO);
5645
5646         if (crtc_state->shared_dpll)
5647                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5648
5649         return mask;
5650 }
5651
5652 static u64
5653 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5654                                struct intel_crtc_state *crtc_state)
5655 {
5656         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5658         enum intel_display_power_domain domain;
5659         u64 domains, new_domains, old_domains;
5660
5661         old_domains = intel_crtc->enabled_power_domains;
5662         intel_crtc->enabled_power_domains = new_domains =
5663                 get_crtc_power_domains(crtc, crtc_state);
5664
5665         domains = new_domains & ~old_domains;
5666
5667         for_each_power_domain(domain, domains)
5668                 intel_display_power_get(dev_priv, domain);
5669
5670         return old_domains & ~new_domains;
5671 }
5672
5673 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5674                                       u64 domains)
5675 {
5676         enum intel_display_power_domain domain;
5677
5678         for_each_power_domain(domain, domains)
5679                 intel_display_power_put(dev_priv, domain);
5680 }
5681
5682 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5683                                    struct drm_atomic_state *old_state)
5684 {
5685         struct intel_atomic_state *old_intel_state =
5686                 to_intel_atomic_state(old_state);
5687         struct drm_crtc *crtc = pipe_config->base.crtc;
5688         struct drm_device *dev = crtc->dev;
5689         struct drm_i915_private *dev_priv = to_i915(dev);
5690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5691         int pipe = intel_crtc->pipe;
5692
5693         if (WARN_ON(intel_crtc->active))
5694                 return;
5695
5696         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5697                 intel_dp_set_m_n(intel_crtc, M1_N1);
5698
5699         intel_set_pipe_timings(intel_crtc);
5700         intel_set_pipe_src_size(intel_crtc);
5701
5702         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5703                 struct drm_i915_private *dev_priv = to_i915(dev);
5704
5705                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5706                 I915_WRITE(CHV_CANVAS(pipe), 0);
5707         }
5708
5709         i9xx_set_pipeconf(intel_crtc);
5710
5711         intel_crtc->active = true;
5712
5713         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5714
5715         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5716
5717         if (IS_CHERRYVIEW(dev_priv)) {
5718                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5719                 chv_enable_pll(intel_crtc, intel_crtc->config);
5720         } else {
5721                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5722                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5723         }
5724
5725         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5726
5727         i9xx_pfit_enable(intel_crtc);
5728
5729         intel_color_load_luts(&pipe_config->base);
5730
5731         dev_priv->display.initial_watermarks(old_intel_state,
5732                                              pipe_config);
5733         intel_enable_pipe(intel_crtc);
5734
5735         assert_vblank_disabled(crtc);
5736         drm_crtc_vblank_on(crtc);
5737
5738         intel_encoders_enable(crtc, pipe_config, old_state);
5739 }
5740
5741 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5742 {
5743         struct drm_device *dev = crtc->base.dev;
5744         struct drm_i915_private *dev_priv = to_i915(dev);
5745
5746         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5747         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5748 }
5749
5750 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5751                              struct drm_atomic_state *old_state)
5752 {
5753         struct drm_crtc *crtc = pipe_config->base.crtc;
5754         struct drm_device *dev = crtc->dev;
5755         struct drm_i915_private *dev_priv = to_i915(dev);
5756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5757         enum pipe pipe = intel_crtc->pipe;
5758
5759         if (WARN_ON(intel_crtc->active))
5760                 return;
5761
5762         i9xx_set_pll_dividers(intel_crtc);
5763
5764         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5765                 intel_dp_set_m_n(intel_crtc, M1_N1);
5766
5767         intel_set_pipe_timings(intel_crtc);
5768         intel_set_pipe_src_size(intel_crtc);
5769
5770         i9xx_set_pipeconf(intel_crtc);
5771
5772         intel_crtc->active = true;
5773
5774         if (!IS_GEN2(dev_priv))
5775                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5776
5777         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5778
5779         i9xx_enable_pll(intel_crtc);
5780
5781         i9xx_pfit_enable(intel_crtc);
5782
5783         intel_color_load_luts(&pipe_config->base);
5784
5785         intel_update_watermarks(intel_crtc);
5786         intel_enable_pipe(intel_crtc);
5787
5788         assert_vblank_disabled(crtc);
5789         drm_crtc_vblank_on(crtc);
5790
5791         intel_encoders_enable(crtc, pipe_config, old_state);
5792 }
5793
5794 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5795 {
5796         struct drm_device *dev = crtc->base.dev;
5797         struct drm_i915_private *dev_priv = to_i915(dev);
5798
5799         if (!crtc->config->gmch_pfit.control)
5800                 return;
5801
5802         assert_pipe_disabled(dev_priv, crtc->pipe);
5803
5804         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5805                          I915_READ(PFIT_CONTROL));
5806         I915_WRITE(PFIT_CONTROL, 0);
5807 }
5808
5809 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5810                               struct drm_atomic_state *old_state)
5811 {
5812         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5813         struct drm_device *dev = crtc->dev;
5814         struct drm_i915_private *dev_priv = to_i915(dev);
5815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5816         int pipe = intel_crtc->pipe;
5817
5818         /*
5819          * On gen2 planes are double buffered but the pipe isn't, so we must
5820          * wait for planes to fully turn off before disabling the pipe.
5821          */
5822         if (IS_GEN2(dev_priv))
5823                 intel_wait_for_vblank(dev_priv, pipe);
5824
5825         intel_encoders_disable(crtc, old_crtc_state, old_state);
5826
5827         drm_crtc_vblank_off(crtc);
5828         assert_vblank_disabled(crtc);
5829
5830         intel_disable_pipe(intel_crtc);
5831
5832         i9xx_pfit_disable(intel_crtc);
5833
5834         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5835
5836         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5837                 if (IS_CHERRYVIEW(dev_priv))
5838                         chv_disable_pll(dev_priv, pipe);
5839                 else if (IS_VALLEYVIEW(dev_priv))
5840                         vlv_disable_pll(dev_priv, pipe);
5841                 else
5842                         i9xx_disable_pll(intel_crtc);
5843         }
5844
5845         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5846
5847         if (!IS_GEN2(dev_priv))
5848                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5849
5850         if (!dev_priv->display.initial_watermarks)
5851                 intel_update_watermarks(intel_crtc);
5852 }
5853
5854 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
5855 {
5856         struct intel_encoder *encoder;
5857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5858         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5859         enum intel_display_power_domain domain;
5860         u64 domains;
5861         struct drm_atomic_state *state;
5862         struct intel_crtc_state *crtc_state;
5863         int ret;
5864
5865         if (!intel_crtc->active)
5866                 return;
5867
5868         if (crtc->primary->state->visible) {
5869                 WARN_ON(intel_crtc->flip_work);
5870
5871                 intel_pre_disable_primary_noatomic(crtc);
5872
5873                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5874                 crtc->primary->state->visible = false;
5875         }
5876
5877         state = drm_atomic_state_alloc(crtc->dev);
5878         if (!state) {
5879                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5880                               crtc->base.id, crtc->name);
5881                 return;
5882         }
5883
5884         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
5885
5886         /* Everything's already locked, -EDEADLK can't happen. */
5887         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5888         ret = drm_atomic_add_affected_connectors(state, crtc);
5889
5890         WARN_ON(IS_ERR(crtc_state) || ret);
5891
5892         dev_priv->display.crtc_disable(crtc_state, state);
5893
5894         drm_atomic_state_put(state);
5895
5896         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5897                       crtc->base.id, crtc->name);
5898
5899         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5900         crtc->state->active = false;
5901         intel_crtc->active = false;
5902         crtc->enabled = false;
5903         crtc->state->connector_mask = 0;
5904         crtc->state->encoder_mask = 0;
5905
5906         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5907                 encoder->base.crtc = NULL;
5908
5909         intel_fbc_disable(intel_crtc);
5910         intel_update_watermarks(intel_crtc);
5911         intel_disable_shared_dpll(intel_crtc);
5912
5913         domains = intel_crtc->enabled_power_domains;
5914         for_each_power_domain(domain, domains)
5915                 intel_display_power_put(dev_priv, domain);
5916         intel_crtc->enabled_power_domains = 0;
5917
5918         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5919         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5920 }
5921
5922 /*
5923  * turn all crtc's off, but do not adjust state
5924  * This has to be paired with a call to intel_modeset_setup_hw_state.
5925  */
5926 int intel_display_suspend(struct drm_device *dev)
5927 {
5928         struct drm_i915_private *dev_priv = to_i915(dev);
5929         struct drm_atomic_state *state;
5930         int ret;
5931
5932         state = drm_atomic_helper_suspend(dev);
5933         ret = PTR_ERR_OR_ZERO(state);
5934         if (ret)
5935                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5936         else
5937                 dev_priv->modeset_restore_state = state;
5938         return ret;
5939 }
5940
5941 void intel_encoder_destroy(struct drm_encoder *encoder)
5942 {
5943         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5944
5945         drm_encoder_cleanup(encoder);
5946         kfree(intel_encoder);
5947 }
5948
5949 /* Cross check the actual hw state with our own modeset state tracking (and it's
5950  * internal consistency). */
5951 static void intel_connector_verify_state(struct intel_connector *connector)
5952 {
5953         struct drm_crtc *crtc = connector->base.state->crtc;
5954
5955         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5956                       connector->base.base.id,
5957                       connector->base.name);
5958
5959         if (connector->get_hw_state(connector)) {
5960                 struct intel_encoder *encoder = connector->encoder;
5961                 struct drm_connector_state *conn_state = connector->base.state;
5962
5963                 I915_STATE_WARN(!crtc,
5964                          "connector enabled without attached crtc\n");
5965
5966                 if (!crtc)
5967                         return;
5968
5969                 I915_STATE_WARN(!crtc->state->active,
5970                       "connector is active, but attached crtc isn't\n");
5971
5972                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5973                         return;
5974
5975                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5976                         "atomic encoder doesn't match attached encoder\n");
5977
5978                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5979                         "attached encoder crtc differs from connector crtc\n");
5980         } else {
5981                 I915_STATE_WARN(crtc && crtc->state->active,
5982                         "attached crtc is active, but connector isn't\n");
5983                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
5984                         "best encoder set without crtc!\n");
5985         }
5986 }
5987
5988 int intel_connector_init(struct intel_connector *connector)
5989 {
5990         drm_atomic_helper_connector_reset(&connector->base);
5991
5992         if (!connector->base.state)
5993                 return -ENOMEM;
5994
5995         return 0;
5996 }
5997
5998 struct intel_connector *intel_connector_alloc(void)
5999 {
6000         struct intel_connector *connector;
6001
6002         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6003         if (!connector)
6004                 return NULL;
6005
6006         if (intel_connector_init(connector) < 0) {
6007                 kfree(connector);
6008                 return NULL;
6009         }
6010
6011         return connector;
6012 }
6013
6014 /* Simple connector->get_hw_state implementation for encoders that support only
6015  * one connector and no cloning and hence the encoder state determines the state
6016  * of the connector. */
6017 bool intel_connector_get_hw_state(struct intel_connector *connector)
6018 {
6019         enum pipe pipe = 0;
6020         struct intel_encoder *encoder = connector->encoder;
6021
6022         return encoder->get_hw_state(encoder, &pipe);
6023 }
6024
6025 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6026 {
6027         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6028                 return crtc_state->fdi_lanes;
6029
6030         return 0;
6031 }
6032
6033 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6034                                      struct intel_crtc_state *pipe_config)
6035 {
6036         struct drm_i915_private *dev_priv = to_i915(dev);
6037         struct drm_atomic_state *state = pipe_config->base.state;
6038         struct intel_crtc *other_crtc;
6039         struct intel_crtc_state *other_crtc_state;
6040
6041         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6042                       pipe_name(pipe), pipe_config->fdi_lanes);
6043         if (pipe_config->fdi_lanes > 4) {
6044                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6045                               pipe_name(pipe), pipe_config->fdi_lanes);
6046                 return -EINVAL;
6047         }
6048
6049         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6050                 if (pipe_config->fdi_lanes > 2) {
6051                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6052                                       pipe_config->fdi_lanes);
6053                         return -EINVAL;
6054                 } else {
6055                         return 0;
6056                 }
6057         }
6058
6059         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6060                 return 0;
6061
6062         /* Ivybridge 3 pipe is really complicated */
6063         switch (pipe) {
6064         case PIPE_A:
6065                 return 0;
6066         case PIPE_B:
6067                 if (pipe_config->fdi_lanes <= 2)
6068                         return 0;
6069
6070                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6071                 other_crtc_state =
6072                         intel_atomic_get_crtc_state(state, other_crtc);
6073                 if (IS_ERR(other_crtc_state))
6074                         return PTR_ERR(other_crtc_state);
6075
6076                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6077                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6078                                       pipe_name(pipe), pipe_config->fdi_lanes);
6079                         return -EINVAL;
6080                 }
6081                 return 0;
6082         case PIPE_C:
6083                 if (pipe_config->fdi_lanes > 2) {
6084                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6085                                       pipe_name(pipe), pipe_config->fdi_lanes);
6086                         return -EINVAL;
6087                 }
6088
6089                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6090                 other_crtc_state =
6091                         intel_atomic_get_crtc_state(state, other_crtc);
6092                 if (IS_ERR(other_crtc_state))
6093                         return PTR_ERR(other_crtc_state);
6094
6095                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6096                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6097                         return -EINVAL;
6098                 }
6099                 return 0;
6100         default:
6101                 BUG();
6102         }
6103 }
6104
6105 #define RETRY 1
6106 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6107                                        struct intel_crtc_state *pipe_config)
6108 {
6109         struct drm_device *dev = intel_crtc->base.dev;
6110         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6111         int lane, link_bw, fdi_dotclock, ret;
6112         bool needs_recompute = false;
6113
6114 retry:
6115         /* FDI is a binary signal running at ~2.7GHz, encoding
6116          * each output octet as 10 bits. The actual frequency
6117          * is stored as a divider into a 100MHz clock, and the
6118          * mode pixel clock is stored in units of 1KHz.
6119          * Hence the bw of each lane in terms of the mode signal
6120          * is:
6121          */
6122         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6123
6124         fdi_dotclock = adjusted_mode->crtc_clock;
6125
6126         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6127                                            pipe_config->pipe_bpp);
6128
6129         pipe_config->fdi_lanes = lane;
6130
6131         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6132                                link_bw, &pipe_config->fdi_m_n);
6133
6134         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6135         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6136                 pipe_config->pipe_bpp -= 2*3;
6137                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6138                               pipe_config->pipe_bpp);
6139                 needs_recompute = true;
6140                 pipe_config->bw_constrained = true;
6141
6142                 goto retry;
6143         }
6144
6145         if (needs_recompute)
6146                 return RETRY;
6147
6148         return ret;
6149 }
6150
6151 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6152                                      struct intel_crtc_state *pipe_config)
6153 {
6154         if (pipe_config->pipe_bpp > 24)
6155                 return false;
6156
6157         /* HSW can handle pixel rate up to cdclk? */
6158         if (IS_HASWELL(dev_priv))
6159                 return true;
6160
6161         /*
6162          * We compare against max which means we must take
6163          * the increased cdclk requirement into account when
6164          * calculating the new cdclk.
6165          *
6166          * Should measure whether using a lower cdclk w/o IPS
6167          */
6168         return pipe_config->pixel_rate <=
6169                 dev_priv->max_cdclk_freq * 95 / 100;
6170 }
6171
6172 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6173                                    struct intel_crtc_state *pipe_config)
6174 {
6175         struct drm_device *dev = crtc->base.dev;
6176         struct drm_i915_private *dev_priv = to_i915(dev);
6177
6178         pipe_config->ips_enabled = i915.enable_ips &&
6179                 hsw_crtc_supports_ips(crtc) &&
6180                 pipe_config_supports_ips(dev_priv, pipe_config);
6181 }
6182
6183 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6184 {
6185         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6186
6187         /* GDG double wide on either pipe, otherwise pipe A only */
6188         return INTEL_INFO(dev_priv)->gen < 4 &&
6189                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6190 }
6191
6192 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6193 {
6194         uint32_t pixel_rate;
6195
6196         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6197
6198         /*
6199          * We only use IF-ID interlacing. If we ever use
6200          * PF-ID we'll need to adjust the pixel_rate here.
6201          */
6202
6203         if (pipe_config->pch_pfit.enabled) {
6204                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6205                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6206
6207                 pipe_w = pipe_config->pipe_src_w;
6208                 pipe_h = pipe_config->pipe_src_h;
6209
6210                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6211                 pfit_h = pfit_size & 0xFFFF;
6212                 if (pipe_w < pfit_w)
6213                         pipe_w = pfit_w;
6214                 if (pipe_h < pfit_h)
6215                         pipe_h = pfit_h;
6216
6217                 if (WARN_ON(!pfit_w || !pfit_h))
6218                         return pixel_rate;
6219
6220                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6221                                      pfit_w * pfit_h);
6222         }
6223
6224         return pixel_rate;
6225 }
6226
6227 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6228 {
6229         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6230
6231         if (HAS_GMCH_DISPLAY(dev_priv))
6232                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6233                 crtc_state->pixel_rate =
6234                         crtc_state->base.adjusted_mode.crtc_clock;
6235         else
6236                 crtc_state->pixel_rate =
6237                         ilk_pipe_pixel_rate(crtc_state);
6238 }
6239
6240 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6241                                      struct intel_crtc_state *pipe_config)
6242 {
6243         struct drm_device *dev = crtc->base.dev;
6244         struct drm_i915_private *dev_priv = to_i915(dev);
6245         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6246         int clock_limit = dev_priv->max_dotclk_freq;
6247
6248         if (INTEL_GEN(dev_priv) < 4) {
6249                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6250
6251                 /*
6252                  * Enable double wide mode when the dot clock
6253                  * is > 90% of the (display) core speed.
6254                  */
6255                 if (intel_crtc_supports_double_wide(crtc) &&
6256                     adjusted_mode->crtc_clock > clock_limit) {
6257                         clock_limit = dev_priv->max_dotclk_freq;
6258                         pipe_config->double_wide = true;
6259                 }
6260         }
6261
6262         if (adjusted_mode->crtc_clock > clock_limit) {
6263                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6264                               adjusted_mode->crtc_clock, clock_limit,
6265                               yesno(pipe_config->double_wide));
6266                 return -EINVAL;
6267         }
6268
6269         /*
6270          * Pipe horizontal size must be even in:
6271          * - DVO ganged mode
6272          * - LVDS dual channel mode
6273          * - Double wide pipe
6274          */
6275         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6276              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6277                 pipe_config->pipe_src_w &= ~1;
6278
6279         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6280          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6281          */
6282         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6283                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6284                 return -EINVAL;
6285
6286         intel_crtc_compute_pixel_rate(pipe_config);
6287
6288         if (HAS_IPS(dev_priv))
6289                 hsw_compute_ips_config(crtc, pipe_config);
6290
6291         if (pipe_config->has_pch_encoder)
6292                 return ironlake_fdi_compute_config(crtc, pipe_config);
6293
6294         return 0;
6295 }
6296
6297 static void
6298 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6299 {
6300         while (*num > DATA_LINK_M_N_MASK ||
6301                *den > DATA_LINK_M_N_MASK) {
6302                 *num >>= 1;
6303                 *den >>= 1;
6304         }
6305 }
6306
6307 static void compute_m_n(unsigned int m, unsigned int n,
6308                         uint32_t *ret_m, uint32_t *ret_n)
6309 {
6310         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6311         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6312         intel_reduce_m_n_ratio(ret_m, ret_n);
6313 }
6314
6315 void
6316 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6317                        int pixel_clock, int link_clock,
6318                        struct intel_link_m_n *m_n)
6319 {
6320         m_n->tu = 64;
6321
6322         compute_m_n(bits_per_pixel * pixel_clock,
6323                     link_clock * nlanes * 8,
6324                     &m_n->gmch_m, &m_n->gmch_n);
6325
6326         compute_m_n(pixel_clock, link_clock,
6327                     &m_n->link_m, &m_n->link_n);
6328 }
6329
6330 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6331 {
6332         if (i915.panel_use_ssc >= 0)
6333                 return i915.panel_use_ssc != 0;
6334         return dev_priv->vbt.lvds_use_ssc
6335                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6336 }
6337
6338 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6339 {
6340         return (1 << dpll->n) << 16 | dpll->m2;
6341 }
6342
6343 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6344 {
6345         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6346 }
6347
6348 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6349                                      struct intel_crtc_state *crtc_state,
6350                                      struct dpll *reduced_clock)
6351 {
6352         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6353         u32 fp, fp2 = 0;
6354
6355         if (IS_PINEVIEW(dev_priv)) {
6356                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6357                 if (reduced_clock)
6358                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6359         } else {
6360                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6361                 if (reduced_clock)
6362                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6363         }
6364
6365         crtc_state->dpll_hw_state.fp0 = fp;
6366
6367         crtc->lowfreq_avail = false;
6368         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6369             reduced_clock) {
6370                 crtc_state->dpll_hw_state.fp1 = fp2;
6371                 crtc->lowfreq_avail = true;
6372         } else {
6373                 crtc_state->dpll_hw_state.fp1 = fp;
6374         }
6375 }
6376
6377 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6378                 pipe)
6379 {
6380         u32 reg_val;
6381
6382         /*
6383          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6384          * and set it to a reasonable value instead.
6385          */
6386         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6387         reg_val &= 0xffffff00;
6388         reg_val |= 0x00000030;
6389         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6390
6391         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6392         reg_val &= 0x8cffffff;
6393         reg_val = 0x8c000000;
6394         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6395
6396         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6397         reg_val &= 0xffffff00;
6398         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6399
6400         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6401         reg_val &= 0x00ffffff;
6402         reg_val |= 0xb0000000;
6403         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6404 }
6405
6406 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6407                                          struct intel_link_m_n *m_n)
6408 {
6409         struct drm_device *dev = crtc->base.dev;
6410         struct drm_i915_private *dev_priv = to_i915(dev);
6411         int pipe = crtc->pipe;
6412
6413         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6414         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6415         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6416         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6417 }
6418
6419 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6420                                          struct intel_link_m_n *m_n,
6421                                          struct intel_link_m_n *m2_n2)
6422 {
6423         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6424         int pipe = crtc->pipe;
6425         enum transcoder transcoder = crtc->config->cpu_transcoder;
6426
6427         if (INTEL_GEN(dev_priv) >= 5) {
6428                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6429                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6430                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6431                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6432                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6433                  * for gen < 8) and if DRRS is supported (to make sure the
6434                  * registers are not unnecessarily accessed).
6435                  */
6436                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6437                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6438                         I915_WRITE(PIPE_DATA_M2(transcoder),
6439                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6440                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6441                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6442                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6443                 }
6444         } else {
6445                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6446                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6447                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6448                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6449         }
6450 }
6451
6452 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6453 {
6454         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6455
6456         if (m_n == M1_N1) {
6457                 dp_m_n = &crtc->config->dp_m_n;
6458                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6459         } else if (m_n == M2_N2) {
6460
6461                 /*
6462                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6463                  * needs to be programmed into M1_N1.
6464                  */
6465                 dp_m_n = &crtc->config->dp_m2_n2;
6466         } else {
6467                 DRM_ERROR("Unsupported divider value\n");
6468                 return;
6469         }
6470
6471         if (crtc->config->has_pch_encoder)
6472                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6473         else
6474                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6475 }
6476
6477 static void vlv_compute_dpll(struct intel_crtc *crtc,
6478                              struct intel_crtc_state *pipe_config)
6479 {
6480         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6481                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6482         if (crtc->pipe != PIPE_A)
6483                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6484
6485         /* DPLL not used with DSI, but still need the rest set up */
6486         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6487                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6488                         DPLL_EXT_BUFFER_ENABLE_VLV;
6489
6490         pipe_config->dpll_hw_state.dpll_md =
6491                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6492 }
6493
6494 static void chv_compute_dpll(struct intel_crtc *crtc,
6495                              struct intel_crtc_state *pipe_config)
6496 {
6497         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6498                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6499         if (crtc->pipe != PIPE_A)
6500                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6501
6502         /* DPLL not used with DSI, but still need the rest set up */
6503         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6504                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6505
6506         pipe_config->dpll_hw_state.dpll_md =
6507                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6508 }
6509
6510 static void vlv_prepare_pll(struct intel_crtc *crtc,
6511                             const struct intel_crtc_state *pipe_config)
6512 {
6513         struct drm_device *dev = crtc->base.dev;
6514         struct drm_i915_private *dev_priv = to_i915(dev);
6515         enum pipe pipe = crtc->pipe;
6516         u32 mdiv;
6517         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6518         u32 coreclk, reg_val;
6519
6520         /* Enable Refclk */
6521         I915_WRITE(DPLL(pipe),
6522                    pipe_config->dpll_hw_state.dpll &
6523                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6524
6525         /* No need to actually set up the DPLL with DSI */
6526         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6527                 return;
6528
6529         mutex_lock(&dev_priv->sb_lock);
6530
6531         bestn = pipe_config->dpll.n;
6532         bestm1 = pipe_config->dpll.m1;
6533         bestm2 = pipe_config->dpll.m2;
6534         bestp1 = pipe_config->dpll.p1;
6535         bestp2 = pipe_config->dpll.p2;
6536
6537         /* See eDP HDMI DPIO driver vbios notes doc */
6538
6539         /* PLL B needs special handling */
6540         if (pipe == PIPE_B)
6541                 vlv_pllb_recal_opamp(dev_priv, pipe);
6542
6543         /* Set up Tx target for periodic Rcomp update */
6544         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6545
6546         /* Disable target IRef on PLL */
6547         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6548         reg_val &= 0x00ffffff;
6549         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6550
6551         /* Disable fast lock */
6552         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6553
6554         /* Set idtafcrecal before PLL is enabled */
6555         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6556         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6557         mdiv |= ((bestn << DPIO_N_SHIFT));
6558         mdiv |= (1 << DPIO_K_SHIFT);
6559
6560         /*
6561          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6562          * but we don't support that).
6563          * Note: don't use the DAC post divider as it seems unstable.
6564          */
6565         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6566         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6567
6568         mdiv |= DPIO_ENABLE_CALIBRATION;
6569         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6570
6571         /* Set HBR and RBR LPF coefficients */
6572         if (pipe_config->port_clock == 162000 ||
6573             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6574             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6575                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6576                                  0x009f0003);
6577         else
6578                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6579                                  0x00d0000f);
6580
6581         if (intel_crtc_has_dp_encoder(pipe_config)) {
6582                 /* Use SSC source */
6583                 if (pipe == PIPE_A)
6584                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6585                                          0x0df40000);
6586                 else
6587                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6588                                          0x0df70000);
6589         } else { /* HDMI or VGA */
6590                 /* Use bend source */
6591                 if (pipe == PIPE_A)
6592                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6593                                          0x0df70000);
6594                 else
6595                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6596                                          0x0df40000);
6597         }
6598
6599         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6600         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6601         if (intel_crtc_has_dp_encoder(crtc->config))
6602                 coreclk |= 0x01000000;
6603         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6604
6605         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6606         mutex_unlock(&dev_priv->sb_lock);
6607 }
6608
6609 static void chv_prepare_pll(struct intel_crtc *crtc,
6610                             const struct intel_crtc_state *pipe_config)
6611 {
6612         struct drm_device *dev = crtc->base.dev;
6613         struct drm_i915_private *dev_priv = to_i915(dev);
6614         enum pipe pipe = crtc->pipe;
6615         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616         u32 loopfilter, tribuf_calcntr;
6617         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6618         u32 dpio_val;
6619         int vco;
6620
6621         /* Enable Refclk and SSC */
6622         I915_WRITE(DPLL(pipe),
6623                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6624
6625         /* No need to actually set up the DPLL with DSI */
6626         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6627                 return;
6628
6629         bestn = pipe_config->dpll.n;
6630         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6631         bestm1 = pipe_config->dpll.m1;
6632         bestm2 = pipe_config->dpll.m2 >> 22;
6633         bestp1 = pipe_config->dpll.p1;
6634         bestp2 = pipe_config->dpll.p2;
6635         vco = pipe_config->dpll.vco;
6636         dpio_val = 0;
6637         loopfilter = 0;
6638
6639         mutex_lock(&dev_priv->sb_lock);
6640
6641         /* p1 and p2 divider */
6642         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6643                         5 << DPIO_CHV_S1_DIV_SHIFT |
6644                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6645                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6646                         1 << DPIO_CHV_K_DIV_SHIFT);
6647
6648         /* Feedback post-divider - m2 */
6649         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6650
6651         /* Feedback refclk divider - n and m1 */
6652         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6653                         DPIO_CHV_M1_DIV_BY_2 |
6654                         1 << DPIO_CHV_N_DIV_SHIFT);
6655
6656         /* M2 fraction division */
6657         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6658
6659         /* M2 fraction division enable */
6660         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6661         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6662         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6663         if (bestm2_frac)
6664                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6665         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6666
6667         /* Program digital lock detect threshold */
6668         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6669         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6670                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6671         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6672         if (!bestm2_frac)
6673                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6674         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6675
6676         /* Loop filter */
6677         if (vco == 5400000) {
6678                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6679                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6680                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6681                 tribuf_calcntr = 0x9;
6682         } else if (vco <= 6200000) {
6683                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6684                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6685                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6686                 tribuf_calcntr = 0x9;
6687         } else if (vco <= 6480000) {
6688                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6689                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6690                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6691                 tribuf_calcntr = 0x8;
6692         } else {
6693                 /* Not supported. Apply the same limits as in the max case */
6694                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6695                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6696                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6697                 tribuf_calcntr = 0;
6698         }
6699         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6700
6701         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6702         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6703         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6704         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6705
6706         /* AFC Recal */
6707         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6708                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6709                         DPIO_AFC_RECAL);
6710
6711         mutex_unlock(&dev_priv->sb_lock);
6712 }
6713
6714 /**
6715  * vlv_force_pll_on - forcibly enable just the PLL
6716  * @dev_priv: i915 private structure
6717  * @pipe: pipe PLL to enable
6718  * @dpll: PLL configuration
6719  *
6720  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6721  * in cases where we need the PLL enabled even when @pipe is not going to
6722  * be enabled.
6723  */
6724 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6725                      const struct dpll *dpll)
6726 {
6727         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6728         struct intel_crtc_state *pipe_config;
6729
6730         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6731         if (!pipe_config)
6732                 return -ENOMEM;
6733
6734         pipe_config->base.crtc = &crtc->base;
6735         pipe_config->pixel_multiplier = 1;
6736         pipe_config->dpll = *dpll;
6737
6738         if (IS_CHERRYVIEW(dev_priv)) {
6739                 chv_compute_dpll(crtc, pipe_config);
6740                 chv_prepare_pll(crtc, pipe_config);
6741                 chv_enable_pll(crtc, pipe_config);
6742         } else {
6743                 vlv_compute_dpll(crtc, pipe_config);
6744                 vlv_prepare_pll(crtc, pipe_config);
6745                 vlv_enable_pll(crtc, pipe_config);
6746         }
6747
6748         kfree(pipe_config);
6749
6750         return 0;
6751 }
6752
6753 /**
6754  * vlv_force_pll_off - forcibly disable just the PLL
6755  * @dev_priv: i915 private structure
6756  * @pipe: pipe PLL to disable
6757  *
6758  * Disable the PLL for @pipe. To be used in cases where we need
6759  * the PLL enabled even when @pipe is not going to be enabled.
6760  */
6761 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6762 {
6763         if (IS_CHERRYVIEW(dev_priv))
6764                 chv_disable_pll(dev_priv, pipe);
6765         else
6766                 vlv_disable_pll(dev_priv, pipe);
6767 }
6768
6769 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6770                               struct intel_crtc_state *crtc_state,
6771                               struct dpll *reduced_clock)
6772 {
6773         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6774         u32 dpll;
6775         struct dpll *clock = &crtc_state->dpll;
6776
6777         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6778
6779         dpll = DPLL_VGA_MODE_DIS;
6780
6781         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6782                 dpll |= DPLLB_MODE_LVDS;
6783         else
6784                 dpll |= DPLLB_MODE_DAC_SERIAL;
6785
6786         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6787             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6788                 dpll |= (crtc_state->pixel_multiplier - 1)
6789                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6790         }
6791
6792         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6793             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6794                 dpll |= DPLL_SDVO_HIGH_SPEED;
6795
6796         if (intel_crtc_has_dp_encoder(crtc_state))
6797                 dpll |= DPLL_SDVO_HIGH_SPEED;
6798
6799         /* compute bitmask from p1 value */
6800         if (IS_PINEVIEW(dev_priv))
6801                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6802         else {
6803                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6804                 if (IS_G4X(dev_priv) && reduced_clock)
6805                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6806         }
6807         switch (clock->p2) {
6808         case 5:
6809                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6810                 break;
6811         case 7:
6812                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6813                 break;
6814         case 10:
6815                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6816                 break;
6817         case 14:
6818                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6819                 break;
6820         }
6821         if (INTEL_GEN(dev_priv) >= 4)
6822                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6823
6824         if (crtc_state->sdvo_tv_clock)
6825                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6826         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6827                  intel_panel_use_ssc(dev_priv))
6828                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6829         else
6830                 dpll |= PLL_REF_INPUT_DREFCLK;
6831
6832         dpll |= DPLL_VCO_ENABLE;
6833         crtc_state->dpll_hw_state.dpll = dpll;
6834
6835         if (INTEL_GEN(dev_priv) >= 4) {
6836                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6837                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6838                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6839         }
6840 }
6841
6842 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6843                               struct intel_crtc_state *crtc_state,
6844                               struct dpll *reduced_clock)
6845 {
6846         struct drm_device *dev = crtc->base.dev;
6847         struct drm_i915_private *dev_priv = to_i915(dev);
6848         u32 dpll;
6849         struct dpll *clock = &crtc_state->dpll;
6850
6851         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6852
6853         dpll = DPLL_VGA_MODE_DIS;
6854
6855         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6856                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6857         } else {
6858                 if (clock->p1 == 2)
6859                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6860                 else
6861                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6862                 if (clock->p2 == 4)
6863                         dpll |= PLL_P2_DIVIDE_BY_4;
6864         }
6865
6866         if (!IS_I830(dev_priv) &&
6867             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6868                 dpll |= DPLL_DVO_2X_MODE;
6869
6870         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6871             intel_panel_use_ssc(dev_priv))
6872                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6873         else
6874                 dpll |= PLL_REF_INPUT_DREFCLK;
6875
6876         dpll |= DPLL_VCO_ENABLE;
6877         crtc_state->dpll_hw_state.dpll = dpll;
6878 }
6879
6880 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6881 {
6882         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6883         enum pipe pipe = intel_crtc->pipe;
6884         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6885         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6886         uint32_t crtc_vtotal, crtc_vblank_end;
6887         int vsyncshift = 0;
6888
6889         /* We need to be careful not to changed the adjusted mode, for otherwise
6890          * the hw state checker will get angry at the mismatch. */
6891         crtc_vtotal = adjusted_mode->crtc_vtotal;
6892         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6893
6894         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6895                 /* the chip adds 2 halflines automatically */
6896                 crtc_vtotal -= 1;
6897                 crtc_vblank_end -= 1;
6898
6899                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6900                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6901                 else
6902                         vsyncshift = adjusted_mode->crtc_hsync_start -
6903                                 adjusted_mode->crtc_htotal / 2;
6904                 if (vsyncshift < 0)
6905                         vsyncshift += adjusted_mode->crtc_htotal;
6906         }
6907
6908         if (INTEL_GEN(dev_priv) > 3)
6909                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6910
6911         I915_WRITE(HTOTAL(cpu_transcoder),
6912                    (adjusted_mode->crtc_hdisplay - 1) |
6913                    ((adjusted_mode->crtc_htotal - 1) << 16));
6914         I915_WRITE(HBLANK(cpu_transcoder),
6915                    (adjusted_mode->crtc_hblank_start - 1) |
6916                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6917         I915_WRITE(HSYNC(cpu_transcoder),
6918                    (adjusted_mode->crtc_hsync_start - 1) |
6919                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6920
6921         I915_WRITE(VTOTAL(cpu_transcoder),
6922                    (adjusted_mode->crtc_vdisplay - 1) |
6923                    ((crtc_vtotal - 1) << 16));
6924         I915_WRITE(VBLANK(cpu_transcoder),
6925                    (adjusted_mode->crtc_vblank_start - 1) |
6926                    ((crtc_vblank_end - 1) << 16));
6927         I915_WRITE(VSYNC(cpu_transcoder),
6928                    (adjusted_mode->crtc_vsync_start - 1) |
6929                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6930
6931         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6932          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6933          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6934          * bits. */
6935         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6936             (pipe == PIPE_B || pipe == PIPE_C))
6937                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6938
6939 }
6940
6941 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6942 {
6943         struct drm_device *dev = intel_crtc->base.dev;
6944         struct drm_i915_private *dev_priv = to_i915(dev);
6945         enum pipe pipe = intel_crtc->pipe;
6946
6947         /* pipesrc controls the size that is scaled from, which should
6948          * always be the user's requested size.
