]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'drm-intel-next-2012-06-04' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "drm_dp_helper.h"
40
41 #define DP_RECEIVER_CAP_SIZE    0xf
42 #define DP_LINK_STATUS_SIZE     6
43 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
44
45 #define DP_LINK_CONFIGURATION_SIZE      9
46
47 struct intel_dp {
48         struct intel_encoder base;
49         uint32_t output_reg;
50         uint32_t DP;
51         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
52         bool has_audio;
53         enum hdmi_force_audio force_audio;
54         uint32_t color_range;
55         int dpms_mode;
56         uint8_t link_bw;
57         uint8_t lane_count;
58         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
59         struct i2c_adapter adapter;
60         struct i2c_algo_dp_aux_data algo;
61         bool is_pch_edp;
62         uint8_t train_set[4];
63         int panel_power_up_delay;
64         int panel_power_down_delay;
65         int panel_power_cycle_delay;
66         int backlight_on_delay;
67         int backlight_off_delay;
68         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
69         struct delayed_work panel_vdd_work;
70         bool want_panel_vdd;
71         struct edid *edid; /* cached EDID for eDP */
72         int edid_mode_count;
73 };
74
75 /**
76  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77  * @intel_dp: DP struct
78  *
79  * If a CPU or PCH DP output is attached to an eDP panel, this function
80  * will return true, and false otherwise.
81  */
82 static bool is_edp(struct intel_dp *intel_dp)
83 {
84         return intel_dp->base.type == INTEL_OUTPUT_EDP;
85 }
86
87 /**
88  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89  * @intel_dp: DP struct
90  *
91  * Returns true if the given DP struct corresponds to a PCH DP port attached
92  * to an eDP panel, false otherwise.  Helpful for determining whether we
93  * may need FDI resources for a given DP output or not.
94  */
95 static bool is_pch_edp(struct intel_dp *intel_dp)
96 {
97         return intel_dp->is_pch_edp;
98 }
99
100 /**
101  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102  * @intel_dp: DP struct
103  *
104  * Returns true if the given DP struct corresponds to a CPU eDP port.
105  */
106 static bool is_cpu_edp(struct intel_dp *intel_dp)
107 {
108         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109 }
110
111 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112 {
113         return container_of(encoder, struct intel_dp, base.base);
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118         return container_of(intel_attached_encoder(connector),
119                             struct intel_dp, base);
120 }
121
122 /**
123  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124  * @encoder: DRM encoder
125  *
126  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
127  * by intel_display.c.
128  */
129 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130 {
131         struct intel_dp *intel_dp;
132
133         if (!encoder)
134                 return false;
135
136         intel_dp = enc_to_intel_dp(encoder);
137
138         return is_pch_edp(intel_dp);
139 }
140
141 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143 static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145 void
146 intel_edp_link_config(struct intel_encoder *intel_encoder,
147                        int *lane_num, int *link_bw)
148 {
149         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151         *lane_num = intel_dp->lane_count;
152         if (intel_dp->link_bw == DP_LINK_BW_1_62)
153                 *link_bw = 162000;
154         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155                 *link_bw = 270000;
156 }
157
158 int
159 intel_edp_target_clock(struct intel_encoder *intel_encoder,
160                        struct drm_display_mode *mode)
161 {
162         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
163
164         if (intel_dp->panel_fixed_mode)
165                 return intel_dp->panel_fixed_mode->clock;
166         else
167                 return mode->clock;
168 }
169
170 static int
171 intel_dp_max_lane_count(struct intel_dp *intel_dp)
172 {
173         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
174         switch (max_lane_count) {
175         case 1: case 2: case 4:
176                 break;
177         default:
178                 max_lane_count = 4;
179         }
180         return max_lane_count;
181 }
182
183 static int
184 intel_dp_max_link_bw(struct intel_dp *intel_dp)
185 {
186         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
187
188         switch (max_link_bw) {
189         case DP_LINK_BW_1_62:
190         case DP_LINK_BW_2_7:
191                 break;
192         default:
193                 max_link_bw = DP_LINK_BW_1_62;
194                 break;
195         }
196         return max_link_bw;
197 }
198
199 static int
200 intel_dp_link_clock(uint8_t link_bw)
201 {
202         if (link_bw == DP_LINK_BW_2_7)
203                 return 270000;
204         else
205                 return 162000;
206 }
207
208 /*
209  * The units on the numbers in the next two are... bizarre.  Examples will
210  * make it clearer; this one parallels an example in the eDP spec.
211  *
212  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
213  *
214  *     270000 * 1 * 8 / 10 == 216000
215  *
216  * The actual data capacity of that configuration is 2.16Gbit/s, so the
217  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
218  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
219  * 119000.  At 18bpp that's 2142000 kilobits per second.
220  *
221  * Thus the strange-looking division by 10 in intel_dp_link_required, to
222  * get the result in decakilobits instead of kilobits.
223  */
224
225 static int
226 intel_dp_link_required(int pixel_clock, int bpp)
227 {
228         return (pixel_clock * bpp + 9) / 10;
229 }
230
231 static int
232 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
233 {
234         return (max_link_clock * max_lanes * 8) / 10;
235 }
236
237 static bool
238 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
239                           struct drm_display_mode *mode,
240                           bool adjust_mode)
241 {
242         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
243         int max_lanes = intel_dp_max_lane_count(intel_dp);
244         int max_rate, mode_rate;
245
246         mode_rate = intel_dp_link_required(mode->clock, 24);
247         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
248
249         if (mode_rate > max_rate) {
250                 mode_rate = intel_dp_link_required(mode->clock, 18);
251                 if (mode_rate > max_rate)
252                         return false;
253
254                 if (adjust_mode)
255                         mode->private_flags
256                                 |= INTEL_MODE_DP_FORCE_6BPC;
257
258                 return true;
259         }
260
261         return true;
262 }
263
264 static int
265 intel_dp_mode_valid(struct drm_connector *connector,
266                     struct drm_display_mode *mode)
267 {
268         struct intel_dp *intel_dp = intel_attached_dp(connector);
269
270         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
271                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
272                         return MODE_PANEL;
273
274                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
275                         return MODE_PANEL;
276         }
277
278         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
279                 return MODE_CLOCK_HIGH;
280
281         if (mode->clock < 10000)
282                 return MODE_CLOCK_LOW;
283
284         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
285                 return MODE_H_ILLEGAL;
286
287         return MODE_OK;
288 }
289
290 static uint32_t
291 pack_aux(uint8_t *src, int src_bytes)
292 {
293         int     i;
294         uint32_t v = 0;
295
296         if (src_bytes > 4)
297                 src_bytes = 4;
298         for (i = 0; i < src_bytes; i++)
299                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
300         return v;
301 }
302
303 static void
304 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
305 {
306         int i;
307         if (dst_bytes > 4)
308                 dst_bytes = 4;
309         for (i = 0; i < dst_bytes; i++)
310                 dst[i] = src >> ((3-i) * 8);
311 }
312
313 /* hrawclock is 1/4 the FSB frequency */
314 static int
315 intel_hrawclk(struct drm_device *dev)
316 {
317         struct drm_i915_private *dev_priv = dev->dev_private;
318         uint32_t clkcfg;
319
320         clkcfg = I915_READ(CLKCFG);
321         switch (clkcfg & CLKCFG_FSB_MASK) {
322         case CLKCFG_FSB_400:
323                 return 100;
324         case CLKCFG_FSB_533:
325                 return 133;
326         case CLKCFG_FSB_667:
327                 return 166;
328         case CLKCFG_FSB_800:
329                 return 200;
330         case CLKCFG_FSB_1067:
331                 return 266;
332         case CLKCFG_FSB_1333:
333                 return 333;
334         /* these two are just a guess; one of them might be right */
335         case CLKCFG_FSB_1600:
336         case CLKCFG_FSB_1600_ALT:
337                 return 400;
338         default:
339                 return 133;
340         }
341 }
342
343 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
344 {
345         struct drm_device *dev = intel_dp->base.base.dev;
346         struct drm_i915_private *dev_priv = dev->dev_private;
347
348         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
349 }
350
351 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
352 {
353         struct drm_device *dev = intel_dp->base.base.dev;
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
357 }
358
359 static void
360 intel_dp_check_edp(struct intel_dp *intel_dp)
361 {
362         struct drm_device *dev = intel_dp->base.base.dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364
365         if (!is_edp(intel_dp))
366                 return;
367         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
368                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
369                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
370                               I915_READ(PCH_PP_STATUS),
371                               I915_READ(PCH_PP_CONTROL));
372         }
373 }
374
375 static int
376 intel_dp_aux_ch(struct intel_dp *intel_dp,
377                 uint8_t *send, int send_bytes,
378                 uint8_t *recv, int recv_size)
379 {
380         uint32_t output_reg = intel_dp->output_reg;
381         struct drm_device *dev = intel_dp->base.base.dev;
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         uint32_t ch_ctl = output_reg + 0x10;
384         uint32_t ch_data = ch_ctl + 4;
385         int i;
386         int recv_bytes;
387         uint32_t status;
388         uint32_t aux_clock_divider;
389         int try, precharge;
390
391         intel_dp_check_edp(intel_dp);
392         /* The clock divider is based off the hrawclk,
393          * and would like to run at 2MHz. So, take the
394          * hrawclk value and divide by 2 and use that
395          *
396          * Note that PCH attached eDP panels should use a 125MHz input
397          * clock divider.
