]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69         I915_WRITE(GEN8_CHICKEN_DCPR_1,
70                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
73         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75                    DISP_FBC_WM_DIS |
76                    DISP_FBC_MEMORY_WAKE);
77
78         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80                    ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85         gen9_init_clock_gating(dev_priv);
86
87         /* WaDisableSDEUnitClockGating:bxt */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91         /*
92          * FIXME:
93          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94          */
95         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98         /*
99          * Wa: Backlight PWM may stop in the asserted state, causing backlight
100          * to stay fully on.
101          */
102         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103                    PWM1_GATING_DIS | PWM2_GATING_DIS);
104 }
105
106 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
107 {
108         gen9_init_clock_gating(dev_priv);
109
110         /*
111          * WaDisablePWMClockGating:glk
112          * Backlight PWM may stop in the asserted state, causing backlight
113          * to stay fully on.
114          */
115         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116                    PWM1_GATING_DIS | PWM2_GATING_DIS);
117
118         /* WaDDIIOTimeout:glk */
119         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
120                 u32 val = I915_READ(CHICKEN_MISC_2);
121                 val &= ~(GLK_CL0_PWR_DOWN |
122                          GLK_CL1_PWR_DOWN |
123                          GLK_CL2_PWR_DOWN);
124                 I915_WRITE(CHICKEN_MISC_2, val);
125         }
126
127 }
128
129 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 {
131         u32 tmp;
132
133         tmp = I915_READ(CLKCFG);
134
135         switch (tmp & CLKCFG_FSB_MASK) {
136         case CLKCFG_FSB_533:
137                 dev_priv->fsb_freq = 533; /* 133*4 */
138                 break;
139         case CLKCFG_FSB_800:
140                 dev_priv->fsb_freq = 800; /* 200*4 */
141                 break;
142         case CLKCFG_FSB_667:
143                 dev_priv->fsb_freq =  667; /* 167*4 */
144                 break;
145         case CLKCFG_FSB_400:
146                 dev_priv->fsb_freq = 400; /* 100*4 */
147                 break;
148         }
149
150         switch (tmp & CLKCFG_MEM_MASK) {
151         case CLKCFG_MEM_533:
152                 dev_priv->mem_freq = 533;
153                 break;
154         case CLKCFG_MEM_667:
155                 dev_priv->mem_freq = 667;
156                 break;
157         case CLKCFG_MEM_800:
158                 dev_priv->mem_freq = 800;
159                 break;
160         }
161
162         /* detect pineview DDR3 setting */
163         tmp = I915_READ(CSHRDDR3CTL);
164         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 {
169         u16 ddrpll, csipll;
170
171         ddrpll = I915_READ16(DDRMPLL1);
172         csipll = I915_READ16(CSIPLL0);
173
174         switch (ddrpll & 0xff) {
175         case 0xc:
176                 dev_priv->mem_freq = 800;
177                 break;
178         case 0x10:
179                 dev_priv->mem_freq = 1066;
180                 break;
181         case 0x14:
182                 dev_priv->mem_freq = 1333;
183                 break;
184         case 0x18:
185                 dev_priv->mem_freq = 1600;
186                 break;
187         default:
188                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
189                                  ddrpll & 0xff);
190                 dev_priv->mem_freq = 0;
191                 break;
192         }
193
194         dev_priv->ips.r_t = dev_priv->mem_freq;
195
196         switch (csipll & 0x3ff) {
197         case 0x00c:
198                 dev_priv->fsb_freq = 3200;
199                 break;
200         case 0x00e:
201                 dev_priv->fsb_freq = 3733;
202                 break;
203         case 0x010:
204                 dev_priv->fsb_freq = 4266;
205                 break;
206         case 0x012:
207                 dev_priv->fsb_freq = 4800;
208                 break;
209         case 0x014:
210                 dev_priv->fsb_freq = 5333;
211                 break;
212         case 0x016:
213                 dev_priv->fsb_freq = 5866;
214                 break;
215         case 0x018:
216                 dev_priv->fsb_freq = 6400;
217                 break;
218         default:
219                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
220                                  csipll & 0x3ff);
221                 dev_priv->fsb_freq = 0;
222                 break;
223         }
224
225         if (dev_priv->fsb_freq == 3200) {
226                 dev_priv->ips.c_m = 0;
227         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228                 dev_priv->ips.c_m = 1;
229         } else {
230                 dev_priv->ips.c_m = 2;
231         }
232 }
233
234 static const struct cxsr_latency cxsr_latency_table[] = {
235         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
236         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
237         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
238         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
239         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
240
241         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
242         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
243         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
244         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
245         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
246
247         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
248         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
249         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
250         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
251         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
252
253         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
254         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
255         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
256         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
257         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
258
259         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
260         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
261         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
262         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
263         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
264
265         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
266         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
267         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
268         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
269         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
270 };
271
272 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
273                                                          bool is_ddr3,
274                                                          int fsb,
275                                                          int mem)
276 {
277         const struct cxsr_latency *latency;
278         int i;
279
280         if (fsb == 0 || mem == 0)
281                 return NULL;
282
283         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
284                 latency = &cxsr_latency_table[i];
285                 if (is_desktop == latency->is_desktop &&
286                     is_ddr3 == latency->is_ddr3 &&
287                     fsb == latency->fsb_freq && mem == latency->mem_freq)
288                         return latency;
289         }
290
291         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
292
293         return NULL;
294 }
295
296 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
297 {
298         u32 val;
299
300         mutex_lock(&dev_priv->rps.hw_lock);
301
302         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
303         if (enable)
304                 val &= ~FORCE_DDR_HIGH_FREQ;
305         else
306                 val |= FORCE_DDR_HIGH_FREQ;
307         val &= ~FORCE_DDR_LOW_FREQ;
308         val |= FORCE_DDR_FREQ_REQ_ACK;
309         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
310
311         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
312                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
313                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
314
315         mutex_unlock(&dev_priv->rps.hw_lock);
316 }
317
318 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
319 {
320         u32 val;
321
322         mutex_lock(&dev_priv->rps.hw_lock);
323
324         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
325         if (enable)
326                 val |= DSP_MAXFIFO_PM5_ENABLE;
327         else
328                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
329         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
330
331         mutex_unlock(&dev_priv->rps.hw_lock);
332 }
333
334 #define FW_WM(value, plane) \
335         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
336
337 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338 {
339         bool was_enabled;
340         u32 val;
341
342         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345                 POSTING_READ(FW_BLC_SELF_VLV);
346         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349                 POSTING_READ(FW_BLC_SELF);
350         } else if (IS_PINEVIEW(dev_priv)) {
351                 val = I915_READ(DSPFW3);
352                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
353                 if (enable)
354                         val |= PINEVIEW_SELF_REFRESH_EN;
355                 else
356                         val &= ~PINEVIEW_SELF_REFRESH_EN;
357                 I915_WRITE(DSPFW3, val);
358                 POSTING_READ(DSPFW3);
359         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363                 I915_WRITE(FW_BLC_SELF, val);
364                 POSTING_READ(FW_BLC_SELF);
365         } else if (IS_I915GM(dev_priv)) {
366                 /*
367                  * FIXME can't find a bit like this for 915G, and
368                  * and yet it does have the related watermark in
369                  * FW_BLC_SELF. What's going on?
370                  */
371                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
373                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
374                 I915_WRITE(INSTPM, val);
375                 POSTING_READ(INSTPM);
376         } else {
377                 return false;
378         }
379
380         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
381
382         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
383                       enableddisabled(enable),
384                       enableddisabled(was_enabled));
385
386         return was_enabled;
387 }
388
389 /**
390  * intel_set_memory_cxsr - Configure CxSR state
391  * @dev_priv: i915 device
392  * @enable: Allow vs. disallow CxSR
393  *
394  * Allow or disallow the system to enter a special CxSR
395  * (C-state self refresh) state. What typically happens in CxSR mode
396  * is that several display FIFOs may get combined into a single larger
397  * FIFO for a particular plane (so called max FIFO mode) to allow the
398  * system to defer memory fetches longer, and the memory will enter
399  * self refresh.
400  *
401  * Note that enabling CxSR does not guarantee that the system enter
402  * this special mode, nor does it guarantee that the system stays
403  * in that mode once entered. So this just allows/disallows the system
404  * to autonomously utilize the CxSR mode. Other factors such as core
405  * C-states will affect when/if the system actually enters/exits the
406  * CxSR mode.
407  *
408  * Note that on VLV/CHV this actually only controls the max FIFO mode,
409  * and the system is free to enter/exit memory self refresh at any time
410  * even when the use of CxSR has been disallowed.
411  *
412  * While the system is actually in the CxSR/max FIFO mode, some plane
413  * control registers will not get latched on vblank. Thus in order to
414  * guarantee the system will respond to changes in the plane registers
415  * we must always disallow CxSR prior to making changes to those registers.
416  * Unfortunately the system will re-evaluate the CxSR conditions at
417  * frame start which happens after vblank start (which is when the plane
418  * registers would get latched), so we can't proceed with the plane update
419  * during the same frame where we disallowed CxSR.
420  *
421  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
422  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
423  * the hardware w.r.t. HPLL SR when writing to plane registers.
424  * Disallowing just CxSR is sufficient.
425  */
426 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427 {
428         bool ret;
429
430         mutex_lock(&dev_priv->wm.wm_mutex);
431         ret = _intel_set_memory_cxsr(dev_priv, enable);
432         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
433                 dev_priv->wm.vlv.cxsr = enable;
434         else if (IS_G4X(dev_priv))
435                 dev_priv->wm.g4x.cxsr = enable;
436         mutex_unlock(&dev_priv->wm.wm_mutex);
437
438         return ret;
439 }
440
441 /*
442  * Latency for FIFO fetches is dependent on several factors:
443  *   - memory configuration (speed, channels)
444  *   - chipset
445  *   - current MCH state
446  * It can be fairly high in some situations, so here we assume a fairly
447  * pessimal value.  It's a tradeoff between extra memory fetches (if we
448  * set this value too high, the FIFO will fetch frequently to stay full)
449  * and power consumption (set it too low to save power and we might see
450  * FIFO underruns and display "flicker").
451  *
452  * A value of 5us seems to be a good balance; safe for very low end
453  * platforms but not overly aggressive on lower latency configs.
454  */
455 static const int pessimal_latency_ns = 5000;
456
457 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
458         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
459
460 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461 {
462         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465         enum pipe pipe = crtc->pipe;
466         int sprite0_start, sprite1_start;
467
468         switch (pipe) {
469                 uint32_t dsparb, dsparb2, dsparb3;
470         case PIPE_A:
471                 dsparb = I915_READ(DSPARB);
472                 dsparb2 = I915_READ(DSPARB2);
473                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
474                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
475                 break;
476         case PIPE_B:
477                 dsparb = I915_READ(DSPARB);
478                 dsparb2 = I915_READ(DSPARB2);
479                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
480                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
481                 break;
482         case PIPE_C:
483                 dsparb2 = I915_READ(DSPARB2);
484                 dsparb3 = I915_READ(DSPARB3);
485                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
486                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
487                 break;
488         default:
489                 MISSING_CASE(pipe);
490                 return;
491         }
492
493         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
494         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
495         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
496         fifo_state->plane[PLANE_CURSOR] = 63;
497 }
498
499 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 {
501         uint32_t dsparb = I915_READ(DSPARB);
502         int size;
503
504         size = dsparb & 0x7f;
505         if (plane)
506                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
507
508         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
509                       plane ? "B" : "A", size);
510
511         return size;
512 }
513
514 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 {
516         uint32_t dsparb = I915_READ(DSPARB);
517         int size;
518
519         size = dsparb & 0x1ff;
520         if (plane)
521                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
522         size >>= 1; /* Convert to cachelines */
523
524         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
525                       plane ? "B" : "A", size);
526
527         return size;
528 }
529
530 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 {
532         uint32_t dsparb = I915_READ(DSPARB);
533         int size;
534
535         size = dsparb & 0x7f;
536         size >>= 2; /* Convert to cachelines */
537
538         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
539                       plane ? "B" : "A",
540                       size);
541
542         return size;
543 }
544
545 /* Pineview has different values for various configs */
546 static const struct intel_watermark_params pineview_display_wm = {
547         .fifo_size = PINEVIEW_DISPLAY_FIFO,
548         .max_wm = PINEVIEW_MAX_WM,
549         .default_wm = PINEVIEW_DFT_WM,
550         .guard_size = PINEVIEW_GUARD_WM,
551         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 };
553 static const struct intel_watermark_params pineview_display_hplloff_wm = {
554         .fifo_size = PINEVIEW_DISPLAY_FIFO,
555         .max_wm = PINEVIEW_MAX_WM,
556         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
557         .guard_size = PINEVIEW_GUARD_WM,
558         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 };
560 static const struct intel_watermark_params pineview_cursor_wm = {
561         .fifo_size = PINEVIEW_CURSOR_FIFO,
562         .max_wm = PINEVIEW_CURSOR_MAX_WM,
563         .default_wm = PINEVIEW_CURSOR_DFT_WM,
564         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
565         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 };
567 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568         .fifo_size = PINEVIEW_CURSOR_FIFO,
569         .max_wm = PINEVIEW_CURSOR_MAX_WM,
570         .default_wm = PINEVIEW_CURSOR_DFT_WM,
571         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
572         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 };
574 static const struct intel_watermark_params i965_cursor_wm_info = {
575         .fifo_size = I965_CURSOR_FIFO,
576         .max_wm = I965_CURSOR_MAX_WM,
577         .default_wm = I965_CURSOR_DFT_WM,
578         .guard_size = 2,
579         .cacheline_size = I915_FIFO_LINE_SIZE,
580 };
581 static const struct intel_watermark_params i945_wm_info = {
582         .fifo_size = I945_FIFO_SIZE,
583         .max_wm = I915_MAX_WM,
584         .default_wm = 1,
585         .guard_size = 2,
586         .cacheline_size = I915_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params i915_wm_info = {
589         .fifo_size = I915_FIFO_SIZE,
590         .max_wm = I915_MAX_WM,
591         .default_wm = 1,
592         .guard_size = 2,
593         .cacheline_size = I915_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params i830_a_wm_info = {
596         .fifo_size = I855GM_FIFO_SIZE,
597         .max_wm = I915_MAX_WM,
598         .default_wm = 1,
599         .guard_size = 2,
600         .cacheline_size = I830_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params i830_bc_wm_info = {
603         .fifo_size = I855GM_FIFO_SIZE,
604         .max_wm = I915_MAX_WM/2,
605         .default_wm = 1,
606         .guard_size = 2,
607         .cacheline_size = I830_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i845_wm_info = {
610         .fifo_size = I830_FIFO_SIZE,
611         .max_wm = I915_MAX_WM,
612         .default_wm = 1,
613         .guard_size = 2,
614         .cacheline_size = I830_FIFO_LINE_SIZE,
615 };
616
617 /**
618  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
619  * @pixel_rate: Pipe pixel rate in kHz
620  * @cpp: Plane bytes per pixel
621  * @latency: Memory wakeup latency in 0.1us units
622  *
623  * Compute the watermark using the method 1 or "small buffer"
624  * formula. The caller may additonally add extra cachelines
625  * to account for TLB misses and clock crossings.
626  *
627  * This method is concerned with the short term drain rate
628  * of the FIFO, ie. it does not account for blanking periods
629  * which would effectively reduce the average drain rate across
630  * a longer period. The name "small" refers to the fact the
631  * FIFO is relatively small compared to the amount of data
632  * fetched.
633  *
634  * The FIFO level vs. time graph might look something like:
635  *
636  *   |\   |\
637  *   | \  | \
638  * __---__---__ (- plane active, _ blanking)
639  * -> time
640  *
641  * or perhaps like this:
642  *
643  *   |\|\  |\|\
644  * __----__----__ (- plane active, _ blanking)
645  * -> time
646  *
647  * Returns:
648  * The watermark in bytes
649  */
650 static unsigned int intel_wm_method1(unsigned int pixel_rate,
651                                      unsigned int cpp,
652                                      unsigned int latency)
653 {
654         uint64_t ret;
655
656         ret = (uint64_t) pixel_rate * cpp * latency;
657         ret = DIV_ROUND_UP_ULL(ret, 10000);
658
659         return ret;
660 }
661
662 /**
663  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
664  * @pixel_rate: Pipe pixel rate in kHz
665  * @htotal: Pipe horizontal total
666  * @width: Plane width in pixels
667  * @cpp: Plane bytes per pixel
668  * @latency: Memory wakeup latency in 0.1us units
669  *
670  * Compute the watermark using the method 2 or "large buffer"
671  * formula. The caller may additonally add extra cachelines
672  * to account for TLB misses and clock crossings.
673  *
674  * This method is concerned with the long term drain rate
675  * of the FIFO, ie. it does account for blanking periods
676  * which effectively reduce the average drain rate across
677  * a longer period. The name "large" refers to the fact the
678  * FIFO is relatively large compared to the amount of data
679  * fetched.
680  *
681  * The FIFO level vs. time graph might look something like:
682  *
683  *    |\___       |\___
684  *    |    \___   |    \___
685  *    |        \  |        \
686  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
687  * -> time
688  *
689  * Returns:
690  * The watermark in bytes
691  */
692 static unsigned int intel_wm_method2(unsigned int pixel_rate,
693                                      unsigned int htotal,
694                                      unsigned int width,
695                                      unsigned int cpp,
696                                      unsigned int latency)
697 {
698         unsigned int ret;
699
700         /*
701          * FIXME remove once all users are computing
702          * watermarks in the correct place.
703          */
704         if (WARN_ON_ONCE(htotal == 0))
705                 htotal = 1;
706
707         ret = (latency * pixel_rate) / (htotal * 10000);
708         ret = (ret + 1) * width * cpp;
709
710         return ret;
711 }
712
713 /**
714  * intel_calculate_wm - calculate watermark level
715  * @pixel_rate: pixel clock
716  * @wm: chip FIFO params
717  * @cpp: bytes per pixel
718  * @latency_ns: memory latency for the platform
719  *
720  * Calculate the watermark level (the level at which the display plane will
721  * start fetching from memory again).  Each chip has a different display
722  * FIFO size and allocation, so the caller needs to figure that out and pass
723  * in the correct intel_watermark_params structure.
724  *
725  * As the pixel clock runs, the FIFO will be drained at a rate that depends
726  * on the pixel size.  When it reaches the watermark level, it'll start
727  * fetching FIFO line sized based chunks from memory until the FIFO fills
728  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
729  * will occur, and a display engine hang could result.
730  */
731 static unsigned int intel_calculate_wm(int pixel_rate,
732                                        const struct intel_watermark_params *wm,
733                                        int fifo_size, int cpp,
734                                        unsigned int latency_ns)
735 {
736         int entries, wm_size;
737
738         /*
739          * Note: we need to make sure we don't overflow for various clock &
740          * latency values.
741          * clocks go from a few thousand to several hundred thousand.
742          * latency is usually a few thousand
743          */
744         entries = intel_wm_method1(pixel_rate, cpp,
745                                    latency_ns / 100);
746         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
747                 wm->guard_size;
748         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749
750         wm_size = fifo_size - entries;
751         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752
753         /* Don't promote wm_size to unsigned... */
754         if (wm_size > wm->max_wm)
755                 wm_size = wm->max_wm;
756         if (wm_size <= 0)
757                 wm_size = wm->default_wm;
758
759         /*
760          * Bspec seems to indicate that the value shouldn't be lower than
761          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
762          * Lets go for 8 which is the burst size since certain platforms
763          * already use a hardcoded 8 (which is what the spec says should be
764          * done).
765          */
766         if (wm_size <= 8)
767                 wm_size = 8;
768
769         return wm_size;
770 }
771
772 static bool is_disabling(int old, int new, int threshold)
773 {
774         return old >= threshold && new < threshold;
775 }
776
777 static bool is_enabling(int old, int new, int threshold)
778 {
779         return old < threshold && new >= threshold;
780 }
781
782 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
783 {
784         return dev_priv->wm.max_level + 1;
785 }
786
787 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
788                                    const struct intel_plane_state *plane_state)
789 {
790         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
791
792         /* FIXME check the 'enable' instead */
793         if (!crtc_state->base.active)
794                 return false;
795
796         /*
797          * Treat cursor with fb as always visible since cursor updates
798          * can happen faster than the vrefresh rate, and the current
799          * watermark code doesn't handle that correctly. Cursor updates
800          * which set/clear the fb or change the cursor size are going
801          * to get throttled by intel_legacy_cursor_update() to work
802          * around this problem with the watermark code.