6949          */
6950         I915_WRITE(PIPESRC(pipe),
6951                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6952                    (intel_crtc->config->pipe_src_h - 1));
6953 }
6954
6955 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6956                                    struct intel_crtc_state *pipe_config)
6957 {
6958         struct drm_device *dev = crtc->base.dev;
6959         struct drm_i915_private *dev_priv = to_i915(dev);
6960         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6961         uint32_t tmp;
6962
6963         tmp = I915_READ(HTOTAL(cpu_transcoder));
6964         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6965         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6966         tmp = I915_READ(HBLANK(cpu_transcoder));
6967         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6968         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6969         tmp = I915_READ(HSYNC(cpu_transcoder));
6970         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6971         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6972
6973         tmp = I915_READ(VTOTAL(cpu_transcoder));
6974         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6975         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6976         tmp = I915_READ(VBLANK(cpu_transcoder));
6977         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6978         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6979         tmp = I915_READ(VSYNC(cpu_transcoder));
6980         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6981         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6982
6983         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6984                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6985                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6986                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6987         }
6988 }
6989
6990 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6991                                     struct intel_crtc_state *pipe_config)
6992 {
6993         struct drm_device *dev = crtc->base.dev;
6994         struct drm_i915_private *dev_priv = to_i915(dev);
6995         u32 tmp;
6996
6997         tmp = I915_READ(PIPESRC(crtc->pipe));
6998         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6999         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7000
7001         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7002         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7003 }
7004
7005 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7006                                  struct intel_crtc_state *pipe_config)
7007 {
7008         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7009         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7010         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7011         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7012
7013         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7014         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7015         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7016         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7017
7018         mode->flags = pipe_config->base.adjusted_mode.flags;
7019         mode->type = DRM_MODE_TYPE_DRIVER;
7020
7021         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7022
7023         mode->hsync = drm_mode_hsync(mode);
7024         mode->vrefresh = drm_mode_vrefresh(mode);
7025         drm_mode_set_name(mode);
7026 }
7027
7028 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7029 {
7030         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7031         uint32_t pipeconf;
7032
7033         pipeconf = 0;
7034
7035         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7036             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7037                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7038
7039         if (intel_crtc->config->double_wide)
7040                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7041
7042         /* only g4x and later have fancy bpc/dither controls */
7043         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7044             IS_CHERRYVIEW(dev_priv)) {
7045                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7046                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7047                         pipeconf |= PIPECONF_DITHER_EN |
7048                                     PIPECONF_DITHER_TYPE_SP;
7049
7050                 switch (intel_crtc->config->pipe_bpp) {
7051                 case 18:
7052                         pipeconf |= PIPECONF_6BPC;
7053                         break;
7054                 case 24:
7055                         pipeconf |= PIPECONF_8BPC;
7056                         break;
7057                 case 30:
7058                         pipeconf |= PIPECONF_10BPC;
7059                         break;
7060                 default:
7061                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7062                         BUG();
7063                 }
7064         }
7065
7066         if (HAS_PIPE_CXSR(dev_priv)) {
7067                 if (intel_crtc->lowfreq_avail) {
7068                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7069                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7070                 } else {
7071                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7072                 }
7073         }
7074
7075         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7076                 if (INTEL_GEN(dev_priv) < 4 ||
7077                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7078                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7079                 else
7080                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7081         } else
7082                 pipeconf |= PIPECONF_PROGRESSIVE;
7083
7084         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7085              intel_crtc->config->limited_color_range)
7086                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7087
7088         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7089         POSTING_READ(PIPECONF(intel_crtc->pipe));
7090 }
7091
7092 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7093                                    struct intel_crtc_state *crtc_state)
7094 {
7095         struct drm_device *dev = crtc->base.dev;
7096         struct drm_i915_private *dev_priv = to_i915(dev);
7097         const struct intel_limit *limit;
7098         int refclk = 48000;
7099
7100         memset(&crtc_state->dpll_hw_state, 0,
7101                sizeof(crtc_state->dpll_hw_state));
7102
7103         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7104                 if (intel_panel_use_ssc(dev_priv)) {
7105                         refclk = dev_priv->vbt.lvds_ssc_freq;
7106                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7107                 }
7108
7109                 limit = &intel_limits_i8xx_lvds;
7110         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7111                 limit = &intel_limits_i8xx_dvo;
7112         } else {
7113                 limit = &intel_limits_i8xx_dac;
7114         }
7115
7116         if (!crtc_state->clock_set &&
7117             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7118                                  refclk, NULL, &crtc_state->dpll)) {
7119                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7120                 return -EINVAL;
7121         }
7122
7123         i8xx_compute_dpll(crtc, crtc_state, NULL);
7124
7125         return 0;
7126 }
7127
7128 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7129                                   struct intel_crtc_state *crtc_state)
7130 {
7131         struct drm_device *dev = crtc->base.dev;
7132         struct drm_i915_private *dev_priv = to_i915(dev);
7133         const struct intel_limit *limit;
7134         int refclk = 96000;
7135
7136         memset(&crtc_state->dpll_hw_state, 0,
7137                sizeof(crtc_state->dpll_hw_state));
7138
7139         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7140                 if (intel_panel_use_ssc(dev_priv)) {
7141                         refclk = dev_priv->vbt.lvds_ssc_freq;
7142                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7143                 }
7144
7145                 if (intel_is_dual_link_lvds(dev))
7146                         limit = &intel_limits_g4x_dual_channel_lvds;
7147                 else
7148                         limit = &intel_limits_g4x_single_channel_lvds;
7149         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7150                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7151                 limit = &intel_limits_g4x_hdmi;
7152         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7153                 limit = &intel_limits_g4x_sdvo;
7154         } else {
7155                 /* The option is for other outputs */
7156                 limit = &intel_limits_i9xx_sdvo;
7157         }
7158
7159         if (!crtc_state->clock_set &&
7160             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7161                                 refclk, NULL, &crtc_state->dpll)) {
7162                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7163                 return -EINVAL;
7164         }
7165
7166         i9xx_compute_dpll(crtc, crtc_state, NULL);
7167
7168         return 0;
7169 }
7170
7171 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7172                                   struct intel_crtc_state *crtc_state)
7173 {
7174         struct drm_device *dev = crtc->base.dev;
7175         struct drm_i915_private *dev_priv = to_i915(dev);
7176         const struct intel_limit *limit;
7177         int refclk = 96000;
7178
7179         memset(&crtc_state->dpll_hw_state, 0,
7180                sizeof(crtc_state->dpll_hw_state));
7181
7182         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7183                 if (intel_panel_use_ssc(dev_priv)) {
7184                         refclk = dev_priv->vbt.lvds_ssc_freq;
7185                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7186                 }
7187
7188                 limit = &intel_limits_pineview_lvds;
7189         } else {
7190                 limit = &intel_limits_pineview_sdvo;
7191         }
7192
7193         if (!crtc_state->clock_set &&
7194             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7195                                 refclk, NULL, &crtc_state->dpll)) {
7196                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7197                 return -EINVAL;
7198         }
7199
7200         i9xx_compute_dpll(crtc, crtc_state, NULL);
7201
7202         return 0;
7203 }
7204
7205 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7206                                    struct intel_crtc_state *crtc_state)
7207 {
7208         struct drm_device *dev = crtc->base.dev;
7209         struct drm_i915_private *dev_priv = to_i915(dev);
7210         const struct intel_limit *limit;
7211         int refclk = 96000;
7212
7213         memset(&crtc_state->dpll_hw_state, 0,
7214                sizeof(crtc_state->dpll_hw_state));
7215
7216         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7217                 if (intel_panel_use_ssc(dev_priv)) {
7218                         refclk = dev_priv->vbt.lvds_ssc_freq;
7219                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7220                 }
7221
7222                 limit = &intel_limits_i9xx_lvds;
7223         } else {
7224                 limit = &intel_limits_i9xx_sdvo;
7225         }
7226
7227         if (!crtc_state->clock_set &&
7228             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7229                                  refclk, NULL, &crtc_state->dpll)) {
7230                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7231                 return -EINVAL;
7232         }
7233
7234         i9xx_compute_dpll(crtc, crtc_state, NULL);
7235
7236         return 0;
7237 }
7238
7239 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7240                                   struct intel_crtc_state *crtc_state)
7241 {
7242         int refclk = 100000;
7243         const struct intel_limit *limit = &intel_limits_chv;
7244
7245         memset(&crtc_state->dpll_hw_state, 0,
7246                sizeof(crtc_state->dpll_hw_state));
7247
7248         if (!crtc_state->clock_set &&
7249             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7250                                 refclk, NULL, &crtc_state->dpll)) {
7251                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7252                 return -EINVAL;
7253         }
7254
7255         chv_compute_dpll(crtc, crtc_state);
7256
7257         return 0;
7258 }
7259
7260 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7261                                   struct intel_crtc_state *crtc_state)
7262 {
7263         int refclk = 100000;
7264         const struct intel_limit *limit = &intel_limits_vlv;
7265
7266         memset(&crtc_state->dpll_hw_state, 0,
7267                sizeof(crtc_state->dpll_hw_state));
7268
7269         if (!crtc_state->clock_set &&
7270             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7271                                 refclk, NULL, &crtc_state->dpll)) {
7272                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7273                 return -EINVAL;
7274         }
7275
7276         vlv_compute_dpll(crtc, crtc_state);
7277
7278         return 0;
7279 }
7280
7281 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7282                                  struct intel_crtc_state *pipe_config)
7283 {
7284         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7285         uint32_t tmp;
7286
7287         if (INTEL_GEN(dev_priv) <= 3 &&
7288             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7289                 return;
7290
7291         tmp = I915_READ(PFIT_CONTROL);
7292         if (!(tmp & PFIT_ENABLE))
7293                 return;
7294
7295         /* Check whether the pfit is attached to our pipe. */
7296         if (INTEL_GEN(dev_priv) < 4) {
7297                 if (crtc->pipe != PIPE_B)
7298                         return;
7299         } else {
7300                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7301                         return;
7302         }
7303
7304         pipe_config->gmch_pfit.control = tmp;
7305         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7306 }
7307
7308 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7309                                struct intel_crtc_state *pipe_config)
7310 {
7311         struct drm_device *dev = crtc->base.dev;
7312         struct drm_i915_private *dev_priv = to_i915(dev);
7313         int pipe = pipe_config->cpu_transcoder;
7314         struct dpll clock;
7315         u32 mdiv;
7316         int refclk = 100000;
7317
7318         /* In case of DSI, DPLL will not be used */
7319         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7320                 return;
7321
7322         mutex_lock(&dev_priv->sb_lock);
7323         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7324         mutex_unlock(&dev_priv->sb_lock);
7325
7326         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7327         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7328         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7329         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7330         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7331
7332         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7333 }
7334
7335 static void
7336 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7337                               struct intel_initial_plane_config *plane_config)
7338 {
7339         struct drm_device *dev = crtc->base.dev;
7340         struct drm_i915_private *dev_priv = to_i915(dev);
7341         u32 val, base, offset;
7342         int pipe = crtc->pipe, plane = crtc->plane;
7343         int fourcc, pixel_format;
7344         unsigned int aligned_height;
7345         struct drm_framebuffer *fb;
7346         struct intel_framebuffer *intel_fb;
7347
7348         val = I915_READ(DSPCNTR(plane));
7349         if (!(val & DISPLAY_PLANE_ENABLE))
7350                 return;
7351
7352         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7353         if (!intel_fb) {
7354                 DRM_DEBUG_KMS("failed to alloc fb\n");
7355                 return;
7356         }
7357
7358         fb = &intel_fb->base;
7359
7360         fb->dev = dev;
7361
7362         if (INTEL_GEN(dev_priv) >= 4) {
7363                 if (val & DISPPLANE_TILED) {
7364                         plane_config->tiling = I915_TILING_X;
7365                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7366                 }
7367         }
7368
7369         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7370         fourcc = i9xx_format_to_fourcc(pixel_format);
7371         fb->format = drm_format_info(fourcc);
7372
7373         if (INTEL_GEN(dev_priv) >= 4) {
7374                 if (plane_config->tiling)
7375                         offset = I915_READ(DSPTILEOFF(plane));
7376                 else
7377                         offset = I915_READ(DSPLINOFF(plane));
7378                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7379         } else {
7380                 base = I915_READ(DSPADDR(plane));
7381         }
7382         plane_config->base = base;
7383
7384         val = I915_READ(PIPESRC(pipe));
7385         fb->width = ((val >> 16) & 0xfff) + 1;
7386         fb->height = ((val >> 0) & 0xfff) + 1;
7387
7388         val = I915_READ(DSPSTRIDE(pipe));
7389         fb->pitches[0] = val & 0xffffffc0;
7390
7391         aligned_height = intel_fb_align_height(dev_priv,
7392                                                fb->height,
7393                                                fb->format->format,
7394                                                fb->modifier);
7395
7396         plane_config->size = fb->pitches[0] * aligned_height;
7397
7398         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7399                       pipe_name(pipe), plane, fb->width, fb->height,
7400                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7401                       plane_config->size);
7402
7403         plane_config->fb = intel_fb;
7404 }
7405
7406 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7407                                struct intel_crtc_state *pipe_config)
7408 {
7409         struct drm_device *dev = crtc->base.dev;
7410         struct drm_i915_private *dev_priv = to_i915(dev);
7411         int pipe = pipe_config->cpu_transcoder;
7412         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7413         struct dpll clock;
7414         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7415         int refclk = 100000;
7416
7417         /* In case of DSI, DPLL will not be used */
7418         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7419                 return;
7420
7421         mutex_lock(&dev_priv->sb_lock);
7422         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7423         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7424         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7425         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7426         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7427         mutex_unlock(&dev_priv->sb_lock);
7428
7429         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7430         clock.m2 = (pll_dw0 & 0xff) << 22;
7431         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7432                 clock.m2 |= pll_dw2 & 0x3fffff;
7433         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7434         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7435         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7436
7437         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7438 }
7439
7440 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7441                                  struct intel_crtc_state *pipe_config)
7442 {
7443         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7444         enum intel_display_power_domain power_domain;
7445         uint32_t tmp;
7446         bool ret;
7447
7448         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7449         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7450                 return false;
7451
7452         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7453         pipe_config->shared_dpll = NULL;
7454
7455         ret = false;
7456
7457         tmp = I915_READ(PIPECONF(crtc->pipe));
7458         if (!(tmp & PIPECONF_ENABLE))
7459                 goto out;
7460
7461         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7462             IS_CHERRYVIEW(dev_priv)) {
7463                 switch (tmp & PIPECONF_BPC_MASK) {
7464                 case PIPECONF_6BPC:
7465                         pipe_config->pipe_bpp = 18;
7466                         break;
7467                 case PIPECONF_8BPC:
7468                         pipe_config->pipe_bpp = 24;
7469                         break;
7470                 case PIPECONF_10BPC:
7471                         pipe_config->pipe_bpp = 30;
7472                         break;
7473                 default:
7474                         break;
7475                 }
7476         }
7477
7478         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7479             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7480                 pipe_config->limited_color_range = true;
7481
7482         if (INTEL_GEN(dev_priv) < 4)
7483                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7484
7485         intel_get_pipe_timings(crtc, pipe_config);
7486         intel_get_pipe_src_size(crtc, pipe_config);
7487
7488         i9xx_get_pfit_config(crtc, pipe_config);
7489
7490         if (INTEL_GEN(dev_priv) >= 4) {
7491                 /* No way to read it out on pipes B and C */
7492                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7493                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7494                 else
7495                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7496                 pipe_config->pixel_multiplier =
7497                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7498                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7499                 pipe_config->dpll_hw_state.dpll_md = tmp;
7500         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7501                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7502                 tmp = I915_READ(DPLL(crtc->pipe));
7503                 pipe_config->pixel_multiplier =
7504                         ((tmp & SDVO_MULTIPLIER_MASK)
7505                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7506         } else {
7507                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7508                  * port and will be fixed up in the encoder->get_config
7509                  * function. */
7510                 pipe_config->pixel_multiplier = 1;
7511         }
7512         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7513         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7514                 /*
7515                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7516                  * on 830. Filter it out here so that we don't
7517                  * report errors due to that.
7518                  */
7519                 if (IS_I830(dev_priv))
7520                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7521
7522                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7523                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7524         } else {
7525                 /* Mask out read-only status bits. */
7526                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7527                                                      DPLL_PORTC_READY_MASK |
7528                                                      DPLL_PORTB_READY_MASK);
7529         }
7530
7531         if (IS_CHERRYVIEW(dev_priv))
7532                 chv_crtc_clock_get(crtc, pipe_config);
7533         else if (IS_VALLEYVIEW(dev_priv))
7534                 vlv_crtc_clock_get(crtc, pipe_config);
7535         else
7536                 i9xx_crtc_clock_get(crtc, pipe_config);
7537
7538         /*
7539          * Normally the dotclock is filled in by the encoder .get_config()
7540          * but in case the pipe is enabled w/o any ports we need a sane
7541          * default.
7542          */
7543         pipe_config->base.adjusted_mode.crtc_clock =
7544                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7545
7546         ret = true;
7547
7548 out:
7549         intel_display_power_put(dev_priv, power_domain);
7550
7551         return ret;
7552 }
7553
7554 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7555 {
7556         struct intel_encoder *encoder;
7557         int i;
7558         u32 val, final;
7559         bool has_lvds = false;
7560         bool has_cpu_edp = false;
7561         bool has_panel = false;
7562         bool has_ck505 = false;
7563         bool can_ssc = false;
7564         bool using_ssc_source = false;
7565
7566         /* We need to take the global config into account */
7567         for_each_intel_encoder(&dev_priv->drm, encoder) {
7568                 switch (encoder->type) {
7569                 case INTEL_OUTPUT_LVDS:
7570                         has_panel = true;
7571                         has_lvds = true;
7572                         break;
7573                 case INTEL_OUTPUT_EDP:
7574                         has_panel = true;
7575                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7576                                 has_cpu_edp = true;
7577                         break;
7578                 default:
7579                         break;
7580                 }
7581         }
7582
7583         if (HAS_PCH_IBX(dev_priv)) {
7584                 has_ck505 = dev_priv->vbt.display_clock_mode;
7585                 can_ssc = has_ck505;
7586         } else {
7587                 has_ck505 = false;
7588                 can_ssc = true;
7589         }
7590
7591         /* Check if any DPLLs are using the SSC source */
7592         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7593                 u32 temp = I915_READ(PCH_DPLL(i));
7594
7595                 if (!(temp & DPLL_VCO_ENABLE))
7596                         continue;
7597
7598                 if ((temp & PLL_REF_INPUT_MASK) ==
7599                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7600                         using_ssc_source = true;
7601                         break;
7602                 }
7603         }
7604
7605         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7606                       has_panel, has_lvds, has_ck505, using_ssc_source);
7607
7608         /* Ironlake: try to setup display ref clock before DPLL
7609          * enabling. This is only under driver's control after
7610          * PCH B stepping, previous chipset stepping should be
7611          * ignoring this setting.
7612          */
7613         val = I915_READ(PCH_DREF_CONTROL);
7614
7615         /* As we must carefully and slowly disable/enable each source in turn,
7616          * compute the final state we want first and check if we need to
7617          * make any changes at all.
7618          */
7619         final = val;
7620         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7621         if (has_ck505)
7622                 final |= DREF_NONSPREAD_CK505_ENABLE;
7623         else
7624                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7625
7626         final &= ~DREF_SSC_SOURCE_MASK;
7627         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7628         final &= ~DREF_SSC1_ENABLE;
7629
7630         if (has_panel) {
7631                 final |= DREF_SSC_SOURCE_ENABLE;
7632
7633                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7634                         final |= DREF_SSC1_ENABLE;
7635
7636                 if (has_cpu_edp) {
7637                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7638                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7639                         else
7640                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7641                 } else
7642                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7643         } else if (using_ssc_source) {
7644                 final |= DREF_SSC_SOURCE_ENABLE;
7645                 final |= DREF_SSC1_ENABLE;
7646         }
7647
7648         if (final == val)
7649                 return;
7650
7651         /* Always enable nonspread source */
7652         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7653
7654         if (has_ck505)
7655                 val |= DREF_NONSPREAD_CK505_ENABLE;
7656         else
7657                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7658
7659         if (has_panel) {
7660                 val &= ~DREF_SSC_SOURCE_MASK;
7661                 val |= DREF_SSC_SOURCE_ENABLE;
7662
7663                 /* SSC must be turned on before enabling the CPU output  */
7664                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7665                         DRM_DEBUG_KMS("Using SSC on panel\n");
7666                         val |= DREF_SSC1_ENABLE;
7667                 } else
7668                         val &= ~DREF_SSC1_ENABLE;
7669
7670                 /* Get SSC going before enabling the outputs */
7671                 I915_WRITE(PCH_DREF_CONTROL, val);
7672                 POSTING_READ(PCH_DREF_CONTROL);
7673                 udelay(200);
7674
7675                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7676
7677                 /* Enable CPU source on CPU attached eDP */
7678                 if (has_cpu_edp) {
7679                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7680                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7681                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7682                         } else
7683                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7684                 } else
7685                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7686
7687                 I915_WRITE(PCH_DREF_CONTROL, val);
7688                 POSTING_READ(PCH_DREF_CONTROL);
7689                 udelay(200);
7690         } else {
7691                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7692
7693                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7694
7695                 /* Turn off CPU output */
7696                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7697
7698                 I915_WRITE(PCH_DREF_CONTROL, val);
7699                 POSTING_READ(PCH_DREF_CONTROL);
7700                 udelay(200);
7701
7702                 if (!using_ssc_source) {
7703                         DRM_DEBUG_KMS("Disabling SSC source\n");
7704
7705                         /* Turn off the SSC source */
7706                         val &= ~DREF_SSC_SOURCE_MASK;
7707                         val |= DREF_SSC_SOURCE_DISABLE;
7708
7709                         /* Turn off SSC1 */
7710                         val &= ~DREF_SSC1_ENABLE;
7711
7712                         I915_WRITE(PCH_DREF_CONTROL, val);
7713                         POSTING_READ(PCH_DREF_CONTROL);
7714                         udelay(200);
7715                 }
7716         }
7717
7718         BUG_ON(val != final);
7719 }
7720
7721 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7722 {
7723         uint32_t tmp;
7724
7725         tmp = I915_READ(SOUTH_CHICKEN2);
7726         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7727         I915_WRITE(SOUTH_CHICKEN2, tmp);
7728
7729         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7730                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7731                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7732
7733         tmp = I915_READ(SOUTH_CHICKEN2);
7734         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7735         I915_WRITE(SOUTH_CHICKEN2, tmp);
7736
7737         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7738                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7739                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7740 }
7741
7742 /* WaMPhyProgramming:hsw */
7743 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7744 {
7745         uint32_t tmp;
7746
7747         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7748         tmp &= ~(0xFF << 24);
7749         tmp |= (0x12 << 24);
7750         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7751
7752         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7753         tmp |= (1 << 11);
7754         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7755
7756         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7757         tmp |= (1 << 11);
7758         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7759
7760         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7761         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7762         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7763
7764         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7765         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7766         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7767
7768         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7769         tmp &= ~(7 << 13);
7770         tmp |= (5 << 13);
7771         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7772
7773         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7774         tmp &= ~(7 << 13);
7775         tmp |= (5 << 13);
7776         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7777
7778         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7779         tmp &= ~0xFF;
7780         tmp |= 0x1C;
7781         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7782
7783         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7784         tmp &= ~0xFF;
7785         tmp |= 0x1C;
7786         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7787
7788         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7789         tmp &= ~(0xFF << 16);
7790         tmp |= (0x1C << 16);
7791         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7792
7793         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7794         tmp &= ~(0xFF << 16);
7795         tmp |= (0x1C << 16);
7796         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7797
7798         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7799         tmp |= (1 << 27);
7800         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7801
7802         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7803         tmp |= (1 << 27);
7804         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7805
7806         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7807         tmp &= ~(0xF << 28);
7808         tmp |= (4 << 28);
7809         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7810
7811         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7812         tmp &= ~(0xF << 28);
7813         tmp |= (4 << 28);
7814         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7815 }
7816
7817 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7818  * Programming" based on the parameters passed:
7819  * - Sequence to enable CLKOUT_DP
7820  * - Sequence to enable CLKOUT_DP without spread
7821  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7822  */
7823 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7824                                  bool with_spread, bool with_fdi)
7825 {
7826         uint32_t reg, tmp;
7827
7828         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7829                 with_spread = true;
7830         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7831             with_fdi, "LP PCH doesn't have FDI\n"))
7832                 with_fdi = false;
7833
7834         mutex_lock(&dev_priv->sb_lock);
7835
7836         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7837         tmp &= ~SBI_SSCCTL_DISABLE;
7838         tmp |= SBI_SSCCTL_PATHALT;
7839         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7840
7841         udelay(24);
7842
7843         if (with_spread) {
7844                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7845                 tmp &= ~SBI_SSCCTL_PATHALT;
7846                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7847
7848                 if (with_fdi) {
7849                         lpt_reset_fdi_mphy(dev_priv);
7850                         lpt_program_fdi_mphy(dev_priv);
7851                 }
7852         }
7853
7854         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7855         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7856         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7857         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7858
7859         mutex_unlock(&dev_priv->sb_lock);
7860 }
7861
7862 /* Sequence to disable CLKOUT_DP */
7863 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7864 {
7865         uint32_t reg, tmp;
7866
7867         mutex_lock(&dev_priv->sb_lock);
7868
7869         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7870         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7871         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7872         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7873
7874         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7875         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7876                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7877                         tmp |= SBI_SSCCTL_PATHALT;
7878                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7879                         udelay(32);
7880                 }
7881                 tmp |= SBI_SSCCTL_DISABLE;
7882                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7883         }
7884
7885         mutex_unlock(&dev_priv->sb_lock);
7886 }
7887
7888 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7889
7890 static const uint16_t sscdivintphase[] = {
7891         [BEND_IDX( 50)] = 0x3B23,
7892         [BEND_IDX( 45)] = 0x3B23,
7893         [BEND_IDX( 40)] = 0x3C23,
7894         [BEND_IDX( 35)] = 0x3C23,
7895         [BEND_IDX( 30)] = 0x3D23,
7896         [BEND_IDX( 25)] = 0x3D23,
7897         [BEND_IDX( 20)] = 0x3E23,
7898         [BEND_IDX( 15)] = 0x3E23,
7899         [BEND_IDX( 10)] = 0x3F23,
7900         [BEND_IDX(  5)] = 0x3F23,
7901         [BEND_IDX(  0)] = 0x0025,
7902         [BEND_IDX( -5)] = 0x0025,
7903         [BEND_IDX(-10)] = 0x0125,
7904         [BEND_IDX(-15)] = 0x0125,
7905         [BEND_IDX(-20)] = 0x0225,
7906         [BEND_IDX(-25)] = 0x0225,
7907         [BEND_IDX(-30)] = 0x0325,
7908         [BEND_IDX(-35)] = 0x0325,
7909         [BEND_IDX(-40)] = 0x0425,
7910         [BEND_IDX(-45)] = 0x0425,
7911         [BEND_IDX(-50)] = 0x0525,
7912 };
7913
7914 /*
7915  * Bend CLKOUT_DP
7916  * steps -50 to 50 inclusive, in steps of 5
7917  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7918  * change in clock period = -(steps / 10) * 5.787 ps
7919  */
7920 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7921 {
7922         uint32_t tmp;
7923         int idx = BEND_IDX(steps);
7924
7925         if (WARN_ON(steps % 5 != 0))
7926                 return;
7927
7928         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7929                 return;
7930
7931         mutex_lock(&dev_priv->sb_lock);
7932
7933         if (steps % 10 != 0)
7934                 tmp = 0xAAAAAAAB;
7935         else
7936                 tmp = 0x00000000;
7937         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7938
7939         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7940         tmp &= 0xffff0000;
7941         tmp |= sscdivintphase[idx];
7942         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7943
7944         mutex_unlock(&dev_priv->sb_lock);
7945 }
7946
7947 #undef BEND_IDX
7948
7949 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7950 {
7951         struct intel_encoder *encoder;
7952         bool has_vga = false;
7953
7954         for_each_intel_encoder(&dev_priv->drm, encoder) {
7955                 switch (encoder->type) {
7956                 case INTEL_OUTPUT_ANALOG:
7957                         has_vga = true;
7958                         break;
7959                 default:
7960                         break;
7961                 }
7962         }
7963
7964         if (has_vga) {
7965                 lpt_bend_clkout_dp(dev_priv, 0);
7966                 lpt_enable_clkout_dp(dev_priv, true, true);
7967         } else {
7968                 lpt_disable_clkout_dp(dev_priv);
7969         }
7970 }
7971
7972 /*
7973  * Initialize reference clocks when the driver loads
7974  */
7975 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7976 {
7977         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7978                 ironlake_init_pch_refclk(dev_priv);
7979         else if (HAS_PCH_LPT(dev_priv))
7980                 lpt_init_pch_refclk(dev_priv);
7981 }
7982
7983 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7984 {
7985         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7987         int pipe = intel_crtc->pipe;
7988         uint32_t val;
7989
7990         val = 0;
7991
7992         switch (intel_crtc->config->pipe_bpp) {
7993         case 18:
7994                 val |= PIPECONF_6BPC;
7995                 break;
7996         case 24:
7997                 val |= PIPECONF_8BPC;
7998                 break;
7999         case 30:
8000                 val |= PIPECONF_10BPC;
8001                 break;
8002         case 36:
8003                 val |= PIPECONF_12BPC;
8004                 break;
8005         default:
8006                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8007                 BUG();
8008         }
8009
8010         if (intel_crtc->config->dither)
8011                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8012
8013         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8014                 val |= PIPECONF_INTERLACED_ILK;
8015         else
8016                 val |= PIPECONF_PROGRESSIVE;
8017
8018         if (intel_crtc->config->limited_color_range)
8019                 val |= PIPECONF_COLOR_RANGE_SELECT;
8020
8021         I915_WRITE(PIPECONF(pipe), val);
8022         POSTING_READ(PIPECONF(pipe));
8023 }
8024
8025 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8026 {
8027         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8029         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8030         u32 val = 0;
8031
8032         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8033                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8034
8035         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8036                 val |= PIPECONF_INTERLACED_ILK;
8037         else
8038                 val |= PIPECONF_PROGRESSIVE;
8039
8040         I915_WRITE(PIPECONF(cpu_transcoder), val);
8041         POSTING_READ(PIPECONF(cpu_transcoder));
8042 }
8043
8044 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8045 {
8046         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8048
8049         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8050                 u32 val = 0;
8051
8052                 switch (intel_crtc->config->pipe_bpp) {
8053                 case 18:
8054                         val |= PIPEMISC_DITHER_6_BPC;
8055                         break;
8056                 case 24:
8057                         val |= PIPEMISC_DITHER_8_BPC;
8058                         break;
8059                 case 30:
8060                         val |= PIPEMISC_DITHER_10_BPC;
8061                         break;
8062                 case 36:
8063                         val |= PIPEMISC_DITHER_12_BPC;
8064                         break;
8065                 default:
8066                         /* Case prevented by pipe_config_set_bpp. */
8067                         BUG();
8068                 }
8069
8070                 if (intel_crtc->config->dither)
8071                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8072
8073                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8074         }
8075 }
8076
8077 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8078 {
8079         /*
8080          * Account for spread spectrum to avoid
8081          * oversubscribing the link. Max center spread
8082          * is 2.5%; use 5% for safety's sake.
8083          */
8084         u32 bps = target_clock * bpp * 21 / 20;
8085         return DIV_ROUND_UP(bps, link_bw * 8);
8086 }
8087
8088 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8089 {
8090         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8091 }
8092
8093 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8094                                   struct intel_crtc_state *crtc_state,
8095                                   struct dpll *reduced_clock)
8096 {
8097         struct drm_crtc *crtc = &intel_crtc->base;
8098         struct drm_device *dev = crtc->dev;
8099         struct drm_i915_private *dev_priv = to_i915(dev);
8100         u32 dpll, fp, fp2;
8101         int factor;
8102
8103         /* Enable autotuning of the PLL clock (if permissible) */
8104         factor = 21;
8105         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8106                 if ((intel_panel_use_ssc(dev_priv) &&
8107                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8108                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8109                         factor = 25;
8110         } else if (crtc_state->sdvo_tv_clock)
8111                 factor = 20;
8112
8113         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8114
8115         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8116                 fp |= FP_CB_TUNE;
8117
8118         if (reduced_clock) {
8119                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8120
8121                 if (reduced_clock->m < factor * reduced_clock->n)
8122                         fp2 |= FP_CB_TUNE;
8123         } else {
8124                 fp2 = fp;
8125         }
8126
8127         dpll = 0;
8128
8129         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8130                 dpll |= DPLLB_MODE_LVDS;
8131         else
8132                 dpll |= DPLLB_MODE_DAC_SERIAL;
8133
8134         dpll |= (crtc_state->pixel_multiplier - 1)
8135                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8136
8137         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8138             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8139                 dpll |= DPLL_SDVO_HIGH_SPEED;
8140
8141         if (intel_crtc_has_dp_encoder(crtc_state))
8142                 dpll |= DPLL_SDVO_HIGH_SPEED;
8143
8144         /*
8145          * The high speed IO clock is only really required for
8146          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8147          * possible to share the DPLL between CRT and HDMI. Enabling
8148          * the clock needlessly does no real harm, except use up a
8149          * bit of power potentially.
8150          *
8151          * We'll limit this to IVB with 3 pipes, since it has only two
8152          * DPLLs and so DPLL sharing is the only way to get three pipes
8153          * driving PCH ports at the same time. On SNB we could do this,
8154          * and potentially avoid enabling the second DPLL, but it's not
8155          * clear if it''s a win or loss power wise. No point in doing
8156          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8157          */
8158         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8159             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8160                 dpll |= DPLL_SDVO_HIGH_SPEED;
8161
8162         /* compute bitmask from p1 value */
8163         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8164         /* also FPA1 */
8165         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8166
8167         switch (crtc_state->dpll.p2) {
8168         case 5:
8169                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8170                 break;
8171         case 7:
8172                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8173                 break;
8174         case 10:
8175                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8176                 break;
8177         case 14:
8178                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8179                 break;
8180         }
8181
8182         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8183             intel_panel_use_ssc(dev_priv))
8184                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8185         else
8186                 dpll |= PLL_REF_INPUT_DREFCLK;
8187
8188         dpll |= DPLL_VCO_ENABLE;
8189
8190         crtc_state->dpll_hw_state.dpll = dpll;
8191         crtc_state->dpll_hw_state.fp0 = fp;
8192         crtc_state->dpll_hw_state.fp1 = fp2;
8193 }
8194
8195 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8196                                        struct intel_crtc_state *crtc_state)
8197 {
8198         struct drm_device *dev = crtc->base.dev;
8199         struct drm_i915_private *dev_priv = to_i915(dev);
8200         struct dpll reduced_clock;
8201         bool has_reduced_clock = false;
8202         struct intel_shared_dpll *pll;
8203         const struct intel_limit *limit;
8204         int refclk = 120000;
8205
8206         memset(&crtc_state->dpll_hw_state, 0,
8207                sizeof(crtc_state->dpll_hw_state));
8208
8209         crtc->lowfreq_avail = false;
8210
8211         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8212         if (!crtc_state->has_pch_encoder)
8213                 return 0;
8214
8215         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8216                 if (intel_panel_use_ssc(dev_priv)) {
8217                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8218                                       dev_priv->vbt.lvds_ssc_freq);
8219                         refclk = dev_priv->vbt.lvds_ssc_freq;
8220                 }
8221
8222                 if (intel_is_dual_link_lvds(dev)) {
8223                         if (refclk == 100000)
8224                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8225                         else
8226                                 limit = &intel_limits_ironlake_dual_lvds;
8227                 } else {
8228                         if (refclk == 100000)
8229                                 limit = &intel_limits_ironlake_single_lvds_100m;
8230                         else
8231                                 limit = &intel_limits_ironlake_single_lvds;
8232                 }
8233         } else {
8234                 limit = &intel_limits_ironlake_dac;
8235         }
8236
8237         if (!crtc_state->clock_set &&
8238             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8239                                 refclk, NULL, &crtc_state->dpll)) {
8240                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8241                 return -EINVAL;
8242         }
8243
8244         ironlake_compute_dpll(crtc, crtc_state,
8245                               has_reduced_clock ? &reduced_clock : NULL);
8246
8247         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8248         if (pll == NULL) {
8249                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8250                                  pipe_name(crtc->pipe));
8251                 return -EINVAL;
8252         }
8253
8254         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8255             has_reduced_clock)
8256                 crtc->lowfreq_avail = true;
8257
8258         return 0;
8259 }
8260
8261 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8262                                          struct intel_link_m_n *m_n)
8263 {
8264         struct drm_device *dev = crtc->base.dev;
8265         struct drm_i915_private *dev_priv = to_i915(dev);
8266         enum pipe pipe = crtc->pipe;
8267
8268         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8269         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8270         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8271                 & ~TU_SIZE_MASK;
8272         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8273         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8274                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8275 }
8276
8277 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8278                                          enum transcoder transcoder,
8279                                          struct intel_link_m_n *m_n,
8280                                          struct intel_link_m_n *m2_n2)
8281 {
8282         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8283         enum pipe pipe = crtc->pipe;
8284
8285         if (INTEL_GEN(dev_priv) >= 5) {
8286                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8287                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8288                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8289                         & ~TU_SIZE_MASK;
8290                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8291                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8292                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8293                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8294                  * gen < 8) and if DRRS is supported (to make sure the
8295                  * registers are not unnecessarily read).