398          */
399         if (is_cpu_edp(intel_dp)) {
400                 if (IS_GEN6(dev) || IS_GEN7(dev))
401                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
402                 else
403                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
404         } else if (HAS_PCH_SPLIT(dev))
405                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
406         else
407                 aux_clock_divider = intel_hrawclk(dev) / 2;
408
409         if (IS_GEN6(dev))
410                 precharge = 3;
411         else
412                 precharge = 5;
413
414         /* Try to wait for any previous AUX channel activity */
415         for (try = 0; try < 3; try++) {
416                 status = I915_READ(ch_ctl);
417                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
418                         break;
419                 msleep(1);
420         }
421
422         if (try == 3) {
423                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
424                      I915_READ(ch_ctl));
425                 return -EBUSY;
426         }
427
428         /* Must try at least 3 times according to DP spec */
429         for (try = 0; try < 5; try++) {
430                 /* Load the send data into the aux channel data registers */
431                 for (i = 0; i < send_bytes; i += 4)
432                         I915_WRITE(ch_data + i,
433                                    pack_aux(send + i, send_bytes - i));
434
435                 /* Send the command and wait for it to complete */
436                 I915_WRITE(ch_ctl,
437                            DP_AUX_CH_CTL_SEND_BUSY |
438                            DP_AUX_CH_CTL_TIME_OUT_400us |
439                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
440                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
441                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
442                            DP_AUX_CH_CTL_DONE |
443                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
444                            DP_AUX_CH_CTL_RECEIVE_ERROR);
445                 for (;;) {
446                         status = I915_READ(ch_ctl);
447                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
448                                 break;
449                         udelay(100);
450                 }
451
452                 /* Clear done status and any errors */
453                 I915_WRITE(ch_ctl,
454                            status |
455                            DP_AUX_CH_CTL_DONE |
456                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
457                            DP_AUX_CH_CTL_RECEIVE_ERROR);
458
459                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
460                               DP_AUX_CH_CTL_RECEIVE_ERROR))
461                         continue;
462                 if (status & DP_AUX_CH_CTL_DONE)
463                         break;
464         }
465
466         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
467                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
468                 return -EBUSY;
469         }
470
471         /* Check for timeout or receive error.
472          * Timeouts occur when the sink is not connected
473          */
474         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
475                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
476                 return -EIO;
477         }
478
479         /* Timeouts occur when the device isn't connected, so they're
480          * "normal" -- don't fill the kernel log with these */
481         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
482                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
483                 return -ETIMEDOUT;
484         }
485
486         /* Unload any bytes sent back from the other side */
487         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
488                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
489         if (recv_bytes > recv_size)
490                 recv_bytes = recv_size;
491
492         for (i = 0; i < recv_bytes; i += 4)
493                 unpack_aux(I915_READ(ch_data + i),
494                            recv + i, recv_bytes - i);
495
496         return recv_bytes;
497 }
498
499 /* Write data to the aux channel in native mode */
500 static int
501 intel_dp_aux_native_write(struct intel_dp *intel_dp,
502                           uint16_t address, uint8_t *send, int send_bytes)
503 {
504         int ret;
505         uint8_t msg[20];
506         int msg_bytes;
507         uint8_t ack;
508
509         intel_dp_check_edp(intel_dp);
510         if (send_bytes > 16)
511                 return -1;
512         msg[0] = AUX_NATIVE_WRITE << 4;
513         msg[1] = address >> 8;
514         msg[2] = address & 0xff;
515         msg[3] = send_bytes - 1;
516         memcpy(&msg[4], send, send_bytes);
517         msg_bytes = send_bytes + 4;
518         for (;;) {
519                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
520                 if (ret < 0)
521                         return ret;
522                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
523                         break;
524                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
525                         udelay(100);
526                 else
527                         return -EIO;
528         }
529         return send_bytes;
530 }
531
532 /* Write a single byte to the aux channel in native mode */
533 static int
534 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
535                             uint16_t address, uint8_t byte)
536 {
537         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
538 }
539
540 /* read bytes from a native aux channel */
541 static int
542 intel_dp_aux_native_read(struct intel_dp *intel_dp,
543                          uint16_t address, uint8_t *recv, int recv_bytes)
544 {
545         uint8_t msg[4];
546         int msg_bytes;
547         uint8_t reply[20];
548         int reply_bytes;
549         uint8_t ack;
550         int ret;
551
552         intel_dp_check_edp(intel_dp);
553         msg[0] = AUX_NATIVE_READ << 4;
554         msg[1] = address >> 8;
555         msg[2] = address & 0xff;
556         msg[3] = recv_bytes - 1;
557
558         msg_bytes = 4;
559         reply_bytes = recv_bytes + 1;
560
561         for (;;) {
562                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
563                                       reply, reply_bytes);
564                 if (ret == 0)
565                         return -EPROTO;
566                 if (ret < 0)
567                         return ret;
568                 ack = reply[0];
569                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
570                         memcpy(recv, reply + 1, ret - 1);
571                         return ret - 1;
572                 }
573                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
574                         udelay(100);
575                 else
576                         return -EIO;
577         }
578 }
579
580 static int
581 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
582                     uint8_t write_byte, uint8_t *read_byte)
583 {
584         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
585         struct intel_dp *intel_dp = container_of(adapter,
586                                                 struct intel_dp,
587                                                 adapter);
588         uint16_t address = algo_data->address;
589         uint8_t msg[5];
590         uint8_t reply[2];
591         unsigned retry;
592         int msg_bytes;
593         int reply_bytes;
594         int ret;
595
596         intel_dp_check_edp(intel_dp);
597         /* Set up the command byte */
598         if (mode & MODE_I2C_READ)
599                 msg[0] = AUX_I2C_READ << 4;
600         else
601                 msg[0] = AUX_I2C_WRITE << 4;
602
603         if (!(mode & MODE_I2C_STOP))
604                 msg[0] |= AUX_I2C_MOT << 4;
605
606         msg[1] = address >> 8;
607         msg[2] = address;
608
609         switch (mode) {
610         case MODE_I2C_WRITE:
611                 msg[3] = 0;
612                 msg[4] = write_byte;
613                 msg_bytes = 5;
614                 reply_bytes = 1;
615                 break;
616         case MODE_I2C_READ:
617                 msg[3] = 0;
618                 msg_bytes = 4;
619                 reply_bytes = 2;
620                 break;
621         default:
622                 msg_bytes = 3;
623                 reply_bytes = 1;
624                 break;
625         }
626
627         for (retry = 0; retry < 5; retry++) {
628                 ret = intel_dp_aux_ch(intel_dp,
629                                       msg, msg_bytes,
630                                       reply, reply_bytes);
631                 if (ret < 0) {
632                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
633                         return ret;
634                 }
635
636                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
637                 case AUX_NATIVE_REPLY_ACK:
638                         /* I2C-over-AUX Reply field is only valid
639                          * when paired with AUX ACK.