803          */
804         if (plane->id == PLANE_CURSOR)
805                 return plane_state->base.fb != NULL;
806         else
807                 return plane_state->base.visible;
808 }
809
810 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811 {
812         struct intel_crtc *crtc, *enabled = NULL;
813
814         for_each_intel_crtc(&dev_priv->drm, crtc) {
815                 if (intel_crtc_active(crtc)) {
816                         if (enabled)
817                                 return NULL;
818                         enabled = crtc;
819                 }
820         }
821
822         return enabled;
823 }
824
825 static void pineview_update_wm(struct intel_crtc *unused_crtc)
826 {
827         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828         struct intel_crtc *crtc;
829         const struct cxsr_latency *latency;
830         u32 reg;
831         unsigned int wm;
832
833         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
834                                          dev_priv->is_ddr3,
835                                          dev_priv->fsb_freq,
836                                          dev_priv->mem_freq);
837         if (!latency) {
838                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839                 intel_set_memory_cxsr(dev_priv, false);
840                 return;
841         }
842
843         crtc = single_enabled_crtc(dev_priv);
844         if (crtc) {
845                 const struct drm_display_mode *adjusted_mode =
846                         &crtc->config->base.adjusted_mode;
847                 const struct drm_framebuffer *fb =
848                         crtc->base.primary->state->fb;
849                 int cpp = fb->format->cpp[0];
850                 int clock = adjusted_mode->crtc_clock;
851
852                 /* Display SR */
853                 wm = intel_calculate_wm(clock, &pineview_display_wm,
854                                         pineview_display_wm.fifo_size,
855                                         cpp, latency->display_sr);
856                 reg = I915_READ(DSPFW1);
857                 reg &= ~DSPFW_SR_MASK;
858                 reg |= FW_WM(wm, SR);
859                 I915_WRITE(DSPFW1, reg);
860                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
861
862                 /* cursor SR */
863                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
864                                         pineview_display_wm.fifo_size,
865                                         4, latency->cursor_sr);
866                 reg = I915_READ(DSPFW3);
867                 reg &= ~DSPFW_CURSOR_SR_MASK;
868                 reg |= FW_WM(wm, CURSOR_SR);
869                 I915_WRITE(DSPFW3, reg);
870
871                 /* Display HPLL off SR */
872                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
873                                         pineview_display_hplloff_wm.fifo_size,
874                                         cpp, latency->display_hpll_disable);
875                 reg = I915_READ(DSPFW3);
876                 reg &= ~DSPFW_HPLL_SR_MASK;
877                 reg |= FW_WM(wm, HPLL_SR);
878                 I915_WRITE(DSPFW3, reg);
879
880                 /* cursor HPLL off SR */
881                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
882                                         pineview_display_hplloff_wm.fifo_size,
883                                         4, latency->cursor_hpll_disable);
884                 reg = I915_READ(DSPFW3);
885                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
886                 reg |= FW_WM(wm, HPLL_CURSOR);
887                 I915_WRITE(DSPFW3, reg);
888                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
889
890                 intel_set_memory_cxsr(dev_priv, true);
891         } else {
892                 intel_set_memory_cxsr(dev_priv, false);
893         }
894 }
895
896 /*
897  * Documentation says:
898  * "If the line size is small, the TLB fetches can get in the way of the
899  *  data fetches, causing some lag in the pixel data return which is not
900  *  accounted for in the above formulas. The following adjustment only
901  *  needs to be applied if eight whole lines fit in the buffer at once.
902  *  The WM is adjusted upwards by the difference between the FIFO size
903  *  and the size of 8 whole lines. This adjustment is always performed
904  *  in the actual pixel depth regardless of whether FBC is enabled or not."
905  */
906 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
907 {
908         int tlb_miss = fifo_size * 64 - width * cpp * 8;
909
910         return max(0, tlb_miss);
911 }
912
913 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
914                                 const struct g4x_wm_values *wm)
915 {
916         enum pipe pipe;
917
918         for_each_pipe(dev_priv, pipe)
919                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
920
921         I915_WRITE(DSPFW1,
922                    FW_WM(wm->sr.plane, SR) |
923                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
924                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
925                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
926         I915_WRITE(DSPFW2,
927                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
928                    FW_WM(wm->sr.fbc, FBC_SR) |
929                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
930                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
931                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
932                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
933         I915_WRITE(DSPFW3,
934                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
935                    FW_WM(wm->sr.cursor, CURSOR_SR) |
936                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
937                    FW_WM(wm->hpll.plane, HPLL_SR));
938
939         POSTING_READ(DSPFW1);
940 }
941
942 #define FW_WM_VLV(value, plane) \
943         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
944
945 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946                                 const struct vlv_wm_values *wm)
947 {
948         enum pipe pipe;
949
950         for_each_pipe(dev_priv, pipe) {
951                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
952
953                 I915_WRITE(VLV_DDL(pipe),
954                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
955                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
956                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
957                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
958         }
959
960         /*
961          * Zero the (unused) WM1 watermarks, and also clear all the
962          * high order bits so that there are no out of bounds values
963          * present in the registers during the reprogramming.
964          */
965         I915_WRITE(DSPHOWM, 0);
966         I915_WRITE(DSPHOWM1, 0);
967         I915_WRITE(DSPFW4, 0);
968         I915_WRITE(DSPFW5, 0);
969         I915_WRITE(DSPFW6, 0);
970
971         I915_WRITE(DSPFW1,
972                    FW_WM(wm->sr.plane, SR) |
973                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
974                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
975                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976         I915_WRITE(DSPFW2,
977                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
978                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
979                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980         I915_WRITE(DSPFW3,
981                    FW_WM(wm->sr.cursor, CURSOR_SR));
982
983         if (IS_CHERRYVIEW(dev_priv)) {
984                 I915_WRITE(DSPFW7_CHV,
985                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
986                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987                 I915_WRITE(DSPFW8_CHV,
988                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
989                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990                 I915_WRITE(DSPFW9_CHV,
991                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
992                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993                 I915_WRITE(DSPHOWM,
994                            FW_WM(wm->sr.plane >> 9, SR_HI) |
995                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
996                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
997                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
998                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
999                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1000                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1001                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1002                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1003                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004         } else {
1005                 I915_WRITE(DSPFW7,
1006                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1007                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008                 I915_WRITE(DSPHOWM,
1009                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1010                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1011                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1012                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1013                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1014                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1015                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016         }
1017
1018         POSTING_READ(DSPFW1);
1019 }
1020
1021 #undef FW_WM_VLV
1022
1023 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1024 {
1025         /* all latencies in usec */
1026         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1027         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1028         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1029
1030         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1031 }
1032
1033 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1034 {
1035         /*
1036          * DSPCNTR[13] supposedly controls whether the
1037          * primary plane can use the FIFO space otherwise
1038          * reserved for the sprite plane. It's not 100% clear
1039          * what the actual FIFO size is, but it looks like we
1040          * can happily set both primary and sprite watermarks
1041          * up to 127 cachelines. So that would seem to mean
1042          * that either DSPCNTR[13] doesn't do anything, or that
1043          * the total FIFO is >= 256 cachelines in size. Either
1044          * way, we don't seem to have to worry about this
1045          * repartitioning as the maximum watermark value the
1046          * register can hold for each plane is lower than the
1047          * minimum FIFO size.
1048          */
1049         switch (plane_id) {
1050         case PLANE_CURSOR:
1051                 return 63;
1052         case PLANE_PRIMARY:
1053                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1054         case PLANE_SPRITE0:
1055                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1056         default:
1057                 MISSING_CASE(plane_id);
1058                 return 0;
1059         }
1060 }
1061
1062 static int g4x_fbc_fifo_size(int level)
1063 {
1064         switch (level) {
1065         case G4X_WM_LEVEL_SR:
1066                 return 7;
1067         case G4X_WM_LEVEL_HPLL:
1068                 return 15;
1069         default:
1070                 MISSING_CASE(level);
1071                 return 0;
1072         }
1073 }
1074
1075 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1076                                const struct intel_plane_state *plane_state,
1077                                int level)
1078 {
1079         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1080         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1081         const struct drm_display_mode *adjusted_mode =
1082                 &crtc_state->base.adjusted_mode;
1083         int clock, htotal, cpp, width, wm;
1084         int latency = dev_priv->wm.pri_latency[level] * 10;
1085
1086         if (latency == 0)
1087                 return USHRT_MAX;
1088
1089         if (!intel_wm_plane_visible(crtc_state, plane_state))
1090                 return 0;
1091
1092         /*
1093          * Not 100% sure which way ELK should go here as the
1094          * spec only says CL/CTG should assume 32bpp and BW
1095          * doesn't need to. But as these things followed the
1096          * mobile vs. desktop lines on gen3 as well, let's
1097          * assume ELK doesn't need this.
1098          *
1099          * The spec also fails to list such a restriction for
1100          * the HPLL watermark, which seems a little strange.
1101          * Let's use 32bpp for the HPLL watermark as well.
1102          */
1103         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1104             level != G4X_WM_LEVEL_NORMAL)
1105                 cpp = 4;
1106         else
1107                 cpp = plane_state->base.fb->format->cpp[0];
1108
1109         clock = adjusted_mode->crtc_clock;
1110         htotal = adjusted_mode->crtc_htotal;
1111
1112         if (plane->id == PLANE_CURSOR)
1113                 width = plane_state->base.crtc_w;
1114         else
1115                 width = drm_rect_width(&plane_state->base.dst);
1116
1117         if (plane->id == PLANE_CURSOR) {
1118                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1119         } else if (plane->id == PLANE_PRIMARY &&
1120                    level == G4X_WM_LEVEL_NORMAL) {
1121                 wm = intel_wm_method1(clock, cpp, latency);
1122         } else {
1123                 int small, large;
1124
1125                 small = intel_wm_method1(clock, cpp, latency);
1126                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1127
1128                 wm = min(small, large);
1129         }
1130
1131         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1132                               width, cpp);
1133
1134         wm = DIV_ROUND_UP(wm, 64) + 2;
1135
1136         return min_t(int, wm, USHRT_MAX);
1137 }
1138
1139 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1140                                  int level, enum plane_id plane_id, u16 value)
1141 {
1142         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1143         bool dirty = false;
1144
1145         for (; level < intel_wm_num_levels(dev_priv); level++) {
1146                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1147
1148                 dirty |= raw->plane[plane_id] != value;
1149                 raw->plane[plane_id] = value;
1150         }
1151
1152         return dirty;
1153 }
1154
1155 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1156                                int level, u16 value)
1157 {
1158         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159         bool dirty = false;
1160
1161         /* NORMAL level doesn't have an FBC watermark */
1162         level = max(level, G4X_WM_LEVEL_SR);
1163
1164         for (; level < intel_wm_num_levels(dev_priv); level++) {
1165                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1166
1167                 dirty |= raw->fbc != value;
1168                 raw->fbc = value;
1169         }
1170
1171         return dirty;
1172 }
1173
1174 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1175                                    const struct intel_plane_state *pstate,
1176                                    uint32_t pri_val);
1177
1178 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1179                                      const struct intel_plane_state *plane_state)
1180 {
1181         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1182         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1183         enum plane_id plane_id = plane->id;
1184         bool dirty = false;
1185         int level;
1186
1187         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1188                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1189                 if (plane_id == PLANE_PRIMARY)
1190                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1191                 goto out;
1192         }
1193
1194         for (level = 0; level < num_levels; level++) {
1195                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1196                 int wm, max_wm;
1197
1198                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1199                 max_wm = g4x_plane_fifo_size(plane_id, level);
1200
1201                 if (wm > max_wm)
1202                         break;
1203
1204                 dirty |= raw->plane[plane_id] != wm;
1205                 raw->plane[plane_id] = wm;
1206
1207                 if (plane_id != PLANE_PRIMARY ||
1208                     level == G4X_WM_LEVEL_NORMAL)
1209                         continue;
1210
1211                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1212                                         raw->plane[plane_id]);
1213                 max_wm = g4x_fbc_fifo_size(level);
1214
1215                 /*
1216                  * FBC wm is not mandatory as we
1217                  * can always just disable its use.
1218                  */
1219                 if (wm > max_wm)
1220                         wm = USHRT_MAX;
1221
1222                 dirty |= raw->fbc != wm;
1223                 raw->fbc = wm;
1224         }
1225
1226         /* mark watermarks as invalid */
1227         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1228
1229         if (plane_id == PLANE_PRIMARY)
1230                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1231
1232  out:
1233         if (dirty) {
1234                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1235                               plane->base.name,
1236                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1237                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1238                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1239
1240                 if (plane_id == PLANE_PRIMARY)
1241                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1242                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1243                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1244         }
1245
1246         return dirty;
1247 }
1248
1249 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1250                                       enum plane_id plane_id, int level)
1251 {
1252         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1253
1254         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1255 }
1256
1257 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1258                                      int level)
1259 {
1260         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1261
1262         if (level > dev_priv->wm.max_level)
1263                 return false;
1264
1265         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1266                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1267                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1268 }
1269
1270 /* mark all levels starting from 'level' as invalid */
1271 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1272                                struct g4x_wm_state *wm_state, int level)
1273 {
1274         if (level <= G4X_WM_LEVEL_NORMAL) {
1275                 enum plane_id plane_id;
1276
1277                 for_each_plane_id_on_crtc(crtc, plane_id)
1278                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1279         }
1280
1281         if (level <= G4X_WM_LEVEL_SR) {
1282                 wm_state->cxsr = false;
1283                 wm_state->sr.cursor = USHRT_MAX;
1284                 wm_state->sr.plane = USHRT_MAX;
1285                 wm_state->sr.fbc = USHRT_MAX;
1286         }
1287
1288         if (level <= G4X_WM_LEVEL_HPLL) {
1289                 wm_state->hpll_en = false;
1290                 wm_state->hpll.cursor = USHRT_MAX;
1291                 wm_state->hpll.plane = USHRT_MAX;
1292                 wm_state->hpll.fbc = USHRT_MAX;
1293         }
1294 }
1295
1296 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1297 {
1298         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1299         struct intel_atomic_state *state =
1300                 to_intel_atomic_state(crtc_state->base.state);
1301         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1302         int num_active_planes = hweight32(crtc_state->active_planes &
1303                                           ~BIT(PLANE_CURSOR));
1304         const struct g4x_pipe_wm *raw;
1305         struct intel_plane_state *plane_state;
1306         struct intel_plane *plane;
1307         enum plane_id plane_id;
1308         int i, level;
1309         unsigned int dirty = 0;
1310
1311         for_each_intel_plane_in_state(state, plane, plane_state, i) {
1312                 const struct intel_plane_state *old_plane_state =
1313                         to_intel_plane_state(plane->base.state);
1314
1315                 if (plane_state->base.crtc != &crtc->base &&
1316                     old_plane_state->base.crtc != &crtc->base)
1317                         continue;
1318
1319                 if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1320                         dirty |= BIT(plane->id);
1321         }
1322
1323         if (!dirty)
1324                 return 0;
1325
1326         level = G4X_WM_LEVEL_NORMAL;
1327         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1328                 goto out;
1329
1330         raw = &crtc_state->wm.g4x.raw[level];
1331         for_each_plane_id_on_crtc(crtc, plane_id)
1332                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1333
1334         level = G4X_WM_LEVEL_SR;
1335
1336         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1337                 goto out;
1338
1339         raw = &crtc_state->wm.g4x.raw[level];
1340         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1341         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1342         wm_state->sr.fbc = raw->fbc;
1343
1344         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1345
1346         level = G4X_WM_LEVEL_HPLL;
1347
1348         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1349                 goto out;
1350
1351         raw = &crtc_state->wm.g4x.raw[level];
1352         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1353         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1354         wm_state->hpll.fbc = raw->fbc;
1355
1356         wm_state->hpll_en = wm_state->cxsr;
1357
1358         level++;
1359
1360  out:
1361         if (level == G4X_WM_LEVEL_NORMAL)
1362                 return -EINVAL;
1363
1364         /* invalidate the higher levels */
1365         g4x_invalidate_wms(crtc, wm_state, level);
1366
1367         /*
1368          * Determine if the FBC watermark(s) can be used. IF
1369          * this isn't the case we prefer to disable the FBC
1370          ( watermark(s) rather than disable the SR/HPLL
1371          * level(s) entirely.
1372          */
1373         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1374
1375         if (level >= G4X_WM_LEVEL_SR &&
1376             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1377                 wm_state->fbc_en = false;
1378         else if (level >= G4X_WM_LEVEL_HPLL &&
1379                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380                 wm_state->fbc_en = false;
1381
1382         return 0;
1383 }
1384
1385 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1386                                        struct intel_crtc *crtc,
1387                                        struct intel_crtc_state *crtc_state)
1388 {
1389         struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1390         const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1391         const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1392         enum plane_id plane_id;
1393
1394         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1395                 !crtc_state->disable_cxsr;
1396         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1397                 !crtc_state->disable_cxsr;
1398         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1399
1400         for_each_plane_id_on_crtc(crtc, plane_id) {
1401                 intermediate->wm.plane[plane_id] =
1402                         max(optimal->wm.plane[plane_id],
1403                             active->wm.plane[plane_id]);
1404
1405                 WARN_ON(intermediate->wm.plane[plane_id] >
1406                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1407         }
1408
1409         intermediate->sr.plane = max(optimal->sr.plane,
1410                                      active->sr.plane);
1411         intermediate->sr.cursor = max(optimal->sr.cursor,
1412                                       active->sr.cursor);
1413         intermediate->sr.fbc = max(optimal->sr.fbc,
1414                                    active->sr.fbc);
1415
1416         intermediate->hpll.plane = max(optimal->hpll.plane,
1417                                        active->hpll.plane);
1418         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1419                                         active->hpll.cursor);
1420         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1421                                      active->hpll.fbc);
1422
1423         WARN_ON((intermediate->sr.plane >
1424                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1425                  intermediate->sr.cursor >
1426                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1427                 intermediate->cxsr);
1428         WARN_ON((intermediate->sr.plane >
1429                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1430                  intermediate->sr.cursor >
1431                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1432                 intermediate->hpll_en);
1433
1434         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1435                 intermediate->fbc_en && intermediate->cxsr);
1436         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1437                 intermediate->fbc_en && intermediate->hpll_en);
1438
1439         /*
1440          * If our intermediate WM are identical to the final WM, then we can
1441          * omit the post-vblank programming; only update if it's different.
1442          */
1443         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1444                 crtc_state->wm.need_postvbl_update = true;
1445
1446         return 0;
1447 }
1448
1449 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1450                          struct g4x_wm_values *wm)
1451 {
1452         struct intel_crtc *crtc;
1453         int num_active_crtcs = 0;
1454
1455         wm->cxsr = true;
1456         wm->hpll_en = true;
1457         wm->fbc_en = true;
1458
1459         for_each_intel_crtc(&dev_priv->drm, crtc) {
1460                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1461
1462                 if (!crtc->active)
1463                         continue;
1464
1465                 if (!wm_state->cxsr)
1466                         wm->cxsr = false;
1467                 if (!wm_state->hpll_en)
1468                         wm->hpll_en = false;
1469                 if (!wm_state->fbc_en)
1470                         wm->fbc_en = false;
1471
1472                 num_active_crtcs++;
1473         }
1474
1475         if (num_active_crtcs != 1) {
1476                 wm->cxsr = false;
1477                 wm->hpll_en = false;
1478                 wm->fbc_en = false;
1479         }
1480
1481         for_each_intel_crtc(&dev_priv->drm, crtc) {
1482                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1483                 enum pipe pipe = crtc->pipe;
1484
1485                 wm->pipe[pipe] = wm_state->wm;
1486                 if (crtc->active && wm->cxsr)
1487                         wm->sr = wm_state->sr;
1488                 if (crtc->active && wm->hpll_en)
1489                         wm->hpll = wm_state->hpll;
1490         }
1491 }
1492
1493 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1494 {
1495         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1496         struct g4x_wm_values new_wm = {};
1497
1498         g4x_merge_wm(dev_priv, &new_wm);
1499
1500         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1501                 return;
1502
1503         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1504                 _intel_set_memory_cxsr(dev_priv, false);
1505
1506         g4x_write_wm_values(dev_priv, &new_wm);
1507
1508         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1509                 _intel_set_memory_cxsr(dev_priv, true);
1510
1511         *old_wm = new_wm;
1512 }
1513
1514 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1515                                    struct intel_crtc_state *crtc_state)
1516 {
1517         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1518         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1519
1520         mutex_lock(&dev_priv->wm.wm_mutex);
1521         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1522         g4x_program_watermarks(dev_priv);
1523         mutex_unlock(&dev_priv->wm.wm_mutex);
1524 }
1525
1526 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1527                                     struct intel_crtc_state *crtc_state)
1528 {
1529         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1531
1532         if (!crtc_state->wm.need_postvbl_update)
1533                 return;
1534
1535         mutex_lock(&dev_priv->wm.wm_mutex);
1536         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1537         g4x_program_watermarks(dev_priv);
1538         mutex_unlock(&dev_priv->wm.wm_mutex);
1539 }
1540
1541 /* latency must be in 0.1us units. */
1542 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1543                                    unsigned int htotal,
1544                                    unsigned int width,
1545                                    unsigned int cpp,
1546                                    unsigned int latency)
1547 {
1548         unsigned int ret;
1549
1550         ret = intel_wm_method2(pixel_rate, htotal,
1551                                width, cpp, latency);
1552         ret = DIV_ROUND_UP(ret, 64);
1553
1554         return ret;
1555 }
1556
1557 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1558 {
1559         /* all latencies in usec */
1560         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1561
1562         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1563
1564         if (IS_CHERRYVIEW(dev_priv)) {
1565                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1566                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1567
1568                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1569         }
1570 }
1571
1572 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1573                                      const struct intel_plane_state *plane_state,
1574                                      int level)
1575 {
1576         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1577         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1578         const struct drm_display_mode *adjusted_mode =
1579                 &crtc_state->base.adjusted_mode;
1580         int clock, htotal, cpp, width, wm;
1581
1582         if (dev_priv->wm.pri_latency[level] == 0)
1583                 return USHRT_MAX;
1584
1585         if (!intel_wm_plane_visible(crtc_state, plane_state))
1586                 return 0;
1587
1588         cpp = plane_state->base.fb->format->cpp[0];
1589         clock = adjusted_mode->crtc_clock;
1590         htotal = adjusted_mode->crtc_htotal;
1591         width = crtc_state->pipe_src_w;
1592
1593         if (plane->id == PLANE_CURSOR) {
1594                 /*
1595                  * FIXME the formula gives values that are
1596                  * too big for the cursor FIFO, and hence we
1597                  * would never be able to use cursors. For
1598                  * now just hardcode the watermark.