8296                  */
8297                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8298                         crtc->config->has_drrs) {
8299                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8300                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8301                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8302                                         & ~TU_SIZE_MASK;
8303                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8304                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8305                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8306                 }
8307         } else {
8308                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8309                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8310                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8311                         & ~TU_SIZE_MASK;
8312                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8313                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8314                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8315         }
8316 }
8317
8318 void intel_dp_get_m_n(struct intel_crtc *crtc,
8319                       struct intel_crtc_state *pipe_config)
8320 {
8321         if (pipe_config->has_pch_encoder)
8322                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8323         else
8324                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8325                                              &pipe_config->dp_m_n,
8326                                              &pipe_config->dp_m2_n2);
8327 }
8328
8329 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8330                                         struct intel_crtc_state *pipe_config)
8331 {
8332         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8333                                      &pipe_config->fdi_m_n, NULL);
8334 }
8335
8336 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8337                                     struct intel_crtc_state *pipe_config)
8338 {
8339         struct drm_device *dev = crtc->base.dev;
8340         struct drm_i915_private *dev_priv = to_i915(dev);
8341         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8342         uint32_t ps_ctrl = 0;
8343         int id = -1;
8344         int i;
8345
8346         /* find scaler attached to this pipe */
8347         for (i = 0; i < crtc->num_scalers; i++) {
8348                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8349                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8350                         id = i;
8351                         pipe_config->pch_pfit.enabled = true;
8352                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8353                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8354                         break;
8355                 }
8356         }
8357
8358         scaler_state->scaler_id = id;
8359         if (id >= 0) {
8360                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8361         } else {
8362                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8363         }
8364 }
8365
8366 static void
8367 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8368                                  struct intel_initial_plane_config *plane_config)
8369 {
8370         struct drm_device *dev = crtc->base.dev;
8371         struct drm_i915_private *dev_priv = to_i915(dev);
8372         u32 val, base, offset, stride_mult, tiling;
8373         int pipe = crtc->pipe;
8374         int fourcc, pixel_format;
8375         unsigned int aligned_height;
8376         struct drm_framebuffer *fb;
8377         struct intel_framebuffer *intel_fb;
8378
8379         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8380         if (!intel_fb) {
8381                 DRM_DEBUG_KMS("failed to alloc fb\n");
8382                 return;
8383         }
8384
8385         fb = &intel_fb->base;
8386
8387         fb->dev = dev;
8388
8389         val = I915_READ(PLANE_CTL(pipe, 0));
8390         if (!(val & PLANE_CTL_ENABLE))
8391                 goto error;
8392
8393         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8394         fourcc = skl_format_to_fourcc(pixel_format,
8395                                       val & PLANE_CTL_ORDER_RGBX,
8396                                       val & PLANE_CTL_ALPHA_MASK);
8397         fb->format = drm_format_info(fourcc);
8398
8399         tiling = val & PLANE_CTL_TILED_MASK;
8400         switch (tiling) {
8401         case PLANE_CTL_TILED_LINEAR:
8402                 fb->modifier = DRM_FORMAT_MOD_NONE;
8403                 break;
8404         case PLANE_CTL_TILED_X:
8405                 plane_config->tiling = I915_TILING_X;
8406                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8407                 break;
8408         case PLANE_CTL_TILED_Y:
8409                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8410                 break;
8411         case PLANE_CTL_TILED_YF:
8412                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8413                 break;
8414         default:
8415                 MISSING_CASE(tiling);
8416                 goto error;
8417         }
8418
8419         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8420         plane_config->base = base;
8421
8422         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8423
8424         val = I915_READ(PLANE_SIZE(pipe, 0));
8425         fb->height = ((val >> 16) & 0xfff) + 1;
8426         fb->width = ((val >> 0) & 0x1fff) + 1;
8427
8428         val = I915_READ(PLANE_STRIDE(pipe, 0));
8429         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
8430                                                 fb->format->format);
8431         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8432
8433         aligned_height = intel_fb_align_height(dev_priv,
8434                                                fb->height,
8435                                                fb->format->format,
8436                                                fb->modifier);
8437
8438         plane_config->size = fb->pitches[0] * aligned_height;
8439
8440         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8441                       pipe_name(pipe), fb->width, fb->height,
8442                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8443                       plane_config->size);
8444
8445         plane_config->fb = intel_fb;
8446         return;
8447
8448 error:
8449         kfree(intel_fb);
8450 }
8451
8452 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8453                                      struct intel_crtc_state *pipe_config)
8454 {
8455         struct drm_device *dev = crtc->base.dev;
8456         struct drm_i915_private *dev_priv = to_i915(dev);
8457         uint32_t tmp;
8458
8459         tmp = I915_READ(PF_CTL(crtc->pipe));
8460
8461         if (tmp & PF_ENABLE) {
8462                 pipe_config->pch_pfit.enabled = true;
8463                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8464                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8465
8466                 /* We currently do not free assignements of panel fitters on
8467                  * ivb/hsw (since we don't use the higher upscaling modes which
8468                  * differentiates them) so just WARN about this case for now. */
8469                 if (IS_GEN7(dev_priv)) {
8470                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8471                                 PF_PIPE_SEL_IVB(crtc->pipe));
8472                 }
8473         }
8474 }
8475
8476 static void
8477 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8478                                   struct intel_initial_plane_config *plane_config)
8479 {
8480         struct drm_device *dev = crtc->base.dev;
8481         struct drm_i915_private *dev_priv = to_i915(dev);
8482         u32 val, base, offset;
8483         int pipe = crtc->pipe;
8484         int fourcc, pixel_format;
8485         unsigned int aligned_height;
8486         struct drm_framebuffer *fb;
8487         struct intel_framebuffer *intel_fb;
8488
8489         val = I915_READ(DSPCNTR(pipe));
8490         if (!(val & DISPLAY_PLANE_ENABLE))
8491                 return;
8492
8493         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8494         if (!intel_fb) {
8495                 DRM_DEBUG_KMS("failed to alloc fb\n");
8496                 return;
8497         }
8498
8499         fb = &intel_fb->base;
8500
8501         fb->dev = dev;
8502
8503         if (INTEL_GEN(dev_priv) >= 4) {
8504                 if (val & DISPPLANE_TILED) {
8505                         plane_config->tiling = I915_TILING_X;
8506                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8507                 }
8508         }
8509
8510         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8511         fourcc = i9xx_format_to_fourcc(pixel_format);
8512         fb->format = drm_format_info(fourcc);
8513
8514         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8515         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8516                 offset = I915_READ(DSPOFFSET(pipe));
8517         } else {
8518                 if (plane_config->tiling)
8519                         offset = I915_READ(DSPTILEOFF(pipe));
8520                 else
8521                         offset = I915_READ(DSPLINOFF(pipe));
8522         }
8523         plane_config->base = base;
8524
8525         val = I915_READ(PIPESRC(pipe));
8526         fb->width = ((val >> 16) & 0xfff) + 1;
8527         fb->height = ((val >> 0) & 0xfff) + 1;
8528
8529         val = I915_READ(DSPSTRIDE(pipe));
8530         fb->pitches[0] = val & 0xffffffc0;
8531
8532         aligned_height = intel_fb_align_height(dev_priv,
8533                                                fb->height,
8534                                                fb->format->format,
8535                                                fb->modifier);
8536
8537         plane_config->size = fb->pitches[0] * aligned_height;
8538
8539         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8540                       pipe_name(pipe), fb->width, fb->height,
8541                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8542                       plane_config->size);
8543
8544         plane_config->fb = intel_fb;
8545 }
8546
8547 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8548                                      struct intel_crtc_state *pipe_config)
8549 {
8550         struct drm_device *dev = crtc->base.dev;
8551         struct drm_i915_private *dev_priv = to_i915(dev);
8552         enum intel_display_power_domain power_domain;
8553         uint32_t tmp;
8554         bool ret;
8555
8556         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8557         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8558                 return false;
8559
8560         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8561         pipe_config->shared_dpll = NULL;
8562
8563         ret = false;
8564         tmp = I915_READ(PIPECONF(crtc->pipe));
8565         if (!(tmp & PIPECONF_ENABLE))
8566                 goto out;
8567
8568         switch (tmp & PIPECONF_BPC_MASK) {
8569         case PIPECONF_6BPC:
8570                 pipe_config->pipe_bpp = 18;
8571                 break;
8572         case PIPECONF_8BPC:
8573                 pipe_config->pipe_bpp = 24;
8574                 break;
8575         case PIPECONF_10BPC:
8576                 pipe_config->pipe_bpp = 30;
8577                 break;
8578         case PIPECONF_12BPC:
8579                 pipe_config->pipe_bpp = 36;
8580                 break;
8581         default:
8582                 break;
8583         }
8584
8585         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8586                 pipe_config->limited_color_range = true;
8587
8588         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8589                 struct intel_shared_dpll *pll;
8590                 enum intel_dpll_id pll_id;
8591
8592                 pipe_config->has_pch_encoder = true;
8593
8594                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8595                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8596                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8597
8598                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8599
8600                 if (HAS_PCH_IBX(dev_priv)) {
8601                         /*
8602                          * The pipe->pch transcoder and pch transcoder->pll
8603                          * mapping is fixed.
8604                          */
8605                         pll_id = (enum intel_dpll_id) crtc->pipe;
8606                 } else {
8607                         tmp = I915_READ(PCH_DPLL_SEL);
8608                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8609                                 pll_id = DPLL_ID_PCH_PLL_B;
8610                         else
8611                                 pll_id= DPLL_ID_PCH_PLL_A;
8612                 }
8613
8614                 pipe_config->shared_dpll =
8615                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8616                 pll = pipe_config->shared_dpll;
8617
8618                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8619                                                  &pipe_config->dpll_hw_state));
8620
8621                 tmp = pipe_config->dpll_hw_state.dpll;
8622                 pipe_config->pixel_multiplier =
8623                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8624                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8625
8626                 ironlake_pch_clock_get(crtc, pipe_config);
8627         } else {
8628                 pipe_config->pixel_multiplier = 1;
8629         }
8630
8631         intel_get_pipe_timings(crtc, pipe_config);
8632         intel_get_pipe_src_size(crtc, pipe_config);
8633
8634         ironlake_get_pfit_config(crtc, pipe_config);
8635
8636         ret = true;
8637
8638 out:
8639         intel_display_power_put(dev_priv, power_domain);
8640
8641         return ret;
8642 }
8643
8644 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8645 {
8646         struct drm_device *dev = &dev_priv->drm;
8647         struct intel_crtc *crtc;
8648
8649         for_each_intel_crtc(dev, crtc)
8650                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8651                      pipe_name(crtc->pipe));
8652
8653         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8654         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8655         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8656         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8657         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8658         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8659              "CPU PWM1 enabled\n");
8660         if (IS_HASWELL(dev_priv))
8661                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8662                      "CPU PWM2 enabled\n");
8663         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8664              "PCH PWM1 enabled\n");
8665         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8666              "Utility pin enabled\n");
8667         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8668
8669         /*
8670          * In theory we can still leave IRQs enabled, as long as only the HPD
8671          * interrupts remain enabled. We used to check for that, but since it's
8672          * gen-specific and since we only disable LCPLL after we fully disable
8673          * the interrupts, the check below should be enough.
8674          */
8675         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8676 }
8677
8678 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8679 {
8680         if (IS_HASWELL(dev_priv))
8681                 return I915_READ(D_COMP_HSW);
8682         else
8683                 return I915_READ(D_COMP_BDW);
8684 }
8685
8686 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8687 {
8688         if (IS_HASWELL(dev_priv)) {
8689                 mutex_lock(&dev_priv->rps.hw_lock);
8690                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8691                                             val))
8692                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8693                 mutex_unlock(&dev_priv->rps.hw_lock);
8694         } else {
8695                 I915_WRITE(D_COMP_BDW, val);
8696                 POSTING_READ(D_COMP_BDW);
8697         }
8698 }
8699
8700 /*
8701  * This function implements pieces of two sequences from BSpec:
8702  * - Sequence for display software to disable LCPLL
8703  * - Sequence for display software to allow package C8+
8704  * The steps implemented here are just the steps that actually touch the LCPLL
8705  * register. Callers should take care of disabling all the display engine
8706  * functions, doing the mode unset, fixing interrupts, etc.
8707  */
8708 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8709                               bool switch_to_fclk, bool allow_power_down)
8710 {
8711         uint32_t val;
8712
8713         assert_can_disable_lcpll(dev_priv);
8714
8715         val = I915_READ(LCPLL_CTL);
8716
8717         if (switch_to_fclk) {
8718                 val |= LCPLL_CD_SOURCE_FCLK;
8719                 I915_WRITE(LCPLL_CTL, val);
8720
8721                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8722                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8723                         DRM_ERROR("Switching to FCLK failed\n");
8724
8725                 val = I915_READ(LCPLL_CTL);
8726         }
8727
8728         val |= LCPLL_PLL_DISABLE;
8729         I915_WRITE(LCPLL_CTL, val);
8730         POSTING_READ(LCPLL_CTL);
8731
8732         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8733                 DRM_ERROR("LCPLL still locked\n");
8734
8735         val = hsw_read_dcomp(dev_priv);
8736         val |= D_COMP_COMP_DISABLE;
8737         hsw_write_dcomp(dev_priv, val);
8738         ndelay(100);
8739
8740         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8741                      1))
8742                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8743
8744         if (allow_power_down) {
8745                 val = I915_READ(LCPLL_CTL);
8746                 val |= LCPLL_POWER_DOWN_ALLOW;
8747                 I915_WRITE(LCPLL_CTL, val);
8748                 POSTING_READ(LCPLL_CTL);
8749         }
8750 }
8751
8752 /*
8753  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8754  * source.
8755  */
8756 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8757 {
8758         uint32_t val;
8759
8760         val = I915_READ(LCPLL_CTL);
8761
8762         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8763                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8764                 return;
8765
8766         /*
8767          * Make sure we're not on PC8 state before disabling PC8, otherwise
8768          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8769          */
8770         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8771
8772         if (val & LCPLL_POWER_DOWN_ALLOW) {
8773                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8774                 I915_WRITE(LCPLL_CTL, val);
8775                 POSTING_READ(LCPLL_CTL);
8776         }
8777
8778         val = hsw_read_dcomp(dev_priv);
8779         val |= D_COMP_COMP_FORCE;
8780         val &= ~D_COMP_COMP_DISABLE;
8781         hsw_write_dcomp(dev_priv, val);
8782
8783         val = I915_READ(LCPLL_CTL);
8784         val &= ~LCPLL_PLL_DISABLE;
8785         I915_WRITE(LCPLL_CTL, val);
8786
8787         if (intel_wait_for_register(dev_priv,
8788                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8789                                     5))
8790                 DRM_ERROR("LCPLL not locked yet\n");
8791
8792         if (val & LCPLL_CD_SOURCE_FCLK) {
8793                 val = I915_READ(LCPLL_CTL);
8794                 val &= ~LCPLL_CD_SOURCE_FCLK;
8795                 I915_WRITE(LCPLL_CTL, val);
8796
8797                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8798                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8799                         DRM_ERROR("Switching back to LCPLL failed\n");
8800         }
8801
8802         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8803         intel_update_cdclk(dev_priv);
8804 }
8805
8806 /*
8807  * Package states C8 and deeper are really deep PC states that can only be
8808  * reached when all the devices on the system allow it, so even if the graphics
8809  * device allows PC8+, it doesn't mean the system will actually get to these
8810  * states. Our driver only allows PC8+ when going into runtime PM.
8811  *
8812  * The requirements for PC8+ are that all the outputs are disabled, the power
8813  * well is disabled and most interrupts are disabled, and these are also
8814  * requirements for runtime PM. When these conditions are met, we manually do
8815  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8816  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8817  * hang the machine.
8818  *
8819  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8820  * the state of some registers, so when we come back from PC8+ we need to
8821  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8822  * need to take care of the registers kept by RC6. Notice that this happens even
8823  * if we don't put the device in PCI D3 state (which is what currently happens
8824  * because of the runtime PM support).
8825  *
8826  * For more, read "Display Sequences for Package C8" on the hardware
8827  * documentation.
8828  */
8829 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8830 {
8831         uint32_t val;
8832
8833         DRM_DEBUG_KMS("Enabling package C8+\n");
8834
8835         if (HAS_PCH_LPT_LP(dev_priv)) {
8836                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8837                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8838                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8839         }
8840
8841         lpt_disable_clkout_dp(dev_priv);
8842         hsw_disable_lcpll(dev_priv, true, true);
8843 }
8844
8845 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8846 {
8847         uint32_t val;
8848
8849         DRM_DEBUG_KMS("Disabling package C8+\n");
8850
8851         hsw_restore_lcpll(dev_priv);
8852         lpt_init_pch_refclk(dev_priv);
8853
8854         if (HAS_PCH_LPT_LP(dev_priv)) {
8855                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8856                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8857                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8858         }
8859 }
8860
8861 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8862                                       struct intel_crtc_state *crtc_state)
8863 {
8864         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8865                 if (!intel_ddi_pll_select(crtc, crtc_state))
8866                         return -EINVAL;
8867         }
8868
8869         crtc->lowfreq_avail = false;
8870
8871         return 0;
8872 }
8873
8874 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8875                                 enum port port,
8876                                 struct intel_crtc_state *pipe_config)
8877 {
8878         enum intel_dpll_id id;
8879
8880         switch (port) {
8881         case PORT_A:
8882                 id = DPLL_ID_SKL_DPLL0;
8883                 break;
8884         case PORT_B:
8885                 id = DPLL_ID_SKL_DPLL1;
8886                 break;
8887         case PORT_C:
8888                 id = DPLL_ID_SKL_DPLL2;
8889                 break;
8890         default:
8891                 DRM_ERROR("Incorrect port type\n");
8892                 return;
8893         }
8894
8895         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8896 }
8897
8898 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8899                                 enum port port,
8900                                 struct intel_crtc_state *pipe_config)
8901 {
8902         enum intel_dpll_id id;
8903         u32 temp;
8904
8905         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8906         id = temp >> (port * 3 + 1);
8907
8908         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8909                 return;
8910
8911         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8912 }
8913
8914 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8915                                 enum port port,
8916                                 struct intel_crtc_state *pipe_config)
8917 {
8918         enum intel_dpll_id id;
8919         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8920
8921         switch (ddi_pll_sel) {
8922         case PORT_CLK_SEL_WRPLL1:
8923                 id = DPLL_ID_WRPLL1;
8924                 break;
8925         case PORT_CLK_SEL_WRPLL2:
8926                 id = DPLL_ID_WRPLL2;
8927                 break;
8928         case PORT_CLK_SEL_SPLL:
8929                 id = DPLL_ID_SPLL;
8930                 break;
8931         case PORT_CLK_SEL_LCPLL_810:
8932                 id = DPLL_ID_LCPLL_810;
8933                 break;
8934         case PORT_CLK_SEL_LCPLL_1350:
8935                 id = DPLL_ID_LCPLL_1350;
8936                 break;
8937         case PORT_CLK_SEL_LCPLL_2700:
8938                 id = DPLL_ID_LCPLL_2700;
8939                 break;
8940         default:
8941                 MISSING_CASE(ddi_pll_sel);
8942                 /* fall through */
8943         case PORT_CLK_SEL_NONE:
8944                 return;
8945         }
8946
8947         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8948 }
8949
8950 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8951                                      struct intel_crtc_state *pipe_config,
8952                                      u64 *power_domain_mask)
8953 {
8954         struct drm_device *dev = crtc->base.dev;
8955         struct drm_i915_private *dev_priv = to_i915(dev);
8956         enum intel_display_power_domain power_domain;
8957         u32 tmp;
8958
8959         /*
8960          * The pipe->transcoder mapping is fixed with the exception of the eDP
8961          * transcoder handled below.
8962          */
8963         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8964
8965         /*
8966          * XXX: Do intel_display_power_get_if_enabled before reading this (for
8967          * consistency and less surprising code; it's in always on power).
8968          */
8969         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8970         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8971                 enum pipe trans_edp_pipe;
8972                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8973                 default:
8974                         WARN(1, "unknown pipe linked to edp transcoder\n");
8975                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8976                 case TRANS_DDI_EDP_INPUT_A_ON:
8977                         trans_edp_pipe = PIPE_A;
8978                         break;
8979                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8980                         trans_edp_pipe = PIPE_B;
8981                         break;
8982                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8983                         trans_edp_pipe = PIPE_C;
8984                         break;
8985                 }
8986
8987                 if (trans_edp_pipe == crtc->pipe)
8988                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8989         }
8990
8991         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8992         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8993                 return false;
8994         *power_domain_mask |= BIT_ULL(power_domain);
8995
8996         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8997
8998         return tmp & PIPECONF_ENABLE;
8999 }
9000
9001 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9002                                          struct intel_crtc_state *pipe_config,
9003                                          u64 *power_domain_mask)
9004 {
9005         struct drm_device *dev = crtc->base.dev;
9006         struct drm_i915_private *dev_priv = to_i915(dev);
9007         enum intel_display_power_domain power_domain;
9008         enum port port;
9009         enum transcoder cpu_transcoder;
9010         u32 tmp;
9011
9012         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9013                 if (port == PORT_A)
9014                         cpu_transcoder = TRANSCODER_DSI_A;
9015                 else
9016                         cpu_transcoder = TRANSCODER_DSI_C;
9017
9018                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9019                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9020                         continue;
9021                 *power_domain_mask |= BIT_ULL(power_domain);
9022
9023                 /*
9024                  * The PLL needs to be enabled with a valid divider
9025                  * configuration, otherwise accessing DSI registers will hang
9026                  * the machine. See BSpec North Display Engine
9027                  * registers/MIPI[BXT]. We can break out here early, since we
9028                  * need the same DSI PLL to be enabled for both DSI ports.
9029                  */
9030                 if (!intel_dsi_pll_is_enabled(dev_priv))
9031                         break;
9032
9033                 /* XXX: this works for video mode only */
9034                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9035                 if (!(tmp & DPI_ENABLE))
9036                         continue;
9037
9038                 tmp = I915_READ(MIPI_CTRL(port));
9039                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9040                         continue;
9041
9042                 pipe_config->cpu_transcoder = cpu_transcoder;
9043                 break;
9044         }
9045
9046         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9047 }
9048
9049 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9050                                        struct intel_crtc_state *pipe_config)
9051 {
9052         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9053         struct intel_shared_dpll *pll;
9054         enum port port;
9055         uint32_t tmp;
9056
9057         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9058
9059         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9060
9061         if (IS_GEN9_BC(dev_priv))
9062                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9063         else if (IS_GEN9_LP(dev_priv))
9064                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9065         else
9066                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9067
9068         pll = pipe_config->shared_dpll;
9069         if (pll) {
9070                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9071                                                  &pipe_config->dpll_hw_state));
9072         }
9073
9074         /*
9075          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9076          * DDI E. So just check whether this pipe is wired to DDI E and whether
9077          * the PCH transcoder is on.
9078          */
9079         if (INTEL_GEN(dev_priv) < 9 &&
9080             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9081                 pipe_config->has_pch_encoder = true;
9082
9083                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9084                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9085                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9086
9087                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9088         }
9089 }
9090
9091 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9092                                     struct intel_crtc_state *pipe_config)
9093 {
9094         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9095         enum intel_display_power_domain power_domain;
9096         u64 power_domain_mask;
9097         bool active;
9098
9099         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9100         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9101                 return false;
9102         power_domain_mask = BIT_ULL(power_domain);
9103
9104         pipe_config->shared_dpll = NULL;
9105
9106         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9107
9108         if (IS_GEN9_LP(dev_priv) &&
9109             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9110                 WARN_ON(active);
9111                 active = true;
9112         }
9113
9114         if (!active)
9115                 goto out;
9116
9117         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9118                 haswell_get_ddi_port_state(crtc, pipe_config);
9119                 intel_get_pipe_timings(crtc, pipe_config);
9120         }
9121
9122         intel_get_pipe_src_size(crtc, pipe_config);
9123
9124         pipe_config->gamma_mode =
9125                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9126
9127         if (INTEL_GEN(dev_priv) >= 9) {
9128                 intel_crtc_init_scalers(crtc, pipe_config);
9129
9130                 pipe_config->scaler_state.scaler_id = -1;
9131                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9132         }
9133
9134         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9135         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9136                 power_domain_mask |= BIT_ULL(power_domain);
9137                 if (INTEL_GEN(dev_priv) >= 9)
9138                         skylake_get_pfit_config(crtc, pipe_config);
9139                 else
9140                         ironlake_get_pfit_config(crtc, pipe_config);
9141         }
9142
9143         if (IS_HASWELL(dev_priv))
9144                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9145                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9146
9147         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9148             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9149                 pipe_config->pixel_multiplier =
9150                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9151         } else {
9152                 pipe_config->pixel_multiplier = 1;
9153         }
9154
9155 out:
9156         for_each_power_domain(power_domain, power_domain_mask)
9157                 intel_display_power_put(dev_priv, power_domain);
9158
9159         return active;
9160 }
9161
9162 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9163                                const struct intel_plane_state *plane_state)
9164 {
9165         struct drm_device *dev = crtc->dev;
9166         struct drm_i915_private *dev_priv = to_i915(dev);
9167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9168         uint32_t cntl = 0, size = 0;
9169
9170         if (plane_state && plane_state->base.visible) {
9171                 unsigned int width = plane_state->base.crtc_w;
9172                 unsigned int height = plane_state->base.crtc_h;
9173                 unsigned int stride = roundup_pow_of_two(width) * 4;
9174
9175                 switch (stride) {
9176                 default:
9177                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9178                                   width, stride);
9179                         stride = 256;
9180                         /* fallthrough */
9181                 case 256:
9182                 case 512:
9183                 case 1024:
9184                 case 2048:
9185                         break;
9186                 }
9187
9188                 cntl |= CURSOR_ENABLE |
9189                         CURSOR_GAMMA_ENABLE |
9190                         CURSOR_FORMAT_ARGB |
9191                         CURSOR_STRIDE(stride);
9192
9193                 size = (height << 12) | width;
9194         }
9195
9196         if (intel_crtc->cursor_cntl != 0 &&
9197             (intel_crtc->cursor_base != base ||
9198              intel_crtc->cursor_size != size ||
9199              intel_crtc->cursor_cntl != cntl)) {
9200                 /* On these chipsets we can only modify the base/size/stride
9201                  * whilst the cursor is disabled.
9202                  */
9203                 I915_WRITE(CURCNTR(PIPE_A), 0);
9204                 POSTING_READ(CURCNTR(PIPE_A));
9205                 intel_crtc->cursor_cntl = 0;
9206         }
9207
9208         if (intel_crtc->cursor_base != base) {
9209                 I915_WRITE(CURBASE(PIPE_A), base);
9210                 intel_crtc->cursor_base = base;
9211         }
9212
9213         if (intel_crtc->cursor_size != size) {
9214                 I915_WRITE(CURSIZE, size);
9215                 intel_crtc->cursor_size = size;
9216         }
9217
9218         if (intel_crtc->cursor_cntl != cntl) {
9219                 I915_WRITE(CURCNTR(PIPE_A), cntl);
9220                 POSTING_READ(CURCNTR(PIPE_A));
9221                 intel_crtc->cursor_cntl = cntl;
9222         }
9223 }
9224
9225 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
9226                                const struct intel_plane_state *plane_state)
9227 {
9228         struct drm_device *dev = crtc->dev;
9229         struct drm_i915_private *dev_priv = to_i915(dev);
9230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9231         int pipe = intel_crtc->pipe;
9232         uint32_t cntl = 0;
9233
9234         if (plane_state && plane_state->base.visible) {
9235                 cntl = MCURSOR_GAMMA_ENABLE;
9236                 switch (plane_state->base.crtc_w) {
9237                         case 64:
9238                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9239                                 break;
9240                         case 128:
9241                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9242                                 break;
9243                         case 256:
9244                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9245                                 break;
9246                         default:
9247                                 MISSING_CASE(plane_state->base.crtc_w);
9248                                 return;
9249                 }
9250                 cntl |= pipe << 28; /* Connect to correct pipe */
9251
9252                 if (HAS_DDI(dev_priv))
9253                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9254
9255                 if (plane_state->base.rotation & DRM_ROTATE_180)
9256                         cntl |= CURSOR_ROTATE_180;
9257         }
9258
9259         if (intel_crtc->cursor_cntl != cntl) {
9260                 I915_WRITE(CURCNTR(pipe), cntl);
9261                 POSTING_READ(CURCNTR(pipe));
9262                 intel_crtc->cursor_cntl = cntl;
9263         }
9264
9265         /* and commit changes on next vblank */
9266         I915_WRITE(CURBASE(pipe), base);
9267         POSTING_READ(CURBASE(pipe));
9268
9269         intel_crtc->cursor_base = base;
9270 }
9271
9272 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9273 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9274                                      const struct intel_plane_state *plane_state)
9275 {
9276         struct drm_device *dev = crtc->dev;
9277         struct drm_i915_private *dev_priv = to_i915(dev);
9278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9279         int pipe = intel_crtc->pipe;
9280         u32 base = intel_crtc->cursor_addr;
9281         u32 pos = 0;
9282
9283         if (plane_state) {
9284                 int x = plane_state->base.crtc_x;
9285                 int y = plane_state->base.crtc_y;
9286
9287                 if (x < 0) {
9288                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9289                         x = -x;
9290                 }
9291                 pos |= x << CURSOR_X_SHIFT;
9292
9293                 if (y < 0) {
9294                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9295                         y = -y;
9296                 }
9297                 pos |= y << CURSOR_Y_SHIFT;
9298
9299                 /* ILK+ do this automagically */
9300                 if (HAS_GMCH_DISPLAY(dev_priv) &&
9301                     plane_state->base.rotation & DRM_ROTATE_180) {
9302                         base += (plane_state->base.crtc_h *
9303                                  plane_state->base.crtc_w - 1) * 4;
9304                 }
9305         }
9306
9307         I915_WRITE(CURPOS(pipe), pos);
9308
9309         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
9310                 i845_update_cursor(crtc, base, plane_state);
9311         else
9312                 i9xx_update_cursor(crtc, base, plane_state);
9313 }
9314
9315 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
9316                            uint32_t width, uint32_t height)
9317 {
9318         if (width == 0 || height == 0)
9319                 return false;
9320
9321         /*
9322          * 845g/865g are special in that they are only limited by
9323          * the width of their cursors, the height is arbitrary up to
9324          * the precision of the register. Everything else requires
9325          * square cursors, limited to a few power-of-two sizes.
9326          */
9327         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
9328                 if ((width & 63) != 0)
9329                         return false;
9330
9331                 if (width > (IS_I845G(dev_priv) ? 64 : 512))
9332                         return false;
9333
9334                 if (height > 1023)
9335                         return false;
9336         } else {
9337                 switch (width | height) {
9338                 case 256:
9339                 case 128:
9340                         if (IS_GEN2(dev_priv))
9341                                 return false;
9342                 case 64:
9343                         break;
9344                 default:
9345                         return false;
9346                 }
9347         }
9348
9349         return true;
9350 }
9351
9352 /* VESA 640x480x72Hz mode to set on the pipe */
9353 static struct drm_display_mode load_detect_mode = {
9354         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9355                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9356 };
9357
9358 struct drm_framebuffer *
9359 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9360                          struct drm_mode_fb_cmd2 *mode_cmd)
9361 {
9362         struct intel_framebuffer *intel_fb;
9363         int ret;
9364
9365         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9366         if (!intel_fb)
9367                 return ERR_PTR(-ENOMEM);
9368
9369         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9370         if (ret)
9371                 goto err;
9372
9373         return &intel_fb->base;
9374
9375 err:
9376         kfree(intel_fb);
9377         return ERR_PTR(ret);
9378 }
9379
9380 static u32
9381 intel_framebuffer_pitch_for_width(int width, int bpp)
9382 {
9383         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9384         return ALIGN(pitch, 64);
9385 }
9386
9387 static u32
9388 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9389 {
9390         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9391         return PAGE_ALIGN(pitch * mode->vdisplay);
9392 }
9393
9394 static struct drm_framebuffer *
9395 intel_framebuffer_create_for_mode(struct drm_device *dev,
9396                                   struct drm_display_mode *mode,
9397                                   int depth, int bpp)
9398 {
9399         struct drm_framebuffer *fb;
9400         struct drm_i915_gem_object *obj;
9401         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9402
9403         obj = i915_gem_object_create(to_i915(dev),
9404                                     intel_framebuffer_size_for_mode(mode, bpp));
9405         if (IS_ERR(obj))
9406                 return ERR_CAST(obj);
9407
9408         mode_cmd.width = mode->hdisplay;
9409         mode_cmd.height = mode->vdisplay;
9410         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9411                                                                 bpp);
9412         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9413
9414         fb = intel_framebuffer_create(obj, &mode_cmd);
9415         if (IS_ERR(fb))
9416                 i915_gem_object_put(obj);
9417
9418         return fb;
9419 }
9420
9421 static struct drm_framebuffer *
9422 mode_fits_in_fbdev(struct drm_device *dev,
9423                    struct drm_display_mode *mode)
9424 {
9425 #ifdef CONFIG_DRM_FBDEV_EMULATION
9426         struct drm_i915_private *dev_priv = to_i915(dev);
9427         struct drm_i915_gem_object *obj;
9428         struct drm_framebuffer *fb;
9429
9430         if (!dev_priv->fbdev)
9431                 return NULL;
9432
9433         if (!dev_priv->fbdev->fb)
9434                 return NULL;
9435
9436         obj = dev_priv->fbdev->fb->obj;
9437         BUG_ON(!obj);
9438
9439         fb = &dev_priv->fbdev->fb->base;
9440         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9441                                                                fb->format->cpp[0] * 8))
9442                 return NULL;
9443
9444         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9445                 return NULL;
9446
9447         drm_framebuffer_reference(fb);
9448         return fb;
9449 #else
9450         return NULL;
9451 #endif
9452 }
9453
9454 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9455                                            struct drm_crtc *crtc,
9456                                            struct drm_display_mode *mode,
9457                                            struct drm_framebuffer *fb,
9458                                            int x, int y)
9459 {
9460         struct drm_plane_state *plane_state;
9461         int hdisplay, vdisplay;
9462         int ret;
9463
9464         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9465         if (IS_ERR(plane_state))
9466                 return PTR_ERR(plane_state);
9467
9468         if (mode)
9469                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9470         else
9471                 hdisplay = vdisplay = 0;
9472
9473         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9474         if (ret)
9475                 return ret;
9476         drm_atomic_set_fb_for_plane(plane_state, fb);
9477         plane_state->crtc_x = 0;
9478         plane_state->crtc_y = 0;
9479         plane_state->crtc_w = hdisplay;
9480         plane_state->crtc_h = vdisplay;
9481         plane_state->src_x = x << 16;
9482         plane_state->src_y = y << 16;
9483         plane_state->src_w = hdisplay << 16;
9484         plane_state->src_h = vdisplay << 16;
9485
9486         return 0;
9487 }
9488
9489 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9490                                 struct drm_display_mode *mode,
9491                                 struct intel_load_detect_pipe *old,
9492                                 struct drm_modeset_acquire_ctx *ctx)
9493 {
9494         struct intel_crtc *intel_crtc;
9495         struct intel_encoder *intel_encoder =
9496                 intel_attached_encoder(connector);
9497         struct drm_crtc *possible_crtc;
9498         struct drm_encoder *encoder = &intel_encoder->base;
9499         struct drm_crtc *crtc = NULL;
9500         struct drm_device *dev = encoder->dev;
9501         struct drm_i915_private *dev_priv = to_i915(dev);
9502         struct drm_framebuffer *fb;
9503         struct drm_mode_config *config = &dev->mode_config;
9504         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9505         struct drm_connector_state *connector_state;
9506         struct intel_crtc_state *crtc_state;
9507         int ret, i = -1;
9508
9509         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9510                       connector->base.id, connector->name,
9511                       encoder->base.id, encoder->name);
9512
9513         old->restore_state = NULL;
9514
9515 retry:
9516         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9517         if (ret)
9518                 goto fail;
9519
9520         /*
9521          * Algorithm gets a little messy:
9522          *
9523          *   - if the connector already has an assigned crtc, use it (but make
9524          *     sure it's on first)
9525          *
9526          *   - try to find the first unused crtc that can drive this connector,
9527          *     and use that if we find one
9528          */
9529
9530         /* See if we already have a CRTC for this connector */
9531         if (connector->state->crtc) {
9532                 crtc = connector->state->crtc;
9533
9534                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9535                 if (ret)
9536                         goto fail;
9537
9538                 /* Make sure the crtc and connector are running */
9539                 goto found;
9540         }
9541
9542         /* Find an unused one (if possible) */
9543         for_each_crtc(dev, possible_crtc) {
9544                 i++;
9545                 if (!(encoder->possible_crtcs & (1 << i)))
9546                         continue;
9547
9548                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9549                 if (ret)
9550                         goto fail;
9551
9552                 if (possible_crtc->state->enable) {
9553                         drm_modeset_unlock(&possible_crtc->mutex);
9554                         continue;
9555                 }
9556
9557                 crtc = possible_crtc;
9558                 break;
9559         }
9560
9561         /*
9562          * If we didn't find an unused CRTC, don't use any.
9563          */
9564         if (!crtc) {
9565                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9566                 goto fail;
9567         }
9568
9569 found:
9570         intel_crtc = to_intel_crtc(crtc);
9571
9572         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9573         if (ret)
9574                 goto fail;
9575
9576         state = drm_atomic_state_alloc(dev);
9577         restore_state = drm_atomic_state_alloc(dev);
9578         if (!state || !restore_state) {
9579                 ret = -ENOMEM;
9580                 goto fail;
9581         }
9582
9583         state->acquire_ctx = ctx;
9584         restore_state->acquire_ctx = ctx;
9585
9586         connector_state = drm_atomic_get_connector_state(state, connector);
9587         if (IS_ERR(connector_state)) {
9588                 ret = PTR_ERR(connector_state);
9589                 goto fail;
9590         }
9591
9592         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9593         if (ret)
9594                 goto fail;
9595
9596         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9597         if (IS_ERR(crtc_state)) {
9598                 ret = PTR_ERR(crtc_state);
9599                 goto fail;
9600         }
9601
9602         crtc_state->base.active = crtc_state->base.enable = true;
9603
9604         if (!mode)
9605                 mode = &load_detect_mode;
9606
9607         /* We need a framebuffer large enough to accommodate all accesses
9608          * that the plane may generate whilst we perform load detection.
9609          * We can not rely on the fbcon either being present (we get called
9610          * during its initialisation to detect all boot displays, or it may
9611          * not even exist) or that it is large enough to satisfy the
9612          * requested mode.