640                          */
641                         break;
642                 case AUX_NATIVE_REPLY_NACK:
643                         DRM_DEBUG_KMS("aux_ch native nack\n");
644                         return -EREMOTEIO;
645                 case AUX_NATIVE_REPLY_DEFER:
646                         udelay(100);
647                         continue;
648                 default:
649                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
650                                   reply[0]);
651                         return -EREMOTEIO;
652                 }
653
654                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
655                 case AUX_I2C_REPLY_ACK:
656                         if (mode == MODE_I2C_READ) {
657                                 *read_byte = reply[1];
658                         }
659                         return reply_bytes - 1;
660                 case AUX_I2C_REPLY_NACK:
661                         DRM_DEBUG_KMS("aux_i2c nack\n");
662                         return -EREMOTEIO;
663                 case AUX_I2C_REPLY_DEFER:
664                         DRM_DEBUG_KMS("aux_i2c defer\n");
665                         udelay(100);
666                         break;
667                 default:
668                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
669                         return -EREMOTEIO;
670                 }
671         }
672
673         DRM_ERROR("too many retries, giving up\n");
674         return -EREMOTEIO;
675 }
676
677 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
678 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
679
680 static int
681 intel_dp_i2c_init(struct intel_dp *intel_dp,
682                   struct intel_connector *intel_connector, const char *name)
683 {
684         int     ret;
685
686         DRM_DEBUG_KMS("i2c_init %s\n", name);
687         intel_dp->algo.running = false;
688         intel_dp->algo.address = 0;
689         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
690
691         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
692         intel_dp->adapter.owner = THIS_MODULE;
693         intel_dp->adapter.class = I2C_CLASS_DDC;
694         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
695         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
696         intel_dp->adapter.algo_data = &intel_dp->algo;
697         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
698
699         ironlake_edp_panel_vdd_on(intel_dp);
700         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
701         ironlake_edp_panel_vdd_off(intel_dp, false);
702         return ret;
703 }
704
705 static bool
706 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
707                     struct drm_display_mode *adjusted_mode)
708 {
709         struct drm_device *dev = encoder->dev;
710         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
711         int lane_count, clock;
712         int max_lane_count = intel_dp_max_lane_count(intel_dp);
713         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
714         int bpp, mode_rate;
715         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
716
717         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
718                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
719                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
720                                         mode, adjusted_mode);
721         }
722
723         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
724                 return false;
725
726         DRM_DEBUG_KMS("DP link computation with max lane count %i "
727                       "max bw %02x pixel clock %iKHz\n",
728                       max_lane_count, bws[max_clock], adjusted_mode->clock);
729
730         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
731                 return false;
732
733         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
734         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
735
736         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
737                 for (clock = 0; clock <= max_clock; clock++) {
738                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
739
740                         if (mode_rate <= link_avail) {
741                                 intel_dp->link_bw = bws[clock];
742                                 intel_dp->lane_count = lane_count;
743                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
744                                 DRM_DEBUG_KMS("DP link bw %02x lane "
745                                                 "count %d clock %d bpp %d\n",
746                                        intel_dp->link_bw, intel_dp->lane_count,
747                                        adjusted_mode->clock, bpp);
748                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
749                                               mode_rate, link_avail);
750                                 return true;
751                         }
752                 }
753         }
754
755         return false;
756 }
757
758 struct intel_dp_m_n {
759         uint32_t        tu;
760         uint32_t        gmch_m;
761         uint32_t        gmch_n;
762         uint32_t        link_m;
763         uint32_t        link_n;
764 };
765
766 static void
767 intel_reduce_ratio(uint32_t *num, uint32_t *den)
768 {
769         while (*num > 0xffffff || *den > 0xffffff) {
770                 *num >>= 1;
771                 *den >>= 1;
772         }
773 }
774
775 static void
776 intel_dp_compute_m_n(int bpp,
777                      int nlanes,
778                      int pixel_clock,
779                      int link_clock,
780                      struct intel_dp_m_n *m_n)
781 {
782         m_n->tu = 64;
783         m_n->gmch_m = (pixel_clock * bpp) >> 3;
784         m_n->gmch_n = link_clock * nlanes;
785         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
786         m_n->link_m = pixel_clock;
787         m_n->link_n = link_clock;
788         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
789 }
790
791 void
792 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
793                  struct drm_display_mode *adjusted_mode)
794 {
795         struct drm_device *dev = crtc->dev;
796         struct drm_mode_config *mode_config = &dev->mode_config;
797         struct drm_encoder *encoder;
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
800         int lane_count = 4;
801         struct intel_dp_m_n m_n;
802         int pipe = intel_crtc->pipe;
803
804         /*
805          * Find the lane count in the intel_encoder private
806          */
807         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
808                 struct intel_dp *intel_dp;
809
810                 if (encoder->crtc != crtc)
811                         continue;
812
813                 intel_dp = enc_to_intel_dp(encoder);
814                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
815                     intel_dp->base.type == INTEL_OUTPUT_EDP)
816                 {
817                         lane_count = intel_dp->lane_count;
818                         break;
819                 }
820         }
821
822         /*
823          * Compute the GMCH and Link ratios. The '3' here is
824          * the number of bytes_per_pixel post-LUT, which we always
825          * set up for 8-bits of R/G/B, or 3 bytes total.
826          */
827         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
828                              mode->clock, adjusted_mode->clock, &m_n);
829
830         if (HAS_PCH_SPLIT(dev)) {
831                 I915_WRITE(TRANSDATA_M1(pipe),
832                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
833                            m_n.gmch_m);
834                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
835                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
836                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
837         } else {
838                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
839                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
840                            m_n.gmch_m);
841                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
842                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
843                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
844         }
845 }
846
847 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
848 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
849
850 static void
851 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
852                   struct drm_display_mode *adjusted_mode)
853 {
854         struct drm_device *dev = encoder->dev;
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
857         struct drm_crtc *crtc = intel_dp->base.base.crtc;
858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
859
860         /* Turn on the eDP PLL if needed */
861         if (is_edp(intel_dp)) {
862                 if (!is_pch_edp(intel_dp))
863                         ironlake_edp_pll_on(encoder);
864                 else
865                         ironlake_edp_pll_off(encoder);
866         }
867
868         /*
869          * There are four kinds of DP registers:
870          *
871          *      IBX PCH
872          *      SNB CPU
873          *      IVB CPU
874          *      CPT PCH
875          *
876          * IBX PCH and CPU are the same for almost everything,
877          * except that the CPU DP PLL is configured in this
878          * register
879          *
880          * CPT PCH is quite different, having many bits moved
881          * to the TRANS_DP_CTL register instead. That
882          * configuration happens (oddly) in ironlake_pch_enable
883          */
884
885         /* Preserve the BIOS-computed detected bit. This is
886          * supposed to be read-only.
887          */
888         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
889         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
890
891         /* Handle DP bits in common between all three register formats */
892
893         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
894
895         switch (intel_dp->lane_count) {
896         case 1:
897                 intel_dp->DP |= DP_PORT_WIDTH_1;
898                 break;
899         case 2:
900                 intel_dp->DP |= DP_PORT_WIDTH_2;
901                 break;
902         case 4:
903                 intel_dp->DP |= DP_PORT_WIDTH_4;
904                 break;
905         }
906         if (intel_dp->has_audio) {
907                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
908                                  pipe_name(intel_crtc->pipe));
909                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
910                 intel_write_eld(encoder, adjusted_mode);
911         }
912         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
913         intel_dp->link_configuration[0] = intel_dp->link_bw;
914         intel_dp->link_configuration[1] = intel_dp->lane_count;
915         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
916         /*
917          * Check for DPCD version > 1.1 and enhanced framing support
918          */
919         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
920             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
921                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
922         }
923
924         /* Split out the IBX/CPU vs CPT settings */
925
926         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
927                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
928                         intel_dp->DP |= DP_SYNC_HS_HIGH;
929                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
930                         intel_dp->DP |= DP_SYNC_VS_HIGH;
931                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
932
933                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
934                         intel_dp->DP |= DP_ENHANCED_FRAMING;
935
936                 intel_dp->DP |= intel_crtc->pipe << 29;
937
938                 /* don't miss out required setting for eDP */
939                 intel_dp->DP |= DP_PLL_ENABLE;
940                 if (adjusted_mode->clock < 200000)
941                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
942                 else
943                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
944         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
945                 intel_dp->DP |= intel_dp->color_range;
946
947                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
948                         intel_dp->DP |= DP_SYNC_HS_HIGH;
949                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
950                         intel_dp->DP |= DP_SYNC_VS_HIGH;
951                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
952
953                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
954                         intel_dp->DP |= DP_ENHANCED_FRAMING;
955
956                 if (intel_crtc->pipe == 1)
957                         intel_dp->DP |= DP_PIPEB_SELECT;
958
959                 if (is_cpu_edp(intel_dp)) {
960                         /* don't miss out required setting for eDP */
961                         intel_dp->DP |= DP_PLL_ENABLE;
962                         if (adjusted_mode->clock < 200000)
963                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
964                         else
965                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
966                 }
967         } else {
968                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
969         }
970 }
971
972 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
973 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
974
975 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
976 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
977
978 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
979 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