1599                  */
1600                 wm = 63;
1601         } else {
1602                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1603                                     dev_priv->wm.pri_latency[level] * 10);
1604         }
1605
1606         return min_t(int, wm, USHRT_MAX);
1607 }
1608
1609 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1610 {
1611         return (active_planes & (BIT(PLANE_SPRITE0) |
1612                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1613 }
1614
1615 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1616 {
1617         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1618         const struct g4x_pipe_wm *raw =
1619                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1620         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1621         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1622         int num_active_planes = hweight32(active_planes);
1623         const int fifo_size = 511;
1624         int fifo_extra, fifo_left = fifo_size;
1625         int sprite0_fifo_extra = 0;
1626         unsigned int total_rate;
1627         enum plane_id plane_id;
1628
1629         /*
1630          * When enabling sprite0 after sprite1 has already been enabled
1631          * we tend to get an underrun unless sprite0 already has some
1632          * FIFO space allcoated. Hence we always allocate at least one
1633          * cacheline for sprite0 whenever sprite1 is enabled.
1634          *
1635          * All other plane enable sequences appear immune to this problem.
1636          */
1637         if (vlv_need_sprite0_fifo_workaround(active_planes))
1638                 sprite0_fifo_extra = 1;
1639
1640         total_rate = raw->plane[PLANE_PRIMARY] +
1641                 raw->plane[PLANE_SPRITE0] +
1642                 raw->plane[PLANE_SPRITE1] +
1643                 sprite0_fifo_extra;
1644
1645         if (total_rate > fifo_size)
1646                 return -EINVAL;
1647
1648         if (total_rate == 0)
1649                 total_rate = 1;
1650
1651         for_each_plane_id_on_crtc(crtc, plane_id) {
1652                 unsigned int rate;
1653
1654                 if ((active_planes & BIT(plane_id)) == 0) {
1655                         fifo_state->plane[plane_id] = 0;
1656                         continue;
1657                 }
1658
1659                 rate = raw->plane[plane_id];
1660                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1661                 fifo_left -= fifo_state->plane[plane_id];
1662         }
1663
1664         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1665         fifo_left -= sprite0_fifo_extra;
1666
1667         fifo_state->plane[PLANE_CURSOR] = 63;
1668
1669         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1670
1671         /* spread the remainder evenly */
1672         for_each_plane_id_on_crtc(crtc, plane_id) {
1673                 int plane_extra;
1674
1675                 if (fifo_left == 0)
1676                         break;
1677
1678                 if ((active_planes & BIT(plane_id)) == 0)
1679                         continue;
1680
1681                 plane_extra = min(fifo_extra, fifo_left);
1682                 fifo_state->plane[plane_id] += plane_extra;
1683                 fifo_left -= plane_extra;
1684         }
1685
1686         WARN_ON(active_planes != 0 && fifo_left != 0);
1687
1688         /* give it all to the first plane if none are active */
1689         if (active_planes == 0) {
1690                 WARN_ON(fifo_left != fifo_size);
1691                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1692         }
1693
1694         return 0;
1695 }
1696
1697 /* mark all levels starting from 'level' as invalid */
1698 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1699                                struct vlv_wm_state *wm_state, int level)
1700 {
1701         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1702
1703         for (; level < intel_wm_num_levels(dev_priv); level++) {
1704                 enum plane_id plane_id;
1705
1706                 for_each_plane_id_on_crtc(crtc, plane_id)
1707                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1708
1709                 wm_state->sr[level].cursor = USHRT_MAX;
1710                 wm_state->sr[level].plane = USHRT_MAX;
1711         }
1712 }
1713
1714 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1715 {
1716         if (wm > fifo_size)
1717                 return USHRT_MAX;
1718         else
1719                 return fifo_size - wm;
1720 }
1721
1722 /*
1723  * Starting from 'level' set all higher
1724  * levels to 'value' in the "raw" watermarks.
1725  */
1726 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1727                                  int level, enum plane_id plane_id, u16 value)
1728 {
1729         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1730         int num_levels = intel_wm_num_levels(dev_priv);
1731         bool dirty = false;
1732
1733         for (; level < num_levels; level++) {
1734                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1735
1736                 dirty |= raw->plane[plane_id] != value;
1737                 raw->plane[plane_id] = value;
1738         }
1739
1740         return dirty;
1741 }
1742
1743 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1744                                      const struct intel_plane_state *plane_state)
1745 {
1746         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1747         enum plane_id plane_id = plane->id;
1748         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1749         int level;
1750         bool dirty = false;
1751
1752         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1753                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1754                 goto out;
1755         }
1756
1757         for (level = 0; level < num_levels; level++) {
1758                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1759                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1760                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1761
1762                 if (wm > max_wm)
1763                         break;
1764
1765                 dirty |= raw->plane[plane_id] != wm;
1766                 raw->plane[plane_id] = wm;
1767         }
1768
1769         /* mark all higher levels as invalid */
1770         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1771
1772 out:
1773         if (dirty)
1774                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1775                               plane->base.name,
1776                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1777                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1778                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1779
1780         return dirty;
1781 }
1782
1783 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1784                                       enum plane_id plane_id, int level)
1785 {
1786         const struct g4x_pipe_wm *raw =
1787                 &crtc_state->wm.vlv.raw[level];
1788         const struct vlv_fifo_state *fifo_state =
1789                 &crtc_state->wm.vlv.fifo_state;
1790
1791         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1792 }
1793
1794 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1795 {
1796         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1797                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1798                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1799                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1800 }
1801
1802 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1803 {
1804         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1805         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1806         struct intel_atomic_state *state =
1807                 to_intel_atomic_state(crtc_state->base.state);
1808         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1809         const struct vlv_fifo_state *fifo_state =
1810                 &crtc_state->wm.vlv.fifo_state;
1811         int num_active_planes = hweight32(crtc_state->active_planes &
1812                                           ~BIT(PLANE_CURSOR));
1813         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1814         struct intel_plane_state *plane_state;
1815         struct intel_plane *plane;
1816         enum plane_id plane_id;
1817         int level, ret, i;
1818         unsigned int dirty = 0;
1819
1820         for_each_intel_plane_in_state(state, plane, plane_state, i) {
1821                 const struct intel_plane_state *old_plane_state =
1822                         to_intel_plane_state(plane->base.state);
1823
1824                 if (plane_state->base.crtc != &crtc->base &&
1825                     old_plane_state->base.crtc != &crtc->base)
1826                         continue;
1827
1828                 if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1829                         dirty |= BIT(plane->id);
1830         }
1831
1832         /*
1833          * DSPARB registers may have been reset due to the
1834          * power well being turned off. Make sure we restore
1835          * them to a consistent state even if no primary/sprite
1836          * planes are initially active.
1837          */
1838         if (needs_modeset)
1839                 crtc_state->fifo_changed = true;
1840
1841         if (!dirty)
1842                 return 0;
1843
1844         /* cursor changes don't warrant a FIFO recompute */
1845         if (dirty & ~BIT(PLANE_CURSOR)) {
1846                 const struct intel_crtc_state *old_crtc_state =
1847                         to_intel_crtc_state(crtc->base.state);
1848                 const struct vlv_fifo_state *old_fifo_state =
1849                         &old_crtc_state->wm.vlv.fifo_state;
1850
1851                 ret = vlv_compute_fifo(crtc_state);
1852                 if (ret)
1853                         return ret;
1854
1855                 if (needs_modeset ||
1856                     memcmp(old_fifo_state, fifo_state,
1857                            sizeof(*fifo_state)) != 0)
1858                         crtc_state->fifo_changed = true;
1859         }
1860
1861         /* initially allow all levels */
1862         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1863         /*
1864          * Note that enabling cxsr with no primary/sprite planes
1865          * enabled can wedge the pipe. Hence we only allow cxsr
1866          * with exactly one enabled primary/sprite plane.
1867          */
1868         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1869
1870         for (level = 0; level < wm_state->num_levels; level++) {
1871                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1872                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1873
1874                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1875                         break;
1876
1877                 for_each_plane_id_on_crtc(crtc, plane_id) {
1878                         wm_state->wm[level].plane[plane_id] =
1879                                 vlv_invert_wm_value(raw->plane[plane_id],
1880                                                     fifo_state->plane[plane_id]);
1881                 }
1882
1883                 wm_state->sr[level].plane =
1884                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1885                                                  raw->plane[PLANE_SPRITE0],
1886                                                  raw->plane[PLANE_SPRITE1]),
1887                                             sr_fifo_size);
1888
1889                 wm_state->sr[level].cursor =
1890                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1891                                             63);
1892         }
1893
1894         if (level == 0)
1895                 return -EINVAL;
1896
1897         /* limit to only levels we can actually handle */
1898         wm_state->num_levels = level;
1899
1900         /* invalidate the higher levels */
1901         vlv_invalidate_wms(crtc, wm_state, level);
1902
1903         return 0;
1904 }
1905
1906 #define VLV_FIFO(plane, value) \
1907         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1908
1909 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1910                                    struct intel_crtc_state *crtc_state)
1911 {
1912         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1913         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1914         const struct vlv_fifo_state *fifo_state =
1915                 &crtc_state->wm.vlv.fifo_state;
1916         int sprite0_start, sprite1_start, fifo_size;
1917
1918         if (!crtc_state->fifo_changed)
1919                 return;
1920
1921         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1922         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1923         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1924
1925         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1926         WARN_ON(fifo_size != 511);
1927
1928         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1929
1930         /*
1931          * uncore.lock serves a double purpose here. It allows us to
1932          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1933          * it protects the DSPARB registers from getting clobbered by
1934          * parallel updates from multiple pipes.
1935          *
1936          * intel_pipe_update_start() has already disabled interrupts
1937          * for us, so a plain spin_lock() is sufficient here.
1938          */
1939         spin_lock(&dev_priv->uncore.lock);
1940
1941         switch (crtc->pipe) {
1942                 uint32_t dsparb, dsparb2, dsparb3;
1943         case PIPE_A:
1944                 dsparb = I915_READ_FW(DSPARB);
1945                 dsparb2 = I915_READ_FW(DSPARB2);
1946
1947                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1948                             VLV_FIFO(SPRITEB, 0xff));
1949                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1950                            VLV_FIFO(SPRITEB, sprite1_start));
1951
1952                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1953                              VLV_FIFO(SPRITEB_HI, 0x1));
1954                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1955                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1956
1957                 I915_WRITE_FW(DSPARB, dsparb);
1958                 I915_WRITE_FW(DSPARB2, dsparb2);
1959                 break;
1960         case PIPE_B:
1961                 dsparb = I915_READ_FW(DSPARB);
1962                 dsparb2 = I915_READ_FW(DSPARB2);
1963
1964                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1965                             VLV_FIFO(SPRITED, 0xff));
1966                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1967                            VLV_FIFO(SPRITED, sprite1_start));
1968
1969                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1970                              VLV_FIFO(SPRITED_HI, 0xff));
1971                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1972                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1973
1974                 I915_WRITE_FW(DSPARB, dsparb);
1975                 I915_WRITE_FW(DSPARB2, dsparb2);
1976                 break;
1977         case PIPE_C:
1978                 dsparb3 = I915_READ_FW(DSPARB3);
1979                 dsparb2 = I915_READ_FW(DSPARB2);
1980
1981                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1982                              VLV_FIFO(SPRITEF, 0xff));
1983                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1984                             VLV_FIFO(SPRITEF, sprite1_start));
1985
1986                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1987                              VLV_FIFO(SPRITEF_HI, 0xff));
1988                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1989                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1990
1991                 I915_WRITE_FW(DSPARB3, dsparb3);
1992                 I915_WRITE_FW(DSPARB2, dsparb2);
1993                 break;
1994         default:
1995                 break;
1996         }
1997
1998         POSTING_READ_FW(DSPARB);
1999
2000         spin_unlock(&dev_priv->uncore.lock);
2001 }
2002
2003 #undef VLV_FIFO
2004
2005 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2006                                        struct intel_crtc *crtc,
2007                                        struct intel_crtc_state *crtc_state)
2008 {
2009         struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2010         const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2011         const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2012         int level;
2013
2014         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2015         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2016                 !crtc_state->disable_cxsr;
2017
2018         for (level = 0; level < intermediate->num_levels; level++) {
2019                 enum plane_id plane_id;
2020
2021                 for_each_plane_id_on_crtc(crtc, plane_id) {
2022                         intermediate->wm[level].plane[plane_id] =
2023                                 min(optimal->wm[level].plane[plane_id],
2024                                     active->wm[level].plane[plane_id]);
2025                 }
2026
2027                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2028                                                     active->sr[level].plane);
2029                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2030                                                      active->sr[level].cursor);
2031         }
2032
2033         vlv_invalidate_wms(crtc, intermediate, level);
2034
2035         /*
2036          * If our intermediate WM are identical to the final WM, then we can
2037          * omit the post-vblank programming; only update if it's different.
2038          */
2039         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2040                 crtc_state->wm.need_postvbl_update = true;
2041
2042         return 0;
2043 }
2044
2045 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2046                          struct vlv_wm_values *wm)
2047 {
2048         struct intel_crtc *crtc;
2049         int num_active_crtcs = 0;
2050
2051         wm->level = dev_priv->wm.max_level;
2052         wm->cxsr = true;
2053
2054         for_each_intel_crtc(&dev_priv->drm, crtc) {
2055                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2056
2057                 if (!crtc->active)
2058                         continue;
2059
2060                 if (!wm_state->cxsr)
2061                         wm->cxsr = false;
2062
2063                 num_active_crtcs++;
2064                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2065         }
2066
2067         if (num_active_crtcs != 1)
2068                 wm->cxsr = false;
2069
2070         if (num_active_crtcs > 1)
2071                 wm->level = VLV_WM_LEVEL_PM2;
2072
2073         for_each_intel_crtc(&dev_priv->drm, crtc) {
2074                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075                 enum pipe pipe = crtc->pipe;
2076
2077                 wm->pipe[pipe] = wm_state->wm[wm->level];
2078                 if (crtc->active && wm->cxsr)
2079                         wm->sr = wm_state->sr[wm->level];
2080
2081                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2082                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2083                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2084                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2085         }
2086 }
2087
2088 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2089 {
2090         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2091         struct vlv_wm_values new_wm = {};
2092
2093         vlv_merge_wm(dev_priv, &new_wm);
2094
2095         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2096                 return;
2097
2098         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2099                 chv_set_memory_dvfs(dev_priv, false);
2100
2101         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2102                 chv_set_memory_pm5(dev_priv, false);
2103
2104         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2105                 _intel_set_memory_cxsr(dev_priv, false);
2106
2107         vlv_write_wm_values(dev_priv, &new_wm);
2108
2109         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2110                 _intel_set_memory_cxsr(dev_priv, true);
2111
2112         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2113                 chv_set_memory_pm5(dev_priv, true);
2114
2115         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2116                 chv_set_memory_dvfs(dev_priv, true);
2117
2118         *old_wm = new_wm;
2119 }
2120
2121 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2122                                    struct intel_crtc_state *crtc_state)
2123 {
2124         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2125         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2126
2127         mutex_lock(&dev_priv->wm.wm_mutex);
2128         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2129         vlv_program_watermarks(dev_priv);
2130         mutex_unlock(&dev_priv->wm.wm_mutex);
2131 }
2132
2133 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2134                                     struct intel_crtc_state *crtc_state)
2135 {
2136         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2138
2139         if (!crtc_state->wm.need_postvbl_update)
2140                 return;
2141
2142         mutex_lock(&dev_priv->wm.wm_mutex);
2143         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2144         vlv_program_watermarks(dev_priv);
2145         mutex_unlock(&dev_priv->wm.wm_mutex);
2146 }
2147
2148 static void i965_update_wm(struct intel_crtc *unused_crtc)
2149 {
2150         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2151         struct intel_crtc *crtc;
2152         int srwm = 1;
2153         int cursor_sr = 16;
2154         bool cxsr_enabled;
2155
2156         /* Calc sr entries for one plane configs */
2157         crtc = single_enabled_crtc(dev_priv);
2158         if (crtc) {
2159                 /* self-refresh has much higher latency */
2160                 static const int sr_latency_ns = 12000;
2161                 const struct drm_display_mode *adjusted_mode =
2162                         &crtc->config->base.adjusted_mode;
2163                 const struct drm_framebuffer *fb =
2164                         crtc->base.primary->state->fb;
2165                 int clock = adjusted_mode->crtc_clock;
2166                 int htotal = adjusted_mode->crtc_htotal;
2167                 int hdisplay = crtc->config->pipe_src_w;
2168                 int cpp = fb->format->cpp[0];
2169                 int entries;
2170
2171                 entries = intel_wm_method2(clock, htotal,
2172                                            hdisplay, cpp, sr_latency_ns / 100);
2173                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2174                 srwm = I965_FIFO_SIZE - entries;
2175                 if (srwm < 0)
2176                         srwm = 1;
2177                 srwm &= 0x1ff;
2178                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2179                               entries, srwm);
2180
2181                 entries = intel_wm_method2(clock, htotal,
2182                                            crtc->base.cursor->state->crtc_w, 4,
2183                                            sr_latency_ns / 100);
2184                 entries = DIV_ROUND_UP(entries,
2185                                        i965_cursor_wm_info.cacheline_size) +
2186                         i965_cursor_wm_info.guard_size;
2187
2188                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2189                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2190                         cursor_sr = i965_cursor_wm_info.max_wm;
2191
2192                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2193                               "cursor %d\n", srwm, cursor_sr);
2194
2195                 cxsr_enabled = true;
2196         } else {
2197                 cxsr_enabled = false;
2198                 /* Turn off self refresh if both pipes are enabled */
2199                 intel_set_memory_cxsr(dev_priv, false);
2200         }
2201
2202         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2203                       srwm);
2204
2205         /* 965 has limitations... */
2206         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2207                    FW_WM(8, CURSORB) |
2208                    FW_WM(8, PLANEB) |
2209                    FW_WM(8, PLANEA));
2210         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2211                    FW_WM(8, PLANEC_OLD));
2212         /* update cursor SR watermark */
2213         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2214
2215         if (cxsr_enabled)
2216                 intel_set_memory_cxsr(dev_priv, true);
2217 }
2218
2219 #undef FW_WM
2220
2221 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2222 {
2223         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224         const struct intel_watermark_params *wm_info;
2225         uint32_t fwater_lo;
2226         uint32_t fwater_hi;
2227         int cwm, srwm = 1;
2228         int fifo_size;
2229         int planea_wm, planeb_wm;
2230         struct intel_crtc *crtc, *enabled = NULL;
2231
2232         if (IS_I945GM(dev_priv))
2233                 wm_info = &i945_wm_info;
2234         else if (!IS_GEN2(dev_priv))
2235                 wm_info = &i915_wm_info;
2236         else
2237                 wm_info = &i830_a_wm_info;
2238
2239         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2240         crtc = intel_get_crtc_for_plane(dev_priv, 0);
2241         if (intel_crtc_active(crtc)) {
2242                 const struct drm_display_mode *adjusted_mode =
2243                         &crtc->config->base.adjusted_mode;
2244                 const struct drm_framebuffer *fb =
2245                         crtc->base.primary->state->fb;
2246                 int cpp;
2247
2248                 if (IS_GEN2(dev_priv))
2249                         cpp = 4;
2250                 else
2251                         cpp = fb->format->cpp[0];
2252
2253                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2254                                                wm_info, fifo_size, cpp,
2255                                                pessimal_latency_ns);
2256                 enabled = crtc;
2257         } else {
2258                 planea_wm = fifo_size - wm_info->guard_size;
2259                 if (planea_wm > (long)wm_info->max_wm)
2260                         planea_wm = wm_info->max_wm;
2261         }
2262
2263         if (IS_GEN2(dev_priv))
2264                 wm_info = &i830_bc_wm_info;
2265
2266         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2267         crtc = intel_get_crtc_for_plane(dev_priv, 1);
2268         if (intel_crtc_active(crtc)) {
2269                 const struct drm_display_mode *adjusted_mode =
2270                         &crtc->config->base.adjusted_mode;
2271                 const struct drm_framebuffer *fb =
2272                         crtc->base.primary->state->fb;
2273                 int cpp;
2274
2275                 if (IS_GEN2(dev_priv))
2276                         cpp = 4;
2277                 else
2278                         cpp = fb->format->cpp[0];
2279
2280                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2281                                                wm_info, fifo_size, cpp,
2282                                                pessimal_latency_ns);
2283                 if (enabled == NULL)
2284                         enabled = crtc;
2285                 else
2286                         enabled = NULL;
2287         } else {
2288                 planeb_wm = fifo_size - wm_info->guard_size;
2289                 if (planeb_wm > (long)wm_info->max_wm)
2290                         planeb_wm = wm_info->max_wm;
2291         }
2292
2293         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2294
2295         if (IS_I915GM(dev_priv) && enabled) {
2296                 struct drm_i915_gem_object *obj;
2297
2298                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2299
2300                 /* self-refresh seems busted with untiled */
2301                 if (!i915_gem_object_is_tiled(obj))
2302                         enabled = NULL;
2303         }
2304
2305         /*
2306          * Overlay gets an aggressive default since video jitter is bad.