9613          */
9614         fb = mode_fits_in_fbdev(dev, mode);
9615         if (fb == NULL) {
9616                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9617                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9618         } else
9619                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9620         if (IS_ERR(fb)) {
9621                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9622                 goto fail;
9623         }
9624
9625         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9626         if (ret)
9627                 goto fail;
9628
9629         drm_framebuffer_unreference(fb);
9630
9631         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9632         if (ret)
9633                 goto fail;
9634
9635         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9636         if (!ret)
9637                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9638         if (!ret)
9639                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9640         if (ret) {
9641                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9642                 goto fail;
9643         }
9644
9645         ret = drm_atomic_commit(state);
9646         if (ret) {
9647                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9648                 goto fail;
9649         }
9650
9651         old->restore_state = restore_state;
9652         drm_atomic_state_put(state);
9653
9654         /* let the connector get through one full cycle before testing */
9655         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9656         return true;
9657
9658 fail:
9659         if (state) {
9660                 drm_atomic_state_put(state);
9661                 state = NULL;
9662         }
9663         if (restore_state) {
9664                 drm_atomic_state_put(restore_state);
9665                 restore_state = NULL;
9666         }
9667
9668         if (ret == -EDEADLK) {
9669                 drm_modeset_backoff(ctx);
9670                 goto retry;
9671         }
9672
9673         return false;
9674 }
9675
9676 void intel_release_load_detect_pipe(struct drm_connector *connector,
9677                                     struct intel_load_detect_pipe *old,
9678                                     struct drm_modeset_acquire_ctx *ctx)
9679 {
9680         struct intel_encoder *intel_encoder =
9681                 intel_attached_encoder(connector);
9682         struct drm_encoder *encoder = &intel_encoder->base;
9683         struct drm_atomic_state *state = old->restore_state;
9684         int ret;
9685
9686         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9687                       connector->base.id, connector->name,
9688                       encoder->base.id, encoder->name);
9689
9690         if (!state)
9691                 return;
9692
9693         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9694         if (ret)
9695                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9696         drm_atomic_state_put(state);
9697 }
9698
9699 static int i9xx_pll_refclk(struct drm_device *dev,
9700                            const struct intel_crtc_state *pipe_config)
9701 {
9702         struct drm_i915_private *dev_priv = to_i915(dev);
9703         u32 dpll = pipe_config->dpll_hw_state.dpll;
9704
9705         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9706                 return dev_priv->vbt.lvds_ssc_freq;
9707         else if (HAS_PCH_SPLIT(dev_priv))
9708                 return 120000;
9709         else if (!IS_GEN2(dev_priv))
9710                 return 96000;
9711         else
9712                 return 48000;
9713 }
9714
9715 /* Returns the clock of the currently programmed mode of the given pipe. */
9716 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9717                                 struct intel_crtc_state *pipe_config)
9718 {
9719         struct drm_device *dev = crtc->base.dev;
9720         struct drm_i915_private *dev_priv = to_i915(dev);
9721         int pipe = pipe_config->cpu_transcoder;
9722         u32 dpll = pipe_config->dpll_hw_state.dpll;
9723         u32 fp;
9724         struct dpll clock;
9725         int port_clock;
9726         int refclk = i9xx_pll_refclk(dev, pipe_config);
9727
9728         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9729                 fp = pipe_config->dpll_hw_state.fp0;
9730         else
9731                 fp = pipe_config->dpll_hw_state.fp1;
9732
9733         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9734         if (IS_PINEVIEW(dev_priv)) {
9735                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9736                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9737         } else {
9738                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9739                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9740         }
9741
9742         if (!IS_GEN2(dev_priv)) {
9743                 if (IS_PINEVIEW(dev_priv))
9744                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9745                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9746                 else
9747                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9748                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9749
9750                 switch (dpll & DPLL_MODE_MASK) {
9751                 case DPLLB_MODE_DAC_SERIAL:
9752                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9753                                 5 : 10;
9754                         break;
9755                 case DPLLB_MODE_LVDS:
9756                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9757                                 7 : 14;
9758                         break;
9759                 default:
9760                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9761                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9762                         return;
9763                 }
9764
9765                 if (IS_PINEVIEW(dev_priv))
9766                         port_clock = pnv_calc_dpll_params(refclk, &clock);
9767                 else
9768                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
9769         } else {
9770                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9771                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9772
9773                 if (is_lvds) {
9774                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9775                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9776
9777                         if (lvds & LVDS_CLKB_POWER_UP)
9778                                 clock.p2 = 7;
9779                         else
9780                                 clock.p2 = 14;
9781                 } else {
9782                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9783                                 clock.p1 = 2;
9784                         else {
9785                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9786                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9787                         }
9788                         if (dpll & PLL_P2_DIVIDE_BY_4)
9789                                 clock.p2 = 4;
9790                         else
9791                                 clock.p2 = 2;
9792                 }
9793
9794                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9795         }
9796
9797         /*
9798          * This value includes pixel_multiplier. We will use
9799          * port_clock to compute adjusted_mode.crtc_clock in the
9800          * encoder's get_config() function.
9801          */
9802         pipe_config->port_clock = port_clock;
9803 }
9804
9805 int intel_dotclock_calculate(int link_freq,
9806                              const struct intel_link_m_n *m_n)
9807 {
9808         /*
9809          * The calculation for the data clock is:
9810          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9811          * But we want to avoid losing precison if possible, so:
9812          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9813          *
9814          * and the link clock is simpler:
9815          * link_clock = (m * link_clock) / n
9816          */
9817
9818         if (!m_n->link_n)
9819                 return 0;
9820
9821         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9822 }
9823
9824 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9825                                    struct intel_crtc_state *pipe_config)
9826 {
9827         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9828
9829         /* read out port_clock from the DPLL */
9830         i9xx_crtc_clock_get(crtc, pipe_config);
9831
9832         /*
9833          * In case there is an active pipe without active ports,
9834          * we may need some idea for the dotclock anyway.
9835          * Calculate one based on the FDI configuration.
9836          */
9837         pipe_config->base.adjusted_mode.crtc_clock =
9838                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
9839                                          &pipe_config->fdi_m_n);
9840 }
9841
9842 /** Returns the currently programmed mode of the given pipe. */
9843 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9844                                              struct drm_crtc *crtc)
9845 {
9846         struct drm_i915_private *dev_priv = to_i915(dev);
9847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9848         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9849         struct drm_display_mode *mode;
9850         struct intel_crtc_state *pipe_config;
9851         int htot = I915_READ(HTOTAL(cpu_transcoder));
9852         int hsync = I915_READ(HSYNC(cpu_transcoder));
9853         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9854         int vsync = I915_READ(VSYNC(cpu_transcoder));
9855         enum pipe pipe = intel_crtc->pipe;
9856
9857         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9858         if (!mode)
9859                 return NULL;
9860
9861         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9862         if (!pipe_config) {
9863                 kfree(mode);
9864                 return NULL;
9865         }
9866
9867         /*
9868          * Construct a pipe_config sufficient for getting the clock info
9869          * back out of crtc_clock_get.
9870          *
9871          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9872          * to use a real value here instead.
9873          */
9874         pipe_config->cpu_transcoder = (enum transcoder) pipe;
9875         pipe_config->pixel_multiplier = 1;
9876         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9877         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9878         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9879         i9xx_crtc_clock_get(intel_crtc, pipe_config);
9880
9881         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
9882         mode->hdisplay = (htot & 0xffff) + 1;
9883         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9884         mode->hsync_start = (hsync & 0xffff) + 1;
9885         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9886         mode->vdisplay = (vtot & 0xffff) + 1;
9887         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9888         mode->vsync_start = (vsync & 0xffff) + 1;
9889         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9890
9891         drm_mode_set_name(mode);
9892
9893         kfree(pipe_config);
9894
9895         return mode;
9896 }
9897
9898 static void intel_crtc_destroy(struct drm_crtc *crtc)
9899 {
9900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9901         struct drm_device *dev = crtc->dev;
9902         struct intel_flip_work *work;
9903
9904         spin_lock_irq(&dev->event_lock);
9905         work = intel_crtc->flip_work;
9906         intel_crtc->flip_work = NULL;
9907         spin_unlock_irq(&dev->event_lock);
9908
9909         if (work) {
9910                 cancel_work_sync(&work->mmio_work);
9911                 cancel_work_sync(&work->unpin_work);
9912                 kfree(work);
9913         }
9914
9915         drm_crtc_cleanup(crtc);
9916
9917         kfree(intel_crtc);
9918 }
9919
9920 static void intel_unpin_work_fn(struct work_struct *__work)
9921 {
9922         struct intel_flip_work *work =
9923                 container_of(__work, struct intel_flip_work, unpin_work);
9924         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
9925         struct drm_device *dev = crtc->base.dev;
9926         struct drm_plane *primary = crtc->base.primary;
9927
9928         if (is_mmio_work(work))
9929                 flush_work(&work->mmio_work);
9930
9931         mutex_lock(&dev->struct_mutex);
9932         intel_unpin_fb_vma(work->old_vma);
9933         i915_gem_object_put(work->pending_flip_obj);
9934         mutex_unlock(&dev->struct_mutex);
9935
9936         i915_gem_request_put(work->flip_queued_req);
9937
9938         intel_frontbuffer_flip_complete(to_i915(dev),
9939                                         to_intel_plane(primary)->frontbuffer_bit);
9940         intel_fbc_post_update(crtc);
9941         drm_framebuffer_unreference(work->old_fb);
9942
9943         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
9944         atomic_dec(&crtc->unpin_work_count);
9945
9946         kfree(work);
9947 }
9948
9949 /* Is 'a' after or equal to 'b'? */
9950 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9951 {
9952         return !((a - b) & 0x80000000);
9953 }
9954
9955 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
9956                                    struct intel_flip_work *work)
9957 {
9958         struct drm_device *dev = crtc->base.dev;
9959         struct drm_i915_private *dev_priv = to_i915(dev);
9960
9961         if (abort_flip_on_reset(crtc))
9962                 return true;
9963
9964         /*
9965          * The relevant registers doen't exist on pre-ctg.
9966          * As the flip done interrupt doesn't trigger for mmio
9967          * flips on gmch platforms, a flip count check isn't
9968          * really needed there. But since ctg has the registers,
9969          * include it in the check anyway.
9970          */
9971         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
9972                 return true;
9973
9974         /*
9975          * BDW signals flip done immediately if the plane
9976          * is disabled, even if the plane enable is already
9977          * armed to occur at the next vblank :(
9978          */
9979
9980         /*
9981          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9982          * used the same base address. In that case the mmio flip might
9983          * have completed, but the CS hasn't even executed the flip yet.
9984          *
9985          * A flip count check isn't enough as the CS might have updated
9986          * the base address just after start of vblank, but before we
9987          * managed to process the interrupt. This means we'd complete the
9988          * CS flip too soon.
9989          *
9990          * Combining both checks should get us a good enough result. It may
9991          * still happen that the CS flip has been executed, but has not
9992          * yet actually completed. But in case the base address is the same
9993          * anyway, we don't really care.
9994          */
9995         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9996                 crtc->flip_work->gtt_offset &&
9997                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
9998                                     crtc->flip_work->flip_count);
9999 }
10000
10001 static bool
10002 __pageflip_finished_mmio(struct intel_crtc *crtc,
10003                                struct intel_flip_work *work)
10004 {
10005         /*
10006          * MMIO work completes when vblank is different from
10007          * flip_queued_vblank.
10008          *
10009          * Reset counter value doesn't matter, this is handled by
10010          * i915_wait_request finishing early, so no need to handle
10011          * reset here.
10012          */
10013         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10014 }
10015
10016
10017 static bool pageflip_finished(struct intel_crtc *crtc,
10018                               struct intel_flip_work *work)
10019 {
10020         if (!atomic_read(&work->pending))
10021                 return false;
10022
10023         smp_rmb();
10024
10025         if (is_mmio_work(work))
10026                 return __pageflip_finished_mmio(crtc, work);
10027         else
10028                 return __pageflip_finished_cs(crtc, work);
10029 }
10030
10031 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10032 {
10033         struct drm_device *dev = &dev_priv->drm;
10034         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10035         struct intel_flip_work *work;
10036         unsigned long flags;
10037
10038         /* Ignore early vblank irqs */
10039         if (!crtc)
10040                 return;
10041
10042         /*
10043          * This is called both by irq handlers and the reset code (to complete
10044          * lost pageflips) so needs the full irqsave spinlocks.
10045          */
10046         spin_lock_irqsave(&dev->event_lock, flags);
10047         work = crtc->flip_work;
10048
10049         if (work != NULL &&
10050             !is_mmio_work(work) &&
10051             pageflip_finished(crtc, work))
10052                 page_flip_completed(crtc);
10053
10054         spin_unlock_irqrestore(&dev->event_lock, flags);
10055 }
10056
10057 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10058 {
10059         struct drm_device *dev = &dev_priv->drm;
10060         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10061         struct intel_flip_work *work;
10062         unsigned long flags;
10063
10064         /* Ignore early vblank irqs */
10065         if (!crtc)
10066                 return;
10067
10068         /*
10069          * This is called both by irq handlers and the reset code (to complete
10070          * lost pageflips) so needs the full irqsave spinlocks.
10071          */
10072         spin_lock_irqsave(&dev->event_lock, flags);
10073         work = crtc->flip_work;
10074
10075         if (work != NULL &&
10076             is_mmio_work(work) &&
10077             pageflip_finished(crtc, work))
10078                 page_flip_completed(crtc);
10079
10080         spin_unlock_irqrestore(&dev->event_lock, flags);
10081 }
10082
10083 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10084                                                struct intel_flip_work *work)
10085 {
10086         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10087
10088         /* Ensure that the work item is consistent when activating it ... */
10089         smp_mb__before_atomic();
10090         atomic_set(&work->pending, 1);
10091 }
10092
10093 static int intel_gen2_queue_flip(struct drm_device *dev,
10094                                  struct drm_crtc *crtc,
10095                                  struct drm_framebuffer *fb,
10096                                  struct drm_i915_gem_object *obj,
10097                                  struct drm_i915_gem_request *req,
10098                                  uint32_t flags)
10099 {
10100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10101         u32 flip_mask, *cs;
10102
10103         cs = intel_ring_begin(req, 6);
10104         if (IS_ERR(cs))
10105                 return PTR_ERR(cs);
10106
10107         /* Can't queue multiple flips, so wait for the previous
10108          * one to finish before executing the next.
10109          */
10110         if (intel_crtc->plane)
10111                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10112         else
10113                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10114         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10115         *cs++ = MI_NOOP;
10116         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10117         *cs++ = fb->pitches[0];
10118         *cs++ = intel_crtc->flip_work->gtt_offset;
10119         *cs++ = 0; /* aux display base address, unused */
10120
10121         return 0;
10122 }
10123
10124 static int intel_gen3_queue_flip(struct drm_device *dev,
10125                                  struct drm_crtc *crtc,
10126                                  struct drm_framebuffer *fb,
10127                                  struct drm_i915_gem_object *obj,
10128                                  struct drm_i915_gem_request *req,
10129                                  uint32_t flags)
10130 {
10131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10132         u32 flip_mask, *cs;
10133
10134         cs = intel_ring_begin(req, 6);
10135         if (IS_ERR(cs))
10136                 return PTR_ERR(cs);
10137
10138         if (intel_crtc->plane)
10139                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10140         else
10141                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10142         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10143         *cs++ = MI_NOOP;
10144         *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10145         *cs++ = fb->pitches[0];
10146         *cs++ = intel_crtc->flip_work->gtt_offset;
10147         *cs++ = MI_NOOP;
10148
10149         return 0;
10150 }
10151
10152 static int intel_gen4_queue_flip(struct drm_device *dev,
10153                                  struct drm_crtc *crtc,
10154                                  struct drm_framebuffer *fb,
10155                                  struct drm_i915_gem_object *obj,
10156                                  struct drm_i915_gem_request *req,
10157                                  uint32_t flags)
10158 {
10159         struct drm_i915_private *dev_priv = to_i915(dev);
10160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10161         u32 pf, pipesrc, *cs;
10162
10163         cs = intel_ring_begin(req, 4);
10164         if (IS_ERR(cs))
10165                 return PTR_ERR(cs);
10166
10167         /* i965+ uses the linear or tiled offsets from the
10168          * Display Registers (which do not change across a page-flip)
10169          * so we need only reprogram the base address.
10170          */
10171         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10172         *cs++ = fb->pitches[0];
10173         *cs++ = intel_crtc->flip_work->gtt_offset |
10174                 intel_fb_modifier_to_tiling(fb->modifier);
10175
10176         /* XXX Enabling the panel-fitter across page-flip is so far
10177          * untested on non-native modes, so ignore it for now.
10178          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10179          */
10180         pf = 0;
10181         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10182         *cs++ = pf | pipesrc;
10183
10184         return 0;
10185 }
10186
10187 static int intel_gen6_queue_flip(struct drm_device *dev,
10188                                  struct drm_crtc *crtc,
10189                                  struct drm_framebuffer *fb,
10190                                  struct drm_i915_gem_object *obj,
10191                                  struct drm_i915_gem_request *req,
10192                                  uint32_t flags)
10193 {
10194         struct drm_i915_private *dev_priv = to_i915(dev);
10195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10196         u32 pf, pipesrc, *cs;
10197
10198         cs = intel_ring_begin(req, 4);
10199         if (IS_ERR(cs))
10200                 return PTR_ERR(cs);
10201
10202         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10203         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10204         *cs++ = intel_crtc->flip_work->gtt_offset;
10205
10206         /* Contrary to the suggestions in the documentation,
10207          * "Enable Panel Fitter" does not seem to be required when page
10208          * flipping with a non-native mode, and worse causes a normal
10209          * modeset to fail.
10210          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10211          */
10212         pf = 0;
10213         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10214         *cs++ = pf | pipesrc;
10215
10216         return 0;
10217 }
10218
10219 static int intel_gen7_queue_flip(struct drm_device *dev,
10220                                  struct drm_crtc *crtc,
10221                                  struct drm_framebuffer *fb,
10222                                  struct drm_i915_gem_object *obj,
10223                                  struct drm_i915_gem_request *req,
10224                                  uint32_t flags)
10225 {
10226         struct drm_i915_private *dev_priv = to_i915(dev);
10227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10228         u32 *cs, plane_bit = 0;
10229         int len, ret;
10230
10231         switch (intel_crtc->plane) {
10232         case PLANE_A:
10233                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10234                 break;
10235         case PLANE_B:
10236                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10237                 break;
10238         case PLANE_C:
10239                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10240                 break;
10241         default:
10242                 WARN_ONCE(1, "unknown plane in flip command\n");
10243                 return -ENODEV;
10244         }
10245
10246         len = 4;
10247         if (req->engine->id == RCS) {
10248                 len += 6;
10249                 /*
10250                  * On Gen 8, SRM is now taking an extra dword to accommodate
10251                  * 48bits addresses, and we need a NOOP for the batch size to
10252                  * stay even.
10253                  */
10254                 if (IS_GEN8(dev_priv))
10255                         len += 2;
10256         }
10257
10258         /*
10259          * BSpec MI_DISPLAY_FLIP for IVB:
10260          * "The full packet must be contained within the same cache line."
10261          *
10262          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10263          * cacheline, if we ever start emitting more commands before
10264          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10265          * then do the cacheline alignment, and finally emit the
10266          * MI_DISPLAY_FLIP.
10267          */
10268         ret = intel_ring_cacheline_align(req);
10269         if (ret)
10270                 return ret;
10271
10272         cs = intel_ring_begin(req, len);
10273         if (IS_ERR(cs))
10274                 return PTR_ERR(cs);
10275
10276         /* Unmask the flip-done completion message. Note that the bspec says that
10277          * we should do this for both the BCS and RCS, and that we must not unmask
10278          * more than one flip event at any time (or ensure that one flip message
10279          * can be sent by waiting for flip-done prior to queueing new flips).
10280          * Experimentation says that BCS works despite DERRMR masking all
10281          * flip-done completion events and that unmasking all planes at once
10282          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10283          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10284          */
10285         if (req->engine->id == RCS) {
10286                 *cs++ = MI_LOAD_REGISTER_IMM(1);
10287                 *cs++ = i915_mmio_reg_offset(DERRMR);
10288                 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10289                           DERRMR_PIPEB_PRI_FLIP_DONE |
10290                           DERRMR_PIPEC_PRI_FLIP_DONE);
10291                 if (IS_GEN8(dev_priv))
10292                         *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10293                                 MI_SRM_LRM_GLOBAL_GTT;
10294                 else
10295                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10296                 *cs++ = i915_mmio_reg_offset(DERRMR);
10297                 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10298                 if (IS_GEN8(dev_priv)) {
10299                         *cs++ = 0;
10300                         *cs++ = MI_NOOP;
10301                 }
10302         }
10303
10304         *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10305         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10306         *cs++ = intel_crtc->flip_work->gtt_offset;
10307         *cs++ = MI_NOOP;
10308
10309         return 0;
10310 }
10311
10312 static bool use_mmio_flip(struct intel_engine_cs *engine,
10313                           struct drm_i915_gem_object *obj)
10314 {
10315         /*
10316          * This is not being used for older platforms, because
10317          * non-availability of flip done interrupt forces us to use
10318          * CS flips. Older platforms derive flip done using some clever
10319          * tricks involving the flip_pending status bits and vblank irqs.
10320          * So using MMIO flips there would disrupt this mechanism.
10321          */
10322
10323         if (engine == NULL)
10324                 return true;
10325
10326         if (INTEL_GEN(engine->i915) < 5)
10327                 return false;
10328
10329         if (i915.use_mmio_flip < 0)
10330                 return false;
10331         else if (i915.use_mmio_flip > 0)
10332                 return true;
10333         else if (i915.enable_execlists)
10334                 return true;
10335
10336         return engine != i915_gem_object_last_write_engine(obj);
10337 }
10338
10339 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10340                              unsigned int rotation,
10341                              struct intel_flip_work *work)
10342 {
10343         struct drm_device *dev = intel_crtc->base.dev;
10344         struct drm_i915_private *dev_priv = to_i915(dev);
10345         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10346         const enum pipe pipe = intel_crtc->pipe;
10347         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10348
10349         ctl = I915_READ(PLANE_CTL(pipe, 0));
10350         ctl &= ~PLANE_CTL_TILED_MASK;
10351         switch (fb->modifier) {
10352         case DRM_FORMAT_MOD_NONE:
10353                 break;
10354         case I915_FORMAT_MOD_X_TILED:
10355                 ctl |= PLANE_CTL_TILED_X;
10356                 break;
10357         case I915_FORMAT_MOD_Y_TILED:
10358                 ctl |= PLANE_CTL_TILED_Y;
10359                 break;
10360         case I915_FORMAT_MOD_Yf_TILED:
10361                 ctl |= PLANE_CTL_TILED_YF;
10362                 break;
10363         default:
10364                 MISSING_CASE(fb->modifier);
10365         }
10366
10367         /*
10368          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10369          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10370          */
10371         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10372         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10373
10374         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10375         POSTING_READ(PLANE_SURF(pipe, 0));
10376 }
10377
10378 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10379                              struct intel_flip_work *work)
10380 {
10381         struct drm_device *dev = intel_crtc->base.dev;
10382         struct drm_i915_private *dev_priv = to_i915(dev);
10383         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10384         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10385         u32 dspcntr;
10386
10387         dspcntr = I915_READ(reg);
10388
10389         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10390                 dspcntr |= DISPPLANE_TILED;
10391         else
10392                 dspcntr &= ~DISPPLANE_TILED;
10393
10394         I915_WRITE(reg, dspcntr);
10395
10396         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10397         POSTING_READ(DSPSURF(intel_crtc->plane));
10398 }
10399
10400 static void intel_mmio_flip_work_func(struct work_struct *w)
10401 {
10402         struct intel_flip_work *work =
10403                 container_of(w, struct intel_flip_work, mmio_work);
10404         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10405         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10406         struct intel_framebuffer *intel_fb =
10407                 to_intel_framebuffer(crtc->base.primary->fb);
10408         struct drm_i915_gem_object *obj = intel_fb->obj;
10409
10410         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10411
10412         intel_pipe_update_start(crtc);
10413
10414         if (INTEL_GEN(dev_priv) >= 9)
10415                 skl_do_mmio_flip(crtc, work->rotation, work);
10416         else
10417                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10418                 ilk_do_mmio_flip(crtc, work);
10419
10420         intel_pipe_update_end(crtc, work);
10421 }
10422
10423 static int intel_default_queue_flip(struct drm_device *dev,
10424                                     struct drm_crtc *crtc,
10425                                     struct drm_framebuffer *fb,
10426                                     struct drm_i915_gem_object *obj,
10427                                     struct drm_i915_gem_request *req,
10428                                     uint32_t flags)
10429 {
10430         return -ENODEV;
10431 }
10432
10433 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10434                                       struct intel_crtc *intel_crtc,
10435                                       struct intel_flip_work *work)
10436 {
10437         u32 addr, vblank;
10438
10439         if (!atomic_read(&work->pending))
10440                 return false;
10441
10442         smp_rmb();
10443
10444         vblank = intel_crtc_get_vblank_counter(intel_crtc);
10445         if (work->flip_ready_vblank == 0) {
10446                 if (work->flip_queued_req &&
10447                     !i915_gem_request_completed(work->flip_queued_req))
10448                         return false;
10449
10450                 work->flip_ready_vblank = vblank;
10451         }
10452
10453         if (vblank - work->flip_ready_vblank < 3)
10454                 return false;
10455
10456         /* Potential stall - if we see that the flip has happened,
10457          * assume a missed interrupt. */
10458         if (INTEL_GEN(dev_priv) >= 4)
10459                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10460         else
10461                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10462
10463         /* There is a potential issue here with a false positive after a flip
10464          * to the same address. We could address this by checking for a
10465          * non-incrementing frame counter.
10466          */
10467         return addr == work->gtt_offset;
10468 }
10469
10470 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10471 {
10472         struct drm_device *dev = &dev_priv->drm;
10473         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10474         struct intel_flip_work *work;
10475
10476         WARN_ON(!in_interrupt());
10477
10478         if (crtc == NULL)
10479                 return;
10480
10481         spin_lock(&dev->event_lock);
10482         work = crtc->flip_work;
10483
10484         if (work != NULL && !is_mmio_work(work) &&
10485             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10486                 WARN_ONCE(1,
10487                           "Kicking stuck page flip: queued at %d, now %d\n",
10488                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10489                 page_flip_completed(crtc);
10490                 work = NULL;
10491         }
10492
10493         if (work != NULL && !is_mmio_work(work) &&
10494             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10495                 intel_queue_rps_boost_for_request(work->flip_queued_req);
10496         spin_unlock(&dev->event_lock);
10497 }
10498
10499 __maybe_unused
10500 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10501                                 struct drm_framebuffer *fb,
10502                                 struct drm_pending_vblank_event *event,
10503                                 uint32_t page_flip_flags)
10504 {
10505         struct drm_device *dev = crtc->dev;
10506         struct drm_i915_private *dev_priv = to_i915(dev);
10507         struct drm_framebuffer *old_fb = crtc->primary->fb;
10508         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10510         struct drm_plane *primary = crtc->primary;
10511         enum pipe pipe = intel_crtc->pipe;
10512         struct intel_flip_work *work;
10513         struct intel_engine_cs *engine;
10514         bool mmio_flip;
10515         struct drm_i915_gem_request *request;
10516         struct i915_vma *vma;
10517         int ret;
10518
10519         /*
10520          * drm_mode_page_flip_ioctl() should already catch this, but double
10521          * check to be safe.  In the future we may enable pageflipping from
10522          * a disabled primary plane.
10523          */
10524         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10525                 return -EBUSY;
10526
10527         /* Can't change pixel format via MI display flips. */
10528         if (fb->format != crtc->primary->fb->format)
10529                 return -EINVAL;
10530
10531         /*
10532          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10533          * Note that pitch changes could also affect these register.
10534          */
10535         if (INTEL_GEN(dev_priv) > 3 &&
10536             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10537              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10538                 return -EINVAL;
10539
10540         if (i915_terminally_wedged(&dev_priv->gpu_error))
10541                 goto out_hang;
10542
10543         work = kzalloc(sizeof(*work), GFP_KERNEL);
10544         if (work == NULL)
10545                 return -ENOMEM;
10546
10547         work->event = event;
10548         work->crtc = crtc;
10549         work->old_fb = old_fb;
10550         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10551
10552         ret = drm_crtc_vblank_get(crtc);
10553         if (ret)
10554                 goto free_work;
10555
10556         /* We borrow the event spin lock for protecting flip_work */
10557         spin_lock_irq(&dev->event_lock);
10558         if (intel_crtc->flip_work) {
10559                 /* Before declaring the flip queue wedged, check if
10560                  * the hardware completed the operation behind our backs.
10561                  */
10562                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10563                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10564                         page_flip_completed(intel_crtc);
10565                 } else {
10566                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10567                         spin_unlock_irq(&dev->event_lock);
10568
10569                         drm_crtc_vblank_put(crtc);
10570                         kfree(work);
10571                         return -EBUSY;
10572                 }
10573         }
10574         intel_crtc->flip_work = work;
10575         spin_unlock_irq(&dev->event_lock);
10576
10577         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10578                 flush_workqueue(dev_priv->wq);
10579
10580         /* Reference the objects for the scheduled work. */
10581         drm_framebuffer_reference(work->old_fb);
10582
10583         crtc->primary->fb = fb;
10584         update_state_fb(crtc->primary);
10585
10586         work->pending_flip_obj = i915_gem_object_get(obj);
10587
10588         ret = i915_mutex_lock_interruptible(dev);
10589         if (ret)
10590                 goto cleanup;
10591
10592         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10593         if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
10594                 ret = -EIO;
10595                 goto unlock;
10596         }
10597
10598         atomic_inc(&intel_crtc->unpin_work_count);
10599
10600         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10601                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10602
10603         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10604                 engine = dev_priv->engine[BCS];
10605                 if (fb->modifier != old_fb->modifier)
10606                         /* vlv: DISPLAY_FLIP fails to change tiling */
10607                         engine = NULL;
10608         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10609                 engine = dev_priv->engine[BCS];
10610         } else if (INTEL_GEN(dev_priv) >= 7) {
10611                 engine = i915_gem_object_last_write_engine(obj);
10612                 if (engine == NULL || engine->id != RCS)
10613                         engine = dev_priv->engine[BCS];
10614         } else {
10615                 engine = dev_priv->engine[RCS];
10616         }
10617
10618         mmio_flip = use_mmio_flip(engine, obj);
10619
10620         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10621         if (IS_ERR(vma)) {
10622                 ret = PTR_ERR(vma);
10623                 goto cleanup_pending;
10624         }
10625
10626         work->old_vma = to_intel_plane_state(primary->state)->vma;
10627         to_intel_plane_state(primary->state)->vma = vma;
10628
10629         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10630         work->rotation = crtc->primary->state->rotation;
10631
10632         /*
10633          * There's the potential that the next frame will not be compatible with
10634          * FBC, so we want to call pre_update() before the actual page flip.
10635          * The problem is that pre_update() caches some information about the fb
10636          * object, so we want to do this only after the object is pinned. Let's
10637          * be on the safe side and do this immediately before scheduling the
10638          * flip.
10639          */
10640         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10641                              to_intel_plane_state(primary->state));
10642
10643         if (mmio_flip) {
10644                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10645                 queue_work(system_unbound_wq, &work->mmio_work);
10646         } else {
10647                 request = i915_gem_request_alloc(engine,
10648                                                  dev_priv->kernel_context);
10649                 if (IS_ERR(request)) {
10650                         ret = PTR_ERR(request);
10651                         goto cleanup_unpin;
10652                 }
10653
10654                 ret = i915_gem_request_await_object(request, obj, false);
10655                 if (ret)
10656                         goto cleanup_request;
10657
10658                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10659                                                    page_flip_flags);
10660                 if (ret)
10661                         goto cleanup_request;
10662
10663                 intel_mark_page_flip_active(intel_crtc, work);
10664
10665                 work->flip_queued_req = i915_gem_request_get(request);
10666                 i915_add_request_no_flush(request);
10667         }
10668
10669         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10670         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10671                           to_intel_plane(primary)->frontbuffer_bit);
10672         mutex_unlock(&dev->struct_mutex);
10673
10674         intel_frontbuffer_flip_prepare(to_i915(dev),
10675                                        to_intel_plane(primary)->frontbuffer_bit);
10676
10677         trace_i915_flip_request(intel_crtc->plane, obj);
10678
10679         return 0;
10680
10681 cleanup_request:
10682         i915_add_request_no_flush(request);
10683 cleanup_unpin:
10684         to_intel_plane_state(primary->state)->vma = work->old_vma;
10685         intel_unpin_fb_vma(vma);
10686 cleanup_pending:
10687         atomic_dec(&intel_crtc->unpin_work_count);
10688 unlock:
10689         mutex_unlock(&dev->struct_mutex);
10690 cleanup:
10691         crtc->primary->fb = old_fb;
10692         update_state_fb(crtc->primary);
10693
10694         i915_gem_object_put(obj);
10695         drm_framebuffer_unreference(work->old_fb);
10696
10697         spin_lock_irq(&dev->event_lock);
10698         intel_crtc->flip_work = NULL;
10699         spin_unlock_irq(&dev->event_lock);
10700
10701         drm_crtc_vblank_put(crtc);
10702 free_work:
10703         kfree(work);
10704
10705         if (ret == -EIO) {
10706                 struct drm_atomic_state *state;
10707                 struct drm_plane_state *plane_state;
10708
10709 out_hang:
10710                 state = drm_atomic_state_alloc(dev);
10711                 if (!state)
10712                         return -ENOMEM;
10713                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
10714
10715 retry:
10716                 plane_state = drm_atomic_get_plane_state(state, primary);
10717                 ret = PTR_ERR_OR_ZERO(plane_state);
10718                 if (!ret) {
10719                         drm_atomic_set_fb_for_plane(plane_state, fb);
10720
10721                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10722                         if (!ret)
10723                                 ret = drm_atomic_commit(state);
10724                 }
10725
10726                 if (ret == -EDEADLK) {
10727                         drm_modeset_backoff(state->acquire_ctx);
10728                         drm_atomic_state_clear(state);
10729                         goto retry;
10730                 }
10731
10732                 drm_atomic_state_put(state);
10733
10734                 if (ret == 0 && event) {
10735                         spin_lock_irq(&dev->event_lock);
10736                         drm_crtc_send_vblank_event(crtc, event);
10737                         spin_unlock_irq(&dev->event_lock);
10738                 }
10739         }
10740         return ret;
10741 }
10742
10743
10744 /**
10745  * intel_wm_need_update - Check whether watermarks need updating
10746  * @plane: drm plane
10747  * @state: new plane state
10748  *
10749  * Check current plane state versus the new one to determine whether
10750  * watermarks need to be recalculated.
10751  *
10752  * Returns true or false.
10753  */
10754 static bool intel_wm_need_update(struct drm_plane *plane,
10755                                  struct drm_plane_state *state)
10756 {
10757         struct intel_plane_state *new = to_intel_plane_state(state);
10758         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10759
10760         /* Update watermarks on tiling or size changes. */
10761         if (new->base.visible != cur->base.visible)
10762                 return true;
10763
10764         if (!cur->base.fb || !new->base.fb)
10765                 return false;
10766
10767         if (cur->base.fb->modifier != new->base.fb->modifier ||
10768             cur->base.rotation != new->base.rotation ||
10769             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10770             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10771             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10772             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10773                 return true;
10774
10775         return false;
10776 }
10777
10778 static bool needs_scaling(struct intel_plane_state *state)
10779 {
10780         int src_w = drm_rect_width(&state->base.src) >> 16;
10781         int src_h = drm_rect_height(&state->base.src) >> 16;
10782         int dst_w = drm_rect_width(&state->base.dst);
10783         int dst_h = drm_rect_height(&state->base.dst);
10784
10785         return (src_w != dst_w || src_h != dst_h);
10786 }
10787
10788 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10789                                     struct drm_plane_state *plane_state)
10790 {
10791         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10792         struct drm_crtc *crtc = crtc_state->crtc;
10793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10794         struct intel_plane *plane = to_intel_plane(plane_state->plane);
10795         struct drm_device *dev = crtc->dev;
10796         struct drm_i915_private *dev_priv = to_i915(dev);
10797         struct intel_plane_state *old_plane_state =
10798                 to_intel_plane_state(plane->base.state);
10799         bool mode_changed = needs_modeset(crtc_state);
10800         bool was_crtc_enabled = crtc->state->active;
10801         bool is_crtc_enabled = crtc_state->active;
10802         bool turn_off, turn_on, visible, was_visible;
10803         struct drm_framebuffer *fb = plane_state->fb;
10804         int ret;
10805
10806         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10807                 ret = skl_update_scaler_plane(
10808                         to_intel_crtc_state(crtc_state),
10809                         to_intel_plane_state(plane_state));
10810                 if (ret)
10811                         return ret;
10812         }
10813
10814         was_visible = old_plane_state->base.visible;
10815         visible = plane_state->visible;
10816
10817         if (!was_crtc_enabled && WARN_ON(was_visible))
10818                 was_visible = false;
10819
10820         /*
10821          * Visibility is calculated as if the crtc was on, but
10822          * after scaler setup everything depends on it being off
10823          * when the crtc isn't active.
10824          *
10825          * FIXME this is wrong for watermarks. Watermarks should also
10826          * be computed as if the pipe would be active. Perhaps move
10827          * per-plane wm computation to the .check_plane() hook, and
10828          * only combine the results from all planes in the current place?
10829          */
10830         if (!is_crtc_enabled) {
10831                 plane_state->visible = visible = false;
10832                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10833         }
10834
10835         if (!was_visible && !visible)
10836                 return 0;
10837
10838         if (fb != old_plane_state->base.fb)
10839                 pipe_config->fb_changed = true;
10840
10841         turn_off = was_visible && (!visible || mode_changed);
10842         turn_on = visible && (!was_visible || mode_changed);
10843
10844         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10845                          intel_crtc->base.base.id, intel_crtc->base.name,
10846                          plane->base.base.id, plane->base.name,
10847                          fb ? fb->base.id : -1);
10848
10849         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10850                          plane->base.base.id, plane->base.name,
10851                          was_visible, visible,
10852                          turn_off, turn_on, mode_changed);
10853
10854         if (turn_on) {
10855                 if (INTEL_GEN(dev_priv) < 5)
10856                         pipe_config->update_wm_pre = true;
10857
10858                 /* must disable cxsr around plane enable/disable */
10859                 if (plane->id != PLANE_CURSOR)
10860                         pipe_config->disable_cxsr = true;
10861         } else if (turn_off) {
10862                 if (INTEL_GEN(dev_priv) < 5)
10863                         pipe_config->update_wm_post = true;
10864
10865                 /* must disable cxsr around plane enable/disable */
10866                 if (plane->id != PLANE_CURSOR)
10867                         pipe_config->disable_cxsr = true;
10868         } else if (intel_wm_need_update(&plane->base, plane_state)) {
10869                 if (INTEL_GEN(dev_priv) < 5) {
10870                         /* FIXME bollocks */
10871                         pipe_config->update_wm_pre = true;
10872                         pipe_config->update_wm_post = true;
10873                 }
10874         }
10875
10876         if (visible || was_visible)
10877                 pipe_config->fb_bits |= plane->frontbuffer_bit;
10878
10879         /*
10880          * WaCxSRDisabledForSpriteScaling:ivb
10881          *
10882          * cstate->update_wm was already set above, so this flag will
10883          * take effect when we commit and program watermarks.