980
981 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
982                                        u32 mask,
983                                        u32 value)
984 {
985         struct drm_device *dev = intel_dp->base.base.dev;
986         struct drm_i915_private *dev_priv = dev->dev_private;
987
988         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
989                       mask, value,
990                       I915_READ(PCH_PP_STATUS),
991                       I915_READ(PCH_PP_CONTROL));
992
993         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
994                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
995                           I915_READ(PCH_PP_STATUS),
996                           I915_READ(PCH_PP_CONTROL));
997         }
998 }
999
1000 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1001 {
1002         DRM_DEBUG_KMS("Wait for panel power on\n");
1003         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1004 }
1005
1006 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1007 {
1008         DRM_DEBUG_KMS("Wait for panel power off time\n");
1009         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1010 }
1011
1012 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1013 {
1014         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1015         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1016 }
1017
1018
1019 /* Read the current pp_control value, unlocking the register if it
1020  * is locked
1021  */
1022
1023 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1024 {
1025         u32     control = I915_READ(PCH_PP_CONTROL);
1026
1027         control &= ~PANEL_UNLOCK_MASK;
1028         control |= PANEL_UNLOCK_REGS;
1029         return control;
1030 }
1031
1032 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1033 {
1034         struct drm_device *dev = intel_dp->base.base.dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 pp;
1037
1038         if (!is_edp(intel_dp))
1039                 return;
1040         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1041
1042         WARN(intel_dp->want_panel_vdd,
1043              "eDP VDD already requested on\n");
1044
1045         intel_dp->want_panel_vdd = true;
1046
1047         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1048                 DRM_DEBUG_KMS("eDP VDD already on\n");
1049                 return;
1050         }
1051
1052         if (!ironlake_edp_have_panel_power(intel_dp))
1053                 ironlake_wait_panel_power_cycle(intel_dp);
1054
1055         pp = ironlake_get_pp_control(dev_priv);
1056         pp |= EDP_FORCE_VDD;
1057         I915_WRITE(PCH_PP_CONTROL, pp);
1058         POSTING_READ(PCH_PP_CONTROL);
1059         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1060                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1061
1062         /*
1063          * If the panel wasn't on, delay before accessing aux channel
1064          */
1065         if (!ironlake_edp_have_panel_power(intel_dp)) {
1066                 DRM_DEBUG_KMS("eDP was not running\n");
1067                 msleep(intel_dp->panel_power_up_delay);
1068         }
1069 }
1070
1071 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1072 {
1073         struct drm_device *dev = intel_dp->base.base.dev;
1074         struct drm_i915_private *dev_priv = dev->dev_private;
1075         u32 pp;
1076
1077         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1078                 pp = ironlake_get_pp_control(dev_priv);
1079                 pp &= ~EDP_FORCE_VDD;
1080                 I915_WRITE(PCH_PP_CONTROL, pp);
1081                 POSTING_READ(PCH_PP_CONTROL);
1082
1083                 /* Make sure sequencer is idle before allowing subsequent activity */
1084                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1085                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1086
1087                 msleep(intel_dp->panel_power_down_delay);
1088         }
1089 }
1090
1091 static void ironlake_panel_vdd_work(struct work_struct *__work)
1092 {
1093         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1094                                                  struct intel_dp, panel_vdd_work);
1095         struct drm_device *dev = intel_dp->base.base.dev;
1096
1097         mutex_lock(&dev->mode_config.mutex);
1098         ironlake_panel_vdd_off_sync(intel_dp);
1099         mutex_unlock(&dev->mode_config.mutex);
1100 }
1101
1102 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1103 {
1104         if (!is_edp(intel_dp))
1105                 return;
1106
1107         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1108         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1109
1110         intel_dp->want_panel_vdd = false;
1111
1112         if (sync) {
1113                 ironlake_panel_vdd_off_sync(intel_dp);
1114         } else {
1115                 /*
1116                  * Queue the timer to fire a long
1117                  * time from now (relative to the power down delay)
1118                  * to keep the panel power up across a sequence of operations
1119                  */
1120                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1121                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1122         }
1123 }
1124
1125 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1126 {
1127         struct drm_device *dev = intel_dp->base.base.dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         u32 pp;
1130
1131         if (!is_edp(intel_dp))
1132                 return;
1133
1134         DRM_DEBUG_KMS("Turn eDP power on\n");
1135
1136         if (ironlake_edp_have_panel_power(intel_dp)) {
1137                 DRM_DEBUG_KMS("eDP power already on\n");
1138                 return;
1139         }
1140
1141         ironlake_wait_panel_power_cycle(intel_dp);
1142
1143         pp = ironlake_get_pp_control(dev_priv);
1144         if (IS_GEN5(dev)) {
1145                 /* ILK workaround: disable reset around power sequence */
1146                 pp &= ~PANEL_POWER_RESET;
1147                 I915_WRITE(PCH_PP_CONTROL, pp);
1148                 POSTING_READ(PCH_PP_CONTROL);
1149         }
1150
1151         pp |= POWER_TARGET_ON;
1152         if (!IS_GEN5(dev))
1153                 pp |= PANEL_POWER_RESET;
1154
1155         I915_WRITE(PCH_PP_CONTROL, pp);
1156         POSTING_READ(PCH_PP_CONTROL);
1157
1158         ironlake_wait_panel_on(intel_dp);
1159
1160         if (IS_GEN5(dev)) {
1161                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1162                 I915_WRITE(PCH_PP_CONTROL, pp);
1163                 POSTING_READ(PCH_PP_CONTROL);
1164         }
1165 }
1166
1167 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1168 {
1169         struct drm_device *dev = intel_dp->base.base.dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         u32 pp;
1172
1173         if (!is_edp(intel_dp))
1174                 return;
1175
1176         DRM_DEBUG_KMS("Turn eDP power off\n");
1177
1178         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1179
1180         pp = ironlake_get_pp_control(dev_priv);
1181         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1182         I915_WRITE(PCH_PP_CONTROL, pp);
1183         POSTING_READ(PCH_PP_CONTROL);
1184
1185         ironlake_wait_panel_off(intel_dp);
1186 }
1187
1188 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1189 {
1190         struct drm_device *dev = intel_dp->base.base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         u32 pp;
1193
1194         if (!is_edp(intel_dp))
1195                 return;
1196
1197         DRM_DEBUG_KMS("\n");
1198         /*
1199          * If we enable the backlight right away following a panel power
1200          * on, we may see slight flicker as the panel syncs with the eDP
1201          * link.  So delay a bit to make sure the image is solid before
1202          * allowing it to appear.
1203          */
1204         msleep(intel_dp->backlight_on_delay);
1205         pp = ironlake_get_pp_control(dev_priv);
1206         pp |= EDP_BLC_ENABLE;
1207         I915_WRITE(PCH_PP_CONTROL, pp);
1208         POSTING_READ(PCH_PP_CONTROL);
1209 }
1210
1211 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1212 {
1213         struct drm_device *dev = intel_dp->base.base.dev;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         u32 pp;
1216
1217         if (!is_edp(intel_dp))
1218                 return;
1219
1220         DRM_DEBUG_KMS("\n");
1221         pp = ironlake_get_pp_control(dev_priv);
1222         pp &= ~EDP_BLC_ENABLE;
1223         I915_WRITE(PCH_PP_CONTROL, pp);
1224         POSTING_READ(PCH_PP_CONTROL);
1225         msleep(intel_dp->backlight_off_delay);
1226 }
1227
1228 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1229 {
1230         struct drm_device *dev = encoder->dev;
1231         struct drm_i915_private *dev_priv = dev->dev_private;
1232         u32 dpa_ctl;
1233
1234         DRM_DEBUG_KMS("\n");
1235         dpa_ctl = I915_READ(DP_A);
1236         dpa_ctl |= DP_PLL_ENABLE;
1237         I915_WRITE(DP_A, dpa_ctl);
1238         POSTING_READ(DP_A);
1239         udelay(200);
1240 }
1241
1242 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1243 {
1244         struct drm_device *dev = encoder->dev;
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246         u32 dpa_ctl;
1247
1248         dpa_ctl = I915_READ(DP_A);
1249         dpa_ctl &= ~DP_PLL_ENABLE;
1250         I915_WRITE(DP_A, dpa_ctl);
1251         POSTING_READ(DP_A);
1252         udelay(200);
1253 }
1254
1255 /* If the sink supports it, try to set the power state appropriately */
1256 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1257 {
1258         int ret, i;
1259
1260         /* Should have a valid DPCD by this point */
1261         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1262                 return;
1263
1264         if (mode != DRM_MODE_DPMS_ON) {
1265                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1266                                                   DP_SET_POWER_D3);
1267                 if (ret != 1)
1268                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1269         } else {
1270                 /*
1271                  * When turning on, we need to retry for 1ms to give the sink
1272                  * time to wake up.
1273                  */
1274                 for (i = 0; i < 3; i++) {
1275                         ret = intel_dp_aux_native_write_1(intel_dp,
1276                                                           DP_SET_POWER,
1277                                                           DP_SET_POWER_D0);
1278                         if (ret == 1)
1279                                 break;
1280                         msleep(1);
1281                 }
1282         }
1283 }
1284
1285 static void intel_dp_prepare(struct drm_encoder *encoder)
1286 {
1287         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1288
1289
1290         /* Make sure the panel is off before trying to change the mode. But also
1291          * ensure that we have vdd while we switch off the panel. */
1292         ironlake_edp_panel_vdd_on(intel_dp);
1293         ironlake_edp_backlight_off(intel_dp);
1294         ironlake_edp_panel_off(intel_dp);
1295
1296         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1297         intel_dp_link_down(intel_dp);
1298         ironlake_edp_panel_vdd_off(intel_dp, false);
1299 }
1300
1301 static void intel_dp_commit(struct drm_encoder *encoder)
1302 {
1303         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1304         struct drm_device *dev = encoder->dev;
1305         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1306
1307         ironlake_edp_panel_vdd_on(intel_dp);
1308         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1309         intel_dp_start_link_train(intel_dp);
1310         ironlake_edp_panel_on(intel_dp);
1311         ironlake_edp_panel_vdd_off(intel_dp, true);
1312         intel_dp_complete_link_train(intel_dp);
1313         ironlake_edp_backlight_on(intel_dp);
1314
1315         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1316
1317         if (HAS_PCH_CPT(dev))
1318                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1319 }
1320
1321 static void
1322 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1323 {
1324         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1325         struct drm_device *dev = encoder->dev;
1326         struct drm_i915_private *dev_priv = dev->dev_private;
1327         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1328
1329         if (mode != DRM_MODE_DPMS_ON) {
1330                 /* Switching the panel off requires vdd. */
1331                 ironlake_edp_panel_vdd_on(intel_dp);
1332                 ironlake_edp_backlight_off(intel_dp);
1333                 ironlake_edp_panel_off(intel_dp);
1334
1335                 intel_dp_sink_dpms(intel_dp, mode);
1336                 intel_dp_link_down(intel_dp);
1337                 ironlake_edp_panel_vdd_off(intel_dp, false);
1338
1339                 if (is_cpu_edp(intel_dp))
1340                         ironlake_edp_pll_off(encoder);
1341         } else {
1342                 if (is_cpu_edp(intel_dp))
1343                         ironlake_edp_pll_on(encoder);
1344
1345                 ironlake_edp_panel_vdd_on(intel_dp);
1346                 intel_dp_sink_dpms(intel_dp, mode);
1347                 if (!(dp_reg & DP_PORT_EN)) {
1348                         intel_dp_start_link_train(intel_dp);
1349                         ironlake_edp_panel_on(intel_dp);
1350                         ironlake_edp_panel_vdd_off(intel_dp, true);
1351                         intel_dp_complete_link_train(intel_dp);
1352                 } else
1353                         ironlake_edp_panel_vdd_off(intel_dp, false);
1354                 ironlake_edp_backlight_on(intel_dp);
1355         }
1356         intel_dp->dpms_mode = mode;
1357 }
1358
1359 /*
1360  * Native read with retry for link status and receiver capability reads for
1361  * cases where the sink may still be asleep.