2307          */
2308         cwm = 2;
2309
2310         /* Play safe and disable self-refresh before adjusting watermarks. */
2311         intel_set_memory_cxsr(dev_priv, false);
2312
2313         /* Calc sr entries for one plane configs */
2314         if (HAS_FW_BLC(dev_priv) && enabled) {
2315                 /* self-refresh has much higher latency */
2316                 static const int sr_latency_ns = 6000;
2317                 const struct drm_display_mode *adjusted_mode =
2318                         &enabled->config->base.adjusted_mode;
2319                 const struct drm_framebuffer *fb =
2320                         enabled->base.primary->state->fb;
2321                 int clock = adjusted_mode->crtc_clock;
2322                 int htotal = adjusted_mode->crtc_htotal;
2323                 int hdisplay = enabled->config->pipe_src_w;
2324                 int cpp;
2325                 int entries;
2326
2327                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2328                         cpp = 4;
2329                 else
2330                         cpp = fb->format->cpp[0];
2331
2332                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2333                                            sr_latency_ns / 100);
2334                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2335                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2336                 srwm = wm_info->fifo_size - entries;
2337                 if (srwm < 0)
2338                         srwm = 1;
2339
2340                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2341                         I915_WRITE(FW_BLC_SELF,
2342                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2343                 else
2344                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2345         }
2346
2347         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2348                       planea_wm, planeb_wm, cwm, srwm);
2349
2350         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2351         fwater_hi = (cwm & 0x1f);
2352
2353         /* Set request length to 8 cachelines per fetch */
2354         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2355         fwater_hi = fwater_hi | (1 << 8);
2356
2357         I915_WRITE(FW_BLC, fwater_lo);
2358         I915_WRITE(FW_BLC2, fwater_hi);
2359
2360         if (enabled)
2361                 intel_set_memory_cxsr(dev_priv, true);
2362 }
2363
2364 static void i845_update_wm(struct intel_crtc *unused_crtc)
2365 {
2366         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2367         struct intel_crtc *crtc;
2368         const struct drm_display_mode *adjusted_mode;
2369         uint32_t fwater_lo;
2370         int planea_wm;
2371
2372         crtc = single_enabled_crtc(dev_priv);
2373         if (crtc == NULL)
2374                 return;
2375
2376         adjusted_mode = &crtc->config->base.adjusted_mode;
2377         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2378                                        &i845_wm_info,
2379                                        dev_priv->display.get_fifo_size(dev_priv, 0),
2380                                        4, pessimal_latency_ns);
2381         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2382         fwater_lo |= (3<<8) | planea_wm;
2383
2384         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2385
2386         I915_WRITE(FW_BLC, fwater_lo);
2387 }
2388
2389 /* latency must be in 0.1us units. */
2390 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2391                                    unsigned int cpp,
2392                                    unsigned int latency)
2393 {
2394         unsigned int ret;
2395
2396         ret = intel_wm_method1(pixel_rate, cpp, latency);
2397         ret = DIV_ROUND_UP(ret, 64) + 2;
2398
2399         return ret;
2400 }
2401
2402 /* latency must be in 0.1us units. */
2403 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2404                                    unsigned int htotal,
2405                                    unsigned int width,
2406                                    unsigned int cpp,
2407                                    unsigned int latency)
2408 {
2409         unsigned int ret;
2410
2411         ret = intel_wm_method2(pixel_rate, htotal,
2412                                width, cpp, latency);
2413         ret = DIV_ROUND_UP(ret, 64) + 2;
2414
2415         return ret;
2416 }
2417
2418 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2419                            uint8_t cpp)
2420 {
2421         /*
2422          * Neither of these should be possible since this function shouldn't be
2423          * called if the CRTC is off or the plane is invisible.  But let's be
2424          * extra paranoid to avoid a potential divide-by-zero if we screw up
2425          * elsewhere in the driver.
2426          */
2427         if (WARN_ON(!cpp))
2428                 return 0;
2429         if (WARN_ON(!horiz_pixels))
2430                 return 0;
2431
2432         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2433 }
2434
2435 struct ilk_wm_maximums {
2436         uint16_t pri;
2437         uint16_t spr;
2438         uint16_t cur;
2439         uint16_t fbc;
2440 };
2441
2442 /*
2443  * For both WM_PIPE and WM_LP.
2444  * mem_value must be in 0.1us units.
2445  */
2446 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2447                                    const struct intel_plane_state *pstate,
2448                                    uint32_t mem_value,
2449                                    bool is_lp)
2450 {
2451         uint32_t method1, method2;
2452         int cpp;
2453
2454         if (!intel_wm_plane_visible(cstate, pstate))
2455                 return 0;
2456
2457         cpp = pstate->base.fb->format->cpp[0];
2458
2459         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2460
2461         if (!is_lp)
2462                 return method1;
2463
2464         method2 = ilk_wm_method2(cstate->pixel_rate,
2465                                  cstate->base.adjusted_mode.crtc_htotal,
2466                                  drm_rect_width(&pstate->base.dst),
2467                                  cpp, mem_value);
2468
2469         return min(method1, method2);
2470 }
2471
2472 /*
2473  * For both WM_PIPE and WM_LP.
2474  * mem_value must be in 0.1us units.
2475  */
2476 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2477                                    const struct intel_plane_state *pstate,
2478                                    uint32_t mem_value)
2479 {
2480         uint32_t method1, method2;
2481         int cpp;
2482
2483         if (!intel_wm_plane_visible(cstate, pstate))
2484                 return 0;
2485
2486         cpp = pstate->base.fb->format->cpp[0];
2487
2488         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2489         method2 = ilk_wm_method2(cstate->pixel_rate,
2490                                  cstate->base.adjusted_mode.crtc_htotal,
2491                                  drm_rect_width(&pstate->base.dst),
2492                                  cpp, mem_value);
2493         return min(method1, method2);
2494 }
2495
2496 /*
2497  * For both WM_PIPE and WM_LP.
2498  * mem_value must be in 0.1us units.
2499  */
2500 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2501                                    const struct intel_plane_state *pstate,
2502                                    uint32_t mem_value)
2503 {
2504         int cpp;
2505
2506         if (!intel_wm_plane_visible(cstate, pstate))
2507                 return 0;
2508
2509         cpp = pstate->base.fb->format->cpp[0];
2510
2511         return ilk_wm_method2(cstate->pixel_rate,
2512                               cstate->base.adjusted_mode.crtc_htotal,
2513                               pstate->base.crtc_w, cpp, mem_value);
2514 }
2515
2516 /* Only for WM_LP. */
2517 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2518                                    const struct intel_plane_state *pstate,
2519                                    uint32_t pri_val)
2520 {
2521         int cpp;
2522
2523         if (!intel_wm_plane_visible(cstate, pstate))
2524                 return 0;
2525
2526         cpp = pstate->base.fb->format->cpp[0];
2527
2528         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2529 }
2530
2531 static unsigned int
2532 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2533 {
2534         if (INTEL_GEN(dev_priv) >= 8)
2535                 return 3072;
2536         else if (INTEL_GEN(dev_priv) >= 7)
2537                 return 768;
2538         else
2539                 return 512;
2540 }
2541
2542 static unsigned int
2543 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2544                      int level, bool is_sprite)
2545 {
2546         if (INTEL_GEN(dev_priv) >= 8)
2547                 /* BDW primary/sprite plane watermarks */
2548                 return level == 0 ? 255 : 2047;
2549         else if (INTEL_GEN(dev_priv) >= 7)
2550                 /* IVB/HSW primary/sprite plane watermarks */
2551                 return level == 0 ? 127 : 1023;
2552         else if (!is_sprite)
2553                 /* ILK/SNB primary plane watermarks */
2554                 return level == 0 ? 127 : 511;
2555         else
2556                 /* ILK/SNB sprite plane watermarks */
2557                 return level == 0 ? 63 : 255;
2558 }
2559
2560 static unsigned int
2561 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2562 {
2563         if (INTEL_GEN(dev_priv) >= 7)
2564                 return level == 0 ? 63 : 255;
2565         else
2566                 return level == 0 ? 31 : 63;
2567 }
2568
2569 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2570 {
2571         if (INTEL_GEN(dev_priv) >= 8)
2572                 return 31;
2573         else
2574                 return 15;
2575 }
2576
2577 /* Calculate the maximum primary/sprite plane watermark */
2578 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2579                                      int level,
2580                                      const struct intel_wm_config *config,
2581                                      enum intel_ddb_partitioning ddb_partitioning,
2582                                      bool is_sprite)
2583 {
2584         struct drm_i915_private *dev_priv = to_i915(dev);
2585         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2586
2587         /* if sprites aren't enabled, sprites get nothing */
2588         if (is_sprite && !config->sprites_enabled)
2589                 return 0;
2590
2591         /* HSW allows LP1+ watermarks even with multiple pipes */
2592         if (level == 0 || config->num_pipes_active > 1) {
2593                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2594
2595                 /*
2596                  * For some reason the non self refresh
2597                  * FIFO size is only half of the self
2598                  * refresh FIFO size on ILK/SNB.
2599                  */
2600                 if (INTEL_GEN(dev_priv) <= 6)
2601                         fifo_size /= 2;
2602         }
2603
2604         if (config->sprites_enabled) {
2605                 /* level 0 is always calculated with 1:1 split */
2606                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2607                         if (is_sprite)
2608                                 fifo_size *= 5;
2609                         fifo_size /= 6;
2610                 } else {
2611                         fifo_size /= 2;
2612                 }
2613         }
2614
2615         /* clamp to max that the registers can hold */
2616         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2617 }
2618
2619 /* Calculate the maximum cursor plane watermark */
2620 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2621                                       int level,
2622                                       const struct intel_wm_config *config)
2623 {
2624         /* HSW LP1+ watermarks w/ multiple pipes */
2625         if (level > 0 && config->num_pipes_active > 1)
2626                 return 64;
2627
2628         /* otherwise just report max that registers can hold */
2629         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2630 }
2631
2632 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2633                                     int level,
2634                                     const struct intel_wm_config *config,
2635                                     enum intel_ddb_partitioning ddb_partitioning,
2636                                     struct ilk_wm_maximums *max)
2637 {
2638         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2639         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2640         max->cur = ilk_cursor_wm_max(dev, level, config);
2641         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2642 }
2643
2644 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2645                                         int level,
2646                                         struct ilk_wm_maximums *max)
2647 {
2648         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2649         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2650         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2651         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2652 }
2653
2654 static bool ilk_validate_wm_level(int level,
2655                                   const struct ilk_wm_maximums *max,
2656                                   struct intel_wm_level *result)
2657 {
2658         bool ret;
2659
2660         /* already determined to be invalid? */
2661         if (!result->enable)
2662                 return false;
2663
2664         result->enable = result->pri_val <= max->pri &&
2665                          result->spr_val <= max->spr &&
2666                          result->cur_val <= max->cur;
2667
2668         ret = result->enable;
2669
2670         /*
2671          * HACK until we can pre-compute everything,
2672          * and thus fail gracefully if LP0 watermarks
2673          * are exceeded...
2674          */
2675         if (level == 0 && !result->enable) {
2676                 if (result->pri_val > max->pri)
2677                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2678                                       level, result->pri_val, max->pri);
2679                 if (result->spr_val > max->spr)
2680                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2681                                       level, result->spr_val, max->spr);
2682                 if (result->cur_val > max->cur)
2683                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2684                                       level, result->cur_val, max->cur);
2685
2686                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2687                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2688                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2689                 result->enable = true;
2690         }
2691
2692         return ret;
2693 }
2694
2695 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2696                                  const struct intel_crtc *intel_crtc,
2697                                  int level,
2698                                  struct intel_crtc_state *cstate,
2699                                  struct intel_plane_state *pristate,
2700                                  struct intel_plane_state *sprstate,
2701                                  struct intel_plane_state *curstate,
2702                                  struct intel_wm_level *result)
2703 {
2704         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2705         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2706         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2707
2708         /* WM1+ latency values stored in 0.5us units */
2709         if (level > 0) {
2710                 pri_latency *= 5;
2711                 spr_latency *= 5;
2712                 cur_latency *= 5;
2713         }
2714
2715         if (pristate) {
2716                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2717                                                      pri_latency, level);
2718                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2719         }
2720
2721         if (sprstate)
2722                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2723
2724         if (curstate)
2725                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2726
2727         result->enable = true;
2728 }
2729
2730 static uint32_t
2731 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2732 {
2733         const struct intel_atomic_state *intel_state =
2734                 to_intel_atomic_state(cstate->base.state);
2735         const struct drm_display_mode *adjusted_mode =
2736                 &cstate->base.adjusted_mode;
2737         u32 linetime, ips_linetime;
2738
2739         if (!cstate->base.active)
2740                 return 0;
2741         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2742                 return 0;
2743         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2744                 return 0;
2745
2746         /* The WM are computed with base on how long it takes to fill a single
2747          * row at the given clock rate, multiplied by 8.
2748          * */
2749         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2750                                      adjusted_mode->crtc_clock);
2751         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2752                                          intel_state->cdclk.logical.cdclk);
2753
2754         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2755                PIPE_WM_LINETIME_TIME(linetime);
2756 }
2757
2758 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2759                                   uint16_t wm[8])
2760 {
2761         if (IS_GEN9(dev_priv)) {
2762                 uint32_t val;
2763                 int ret, i;
2764                 int level, max_level = ilk_wm_max_level(dev_priv);
2765
2766                 /* read the first set of memory latencies[0:3] */
2767                 val = 0; /* data0 to be programmed to 0 for first set */
2768                 mutex_lock(&dev_priv->rps.hw_lock);
2769                 ret = sandybridge_pcode_read(dev_priv,
2770                                              GEN9_PCODE_READ_MEM_LATENCY,
2771                                              &val);
2772                 mutex_unlock(&dev_priv->rps.hw_lock);
2773
2774                 if (ret) {
2775                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2776                         return;
2777                 }
2778
2779                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2780                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2781                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2782                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2783                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2784                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2785                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2786
2787                 /* read the second set of memory latencies[4:7] */
2788                 val = 1; /* data0 to be programmed to 1 for second set */
2789                 mutex_lock(&dev_priv->rps.hw_lock);
2790                 ret = sandybridge_pcode_read(dev_priv,
2791                                              GEN9_PCODE_READ_MEM_LATENCY,
2792                                              &val);
2793                 mutex_unlock(&dev_priv->rps.hw_lock);
2794                 if (ret) {
2795                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2796                         return;
2797                 }
2798
2799                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2800                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2801                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2802                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2803                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2804                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2805                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2806
2807                 /*
2808                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2809                  * need to be disabled. We make sure to sanitize the values out
2810                  * of the punit to satisfy this requirement.
2811                  */
2812                 for (level = 1; level <= max_level; level++) {
2813                         if (wm[level] == 0) {
2814                                 for (i = level + 1; i <= max_level; i++)
2815                                         wm[i] = 0;
2816                                 break;
2817                         }
2818                 }
2819
2820                 /*
2821                  * WaWmMemoryReadLatency:skl,glk
2822                  *
2823                  * punit doesn't take into account the read latency so we need
2824                  * to add 2us to the various latency levels we retrieve from the
2825                  * punit when level 0 response data us 0us.
2826                  */
2827                 if (wm[0] == 0) {
2828                         wm[0] += 2;
2829                         for (level = 1; level <= max_level; level++) {
2830                                 if (wm[level] == 0)
2831                                         break;
2832                                 wm[level] += 2;
2833                         }
2834                 }
2835
2836         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2837                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2838
2839                 wm[0] = (sskpd >> 56) & 0xFF;
2840                 if (wm[0] == 0)
2841                         wm[0] = sskpd & 0xF;
2842                 wm[1] = (sskpd >> 4) & 0xFF;
2843                 wm[2] = (sskpd >> 12) & 0xFF;
2844                 wm[3] = (sskpd >> 20) & 0x1FF;
2845                 wm[4] = (sskpd >> 32) & 0x1FF;
2846         } else if (INTEL_GEN(dev_priv) >= 6) {
2847                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2848
2849                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2850                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2851                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2852                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2853         } else if (INTEL_GEN(dev_priv) >= 5) {
2854                 uint32_t mltr = I915_READ(MLTR_ILK);
2855
2856                 /* ILK primary LP0 latency is 700 ns */
2857                 wm[0] = 7;
2858                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2859                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2860         }
2861 }
2862
2863 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2864                                        uint16_t wm[5])
2865 {
2866         /* ILK sprite LP0 latency is 1300 ns */
2867         if (IS_GEN5(dev_priv))
2868                 wm[0] = 13;
2869 }
2870
2871 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2872                                        uint16_t wm[5])
2873 {
2874         /* ILK cursor LP0 latency is 1300 ns */
2875         if (IS_GEN5(dev_priv))
2876                 wm[0] = 13;
2877
2878         /* WaDoubleCursorLP3Latency:ivb */
2879         if (IS_IVYBRIDGE(dev_priv))
2880                 wm[3] *= 2;
2881 }
2882
2883 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2884 {
2885         /* how many WM levels are we expecting */
2886         if (INTEL_GEN(dev_priv) >= 9)
2887                 return 7;
2888         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2889                 return 4;
2890         else if (INTEL_GEN(dev_priv) >= 6)
2891                 return 3;
2892         else
2893                 return 2;
2894 }
2895
2896 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2897                                    const char *name,
2898                                    const uint16_t wm[8])
2899 {
2900         int level, max_level = ilk_wm_max_level(dev_priv);
2901
2902         for (level = 0; level <= max_level; level++) {
2903                 unsigned int latency = wm[level];
2904
2905                 if (latency == 0) {
2906                         DRM_ERROR("%s WM%d latency not provided\n",
2907                                   name, level);
2908                         continue;
2909                 }
2910
2911                 /*
2912                  * - latencies are in us on gen9.