10884          */
10885         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10886             needs_scaling(to_intel_plane_state(plane_state)) &&
10887             !needs_scaling(old_plane_state))
10888                 pipe_config->disable_lp_wm = true;
10889
10890         return 0;
10891 }
10892
10893 static bool encoders_cloneable(const struct intel_encoder *a,
10894                                const struct intel_encoder *b)
10895 {
10896         /* masks could be asymmetric, so check both ways */
10897         return a == b || (a->cloneable & (1 << b->type) &&
10898                           b->cloneable & (1 << a->type));
10899 }
10900
10901 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10902                                          struct intel_crtc *crtc,
10903                                          struct intel_encoder *encoder)
10904 {
10905         struct intel_encoder *source_encoder;
10906         struct drm_connector *connector;
10907         struct drm_connector_state *connector_state;
10908         int i;
10909
10910         for_each_connector_in_state(state, connector, connector_state, i) {
10911                 if (connector_state->crtc != &crtc->base)
10912                         continue;
10913
10914                 source_encoder =
10915                         to_intel_encoder(connector_state->best_encoder);
10916                 if (!encoders_cloneable(encoder, source_encoder))
10917                         return false;
10918         }
10919
10920         return true;
10921 }
10922
10923 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10924                                    struct drm_crtc_state *crtc_state)
10925 {
10926         struct drm_device *dev = crtc->dev;
10927         struct drm_i915_private *dev_priv = to_i915(dev);
10928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10929         struct intel_crtc_state *pipe_config =
10930                 to_intel_crtc_state(crtc_state);
10931         struct drm_atomic_state *state = crtc_state->state;
10932         int ret;
10933         bool mode_changed = needs_modeset(crtc_state);
10934
10935         if (mode_changed && !crtc_state->active)
10936                 pipe_config->update_wm_post = true;
10937
10938         if (mode_changed && crtc_state->enable &&
10939             dev_priv->display.crtc_compute_clock &&
10940             !WARN_ON(pipe_config->shared_dpll)) {
10941                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10942                                                            pipe_config);
10943                 if (ret)
10944                         return ret;
10945         }
10946
10947         if (crtc_state->color_mgmt_changed) {
10948                 ret = intel_color_check(crtc, crtc_state);
10949                 if (ret)
10950                         return ret;
10951
10952                 /*
10953                  * Changing color management on Intel hardware is
10954                  * handled as part of planes update.
10955                  */
10956                 crtc_state->planes_changed = true;
10957         }
10958
10959         ret = 0;
10960         if (dev_priv->display.compute_pipe_wm) {
10961                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10962                 if (ret) {
10963                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10964                         return ret;
10965                 }
10966         }
10967
10968         if (dev_priv->display.compute_intermediate_wm &&
10969             !to_intel_atomic_state(state)->skip_intermediate_wm) {
10970                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10971                         return 0;
10972
10973                 /*
10974                  * Calculate 'intermediate' watermarks that satisfy both the
10975                  * old state and the new state.  We can program these
10976                  * immediately.
10977                  */
10978                 ret = dev_priv->display.compute_intermediate_wm(dev,
10979                                                                 intel_crtc,
10980                                                                 pipe_config);
10981                 if (ret) {
10982                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10983                         return ret;
10984                 }
10985         } else if (dev_priv->display.compute_intermediate_wm) {
10986                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10987                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10988         }
10989
10990         if (INTEL_GEN(dev_priv) >= 9) {
10991                 if (mode_changed)
10992                         ret = skl_update_scaler_crtc(pipe_config);
10993
10994                 if (!ret)
10995                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10996                                                          pipe_config);
10997         }
10998
10999         return ret;
11000 }
11001
11002 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11003         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11004         .atomic_begin = intel_begin_crtc_commit,
11005         .atomic_flush = intel_finish_crtc_commit,
11006         .atomic_check = intel_crtc_atomic_check,
11007 };
11008
11009 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11010 {
11011         struct intel_connector *connector;
11012
11013         for_each_intel_connector(dev, connector) {
11014                 if (connector->base.state->crtc)
11015                         drm_connector_unreference(&connector->base);
11016
11017                 if (connector->base.encoder) {
11018                         connector->base.state->best_encoder =
11019                                 connector->base.encoder;
11020                         connector->base.state->crtc =
11021                                 connector->base.encoder->crtc;
11022
11023                         drm_connector_reference(&connector->base);
11024                 } else {
11025                         connector->base.state->best_encoder = NULL;
11026                         connector->base.state->crtc = NULL;
11027                 }
11028         }
11029 }
11030
11031 static void
11032 connected_sink_compute_bpp(struct intel_connector *connector,
11033                            struct intel_crtc_state *pipe_config)
11034 {
11035         const struct drm_display_info *info = &connector->base.display_info;
11036         int bpp = pipe_config->pipe_bpp;
11037
11038         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11039                       connector->base.base.id,
11040                       connector->base.name);
11041
11042         /* Don't use an invalid EDID bpc value */
11043         if (info->bpc != 0 && info->bpc * 3 < bpp) {
11044                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11045                               bpp, info->bpc * 3);
11046                 pipe_config->pipe_bpp = info->bpc * 3;
11047         }
11048
11049         /* Clamp bpp to 8 on screens without EDID 1.4 */
11050         if (info->bpc == 0 && bpp > 24) {
11051                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11052                               bpp);
11053                 pipe_config->pipe_bpp = 24;
11054         }
11055 }
11056
11057 static int
11058 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11059                           struct intel_crtc_state *pipe_config)
11060 {
11061         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11062         struct drm_atomic_state *state;
11063         struct drm_connector *connector;
11064         struct drm_connector_state *connector_state;
11065         int bpp, i;
11066
11067         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11068             IS_CHERRYVIEW(dev_priv)))
11069                 bpp = 10*3;
11070         else if (INTEL_GEN(dev_priv) >= 5)
11071                 bpp = 12*3;
11072         else
11073                 bpp = 8*3;
11074
11075
11076         pipe_config->pipe_bpp = bpp;
11077
11078         state = pipe_config->base.state;
11079
11080         /* Clamp display bpp to EDID value */
11081         for_each_connector_in_state(state, connector, connector_state, i) {
11082                 if (connector_state->crtc != &crtc->base)
11083                         continue;
11084
11085                 connected_sink_compute_bpp(to_intel_connector(connector),
11086                                            pipe_config);
11087         }
11088
11089         return bpp;
11090 }
11091
11092 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11093 {
11094         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11095                         "type: 0x%x flags: 0x%x\n",
11096                 mode->crtc_clock,
11097                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11098                 mode->crtc_hsync_end, mode->crtc_htotal,
11099                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11100                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11101 }
11102
11103 static inline void
11104 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11105                       unsigned int lane_count, struct intel_link_m_n *m_n)
11106 {
11107         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11108                       id, lane_count,
11109                       m_n->gmch_m, m_n->gmch_n,
11110                       m_n->link_m, m_n->link_n, m_n->tu);
11111 }
11112
11113 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11114                                    struct intel_crtc_state *pipe_config,
11115                                    const char *context)
11116 {
11117         struct drm_device *dev = crtc->base.dev;
11118         struct drm_i915_private *dev_priv = to_i915(dev);
11119         struct drm_plane *plane;
11120         struct intel_plane *intel_plane;
11121         struct intel_plane_state *state;
11122         struct drm_framebuffer *fb;
11123
11124         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11125                       crtc->base.base.id, crtc->base.name, context);
11126
11127         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11128                       transcoder_name(pipe_config->cpu_transcoder),
11129                       pipe_config->pipe_bpp, pipe_config->dither);
11130
11131         if (pipe_config->has_pch_encoder)
11132                 intel_dump_m_n_config(pipe_config, "fdi",
11133                                       pipe_config->fdi_lanes,
11134                                       &pipe_config->fdi_m_n);
11135
11136         if (intel_crtc_has_dp_encoder(pipe_config)) {
11137                 intel_dump_m_n_config(pipe_config, "dp m_n",
11138                                 pipe_config->lane_count, &pipe_config->dp_m_n);
11139                 if (pipe_config->has_drrs)
11140                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
11141                                               pipe_config->lane_count,
11142                                               &pipe_config->dp_m2_n2);
11143         }
11144
11145         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11146                       pipe_config->has_audio, pipe_config->has_infoframe);
11147
11148         DRM_DEBUG_KMS("requested mode:\n");
11149         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11150         DRM_DEBUG_KMS("adjusted mode:\n");
11151         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11152         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11153         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11154                       pipe_config->port_clock,
11155                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11156                       pipe_config->pixel_rate);
11157
11158         if (INTEL_GEN(dev_priv) >= 9)
11159                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11160                               crtc->num_scalers,
11161                               pipe_config->scaler_state.scaler_users,
11162                               pipe_config->scaler_state.scaler_id);
11163
11164         if (HAS_GMCH_DISPLAY(dev_priv))
11165                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11166                               pipe_config->gmch_pfit.control,
11167                               pipe_config->gmch_pfit.pgm_ratios,
11168                               pipe_config->gmch_pfit.lvds_border_bits);
11169         else
11170                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11171                               pipe_config->pch_pfit.pos,
11172                               pipe_config->pch_pfit.size,
11173                               enableddisabled(pipe_config->pch_pfit.enabled));
11174
11175         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11176                       pipe_config->ips_enabled, pipe_config->double_wide);
11177
11178         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11179
11180         DRM_DEBUG_KMS("planes on this crtc\n");
11181         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11182                 struct drm_format_name_buf format_name;
11183                 intel_plane = to_intel_plane(plane);
11184                 if (intel_plane->pipe != crtc->pipe)
11185                         continue;
11186
11187                 state = to_intel_plane_state(plane->state);
11188                 fb = state->base.fb;
11189                 if (!fb) {
11190                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11191                                       plane->base.id, plane->name, state->scaler_id);
11192                         continue;
11193                 }
11194
11195                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11196                               plane->base.id, plane->name,
11197                               fb->base.id, fb->width, fb->height,
11198                               drm_get_format_name(fb->format->format, &format_name));
11199                 if (INTEL_GEN(dev_priv) >= 9)
11200                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11201                                       state->scaler_id,
11202                                       state->base.src.x1 >> 16,
11203                                       state->base.src.y1 >> 16,
11204                                       drm_rect_width(&state->base.src) >> 16,
11205                                       drm_rect_height(&state->base.src) >> 16,
11206                                       state->base.dst.x1, state->base.dst.y1,
11207                                       drm_rect_width(&state->base.dst),
11208                                       drm_rect_height(&state->base.dst));
11209         }
11210 }
11211
11212 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11213 {
11214         struct drm_device *dev = state->dev;
11215         struct drm_connector *connector;
11216         unsigned int used_ports = 0;
11217         unsigned int used_mst_ports = 0;
11218
11219         /*
11220          * Walk the connector list instead of the encoder
11221          * list to detect the problem on ddi platforms
11222          * where there's just one encoder per digital port.
11223          */
11224         drm_for_each_connector(connector, dev) {
11225                 struct drm_connector_state *connector_state;
11226                 struct intel_encoder *encoder;
11227
11228                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11229                 if (!connector_state)
11230                         connector_state = connector->state;
11231
11232                 if (!connector_state->best_encoder)
11233                         continue;
11234
11235                 encoder = to_intel_encoder(connector_state->best_encoder);
11236
11237                 WARN_ON(!connector_state->crtc);
11238
11239                 switch (encoder->type) {
11240                         unsigned int port_mask;
11241                 case INTEL_OUTPUT_UNKNOWN:
11242                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
11243                                 break;
11244                 case INTEL_OUTPUT_DP:
11245                 case INTEL_OUTPUT_HDMI:
11246                 case INTEL_OUTPUT_EDP:
11247                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11248
11249                         /* the same port mustn't appear more than once */
11250                         if (used_ports & port_mask)
11251                                 return false;
11252
11253                         used_ports |= port_mask;
11254                         break;
11255                 case INTEL_OUTPUT_DP_MST:
11256                         used_mst_ports |=
11257                                 1 << enc_to_mst(&encoder->base)->primary->port;
11258                         break;
11259                 default:
11260                         break;
11261                 }
11262         }
11263
11264         /* can't mix MST and SST/HDMI on the same port */
11265         if (used_ports & used_mst_ports)
11266                 return false;
11267
11268         return true;
11269 }
11270
11271 static void
11272 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11273 {
11274         struct drm_i915_private *dev_priv =
11275                 to_i915(crtc_state->base.crtc->dev);
11276         struct intel_crtc_scaler_state scaler_state;
11277         struct intel_dpll_hw_state dpll_hw_state;
11278         struct intel_shared_dpll *shared_dpll;
11279         struct intel_crtc_wm_state wm_state;
11280         bool force_thru;
11281
11282         /* FIXME: before the switch to atomic started, a new pipe_config was
11283          * kzalloc'd. Code that depends on any field being zero should be
11284          * fixed, so that the crtc_state can be safely duplicated. For now,
11285          * only fields that are know to not cause problems are preserved. */
11286
11287         scaler_state = crtc_state->scaler_state;
11288         shared_dpll = crtc_state->shared_dpll;
11289         dpll_hw_state = crtc_state->dpll_hw_state;
11290         force_thru = crtc_state->pch_pfit.force_thru;
11291         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11292                 wm_state = crtc_state->wm;
11293
11294         /* Keep base drm_crtc_state intact, only clear our extended struct */
11295         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11296         memset(&crtc_state->base + 1, 0,
11297                sizeof(*crtc_state) - sizeof(crtc_state->base));
11298
11299         crtc_state->scaler_state = scaler_state;
11300         crtc_state->shared_dpll = shared_dpll;
11301         crtc_state->dpll_hw_state = dpll_hw_state;
11302         crtc_state->pch_pfit.force_thru = force_thru;
11303         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11304                 crtc_state->wm = wm_state;
11305 }
11306
11307 static int
11308 intel_modeset_pipe_config(struct drm_crtc *crtc,
11309                           struct intel_crtc_state *pipe_config)
11310 {
11311         struct drm_atomic_state *state = pipe_config->base.state;
11312         struct intel_encoder *encoder;
11313         struct drm_connector *connector;
11314         struct drm_connector_state *connector_state;
11315         int base_bpp, ret = -EINVAL;
11316         int i;
11317         bool retry = true;
11318
11319         clear_intel_crtc_state(pipe_config);
11320
11321         pipe_config->cpu_transcoder =
11322                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11323
11324         /*
11325          * Sanitize sync polarity flags based on requested ones. If neither
11326          * positive or negative polarity is requested, treat this as meaning
11327          * negative polarity.
11328          */
11329         if (!(pipe_config->base.adjusted_mode.flags &
11330               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11331                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11332
11333         if (!(pipe_config->base.adjusted_mode.flags &
11334               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11335                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11336
11337         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11338                                              pipe_config);
11339         if (base_bpp < 0)
11340                 goto fail;
11341
11342         /*
11343          * Determine the real pipe dimensions. Note that stereo modes can
11344          * increase the actual pipe size due to the frame doubling and
11345          * insertion of additional space for blanks between the frame. This
11346          * is stored in the crtc timings. We use the requested mode to do this
11347          * computation to clearly distinguish it from the adjusted mode, which
11348          * can be changed by the connectors in the below retry loop.
11349          */
11350         drm_mode_get_hv_timing(&pipe_config->base.mode,
11351                                &pipe_config->pipe_src_w,
11352                                &pipe_config->pipe_src_h);
11353
11354         for_each_connector_in_state(state, connector, connector_state, i) {
11355                 if (connector_state->crtc != crtc)
11356                         continue;
11357
11358                 encoder = to_intel_encoder(connector_state->best_encoder);
11359
11360                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11361                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11362                         goto fail;
11363                 }
11364
11365                 /*
11366                  * Determine output_types before calling the .compute_config()
11367                  * hooks so that the hooks can use this information safely.
11368                  */
11369                 pipe_config->output_types |= 1 << encoder->type;
11370         }
11371
11372 encoder_retry:
11373         /* Ensure the port clock defaults are reset when retrying. */
11374         pipe_config->port_clock = 0;
11375         pipe_config->pixel_multiplier = 1;
11376
11377         /* Fill in default crtc timings, allow encoders to overwrite them. */
11378         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11379                               CRTC_STEREO_DOUBLE);
11380
11381         /* Pass our mode to the connectors and the CRTC to give them a chance to
11382          * adjust it according to limitations or connector properties, and also
11383          * a chance to reject the mode entirely.
11384          */
11385         for_each_connector_in_state(state, connector, connector_state, i) {
11386                 if (connector_state->crtc != crtc)
11387                         continue;
11388
11389                 encoder = to_intel_encoder(connector_state->best_encoder);
11390
11391                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11392                         DRM_DEBUG_KMS("Encoder config failure\n");
11393                         goto fail;
11394                 }
11395         }
11396
11397         /* Set default port clock if not overwritten by the encoder. Needs to be
11398          * done afterwards in case the encoder adjusts the mode. */
11399         if (!pipe_config->port_clock)
11400                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11401                         * pipe_config->pixel_multiplier;
11402
11403         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11404         if (ret < 0) {
11405                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11406                 goto fail;
11407         }
11408
11409         if (ret == RETRY) {
11410                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11411                         ret = -EINVAL;
11412                         goto fail;
11413                 }
11414
11415                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11416                 retry = false;
11417                 goto encoder_retry;
11418         }
11419
11420         /* Dithering seems to not pass-through bits correctly when it should, so
11421          * only enable it on 6bpc panels and when its not a compliance
11422          * test requesting 6bpc video pattern.
11423          */
11424         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11425                 !pipe_config->dither_force_disable;
11426         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11427                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11428
11429 fail:
11430         return ret;
11431 }
11432
11433 static void
11434 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11435 {
11436         struct drm_crtc *crtc;
11437         struct drm_crtc_state *crtc_state;
11438         int i;
11439
11440         /* Double check state. */
11441         for_each_crtc_in_state(state, crtc, crtc_state, i) {
11442                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
11443
11444                 /* Update hwmode for vblank functions */
11445                 if (crtc->state->active)
11446                         crtc->hwmode = crtc->state->adjusted_mode;
11447                 else
11448                         crtc->hwmode.crtc_clock = 0;
11449
11450                 /*
11451                  * Update legacy state to satisfy fbc code. This can
11452                  * be removed when fbc uses the atomic state.
11453                  */
11454                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11455                         struct drm_plane_state *plane_state = crtc->primary->state;
11456
11457                         crtc->primary->fb = plane_state->fb;
11458                         crtc->x = plane_state->src_x >> 16;
11459                         crtc->y = plane_state->src_y >> 16;
11460                 }
11461         }
11462 }
11463
11464 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11465 {
11466         int diff;
11467
11468         if (clock1 == clock2)
11469                 return true;
11470
11471         if (!clock1 || !clock2)
11472                 return false;
11473
11474         diff = abs(clock1 - clock2);
11475
11476         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11477                 return true;
11478
11479         return false;
11480 }
11481
11482 static bool
11483 intel_compare_m_n(unsigned int m, unsigned int n,
11484                   unsigned int m2, unsigned int n2,
11485                   bool exact)
11486 {
11487         if (m == m2 && n == n2)
11488                 return true;
11489
11490         if (exact || !m || !n || !m2 || !n2)
11491                 return false;
11492
11493         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11494
11495         if (n > n2) {
11496                 while (n > n2) {
11497                         m2 <<= 1;
11498                         n2 <<= 1;
11499                 }
11500         } else if (n < n2) {
11501                 while (n < n2) {
11502                         m <<= 1;
11503                         n <<= 1;
11504                 }
11505         }
11506
11507         if (n != n2)
11508                 return false;
11509
11510         return intel_fuzzy_clock_check(m, m2);
11511 }
11512
11513 static bool
11514 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11515                        struct intel_link_m_n *m2_n2,
11516                        bool adjust)
11517 {
11518         if (m_n->tu == m2_n2->tu &&
11519             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11520                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11521             intel_compare_m_n(m_n->link_m, m_n->link_n,
11522                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11523                 if (adjust)
11524                         *m2_n2 = *m_n;
11525
11526                 return true;
11527         }
11528
11529         return false;
11530 }
11531
11532 static void __printf(3, 4)
11533 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11534 {
11535         char *level;
11536         unsigned int category;
11537         struct va_format vaf;
11538         va_list args;
11539
11540         if (adjust) {
11541                 level = KERN_DEBUG;
11542                 category = DRM_UT_KMS;
11543         } else {
11544                 level = KERN_ERR;
11545                 category = DRM_UT_NONE;
11546         }
11547
11548         va_start(args, format);
11549         vaf.fmt = format;
11550         vaf.va = &args;
11551
11552         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11553
11554         va_end(args);
11555 }
11556
11557 static bool
11558 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11559                           struct intel_crtc_state *current_config,
11560                           struct intel_crtc_state *pipe_config,
11561                           bool adjust)
11562 {
11563         bool ret = true;
11564
11565 #define PIPE_CONF_CHECK_X(name) \
11566         if (current_config->name != pipe_config->name) { \
11567                 pipe_config_err(adjust, __stringify(name), \
11568                           "(expected 0x%08x, found 0x%08x)\n", \
11569                           current_config->name, \
11570                           pipe_config->name); \
11571                 ret = false; \
11572         }
11573
11574 #define PIPE_CONF_CHECK_I(name) \
11575         if (current_config->name != pipe_config->name) { \
11576                 pipe_config_err(adjust, __stringify(name), \
11577                           "(expected %i, found %i)\n", \
11578                           current_config->name, \
11579                           pipe_config->name); \
11580                 ret = false; \
11581         }
11582
11583 #define PIPE_CONF_CHECK_P(name) \
11584         if (current_config->name != pipe_config->name) { \
11585                 pipe_config_err(adjust, __stringify(name), \
11586                           "(expected %p, found %p)\n", \
11587                           current_config->name, \
11588                           pipe_config->name); \
11589                 ret = false; \
11590         }
11591
11592 #define PIPE_CONF_CHECK_M_N(name) \
11593         if (!intel_compare_link_m_n(&current_config->name, \
11594                                     &pipe_config->name,\
11595                                     adjust)) { \
11596                 pipe_config_err(adjust, __stringify(name), \
11597                           "(expected tu %i gmch %i/%i link %i/%i, " \
11598                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11599                           current_config->name.tu, \
11600                           current_config->name.gmch_m, \
11601                           current_config->name.gmch_n, \
11602                           current_config->name.link_m, \
11603                           current_config->name.link_n, \
11604                           pipe_config->name.tu, \
11605                           pipe_config->name.gmch_m, \
11606                           pipe_config->name.gmch_n, \
11607                           pipe_config->name.link_m, \
11608                           pipe_config->name.link_n); \
11609                 ret = false; \
11610         }
11611
11612 /* This is required for BDW+ where there is only one set of registers for
11613  * switching between high and low RR.
11614  * This macro can be used whenever a comparison has to be made between one
11615  * hw state and multiple sw state variables.
11616  */
11617 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11618         if (!intel_compare_link_m_n(&current_config->name, \
11619                                     &pipe_config->name, adjust) && \
11620             !intel_compare_link_m_n(&current_config->alt_name, \
11621                                     &pipe_config->name, adjust)) { \
11622                 pipe_config_err(adjust, __stringify(name), \
11623                           "(expected tu %i gmch %i/%i link %i/%i, " \
11624                           "or tu %i gmch %i/%i link %i/%i, " \
11625                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11626                           current_config->name.tu, \
11627                           current_config->name.gmch_m, \
11628                           current_config->name.gmch_n, \
11629                           current_config->name.link_m, \
11630                           current_config->name.link_n, \
11631                           current_config->alt_name.tu, \
11632                           current_config->alt_name.gmch_m, \
11633                           current_config->alt_name.gmch_n, \
11634                           current_config->alt_name.link_m, \
11635                           current_config->alt_name.link_n, \
11636                           pipe_config->name.tu, \
11637                           pipe_config->name.gmch_m, \
11638                           pipe_config->name.gmch_n, \
11639                           pipe_config->name.link_m, \
11640                           pipe_config->name.link_n); \
11641                 ret = false; \
11642         }
11643
11644 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11645         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11646                 pipe_config_err(adjust, __stringify(name), \
11647                           "(%x) (expected %i, found %i)\n", \
11648                           (mask), \
11649                           current_config->name & (mask), \
11650                           pipe_config->name & (mask)); \
11651                 ret = false; \
11652         }
11653
11654 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11655         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11656                 pipe_config_err(adjust, __stringify(name), \
11657                           "(expected %i, found %i)\n", \
11658                           current_config->name, \
11659                           pipe_config->name); \
11660                 ret = false; \
11661         }
11662
11663 #define PIPE_CONF_QUIRK(quirk)  \
11664         ((current_config->quirks | pipe_config->quirks) & (quirk))
11665
11666         PIPE_CONF_CHECK_I(cpu_transcoder);
11667
11668         PIPE_CONF_CHECK_I(has_pch_encoder);
11669         PIPE_CONF_CHECK_I(fdi_lanes);
11670         PIPE_CONF_CHECK_M_N(fdi_m_n);
11671
11672         PIPE_CONF_CHECK_I(lane_count);
11673         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11674
11675         if (INTEL_GEN(dev_priv) < 8) {
11676                 PIPE_CONF_CHECK_M_N(dp_m_n);
11677
11678                 if (current_config->has_drrs)
11679                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11680         } else
11681                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11682
11683         PIPE_CONF_CHECK_X(output_types);
11684
11685         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11686         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11687         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11688         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11689         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11690         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11691
11692         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11694         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11695         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11696         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11697         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11698
11699         PIPE_CONF_CHECK_I(pixel_multiplier);
11700         PIPE_CONF_CHECK_I(has_hdmi_sink);
11701         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11702             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11703                 PIPE_CONF_CHECK_I(limited_color_range);
11704         PIPE_CONF_CHECK_I(has_infoframe);
11705
11706         PIPE_CONF_CHECK_I(has_audio);
11707
11708         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11709                               DRM_MODE_FLAG_INTERLACE);
11710
11711         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11712                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11713                                       DRM_MODE_FLAG_PHSYNC);
11714                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11715                                       DRM_MODE_FLAG_NHSYNC);
11716                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11717                                       DRM_MODE_FLAG_PVSYNC);
11718                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11719                                       DRM_MODE_FLAG_NVSYNC);
11720         }
11721
11722         PIPE_CONF_CHECK_X(gmch_pfit.control);
11723         /* pfit ratios are autocomputed by the hw on gen4+ */
11724         if (INTEL_GEN(dev_priv) < 4)
11725                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11726         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11727
11728         if (!adjust) {
11729                 PIPE_CONF_CHECK_I(pipe_src_w);
11730                 PIPE_CONF_CHECK_I(pipe_src_h);
11731
11732                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11733                 if (current_config->pch_pfit.enabled) {
11734                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11735                         PIPE_CONF_CHECK_X(pch_pfit.size);
11736                 }
11737
11738                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11739                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11740         }
11741
11742         /* BDW+ don't expose a synchronous way to read the state */
11743         if (IS_HASWELL(dev_priv))
11744                 PIPE_CONF_CHECK_I(ips_enabled);
11745
11746         PIPE_CONF_CHECK_I(double_wide);
11747
11748         PIPE_CONF_CHECK_P(shared_dpll);
11749         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11750         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11751         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11752         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11753         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11754         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11755         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11756         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11757         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11758
11759         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11760         PIPE_CONF_CHECK_X(dsi_pll.div);
11761
11762         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11763                 PIPE_CONF_CHECK_I(pipe_bpp);
11764
11765         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11766         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11767
11768 #undef PIPE_CONF_CHECK_X
11769 #undef PIPE_CONF_CHECK_I
11770 #undef PIPE_CONF_CHECK_P
11771 #undef PIPE_CONF_CHECK_FLAGS
11772 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11773 #undef PIPE_CONF_QUIRK
11774
11775         return ret;
11776 }
11777
11778 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11779                                            const struct intel_crtc_state *pipe_config)
11780 {
11781         if (pipe_config->has_pch_encoder) {
11782                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11783                                                             &pipe_config->fdi_m_n);
11784                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11785
11786                 /*
11787                  * FDI already provided one idea for the dotclock.
11788                  * Yell if the encoder disagrees.
11789                  */
11790                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11791                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11792                      fdi_dotclock, dotclock);
11793         }
11794 }
11795
11796 static void verify_wm_state(struct drm_crtc *crtc,
11797                             struct drm_crtc_state *new_state)
11798 {
11799         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11800         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11801         struct skl_pipe_wm hw_wm, *sw_wm;
11802         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11803         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11805         const enum pipe pipe = intel_crtc->pipe;
11806         int plane, level, max_level = ilk_wm_max_level(dev_priv);
11807
11808         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11809                 return;
11810
11811         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11812         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11813
11814         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11815         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11816
11817         /* planes */
11818         for_each_universal_plane(dev_priv, pipe, plane) {
11819                 hw_plane_wm = &hw_wm.planes[plane];
11820                 sw_plane_wm = &sw_wm->planes[plane];
11821
11822                 /* Watermarks */
11823                 for (level = 0; level <= max_level; level++) {
11824                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11825                                                 &sw_plane_wm->wm[level]))
11826                                 continue;
11827
11828                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11829                                   pipe_name(pipe), plane + 1, level,
11830                                   sw_plane_wm->wm[level].plane_en,
11831                                   sw_plane_wm->wm[level].plane_res_b,
11832                                   sw_plane_wm->wm[level].plane_res_l,
11833                                   hw_plane_wm->wm[level].plane_en,
11834                                   hw_plane_wm->wm[level].plane_res_b,
11835                                   hw_plane_wm->wm[level].plane_res_l);
11836                 }
11837
11838                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11839                                          &sw_plane_wm->trans_wm)) {
11840                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11841                                   pipe_name(pipe), plane + 1,
11842                                   sw_plane_wm->trans_wm.plane_en,
11843                                   sw_plane_wm->trans_wm.plane_res_b,
11844                                   sw_plane_wm->trans_wm.plane_res_l,
11845                                   hw_plane_wm->trans_wm.plane_en,
11846                                   hw_plane_wm->trans_wm.plane_res_b,
11847                                   hw_plane_wm->trans_wm.plane_res_l);
11848                 }
11849
11850                 /* DDB */
11851                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11852                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11853
11854                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11855                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11856                                   pipe_name(pipe), plane + 1,
11857                                   sw_ddb_entry->start, sw_ddb_entry->end,
11858                                   hw_ddb_entry->start, hw_ddb_entry->end);
11859                 }
11860         }
11861
11862         /*
11863          * cursor
11864          * If the cursor plane isn't active, we may not have updated it's ddb
11865          * allocation. In that case since the ddb allocation will be updated
11866          * once the plane becomes visible, we can skip this check
11867          */
11868         if (intel_crtc->cursor_addr) {
11869                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11870                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11871
11872                 /* Watermarks */
11873                 for (level = 0; level <= max_level; level++) {
11874                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11875                                                 &sw_plane_wm->wm[level]))
11876                                 continue;
11877
11878                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11879                                   pipe_name(pipe), level,
11880                                   sw_plane_wm->wm[level].plane_en,
11881                                   sw_plane_wm->wm[level].plane_res_b,
11882                                   sw_plane_wm->wm[level].plane_res_l,
11883                                   hw_plane_wm->wm[level].plane_en,
11884                                   hw_plane_wm->wm[level].plane_res_b,
11885                                   hw_plane_wm->wm[level].plane_res_l);
11886                 }
11887
11888                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11889                                          &sw_plane_wm->trans_wm)) {
11890                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11891                                   pipe_name(pipe),
11892                                   sw_plane_wm->trans_wm.plane_en,
11893                                   sw_plane_wm->trans_wm.plane_res_b,
11894                                   sw_plane_wm->trans_wm.plane_res_l,
11895                                   hw_plane_wm->trans_wm.plane_en,
11896                                   hw_plane_wm->trans_wm.plane_res_b,
11897                                   hw_plane_wm->trans_wm.plane_res_l);
11898                 }
11899
11900                 /* DDB */
11901                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11902                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11903
11904                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11905                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11906                                   pipe_name(pipe),
11907                                   sw_ddb_entry->start, sw_ddb_entry->end,
11908                                   hw_ddb_entry->start, hw_ddb_entry->end);
11909                 }
11910         }
11911 }
11912
11913 static void
11914 verify_connector_state(struct drm_device *dev,
11915                        struct drm_atomic_state *state,
11916                        struct drm_crtc *crtc)
11917 {
11918         struct drm_connector *connector;
11919         struct drm_connector_state *old_conn_state;
11920         int i;
11921
11922         for_each_connector_in_state(state, connector, old_conn_state, i) {
11923                 struct drm_encoder *encoder = connector->encoder;
11924                 struct drm_connector_state *state = connector->state;
11925
11926                 if (state->crtc != crtc)
11927                         continue;
11928
11929                 intel_connector_verify_state(to_intel_connector(connector));
11930
11931                 I915_STATE_WARN(state->best_encoder != encoder,
11932                      "connector's atomic encoder doesn't match legacy encoder\n");
11933         }
11934 }
11935
11936 static void
11937 verify_encoder_state(struct drm_device *dev)
11938 {
11939         struct intel_encoder *encoder;
11940         struct intel_connector *connector;
11941
11942         for_each_intel_encoder(dev, encoder) {
11943                 bool enabled = false;
11944                 enum pipe pipe;
11945
11946                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11947                               encoder->base.base.id,
11948                               encoder->base.name);
11949
11950                 for_each_intel_connector(dev, connector) {
11951                         if (connector->base.state->best_encoder != &encoder->base)
11952                                 continue;
11953                         enabled = true;
11954
11955                         I915_STATE_WARN(connector->base.state->crtc !=
11956                                         encoder->base.crtc,
11957                              "connector's crtc doesn't match encoder crtc\n");
11958                 }
11959
11960                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11961                      "encoder's enabled state mismatch "
11962                      "(expected %i, found %i)\n",
11963                      !!encoder->base.crtc, enabled);
11964
11965                 if (!encoder->base.crtc) {
11966                         bool active;
11967
11968                         active = encoder->get_hw_state(encoder, &pipe);
11969                         I915_STATE_WARN(active,
11970                              "encoder detached but still enabled on pipe %c.\n",
11971                              pipe_name(pipe));
11972                 }
11973         }
11974 }
11975
11976 static void
11977 verify_crtc_state(struct drm_crtc *crtc,
11978                   struct drm_crtc_state *old_crtc_state,
11979                   struct drm_crtc_state *new_crtc_state)
11980 {
11981         struct drm_device *dev = crtc->dev;
11982         struct drm_i915_private *dev_priv = to_i915(dev);
11983         struct intel_encoder *encoder;
11984         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11985         struct intel_crtc_state *pipe_config, *sw_config;
11986         struct drm_atomic_state *old_state;
11987         bool active;
11988
11989         old_state = old_crtc_state->state;
11990         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11991         pipe_config = to_intel_crtc_state(old_crtc_state);
11992         memset(pipe_config, 0, sizeof(*pipe_config));
11993         pipe_config->base.crtc = crtc;
11994         pipe_config->base.state = old_state;
11995
11996         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11997
11998         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11999
12000         /* hw state is inconsistent with the pipe quirk */
12001         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12002             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12003                 active = new_crtc_state->active;
12004
12005         I915_STATE_WARN(new_crtc_state->active != active,
12006              "crtc active state doesn't match with hw state "
12007              "(expected %i, found %i)\n", new_crtc_state->active, active);
12008
12009         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12010              "transitional active state does not match atomic hw state "
12011              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12012
12013         for_each_encoder_on_crtc(dev, crtc, encoder) {
12014                 enum pipe pipe;
12015
12016                 active = encoder->get_hw_state(encoder, &pipe);
12017                 I915_STATE_WARN(active != new_crtc_state->active,
12018                         "[ENCODER:%i] active %i with crtc active %i\n",
12019                         encoder->base.base.id, active, new_crtc_state->active);
12020
12021                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12022                                 "Encoder connected to wrong pipe %c\n",
12023                                 pipe_name(pipe));
12024
12025                 if (active) {
12026                         pipe_config->output_types |= 1 << encoder->type;
12027                         encoder->get_config(encoder, pipe_config);
12028                 }
12029         }
12030
12031         intel_crtc_compute_pixel_rate(pipe_config);
12032
12033         if (!new_crtc_state->active)
12034                 return;
12035
12036         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12037
12038         sw_config = to_intel_crtc_state(crtc->state);
12039         if (!intel_pipe_config_compare(dev_priv, sw_config,
12040                                        pipe_config, false)) {
12041                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12042                 intel_dump_pipe_config(intel_crtc, pipe_config,
12043                                        "[hw state]");
12044                 intel_dump_pipe_config(intel_crtc, sw_config,
12045                                        "[sw state]");
12046         }
12047 }
12048
12049 static void
12050 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12051                          struct intel_shared_dpll *pll,
12052                          struct drm_crtc *crtc,
12053                          struct drm_crtc_state *new_state)
12054 {
12055         struct intel_dpll_hw_state dpll_hw_state;
12056         unsigned crtc_mask;
12057         bool active;
12058
12059         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12060
12061         DRM_DEBUG_KMS("%s\n", pll->name);
12062
12063         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12064
12065         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12066                 I915_STATE_WARN(!pll->on && pll->active_mask,
12067                      "pll in active use but not on in sw tracking\n");
12068                 I915_STATE_WARN(pll->on && !pll->active_mask,
12069                      "pll is on but not used by any active crtc\n");
12070                 I915_STATE_WARN(pll->on != active,
12071                      "pll on state mismatch (expected %i, found %i)\n",
12072                      pll->on, active);
12073         }
12074
12075         if (!crtc) {
12076                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12077                                 "more active pll users than references: %x vs %x\n",
12078                                 pll->active_mask, pll->state.crtc_mask);
12079
12080                 return;
12081         }
12082
12083         crtc_mask = 1 << drm_crtc_index(crtc);
12084
12085         if (new_state->active)
12086                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12087                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12088                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12089         else
12090                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12091                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12092                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12093
12094         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12095                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12096                         crtc_mask, pll->state.crtc_mask);
12097
12098         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12099                                           &dpll_hw_state,
12100                                           sizeof(dpll_hw_state)),
12101                         "pll hw state mismatch\n");
12102 }
12103
12104 static void
12105 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12106                          struct drm_crtc_state *old_crtc_state,
12107                          struct drm_crtc_state *new_crtc_state)
12108 {
12109         struct drm_i915_private *dev_priv = to_i915(dev);
12110         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12111         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12112
12113         if (new_state->shared_dpll)
12114                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12115
12116         if (old_state->shared_dpll &&
12117             old_state->shared_dpll != new_state->shared_dpll) {
12118                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12119                 struct intel_shared_dpll *pll = old_state->shared_dpll;
12120
12121                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12122                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12123                                 pipe_name(drm_crtc_index(crtc)));
12124                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12125                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12126                                 pipe_name(drm_crtc_index(crtc)));
12127         }
12128 }
12129
12130 static void
12131 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12132                           struct drm_atomic_state *state,
12133                           struct drm_crtc_state *old_state,
12134                           struct drm_crtc_state *new_state)
12135 {
12136         if (!needs_modeset(new_state) &&
12137             !to_intel_crtc_state(new_state)->update_pipe)
12138                 return;
12139
12140         verify_wm_state(crtc, new_state);
12141         verify_connector_state(crtc->dev, state, crtc);
12142         verify_crtc_state(crtc, old_state, new_state);
12143         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12144 }
12145
12146 static void
12147 verify_disabled_dpll_state(struct drm_device *dev)
12148 {
12149         struct drm_i915_private *dev_priv = to_i915(dev);
12150         int i;
12151
12152         for (i = 0; i < dev_priv->num_shared_dpll; i++)
12153                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12154 }
12155
12156 static void
12157 intel_modeset_verify_disabled(struct drm_device *dev,
12158                               struct drm_atomic_state *state)
12159 {
12160         verify_encoder_state(dev);
12161         verify_connector_state(dev, state, NULL);
12162         verify_disabled_dpll_state(dev);
12163 }
12164
12165 static void update_scanline_offset(struct intel_crtc *crtc)
12166 {
12167         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12168
12169         /*
12170          * The scanline counter increments at the leading edge of hsync.