1362  */
1363 static bool
1364 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1365                                uint8_t *recv, int recv_bytes)
1366 {
1367         int ret, i;
1368
1369         /*
1370          * Sinks are *supposed* to come up within 1ms from an off state,
1371          * but we're also supposed to retry 3 times per the spec.
1372          */
1373         for (i = 0; i < 3; i++) {
1374                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1375                                                recv_bytes);
1376                 if (ret == recv_bytes)
1377                         return true;
1378                 msleep(1);
1379         }
1380
1381         return false;
1382 }
1383
1384 /*
1385  * Fetch AUX CH registers 0x202 - 0x207 which contain
1386  * link status information
1387  */
1388 static bool
1389 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1390 {
1391         return intel_dp_aux_native_read_retry(intel_dp,
1392                                               DP_LANE0_1_STATUS,
1393                                               link_status,
1394                                               DP_LINK_STATUS_SIZE);
1395 }
1396
1397 static uint8_t
1398 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1399                      int r)
1400 {
1401         return link_status[r - DP_LANE0_1_STATUS];
1402 }
1403
1404 static uint8_t
1405 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1406                                  int lane)
1407 {
1408         int         s = ((lane & 1) ?
1409                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1410                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1411         uint8_t l = adjust_request[lane>>1];
1412
1413         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1414 }
1415
1416 static uint8_t
1417 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1418                                       int lane)
1419 {
1420         int         s = ((lane & 1) ?
1421                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1422                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1423         uint8_t l = adjust_request[lane>>1];
1424
1425         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1426 }
1427
1428
1429 #if 0
1430 static char     *voltage_names[] = {
1431         "0.4V", "0.6V", "0.8V", "1.2V"
1432 };
1433 static char     *pre_emph_names[] = {
1434         "0dB", "3.5dB", "6dB", "9.5dB"
1435 };
1436 static char     *link_train_names[] = {
1437         "pattern 1", "pattern 2", "idle", "off"
1438 };
1439 #endif
1440
1441 /*
1442  * These are source-specific values; current Intel hardware supports
1443  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1444  */
1445
1446 static uint8_t
1447 intel_dp_voltage_max(struct intel_dp *intel_dp)
1448 {
1449         struct drm_device *dev = intel_dp->base.base.dev;
1450
1451         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1452                 return DP_TRAIN_VOLTAGE_SWING_800;
1453         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1454                 return DP_TRAIN_VOLTAGE_SWING_1200;
1455         else
1456                 return DP_TRAIN_VOLTAGE_SWING_800;
1457 }
1458
1459 static uint8_t
1460 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1461 {
1462         struct drm_device *dev = intel_dp->base.base.dev;
1463
1464         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1465                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1466                 case DP_TRAIN_VOLTAGE_SWING_400:
1467                         return DP_TRAIN_PRE_EMPHASIS_6;
1468                 case DP_TRAIN_VOLTAGE_SWING_600:
1469                 case DP_TRAIN_VOLTAGE_SWING_800:
1470                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1471                 default:
1472                         return DP_TRAIN_PRE_EMPHASIS_0;
1473                 }
1474         } else {
1475                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1476                 case DP_TRAIN_VOLTAGE_SWING_400:
1477                         return DP_TRAIN_PRE_EMPHASIS_6;
1478                 case DP_TRAIN_VOLTAGE_SWING_600:
1479                         return DP_TRAIN_PRE_EMPHASIS_6;
1480                 case DP_TRAIN_VOLTAGE_SWING_800:
1481                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1482                 case DP_TRAIN_VOLTAGE_SWING_1200:
1483                 default:
1484                         return DP_TRAIN_PRE_EMPHASIS_0;
1485                 }
1486         }
1487 }
1488
1489 static void
1490 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1491 {
1492         uint8_t v = 0;
1493         uint8_t p = 0;
1494         int lane;
1495         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1496         uint8_t voltage_max;
1497         uint8_t preemph_max;
1498
1499         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1500                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1501                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1502
1503                 if (this_v > v)
1504                         v = this_v;
1505                 if (this_p > p)
1506                         p = this_p;
1507         }
1508
1509         voltage_max = intel_dp_voltage_max(intel_dp);
1510         if (v >= voltage_max)
1511                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1512
1513         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1514         if (p >= preemph_max)
1515                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1516
1517         for (lane = 0; lane < 4; lane++)
1518                 intel_dp->train_set[lane] = v | p;
1519 }
1520
1521 static uint32_t
1522 intel_dp_signal_levels(uint8_t train_set)
1523 {
1524         uint32_t        signal_levels = 0;
1525
1526         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1527         case DP_TRAIN_VOLTAGE_SWING_400:
1528         default:
1529                 signal_levels |= DP_VOLTAGE_0_4;
1530                 break;
1531         case DP_TRAIN_VOLTAGE_SWING_600:
1532                 signal_levels |= DP_VOLTAGE_0_6;
1533                 break;
1534         case DP_TRAIN_VOLTAGE_SWING_800:
1535                 signal_levels |= DP_VOLTAGE_0_8;
1536                 break;
1537         case DP_TRAIN_VOLTAGE_SWING_1200:
1538                 signal_levels |= DP_VOLTAGE_1_2;
1539                 break;
1540         }
1541         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1542         case DP_TRAIN_PRE_EMPHASIS_0:
1543         default:
1544                 signal_levels |= DP_PRE_EMPHASIS_0;
1545                 break;
1546         case DP_TRAIN_PRE_EMPHASIS_3_5:
1547                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1548                 break;
1549         case DP_TRAIN_PRE_EMPHASIS_6:
1550                 signal_levels |= DP_PRE_EMPHASIS_6;
1551                 break;
1552         case DP_TRAIN_PRE_EMPHASIS_9_5:
1553                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1554                 break;
1555         }
1556         return signal_levels;
1557 }
1558
1559 /* Gen6's DP voltage swing and pre-emphasis control */
1560 static uint32_t
1561 intel_gen6_edp_signal_levels(uint8_t train_set)
1562 {
1563         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1564                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1565         switch (signal_levels) {
1566         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1567         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1568                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1569         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1570                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1571         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1572         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1573                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1574         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1575         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1576                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1577         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1578         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1579                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1580         default:
1581                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1582                               "0x%x\n", signal_levels);
1583                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1584         }
1585 }
1586
1587 /* Gen7's DP voltage swing and pre-emphasis control */
1588 static uint32_t
1589 intel_gen7_edp_signal_levels(uint8_t train_set)
1590 {
1591         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1592                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1593         switch (signal_levels) {
1594         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1595                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1596         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1598         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1599                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1600
1601         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1602                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1603         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1604                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1605
1606         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1607                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1608         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1609                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1610
1611         default:
1612                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1613                               "0x%x\n", signal_levels);
1614                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1615         }
1616 }
1617
1618 static uint8_t
1619 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1620                       int lane)
1621 {
1622         int s = (lane & 1) * 4;
1623         uint8_t l = link_status[lane>>1];
1624
1625         return (l >> s) & 0xf;
1626 }
1627
1628 /* Check for clock recovery is done on all channels */
1629 static bool
1630 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1631 {
1632         int lane;
1633         uint8_t lane_status;
1634
1635         for (lane = 0; lane < lane_count; lane++) {
1636                 lane_status = intel_get_lane_status(link_status, lane);
1637                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1638                         return false;
1639         }
1640         return true;
1641 }
1642
1643 /* Check to see if channel eq is done on all channels */
1644 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1645                          DP_LANE_CHANNEL_EQ_DONE|\
1646                          DP_LANE_SYMBOL_LOCKED)
1647 static bool
1648 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1649 {
1650         uint8_t lane_align;
1651         uint8_t lane_status;
1652         int lane;
1653
1654         lane_align = intel_dp_link_status(link_status,
1655                                           DP_LANE_ALIGN_STATUS_UPDATED);
1656         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1657                 return false;
1658         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1659                 lane_status = intel_get_lane_status(link_status, lane);
1660                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1661                         return false;
1662         }
1663         return true;
1664 }
1665
1666 static bool
1667 intel_dp_set_link_train(struct intel_dp *intel_dp,
1668                         uint32_t dp_reg_value,
1669                         uint8_t dp_train_pat)
1670 {
1671         struct drm_device *dev = intel_dp->base.base.dev;
1672         struct drm_i915_private *dev_priv = dev->dev_private;
1673         int ret;
1674
1675         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1676         POSTING_READ(intel_dp->output_reg);
1677
1678         intel_dp_aux_native_write_1(intel_dp,
1679                                     DP_TRAINING_PATTERN_SET,
1680                                     dp_train_pat);
1681
1682         ret = intel_dp_aux_native_write(intel_dp,
1683                                         DP_TRAINING_LANE0_SET,
1684                                         intel_dp->train_set,
1685                                         intel_dp->lane_count);
1686         if (ret != intel_dp->lane_count)
1687                 return false;
1688
1689         return true;
1690 }
1691
1692 /* Enable corresponding port and start training pattern 1 */
1693 static void
1694 intel_dp_start_link_train(struct intel_dp *intel_dp)
1695 {
1696         struct drm_device *dev = intel_dp->base.base.dev;
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1699         int i;
1700         uint8_t voltage;
1701         bool clock_recovery = false;
1702         int voltage_tries, loop_tries;
1703         u32 reg;
1704         uint32_t DP = intel_dp->DP;
1705
1706         /*
1707          * On CPT we have to enable the port in training pattern 1, which
1708          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1709          * the port and wait for it to become active.