2913                  * - before then, WM1+ latency values are in 0.5us units
2914                  */
2915                 if (IS_GEN9(dev_priv))
2916                         latency *= 10;
2917                 else if (level > 0)
2918                         latency *= 5;
2919
2920                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2921                               name, level, wm[level],
2922                               latency / 10, latency % 10);
2923         }
2924 }
2925
2926 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2927                                     uint16_t wm[5], uint16_t min)
2928 {
2929         int level, max_level = ilk_wm_max_level(dev_priv);
2930
2931         if (wm[0] >= min)
2932                 return false;
2933
2934         wm[0] = max(wm[0], min);
2935         for (level = 1; level <= max_level; level++)
2936                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2937
2938         return true;
2939 }
2940
2941 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2942 {
2943         bool changed;
2944
2945         /*
2946          * The BIOS provided WM memory latency values are often
2947          * inadequate for high resolution displays. Adjust them.
2948          */
2949         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2950                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2951                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2952
2953         if (!changed)
2954                 return;
2955
2956         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2957         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2958         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2959         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2960 }
2961
2962 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2963 {
2964         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2965
2966         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2967                sizeof(dev_priv->wm.pri_latency));
2968         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2969                sizeof(dev_priv->wm.pri_latency));
2970
2971         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2972         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2973
2974         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2975         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2976         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2977
2978         if (IS_GEN6(dev_priv))
2979                 snb_wm_latency_quirk(dev_priv);
2980 }
2981
2982 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2983 {
2984         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2985         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2986 }
2987
2988 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2989                                  struct intel_pipe_wm *pipe_wm)
2990 {
2991         /* LP0 watermark maximums depend on this pipe alone */
2992         const struct intel_wm_config config = {
2993                 .num_pipes_active = 1,
2994                 .sprites_enabled = pipe_wm->sprites_enabled,
2995                 .sprites_scaled = pipe_wm->sprites_scaled,
2996         };
2997         struct ilk_wm_maximums max;
2998
2999         /* LP0 watermarks always use 1/2 DDB partitioning */
3000         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3001
3002         /* At least LP0 must be valid */
3003         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3004                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3005                 return false;
3006         }
3007
3008         return true;
3009 }
3010
3011 /* Compute new watermarks for the pipe */
3012 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3013 {
3014         struct drm_atomic_state *state = cstate->base.state;
3015         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3016         struct intel_pipe_wm *pipe_wm;
3017         struct drm_device *dev = state->dev;
3018         const struct drm_i915_private *dev_priv = to_i915(dev);
3019         struct intel_plane *intel_plane;
3020         struct intel_plane_state *pristate = NULL;
3021         struct intel_plane_state *sprstate = NULL;
3022         struct intel_plane_state *curstate = NULL;
3023         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3024         struct ilk_wm_maximums max;
3025
3026         pipe_wm = &cstate->wm.ilk.optimal;
3027
3028         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3029                 struct intel_plane_state *ps;
3030
3031                 ps = intel_atomic_get_existing_plane_state(state,
3032                                                            intel_plane);
3033                 if (!ps)
3034                         continue;
3035
3036                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3037                         pristate = ps;
3038                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3039                         sprstate = ps;
3040                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3041                         curstate = ps;
3042         }
3043
3044         pipe_wm->pipe_enabled = cstate->base.active;
3045         if (sprstate) {
3046                 pipe_wm->sprites_enabled = sprstate->base.visible;
3047                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3048                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3049                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3050         }
3051
3052         usable_level = max_level;
3053
3054         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3055         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3056                 usable_level = 1;
3057
3058         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3059         if (pipe_wm->sprites_scaled)
3060                 usable_level = 0;
3061
3062         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3063                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
3064
3065         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3066         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3067
3068         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3069                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3070
3071         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3072                 return -EINVAL;
3073
3074         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3075
3076         for (level = 1; level <= max_level; level++) {
3077                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3078
3079                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3080                                      pristate, sprstate, curstate, wm);
3081
3082                 /*
3083                  * Disable any watermark level that exceeds the
3084                  * register maximums since such watermarks are
3085                  * always invalid.
3086                  */
3087                 if (level > usable_level)
3088                         continue;
3089
3090                 if (ilk_validate_wm_level(level, &max, wm))
3091                         pipe_wm->wm[level] = *wm;
3092                 else
3093                         usable_level = level;
3094         }
3095
3096         return 0;
3097 }
3098
3099 /*
3100  * Build a set of 'intermediate' watermark values that satisfy both the old
3101  * state and the new state.  These can be programmed to the hardware
3102  * immediately.
3103  */
3104 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3105                                        struct intel_crtc *intel_crtc,
3106                                        struct intel_crtc_state *newstate)
3107 {
3108         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3109         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3110         int level, max_level = ilk_wm_max_level(to_i915(dev));
3111
3112         /*
3113          * Start with the final, target watermarks, then combine with the
3114          * currently active watermarks to get values that are safe both before
3115          * and after the vblank.
3116          */
3117         *a = newstate->wm.ilk.optimal;
3118         a->pipe_enabled |= b->pipe_enabled;
3119         a->sprites_enabled |= b->sprites_enabled;
3120         a->sprites_scaled |= b->sprites_scaled;
3121
3122         for (level = 0; level <= max_level; level++) {
3123                 struct intel_wm_level *a_wm = &a->wm[level];
3124                 const struct intel_wm_level *b_wm = &b->wm[level];
3125
3126                 a_wm->enable &= b_wm->enable;
3127                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3128                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3129                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3130                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3131         }
3132
3133         /*
3134          * We need to make sure that these merged watermark values are
3135          * actually a valid configuration themselves.  If they're not,
3136          * there's no safe way to transition from the old state to
3137          * the new state, so we need to fail the atomic transaction.
3138          */
3139         if (!ilk_validate_pipe_wm(dev, a))
3140                 return -EINVAL;
3141
3142         /*
3143          * If our intermediate WM are identical to the final WM, then we can
3144          * omit the post-vblank programming; only update if it's different.
3145          */
3146         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3147                 newstate->wm.need_postvbl_update = true;
3148
3149         return 0;
3150 }
3151
3152 /*
3153  * Merge the watermarks from all active pipes for a specific level.
3154  */
3155 static void ilk_merge_wm_level(struct drm_device *dev,
3156                                int level,
3157                                struct intel_wm_level *ret_wm)
3158 {
3159         const struct intel_crtc *intel_crtc;
3160
3161         ret_wm->enable = true;
3162
3163         for_each_intel_crtc(dev, intel_crtc) {
3164                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3165                 const struct intel_wm_level *wm = &active->wm[level];
3166
3167                 if (!active->pipe_enabled)
3168                         continue;
3169
3170                 /*
3171                  * The watermark values may have been used in the past,
3172                  * so we must maintain them in the registers for some
3173                  * time even if the level is now disabled.
3174                  */
3175                 if (!wm->enable)
3176                         ret_wm->enable = false;
3177
3178                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3179                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3180                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3181                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3182         }
3183 }
3184
3185 /*
3186  * Merge all low power watermarks for all active pipes.
3187  */
3188 static void ilk_wm_merge(struct drm_device *dev,
3189                          const struct intel_wm_config *config,
3190                          const struct ilk_wm_maximums *max,
3191                          struct intel_pipe_wm *merged)
3192 {
3193         struct drm_i915_private *dev_priv = to_i915(dev);
3194         int level, max_level = ilk_wm_max_level(dev_priv);
3195         int last_enabled_level = max_level;
3196
3197         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3198         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3199             config->num_pipes_active > 1)
3200                 last_enabled_level = 0;
3201
3202         /* ILK: FBC WM must be disabled always */
3203         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3204
3205         /* merge each WM1+ level */
3206         for (level = 1; level <= max_level; level++) {
3207                 struct intel_wm_level *wm = &merged->wm[level];
3208
3209                 ilk_merge_wm_level(dev, level, wm);
3210
3211                 if (level > last_enabled_level)
3212                         wm->enable = false;
3213                 else if (!ilk_validate_wm_level(level, max, wm))
3214                         /* make sure all following levels get disabled */
3215                         last_enabled_level = level - 1;
3216
3217                 /*
3218                  * The spec says it is preferred to disable
3219                  * FBC WMs instead of disabling a WM level.
3220                  */
3221                 if (wm->fbc_val > max->fbc) {
3222                         if (wm->enable)
3223                                 merged->fbc_wm_enabled = false;
3224                         wm->fbc_val = 0;
3225                 }
3226         }
3227
3228         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3229         /*
3230          * FIXME this is racy. FBC might get enabled later.
3231          * What we should check here is whether FBC can be
3232          * enabled sometime later.
3233          */
3234         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3235             intel_fbc_is_active(dev_priv)) {
3236                 for (level = 2; level <= max_level; level++) {
3237                         struct intel_wm_level *wm = &merged->wm[level];
3238
3239                         wm->enable = false;
3240                 }
3241         }
3242 }
3243
3244 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3245 {
3246         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3247         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3248 }
3249
3250 /* The value we need to program into the WM_LPx latency field */
3251 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3252 {
3253         struct drm_i915_private *dev_priv = to_i915(dev);
3254
3255         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3256                 return 2 * level;
3257         else
3258                 return dev_priv->wm.pri_latency[level];
3259 }
3260
3261 static void ilk_compute_wm_results(struct drm_device *dev,
3262                                    const struct intel_pipe_wm *merged,
3263                                    enum intel_ddb_partitioning partitioning,
3264                                    struct ilk_wm_values *results)
3265 {
3266         struct drm_i915_private *dev_priv = to_i915(dev);
3267         struct intel_crtc *intel_crtc;
3268         int level, wm_lp;
3269
3270         results->enable_fbc_wm = merged->fbc_wm_enabled;
3271         results->partitioning = partitioning;
3272
3273         /* LP1+ register values */
3274         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3275                 const struct intel_wm_level *r;
3276
3277                 level = ilk_wm_lp_to_level(wm_lp, merged);
3278
3279                 r = &merged->wm[level];
3280
3281                 /*
3282                  * Maintain the watermark values even if the level is
3283                  * disabled. Doing otherwise could cause underruns.
3284                  */
3285                 results->wm_lp[wm_lp - 1] =
3286                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3287                         (r->pri_val << WM1_LP_SR_SHIFT) |
3288                         r->cur_val;
3289
3290                 if (r->enable)
3291                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3292
3293                 if (INTEL_GEN(dev_priv) >= 8)
3294                         results->wm_lp[wm_lp - 1] |=
3295                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3296                 else
3297                         results->wm_lp[wm_lp - 1] |=
3298                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3299
3300                 /*
3301                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3302                  * level is disabled. Doing otherwise could cause underruns.
3303                  */
3304                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3305                         WARN_ON(wm_lp != 1);
3306                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3307                 } else
3308                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3309         }
3310
3311         /* LP0 register values */
3312         for_each_intel_crtc(dev, intel_crtc) {
3313                 enum pipe pipe = intel_crtc->pipe;
3314                 const struct intel_wm_level *r =
3315                         &intel_crtc->wm.active.ilk.wm[0];
3316
3317                 if (WARN_ON(!r->enable))
3318                         continue;
3319
3320                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3321
3322                 results->wm_pipe[pipe] =
3323                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3324                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3325                         r->cur_val;
3326         }
3327 }
3328
3329 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3330  * case both are at the same level. Prefer r1 in case they're the same. */
3331 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3332                                                   struct intel_pipe_wm *r1,
3333                                                   struct intel_pipe_wm *r2)
3334 {
3335         int level, max_level = ilk_wm_max_level(to_i915(dev));
3336         int level1 = 0, level2 = 0;
3337
3338         for (level = 1; level <= max_level; level++) {
3339                 if (r1->wm[level].enable)
3340                         level1 = level;
3341                 if (r2->wm[level].enable)
3342                         level2 = level;
3343         }
3344
3345         if (level1 == level2) {
3346                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3347                         return r2;
3348                 else
3349                         return r1;
3350         } else if (level1 > level2) {
3351                 return r1;
3352         } else {
3353                 return r2;
3354         }
3355 }
3356
3357 /* dirty bits used to track which watermarks need changes */
3358 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3359 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3360 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3361 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3362 #define WM_DIRTY_FBC (1 << 24)
3363 #define WM_DIRTY_DDB (1 << 25)
3364
3365 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3366                                          const struct ilk_wm_values *old,
3367                                          const struct ilk_wm_values *new)
3368 {
3369         unsigned int dirty = 0;
3370         enum pipe pipe;
3371         int wm_lp;
3372
3373         for_each_pipe(dev_priv, pipe) {
3374                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3375                         dirty |= WM_DIRTY_LINETIME(pipe);
3376                         /* Must disable LP1+ watermarks too */
3377                         dirty |= WM_DIRTY_LP_ALL;
3378                 }
3379
3380                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3381                         dirty |= WM_DIRTY_PIPE(pipe);
3382                         /* Must disable LP1+ watermarks too */
3383                         dirty |= WM_DIRTY_LP_ALL;
3384                 }
3385         }
3386
3387         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3388                 dirty |= WM_DIRTY_FBC;
3389                 /* Must disable LP1+ watermarks too */
3390                 dirty |= WM_DIRTY_LP_ALL;
3391         }
3392
3393         if (old->partitioning != new->partitioning) {
3394                 dirty |= WM_DIRTY_DDB;
3395                 /* Must disable LP1+ watermarks too */
3396                 dirty |= WM_DIRTY_LP_ALL;
3397         }
3398
3399         /* LP1+ watermarks already deemed dirty, no need to continue */
3400         if (dirty & WM_DIRTY_LP_ALL)
3401                 return dirty;
3402
3403         /* Find the lowest numbered LP1+ watermark in need of an update... */
3404         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3405                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3406                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3407                         break;
3408         }
3409
3410         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3411         for (; wm_lp <= 3; wm_lp++)
3412                 dirty |= WM_DIRTY_LP(wm_lp);
3413
3414         return dirty;
3415 }
3416
3417 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3418                                unsigned int dirty)
3419 {
3420         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3421         bool changed = false;
3422
3423         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3424                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3425                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3426                 changed = true;
3427         }
3428         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3429                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3430                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3431                 changed = true;
3432         }
3433         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3434                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3435                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3436                 changed = true;
3437         }
3438
3439         /*
3440          * Don't touch WM1S_LP_EN here.
3441          * Doing so could cause underruns.
3442          */
3443
3444         return changed;
3445 }
3446
3447 /*
3448  * The spec says we shouldn't write when we don't need, because every write
3449  * causes WMs to be re-evaluated, expending some power.
3450  */
3451 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3452                                 struct ilk_wm_values *results)
3453 {
3454         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3455         unsigned int dirty;
3456         uint32_t val;
3457
3458         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3459         if (!dirty)
3460                 return;
3461
3462         _ilk_disable_lp_wm(dev_priv, dirty);
3463
3464         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3465                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3466         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3467                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3468         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3469                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3470
3471         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3472                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3473         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3474                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3475         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3476                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3477
3478         if (dirty & WM_DIRTY_DDB) {
3479                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3480                         val = I915_READ(WM_MISC);
3481                         if (results->partitioning == INTEL_DDB_PART_1_2)
3482                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3483                         else
3484                                 val |= WM_MISC_DATA_PARTITION_5_6;
3485                         I915_WRITE(WM_MISC, val);
3486                 } else {
3487                         val = I915_READ(DISP_ARB_CTL2);
3488                         if (results->partitioning == INTEL_DDB_PART_1_2)
3489                                 val &= ~DISP_DATA_PARTITION_5_6;
3490                         else
3491                                 val |= DISP_DATA_PARTITION_5_6;
3492                         I915_WRITE(DISP_ARB_CTL2, val);
3493                 }
3494         }
3495
3496         if (dirty & WM_DIRTY_FBC) {
3497                 val = I915_READ(DISP_ARB_CTL);
3498                 if (results->enable_fbc_wm)
3499                         val &= ~DISP_FBC_WM_DIS;
3500                 else
3501                         val |= DISP_FBC_WM_DIS;
3502                 I915_WRITE(DISP_ARB_CTL, val);
3503         }
3504
3505         if (dirty & WM_DIRTY_LP(1) &&
3506             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3507                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3508
3509         if (INTEL_GEN(dev_priv) >= 7) {
3510                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3511                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3512                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3513                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3514         }
3515
3516         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3517                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3518         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3519                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3520         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3521                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3522
3523         dev_priv->wm.hw = *results;
3524 }
3525
3526 bool ilk_disable_lp_wm(struct drm_device *dev)
3527 {
3528         struct drm_i915_private *dev_priv = to_i915(dev);
3529
3530         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3531 }
3532
3533 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
3534
3535 /*
3536  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3537  * so assume we'll always need it in order to avoid underruns.
3538  */
3539 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3540 {
3541         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3542
3543         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3544                 return true;
3545
3546         return false;
3547 }
3548
3549 static bool
3550 intel_has_sagv(struct drm_i915_private *dev_priv)
3551 {
3552         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
3553                 return true;
3554
3555         if (IS_SKYLAKE(dev_priv) &&
3556             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3557                 return true;
3558
3559         return false;
3560 }
3561
3562 /*
3563  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3564  * depending on power and performance requirements. The display engine access
3565  * to system memory is blocked during the adjustment time. Because of the
3566  * blocking time, having this enabled can cause full system hangs and/or pipe
3567  * underruns if we don't meet all of the following requirements:
3568  *
3569  *  - <= 1 pipe enabled
3570  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3571  *  - We're not using an interlaced display configuration
3572  */
3573 int
3574 intel_enable_sagv(struct drm_i915_private *dev_priv)
3575 {
3576         int ret;
3577
3578         if (!intel_has_sagv(dev_priv))
3579                 return 0;
3580
3581         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3582                 return 0;
3583
3584         DRM_DEBUG_KMS("Enabling the SAGV\n");
3585         mutex_lock(&dev_priv->rps.hw_lock);
3586
3587         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3588                                       GEN9_SAGV_ENABLE);
3589
3590         /* We don't need to wait for the SAGV when enabling */
3591         mutex_unlock(&dev_priv->rps.hw_lock);
3592
3593         /*
3594          * Some skl systems, pre-release machines in particular,
3595          * don't actually have an SAGV.
3596          */
3597         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3598                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3599                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3600                 return 0;
3601         } else if (ret < 0) {
3602                 DRM_ERROR("Failed to enable the SAGV\n");
3603                 return ret;
3604         }
3605
3606         dev_priv->sagv_status = I915_SAGV_ENABLED;
3607         return 0;
3608 }
3609
3610 int
3611 intel_disable_sagv(struct drm_i915_private *dev_priv)
3612 {
3613         int ret;
3614
3615         if (!intel_has_sagv(dev_priv))
3616                 return 0;
3617
3618         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3619                 return 0;
3620
3621         DRM_DEBUG_KMS("Disabling the SAGV\n");
3622         mutex_lock(&dev_priv->rps.hw_lock);
3623
3624         /* bspec says to keep retrying for at least 1 ms */
3625         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3626                                 GEN9_SAGV_DISABLE,
3627                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3628                                 1);
3629         mutex_unlock(&dev_priv->rps.hw_lock);
3630
3631         /*
3632          * Some skl systems, pre-release machines in particular,
3633          * don't actually have an SAGV.