12171          *
12172          * On most platforms it starts counting from vtotal-1 on the
12173          * first active line. That means the scanline counter value is
12174          * always one less than what we would expect. Ie. just after
12175          * start of vblank, which also occurs at start of hsync (on the
12176          * last active line), the scanline counter will read vblank_start-1.
12177          *
12178          * On gen2 the scanline counter starts counting from 1 instead
12179          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12180          * to keep the value positive), instead of adding one.
12181          *
12182          * On HSW+ the behaviour of the scanline counter depends on the output
12183          * type. For DP ports it behaves like most other platforms, but on HDMI
12184          * there's an extra 1 line difference. So we need to add two instead of
12185          * one to the value.
12186          */
12187         if (IS_GEN2(dev_priv)) {
12188                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12189                 int vtotal;
12190
12191                 vtotal = adjusted_mode->crtc_vtotal;
12192                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12193                         vtotal /= 2;
12194
12195                 crtc->scanline_offset = vtotal - 1;
12196         } else if (HAS_DDI(dev_priv) &&
12197                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12198                 crtc->scanline_offset = 2;
12199         } else
12200                 crtc->scanline_offset = 1;
12201 }
12202
12203 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12204 {
12205         struct drm_device *dev = state->dev;
12206         struct drm_i915_private *dev_priv = to_i915(dev);
12207         struct drm_crtc *crtc;
12208         struct drm_crtc_state *crtc_state;
12209         int i;
12210
12211         if (!dev_priv->display.crtc_compute_clock)
12212                 return;
12213
12214         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12215                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12216                 struct intel_shared_dpll *old_dpll =
12217                         to_intel_crtc_state(crtc->state)->shared_dpll;
12218
12219                 if (!needs_modeset(crtc_state))
12220                         continue;
12221
12222                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
12223
12224                 if (!old_dpll)
12225                         continue;
12226
12227                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12228         }
12229 }
12230
12231 /*
12232  * This implements the workaround described in the "notes" section of the mode
12233  * set sequence documentation. When going from no pipes or single pipe to
12234  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12235  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12236  */
12237 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12238 {
12239         struct drm_crtc_state *crtc_state;
12240         struct intel_crtc *intel_crtc;
12241         struct drm_crtc *crtc;
12242         struct intel_crtc_state *first_crtc_state = NULL;
12243         struct intel_crtc_state *other_crtc_state = NULL;
12244         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12245         int i;
12246
12247         /* look at all crtc's that are going to be enabled in during modeset */
12248         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12249                 intel_crtc = to_intel_crtc(crtc);
12250
12251                 if (!crtc_state->active || !needs_modeset(crtc_state))
12252                         continue;
12253
12254                 if (first_crtc_state) {
12255                         other_crtc_state = to_intel_crtc_state(crtc_state);
12256                         break;
12257                 } else {
12258                         first_crtc_state = to_intel_crtc_state(crtc_state);
12259                         first_pipe = intel_crtc->pipe;
12260                 }
12261         }
12262
12263         /* No workaround needed? */
12264         if (!first_crtc_state)
12265                 return 0;
12266
12267         /* w/a possibly needed, check how many crtc's are already enabled. */
12268         for_each_intel_crtc(state->dev, intel_crtc) {
12269                 struct intel_crtc_state *pipe_config;
12270
12271                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12272                 if (IS_ERR(pipe_config))
12273                         return PTR_ERR(pipe_config);
12274
12275                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12276
12277                 if (!pipe_config->base.active ||
12278                     needs_modeset(&pipe_config->base))
12279                         continue;
12280
12281                 /* 2 or more enabled crtcs means no need for w/a */
12282                 if (enabled_pipe != INVALID_PIPE)
12283                         return 0;
12284
12285                 enabled_pipe = intel_crtc->pipe;
12286         }
12287
12288         if (enabled_pipe != INVALID_PIPE)
12289                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12290         else if (other_crtc_state)
12291                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12292
12293         return 0;
12294 }
12295
12296 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12297 {
12298         struct drm_crtc *crtc;
12299
12300         /* Add all pipes to the state */
12301         for_each_crtc(state->dev, crtc) {
12302                 struct drm_crtc_state *crtc_state;
12303
12304                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12305                 if (IS_ERR(crtc_state))
12306                         return PTR_ERR(crtc_state);
12307         }
12308
12309         return 0;
12310 }
12311
12312 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12313 {
12314         struct drm_crtc *crtc;
12315
12316         /*
12317          * Add all pipes to the state, and force
12318          * a modeset on all the active ones.
12319          */
12320         for_each_crtc(state->dev, crtc) {
12321                 struct drm_crtc_state *crtc_state;
12322                 int ret;
12323
12324                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12325                 if (IS_ERR(crtc_state))
12326                         return PTR_ERR(crtc_state);
12327
12328                 if (!crtc_state->active || needs_modeset(crtc_state))
12329                         continue;
12330
12331                 crtc_state->mode_changed = true;
12332
12333                 ret = drm_atomic_add_affected_connectors(state, crtc);
12334                 if (ret)
12335                         return ret;
12336
12337                 ret = drm_atomic_add_affected_planes(state, crtc);
12338                 if (ret)
12339                         return ret;
12340         }
12341
12342         return 0;
12343 }
12344
12345 static int intel_modeset_checks(struct drm_atomic_state *state)
12346 {
12347         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12348         struct drm_i915_private *dev_priv = to_i915(state->dev);
12349         struct drm_crtc *crtc;
12350         struct drm_crtc_state *crtc_state;
12351         int ret = 0, i;
12352
12353         if (!check_digital_port_conflicts(state)) {
12354                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12355                 return -EINVAL;
12356         }
12357
12358         intel_state->modeset = true;
12359         intel_state->active_crtcs = dev_priv->active_crtcs;
12360         intel_state->cdclk.logical = dev_priv->cdclk.logical;
12361         intel_state->cdclk.actual = dev_priv->cdclk.actual;
12362
12363         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12364                 if (crtc_state->active)
12365                         intel_state->active_crtcs |= 1 << i;
12366                 else
12367                         intel_state->active_crtcs &= ~(1 << i);
12368
12369                 if (crtc_state->active != crtc->state->active)
12370                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12371         }
12372
12373         /*
12374          * See if the config requires any additional preparation, e.g.
12375          * to adjust global state with pipes off.  We need to do this
12376          * here so we can get the modeset_pipe updated config for the new
12377          * mode set on this crtc.  For other crtcs we need to use the
12378          * adjusted_mode bits in the crtc directly.
12379          */
12380         if (dev_priv->display.modeset_calc_cdclk) {
12381                 ret = dev_priv->display.modeset_calc_cdclk(state);
12382                 if (ret < 0)
12383                         return ret;
12384
12385                 /*
12386                  * Writes to dev_priv->cdclk.logical must protected by
12387                  * holding all the crtc locks, even if we don't end up
12388                  * touching the hardware
12389                  */
12390                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12391                                                &intel_state->cdclk.logical)) {
12392                         ret = intel_lock_all_pipes(state);
12393                         if (ret < 0)
12394                                 return ret;
12395                 }
12396
12397                 /* All pipes must be switched off while we change the cdclk. */
12398                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12399                                                &intel_state->cdclk.actual)) {
12400                         ret = intel_modeset_all_pipes(state);
12401                         if (ret < 0)
12402                                 return ret;
12403                 }
12404
12405                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12406                               intel_state->cdclk.logical.cdclk,
12407                               intel_state->cdclk.actual.cdclk);
12408         } else {
12409                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12410         }
12411
12412         intel_modeset_clear_plls(state);
12413
12414         if (IS_HASWELL(dev_priv))
12415                 return haswell_mode_set_planes_workaround(state);
12416
12417         return 0;
12418 }
12419
12420 /*
12421  * Handle calculation of various watermark data at the end of the atomic check
12422  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12423  * handlers to ensure that all derived state has been updated.
12424  */
12425 static int calc_watermark_data(struct drm_atomic_state *state)
12426 {
12427         struct drm_device *dev = state->dev;
12428         struct drm_i915_private *dev_priv = to_i915(dev);
12429
12430         /* Is there platform-specific watermark information to calculate? */
12431         if (dev_priv->display.compute_global_watermarks)
12432                 return dev_priv->display.compute_global_watermarks(state);
12433
12434         return 0;
12435 }
12436
12437 /**
12438  * intel_atomic_check - validate state object
12439  * @dev: drm device
12440  * @state: state to validate
12441  */
12442 static int intel_atomic_check(struct drm_device *dev,
12443                               struct drm_atomic_state *state)
12444 {
12445         struct drm_i915_private *dev_priv = to_i915(dev);
12446         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12447         struct drm_crtc *crtc;
12448         struct drm_crtc_state *crtc_state;
12449         int ret, i;
12450         bool any_ms = false;
12451
12452         ret = drm_atomic_helper_check_modeset(dev, state);
12453         if (ret)
12454                 return ret;
12455
12456         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12457                 struct intel_crtc_state *pipe_config =
12458                         to_intel_crtc_state(crtc_state);
12459
12460                 /* Catch I915_MODE_FLAG_INHERITED */
12461                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
12462                         crtc_state->mode_changed = true;
12463
12464                 if (!needs_modeset(crtc_state))
12465                         continue;
12466
12467                 if (!crtc_state->enable) {
12468                         any_ms = true;
12469                         continue;
12470                 }
12471
12472                 /* FIXME: For only active_changed we shouldn't need to do any
12473                  * state recomputation at all. */
12474
12475                 ret = drm_atomic_add_affected_connectors(state, crtc);
12476                 if (ret)
12477                         return ret;
12478
12479                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12480                 if (ret) {
12481                         intel_dump_pipe_config(to_intel_crtc(crtc),
12482                                                pipe_config, "[failed]");
12483                         return ret;
12484                 }
12485
12486                 if (i915.fastboot &&
12487                     intel_pipe_config_compare(dev_priv,
12488                                         to_intel_crtc_state(crtc->state),
12489                                         pipe_config, true)) {
12490                         crtc_state->mode_changed = false;
12491                         to_intel_crtc_state(crtc_state)->update_pipe = true;
12492                 }
12493
12494                 if (needs_modeset(crtc_state))
12495                         any_ms = true;
12496
12497                 ret = drm_atomic_add_affected_planes(state, crtc);
12498                 if (ret)
12499                         return ret;
12500
12501                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12502                                        needs_modeset(crtc_state) ?
12503                                        "[modeset]" : "[fastset]");
12504         }
12505
12506         if (any_ms) {
12507                 ret = intel_modeset_checks(state);
12508
12509                 if (ret)
12510                         return ret;
12511         } else {
12512                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12513         }
12514
12515         ret = drm_atomic_helper_check_planes(dev, state);
12516         if (ret)
12517                 return ret;
12518
12519         intel_fbc_choose_crtc(dev_priv, state);
12520         return calc_watermark_data(state);
12521 }
12522
12523 static int intel_atomic_prepare_commit(struct drm_device *dev,
12524                                        struct drm_atomic_state *state)
12525 {
12526         struct drm_i915_private *dev_priv = to_i915(dev);
12527         struct drm_crtc_state *crtc_state;
12528         struct drm_crtc *crtc;
12529         int i, ret;
12530
12531         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12532                 if (state->legacy_cursor_update)
12533                         continue;
12534
12535                 ret = intel_crtc_wait_for_pending_flips(crtc);
12536                 if (ret)
12537                         return ret;
12538
12539                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12540                         flush_workqueue(dev_priv->wq);
12541         }
12542
12543         ret = mutex_lock_interruptible(&dev->struct_mutex);
12544         if (ret)
12545                 return ret;
12546
12547         ret = drm_atomic_helper_prepare_planes(dev, state);
12548         mutex_unlock(&dev->struct_mutex);
12549
12550         return ret;
12551 }
12552
12553 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12554 {
12555         struct drm_device *dev = crtc->base.dev;
12556
12557         if (!dev->max_vblank_count)
12558                 return drm_accurate_vblank_count(&crtc->base);
12559
12560         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12561 }
12562
12563 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12564                                           struct drm_i915_private *dev_priv,
12565                                           unsigned crtc_mask)
12566 {
12567         unsigned last_vblank_count[I915_MAX_PIPES];
12568         enum pipe pipe;
12569         int ret;
12570
12571         if (!crtc_mask)
12572                 return;
12573
12574         for_each_pipe(dev_priv, pipe) {
12575                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12576                                                                   pipe);
12577
12578                 if (!((1 << pipe) & crtc_mask))
12579                         continue;
12580
12581                 ret = drm_crtc_vblank_get(&crtc->base);
12582                 if (WARN_ON(ret != 0)) {
12583                         crtc_mask &= ~(1 << pipe);
12584                         continue;
12585                 }
12586
12587                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12588         }
12589
12590         for_each_pipe(dev_priv, pipe) {
12591                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12592                                                                   pipe);
12593                 long lret;
12594
12595                 if (!((1 << pipe) & crtc_mask))
12596                         continue;
12597
12598                 lret = wait_event_timeout(dev->vblank[pipe].queue,
12599                                 last_vblank_count[pipe] !=
12600                                         drm_crtc_vblank_count(&crtc->base),
12601                                 msecs_to_jiffies(50));
12602
12603                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12604
12605                 drm_crtc_vblank_put(&crtc->base);
12606         }
12607 }
12608
12609 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12610 {
12611         /* fb updated, need to unpin old fb */
12612         if (crtc_state->fb_changed)
12613                 return true;
12614
12615         /* wm changes, need vblank before final wm's */
12616         if (crtc_state->update_wm_post)
12617                 return true;
12618
12619         if (crtc_state->wm.need_postvbl_update)
12620                 return true;
12621
12622         return false;
12623 }
12624
12625 static void intel_update_crtc(struct drm_crtc *crtc,
12626                               struct drm_atomic_state *state,
12627                               struct drm_crtc_state *old_crtc_state,
12628                               unsigned int *crtc_vblank_mask)
12629 {
12630         struct drm_device *dev = crtc->dev;
12631         struct drm_i915_private *dev_priv = to_i915(dev);
12632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12633         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
12634         bool modeset = needs_modeset(crtc->state);
12635
12636         if (modeset) {
12637                 update_scanline_offset(intel_crtc);
12638                 dev_priv->display.crtc_enable(pipe_config, state);
12639         } else {
12640                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
12641         }
12642
12643         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12644                 intel_fbc_enable(
12645                     intel_crtc, pipe_config,
12646                     to_intel_plane_state(crtc->primary->state));
12647         }
12648
12649         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12650
12651         if (needs_vblank_wait(pipe_config))
12652                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12653 }
12654
12655 static void intel_update_crtcs(struct drm_atomic_state *state,
12656                                unsigned int *crtc_vblank_mask)
12657 {
12658         struct drm_crtc *crtc;
12659         struct drm_crtc_state *old_crtc_state;
12660         int i;
12661
12662         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12663                 if (!crtc->state->active)
12664                         continue;
12665
12666                 intel_update_crtc(crtc, state, old_crtc_state,
12667                                   crtc_vblank_mask);
12668         }
12669 }
12670
12671 static void skl_update_crtcs(struct drm_atomic_state *state,
12672                              unsigned int *crtc_vblank_mask)
12673 {
12674         struct drm_i915_private *dev_priv = to_i915(state->dev);
12675         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12676         struct drm_crtc *crtc;
12677         struct intel_crtc *intel_crtc;
12678         struct drm_crtc_state *old_crtc_state;
12679         struct intel_crtc_state *cstate;
12680         unsigned int updated = 0;
12681         bool progress;
12682         enum pipe pipe;
12683         int i;
12684
12685         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12686
12687         for_each_crtc_in_state(state, crtc, old_crtc_state, i)
12688                 /* ignore allocations for crtc's that have been turned off. */
12689                 if (crtc->state->active)
12690                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12691
12692         /*
12693          * Whenever the number of active pipes changes, we need to make sure we
12694          * update the pipes in the right order so that their ddb allocations
12695          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12696          * cause pipe underruns and other bad stuff.
12697          */
12698         do {
12699                 progress = false;
12700
12701                 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12702                         bool vbl_wait = false;
12703                         unsigned int cmask = drm_crtc_mask(crtc);
12704
12705                         intel_crtc = to_intel_crtc(crtc);
12706                         cstate = to_intel_crtc_state(crtc->state);
12707                         pipe = intel_crtc->pipe;
12708
12709                         if (updated & cmask || !cstate->base.active)
12710                                 continue;
12711
12712                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12713                                 continue;
12714
12715                         updated |= cmask;
12716                         entries[i] = &cstate->wm.skl.ddb;
12717
12718                         /*
12719                          * If this is an already active pipe, it's DDB changed,
12720                          * and this isn't the last pipe that needs updating
12721                          * then we need to wait for a vblank to pass for the
12722                          * new ddb allocation to take effect.
12723                          */
12724                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12725                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12726                             !crtc->state->active_changed &&
12727                             intel_state->wm_results.dirty_pipes != updated)
12728                                 vbl_wait = true;
12729
12730                         intel_update_crtc(crtc, state, old_crtc_state,
12731                                           crtc_vblank_mask);
12732
12733                         if (vbl_wait)
12734                                 intel_wait_for_vblank(dev_priv, pipe);
12735
12736                         progress = true;
12737                 }
12738         } while (progress);
12739 }
12740
12741 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12742 {
12743         struct intel_atomic_state *state, *next;
12744         struct llist_node *freed;
12745
12746         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12747         llist_for_each_entry_safe(state, next, freed, freed)
12748                 drm_atomic_state_put(&state->base);
12749 }
12750
12751 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12752 {
12753         struct drm_i915_private *dev_priv =
12754                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12755
12756         intel_atomic_helper_free_state(dev_priv);
12757 }
12758
12759 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12760 {
12761         struct drm_device *dev = state->dev;
12762         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12763         struct drm_i915_private *dev_priv = to_i915(dev);
12764         struct drm_crtc_state *old_crtc_state;
12765         struct drm_crtc *crtc;
12766         struct intel_crtc_state *intel_cstate;
12767         bool hw_check = intel_state->modeset;
12768         u64 put_domains[I915_MAX_PIPES] = {};
12769         unsigned crtc_vblank_mask = 0;
12770         int i;
12771
12772         drm_atomic_helper_wait_for_dependencies(state);
12773
12774         if (intel_state->modeset)
12775                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12776
12777         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12778                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12779
12780                 if (needs_modeset(crtc->state) ||
12781                     to_intel_crtc_state(crtc->state)->update_pipe) {
12782                         hw_check = true;
12783
12784                         put_domains[to_intel_crtc(crtc)->pipe] =
12785                                 modeset_get_crtc_power_domains(crtc,
12786                                         to_intel_crtc_state(crtc->state));
12787                 }
12788
12789                 if (!needs_modeset(crtc->state))
12790                         continue;
12791
12792                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
12793
12794                 if (old_crtc_state->active) {
12795                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12796                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12797                         intel_crtc->active = false;
12798                         intel_fbc_disable(intel_crtc);
12799                         intel_disable_shared_dpll(intel_crtc);
12800
12801                         /*
12802                          * Underruns don't always raise
12803                          * interrupts, so check manually.
12804                          */
12805                         intel_check_cpu_fifo_underruns(dev_priv);
12806                         intel_check_pch_fifo_underruns(dev_priv);
12807
12808                         if (!crtc->state->active) {
12809                                 /*
12810                                  * Make sure we don't call initial_watermarks
12811                                  * for ILK-style watermark updates.
12812                                  *
12813                                  * No clue what this is supposed to achieve.
12814                                  */
12815                                 if (INTEL_GEN(dev_priv) >= 9)
12816                                         dev_priv->display.initial_watermarks(intel_state,
12817                                                                              to_intel_crtc_state(crtc->state));
12818                         }
12819                 }
12820         }
12821
12822         /* Only after disabling all output pipelines that will be changed can we
12823          * update the the output configuration. */
12824         intel_modeset_update_crtc_state(state);
12825
12826         if (intel_state->modeset) {
12827                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12828
12829                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12830
12831                 /*
12832                  * SKL workaround: bspec recommends we disable the SAGV when we
12833                  * have more then one pipe enabled
12834                  */
12835                 if (!intel_can_enable_sagv(state))
12836                         intel_disable_sagv(dev_priv);
12837
12838                 intel_modeset_verify_disabled(dev, state);
12839         }
12840
12841         /* Complete the events for pipes that have now been disabled */
12842         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12843                 bool modeset = needs_modeset(crtc->state);
12844
12845                 /* Complete events for now disable pipes here. */
12846                 if (modeset && !crtc->state->active && crtc->state->event) {
12847                         spin_lock_irq(&dev->event_lock);
12848                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
12849                         spin_unlock_irq(&dev->event_lock);
12850
12851                         crtc->state->event = NULL;
12852                 }
12853         }
12854
12855         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12856         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12857
12858         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12859          * already, but still need the state for the delayed optimization. To
12860          * fix this:
12861          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12862          * - schedule that vblank worker _before_ calling hw_done
12863          * - at the start of commit_tail, cancel it _synchrously
12864          * - switch over to the vblank wait helper in the core after that since
12865          *   we don't need out special handling any more.
12866          */
12867         if (!state->legacy_cursor_update)
12868                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12869
12870         /*
12871          * Now that the vblank has passed, we can go ahead and program the
12872          * optimal watermarks on platforms that need two-step watermark
12873          * programming.
12874          *
12875          * TODO: Move this (and other cleanup) to an async worker eventually.
12876          */
12877         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12878                 intel_cstate = to_intel_crtc_state(crtc->state);
12879
12880                 if (dev_priv->display.optimize_watermarks)
12881                         dev_priv->display.optimize_watermarks(intel_state,
12882                                                               intel_cstate);
12883         }
12884
12885         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
12886                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12887
12888                 if (put_domains[i])
12889                         modeset_put_power_domains(dev_priv, put_domains[i]);
12890
12891                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
12892         }
12893
12894         if (intel_state->modeset && intel_can_enable_sagv(state))
12895                 intel_enable_sagv(dev_priv);
12896
12897         drm_atomic_helper_commit_hw_done(state);
12898
12899         if (intel_state->modeset)
12900                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12901
12902         mutex_lock(&dev->struct_mutex);
12903         drm_atomic_helper_cleanup_planes(dev, state);
12904         mutex_unlock(&dev->struct_mutex);
12905
12906         drm_atomic_helper_commit_cleanup_done(state);
12907
12908         drm_atomic_state_put(state);
12909
12910         /* As one of the primary mmio accessors, KMS has a high likelihood
12911          * of triggering bugs in unclaimed access. After we finish
12912          * modesetting, see if an error has been flagged, and if so
12913          * enable debugging for the next modeset - and hope we catch
12914          * the culprit.
12915          *
12916          * XXX note that we assume display power is on at this point.
12917          * This might hold true now but we need to add pm helper to check
12918          * unclaimed only when the hardware is on, as atomic commits
12919          * can happen also when the device is completely off.
12920          */
12921         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12922
12923         intel_atomic_helper_free_state(dev_priv);
12924 }
12925
12926 static void intel_atomic_commit_work(struct work_struct *work)
12927 {
12928         struct drm_atomic_state *state =
12929                 container_of(work, struct drm_atomic_state, commit_work);
12930
12931         intel_atomic_commit_tail(state);
12932 }
12933
12934 static int __i915_sw_fence_call
12935 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12936                           enum i915_sw_fence_notify notify)
12937 {
12938         struct intel_atomic_state *state =
12939                 container_of(fence, struct intel_atomic_state, commit_ready);
12940
12941         switch (notify) {
12942         case FENCE_COMPLETE:
12943                 if (state->base.commit_work.func)
12944                         queue_work(system_unbound_wq, &state->base.commit_work);
12945                 break;
12946
12947         case FENCE_FREE:
12948                 {
12949                         struct intel_atomic_helper *helper =
12950                                 &to_i915(state->base.dev)->atomic_helper;
12951
12952                         if (llist_add(&state->freed, &helper->free_list))
12953                                 schedule_work(&helper->free_work);
12954                         break;
12955                 }
12956         }
12957
12958         return NOTIFY_DONE;
12959 }
12960
12961 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12962 {
12963         struct drm_plane_state *old_plane_state;
12964         struct drm_plane *plane;
12965         int i;
12966
12967         for_each_plane_in_state(state, plane, old_plane_state, i)
12968                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12969                                   intel_fb_obj(plane->state->fb),
12970                                   to_intel_plane(plane)->frontbuffer_bit);
12971 }
12972
12973 /**
12974  * intel_atomic_commit - commit validated state object
12975  * @dev: DRM device
12976  * @state: the top-level driver state object
12977  * @nonblock: nonblocking commit
12978  *
12979  * This function commits a top-level state object that has been validated
12980  * with drm_atomic_helper_check().
12981  *
12982  * RETURNS
12983  * Zero for success or -errno.
12984  */
12985 static int intel_atomic_commit(struct drm_device *dev,
12986                                struct drm_atomic_state *state,
12987                                bool nonblock)
12988 {
12989         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12990         struct drm_i915_private *dev_priv = to_i915(dev);
12991         int ret = 0;
12992
12993         /*
12994          * The intel_legacy_cursor_update() fast path takes care
12995          * of avoiding the vblank waits for simple cursor
12996          * movement and flips. For cursor on/off and size changes,
12997          * we want to perform the vblank waits so that watermark
12998          * updates happen during the correct frames. Gen9+ have
12999          * double buffered watermarks and so shouldn't need this.
13000          */
13001         if (INTEL_GEN(dev_priv) < 9)
13002                 state->legacy_cursor_update = false;
13003
13004         ret = drm_atomic_helper_setup_commit(state, nonblock);
13005         if (ret)
13006                 return ret;
13007
13008         drm_atomic_state_get(state);
13009         i915_sw_fence_init(&intel_state->commit_ready,
13010                            intel_atomic_commit_ready);
13011
13012         ret = intel_atomic_prepare_commit(dev, state);
13013         if (ret) {
13014                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13015                 i915_sw_fence_commit(&intel_state->commit_ready);
13016                 return ret;
13017         }
13018
13019         drm_atomic_helper_swap_state(state, true);
13020         dev_priv->wm.distrust_bios_wm = false;
13021         intel_shared_dpll_swap_state(state);
13022         intel_atomic_track_fbs(state);
13023
13024         if (intel_state->modeset) {
13025                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13026                        sizeof(intel_state->min_pixclk));
13027                 dev_priv->active_crtcs = intel_state->active_crtcs;
13028                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13029                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13030         }
13031
13032         drm_atomic_state_get(state);
13033         INIT_WORK(&state->commit_work,
13034                   nonblock ? intel_atomic_commit_work : NULL);
13035
13036         i915_sw_fence_commit(&intel_state->commit_ready);
13037         if (!nonblock) {
13038                 i915_sw_fence_wait(&intel_state->commit_ready);
13039                 intel_atomic_commit_tail(state);
13040         }
13041
13042         return 0;
13043 }
13044
13045 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13046 {
13047         struct drm_device *dev = crtc->dev;
13048         struct drm_atomic_state *state;
13049         struct drm_crtc_state *crtc_state;
13050         int ret;
13051
13052         state = drm_atomic_state_alloc(dev);
13053         if (!state) {
13054                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13055                               crtc->base.id, crtc->name);
13056                 return;
13057         }
13058
13059         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13060
13061 retry:
13062         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13063         ret = PTR_ERR_OR_ZERO(crtc_state);
13064         if (!ret) {
13065                 if (!crtc_state->active)
13066                         goto out;
13067
13068                 crtc_state->mode_changed = true;
13069                 ret = drm_atomic_commit(state);
13070         }
13071
13072         if (ret == -EDEADLK) {
13073                 drm_atomic_state_clear(state);
13074                 drm_modeset_backoff(state->acquire_ctx);
13075                 goto retry;
13076         }
13077
13078 out:
13079         drm_atomic_state_put(state);
13080 }
13081
13082 /*
13083  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13084  *        drm_atomic_helper_legacy_gamma_set() directly.
13085  */
13086 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
13087                                          u16 *red, u16 *green, u16 *blue,
13088                                          uint32_t size)
13089 {
13090         struct drm_device *dev = crtc->dev;
13091         struct drm_mode_config *config = &dev->mode_config;
13092         struct drm_crtc_state *state;
13093         int ret;
13094
13095         ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
13096         if (ret)
13097                 return ret;
13098
13099         /*
13100          * Make sure we update the legacy properties so this works when
13101          * atomic is not enabled.
13102          */
13103
13104         state = crtc->state;
13105
13106         drm_object_property_set_value(&crtc->base,
13107                                       config->degamma_lut_property,
13108                                       (state->degamma_lut) ?
13109                                       state->degamma_lut->base.id : 0);
13110
13111         drm_object_property_set_value(&crtc->base,
13112                                       config->ctm_property,
13113                                       (state->ctm) ?
13114                                       state->ctm->base.id : 0);
13115
13116         drm_object_property_set_value(&crtc->base,
13117                                       config->gamma_lut_property,
13118                                       (state->gamma_lut) ?
13119                                       state->gamma_lut->base.id : 0);
13120
13121         return 0;
13122 }
13123
13124 static const struct drm_crtc_funcs intel_crtc_funcs = {
13125         .gamma_set = intel_atomic_legacy_gamma_set,
13126         .set_config = drm_atomic_helper_set_config,
13127         .set_property = drm_atomic_helper_crtc_set_property,
13128         .destroy = intel_crtc_destroy,
13129         .page_flip = drm_atomic_helper_page_flip,
13130         .atomic_duplicate_state = intel_crtc_duplicate_state,
13131         .atomic_destroy_state = intel_crtc_destroy_state,
13132         .set_crc_source = intel_crtc_set_crc_source,
13133 };
13134
13135 /**
13136  * intel_prepare_plane_fb - Prepare fb for usage on plane
13137  * @plane: drm plane to prepare for
13138  * @fb: framebuffer to prepare for presentation
13139  *
13140  * Prepares a framebuffer for usage on a display plane.  Generally this
13141  * involves pinning the underlying object and updating the frontbuffer tracking
13142  * bits.  Some older platforms need special physical address handling for
13143  * cursor planes.
13144  *
13145  * Must be called with struct_mutex held.
13146  *
13147  * Returns 0 on success, negative error code on failure.
13148  */
13149 int
13150 intel_prepare_plane_fb(struct drm_plane *plane,
13151                        struct drm_plane_state *new_state)
13152 {
13153         struct intel_atomic_state *intel_state =
13154                 to_intel_atomic_state(new_state->state);
13155         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13156         struct drm_framebuffer *fb = new_state->fb;
13157         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13158         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13159         int ret;
13160
13161         if (obj) {
13162                 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13163                     INTEL_INFO(dev_priv)->cursor_needs_physical) {
13164                         const int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13165
13166                         ret = i915_gem_object_attach_phys(obj, align);
13167                         if (ret) {
13168                                 DRM_DEBUG_KMS("failed to attach phys object\n");
13169                                 return ret;
13170                         }
13171                 } else {
13172                         struct i915_vma *vma;
13173
13174                         vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13175                         if (IS_ERR(vma)) {
13176                                 DRM_DEBUG_KMS("failed to pin object\n");
13177                                 return PTR_ERR(vma);
13178                         }
13179
13180                         to_intel_plane_state(new_state)->vma = vma;
13181                 }
13182         }
13183
13184         if (!obj && !old_obj)
13185                 return 0;
13186
13187         if (old_obj) {
13188                 struct drm_crtc_state *crtc_state =
13189                         drm_atomic_get_existing_crtc_state(new_state->state,
13190                                                            plane->state->crtc);
13191
13192                 /* Big Hammer, we also need to ensure that any pending
13193                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13194                  * current scanout is retired before unpinning the old
13195                  * framebuffer. Note that we rely on userspace rendering
13196                  * into the buffer attached to the pipe they are waiting
13197                  * on. If not, userspace generates a GPU hang with IPEHR
13198                  * point to the MI_WAIT_FOR_EVENT.
13199                  *
13200                  * This should only fail upon a hung GPU, in which case we
13201                  * can safely continue.
13202                  */
13203                 if (needs_modeset(crtc_state)) {
13204                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13205                                                               old_obj->resv, NULL,
13206                                                               false, 0,
13207                                                               GFP_KERNEL);
13208                         if (ret < 0)
13209                                 return ret;
13210                 }
13211         }
13212
13213         if (new_state->fence) { /* explicit fencing */
13214                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13215                                                     new_state->fence,
13216                                                     I915_FENCE_TIMEOUT,
13217                                                     GFP_KERNEL);
13218                 if (ret < 0)
13219                         return ret;
13220         }
13221
13222         if (!obj)
13223                 return 0;
13224
13225         if (!new_state->fence) { /* implicit fencing */
13226                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13227                                                       obj->resv, NULL,
13228                                                       false, I915_FENCE_TIMEOUT,
13229                                                       GFP_KERNEL);
13230                 if (ret < 0)
13231                         return ret;
13232
13233                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13234         }
13235
13236         return 0;
13237 }
13238
13239 /**
13240  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13241  * @plane: drm plane to clean up for
13242  * @fb: old framebuffer that was on plane
13243  *
13244  * Cleans up a framebuffer that has just been removed from a plane.
13245  *
13246  * Must be called with struct_mutex held.
13247  */
13248 void
13249 intel_cleanup_plane_fb(struct drm_plane *plane,
13250                        struct drm_plane_state *old_state)
13251 {
13252         struct i915_vma *vma;
13253
13254         /* Should only be called after a successful intel_prepare_plane_fb()! */
13255         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13256         if (vma)
13257                 intel_unpin_fb_vma(vma);
13258 }
13259
13260 int
13261 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13262 {
13263         struct drm_i915_private *dev_priv;
13264         int max_scale;
13265         int crtc_clock, max_dotclk;
13266
13267         if (!intel_crtc || !crtc_state->base.enable)
13268                 return DRM_PLANE_HELPER_NO_SCALING;
13269
13270         dev_priv = to_i915(intel_crtc->base.dev);
13271
13272         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13273         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13274
13275         if (IS_GEMINILAKE(dev_priv))
13276                 max_dotclk *= 2;
13277
13278         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13279                 return DRM_PLANE_HELPER_NO_SCALING;
13280
13281         /*
13282          * skl max scale is lower of:
13283          *    close to 3 but not 3, -1 is for that purpose
13284          *            or
13285          *    cdclk/crtc_clock
13286          */
13287         max_scale = min((1 << 16) * 3 - 1,
13288                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13289
13290         return max_scale;
13291 }
13292
13293 static int
13294 intel_check_primary_plane(struct drm_plane *plane,
13295                           struct intel_crtc_state *crtc_state,
13296                           struct intel_plane_state *state)
13297 {
13298         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13299         struct drm_crtc *crtc = state->base.crtc;
13300         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13301         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13302         bool can_position = false;
13303         int ret;
13304
13305         if (INTEL_GEN(dev_priv) >= 9) {
13306                 /* use scaler when colorkey is not required */
13307                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13308                         min_scale = 1;
13309                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13310                 }
13311                 can_position = true;
13312         }
13313
13314         ret = drm_plane_helper_check_state(&state->base,
13315                                            &state->clip,
13316                                            min_scale, max_scale,
13317                                            can_position, true);
13318         if (ret)
13319                 return ret;
13320
13321         if (!state->base.fb)
13322                 return 0;
13323
13324         if (INTEL_GEN(dev_priv) >= 9) {
13325                 ret = skl_check_plane_surface(state);
13326                 if (ret)
13327                         return ret;
13328         }
13329
13330         return 0;
13331 }
13332
13333 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13334                                     struct drm_crtc_state *old_crtc_state)
13335 {
13336         struct drm_device *dev = crtc->dev;
13337         struct drm_i915_private *dev_priv = to_i915(dev);
13338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13339         struct intel_crtc_state *intel_cstate =
13340                 to_intel_crtc_state(crtc->state);
13341         struct intel_crtc_state *old_intel_cstate =
13342                 to_intel_crtc_state(old_crtc_state);
13343         struct intel_atomic_state *old_intel_state =
13344                 to_intel_atomic_state(old_crtc_state->state);
13345         bool modeset = needs_modeset(crtc->state);
13346
13347         if (!modeset &&
13348             (intel_cstate->base.color_mgmt_changed ||
13349              intel_cstate->update_pipe)) {
13350                 intel_color_set_csc(crtc->state);
13351                 intel_color_load_luts(crtc->state);
13352         }
13353
13354         /* Perform vblank evasion around commit operation */
13355         intel_pipe_update_start(intel_crtc);
13356
13357         if (modeset)
13358                 goto out;
13359
13360         if (intel_cstate->update_pipe)
13361                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13362         else if (INTEL_GEN(dev_priv) >= 9)
13363                 skl_detach_scalers(intel_crtc);
13364
13365 out:
13366         if (dev_priv->display.atomic_update_watermarks)
13367                 dev_priv->display.atomic_update_watermarks(old_intel_state,
13368                                                            intel_cstate);
13369 }
13370
13371 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13372                                      struct drm_crtc_state *old_crtc_state)
13373 {
13374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13375
13376         intel_pipe_update_end(intel_crtc, NULL);
13377 }
13378
13379 /**
13380  * intel_plane_destroy - destroy a plane
13381  * @plane: plane to destroy
13382  *
13383  * Common destruction function for all types of planes (primary, cursor,
13384  * sprite).