1710          */
1711         if (!HAS_PCH_CPT(dev)) {
1712                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1713                 POSTING_READ(intel_dp->output_reg);
1714                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1715         }
1716
1717         /* Write the link configuration data */
1718         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1719                                   intel_dp->link_configuration,
1720                                   DP_LINK_CONFIGURATION_SIZE);
1721
1722         DP |= DP_PORT_EN;
1723
1724         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1725                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1726         else
1727                 DP &= ~DP_LINK_TRAIN_MASK;
1728         memset(intel_dp->train_set, 0, 4);
1729         voltage = 0xff;
1730         voltage_tries = 0;
1731         loop_tries = 0;
1732         clock_recovery = false;
1733         for (;;) {
1734                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1735                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1736                 uint32_t    signal_levels;
1737
1738
1739                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1740                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1741                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1742                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1743                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1744                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1745                 } else {
1746                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1747                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1748                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1749                 }
1750
1751                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1752                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1753                 else
1754                         reg = DP | DP_LINK_TRAIN_PAT_1;
1755
1756                 if (!intel_dp_set_link_train(intel_dp, reg,
1757                                              DP_TRAINING_PATTERN_1 |
1758                                              DP_LINK_SCRAMBLING_DISABLE))
1759                         break;
1760                 /* Set training pattern 1 */
1761
1762                 udelay(100);
1763                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1764                         DRM_ERROR("failed to get link status\n");
1765                         break;
1766                 }
1767
1768                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1769                         DRM_DEBUG_KMS("clock recovery OK\n");
1770                         clock_recovery = true;
1771                         break;
1772                 }
1773
1774                 /* Check to see if we've tried the max voltage */
1775                 for (i = 0; i < intel_dp->lane_count; i++)
1776                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1777                                 break;
1778                 if (i == intel_dp->lane_count) {
1779                         ++loop_tries;
1780                         if (loop_tries == 5) {
1781                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1782                                 break;
1783                         }
1784                         memset(intel_dp->train_set, 0, 4);
1785                         voltage_tries = 0;
1786                         continue;
1787                 }
1788
1789                 /* Check to see if we've tried the same voltage 5 times */
1790                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1791                         ++voltage_tries;
1792                         if (voltage_tries == 5) {
1793                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1794                                 break;
1795                         }
1796                 } else
1797                         voltage_tries = 0;
1798                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1799
1800                 /* Compute new intel_dp->train_set as requested by target */
1801                 intel_get_adjust_train(intel_dp, link_status);
1802         }
1803
1804         intel_dp->DP = DP;
1805 }
1806
1807 static void
1808 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1809 {
1810         struct drm_device *dev = intel_dp->base.base.dev;
1811         struct drm_i915_private *dev_priv = dev->dev_private;
1812         bool channel_eq = false;
1813         int tries, cr_tries;
1814         u32 reg;
1815         uint32_t DP = intel_dp->DP;
1816
1817         /* channel equalization */
1818         tries = 0;
1819         cr_tries = 0;
1820         channel_eq = false;
1821         for (;;) {
1822                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1823                 uint32_t    signal_levels;
1824                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1825
1826                 if (cr_tries > 5) {
1827                         DRM_ERROR("failed to train DP, aborting\n");
1828                         intel_dp_link_down(intel_dp);
1829                         break;
1830                 }
1831
1832                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1833                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1834                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1835                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1836                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1837                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1838                 } else {
1839                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1840                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1841                 }
1842
1843                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1844                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1845                 else
1846                         reg = DP | DP_LINK_TRAIN_PAT_2;
1847
1848                 /* channel eq pattern */
1849                 if (!intel_dp_set_link_train(intel_dp, reg,
1850                                              DP_TRAINING_PATTERN_2 |
1851                                              DP_LINK_SCRAMBLING_DISABLE))
1852                         break;
1853
1854                 udelay(400);
1855                 if (!intel_dp_get_link_status(intel_dp, link_status))
1856                         break;
1857
1858                 /* Make sure clock is still ok */
1859                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1860                         intel_dp_start_link_train(intel_dp);
1861                         cr_tries++;
1862                         continue;
1863                 }
1864
1865                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1866                         channel_eq = true;
1867                         break;
1868                 }
1869
1870                 /* Try 5 times, then try clock recovery if that fails */
1871                 if (tries > 5) {
1872                         intel_dp_link_down(intel_dp);
1873                         intel_dp_start_link_train(intel_dp);
1874                         tries = 0;
1875                         cr_tries++;
1876                         continue;
1877                 }
1878
1879                 /* Compute new intel_dp->train_set as requested by target */
1880                 intel_get_adjust_train(intel_dp, link_status);
1881                 ++tries;
1882         }
1883
1884         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1885                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1886         else
1887                 reg = DP | DP_LINK_TRAIN_OFF;
1888
1889         I915_WRITE(intel_dp->output_reg, reg);
1890         POSTING_READ(intel_dp->output_reg);
1891         intel_dp_aux_native_write_1(intel_dp,
1892                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1893 }
1894
1895 static void
1896 intel_dp_link_down(struct intel_dp *intel_dp)
1897 {
1898         struct drm_device *dev = intel_dp->base.base.dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         uint32_t DP = intel_dp->DP;
1901
1902         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1903                 return;
1904
1905         DRM_DEBUG_KMS("\n");
1906
1907         if (is_edp(intel_dp)) {
1908                 DP &= ~DP_PLL_ENABLE;
1909                 I915_WRITE(intel_dp->output_reg, DP);
1910                 POSTING_READ(intel_dp->output_reg);
1911                 udelay(100);
1912         }
1913
1914         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1915                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1916                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1917         } else {
1918                 DP &= ~DP_LINK_TRAIN_MASK;
1919                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1920         }
1921         POSTING_READ(intel_dp->output_reg);
1922
1923         msleep(17);
1924
1925         if (is_edp(intel_dp)) {
1926                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1927                         DP |= DP_LINK_TRAIN_OFF_CPT;
1928                 else
1929                         DP |= DP_LINK_TRAIN_OFF;
1930         }
1931
1932         if (HAS_PCH_IBX(dev) &&
1933             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1934                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1935
1936                 /* Hardware workaround: leaving our transcoder select
1937                  * set to transcoder B while it's off will prevent the
1938                  * corresponding HDMI output on transcoder A.
1939                  *
1940                  * Combine this with another hardware workaround:
1941                  * transcoder select bit can only be cleared while the
1942                  * port is enabled.
1943                  */
1944                 DP &= ~DP_PIPEB_SELECT;
1945                 I915_WRITE(intel_dp->output_reg, DP);
1946
1947                 /* Changes to enable or select take place the vblank
1948                  * after being written.
1949                  */
1950                 if (crtc == NULL) {
1951                         /* We can arrive here never having been attached
1952                          * to a CRTC, for instance, due to inheriting
1953                          * random state from the BIOS.
1954                          *
1955                          * If the pipe is not running, play safe and
1956                          * wait for the clocks to stabilise before
1957                          * continuing.