3634          */
3635         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3636                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3637                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3638                 return 0;
3639         } else if (ret < 0) {
3640                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3641                 return ret;
3642         }
3643
3644         dev_priv->sagv_status = I915_SAGV_DISABLED;
3645         return 0;
3646 }
3647
3648 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3649 {
3650         struct drm_device *dev = state->dev;
3651         struct drm_i915_private *dev_priv = to_i915(dev);
3652         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3653         struct intel_crtc *crtc;
3654         struct intel_plane *plane;
3655         struct intel_crtc_state *cstate;
3656         enum pipe pipe;
3657         int level, latency;
3658
3659         if (!intel_has_sagv(dev_priv))
3660                 return false;
3661
3662         /*
3663          * SKL workaround: bspec recommends we disable the SAGV when we have
3664          * more then one pipe enabled
3665          *
3666          * If there are no active CRTCs, no additional checks need be performed
3667          */
3668         if (hweight32(intel_state->active_crtcs) == 0)
3669                 return true;
3670         else if (hweight32(intel_state->active_crtcs) > 1)
3671                 return false;
3672
3673         /* Since we're now guaranteed to only have one active CRTC... */
3674         pipe = ffs(intel_state->active_crtcs) - 1;
3675         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3676         cstate = to_intel_crtc_state(crtc->base.state);
3677
3678         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3679                 return false;
3680
3681         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3682                 struct skl_plane_wm *wm =
3683                         &cstate->wm.skl.optimal.planes[plane->id];
3684
3685                 /* Skip this plane if it's not enabled */
3686                 if (!wm->wm[0].plane_en)
3687                         continue;
3688
3689                 /* Find the highest enabled wm level for this plane */
3690                 for (level = ilk_wm_max_level(dev_priv);
3691                      !wm->wm[level].plane_en; --level)
3692                      { }
3693
3694                 latency = dev_priv->wm.skl_latency[level];
3695
3696                 if (skl_needs_memory_bw_wa(intel_state) &&
3697                     plane->base.state->fb->modifier ==
3698                     I915_FORMAT_MOD_X_TILED)
3699                         latency += 15;
3700
3701                 /*
3702                  * If any of the planes on this pipe don't enable wm levels
3703                  * that incur memory latencies higher then 30µs we can't enable
3704                  * the SAGV
3705                  */
3706                 if (latency < SKL_SAGV_BLOCK_TIME)
3707                         return false;
3708         }
3709
3710         return true;
3711 }
3712
3713 static void
3714 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3715                                    const struct intel_crtc_state *cstate,
3716                                    struct skl_ddb_entry *alloc, /* out */
3717                                    int *num_active /* out */)
3718 {
3719         struct drm_atomic_state *state = cstate->base.state;
3720         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3721         struct drm_i915_private *dev_priv = to_i915(dev);
3722         struct drm_crtc *for_crtc = cstate->base.crtc;
3723         unsigned int pipe_size, ddb_size;
3724         int nth_active_pipe;
3725
3726         if (WARN_ON(!state) || !cstate->base.active) {
3727                 alloc->start = 0;
3728                 alloc->end = 0;
3729                 *num_active = hweight32(dev_priv->active_crtcs);
3730                 return;
3731         }
3732
3733         if (intel_state->active_pipe_changes)
3734                 *num_active = hweight32(intel_state->active_crtcs);
3735         else
3736                 *num_active = hweight32(dev_priv->active_crtcs);
3737
3738         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3739         WARN_ON(ddb_size == 0);
3740
3741         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3742
3743         /*
3744          * If the state doesn't change the active CRTC's, then there's
3745          * no need to recalculate; the existing pipe allocation limits
3746          * should remain unchanged.  Note that we're safe from racing
3747          * commits since any racing commit that changes the active CRTC
3748          * list would need to grab _all_ crtc locks, including the one
3749          * we currently hold.
3750          */
3751         if (!intel_state->active_pipe_changes) {
3752                 /*
3753                  * alloc may be cleared by clear_intel_crtc_state,
3754                  * copy from old state to be sure
3755                  */
3756                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3757                 return;
3758         }
3759
3760         nth_active_pipe = hweight32(intel_state->active_crtcs &
3761                                     (drm_crtc_mask(for_crtc) - 1));
3762         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3763         alloc->start = nth_active_pipe * ddb_size / *num_active;
3764         alloc->end = alloc->start + pipe_size;
3765 }
3766
3767 static unsigned int skl_cursor_allocation(int num_active)
3768 {
3769         if (num_active == 1)
3770                 return 32;
3771
3772         return 8;
3773 }
3774
3775 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3776 {
3777         entry->start = reg & 0x3ff;
3778         entry->end = (reg >> 16) & 0x3ff;
3779         if (entry->end)
3780                 entry->end += 1;
3781 }
3782
3783 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3784                           struct skl_ddb_allocation *ddb /* out */)
3785 {
3786         struct intel_crtc *crtc;
3787
3788         memset(ddb, 0, sizeof(*ddb));
3789
3790         for_each_intel_crtc(&dev_priv->drm, crtc) {
3791                 enum intel_display_power_domain power_domain;
3792                 enum plane_id plane_id;
3793                 enum pipe pipe = crtc->pipe;
3794
3795                 power_domain = POWER_DOMAIN_PIPE(pipe);
3796                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3797                         continue;
3798
3799                 for_each_plane_id_on_crtc(crtc, plane_id) {
3800                         u32 val;
3801
3802                         if (plane_id != PLANE_CURSOR)
3803                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3804                         else
3805                                 val = I915_READ(CUR_BUF_CFG(pipe));
3806
3807                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3808                 }
3809
3810                 intel_display_power_put(dev_priv, power_domain);
3811         }
3812 }
3813
3814 /*
3815  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3816  * The bspec defines downscale amount as:
3817  *
3818  * """
3819  * Horizontal down scale amount = maximum[1, Horizontal source size /
3820  *                                           Horizontal destination size]
3821  * Vertical down scale amount = maximum[1, Vertical source size /
3822  *                                         Vertical destination size]
3823  * Total down scale amount = Horizontal down scale amount *
3824  *                           Vertical down scale amount
3825  * """
3826  *
3827  * Return value is provided in 16.16 fixed point form to retain fractional part.
3828  * Caller should take care of dividing & rounding off the value.
3829  */
3830 static uint_fixed_16_16_t
3831 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3832                            const struct intel_plane_state *pstate)
3833 {
3834         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3835         uint32_t src_w, src_h, dst_w, dst_h;
3836         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3837         uint_fixed_16_16_t downscale_h, downscale_w;
3838
3839         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3840                 return u32_to_fixed_16_16(0);
3841
3842         /* n.b., src is 16.16 fixed point, dst is whole integer */
3843         if (plane->id == PLANE_CURSOR) {
3844                 /*
3845                  * Cursors only support 0/180 degree rotation,
3846                  * hence no need to account for rotation here.
3847                  */
3848                 src_w = pstate->base.src_w >> 16;
3849                 src_h = pstate->base.src_h >> 16;
3850                 dst_w = pstate->base.crtc_w;
3851                 dst_h = pstate->base.crtc_h;
3852         } else {
3853                 /*
3854                  * Src coordinates are already rotated by 270 degrees for
3855                  * the 90/270 degree plane rotation cases (to match the
3856                  * GTT mapping), hence no need to account for rotation here.
3857                  */
3858                 src_w = drm_rect_width(&pstate->base.src) >> 16;
3859                 src_h = drm_rect_height(&pstate->base.src) >> 16;
3860                 dst_w = drm_rect_width(&pstate->base.dst);
3861                 dst_h = drm_rect_height(&pstate->base.dst);
3862         }
3863
3864         fp_w_ratio = fixed_16_16_div(src_w, dst_w);
3865         fp_h_ratio = fixed_16_16_div(src_h, dst_h);
3866         downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
3867         downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));
3868
3869         return mul_fixed16(downscale_w, downscale_h);
3870 }
3871
3872 static uint_fixed_16_16_t
3873 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3874 {
3875         uint_fixed_16_16_t pipe_downscale = u32_to_fixed_16_16(1);
3876
3877         if (!crtc_state->base.enable)
3878                 return pipe_downscale;
3879
3880         if (crtc_state->pch_pfit.enabled) {
3881                 uint32_t src_w, src_h, dst_w, dst_h;
3882                 uint32_t pfit_size = crtc_state->pch_pfit.size;
3883                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3884                 uint_fixed_16_16_t downscale_h, downscale_w;
3885
3886                 src_w = crtc_state->pipe_src_w;
3887                 src_h = crtc_state->pipe_src_h;
3888                 dst_w = pfit_size >> 16;
3889                 dst_h = pfit_size & 0xffff;
3890
3891                 if (!dst_w || !dst_h)
3892                         return pipe_downscale;
3893
3894                 fp_w_ratio = fixed_16_16_div(src_w, dst_w);
3895                 fp_h_ratio = fixed_16_16_div(src_h, dst_h);
3896                 downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
3897                 downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));
3898
3899                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3900         }
3901
3902         return pipe_downscale;
3903 }
3904
3905 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3906                                   struct intel_crtc_state *cstate)
3907 {
3908         struct drm_crtc_state *crtc_state = &cstate->base;
3909         struct drm_atomic_state *state = crtc_state->state;
3910         struct drm_plane *plane;
3911         const struct drm_plane_state *pstate;
3912         struct intel_plane_state *intel_pstate;
3913         int crtc_clock, dotclk;
3914         uint32_t pipe_max_pixel_rate;
3915         uint_fixed_16_16_t pipe_downscale;
3916         uint_fixed_16_16_t max_downscale = u32_to_fixed_16_16(1);
3917
3918         if (!cstate->base.enable)
3919                 return 0;
3920
3921         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3922                 uint_fixed_16_16_t plane_downscale;
3923                 uint_fixed_16_16_t fp_9_div_8 = fixed_16_16_div(9, 8);
3924                 int bpp;
3925
3926                 if (!intel_wm_plane_visible(cstate,
3927                                             to_intel_plane_state(pstate)))
3928                         continue;
3929
3930                 if (WARN_ON(!pstate->fb))
3931                         return -EINVAL;
3932
3933                 intel_pstate = to_intel_plane_state(pstate);
3934                 plane_downscale = skl_plane_downscale_amount(cstate,
3935                                                              intel_pstate);
3936                 bpp = pstate->fb->format->cpp[0] * 8;
3937                 if (bpp == 64)
3938                         plane_downscale = mul_fixed16(plane_downscale,
3939                                                       fp_9_div_8);
3940
3941                 max_downscale = max_fixed_16_16(plane_downscale, max_downscale);
3942         }
3943         pipe_downscale = skl_pipe_downscale_amount(cstate);
3944
3945         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3946
3947         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3948         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3949
3950         if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3951                 dotclk *= 2;
3952
3953         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3954
3955         if (pipe_max_pixel_rate < crtc_clock) {
3956                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3957                 return -EINVAL;
3958         }
3959
3960         return 0;
3961 }
3962
3963 static unsigned int
3964 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3965                              const struct drm_plane_state *pstate,
3966                              int y)
3967 {
3968         struct intel_plane *plane = to_intel_plane(pstate->plane);
3969         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3970         uint32_t data_rate;
3971         uint32_t width = 0, height = 0;
3972         struct drm_framebuffer *fb;
3973         u32 format;
3974         uint_fixed_16_16_t down_scale_amount;
3975
3976         if (!intel_pstate->base.visible)
3977                 return 0;
3978
3979         fb = pstate->fb;
3980         format = fb->format->format;
3981
3982         if (plane->id == PLANE_CURSOR)
3983                 return 0;
3984         if (y && format != DRM_FORMAT_NV12)
3985                 return 0;
3986
3987         /*
3988          * Src coordinates are already rotated by 270 degrees for
3989          * the 90/270 degree plane rotation cases (to match the
3990          * GTT mapping), hence no need to account for rotation here.
3991          */
3992         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3993         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3994
3995         /* for planar format */
3996         if (format == DRM_FORMAT_NV12) {
3997                 if (y)  /* y-plane data rate */
3998                         data_rate = width * height *
3999                                 fb->format->cpp[0];
4000                 else    /* uv-plane data rate */
4001                         data_rate = (width / 2) * (height / 2) *
4002                                 fb->format->cpp[1];
4003         } else {
4004                 /* for packed formats */
4005                 data_rate = width * height * fb->format->cpp[0];
4006         }
4007
4008         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4009
4010         return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4011 }
4012
4013 /*
4014  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4015  * a 8192x4096@32bpp framebuffer:
4016  *   3 * 4096 * 8192  * 4 < 2^32
4017  */
4018 static unsigned int
4019 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4020                                  unsigned *plane_data_rate,
4021                                  unsigned *plane_y_data_rate)
4022 {
4023         struct drm_crtc_state *cstate = &intel_cstate->base;
4024         struct drm_atomic_state *state = cstate->state;
4025         struct drm_plane *plane;
4026         const struct drm_plane_state *pstate;
4027         unsigned int total_data_rate = 0;
4028
4029         if (WARN_ON(!state))
4030                 return 0;
4031
4032         /* Calculate and cache data rate for each plane */
4033         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4034                 enum plane_id plane_id = to_intel_plane(plane)->id;
4035                 unsigned int rate;
4036
4037                 /* packed/uv */
4038                 rate = skl_plane_relative_data_rate(intel_cstate,
4039                                                     pstate, 0);
4040                 plane_data_rate[plane_id] = rate;
4041
4042                 total_data_rate += rate;
4043
4044                 /* y-plane */
4045                 rate = skl_plane_relative_data_rate(intel_cstate,
4046                                                     pstate, 1);
4047                 plane_y_data_rate[plane_id] = rate;
4048
4049                 total_data_rate += rate;
4050         }
4051
4052         return total_data_rate;
4053 }
4054
4055 static uint16_t
4056 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4057                   const int y)
4058 {
4059         struct drm_framebuffer *fb = pstate->fb;
4060         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4061         uint32_t src_w, src_h;
4062         uint32_t min_scanlines = 8;
4063         uint8_t plane_bpp;
4064
4065         if (WARN_ON(!fb))
4066                 return 0;
4067
4068         /* For packed formats, no y-plane, return 0 */
4069         if (y && fb->format->format != DRM_FORMAT_NV12)
4070                 return 0;
4071
4072         /* For Non Y-tile return 8-blocks */
4073         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4074             fb->modifier != I915_FORMAT_MOD_Yf_TILED)
4075                 return 8;
4076
4077         /*
4078          * Src coordinates are already rotated by 270 degrees for
4079          * the 90/270 degree plane rotation cases (to match the
4080          * GTT mapping), hence no need to account for rotation here.
4081          */
4082         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4083         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4084
4085         /* Halve UV plane width and height for NV12 */
4086         if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4087                 src_w /= 2;
4088                 src_h /= 2;
4089         }
4090
4091         if (fb->format->format == DRM_FORMAT_NV12 && !y)
4092                 plane_bpp = fb->format->cpp[1];
4093         else
4094                 plane_bpp = fb->format->cpp[0];
4095
4096         if (drm_rotation_90_or_270(pstate->rotation)) {
4097                 switch (plane_bpp) {
4098                 case 1:
4099                         min_scanlines = 32;
4100                         break;
4101                 case 2:
4102                         min_scanlines = 16;
4103                         break;
4104                 case 4:
4105                         min_scanlines = 8;
4106                         break;
4107                 case 8:
4108                         min_scanlines = 4;
4109                         break;
4110                 default:
4111                         WARN(1, "Unsupported pixel depth %u for rotation",
4112                              plane_bpp);
4113                         min_scanlines = 32;
4114                 }
4115         }
4116
4117         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4118 }
4119
4120 static void
4121 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4122                  uint16_t *minimum, uint16_t *y_minimum)
4123 {
4124         const struct drm_plane_state *pstate;
4125         struct drm_plane *plane;
4126
4127         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4128                 enum plane_id plane_id = to_intel_plane(plane)->id;
4129
4130                 if (plane_id == PLANE_CURSOR)
4131                         continue;
4132
4133                 if (!pstate->visible)
4134                         continue;
4135
4136                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4137                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4138         }
4139
4140         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4141 }
4142
4143 static int
4144 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4145                       struct skl_ddb_allocation *ddb /* out */)
4146 {
4147         struct drm_atomic_state *state = cstate->base.state;
4148         struct drm_crtc *crtc = cstate->base.crtc;
4149         struct drm_device *dev = crtc->dev;
4150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151         enum pipe pipe = intel_crtc->pipe;
4152         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4153         uint16_t alloc_size, start;
4154         uint16_t minimum[I915_MAX_PLANES] = {};
4155         uint16_t y_minimum[I915_MAX_PLANES] = {};
4156         unsigned int total_data_rate;
4157         enum plane_id plane_id;
4158         int num_active;
4159         unsigned plane_data_rate[I915_MAX_PLANES] = {};
4160         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4161         uint16_t total_min_blocks = 0;
4162
4163         /* Clear the partitioning for disabled planes. */
4164         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4165         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4166
4167         if (WARN_ON(!state))
4168                 return 0;
4169
4170         if (!cstate->base.active) {
4171                 alloc->start = alloc->end = 0;
4172                 return 0;
4173         }
4174
4175         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4176         alloc_size = skl_ddb_entry_size(alloc);
4177         if (alloc_size == 0)
4178                 return 0;
4179
4180         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4181
4182         /*
4183          * 1. Allocate the mininum required blocks for each active plane
4184          * and allocate the cursor, it doesn't require extra allocation
4185          * proportional to the data rate.
4186          */
4187
4188         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4189                 total_min_blocks += minimum[plane_id];
4190                 total_min_blocks += y_minimum[plane_id];
4191         }
4192
4193         if (total_min_blocks > alloc_size) {
4194                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4195                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4196                                                         alloc_size);
4197                 return -EINVAL;
4198         }
4199
4200         alloc_size -= total_min_blocks;
4201         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4202         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4203
4204         /*
4205          * 2. Distribute the remaining space in proportion to the amount of
4206          * data each plane needs to fetch from memory.
4207          *
4208          * FIXME: we may not allocate every single block here.
4209          */
4210         total_data_rate = skl_get_total_relative_data_rate(cstate,
4211                                                            plane_data_rate,
4212                                                            plane_y_data_rate);
4213         if (total_data_rate == 0)
4214                 return 0;
4215
4216         start = alloc->start;
4217         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4218                 unsigned int data_rate, y_data_rate;
4219                 uint16_t plane_blocks, y_plane_blocks = 0;
4220
4221                 if (plane_id == PLANE_CURSOR)
4222                         continue;
4223
4224                 data_rate = plane_data_rate[plane_id];
4225
4226                 /*
4227                  * allocation for (packed formats) or (uv-plane part of planar format):
4228                  * promote the expression to 64 bits to avoid overflowing, the
4229                  * result is < available as data_rate / total_data_rate < 1
4230                  */
4231                 plane_blocks = minimum[plane_id];
4232                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4233                                         total_data_rate);
4234
4235                 /* Leave disabled planes at (0,0) */
4236                 if (data_rate) {
4237                         ddb->plane[pipe][plane_id].start = start;
4238                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
4239                 }
4240
4241                 start += plane_blocks;
4242
4243                 /*
4244                  * allocation for y_plane part of planar format:
4245                  */
4246                 y_data_rate = plane_y_data_rate[plane_id];
4247
4248                 y_plane_blocks = y_minimum[plane_id];
4249                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4250                                         total_data_rate);
4251
4252                 if (y_data_rate) {
4253                         ddb->y_plane[pipe][plane_id].start = start;
4254                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4255                 }
4256
4257                 start += y_plane_blocks;
4258         }
4259
4260         return 0;
4261 }
4262
4263 /*
4264  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4265  * for the read latency) and cpp should always be <= 8, so that
4266  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4267  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4268 */
4269 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
4270                                          uint32_t latency)
4271 {
4272         uint32_t wm_intermediate_val;
4273         uint_fixed_16_16_t ret;
4274
4275         if (latency == 0)
4276                 return FP_16_16_MAX;
4277
4278         wm_intermediate_val = latency * pixel_rate * cpp;
4279         ret = fixed_16_16_div_u64(wm_intermediate_val, 1000 * 512);
4280         return ret;
4281 }
4282
4283 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4284                         uint32_t pipe_htotal,
4285                         uint32_t latency,
4286                         uint_fixed_16_16_t plane_blocks_per_line)
4287 {
4288         uint32_t wm_intermediate_val;
4289         uint_fixed_16_16_t ret;
4290
4291         if (latency == 0)
4292                 return FP_16_16_MAX;
4293
4294         wm_intermediate_val = latency * pixel_rate;
4295         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4296                                            pipe_htotal * 1000);
4297         ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
4298         return ret;
4299 }
4300
4301 static uint_fixed_16_16_t
4302 intel_get_linetime_us(struct intel_crtc_state *cstate)
4303 {
4304         uint32_t pixel_rate;
4305         uint32_t crtc_htotal;
4306         uint_fixed_16_16_t linetime_us;
4307
4308         if (!cstate->base.active)
4309                 return u32_to_fixed_16_16(0);
4310
4311         pixel_rate = cstate->pixel_rate;
4312
4313         if (WARN_ON(pixel_rate == 0))
4314                 return u32_to_fixed_16_16(0);
4315
4316         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4317         linetime_us = fixed_16_16_div_u64(crtc_htotal * 1000, pixel_rate);
4318
4319         return linetime_us;
4320 }
4321
4322 static uint32_t
4323 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4324                               const struct intel_plane_state *pstate)
4325 {
4326         uint64_t adjusted_pixel_rate;
4327         uint_fixed_16_16_t downscale_amount;
4328
4329         /* Shouldn't reach here on disabled planes... */
4330         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4331                 return 0;
4332
4333         /*
4334          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4335          * with additional adjustments for plane-specific scaling.