13385  */
13386 void intel_plane_destroy(struct drm_plane *plane)
13387 {
13388         drm_plane_cleanup(plane);
13389         kfree(to_intel_plane(plane));
13390 }
13391
13392 const struct drm_plane_funcs intel_plane_funcs = {
13393         .update_plane = drm_atomic_helper_update_plane,
13394         .disable_plane = drm_atomic_helper_disable_plane,
13395         .destroy = intel_plane_destroy,
13396         .set_property = drm_atomic_helper_plane_set_property,
13397         .atomic_get_property = intel_plane_atomic_get_property,
13398         .atomic_set_property = intel_plane_atomic_set_property,
13399         .atomic_duplicate_state = intel_plane_duplicate_state,
13400         .atomic_destroy_state = intel_plane_destroy_state,
13401 };
13402
13403 static int
13404 intel_legacy_cursor_update(struct drm_plane *plane,
13405                            struct drm_crtc *crtc,
13406                            struct drm_framebuffer *fb,
13407                            int crtc_x, int crtc_y,
13408                            unsigned int crtc_w, unsigned int crtc_h,
13409                            uint32_t src_x, uint32_t src_y,
13410                            uint32_t src_w, uint32_t src_h)
13411 {
13412         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13413         int ret;
13414         struct drm_plane_state *old_plane_state, *new_plane_state;
13415         struct intel_plane *intel_plane = to_intel_plane(plane);
13416         struct drm_framebuffer *old_fb;
13417         struct drm_crtc_state *crtc_state = crtc->state;
13418         struct i915_vma *old_vma;
13419
13420         /*
13421          * When crtc is inactive or there is a modeset pending,
13422          * wait for it to complete in the slowpath
13423          */
13424         if (!crtc_state->active || needs_modeset(crtc_state) ||
13425             to_intel_crtc_state(crtc_state)->update_pipe)
13426                 goto slow;
13427
13428         old_plane_state = plane->state;
13429
13430         /*
13431          * If any parameters change that may affect watermarks,
13432          * take the slowpath. Only changing fb or position should be
13433          * in the fastpath.
13434          */
13435         if (old_plane_state->crtc != crtc ||
13436             old_plane_state->src_w != src_w ||
13437             old_plane_state->src_h != src_h ||
13438             old_plane_state->crtc_w != crtc_w ||
13439             old_plane_state->crtc_h != crtc_h ||
13440             !old_plane_state->fb != !fb)
13441                 goto slow;
13442
13443         new_plane_state = intel_plane_duplicate_state(plane);
13444         if (!new_plane_state)
13445                 return -ENOMEM;
13446
13447         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13448
13449         new_plane_state->src_x = src_x;
13450         new_plane_state->src_y = src_y;
13451         new_plane_state->src_w = src_w;
13452         new_plane_state->src_h = src_h;
13453         new_plane_state->crtc_x = crtc_x;
13454         new_plane_state->crtc_y = crtc_y;
13455         new_plane_state->crtc_w = crtc_w;
13456         new_plane_state->crtc_h = crtc_h;
13457
13458         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13459                                                   to_intel_plane_state(new_plane_state));
13460         if (ret)
13461                 goto out_free;
13462
13463         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13464         if (ret)
13465                 goto out_free;
13466
13467         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13468                 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13469
13470                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13471                 if (ret) {
13472                         DRM_DEBUG_KMS("failed to attach phys object\n");
13473                         goto out_unlock;
13474                 }
13475         } else {
13476                 struct i915_vma *vma;
13477
13478                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13479                 if (IS_ERR(vma)) {
13480                         DRM_DEBUG_KMS("failed to pin object\n");
13481
13482                         ret = PTR_ERR(vma);
13483                         goto out_unlock;
13484                 }
13485
13486                 to_intel_plane_state(new_plane_state)->vma = vma;
13487         }
13488
13489         old_fb = old_plane_state->fb;
13490         old_vma = to_intel_plane_state(old_plane_state)->vma;
13491
13492         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13493                           intel_plane->frontbuffer_bit);
13494
13495         /* Swap plane state */
13496         new_plane_state->fence = old_plane_state->fence;
13497         *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13498         new_plane_state->fence = NULL;
13499         new_plane_state->fb = old_fb;
13500         to_intel_plane_state(new_plane_state)->vma = old_vma;
13501
13502         if (plane->state->visible) {
13503                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13504                 intel_plane->update_plane(plane,
13505                                           to_intel_crtc_state(crtc->state),
13506                                           to_intel_plane_state(plane->state));
13507         } else {
13508                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13509                 intel_plane->disable_plane(plane, crtc);
13510         }
13511
13512         intel_cleanup_plane_fb(plane, new_plane_state);
13513
13514 out_unlock:
13515         mutex_unlock(&dev_priv->drm.struct_mutex);
13516 out_free:
13517         intel_plane_destroy_state(plane, new_plane_state);
13518         return ret;
13519
13520 slow:
13521         return drm_atomic_helper_update_plane(plane, crtc, fb,
13522                                               crtc_x, crtc_y, crtc_w, crtc_h,
13523                                               src_x, src_y, src_w, src_h);
13524 }
13525
13526 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13527         .update_plane = intel_legacy_cursor_update,
13528         .disable_plane = drm_atomic_helper_disable_plane,
13529         .destroy = intel_plane_destroy,
13530         .set_property = drm_atomic_helper_plane_set_property,
13531         .atomic_get_property = intel_plane_atomic_get_property,
13532         .atomic_set_property = intel_plane_atomic_set_property,
13533         .atomic_duplicate_state = intel_plane_duplicate_state,
13534         .atomic_destroy_state = intel_plane_destroy_state,
13535 };
13536
13537 static struct intel_plane *
13538 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13539 {
13540         struct intel_plane *primary = NULL;
13541         struct intel_plane_state *state = NULL;
13542         const uint32_t *intel_primary_formats;
13543         unsigned int supported_rotations;
13544         unsigned int num_formats;
13545         int ret;
13546
13547         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13548         if (!primary) {
13549                 ret = -ENOMEM;
13550                 goto fail;
13551         }
13552
13553         state = intel_create_plane_state(&primary->base);
13554         if (!state) {
13555                 ret = -ENOMEM;
13556                 goto fail;
13557         }
13558
13559         primary->base.state = &state->base;
13560
13561         primary->can_scale = false;
13562         primary->max_downscale = 1;
13563         if (INTEL_GEN(dev_priv) >= 9) {
13564                 primary->can_scale = true;
13565                 state->scaler_id = -1;
13566         }
13567         primary->pipe = pipe;
13568         /*
13569          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13570          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13571          */
13572         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13573                 primary->plane = (enum plane) !pipe;
13574         else
13575                 primary->plane = (enum plane) pipe;
13576         primary->id = PLANE_PRIMARY;
13577         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13578         primary->check_plane = intel_check_primary_plane;
13579
13580         if (INTEL_GEN(dev_priv) >= 9) {
13581                 intel_primary_formats = skl_primary_formats;
13582                 num_formats = ARRAY_SIZE(skl_primary_formats);
13583
13584                 primary->update_plane = skylake_update_primary_plane;
13585                 primary->disable_plane = skylake_disable_primary_plane;
13586         } else if (HAS_PCH_SPLIT(dev_priv)) {
13587                 intel_primary_formats = i965_primary_formats;
13588                 num_formats = ARRAY_SIZE(i965_primary_formats);
13589
13590                 primary->update_plane = ironlake_update_primary_plane;
13591                 primary->disable_plane = i9xx_disable_primary_plane;
13592         } else if (INTEL_GEN(dev_priv) >= 4) {
13593                 intel_primary_formats = i965_primary_formats;
13594                 num_formats = ARRAY_SIZE(i965_primary_formats);
13595
13596                 primary->update_plane = i9xx_update_primary_plane;
13597                 primary->disable_plane = i9xx_disable_primary_plane;
13598         } else {
13599                 intel_primary_formats = i8xx_primary_formats;
13600                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13601
13602                 primary->update_plane = i9xx_update_primary_plane;
13603                 primary->disable_plane = i9xx_disable_primary_plane;
13604         }
13605
13606         if (INTEL_GEN(dev_priv) >= 9)
13607                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13608                                                0, &intel_plane_funcs,
13609                                                intel_primary_formats, num_formats,
13610                                                DRM_PLANE_TYPE_PRIMARY,
13611                                                "plane 1%c", pipe_name(pipe));
13612         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13613                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13614                                                0, &intel_plane_funcs,
13615                                                intel_primary_formats, num_formats,
13616                                                DRM_PLANE_TYPE_PRIMARY,
13617                                                "primary %c", pipe_name(pipe));
13618         else
13619                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13620                                                0, &intel_plane_funcs,
13621                                                intel_primary_formats, num_formats,
13622                                                DRM_PLANE_TYPE_PRIMARY,
13623                                                "plane %c", plane_name(primary->plane));
13624         if (ret)
13625                 goto fail;
13626
13627         if (INTEL_GEN(dev_priv) >= 9) {
13628                 supported_rotations =
13629                         DRM_ROTATE_0 | DRM_ROTATE_90 |
13630                         DRM_ROTATE_180 | DRM_ROTATE_270;
13631         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13632                 supported_rotations =
13633                         DRM_ROTATE_0 | DRM_ROTATE_180 |
13634                         DRM_REFLECT_X;
13635         } else if (INTEL_GEN(dev_priv) >= 4) {
13636                 supported_rotations =
13637                         DRM_ROTATE_0 | DRM_ROTATE_180;
13638         } else {
13639                 supported_rotations = DRM_ROTATE_0;
13640         }
13641
13642         if (INTEL_GEN(dev_priv) >= 4)
13643                 drm_plane_create_rotation_property(&primary->base,
13644                                                    DRM_ROTATE_0,
13645                                                    supported_rotations);
13646
13647         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13648
13649         return primary;
13650
13651 fail:
13652         kfree(state);
13653         kfree(primary);
13654
13655         return ERR_PTR(ret);
13656 }
13657
13658 static int
13659 intel_check_cursor_plane(struct drm_plane *plane,
13660                          struct intel_crtc_state *crtc_state,
13661                          struct intel_plane_state *state)
13662 {
13663         struct drm_framebuffer *fb = state->base.fb;
13664         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13665         enum pipe pipe = to_intel_plane(plane)->pipe;
13666         unsigned stride;
13667         int ret;
13668
13669         ret = drm_plane_helper_check_state(&state->base,
13670                                            &state->clip,
13671                                            DRM_PLANE_HELPER_NO_SCALING,
13672                                            DRM_PLANE_HELPER_NO_SCALING,
13673                                            true, true);
13674         if (ret)
13675                 return ret;
13676
13677         /* if we want to turn off the cursor ignore width and height */
13678         if (!obj)
13679                 return 0;
13680
13681         /* Check for which cursor types we support */
13682         if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
13683                             state->base.crtc_h)) {
13684                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13685                           state->base.crtc_w, state->base.crtc_h);
13686                 return -EINVAL;
13687         }
13688
13689         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13690         if (obj->base.size < stride * state->base.crtc_h) {
13691                 DRM_DEBUG_KMS("buffer is too small\n");
13692                 return -ENOMEM;
13693         }
13694
13695         if (fb->modifier != DRM_FORMAT_MOD_NONE) {
13696                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13697                 return -EINVAL;
13698         }
13699
13700         /*
13701          * There's something wrong with the cursor on CHV pipe C.
13702          * If it straddles the left edge of the screen then
13703          * moving it away from the edge or disabling it often
13704          * results in a pipe underrun, and often that can lead to
13705          * dead pipe (constant underrun reported, and it scans
13706          * out just a solid color). To recover from that, the
13707          * display power well must be turned off and on again.
13708          * Refuse the put the cursor into that compromised position.
13709          */
13710         if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
13711             state->base.visible && state->base.crtc_x < 0) {
13712                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13713                 return -EINVAL;
13714         }
13715
13716         return 0;
13717 }
13718
13719 static void
13720 intel_disable_cursor_plane(struct drm_plane *plane,
13721                            struct drm_crtc *crtc)
13722 {
13723         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13724
13725         intel_crtc->cursor_addr = 0;
13726         intel_crtc_update_cursor(crtc, NULL);
13727 }
13728
13729 static void
13730 intel_update_cursor_plane(struct drm_plane *plane,
13731                           const struct intel_crtc_state *crtc_state,
13732                           const struct intel_plane_state *state)
13733 {
13734         struct drm_crtc *crtc = crtc_state->base.crtc;
13735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13736         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13737         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13738         uint32_t addr;
13739
13740         if (!obj)
13741                 addr = 0;
13742         else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
13743                 addr = intel_plane_ggtt_offset(state);
13744         else
13745                 addr = obj->phys_handle->busaddr;
13746
13747         intel_crtc->cursor_addr = addr;
13748         intel_crtc_update_cursor(crtc, state);
13749 }
13750
13751 static struct intel_plane *
13752 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13753 {
13754         struct intel_plane *cursor = NULL;
13755         struct intel_plane_state *state = NULL;
13756         int ret;
13757
13758         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13759         if (!cursor) {
13760                 ret = -ENOMEM;
13761                 goto fail;
13762         }
13763
13764         state = intel_create_plane_state(&cursor->base);
13765         if (!state) {
13766                 ret = -ENOMEM;
13767                 goto fail;
13768         }
13769
13770         cursor->base.state = &state->base;
13771
13772         cursor->can_scale = false;
13773         cursor->max_downscale = 1;
13774         cursor->pipe = pipe;
13775         cursor->plane = pipe;
13776         cursor->id = PLANE_CURSOR;
13777         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13778         cursor->check_plane = intel_check_cursor_plane;
13779         cursor->update_plane = intel_update_cursor_plane;
13780         cursor->disable_plane = intel_disable_cursor_plane;
13781
13782         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13783                                        0, &intel_cursor_plane_funcs,
13784                                        intel_cursor_formats,
13785                                        ARRAY_SIZE(intel_cursor_formats),
13786                                        DRM_PLANE_TYPE_CURSOR,
13787                                        "cursor %c", pipe_name(pipe));
13788         if (ret)
13789                 goto fail;
13790
13791         if (INTEL_GEN(dev_priv) >= 4)
13792                 drm_plane_create_rotation_property(&cursor->base,
13793                                                    DRM_ROTATE_0,
13794                                                    DRM_ROTATE_0 |
13795                                                    DRM_ROTATE_180);
13796
13797         if (INTEL_GEN(dev_priv) >= 9)
13798                 state->scaler_id = -1;
13799
13800         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13801
13802         return cursor;
13803
13804 fail:
13805         kfree(state);
13806         kfree(cursor);
13807
13808         return ERR_PTR(ret);
13809 }
13810
13811 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13812                                     struct intel_crtc_state *crtc_state)
13813 {
13814         struct intel_crtc_scaler_state *scaler_state =
13815                 &crtc_state->scaler_state;
13816         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13817         int i;
13818
13819         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13820         if (!crtc->num_scalers)
13821                 return;
13822
13823         for (i = 0; i < crtc->num_scalers; i++) {
13824                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13825
13826                 scaler->in_use = 0;
13827                 scaler->mode = PS_SCALER_MODE_DYN;
13828         }
13829
13830         scaler_state->scaler_id = -1;
13831 }
13832
13833 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13834 {
13835         struct intel_crtc *intel_crtc;
13836         struct intel_crtc_state *crtc_state = NULL;
13837         struct intel_plane *primary = NULL;
13838         struct intel_plane *cursor = NULL;
13839         int sprite, ret;
13840
13841         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13842         if (!intel_crtc)
13843                 return -ENOMEM;
13844
13845         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13846         if (!crtc_state) {
13847                 ret = -ENOMEM;
13848                 goto fail;
13849         }
13850         intel_crtc->config = crtc_state;
13851         intel_crtc->base.state = &crtc_state->base;
13852         crtc_state->base.crtc = &intel_crtc->base;
13853
13854         primary = intel_primary_plane_create(dev_priv, pipe);
13855         if (IS_ERR(primary)) {
13856                 ret = PTR_ERR(primary);
13857                 goto fail;
13858         }
13859         intel_crtc->plane_ids_mask |= BIT(primary->id);
13860
13861         for_each_sprite(dev_priv, pipe, sprite) {
13862                 struct intel_plane *plane;
13863
13864                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13865                 if (IS_ERR(plane)) {
13866                         ret = PTR_ERR(plane);
13867                         goto fail;
13868                 }
13869                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13870         }
13871
13872         cursor = intel_cursor_plane_create(dev_priv, pipe);
13873         if (IS_ERR(cursor)) {
13874                 ret = PTR_ERR(cursor);
13875                 goto fail;
13876         }
13877         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13878
13879         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13880                                         &primary->base, &cursor->base,
13881                                         &intel_crtc_funcs,
13882                                         "pipe %c", pipe_name(pipe));
13883         if (ret)
13884                 goto fail;
13885
13886         intel_crtc->pipe = pipe;
13887         intel_crtc->plane = primary->plane;
13888
13889         intel_crtc->cursor_base = ~0;
13890         intel_crtc->cursor_cntl = ~0;
13891         intel_crtc->cursor_size = ~0;
13892
13893         /* initialize shared scalers */
13894         intel_crtc_init_scalers(intel_crtc, crtc_state);
13895
13896         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13897                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13898         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13899         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13900
13901         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13902
13903         intel_color_init(&intel_crtc->base);
13904
13905         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13906
13907         return 0;
13908
13909 fail:
13910         /*
13911          * drm_mode_config_cleanup() will free up any
13912          * crtcs/planes already initialized.
13913          */
13914         kfree(crtc_state);
13915         kfree(intel_crtc);
13916
13917         return ret;
13918 }
13919
13920 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13921 {
13922         struct drm_encoder *encoder = connector->base.encoder;
13923         struct drm_device *dev = connector->base.dev;
13924
13925         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13926
13927         if (!encoder || WARN_ON(!encoder->crtc))
13928                 return INVALID_PIPE;
13929
13930         return to_intel_crtc(encoder->crtc)->pipe;
13931 }
13932
13933 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13934                                 struct drm_file *file)
13935 {
13936         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13937         struct drm_crtc *drmmode_crtc;
13938         struct intel_crtc *crtc;
13939
13940         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13941         if (!drmmode_crtc)
13942                 return -ENOENT;
13943
13944         crtc = to_intel_crtc(drmmode_crtc);
13945         pipe_from_crtc_id->pipe = crtc->pipe;
13946
13947         return 0;
13948 }
13949
13950 static int intel_encoder_clones(struct intel_encoder *encoder)
13951 {
13952         struct drm_device *dev = encoder->base.dev;
13953         struct intel_encoder *source_encoder;
13954         int index_mask = 0;
13955         int entry = 0;
13956
13957         for_each_intel_encoder(dev, source_encoder) {
13958                 if (encoders_cloneable(encoder, source_encoder))
13959                         index_mask |= (1 << entry);
13960
13961                 entry++;
13962         }
13963
13964         return index_mask;
13965 }
13966
13967 static bool has_edp_a(struct drm_i915_private *dev_priv)
13968 {
13969         if (!IS_MOBILE(dev_priv))
13970                 return false;
13971
13972         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13973                 return false;
13974
13975         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13976                 return false;
13977
13978         return true;
13979 }
13980
13981 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13982 {
13983         if (INTEL_GEN(dev_priv) >= 9)
13984                 return false;
13985
13986         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13987                 return false;
13988
13989         if (IS_CHERRYVIEW(dev_priv))
13990                 return false;
13991
13992         if (HAS_PCH_LPT_H(dev_priv) &&
13993             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13994                 return false;
13995
13996         /* DDI E can't be used if DDI A requires 4 lanes */
13997         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13998                 return false;
13999
14000         if (!dev_priv->vbt.int_crt_support)
14001                 return false;
14002
14003         return true;
14004 }
14005
14006 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14007 {
14008         int pps_num;
14009         int pps_idx;
14010
14011         if (HAS_DDI(dev_priv))
14012                 return;
14013         /*
14014          * This w/a is needed at least on CPT/PPT, but to be sure apply it
14015          * everywhere where registers can be write protected.
14016          */
14017         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14018                 pps_num = 2;
14019         else
14020                 pps_num = 1;
14021
14022         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14023                 u32 val = I915_READ(PP_CONTROL(pps_idx));
14024
14025                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14026                 I915_WRITE(PP_CONTROL(pps_idx), val);
14027         }
14028 }
14029
14030 static void intel_pps_init(struct drm_i915_private *dev_priv)
14031 {
14032         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14033                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14034         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14035                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14036         else
14037                 dev_priv->pps_mmio_base = PPS_BASE;
14038
14039         intel_pps_unlock_regs_wa(dev_priv);
14040 }
14041
14042 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14043 {
14044         struct intel_encoder *encoder;
14045         bool dpd_is_edp = false;
14046
14047         intel_pps_init(dev_priv);
14048
14049         /*
14050          * intel_edp_init_connector() depends on this completing first, to
14051          * prevent the registeration of both eDP and LVDS and the incorrect
14052          * sharing of the PPS.
14053          */
14054         intel_lvds_init(dev_priv);
14055
14056         if (intel_crt_present(dev_priv))
14057                 intel_crt_init(dev_priv);
14058
14059         if (IS_GEN9_LP(dev_priv)) {
14060                 /*
14061                  * FIXME: Broxton doesn't support port detection via the
14062                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14063                  * detect the ports.
14064                  */
14065                 intel_ddi_init(dev_priv, PORT_A);
14066                 intel_ddi_init(dev_priv, PORT_B);
14067                 intel_ddi_init(dev_priv, PORT_C);
14068
14069                 intel_dsi_init(dev_priv);
14070         } else if (HAS_DDI(dev_priv)) {
14071                 int found;
14072
14073                 /*
14074                  * Haswell uses DDI functions to detect digital outputs.
14075                  * On SKL pre-D0 the strap isn't connected, so we assume
14076                  * it's there.
14077                  */
14078                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14079                 /* WaIgnoreDDIAStrap: skl */
14080                 if (found || IS_GEN9_BC(dev_priv))
14081                         intel_ddi_init(dev_priv, PORT_A);
14082
14083                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14084                  * register */
14085                 found = I915_READ(SFUSE_STRAP);
14086
14087                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14088                         intel_ddi_init(dev_priv, PORT_B);
14089                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14090                         intel_ddi_init(dev_priv, PORT_C);
14091                 if (found & SFUSE_STRAP_DDID_DETECTED)
14092                         intel_ddi_init(dev_priv, PORT_D);
14093                 /*
14094                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14095                  */
14096                 if (IS_GEN9_BC(dev_priv) &&
14097                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14098                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14099                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14100                         intel_ddi_init(dev_priv, PORT_E);
14101
14102         } else if (HAS_PCH_SPLIT(dev_priv)) {
14103                 int found;
14104                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14105
14106                 if (has_edp_a(dev_priv))
14107                         intel_dp_init(dev_priv, DP_A, PORT_A);
14108
14109                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14110                         /* PCH SDVOB multiplex with HDMIB */
14111                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14112                         if (!found)
14113                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14114                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14115                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14116                 }
14117
14118                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14119                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14120
14121                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14122                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14123
14124                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14125                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14126
14127                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14128                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14129         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14130                 bool has_edp, has_port;
14131
14132                 /*
14133                  * The DP_DETECTED bit is the latched state of the DDC
14134                  * SDA pin at boot. However since eDP doesn't require DDC
14135                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14136                  * eDP ports may have been muxed to an alternate function.
14137                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14138                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14139                  * detect eDP ports.
14140                  *
14141                  * Sadly the straps seem to be missing sometimes even for HDMI
14142                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14143                  * and VBT for the presence of the port. Additionally we can't
14144                  * trust the port type the VBT declares as we've seen at least
14145                  * HDMI ports that the VBT claim are DP or eDP.
14146                  */
14147                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14148                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14149                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14150                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14151                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14152                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14153
14154                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14155                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14156                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14157                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14158                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14159                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14160
14161                 if (IS_CHERRYVIEW(dev_priv)) {
14162                         /*
14163                          * eDP not supported on port D,
14164                          * so no need to worry about it
14165                          */
14166                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14167                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14168                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14169                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14170                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14171                 }
14172
14173                 intel_dsi_init(dev_priv);
14174         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14175                 bool found = false;
14176
14177                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14178                         DRM_DEBUG_KMS("probing SDVOB\n");
14179                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14180                         if (!found && IS_G4X(dev_priv)) {
14181                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14182                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14183                         }
14184
14185                         if (!found && IS_G4X(dev_priv))
14186                                 intel_dp_init(dev_priv, DP_B, PORT_B);
14187                 }
14188
14189                 /* Before G4X SDVOC doesn't have its own detect register */
14190
14191                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14192                         DRM_DEBUG_KMS("probing SDVOC\n");
14193                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14194                 }
14195
14196                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14197
14198                         if (IS_G4X(dev_priv)) {
14199                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14200                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14201                         }
14202                         if (IS_G4X(dev_priv))
14203                                 intel_dp_init(dev_priv, DP_C, PORT_C);
14204                 }
14205
14206                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14207                         intel_dp_init(dev_priv, DP_D, PORT_D);
14208         } else if (IS_GEN2(dev_priv))
14209                 intel_dvo_init(dev_priv);
14210
14211         if (SUPPORTS_TV(dev_priv))
14212                 intel_tv_init(dev_priv);
14213
14214         intel_psr_init(dev_priv);
14215
14216         for_each_intel_encoder(&dev_priv->drm, encoder) {
14217                 encoder->base.possible_crtcs = encoder->crtc_mask;
14218                 encoder->base.possible_clones =
14219                         intel_encoder_clones(encoder);
14220         }
14221
14222         intel_init_pch_refclk(dev_priv);
14223
14224         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14225 }
14226
14227 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14228 {
14229         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14230
14231         drm_framebuffer_cleanup(fb);
14232
14233         i915_gem_object_lock(intel_fb->obj);
14234         WARN_ON(!intel_fb->obj->framebuffer_references--);
14235         i915_gem_object_unlock(intel_fb->obj);
14236
14237         i915_gem_object_put(intel_fb->obj);
14238
14239         kfree(intel_fb);
14240 }
14241
14242 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14243                                                 struct drm_file *file,
14244                                                 unsigned int *handle)
14245 {
14246         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14247         struct drm_i915_gem_object *obj = intel_fb->obj;
14248
14249         if (obj->userptr.mm) {
14250                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14251                 return -EINVAL;
14252         }
14253
14254         return drm_gem_handle_create(file, &obj->base, handle);
14255 }
14256
14257 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14258                                         struct drm_file *file,
14259                                         unsigned flags, unsigned color,
14260                                         struct drm_clip_rect *clips,
14261                                         unsigned num_clips)
14262 {
14263         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14264
14265         i915_gem_object_flush_if_display(obj);
14266         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14267
14268         return 0;
14269 }
14270
14271 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14272         .destroy = intel_user_framebuffer_destroy,
14273         .create_handle = intel_user_framebuffer_create_handle,
14274         .dirty = intel_user_framebuffer_dirty,
14275 };
14276
14277 static
14278 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14279                          uint64_t fb_modifier, uint32_t pixel_format)
14280 {
14281         u32 gen = INTEL_GEN(dev_priv);
14282
14283         if (gen >= 9) {
14284                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14285
14286                 /* "The stride in bytes must not exceed the of the size of 8K
14287                  *  pixels and 32K bytes."
14288                  */
14289                 return min(8192 * cpp, 32768);
14290         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14291                 return 32*1024;
14292         } else if (gen >= 4) {
14293                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14294                         return 16*1024;
14295                 else
14296                         return 32*1024;
14297         } else if (gen >= 3) {
14298                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14299                         return 8*1024;
14300                 else
14301                         return 16*1024;
14302         } else {
14303                 /* XXX DSPC is limited to 4k tiled */
14304                 return 8*1024;
14305         }
14306 }
14307
14308 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14309                                   struct drm_i915_gem_object *obj,
14310                                   struct drm_mode_fb_cmd2 *mode_cmd)
14311 {
14312         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14313         struct drm_format_name_buf format_name;
14314         u32 pitch_limit, stride_alignment;
14315         unsigned int tiling, stride;
14316         int ret = -EINVAL;
14317
14318         i915_gem_object_lock(obj);
14319         obj->framebuffer_references++;
14320         tiling = i915_gem_object_get_tiling(obj);
14321         stride = i915_gem_object_get_stride(obj);
14322         i915_gem_object_unlock(obj);
14323
14324         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14325                 /*
14326                  * If there's a fence, enforce that
14327                  * the fb modifier and tiling mode match.
14328                  */
14329                 if (tiling != I915_TILING_NONE &&
14330                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14331                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14332                         goto err;
14333                 }
14334         } else {
14335                 if (tiling == I915_TILING_X) {
14336                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14337                 } else if (tiling == I915_TILING_Y) {
14338                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14339                         goto err;
14340                 }
14341         }
14342
14343         /* Passed in modifier sanity checking. */
14344         switch (mode_cmd->modifier[0]) {
14345         case I915_FORMAT_MOD_Y_TILED:
14346         case I915_FORMAT_MOD_Yf_TILED:
14347                 if (INTEL_GEN(dev_priv) < 9) {
14348                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14349                                   mode_cmd->modifier[0]);
14350                         goto err;
14351                 }
14352         case DRM_FORMAT_MOD_NONE:
14353         case I915_FORMAT_MOD_X_TILED:
14354                 break;
14355         default:
14356                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14357                           mode_cmd->modifier[0]);
14358                 goto err;
14359         }
14360
14361         /*
14362          * gen2/3 display engine uses the fence if present,
14363          * so the tiling mode must match the fb modifier exactly.
14364          */
14365         if (INTEL_INFO(dev_priv)->gen < 4 &&
14366             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14367                 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
14368                 goto err;
14369         }
14370
14371         stride_alignment = intel_fb_stride_alignment(dev_priv,
14372                                                      mode_cmd->modifier[0],
14373                                                      mode_cmd->pixel_format);
14374         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14375                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14376                           mode_cmd->pitches[0], stride_alignment);
14377                 goto err;
14378         }
14379
14380         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14381                                            mode_cmd->pixel_format);
14382         if (mode_cmd->pitches[0] > pitch_limit) {
14383                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14384                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14385                           "tiled" : "linear",
14386                           mode_cmd->pitches[0], pitch_limit);
14387                 goto err;
14388         }
14389
14390         /*
14391          * If there's a fence, enforce that
14392          * the fb pitch and fence stride match.
14393          */
14394         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] !=  stride) {
14395                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14396                           mode_cmd->pitches[0], stride);
14397                 goto err;
14398         }
14399
14400         /* Reject formats not supported by any plane early. */
14401         switch (mode_cmd->pixel_format) {
14402         case DRM_FORMAT_C8:
14403         case DRM_FORMAT_RGB565:
14404         case DRM_FORMAT_XRGB8888:
14405         case DRM_FORMAT_ARGB8888:
14406                 break;
14407         case DRM_FORMAT_XRGB1555:
14408                 if (INTEL_GEN(dev_priv) > 3) {
14409                         DRM_DEBUG("unsupported pixel format: %s\n",
14410                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
14411                         goto err;
14412                 }
14413                 break;
14414         case DRM_FORMAT_ABGR8888:
14415                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14416                     INTEL_GEN(dev_priv) < 9) {
14417                         DRM_DEBUG("unsupported pixel format: %s\n",
14418                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
14419                         goto err;
14420                 }
14421                 break;
14422         case DRM_FORMAT_XBGR8888:
14423         case DRM_FORMAT_XRGB2101010:
14424         case DRM_FORMAT_XBGR2101010:
14425                 if (INTEL_GEN(dev_priv) < 4) {
14426                         DRM_DEBUG("unsupported pixel format: %s\n",
14427                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
14428                         goto err;
14429                 }
14430                 break;
14431         case DRM_FORMAT_ABGR2101010:
14432                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14433                         DRM_DEBUG("unsupported pixel format: %s\n",
14434                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
14435                         goto err;
14436                 }
14437                 break;
14438         case DRM_FORMAT_YUYV:
14439         case DRM_FORMAT_UYVY:
14440         case DRM_FORMAT_YVYU:
14441         case DRM_FORMAT_VYUY:
14442                 if (INTEL_GEN(dev_priv) < 5) {
14443                         DRM_DEBUG("unsupported pixel format: %s\n",
14444                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
14445                         goto err;
14446                 }
14447                 break;
14448         default:
14449                 DRM_DEBUG("unsupported pixel format: %s\n",
14450                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
14451                 goto err;
14452         }
14453
14454         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14455         if (mode_cmd->offsets[0] != 0)
14456                 goto err;
14457
14458         drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14459                                        &intel_fb->base, mode_cmd);
14460         intel_fb->obj = obj;
14461
14462         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14463         if (ret)
14464                 goto err;
14465
14466         ret = drm_framebuffer_init(obj->base.dev,
14467                                    &intel_fb->base,
14468                                    &intel_fb_funcs);
14469         if (ret) {
14470                 DRM_ERROR("framebuffer init failed %d\n", ret);
14471                 goto err;
14472         }
14473
14474         return 0;
14475
14476 err:
14477         i915_gem_object_lock(obj);
14478         obj->framebuffer_references--;
14479         i915_gem_object_unlock(obj);
14480         return ret;
14481 }
14482
14483 static struct drm_framebuffer *
14484 intel_user_framebuffer_create(struct drm_device *dev,
14485                               struct drm_file *filp,
14486                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14487 {
14488         struct drm_framebuffer *fb;
14489         struct drm_i915_gem_object *obj;
14490         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14491
14492         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14493         if (!obj)
14494                 return ERR_PTR(-ENOENT);
14495
14496         fb = intel_framebuffer_create(obj, &mode_cmd);
14497         if (IS_ERR(fb))
14498                 i915_gem_object_put(obj);
14499
14500         return fb;
14501 }
14502
14503 static void intel_atomic_state_free(struct drm_atomic_state *state)
14504 {
14505         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14506
14507         drm_atomic_state_default_release(state);
14508
14509         i915_sw_fence_fini(&intel_state->commit_ready);
14510
14511         kfree(state);
14512 }
14513
14514 static const struct drm_mode_config_funcs intel_mode_funcs = {
14515         .fb_create = intel_user_framebuffer_create,
14516         .output_poll_changed = intel_fbdev_output_poll_changed,
14517         .atomic_check = intel_atomic_check,
14518         .atomic_commit = intel_atomic_commit,
14519         .atomic_state_alloc = intel_atomic_state_alloc,
14520         .atomic_state_clear = intel_atomic_state_clear,
14521         .atomic_state_free = intel_atomic_state_free,
14522 };
14523
14524 /**
14525  * intel_init_display_hooks - initialize the display modesetting hooks
14526  * @dev_priv: device private
14527  */
14528 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14529 {
14530         intel_init_cdclk_hooks(dev_priv);
14531
14532         if (INTEL_INFO(dev_priv)->gen >= 9) {
14533                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14534                 dev_priv->display.get_initial_plane_config =
14535                         skylake_get_initial_plane_config;
14536                 dev_priv->display.crtc_compute_clock =
14537                         haswell_crtc_compute_clock;
14538                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14539                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14540         } else if (HAS_DDI(dev_priv)) {
14541                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14542                 dev_priv->display.get_initial_plane_config =
14543                         ironlake_get_initial_plane_config;
14544                 dev_priv->display.crtc_compute_clock =
14545                         haswell_crtc_compute_clock;
14546                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14547                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14548         } else if (HAS_PCH_SPLIT(dev_priv)) {
14549                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14550                 dev_priv->display.get_initial_plane_config =
14551                         ironlake_get_initial_plane_config;
14552                 dev_priv->display.crtc_compute_clock =
14553                         ironlake_crtc_compute_clock;
14554                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14555                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14556         } else if (IS_CHERRYVIEW(dev_priv)) {
14557                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14558                 dev_priv->display.get_initial_plane_config =
14559                         i9xx_get_initial_plane_config;
14560                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14561                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14562                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14563         } else if (IS_VALLEYVIEW(dev_priv)) {
14564                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14565                 dev_priv->display.get_initial_plane_config =
14566                         i9xx_get_initial_plane_config;
14567                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14568                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14569                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14570         } else if (IS_G4X(dev_priv)) {
14571                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14572                 dev_priv->display.get_initial_plane_config =
14573                         i9xx_get_initial_plane_config;
14574                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14575                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14576                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14577         } else if (IS_PINEVIEW(dev_priv)) {
14578                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14579                 dev_priv->display.get_initial_plane_config =
14580                         i9xx_get_initial_plane_config;
14581                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14582                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14583                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14584         } else if (!IS_GEN2(dev_priv)) {
14585                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14586                 dev_priv->display.get_initial_plane_config =
14587                         i9xx_get_initial_plane_config;
14588                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14589                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14590                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14591         } else {
14592                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14593                 dev_priv->display.get_initial_plane_config =
14594                         i9xx_get_initial_plane_config;
14595                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14596                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14597                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14598         }
14599
14600         if (IS_GEN5(dev_priv)) {
14601                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14602         } else if (IS_GEN6(dev_priv)) {
14603                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14604         } else if (IS_IVYBRIDGE(dev_priv)) {
14605                 /* FIXME: detect B0+ stepping and use auto training */
14606                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14607         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14608                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14609         }
14610
14611         if (dev_priv->info.gen >= 9)
14612                 dev_priv->display.update_crtcs = skl_update_crtcs;
14613         else
14614                 dev_priv->display.update_crtcs = intel_update_crtcs;
14615
14616         switch (INTEL_INFO(dev_priv)->gen) {
14617         case 2:
14618                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14619                 break;
14620
14621         case 3:
14622                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14623                 break;
14624
14625         case 4:
14626         case 5:
14627                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14628                 break;
14629
14630         case 6:
14631                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14632                 break;
14633         case 7:
14634         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14635                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14636                 break;
14637         case 9:
14638                 /* Drop through - unsupported since execlist only. */
14639         default:
14640                 /* Default just returns -ENODEV to indicate unsupported */
14641                 dev_priv->display.queue_flip = intel_default_queue_flip;
14642         }
14643 }
14644
14645 /*
14646  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14647  * resume, or other times.  This quirk makes sure that's the case for
14648  * affected systems.