1958                          */
1959                         POSTING_READ(intel_dp->output_reg);
1960                         msleep(50);
1961                 } else
1962                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1963         }
1964
1965         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1966         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1967         POSTING_READ(intel_dp->output_reg);
1968         msleep(intel_dp->panel_power_down_delay);
1969 }
1970
1971 static bool
1972 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1973 {
1974         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1975                                            sizeof(intel_dp->dpcd)) &&
1976             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1977                 return true;
1978         }
1979
1980         return false;
1981 }
1982
1983 static void
1984 intel_dp_probe_oui(struct intel_dp *intel_dp)
1985 {
1986         u8 buf[3];
1987
1988         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1989                 return;
1990
1991         ironlake_edp_panel_vdd_on(intel_dp);
1992
1993         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1994                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1995                               buf[0], buf[1], buf[2]);
1996
1997         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1998                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1999                               buf[0], buf[1], buf[2]);
2000
2001         ironlake_edp_panel_vdd_off(intel_dp, false);
2002 }
2003
2004 static bool
2005 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2006 {
2007         int ret;
2008
2009         ret = intel_dp_aux_native_read_retry(intel_dp,
2010                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2011                                              sink_irq_vector, 1);
2012         if (!ret)
2013                 return false;
2014
2015         return true;
2016 }
2017
2018 static void
2019 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2020 {
2021         /* NAK by default */
2022         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2023 }
2024
2025 /*
2026  * According to DP spec
2027  * 5.1.2:
2028  *  1. Read DPCD
2029  *  2. Configure link according to Receiver Capabilities
2030  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2031  *  4. Check link status on receipt of hot-plug interrupt
2032  */
2033
2034 static void
2035 intel_dp_check_link_status(struct intel_dp *intel_dp)
2036 {
2037         u8 sink_irq_vector;
2038         u8 link_status[DP_LINK_STATUS_SIZE];
2039
2040         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2041                 return;
2042
2043         if (!intel_dp->base.base.crtc)
2044                 return;
2045
2046         /* Try to read receiver status if the link appears to be up */
2047         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2048                 intel_dp_link_down(intel_dp);
2049                 return;
2050         }
2051
2052         /* Now read the DPCD to see if it's actually running */
2053         if (!intel_dp_get_dpcd(intel_dp)) {
2054                 intel_dp_link_down(intel_dp);
2055                 return;
2056         }
2057
2058         /* Try to read the source of the interrupt */
2059         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2060             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2061                 /* Clear interrupt source */
2062                 intel_dp_aux_native_write_1(intel_dp,
2063                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2064                                             sink_irq_vector);
2065
2066                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2067                         intel_dp_handle_test_request(intel_dp);
2068                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2069                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2070         }
2071
2072         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2073                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2074                               drm_get_encoder_name(&intel_dp->base.base));
2075                 intel_dp_start_link_train(intel_dp);
2076                 intel_dp_complete_link_train(intel_dp);
2077         }
2078 }
2079
2080 static enum drm_connector_status
2081 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2082 {
2083         if (intel_dp_get_dpcd(intel_dp))
2084                 return connector_status_connected;
2085         return connector_status_disconnected;
2086 }
2087
2088 static enum drm_connector_status
2089 ironlake_dp_detect(struct intel_dp *intel_dp)
2090 {
2091         enum drm_connector_status status;
2092
2093         /* Can't disconnect eDP, but you can close the lid... */
2094         if (is_edp(intel_dp)) {
2095                 status = intel_panel_detect(intel_dp->base.base.dev);
2096                 if (status == connector_status_unknown)
2097                         status = connector_status_connected;
2098                 return status;
2099         }
2100
2101         return intel_dp_detect_dpcd(intel_dp);
2102 }
2103
2104 static enum drm_connector_status
2105 g4x_dp_detect(struct intel_dp *intel_dp)
2106 {
2107         struct drm_device *dev = intel_dp->base.base.dev;
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         uint32_t bit;
2110
2111         switch (intel_dp->output_reg) {
2112         case DP_B:
2113                 bit = DPB_HOTPLUG_LIVE_STATUS;
2114                 break;
2115         case DP_C:
2116                 bit = DPC_HOTPLUG_LIVE_STATUS;
2117                 break;
2118         case DP_D:
2119                 bit = DPD_HOTPLUG_LIVE_STATUS;
2120                 break;
2121         default:
2122                 return connector_status_unknown;
2123         }
2124
2125         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2126                 return connector_status_disconnected;
2127
2128         return intel_dp_detect_dpcd(intel_dp);
2129 }
2130
2131 static struct edid *
2132 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2133 {
2134         struct intel_dp *intel_dp = intel_attached_dp(connector);
2135         struct edid     *edid;
2136         int size;
2137
2138         if (is_edp(intel_dp)) {
2139                 if (!intel_dp->edid)
2140                         return NULL;
2141
2142                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2143                 edid = kmalloc(size, GFP_KERNEL);
2144                 if (!edid)
2145                         return NULL;
2146
2147                 memcpy(edid, intel_dp->edid, size);
2148                 return edid;
2149         }
2150
2151         edid = drm_get_edid(connector, adapter);
2152         return edid;
2153 }
2154
2155 static int
2156 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2157 {
2158         struct intel_dp *intel_dp = intel_attached_dp(connector);
2159         int     ret;
2160
2161         if (is_edp(intel_dp)) {
2162                 drm_mode_connector_update_edid_property(connector,
2163                                                         intel_dp->edid);
2164                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2165                 drm_edid_to_eld(connector,
2166                                 intel_dp->edid);
2167                 connector->display_info.raw_edid = NULL;
2168                 return intel_dp->edid_mode_count;
2169         }
2170
2171         ret = intel_ddc_get_modes(connector, adapter);
2172         return ret;
2173 }
2174
2175
2176 /**
2177  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2178  *
2179  * \return true if DP port is connected.
2180  * \return false if DP port is disconnected.
2181  */
2182 static enum drm_connector_status
2183 intel_dp_detect(struct drm_connector *connector, bool force)
2184 {
2185         struct intel_dp *intel_dp = intel_attached_dp(connector);
2186         struct drm_device *dev = intel_dp->base.base.dev;
2187         enum drm_connector_status status;
2188         struct edid *edid = NULL;
2189
2190         intel_dp->has_audio = false;
2191
2192         if (HAS_PCH_SPLIT(dev))
2193                 status = ironlake_dp_detect(intel_dp);
2194         else
2195                 status = g4x_dp_detect(intel_dp);
2196
2197         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2198                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2199                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2200                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2201
2202         if (status != connector_status_connected)
2203                 return status;
2204
2205         intel_dp_probe_oui(intel_dp);
2206
2207         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2208                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2209         } else {
2210                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2211                 if (edid) {
2212                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2213                         connector->display_info.raw_edid = NULL;
2214                         kfree(edid);
2215                 }
2216         }
2217
2218         return connector_status_connected;
2219 }
2220
2221 static int intel_dp_get_modes(struct drm_connector *connector)
2222 {
2223         struct intel_dp *intel_dp = intel_attached_dp(connector);
2224         struct drm_device *dev = intel_dp->base.base.dev;
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226         int ret;
2227
2228         /* We should parse the EDID data and find out if it has an audio sink
2229          */
2230
2231         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2232         if (ret) {
2233                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2234                         struct drm_display_mode *newmode;
2235                         list_for_each_entry(newmode, &connector->probed_modes,
2236                                             head) {
2237                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2238                                         intel_dp->panel_fixed_mode =
2239                                                 drm_mode_duplicate(dev, newmode);
2240                                         break;
2241                                 }
2242                         }
2243                 }
2244                 return ret;
2245         }
2246
2247         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2248         if (is_edp(intel_dp)) {
2249                 /* initialize panel mode from VBT if available for eDP */
2250                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2251                         intel_dp->panel_fixed_mode =
2252                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2253                         if (intel_dp->panel_fixed_mode) {
2254                                 intel_dp->panel_fixed_mode->type |=
2255                                         DRM_MODE_TYPE_PREFERRED;
2256                         }
2257                 }
2258                 if (intel_dp->panel_fixed_mode) {
2259                         struct drm_display_mode *mode;
2260                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2261                         drm_mode_probed_add(connector, mode);
2262                         return 1;
2263                 }
2264         }
2265         return 0;
2266 }
2267
2268 static bool
2269 intel_dp_detect_audio(struct drm_connector *connector)
2270 {
2271         struct intel_dp *intel_dp = intel_attached_dp(connector);
2272         struct edid *edid;
2273         bool has_audio = false;
2274
2275         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2276         if (edid) {
2277                 has_audio = drm_detect_monitor_audio(edid);
2278
2279                 connector->display_info.raw_edid = NULL;
2280                 kfree(edid);
2281         }
2282
2283         return has_audio;
2284 }
2285
2286 static int
2287 intel_dp_set_property(struct drm_connector *connector,
2288                       struct drm_property *property,
2289                       uint64_t val)
2290 {
2291         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2292         struct intel_dp *intel_dp = intel_attached_dp(connector);
2293         int ret;
2294
2295         ret = drm_connector_property_set_value(connector, property, val);
2296         if (ret)
2297                 return ret;
2298
2299         if (property == dev_priv->force_audio_property) {
2300                 int i = val;
2301                 bool has_audio;
2302
2303                 if (i == intel_dp->force_audio)
2304                         return 0;
2305
2306                 intel_dp->force_audio = i;
2307
2308                 if (i == HDMI_AUDIO_AUTO)
2309                         has_audio = intel_dp_detect_audio(connector);
2310                 else
2311                         has_audio = (i == HDMI_AUDIO_ON);
2312
2313                 if (has_audio == intel_dp->has_audio)
2314                         return 0;
2315
2316                 intel_dp->has_audio = has_audio;
2317                 goto done;