4336          */
4337         adjusted_pixel_rate = cstate->pixel_rate;
4338         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4339
4340         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4341                                             downscale_amount);
4342 }
4343
4344 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4345                                 struct intel_crtc_state *cstate,
4346                                 const struct intel_plane_state *intel_pstate,
4347                                 uint16_t ddb_allocation,
4348                                 int level,
4349                                 uint16_t *out_blocks, /* out */
4350                                 uint8_t *out_lines, /* out */
4351                                 bool *enabled /* out */)
4352 {
4353         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4354         const struct drm_plane_state *pstate = &intel_pstate->base;
4355         const struct drm_framebuffer *fb = pstate->fb;
4356         uint32_t latency = dev_priv->wm.skl_latency[level];
4357         uint_fixed_16_16_t method1, method2;
4358         uint_fixed_16_16_t plane_blocks_per_line;
4359         uint_fixed_16_16_t selected_result;
4360         uint32_t interm_pbpl;
4361         uint32_t plane_bytes_per_line;
4362         uint32_t res_blocks, res_lines;
4363         uint8_t cpp;
4364         uint32_t width = 0, height = 0;
4365         uint32_t plane_pixel_rate;
4366         uint_fixed_16_16_t y_tile_minimum;
4367         uint32_t y_min_scanlines;
4368         struct intel_atomic_state *state =
4369                 to_intel_atomic_state(cstate->base.state);
4370         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4371         bool y_tiled, x_tiled;
4372
4373         if (latency == 0 ||
4374             !intel_wm_plane_visible(cstate, intel_pstate)) {
4375                 *enabled = false;
4376                 return 0;
4377         }
4378
4379         y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4380                   fb->modifier == I915_FORMAT_MOD_Yf_TILED;
4381         x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4382
4383         /* Display WA #1141: kbl,cfl */
4384         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4385             dev_priv->ipc_enabled)
4386                 latency += 4;
4387
4388         if (apply_memory_bw_wa && x_tiled)
4389                 latency += 15;
4390
4391         if (plane->id == PLANE_CURSOR) {
4392                 width = intel_pstate->base.crtc_w;
4393                 height = intel_pstate->base.crtc_h;
4394         } else {
4395                 /*
4396                  * Src coordinates are already rotated by 270 degrees for
4397                  * the 90/270 degree plane rotation cases (to match the
4398                  * GTT mapping), hence no need to account for rotation here.
4399                  */
4400                 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4401                 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4402         }
4403
4404         cpp = fb->format->cpp[0];
4405         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4406
4407         if (drm_rotation_90_or_270(pstate->rotation)) {
4408                 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
4409                         fb->format->cpp[1] :
4410                         fb->format->cpp[0];
4411
4412                 switch (cpp) {
4413                 case 1:
4414                         y_min_scanlines = 16;
4415                         break;
4416                 case 2:
4417                         y_min_scanlines = 8;
4418                         break;
4419                 case 4:
4420                         y_min_scanlines = 4;
4421                         break;
4422                 default:
4423                         MISSING_CASE(cpp);
4424                         return -EINVAL;
4425                 }
4426         } else {
4427                 y_min_scanlines = 4;
4428         }
4429
4430         if (apply_memory_bw_wa)
4431                 y_min_scanlines *= 2;
4432
4433         plane_bytes_per_line = width * cpp;
4434         if (y_tiled) {
4435                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4436                                            y_min_scanlines, 512);
4437                 plane_blocks_per_line = fixed_16_16_div(interm_pbpl,
4438                                                         y_min_scanlines);
4439         } else if (x_tiled) {
4440                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4441                 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4442         } else {
4443                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4444                 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4445         }
4446
4447         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
4448         method2 = skl_wm_method2(plane_pixel_rate,
4449                                  cstate->base.adjusted_mode.crtc_htotal,
4450                                  latency,
4451                                  plane_blocks_per_line);
4452
4453         y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
4454                                              plane_blocks_per_line);
4455
4456         if (y_tiled) {
4457                 selected_result = max_fixed_16_16(method2, y_tile_minimum);
4458         } else {
4459                 uint32_t linetime_us;
4460
4461                 linetime_us = fixed_16_16_to_u32_round_up(
4462                                 intel_get_linetime_us(cstate));
4463                 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4464                     (plane_bytes_per_line / 512 < 1))
4465                         selected_result = method2;
4466                 else if (ddb_allocation >=
4467                          fixed_16_16_to_u32_round_up(plane_blocks_per_line))
4468                         selected_result = min_fixed_16_16(method1, method2);
4469                 else if (latency >= linetime_us)
4470                         selected_result = min_fixed_16_16(method1, method2);
4471                 else
4472                         selected_result = method1;
4473         }
4474
4475         res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
4476         res_lines = div_round_up_fixed16(selected_result,
4477                                          plane_blocks_per_line);
4478
4479         if (level >= 1 && level <= 7) {
4480                 if (y_tiled) {
4481                         res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
4482                         res_lines += y_min_scanlines;
4483                 } else {
4484                         res_blocks++;
4485                 }
4486         }
4487
4488         if (res_blocks >= ddb_allocation || res_lines > 31) {
4489                 *enabled = false;
4490
4491                 /*
4492                  * If there are no valid level 0 watermarks, then we can't
4493                  * support this display configuration.
4494                  */
4495                 if (level) {
4496                         return 0;
4497                 } else {
4498                         struct drm_plane *plane = pstate->plane;
4499
4500                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4501                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4502                                       plane->base.id, plane->name,
4503                                       res_blocks, ddb_allocation, res_lines);
4504                         return -EINVAL;
4505                 }
4506         }
4507
4508         *out_blocks = res_blocks;
4509         *out_lines = res_lines;
4510         *enabled = true;
4511
4512         return 0;
4513 }
4514
4515 static int
4516 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4517                       struct skl_ddb_allocation *ddb,
4518                       struct intel_crtc_state *cstate,
4519                       const struct intel_plane_state *intel_pstate,
4520                       struct skl_plane_wm *wm)
4521 {
4522         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4523         struct drm_plane *plane = intel_pstate->base.plane;
4524         struct intel_plane *intel_plane = to_intel_plane(plane);
4525         uint16_t ddb_blocks;
4526         enum pipe pipe = intel_crtc->pipe;
4527         int level, max_level = ilk_wm_max_level(dev_priv);
4528         int ret;
4529
4530         if (WARN_ON(!intel_pstate->base.fb))
4531                 return -EINVAL;
4532
4533         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4534
4535         for (level = 0; level <= max_level; level++) {
4536                 struct skl_wm_level *result = &wm->wm[level];
4537
4538                 ret = skl_compute_plane_wm(dev_priv,
4539                                            cstate,
4540                                            intel_pstate,
4541                                            ddb_blocks,
4542                                            level,
4543                                            &result->plane_res_b,
4544                                            &result->plane_res_l,
4545                                            &result->plane_en);
4546                 if (ret)
4547                         return ret;
4548         }
4549
4550         return 0;
4551 }
4552
4553 static uint32_t
4554 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4555 {
4556         struct drm_atomic_state *state = cstate->base.state;
4557         struct drm_i915_private *dev_priv = to_i915(state->dev);
4558         uint_fixed_16_16_t linetime_us;
4559         uint32_t linetime_wm;
4560
4561         linetime_us = intel_get_linetime_us(cstate);
4562
4563         if (is_fixed16_zero(linetime_us))
4564                 return 0;
4565
4566         linetime_wm = fixed_16_16_to_u32_round_up(mul_u32_fixed_16_16(8,
4567                                 linetime_us));
4568
4569         /* Display WA #1135: bxt. */
4570         if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4571                 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4572
4573         return linetime_wm;
4574 }
4575
4576 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4577                                       struct skl_wm_level *trans_wm /* out */)
4578 {
4579         if (!cstate->base.active)
4580                 return;
4581
4582         /* Until we know more, just disable transition WMs */
4583         trans_wm->plane_en = false;
4584 }
4585
4586 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4587                              struct skl_ddb_allocation *ddb,
4588                              struct skl_pipe_wm *pipe_wm)
4589 {
4590         struct drm_device *dev = cstate->base.crtc->dev;
4591         struct drm_crtc_state *crtc_state = &cstate->base;
4592         const struct drm_i915_private *dev_priv = to_i915(dev);
4593         struct drm_plane *plane;
4594         const struct drm_plane_state *pstate;
4595         struct skl_plane_wm *wm;
4596         int ret;
4597
4598         /*
4599          * We'll only calculate watermarks for planes that are actually
4600          * enabled, so make sure all other planes are set as disabled.
4601          */
4602         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4603
4604         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4605                 const struct intel_plane_state *intel_pstate =
4606                                                 to_intel_plane_state(pstate);
4607                 enum plane_id plane_id = to_intel_plane(plane)->id;
4608
4609                 wm = &pipe_wm->planes[plane_id];
4610
4611                 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4612                                             intel_pstate, wm);
4613                 if (ret)
4614                         return ret;
4615                 skl_compute_transition_wm(cstate, &wm->trans_wm);
4616         }
4617         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4618
4619         return 0;
4620 }
4621
4622 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4623                                 i915_reg_t reg,
4624                                 const struct skl_ddb_entry *entry)
4625 {
4626         if (entry->end)
4627                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4628         else
4629                 I915_WRITE(reg, 0);
4630 }
4631
4632 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4633                                i915_reg_t reg,
4634                                const struct skl_wm_level *level)
4635 {
4636         uint32_t val = 0;
4637
4638         if (level->plane_en) {
4639                 val |= PLANE_WM_EN;
4640                 val |= level->plane_res_b;
4641                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4642         }
4643
4644         I915_WRITE(reg, val);
4645 }
4646
4647 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4648                                const struct skl_plane_wm *wm,
4649                                const struct skl_ddb_allocation *ddb,
4650                                enum plane_id plane_id)
4651 {
4652         struct drm_crtc *crtc = &intel_crtc->base;
4653         struct drm_device *dev = crtc->dev;
4654         struct drm_i915_private *dev_priv = to_i915(dev);
4655         int level, max_level = ilk_wm_max_level(dev_priv);
4656         enum pipe pipe = intel_crtc->pipe;
4657
4658         for (level = 0; level <= max_level; level++) {
4659                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4660                                    &wm->wm[level]);
4661         }
4662         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4663                            &wm->trans_wm);
4664
4665         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4666                             &ddb->plane[pipe][plane_id]);
4667         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4668                             &ddb->y_plane[pipe][plane_id]);
4669 }
4670
4671 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4672                                 const struct skl_plane_wm *wm,
4673                                 const struct skl_ddb_allocation *ddb)
4674 {
4675         struct drm_crtc *crtc = &intel_crtc->base;
4676         struct drm_device *dev = crtc->dev;
4677         struct drm_i915_private *dev_priv = to_i915(dev);
4678         int level, max_level = ilk_wm_max_level(dev_priv);
4679         enum pipe pipe = intel_crtc->pipe;
4680
4681         for (level = 0; level <= max_level; level++) {
4682                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4683                                    &wm->wm[level]);
4684         }
4685         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4686
4687         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4688                             &ddb->plane[pipe][PLANE_CURSOR]);
4689 }
4690
4691 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4692                          const struct skl_wm_level *l2)
4693 {
4694         if (l1->plane_en != l2->plane_en)
4695                 return false;
4696
4697         /* If both planes aren't enabled, the rest shouldn't matter */
4698         if (!l1->plane_en)
4699                 return true;
4700
4701         return (l1->plane_res_l == l2->plane_res_l &&
4702                 l1->plane_res_b == l2->plane_res_b);
4703 }
4704
4705 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4706                                            const struct skl_ddb_entry *b)
4707 {
4708         return a->start < b->end && b->start < a->end;
4709 }
4710
4711 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4712                                  const struct skl_ddb_entry *ddb,
4713                                  int ignore)
4714 {
4715         int i;
4716
4717         for (i = 0; i < I915_MAX_PIPES; i++)
4718                 if (i != ignore && entries[i] &&
4719                     skl_ddb_entries_overlap(ddb, entries[i]))
4720                         return true;
4721
4722         return false;
4723 }
4724
4725 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4726                               const struct skl_pipe_wm *old_pipe_wm,
4727                               struct skl_pipe_wm *pipe_wm, /* out */
4728                               struct skl_ddb_allocation *ddb, /* out */
4729                               bool *changed /* out */)
4730 {
4731         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4732         int ret;
4733
4734         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4735         if (ret)
4736                 return ret;
4737
4738         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4739                 *changed = false;
4740         else
4741                 *changed = true;
4742
4743         return 0;
4744 }
4745
4746 static uint32_t
4747 pipes_modified(struct drm_atomic_state *state)
4748 {
4749         struct drm_crtc *crtc;
4750         struct drm_crtc_state *cstate;
4751         uint32_t i, ret = 0;
4752
4753         for_each_new_crtc_in_state(state, crtc, cstate, i)
4754                 ret |= drm_crtc_mask(crtc);
4755
4756         return ret;
4757 }
4758
4759 static int
4760 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4761 {
4762         struct drm_atomic_state *state = cstate->base.state;
4763         struct drm_device *dev = state->dev;
4764         struct drm_crtc *crtc = cstate->base.crtc;
4765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4766         struct drm_i915_private *dev_priv = to_i915(dev);
4767         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4768         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4769         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4770         struct drm_plane_state *plane_state;
4771         struct drm_plane *plane;
4772         enum pipe pipe = intel_crtc->pipe;
4773
4774         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4775
4776         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4777                 enum plane_id plane_id = to_intel_plane(plane)->id;
4778
4779                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4780                                         &new_ddb->plane[pipe][plane_id]) &&
4781                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4782                                         &new_ddb->y_plane[pipe][plane_id]))
4783                         continue;
4784
4785                 plane_state = drm_atomic_get_plane_state(state, plane);
4786                 if (IS_ERR(plane_state))
4787                         return PTR_ERR(plane_state);
4788         }
4789
4790         return 0;
4791 }
4792
4793 static int
4794 skl_compute_ddb(struct drm_atomic_state *state)
4795 {
4796         struct drm_device *dev = state->dev;
4797         struct drm_i915_private *dev_priv = to_i915(dev);
4798         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4799         struct intel_crtc *intel_crtc;
4800         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4801         uint32_t realloc_pipes = pipes_modified(state);
4802         int ret;
4803
4804         /*
4805          * If this is our first atomic update following hardware readout,
4806          * we can't trust the DDB that the BIOS programmed for us.  Let's
4807          * pretend that all pipes switched active status so that we'll
4808          * ensure a full DDB recompute.
4809          */
4810         if (dev_priv->wm.distrust_bios_wm) {
4811                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4812                                        state->acquire_ctx);
4813                 if (ret)
4814                         return ret;
4815
4816                 intel_state->active_pipe_changes = ~0;
4817
4818                 /*
4819                  * We usually only initialize intel_state->active_crtcs if we
4820                  * we're doing a modeset; make sure this field is always
4821                  * initialized during the sanitization process that happens
4822                  * on the first commit too.
4823                  */
4824                 if (!intel_state->modeset)
4825                         intel_state->active_crtcs = dev_priv->active_crtcs;
4826         }
4827
4828         /*
4829          * If the modeset changes which CRTC's are active, we need to
4830          * recompute the DDB allocation for *all* active pipes, even
4831          * those that weren't otherwise being modified in any way by this
4832          * atomic commit.  Due to the shrinking of the per-pipe allocations
4833          * when new active CRTC's are added, it's possible for a pipe that
4834          * we were already using and aren't changing at all here to suddenly
4835          * become invalid if its DDB needs exceeds its new allocation.
4836          *
4837          * Note that if we wind up doing a full DDB recompute, we can't let
4838          * any other display updates race with this transaction, so we need
4839          * to grab the lock on *all* CRTC's.
4840          */
4841         if (intel_state->active_pipe_changes) {
4842                 realloc_pipes = ~0;
4843                 intel_state->wm_results.dirty_pipes = ~0;
4844         }
4845
4846         /*
4847          * We're not recomputing for the pipes not included in the commit, so
4848          * make sure we start with the current state.
4849          */
4850         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4851
4852         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4853                 struct intel_crtc_state *cstate;
4854
4855                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4856                 if (IS_ERR(cstate))
4857                         return PTR_ERR(cstate);
4858
4859                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4860                 if (ret)
4861                         return ret;
4862
4863                 ret = skl_ddb_add_affected_planes(cstate);
4864                 if (ret)
4865                         return ret;
4866         }
4867
4868         return 0;
4869 }
4870
4871 static void
4872 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4873                      struct skl_wm_values *src,
4874                      enum pipe pipe)
4875 {
4876         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4877                sizeof(dst->ddb.y_plane[pipe]));
4878         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4879                sizeof(dst->ddb.plane[pipe]));
4880 }
4881
4882 static void
4883 skl_print_wm_changes(const struct drm_atomic_state *state)
4884 {
4885         const struct drm_device *dev = state->dev;
4886         const struct drm_i915_private *dev_priv = to_i915(dev);
4887         const struct intel_atomic_state *intel_state =
4888                 to_intel_atomic_state(state);
4889         const struct drm_crtc *crtc;
4890         const struct drm_crtc_state *cstate;
4891         const struct intel_plane *intel_plane;
4892         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4893         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4894         int i;
4895
4896         for_each_new_crtc_in_state(state, crtc, cstate, i) {
4897                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898                 enum pipe pipe = intel_crtc->pipe;
4899
4900                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4901                         enum plane_id plane_id = intel_plane->id;
4902                         const struct skl_ddb_entry *old, *new;
4903
4904                         old = &old_ddb->plane[pipe][plane_id];
4905                         new = &new_ddb->plane[pipe][plane_id];
4906
4907                         if (skl_ddb_entry_equal(old, new))
4908                                 continue;
4909
4910                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4911                                          intel_plane->base.base.id,
4912                                          intel_plane->base.name,
4913                                          old->start, old->end,
4914                                          new->start, new->end);
4915                 }
4916         }
4917 }
4918
4919 static int
4920 skl_compute_wm(struct drm_atomic_state *state)
4921 {
4922         struct drm_crtc *crtc;
4923         struct drm_crtc_state *cstate;
4924         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4925         struct skl_wm_values *results = &intel_state->wm_results;
4926         struct drm_device *dev = state->dev;
4927         struct skl_pipe_wm *pipe_wm;
4928         bool changed = false;
4929         int ret, i;
4930
4931         /*
4932          * When we distrust bios wm we always need to recompute to set the
4933          * expected DDB allocations for each CRTC.
4934          */
4935         if (to_i915(dev)->wm.distrust_bios_wm)
4936                 changed = true;
4937
4938         /*
4939          * If this transaction isn't actually touching any CRTC's, don't
4940          * bother with watermark calculation.  Note that if we pass this
4941          * test, we're guaranteed to hold at least one CRTC state mutex,
4942          * which means we can safely use values like dev_priv->active_crtcs
4943          * since any racing commits that want to update them would need to
4944          * hold _all_ CRTC state mutexes.
4945          */
4946         for_each_new_crtc_in_state(state, crtc, cstate, i)
4947                 changed = true;
4948
4949         if (!changed)
4950                 return 0;
4951
4952         /* Clear all dirty flags */
4953         results->dirty_pipes = 0;
4954
4955         ret = skl_compute_ddb(state);
4956         if (ret)
4957                 return ret;
4958
4959         /*
4960          * Calculate WM's for all pipes that are part of this transaction.
4961          * Note that the DDB allocation above may have added more CRTC's that
4962          * weren't otherwise being modified (and set bits in dirty_pipes) if
4963          * pipe allocations had to change.
4964          *
4965          * FIXME:  Now that we're doing this in the atomic check phase, we
4966          * should allow skl_update_pipe_wm() to return failure in cases where
4967          * no suitable watermark values can be found.