14649  */
14650 static void quirk_pipea_force(struct drm_device *dev)
14651 {
14652         struct drm_i915_private *dev_priv = to_i915(dev);
14653
14654         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14655         DRM_INFO("applying pipe a force quirk\n");
14656 }
14657
14658 static void quirk_pipeb_force(struct drm_device *dev)
14659 {
14660         struct drm_i915_private *dev_priv = to_i915(dev);
14661
14662         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14663         DRM_INFO("applying pipe b force quirk\n");
14664 }
14665
14666 /*
14667  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14668  */
14669 static void quirk_ssc_force_disable(struct drm_device *dev)
14670 {
14671         struct drm_i915_private *dev_priv = to_i915(dev);
14672         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14673         DRM_INFO("applying lvds SSC disable quirk\n");
14674 }
14675
14676 /*
14677  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14678  * brightness value
14679  */
14680 static void quirk_invert_brightness(struct drm_device *dev)
14681 {
14682         struct drm_i915_private *dev_priv = to_i915(dev);
14683         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14684         DRM_INFO("applying inverted panel brightness quirk\n");
14685 }
14686
14687 /* Some VBT's incorrectly indicate no backlight is present */
14688 static void quirk_backlight_present(struct drm_device *dev)
14689 {
14690         struct drm_i915_private *dev_priv = to_i915(dev);
14691         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14692         DRM_INFO("applying backlight present quirk\n");
14693 }
14694
14695 struct intel_quirk {
14696         int device;
14697         int subsystem_vendor;
14698         int subsystem_device;
14699         void (*hook)(struct drm_device *dev);
14700 };
14701
14702 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14703 struct intel_dmi_quirk {
14704         void (*hook)(struct drm_device *dev);
14705         const struct dmi_system_id (*dmi_id_list)[];
14706 };
14707
14708 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14709 {
14710         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14711         return 1;
14712 }
14713
14714 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14715         {
14716                 .dmi_id_list = &(const struct dmi_system_id[]) {
14717                         {
14718                                 .callback = intel_dmi_reverse_brightness,
14719                                 .ident = "NCR Corporation",
14720                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14721                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14722                                 },
14723                         },
14724                         { }  /* terminating entry */
14725                 },
14726                 .hook = quirk_invert_brightness,
14727         },
14728 };
14729
14730 static struct intel_quirk intel_quirks[] = {
14731         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14732         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14733
14734         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14735         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14736
14737         /* 830 needs to leave pipe A & dpll A up */
14738         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14739
14740         /* 830 needs to leave pipe B & dpll B up */
14741         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14742
14743         /* Lenovo U160 cannot use SSC on LVDS */
14744         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14745
14746         /* Sony Vaio Y cannot use SSC on LVDS */
14747         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14748
14749         /* Acer Aspire 5734Z must invert backlight brightness */
14750         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14751
14752         /* Acer/eMachines G725 */
14753         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14754
14755         /* Acer/eMachines e725 */
14756         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14757
14758         /* Acer/Packard Bell NCL20 */
14759         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14760
14761         /* Acer Aspire 4736Z */
14762         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14763
14764         /* Acer Aspire 5336 */
14765         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14766
14767         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14768         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14769
14770         /* Acer C720 Chromebook (Core i3 4005U) */
14771         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14772
14773         /* Apple Macbook 2,1 (Core 2 T7400) */
14774         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14775
14776         /* Apple Macbook 4,1 */
14777         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14778
14779         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14780         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14781
14782         /* HP Chromebook 14 (Celeron 2955U) */
14783         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14784
14785         /* Dell Chromebook 11 */
14786         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14787
14788         /* Dell Chromebook 11 (2015 version) */
14789         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14790 };
14791
14792 static void intel_init_quirks(struct drm_device *dev)
14793 {
14794         struct pci_dev *d = dev->pdev;
14795         int i;
14796
14797         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14798                 struct intel_quirk *q = &intel_quirks[i];
14799
14800                 if (d->device == q->device &&
14801                     (d->subsystem_vendor == q->subsystem_vendor ||
14802                      q->subsystem_vendor == PCI_ANY_ID) &&
14803                     (d->subsystem_device == q->subsystem_device ||
14804                      q->subsystem_device == PCI_ANY_ID))
14805                         q->hook(dev);
14806         }
14807         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14808                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14809                         intel_dmi_quirks[i].hook(dev);
14810         }
14811 }
14812
14813 /* Disable the VGA plane that we never use */
14814 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14815 {
14816         struct pci_dev *pdev = dev_priv->drm.pdev;
14817         u8 sr1;
14818         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14819
14820         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14821         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14822         outb(SR01, VGA_SR_INDEX);
14823         sr1 = inb(VGA_SR_DATA);
14824         outb(sr1 | 1<<5, VGA_SR_DATA);
14825         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14826         udelay(300);
14827
14828         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14829         POSTING_READ(vga_reg);
14830 }
14831
14832 void intel_modeset_init_hw(struct drm_device *dev)
14833 {
14834         struct drm_i915_private *dev_priv = to_i915(dev);
14835
14836         intel_update_cdclk(dev_priv);
14837         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14838
14839         intel_init_clock_gating(dev_priv);
14840 }
14841
14842 /*
14843  * Calculate what we think the watermarks should be for the state we've read
14844  * out of the hardware and then immediately program those watermarks so that
14845  * we ensure the hardware settings match our internal state.
14846  *
14847  * We can calculate what we think WM's should be by creating a duplicate of the
14848  * current state (which was constructed during hardware readout) and running it
14849  * through the atomic check code to calculate new watermark values in the
14850  * state object.
14851  */
14852 static void sanitize_watermarks(struct drm_device *dev)
14853 {
14854         struct drm_i915_private *dev_priv = to_i915(dev);
14855         struct drm_atomic_state *state;
14856         struct intel_atomic_state *intel_state;
14857         struct drm_crtc *crtc;
14858         struct drm_crtc_state *cstate;
14859         struct drm_modeset_acquire_ctx ctx;
14860         int ret;
14861         int i;
14862
14863         /* Only supported on platforms that use atomic watermark design */
14864         if (!dev_priv->display.optimize_watermarks)
14865                 return;
14866
14867         /*
14868          * We need to hold connection_mutex before calling duplicate_state so
14869          * that the connector loop is protected.
14870          */
14871         drm_modeset_acquire_init(&ctx, 0);
14872 retry:
14873         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14874         if (ret == -EDEADLK) {
14875                 drm_modeset_backoff(&ctx);
14876                 goto retry;
14877         } else if (WARN_ON(ret)) {
14878                 goto fail;
14879         }
14880
14881         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14882         if (WARN_ON(IS_ERR(state)))
14883                 goto fail;
14884
14885         intel_state = to_intel_atomic_state(state);
14886
14887         /*
14888          * Hardware readout is the only time we don't want to calculate
14889          * intermediate watermarks (since we don't trust the current
14890          * watermarks).
14891          */
14892         if (!HAS_GMCH_DISPLAY(dev_priv))
14893                 intel_state->skip_intermediate_wm = true;
14894
14895         ret = intel_atomic_check(dev, state);
14896         if (ret) {
14897                 /*
14898                  * If we fail here, it means that the hardware appears to be
14899                  * programmed in a way that shouldn't be possible, given our
14900                  * understanding of watermark requirements.  This might mean a
14901                  * mistake in the hardware readout code or a mistake in the
14902                  * watermark calculations for a given platform.  Raise a WARN
14903                  * so that this is noticeable.
14904                  *
14905                  * If this actually happens, we'll have to just leave the
14906                  * BIOS-programmed watermarks untouched and hope for the best.
14907                  */
14908                 WARN(true, "Could not determine valid watermarks for inherited state\n");
14909                 goto put_state;
14910         }
14911
14912         /* Write calculated watermark values back */
14913         for_each_crtc_in_state(state, crtc, cstate, i) {
14914                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14915
14916                 cs->wm.need_postvbl_update = true;
14917                 dev_priv->display.optimize_watermarks(intel_state, cs);
14918         }
14919
14920 put_state:
14921         drm_atomic_state_put(state);
14922 fail:
14923         drm_modeset_drop_locks(&ctx);
14924         drm_modeset_acquire_fini(&ctx);
14925 }
14926
14927 int intel_modeset_init(struct drm_device *dev)
14928 {
14929         struct drm_i915_private *dev_priv = to_i915(dev);
14930         struct i915_ggtt *ggtt = &dev_priv->ggtt;
14931         enum pipe pipe;
14932         struct intel_crtc *crtc;
14933
14934         drm_mode_config_init(dev);
14935
14936         dev->mode_config.min_width = 0;
14937         dev->mode_config.min_height = 0;
14938
14939         dev->mode_config.preferred_depth = 24;
14940         dev->mode_config.prefer_shadow = 1;
14941
14942         dev->mode_config.allow_fb_modifiers = true;
14943
14944         dev->mode_config.funcs = &intel_mode_funcs;
14945
14946         INIT_WORK(&dev_priv->atomic_helper.free_work,
14947                   intel_atomic_helper_free_state_worker);
14948
14949         intel_init_quirks(dev);
14950
14951         intel_init_pm(dev_priv);
14952
14953         if (INTEL_INFO(dev_priv)->num_pipes == 0)
14954                 return 0;
14955
14956         /*
14957          * There may be no VBT; and if the BIOS enabled SSC we can
14958          * just keep using it to avoid unnecessary flicker.  Whereas if the
14959          * BIOS isn't using it, don't assume it will work even if the VBT
14960          * indicates as much.
14961          */
14962         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14963                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14964                                             DREF_SSC1_ENABLE);
14965
14966                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14967                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14968                                      bios_lvds_use_ssc ? "en" : "dis",
14969                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14970                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14971                 }
14972         }
14973
14974         if (IS_GEN2(dev_priv)) {
14975                 dev->mode_config.max_width = 2048;
14976                 dev->mode_config.max_height = 2048;
14977         } else if (IS_GEN3(dev_priv)) {
14978                 dev->mode_config.max_width = 4096;
14979                 dev->mode_config.max_height = 4096;
14980         } else {
14981                 dev->mode_config.max_width = 8192;
14982                 dev->mode_config.max_height = 8192;
14983         }
14984
14985         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14986                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14987                 dev->mode_config.cursor_height = 1023;
14988         } else if (IS_GEN2(dev_priv)) {
14989                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14990                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14991         } else {
14992                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14993                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14994         }
14995
14996         dev->mode_config.fb_base = ggtt->mappable_base;
14997
14998         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14999                       INTEL_INFO(dev_priv)->num_pipes,
15000                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15001
15002         for_each_pipe(dev_priv, pipe) {
15003                 int ret;
15004
15005                 ret = intel_crtc_init(dev_priv, pipe);
15006                 if (ret) {
15007                         drm_mode_config_cleanup(dev);
15008                         return ret;
15009                 }
15010         }
15011
15012         intel_shared_dpll_init(dev);
15013
15014         intel_update_czclk(dev_priv);
15015         intel_modeset_init_hw(dev);
15016
15017         if (dev_priv->max_cdclk_freq == 0)
15018                 intel_update_max_cdclk(dev_priv);
15019
15020         /* Just disable it once at startup */
15021         i915_disable_vga(dev_priv);
15022         intel_setup_outputs(dev_priv);
15023
15024         drm_modeset_lock_all(dev);
15025         intel_modeset_setup_hw_state(dev);
15026         drm_modeset_unlock_all(dev);
15027
15028         for_each_intel_crtc(dev, crtc) {
15029                 struct intel_initial_plane_config plane_config = {};
15030
15031                 if (!crtc->active)
15032                         continue;
15033
15034                 /*
15035                  * Note that reserving the BIOS fb up front prevents us
15036                  * from stuffing other stolen allocations like the ring
15037                  * on top.  This prevents some ugliness at boot time, and
15038                  * can even allow for smooth boot transitions if the BIOS
15039                  * fb is large enough for the active pipe configuration.
15040                  */
15041                 dev_priv->display.get_initial_plane_config(crtc,
15042                                                            &plane_config);
15043
15044                 /*
15045                  * If the fb is shared between multiple heads, we'll
15046                  * just get the first one.
15047                  */
15048                 intel_find_initial_plane_obj(crtc, &plane_config);
15049         }
15050
15051         /*
15052          * Make sure hardware watermarks really match the state we read out.
15053          * Note that we need to do this after reconstructing the BIOS fb's
15054          * since the watermark calculation done here will use pstate->fb.
15055          */
15056         if (!HAS_GMCH_DISPLAY(dev_priv))
15057                 sanitize_watermarks(dev);
15058
15059         return 0;
15060 }
15061
15062 static void intel_enable_pipe_a(struct drm_device *dev)
15063 {
15064         struct intel_connector *connector;
15065         struct drm_connector *crt = NULL;
15066         struct intel_load_detect_pipe load_detect_temp;
15067         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15068
15069         /* We can't just switch on the pipe A, we need to set things up with a
15070          * proper mode and output configuration. As a gross hack, enable pipe A
15071          * by enabling the load detect pipe once. */
15072         for_each_intel_connector(dev, connector) {
15073                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15074                         crt = &connector->base;
15075                         break;
15076                 }
15077         }
15078
15079         if (!crt)
15080                 return;
15081
15082         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15083                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15084 }
15085
15086 static bool
15087 intel_check_plane_mapping(struct intel_crtc *crtc)
15088 {
15089         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15090         u32 val;
15091
15092         if (INTEL_INFO(dev_priv)->num_pipes == 1)
15093                 return true;
15094
15095         val = I915_READ(DSPCNTR(!crtc->plane));
15096
15097         if ((val & DISPLAY_PLANE_ENABLE) &&
15098             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15099                 return false;
15100
15101         return true;
15102 }
15103
15104 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15105 {
15106         struct drm_device *dev = crtc->base.dev;
15107         struct intel_encoder *encoder;
15108
15109         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15110                 return true;
15111
15112         return false;
15113 }
15114
15115 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15116 {
15117         struct drm_device *dev = encoder->base.dev;
15118         struct intel_connector *connector;
15119
15120         for_each_connector_on_encoder(dev, &encoder->base, connector)
15121                 return connector;
15122
15123         return NULL;
15124 }
15125
15126 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15127                               enum transcoder pch_transcoder)
15128 {
15129         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15130                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15131 }
15132
15133 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15134 {
15135         struct drm_device *dev = crtc->base.dev;
15136         struct drm_i915_private *dev_priv = to_i915(dev);
15137         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15138
15139         /* Clear any frame start delays used for debugging left by the BIOS */
15140         if (!transcoder_is_dsi(cpu_transcoder)) {
15141                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15142
15143                 I915_WRITE(reg,
15144                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15145         }
15146
15147         /* restore vblank interrupts to correct state */
15148         drm_crtc_vblank_reset(&crtc->base);
15149         if (crtc->active) {
15150                 struct intel_plane *plane;
15151
15152                 drm_crtc_vblank_on(&crtc->base);
15153
15154                 /* Disable everything but the primary plane */
15155                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15156                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15157                                 continue;
15158
15159                         trace_intel_disable_plane(&plane->base, crtc);
15160                         plane->disable_plane(&plane->base, &crtc->base);
15161                 }
15162         }
15163
15164         /* We need to sanitize the plane -> pipe mapping first because this will
15165          * disable the crtc (and hence change the state) if it is wrong. Note
15166          * that gen4+ has a fixed plane -> pipe mapping.  */
15167         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15168                 bool plane;
15169
15170                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15171                               crtc->base.base.id, crtc->base.name);
15172
15173                 /* Pipe has the wrong plane attached and the plane is active.
15174                  * Temporarily change the plane mapping and disable everything
15175                  * ...  */
15176                 plane = crtc->plane;
15177                 crtc->base.primary->state->visible = true;
15178                 crtc->plane = !plane;
15179                 intel_crtc_disable_noatomic(&crtc->base);
15180                 crtc->plane = plane;
15181         }
15182
15183         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15184             crtc->pipe == PIPE_A && !crtc->active) {
15185                 /* BIOS forgot to enable pipe A, this mostly happens after
15186                  * resume. Force-enable the pipe to fix this, the update_dpms
15187                  * call below we restore the pipe to the right state, but leave
15188                  * the required bits on. */
15189                 intel_enable_pipe_a(dev);
15190         }
15191
15192         /* Adjust the state of the output pipe according to whether we
15193          * have active connectors/encoders. */
15194         if (crtc->active && !intel_crtc_has_encoders(crtc))
15195                 intel_crtc_disable_noatomic(&crtc->base);
15196
15197         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15198                 /*
15199                  * We start out with underrun reporting disabled to avoid races.
15200                  * For correct bookkeeping mark this on active crtcs.
15201                  *
15202                  * Also on gmch platforms we dont have any hardware bits to
15203                  * disable the underrun reporting. Which means we need to start
15204                  * out with underrun reporting disabled also on inactive pipes,
15205                  * since otherwise we'll complain about the garbage we read when
15206                  * e.g. coming up after runtime pm.
15207                  *
15208                  * No protection against concurrent access is required - at
15209                  * worst a fifo underrun happens which also sets this to false.
15210                  */
15211                 crtc->cpu_fifo_underrun_disabled = true;
15212                 /*
15213                  * We track the PCH trancoder underrun reporting state
15214                  * within the crtc. With crtc for pipe A housing the underrun
15215                  * reporting state for PCH transcoder A, crtc for pipe B housing
15216                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15217                  * and marking underrun reporting as disabled for the non-existing
15218                  * PCH transcoders B and C would prevent enabling the south
15219                  * error interrupt (see cpt_can_enable_serr_int()).
15220                  */
15221                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15222                         crtc->pch_fifo_underrun_disabled = true;
15223         }
15224 }
15225
15226 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15227 {
15228         struct intel_connector *connector;
15229
15230         /* We need to check both for a crtc link (meaning that the
15231          * encoder is active and trying to read from a pipe) and the
15232          * pipe itself being active. */
15233         bool has_active_crtc = encoder->base.crtc &&
15234                 to_intel_crtc(encoder->base.crtc)->active;
15235
15236         connector = intel_encoder_find_connector(encoder);
15237         if (connector && !has_active_crtc) {
15238                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15239                               encoder->base.base.id,
15240                               encoder->base.name);
15241
15242                 /* Connector is active, but has no active pipe. This is
15243                  * fallout from our resume register restoring. Disable
15244                  * the encoder manually again. */
15245                 if (encoder->base.crtc) {
15246                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15247
15248                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15249                                       encoder->base.base.id,
15250                                       encoder->base.name);
15251                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15252                         if (encoder->post_disable)
15253                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15254                 }
15255                 encoder->base.crtc = NULL;
15256
15257                 /* Inconsistent output/port/pipe state happens presumably due to
15258                  * a bug in one of the get_hw_state functions. Or someplace else
15259                  * in our code, like the register restore mess on resume. Clamp
15260                  * things to off as a safer default. */
15261
15262                 connector->base.dpms = DRM_MODE_DPMS_OFF;
15263                 connector->base.encoder = NULL;
15264         }
15265         /* Enabled encoders without active connectors will be fixed in
15266          * the crtc fixup. */
15267 }
15268
15269 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15270 {
15271         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15272
15273         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15274                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15275                 i915_disable_vga(dev_priv);
15276         }
15277 }
15278
15279 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15280 {
15281         /* This function can be called both from intel_modeset_setup_hw_state or
15282          * at a very early point in our resume sequence, where the power well
15283          * structures are not yet restored. Since this function is at a very
15284          * paranoid "someone might have enabled VGA while we were not looking"
15285          * level, just check if the power well is enabled instead of trying to
15286          * follow the "don't touch the power well if we don't need it" policy
15287          * the rest of the driver uses. */
15288         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15289                 return;
15290
15291         i915_redisable_vga_power_on(dev_priv);
15292
15293         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15294 }
15295
15296 static bool primary_get_hw_state(struct intel_plane *plane)
15297 {
15298         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15299
15300         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15301 }
15302
15303 /* FIXME read out full plane state for all planes */
15304 static void readout_plane_state(struct intel_crtc *crtc)
15305 {
15306         struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15307         bool visible;
15308
15309         visible = crtc->active && primary_get_hw_state(primary);
15310
15311         intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15312                                 to_intel_plane_state(primary->base.state),
15313                                 visible);
15314 }
15315
15316 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15317 {
15318         struct drm_i915_private *dev_priv = to_i915(dev);
15319         enum pipe pipe;
15320         struct intel_crtc *crtc;
15321         struct intel_encoder *encoder;
15322         struct intel_connector *connector;
15323         int i;
15324
15325         dev_priv->active_crtcs = 0;
15326
15327         for_each_intel_crtc(dev, crtc) {
15328                 struct intel_crtc_state *crtc_state =
15329                         to_intel_crtc_state(crtc->base.state);
15330
15331                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15332                 memset(crtc_state, 0, sizeof(*crtc_state));
15333                 crtc_state->base.crtc = &crtc->base;
15334
15335                 crtc_state->base.active = crtc_state->base.enable =
15336                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15337
15338                 crtc->base.enabled = crtc_state->base.enable;
15339                 crtc->active = crtc_state->base.active;
15340
15341                 if (crtc_state->base.active)
15342                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15343
15344                 readout_plane_state(crtc);
15345
15346                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15347                               crtc->base.base.id, crtc->base.name,
15348                               enableddisabled(crtc_state->base.active));
15349         }
15350
15351         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15352                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15353
15354                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15355                                                   &pll->state.hw_state);
15356                 pll->state.crtc_mask = 0;
15357                 for_each_intel_crtc(dev, crtc) {
15358                         struct intel_crtc_state *crtc_state =
15359                                 to_intel_crtc_state(crtc->base.state);
15360
15361                         if (crtc_state->base.active &&
15362                             crtc_state->shared_dpll == pll)
15363                                 pll->state.crtc_mask |= 1 << crtc->pipe;
15364                 }
15365                 pll->active_mask = pll->state.crtc_mask;
15366
15367                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15368                               pll->name, pll->state.crtc_mask, pll->on);
15369         }
15370
15371         for_each_intel_encoder(dev, encoder) {
15372                 pipe = 0;
15373
15374                 if (encoder->get_hw_state(encoder, &pipe)) {
15375                         struct intel_crtc_state *crtc_state;
15376
15377                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15378                         crtc_state = to_intel_crtc_state(crtc->base.state);
15379
15380                         encoder->base.crtc = &crtc->base;
15381                         crtc_state->output_types |= 1 << encoder->type;
15382                         encoder->get_config(encoder, crtc_state);
15383                 } else {
15384                         encoder->base.crtc = NULL;
15385                 }
15386
15387                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15388                               encoder->base.base.id, encoder->base.name,
15389                               enableddisabled(encoder->base.crtc),
15390                               pipe_name(pipe));
15391         }
15392
15393         for_each_intel_connector(dev, connector) {
15394                 if (connector->get_hw_state(connector)) {
15395                         connector->base.dpms = DRM_MODE_DPMS_ON;
15396
15397                         encoder = connector->encoder;
15398                         connector->base.encoder = &encoder->base;
15399
15400                         if (encoder->base.crtc &&
15401                             encoder->base.crtc->state->active) {
15402                                 /*
15403                                  * This has to be done during hardware readout
15404                                  * because anything calling .crtc_disable may
15405                                  * rely on the connector_mask being accurate.
15406                                  */
15407                                 encoder->base.crtc->state->connector_mask |=
15408                                         1 << drm_connector_index(&connector->base);
15409                                 encoder->base.crtc->state->encoder_mask |=
15410                                         1 << drm_encoder_index(&encoder->base);
15411                         }
15412
15413                 } else {
15414                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15415                         connector->base.encoder = NULL;
15416                 }
15417                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15418                               connector->base.base.id, connector->base.name,
15419                               enableddisabled(connector->base.encoder));
15420         }
15421
15422         for_each_intel_crtc(dev, crtc) {
15423                 struct intel_crtc_state *crtc_state =
15424                         to_intel_crtc_state(crtc->base.state);
15425                 int pixclk = 0;
15426
15427                 crtc->base.hwmode = crtc_state->base.adjusted_mode;
15428
15429                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15430                 if (crtc_state->base.active) {
15431                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15432                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15433                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15434
15435                         /*
15436                          * The initial mode needs to be set in order to keep
15437                          * the atomic core happy. It wants a valid mode if the
15438                          * crtc's enabled, so we do the above call.
15439                          *
15440                          * But we don't set all the derived state fully, hence
15441                          * set a flag to indicate that a full recalculation is
15442                          * needed on the next commit.
15443                          */
15444                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15445
15446                         intel_crtc_compute_pixel_rate(crtc_state);
15447
15448                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15449                             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15450                                 pixclk = crtc_state->pixel_rate;
15451                         else
15452                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15453
15454                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15455                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15456                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15457
15458                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15459                         update_scanline_offset(crtc);
15460                 }
15461
15462                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15463
15464                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15465         }
15466 }
15467
15468 static void
15469 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15470 {
15471         struct intel_encoder *encoder;
15472
15473         for_each_intel_encoder(&dev_priv->drm, encoder) {
15474                 u64 get_domains;
15475                 enum intel_display_power_domain domain;
15476
15477                 if (!encoder->get_power_domains)
15478                         continue;
15479
15480                 get_domains = encoder->get_power_domains(encoder);
15481                 for_each_power_domain(domain, get_domains)
15482                         intel_display_power_get(dev_priv, domain);
15483         }
15484 }
15485
15486 /* Scan out the current hw modeset state,
15487  * and sanitizes it to the current state
15488  */
15489 static void
15490 intel_modeset_setup_hw_state(struct drm_device *dev)
15491 {
15492         struct drm_i915_private *dev_priv = to_i915(dev);
15493         enum pipe pipe;
15494         struct intel_crtc *crtc;
15495         struct intel_encoder *encoder;
15496         int i;
15497
15498         intel_modeset_readout_hw_state(dev);
15499
15500         /* HW state is read out, now we need to sanitize this mess. */
15501         get_encoder_power_domains(dev_priv);
15502
15503         for_each_intel_encoder(dev, encoder) {
15504                 intel_sanitize_encoder(encoder);
15505         }
15506
15507         for_each_pipe(dev_priv, pipe) {
15508                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15509
15510                 intel_sanitize_crtc(crtc);
15511                 intel_dump_pipe_config(crtc, crtc->config,
15512                                        "[setup_hw_state]");
15513         }
15514
15515         intel_modeset_update_connector_atomic_state(dev);
15516
15517         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15518                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15519
15520                 if (!pll->on || pll->active_mask)
15521                         continue;
15522
15523                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15524
15525                 pll->funcs.disable(dev_priv, pll);
15526                 pll->on = false;
15527         }
15528
15529         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15530                 vlv_wm_get_hw_state(dev);
15531                 vlv_wm_sanitize(dev_priv);
15532         } else if (IS_GEN9(dev_priv)) {
15533                 skl_wm_get_hw_state(dev);
15534         } else if (HAS_PCH_SPLIT(dev_priv)) {
15535                 ilk_wm_get_hw_state(dev);
15536         }
15537
15538         for_each_intel_crtc(dev, crtc) {
15539                 u64 put_domains;
15540
15541                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15542                 if (WARN_ON(put_domains))
15543                         modeset_put_power_domains(dev_priv, put_domains);
15544         }
15545         intel_display_set_init_power(dev_priv, false);
15546
15547         intel_power_domains_verify_state(dev_priv);
15548
15549         intel_fbc_init_pipe_state(dev_priv);
15550 }
15551
15552 void intel_display_resume(struct drm_device *dev)
15553 {
15554         struct drm_i915_private *dev_priv = to_i915(dev);
15555         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15556         struct drm_modeset_acquire_ctx ctx;
15557         int ret;
15558
15559         dev_priv->modeset_restore_state = NULL;
15560         if (state)
15561                 state->acquire_ctx = &ctx;
15562
15563         /*
15564          * This is a cludge because with real atomic modeset mode_config.mutex
15565          * won't be taken. Unfortunately some probed state like
15566          * audio_codec_enable is still protected by mode_config.mutex, so lock
15567          * it here for now.
15568          */
15569         mutex_lock(&dev->mode_config.mutex);
15570         drm_modeset_acquire_init(&ctx, 0);
15571
15572         while (1) {
15573                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15574                 if (ret != -EDEADLK)
15575                         break;
15576
15577                 drm_modeset_backoff(&ctx);
15578         }
15579
15580         if (!ret)
15581                 ret = __intel_display_resume(dev, state, &ctx);
15582
15583         drm_modeset_drop_locks(&ctx);
15584         drm_modeset_acquire_fini(&ctx);
15585         mutex_unlock(&dev->mode_config.mutex);
15586
15587         if (ret)
15588                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15589         if (state)
15590                 drm_atomic_state_put(state);
15591 }
15592
15593 void intel_modeset_gem_init(struct drm_device *dev)
15594 {
15595         struct drm_i915_private *dev_priv = to_i915(dev);
15596
15597         intel_init_gt_powersave(dev_priv);
15598
15599         intel_setup_overlay(dev_priv);
15600 }
15601
15602 int intel_connector_register(struct drm_connector *connector)
15603 {
15604         struct intel_connector *intel_connector = to_intel_connector(connector);
15605         int ret;
15606
15607         ret = intel_backlight_device_register(intel_connector);
15608         if (ret)
15609                 goto err;
15610
15611         return 0;
15612
15613 err:
15614         return ret;
15615 }
15616
15617 void intel_connector_unregister(struct drm_connector *connector)
15618 {
15619         struct intel_connector *intel_connector = to_intel_connector(connector);
15620
15621         intel_backlight_device_unregister(intel_connector);
15622         intel_panel_destroy_backlight(connector);
15623 }
15624
15625 void intel_modeset_cleanup(struct drm_device *dev)
15626 {
15627         struct drm_i915_private *dev_priv = to_i915(dev);
15628
15629         flush_work(&dev_priv->atomic_helper.free_work);
15630         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15631
15632         intel_disable_gt_powersave(dev_priv);
15633
15634         /*
15635          * Interrupts and polling as the first thing to avoid creating havoc.
15636          * Too much stuff here (turning of connectors, ...) would
15637          * experience fancy races otherwise.
15638          */
15639         intel_irq_uninstall(dev_priv);
15640
15641         /*
15642          * Due to the hpd irq storm handling the hotplug work can re-arm the
15643          * poll handlers. Hence disable polling after hpd handling is shut down.
15644          */
15645         drm_kms_helper_poll_fini(dev);
15646
15647         intel_unregister_dsm_handler();
15648
15649         intel_fbc_global_disable(dev_priv);
15650
15651         /* flush any delayed tasks or pending work */
15652         flush_scheduled_work();
15653
15654         drm_mode_config_cleanup(dev);
15655
15656         intel_cleanup_overlay(dev_priv);
15657
15658         intel_cleanup_gt_powersave(dev_priv);
15659
15660         intel_teardown_gmbus(dev_priv);
15661 }
15662
15663 void intel_connector_attach_encoder(struct intel_connector *connector,
15664                                     struct intel_encoder *encoder)
15665 {
15666         connector->encoder = encoder;
15667         drm_mode_connector_attach_encoder(&connector->base,
15668                                           &encoder->base);
15669 }
15670
15671 /*
15672  * set vga decode state - true == enable VGA decode
15673  */
15674 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15675 {
15676         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15677         u16 gmch_ctrl;
15678
15679         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15680                 DRM_ERROR("failed to read control word\n");
15681                 return -EIO;
15682         }
15683
15684         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15685                 return 0;
15686
15687         if (state)
15688                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15689         else
15690                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15691
15692         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15693                 DRM_ERROR("failed to write control word\n");
15694                 return -EIO;
15695         }
15696
15697         return 0;
15698 }
15699
15700 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15701
15702 struct intel_display_error_state {
15703
15704         u32 power_well_driver;
15705
15706         int num_transcoders;
15707
15708         struct intel_cursor_error_state {
15709                 u32 control;
15710                 u32 position;
15711                 u32 base;
15712                 u32 size;
15713         } cursor[I915_MAX_PIPES];
15714
15715         struct intel_pipe_error_state {
15716                 bool power_domain_on;
15717                 u32 source;
15718                 u32 stat;
15719         } pipe[I915_MAX_PIPES];
15720
15721         struct intel_plane_error_state {
15722                 u32 control;
15723                 u32 stride;
15724                 u32 size;
15725                 u32 pos;
15726                 u32 addr;
15727                 u32 surface;
15728                 u32 tile_offset;
15729         } plane[I915_MAX_PIPES];
15730
15731         struct intel_transcoder_error_state {
15732                 bool power_domain_on;
15733                 enum transcoder cpu_transcoder;
15734
15735                 u32 conf;
15736
15737                 u32 htotal;
15738                 u32 hblank;
15739                 u32 hsync;
15740                 u32 vtotal;
15741                 u32 vblank;
15742                 u32 vsync;
15743         } transcoder[4];
15744 };
15745
15746 struct intel_display_error_state *
15747 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15748 {
15749         struct intel_display_error_state *error;
15750         int transcoders[] = {
15751                 TRANSCODER_A,
15752                 TRANSCODER_B,
15753                 TRANSCODER_C,
15754                 TRANSCODER_EDP,
15755         };
15756         int i;
15757
15758         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15759                 return NULL;
15760
15761         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15762         if (error == NULL)
15763                 return NULL;
15764
15765         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15766                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15767
15768         for_each_pipe(dev_priv, i) {
15769                 error->pipe[i].power_domain_on =
15770                         __intel_display_power_is_enabled(dev_priv,
15771                                                          POWER_DOMAIN_PIPE(i));
15772                 if (!error->pipe[i].power_domain_on)
15773                         continue;
15774
15775                 error->cursor[i].control = I915_READ(CURCNTR(i));
15776                 error->cursor[i].position = I915_READ(CURPOS(i));
15777                 error->cursor[i].base = I915_READ(CURBASE(i));
15778
15779                 error->plane[i].control = I915_READ(DSPCNTR(i));
15780                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15781                 if (INTEL_GEN(dev_priv) <= 3) {
15782                         error->plane[i].size = I915_READ(DSPSIZE(i));
15783                         error->plane[i].pos = I915_READ(DSPPOS(i));
15784                 }
15785                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15786                         error->plane[i].addr = I915_READ(DSPADDR(i));
15787                 if (INTEL_GEN(dev_priv) >= 4) {
15788                         error->plane[i].surface = I915_READ(DSPSURF(i));
15789                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15790                 }
15791
15792                 error->pipe[i].source = I915_READ(PIPESRC(i));
15793
15794                 if (HAS_GMCH_DISPLAY(dev_priv))
15795                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15796         }
15797
15798         /* Note: this does not include DSI transcoders. */
15799         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15800         if (HAS_DDI(dev_priv))
15801                 error->num_transcoders++; /* Account for eDP. */
15802
15803         for (i = 0; i < error->num_transcoders; i++) {
15804                 enum transcoder cpu_transcoder = transcoders[i];
15805
15806                 error->transcoder[i].power_domain_on =
15807                         __intel_display_power_is_enabled(dev_priv,
15808                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15809                 if (!error->transcoder[i].power_domain_on)
15810                         continue;
15811
15812                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15813
15814                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15815                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15816                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15817                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15818                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15819                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15820                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15821         }
15822
15823         return error;
15824 }
15825
15826 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15827
15828 void
15829 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15830                                 struct intel_display_error_state *error)
15831 {
15832         struct drm_i915_private *dev_priv = m->i915;
15833         int i;
15834
15835         if (!error)
15836                 return;
15837
15838         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15839         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15840                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15841                            error->power_well_driver);
15842         for_each_pipe(dev_priv, i) {
15843                 err_printf(m, "Pipe [%d]:\n", i);
15844                 err_printf(m, "  Power: %s\n",
15845                            onoff(error->pipe[i].power_domain_on));
15846                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15847                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15848
15849                 err_printf(m, "Plane [%d]:\n", i);
15850                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15851                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15852                 if (INTEL_GEN(dev_priv) <= 3) {
15853                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15854                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15855                 }
15856                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15857                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15858                 if (INTEL_GEN(dev_priv) >= 4) {
15859                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15860                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15861                 }
15862
15863                 err_printf(m, "Cursor [%d]:\n", i);
15864                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15865                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15866                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15867         }
15868
15869         for (i = 0; i < error->num_transcoders; i++) {
15870                 err_printf(m, "CPU transcoder: %s\n",
15871                            transcoder_name(error->transcoder[i].cpu_transcoder));
15872                 err_printf(m, "  Power: %s\n",
15873                            onoff(error->transcoder[i].power_domain_on));
15874                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15875                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15876                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15877                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15878                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15879                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15880                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15881         }
15882 }
15883
15884 #endif