2318         }
2319
2320         if (property == dev_priv->broadcast_rgb_property) {
2321                 if (val == !!intel_dp->color_range)
2322                         return 0;
2323
2324                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2325                 goto done;
2326         }
2327
2328         return -EINVAL;
2329
2330 done:
2331         if (intel_dp->base.base.crtc) {
2332                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2333                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2334                                          crtc->x, crtc->y,
2335                                          crtc->fb);
2336         }
2337
2338         return 0;
2339 }
2340
2341 static void
2342 intel_dp_destroy(struct drm_connector *connector)
2343 {
2344         struct drm_device *dev = connector->dev;
2345
2346         if (intel_dpd_is_edp(dev))
2347                 intel_panel_destroy_backlight(dev);
2348
2349         drm_sysfs_connector_remove(connector);
2350         drm_connector_cleanup(connector);
2351         kfree(connector);
2352 }
2353
2354 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2355 {
2356         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2357
2358         i2c_del_adapter(&intel_dp->adapter);
2359         drm_encoder_cleanup(encoder);
2360         if (is_edp(intel_dp)) {
2361                 kfree(intel_dp->edid);
2362                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2363                 ironlake_panel_vdd_off_sync(intel_dp);
2364         }
2365         kfree(intel_dp);
2366 }
2367
2368 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2369         .dpms = intel_dp_dpms,
2370         .mode_fixup = intel_dp_mode_fixup,
2371         .prepare = intel_dp_prepare,
2372         .mode_set = intel_dp_mode_set,
2373         .commit = intel_dp_commit,
2374 };
2375
2376 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2377         .dpms = drm_helper_connector_dpms,
2378         .detect = intel_dp_detect,
2379         .fill_modes = drm_helper_probe_single_connector_modes,
2380         .set_property = intel_dp_set_property,
2381         .destroy = intel_dp_destroy,
2382 };
2383
2384 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2385         .get_modes = intel_dp_get_modes,
2386         .mode_valid = intel_dp_mode_valid,
2387         .best_encoder = intel_best_encoder,
2388 };
2389
2390 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2391         .destroy = intel_dp_encoder_destroy,
2392 };
2393
2394 static void
2395 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2396 {
2397         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2398
2399         intel_dp_check_link_status(intel_dp);
2400 }
2401
2402 /* Return which DP Port should be selected for Transcoder DP control */
2403 int
2404 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_mode_config *mode_config = &dev->mode_config;
2408         struct drm_encoder *encoder;
2409
2410         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2411                 struct intel_dp *intel_dp;
2412
2413                 if (encoder->crtc != crtc)
2414                         continue;
2415
2416                 intel_dp = enc_to_intel_dp(encoder);
2417                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2418                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2419                         return intel_dp->output_reg;
2420         }
2421
2422         return -1;
2423 }
2424
2425 /* check the VBT to see whether the eDP is on DP-D port */
2426 bool intel_dpd_is_edp(struct drm_device *dev)
2427 {
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         struct child_device_config *p_child;
2430         int i;
2431
2432         if (!dev_priv->child_dev_num)
2433                 return false;
2434
2435         for (i = 0; i < dev_priv->child_dev_num; i++) {
2436                 p_child = dev_priv->child_dev + i;
2437
2438                 if (p_child->dvo_port == PORT_IDPD &&
2439                     p_child->device_type == DEVICE_TYPE_eDP)
2440                         return true;
2441         }
2442         return false;
2443 }
2444
2445 static void
2446 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2447 {
2448         intel_attach_force_audio_property(connector);
2449         intel_attach_broadcast_rgb_property(connector);
2450 }
2451
2452 void
2453 intel_dp_init(struct drm_device *dev, int output_reg)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         struct drm_connector *connector;
2457         struct intel_dp *intel_dp;
2458         struct intel_encoder *intel_encoder;
2459         struct intel_connector *intel_connector;
2460         const char *name = NULL;
2461         int type;
2462
2463         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2464         if (!intel_dp)
2465                 return;
2466
2467         intel_dp->output_reg = output_reg;
2468         intel_dp->dpms_mode = -1;
2469
2470         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2471         if (!intel_connector) {
2472                 kfree(intel_dp);
2473                 return;
2474         }
2475         intel_encoder = &intel_dp->base;
2476
2477         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2478                 if (intel_dpd_is_edp(dev))
2479                         intel_dp->is_pch_edp = true;
2480
2481         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2482                 type = DRM_MODE_CONNECTOR_eDP;
2483                 intel_encoder->type = INTEL_OUTPUT_EDP;
2484         } else {
2485                 type = DRM_MODE_CONNECTOR_DisplayPort;
2486                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2487         }
2488
2489         connector = &intel_connector->base;
2490         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2491         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2492
2493         connector->polled = DRM_CONNECTOR_POLL_HPD;
2494
2495         if (output_reg == DP_B || output_reg == PCH_DP_B)
2496                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2497         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2498                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2499         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2500                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2501
2502         if (is_edp(intel_dp)) {
2503                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2504                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2505                                   ironlake_panel_vdd_work);
2506         }
2507
2508         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2509
2510         connector->interlace_allowed = true;
2511         connector->doublescan_allowed = 0;
2512
2513         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2514                          DRM_MODE_ENCODER_TMDS);
2515         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2516
2517         intel_connector_attach_encoder(intel_connector, intel_encoder);
2518         drm_sysfs_connector_add(connector);
2519
2520         /* Set up the DDC bus. */
2521         switch (output_reg) {
2522                 case DP_A:
2523                         name = "DPDDC-A";
2524                         break;
2525                 case DP_B:
2526                 case PCH_DP_B:
2527                         dev_priv->hotplug_supported_mask |=
2528                                 DPB_HOTPLUG_INT_STATUS;
2529                         name = "DPDDC-B";
2530                         break;
2531                 case DP_C:
2532                 case PCH_DP_C:
2533                         dev_priv->hotplug_supported_mask |=
2534                                 DPC_HOTPLUG_INT_STATUS;
2535                         name = "DPDDC-C";
2536                         break;
2537                 case DP_D:
2538                 case PCH_DP_D:
2539                         dev_priv->hotplug_supported_mask |=
2540                                 DPD_HOTPLUG_INT_STATUS;
2541                         name = "DPDDC-D";
2542                         break;
2543         }
2544
2545         intel_dp_i2c_init(intel_dp, intel_connector, name);
2546
2547         /* Cache some DPCD data in the eDP case */
2548         if (is_edp(intel_dp)) {
2549                 bool ret;
2550                 struct edp_power_seq    cur, vbt;
2551                 u32 pp_on, pp_off, pp_div;
2552                 struct edid *edid;
2553
2554                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2555                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2556                 pp_div = I915_READ(PCH_PP_DIVISOR);
2557
2558                 if (!pp_on || !pp_off || !pp_div) {
2559                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2560                         intel_dp_encoder_destroy(&intel_dp->base.base);
2561                         intel_dp_destroy(&intel_connector->base);
2562                         return;
2563                 }
2564
2565                 /* Pull timing values out of registers */
2566                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2567                         PANEL_POWER_UP_DELAY_SHIFT;
2568
2569                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2570                         PANEL_LIGHT_ON_DELAY_SHIFT;
2571
2572                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2573                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2574
2575                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2576                         PANEL_POWER_DOWN_DELAY_SHIFT;
2577
2578                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2579                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2580
2581                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2582                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2583
2584                 vbt = dev_priv->edp.pps;
2585
2586                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2587                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2588
2589 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2590
2591                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2592                 intel_dp->backlight_on_delay = get_delay(t8);
2593                 intel_dp->backlight_off_delay = get_delay(t9);
2594                 intel_dp->panel_power_down_delay = get_delay(t10);
2595                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2596
2597                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2598                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2599                               intel_dp->panel_power_cycle_delay);
2600
2601                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2602                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2603
2604                 ironlake_edp_panel_vdd_on(intel_dp);
2605                 ret = intel_dp_get_dpcd(intel_dp);
2606                 ironlake_edp_panel_vdd_off(intel_dp, false);
2607
2608                 if (ret) {
2609                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2610                                 dev_priv->no_aux_handshake =
2611                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2612                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2613                 } else {
2614                         /* if this fails, presume the device is a ghost */
2615                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2616                         intel_dp_encoder_destroy(&intel_dp->base.base);
2617                         intel_dp_destroy(&intel_connector->base);
2618                         return;
2619                 }
2620
2621                 ironlake_edp_panel_vdd_on(intel_dp);
2622                 edid = drm_get_edid(connector, &intel_dp->adapter);
2623                 if (edid) {
2624                         drm_mode_connector_update_edid_property(connector,
2625                                                                 edid);
2626                         intel_dp->edid_mode_count =
2627                                 drm_add_edid_modes(connector, edid);
2628                         drm_edid_to_eld(connector, edid);
2629                         intel_dp->edid = edid;
2630                 }
2631                 ironlake_edp_panel_vdd_off(intel_dp, false);
2632         }
2633
2634         intel_encoder->hot_plug = intel_dp_hot_plug;
2635
2636         if (is_edp(intel_dp)) {
2637                 dev_priv->int_edp_connector = connector;
2638                 intel_panel_setup_backlight(dev);
2639         }
2640
2641         intel_dp_add_properties(intel_dp, connector);
2642
2643         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2644          * 0xd.  Failure to do so will result in spurious interrupts being
2645          * generated on the port when a cable is not attached.
2646          */
2647         if (IS_G4X(dev) && !IS_GM45(dev)) {
2648                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2649                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2650         }
2651 }