4968          */
4969         for_each_new_crtc_in_state(state, crtc, cstate, i) {
4970                 struct intel_crtc_state *intel_cstate =
4971                         to_intel_crtc_state(cstate);
4972                 const struct skl_pipe_wm *old_pipe_wm =
4973                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4974
4975                 pipe_wm = &intel_cstate->wm.skl.optimal;
4976                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4977                                          &results->ddb, &changed);
4978                 if (ret)
4979                         return ret;
4980
4981                 if (changed)
4982                         results->dirty_pipes |= drm_crtc_mask(crtc);
4983
4984                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4985                         /* This pipe's WM's did not change */
4986                         continue;
4987
4988                 intel_cstate->update_wm_pre = true;
4989         }
4990
4991         skl_print_wm_changes(state);
4992
4993         return 0;
4994 }
4995
4996 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4997                                       struct intel_crtc_state *cstate)
4998 {
4999         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5000         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5001         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5002         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5003         enum pipe pipe = crtc->pipe;
5004         enum plane_id plane_id;
5005
5006         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5007                 return;
5008
5009         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5010
5011         for_each_plane_id_on_crtc(crtc, plane_id) {
5012                 if (plane_id != PLANE_CURSOR)
5013                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5014                                            ddb, plane_id);
5015                 else
5016                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5017                                             ddb);
5018         }
5019 }
5020
5021 static void skl_initial_wm(struct intel_atomic_state *state,
5022                            struct intel_crtc_state *cstate)
5023 {
5024         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5025         struct drm_device *dev = intel_crtc->base.dev;
5026         struct drm_i915_private *dev_priv = to_i915(dev);
5027         struct skl_wm_values *results = &state->wm_results;
5028         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5029         enum pipe pipe = intel_crtc->pipe;
5030
5031         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5032                 return;
5033
5034         mutex_lock(&dev_priv->wm.wm_mutex);
5035
5036         if (cstate->base.active_changed)
5037                 skl_atomic_update_crtc_wm(state, cstate);
5038
5039         skl_copy_wm_for_pipe(hw_vals, results, pipe);
5040
5041         mutex_unlock(&dev_priv->wm.wm_mutex);
5042 }
5043
5044 static void ilk_compute_wm_config(struct drm_device *dev,
5045                                   struct intel_wm_config *config)
5046 {
5047         struct intel_crtc *crtc;
5048
5049         /* Compute the currently _active_ config */
5050         for_each_intel_crtc(dev, crtc) {
5051                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5052
5053                 if (!wm->pipe_enabled)
5054                         continue;
5055
5056                 config->sprites_enabled |= wm->sprites_enabled;
5057                 config->sprites_scaled |= wm->sprites_scaled;
5058                 config->num_pipes_active++;
5059         }
5060 }
5061
5062 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5063 {
5064         struct drm_device *dev = &dev_priv->drm;
5065         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5066         struct ilk_wm_maximums max;
5067         struct intel_wm_config config = {};
5068         struct ilk_wm_values results = {};
5069         enum intel_ddb_partitioning partitioning;
5070
5071         ilk_compute_wm_config(dev, &config);
5072
5073         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5074         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5075
5076         /* 5/6 split only in single pipe config on IVB+ */
5077         if (INTEL_GEN(dev_priv) >= 7 &&
5078             config.num_pipes_active == 1 && config.sprites_enabled) {
5079                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5080                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5081
5082                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5083         } else {
5084                 best_lp_wm = &lp_wm_1_2;
5085         }
5086
5087         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5088                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5089
5090         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5091
5092         ilk_write_wm_values(dev_priv, &results);
5093 }
5094
5095 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5096                                    struct intel_crtc_state *cstate)
5097 {
5098         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5099         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5100
5101         mutex_lock(&dev_priv->wm.wm_mutex);
5102         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5103         ilk_program_watermarks(dev_priv);
5104         mutex_unlock(&dev_priv->wm.wm_mutex);
5105 }
5106
5107 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5108                                     struct intel_crtc_state *cstate)
5109 {
5110         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5111         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5112
5113         mutex_lock(&dev_priv->wm.wm_mutex);
5114         if (cstate->wm.need_postvbl_update) {
5115                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5116                 ilk_program_watermarks(dev_priv);
5117         }
5118         mutex_unlock(&dev_priv->wm.wm_mutex);
5119 }
5120
5121 static inline void skl_wm_level_from_reg_val(uint32_t val,
5122                                              struct skl_wm_level *level)
5123 {
5124         level->plane_en = val & PLANE_WM_EN;
5125         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5126         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5127                 PLANE_WM_LINES_MASK;
5128 }
5129
5130 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5131                               struct skl_pipe_wm *out)
5132 {
5133         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135         enum pipe pipe = intel_crtc->pipe;
5136         int level, max_level;
5137         enum plane_id plane_id;
5138         uint32_t val;
5139
5140         max_level = ilk_wm_max_level(dev_priv);
5141
5142         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5143                 struct skl_plane_wm *wm = &out->planes[plane_id];
5144
5145                 for (level = 0; level <= max_level; level++) {
5146                         if (plane_id != PLANE_CURSOR)
5147                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5148                         else
5149                                 val = I915_READ(CUR_WM(pipe, level));
5150
5151                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5152                 }
5153
5154                 if (plane_id != PLANE_CURSOR)
5155                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5156                 else
5157                         val = I915_READ(CUR_WM_TRANS(pipe));
5158
5159                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5160         }
5161
5162         if (!intel_crtc->active)
5163                 return;
5164
5165         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5166 }
5167
5168 void skl_wm_get_hw_state(struct drm_device *dev)
5169 {
5170         struct drm_i915_private *dev_priv = to_i915(dev);
5171         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5172         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5173         struct drm_crtc *crtc;
5174         struct intel_crtc *intel_crtc;
5175         struct intel_crtc_state *cstate;
5176
5177         skl_ddb_get_hw_state(dev_priv, ddb);
5178         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5179                 intel_crtc = to_intel_crtc(crtc);
5180                 cstate = to_intel_crtc_state(crtc->state);
5181
5182                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5183
5184                 if (intel_crtc->active)
5185                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5186         }
5187
5188         if (dev_priv->active_crtcs) {
5189                 /* Fully recompute DDB on first atomic commit */
5190                 dev_priv->wm.distrust_bios_wm = true;
5191         } else {
5192                 /* Easy/common case; just sanitize DDB now if everything off */
5193                 memset(ddb, 0, sizeof(*ddb));
5194         }
5195 }
5196
5197 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5198 {
5199         struct drm_device *dev = crtc->dev;
5200         struct drm_i915_private *dev_priv = to_i915(dev);
5201         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5204         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5205         enum pipe pipe = intel_crtc->pipe;
5206         static const i915_reg_t wm0_pipe_reg[] = {
5207                 [PIPE_A] = WM0_PIPEA_ILK,
5208                 [PIPE_B] = WM0_PIPEB_ILK,
5209                 [PIPE_C] = WM0_PIPEC_IVB,
5210         };
5211
5212         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5213         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5214                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5215
5216         memset(active, 0, sizeof(*active));
5217
5218         active->pipe_enabled = intel_crtc->active;
5219
5220         if (active->pipe_enabled) {
5221                 u32 tmp = hw->wm_pipe[pipe];
5222
5223                 /*
5224                  * For active pipes LP0 watermark is marked as
5225                  * enabled, and LP1+ watermaks as disabled since
5226                  * we can't really reverse compute them in case
5227                  * multiple pipes are active.
5228                  */
5229                 active->wm[0].enable = true;
5230                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5231                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5232                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5233                 active->linetime = hw->wm_linetime[pipe];
5234         } else {
5235                 int level, max_level = ilk_wm_max_level(dev_priv);
5236
5237                 /*
5238                  * For inactive pipes, all watermark levels
5239                  * should be marked as enabled but zeroed,
5240                  * which is what we'd compute them to.
5241                  */
5242                 for (level = 0; level <= max_level; level++)
5243                         active->wm[level].enable = true;
5244         }
5245
5246         intel_crtc->wm.active.ilk = *active;
5247 }
5248
5249 #define _FW_WM(value, plane) \
5250         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5251 #define _FW_WM_VLV(value, plane) \
5252         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5253
5254 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5255                                struct g4x_wm_values *wm)
5256 {
5257         uint32_t tmp;
5258
5259         tmp = I915_READ(DSPFW1);
5260         wm->sr.plane = _FW_WM(tmp, SR);
5261         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5262         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5263         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5264
5265         tmp = I915_READ(DSPFW2);
5266         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5267         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5268         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5269         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5270         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5271         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5272
5273         tmp = I915_READ(DSPFW3);
5274         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5275         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5276         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5277         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5278 }
5279
5280 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5281                                struct vlv_wm_values *wm)
5282 {
5283         enum pipe pipe;
5284         uint32_t tmp;
5285
5286         for_each_pipe(dev_priv, pipe) {
5287                 tmp = I915_READ(VLV_DDL(pipe));
5288
5289                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5290                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5291                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5292                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5293                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5294                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5295                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5296                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5297         }
5298
5299         tmp = I915_READ(DSPFW1);
5300         wm->sr.plane = _FW_WM(tmp, SR);
5301         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5302         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5303         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5304
5305         tmp = I915_READ(DSPFW2);
5306         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5307         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5308         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5309
5310         tmp = I915_READ(DSPFW3);
5311         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5312
5313         if (IS_CHERRYVIEW(dev_priv)) {
5314                 tmp = I915_READ(DSPFW7_CHV);
5315                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5316                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5317
5318                 tmp = I915_READ(DSPFW8_CHV);
5319                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5320                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5321
5322                 tmp = I915_READ(DSPFW9_CHV);
5323                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5324                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5325
5326                 tmp = I915_READ(DSPHOWM);
5327                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5328                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5329                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5330                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5331                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5332                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5333                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5334                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5335                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5336                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5337         } else {
5338                 tmp = I915_READ(DSPFW7);
5339                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5340                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5341
5342                 tmp = I915_READ(DSPHOWM);
5343                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5344                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5345                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5346                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5347                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5348                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5349                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5350         }
5351 }
5352
5353 #undef _FW_WM
5354 #undef _FW_WM_VLV
5355
5356 void g4x_wm_get_hw_state(struct drm_device *dev)
5357 {
5358         struct drm_i915_private *dev_priv = to_i915(dev);
5359         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5360         struct intel_crtc *crtc;
5361
5362         g4x_read_wm_values(dev_priv, wm);
5363
5364         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5365
5366         for_each_intel_crtc(dev, crtc) {
5367                 struct intel_crtc_state *crtc_state =
5368                         to_intel_crtc_state(crtc->base.state);
5369                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5370                 struct g4x_pipe_wm *raw;
5371                 enum pipe pipe = crtc->pipe;
5372                 enum plane_id plane_id;
5373                 int level, max_level;
5374
5375                 active->cxsr = wm->cxsr;
5376                 active->hpll_en = wm->hpll_en;
5377                 active->fbc_en = wm->fbc_en;
5378
5379                 active->sr = wm->sr;
5380                 active->hpll = wm->hpll;
5381
5382                 for_each_plane_id_on_crtc(crtc, plane_id) {
5383                         active->wm.plane[plane_id] =
5384                                 wm->pipe[pipe].plane[plane_id];
5385                 }
5386
5387                 if (wm->cxsr && wm->hpll_en)
5388                         max_level = G4X_WM_LEVEL_HPLL;
5389                 else if (wm->cxsr)
5390                         max_level = G4X_WM_LEVEL_SR;
5391                 else
5392                         max_level = G4X_WM_LEVEL_NORMAL;
5393
5394                 level = G4X_WM_LEVEL_NORMAL;
5395                 raw = &crtc_state->wm.g4x.raw[level];
5396                 for_each_plane_id_on_crtc(crtc, plane_id)
5397                         raw->plane[plane_id] = active->wm.plane[plane_id];
5398
5399                 if (++level > max_level)
5400                         goto out;
5401
5402                 raw = &crtc_state->wm.g4x.raw[level];
5403                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5404                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5405                 raw->plane[PLANE_SPRITE0] = 0;
5406                 raw->fbc = active->sr.fbc;
5407
5408                 if (++level > max_level)
5409                         goto out;
5410
5411                 raw = &crtc_state->wm.g4x.raw[level];
5412                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5413                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5414                 raw->plane[PLANE_SPRITE0] = 0;
5415                 raw->fbc = active->hpll.fbc;
5416
5417         out:
5418                 for_each_plane_id_on_crtc(crtc, plane_id)
5419                         g4x_raw_plane_wm_set(crtc_state, level,
5420                                              plane_id, USHRT_MAX);
5421                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5422
5423                 crtc_state->wm.g4x.optimal = *active;
5424                 crtc_state->wm.g4x.intermediate = *active;
5425
5426                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5427                               pipe_name(pipe),
5428                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5429                               wm->pipe[pipe].plane[PLANE_CURSOR],
5430                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
5431         }
5432
5433         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5434                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5435         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5436                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5437         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5438                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5439 }
5440
5441 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5442 {
5443         struct intel_plane *plane;
5444         struct intel_crtc *crtc;
5445
5446         mutex_lock(&dev_priv->wm.wm_mutex);
5447
5448         for_each_intel_plane(&dev_priv->drm, plane) {
5449                 struct intel_crtc *crtc =
5450                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5451                 struct intel_crtc_state *crtc_state =
5452                         to_intel_crtc_state(crtc->base.state);
5453                 struct intel_plane_state *plane_state =
5454                         to_intel_plane_state(plane->base.state);
5455                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5456                 enum plane_id plane_id = plane->id;
5457                 int level;
5458
5459                 if (plane_state->base.visible)
5460                         continue;
5461
5462                 for (level = 0; level < 3; level++) {
5463                         struct g4x_pipe_wm *raw =
5464                                 &crtc_state->wm.g4x.raw[level];
5465
5466                         raw->plane[plane_id] = 0;
5467                         wm_state->wm.plane[plane_id] = 0;
5468                 }
5469
5470                 if (plane_id == PLANE_PRIMARY) {
5471                         for (level = 0; level < 3; level++) {
5472                                 struct g4x_pipe_wm *raw =
5473                                         &crtc_state->wm.g4x.raw[level];
5474                                 raw->fbc = 0;
5475                         }
5476
5477                         wm_state->sr.fbc = 0;
5478                         wm_state->hpll.fbc = 0;
5479                         wm_state->fbc_en = false;
5480                 }
5481         }
5482
5483         for_each_intel_crtc(&dev_priv->drm, crtc) {
5484                 struct intel_crtc_state *crtc_state =
5485                         to_intel_crtc_state(crtc->base.state);
5486
5487                 crtc_state->wm.g4x.intermediate =
5488                         crtc_state->wm.g4x.optimal;
5489                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5490         }
5491
5492         g4x_program_watermarks(dev_priv);
5493
5494         mutex_unlock(&dev_priv->wm.wm_mutex);
5495 }
5496
5497 void vlv_wm_get_hw_state(struct drm_device *dev)
5498 {
5499         struct drm_i915_private *dev_priv = to_i915(dev);
5500         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5501         struct intel_crtc *crtc;
5502         u32 val;
5503
5504         vlv_read_wm_values(dev_priv, wm);
5505
5506         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5507         wm->level = VLV_WM_LEVEL_PM2;
5508
5509         if (IS_CHERRYVIEW(dev_priv)) {
5510                 mutex_lock(&dev_priv->rps.hw_lock);
5511
5512                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5513                 if (val & DSP_MAXFIFO_PM5_ENABLE)
5514                         wm->level = VLV_WM_LEVEL_PM5;
5515
5516                 /*
5517                  * If DDR DVFS is disabled in the BIOS, Punit
5518                  * will never ack the request. So if that happens
5519                  * assume we don't have to enable/disable DDR DVFS
5520                  * dynamically. To test that just set the REQ_ACK
5521                  * bit to poke the Punit, but don't change the
5522                  * HIGH/LOW bits so that we don't actually change
5523                  * the current state.
5524                  */
5525                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5526                 val |= FORCE_DDR_FREQ_REQ_ACK;
5527                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5528
5529                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5530                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5531                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5532                                       "assuming DDR DVFS is disabled\n");
5533                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5534                 } else {
5535                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5536                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5537                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5538                 }
5539
5540                 mutex_unlock(&dev_priv->rps.hw_lock);
5541         }
5542
5543         for_each_intel_crtc(dev, crtc) {
5544                 struct intel_crtc_state *crtc_state =
5545                         to_intel_crtc_state(crtc->base.state);
5546                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5547                 const struct vlv_fifo_state *fifo_state =
5548                         &crtc_state->wm.vlv.fifo_state;
5549                 enum pipe pipe = crtc->pipe;
5550                 enum plane_id plane_id;
5551                 int level;
5552
5553                 vlv_get_fifo_size(crtc_state);
5554
5555                 active->num_levels = wm->level + 1;
5556                 active->cxsr = wm->cxsr;
5557
5558                 for (level = 0; level < active->num_levels; level++) {
5559                         struct g4x_pipe_wm *raw =
5560                                 &crtc_state->wm.vlv.raw[level];
5561
5562                         active->sr[level].plane = wm->sr.plane;
5563                         active->sr[level].cursor = wm->sr.cursor;
5564
5565                         for_each_plane_id_on_crtc(crtc, plane_id) {
5566                                 active->wm[level].plane[plane_id] =
5567                                         wm->pipe[pipe].plane[plane_id];
5568
5569                                 raw->plane[plane_id] =
5570                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
5571                                                             fifo_state->plane[plane_id]);
5572                         }
5573                 }
5574
5575                 for_each_plane_id_on_crtc(crtc, plane_id)
5576                         vlv_raw_plane_wm_set(crtc_state, level,
5577                                              plane_id, USHRT_MAX);
5578                 vlv_invalidate_wms(crtc, active, level);
5579
5580                 crtc_state->wm.vlv.optimal = *active;
5581                 crtc_state->wm.vlv.intermediate = *active;
5582
5583                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5584                               pipe_name(pipe),
5585                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5586                               wm->pipe[pipe].plane[PLANE_CURSOR],
5587                               wm->pipe[pipe].plane[PLANE_SPRITE0],
5588                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
5589         }
5590
5591         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5592                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5593 }
5594
5595 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5596 {
5597         struct intel_plane *plane;
5598         struct intel_crtc *crtc;
5599
5600         mutex_lock(&dev_priv->wm.wm_mutex);
5601
5602         for_each_intel_plane(&dev_priv->drm, plane) {
5603                 struct intel_crtc *crtc =
5604                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5605                 struct intel_crtc_state *crtc_state =
5606                         to_intel_crtc_state(crtc->base.state);
5607                 struct intel_plane_state *plane_state =
5608                         to_intel_plane_state(plane->base.state);
5609                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5610                 const struct vlv_fifo_state *fifo_state =
5611                         &crtc_state->wm.vlv.fifo_state;
5612                 enum plane_id plane_id = plane->id;
5613                 int level;
5614
5615                 if (plane_state->base.visible)
5616                         continue;
5617
5618                 for (level = 0; level < wm_state->num_levels; level++) {
5619                         struct g4x_pipe_wm *raw =
5620                                 &crtc_state->wm.vlv.raw[level];
5621
5622                         raw->plane[plane_id] = 0;
5623
5624                         wm_state->wm[level].plane[plane_id] =
5625                                 vlv_invert_wm_value(raw->plane[plane_id],
5626                                                     fifo_state->plane[plane_id]);
5627                 }
5628         }
5629
5630         for_each_intel_crtc(&dev_priv->drm, crtc) {
5631                 struct intel_crtc_state *crtc_state =
5632                         to_intel_crtc_state(crtc->base.state);
5633
5634                 crtc_state->wm.vlv.intermediate =
5635                         crtc_state->wm.vlv.optimal;
5636                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5637         }
5638
5639         vlv_program_watermarks(dev_priv);
5640
5641         mutex_unlock(&dev_priv->wm.wm_mutex);
5642 }
5643
5644 void ilk_wm_get_hw_state(struct drm_device *dev)
5645 {
5646         struct drm_i915_private *dev_priv = to_i915(dev);
5647         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5648         struct drm_crtc *crtc;
5649
5650         for_each_crtc(dev, crtc)
5651                 ilk_pipe_wm_get_hw_state(crtc);
5652
5653         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5654         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5655         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5656
5657         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5658         if (INTEL_GEN(dev_priv) >= 7) {
5659                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5660                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5661         }
5662
5663         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5664                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5665                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5666         else if (IS_IVYBRIDGE(dev_priv))
5667                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5668                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5669
5670         hw->enable_fbc_wm =
5671                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5672 }
5673
5674 /**
5675  * intel_update_watermarks - update FIFO watermark values based on current modes
5676  *
5677  * Calculate watermark values for the various WM regs based on current mode
5678  * and plane configuration.
5679  *
5680  * There are several cases to deal with here:
5681  *   - normal (i.e. non-self-refresh)
5682  *   - self-refresh (SR) mode
5683  *   - lines are large relative to FIFO size (buffer can hold up to 2)
5684  *   - lines are small relative to FIFO size (buffer can hold more than 2
5685  *     lines), so need to account for TLB latency
5686  *
5687  *   The normal calculation is:
5688  *     watermark = dotclock * bytes per pixel * latency
5689  *   where latency is platform & configuration dependent (we assume pessimal
5690  *   values here).
5691  *
5692  *   The SR calculation is:
5693  *     watermark = (trunc(latency/line time)+1) * surface width *
5694  *       bytes per pixel
5695  *   where
5696  *     line time = htotal / dotclock
5697  *     surface width = hdisplay for normal plane and 64 for cursor
5698  *   and latency is assumed to be high, as above.
5699  *
5700  * The final value programmed to the register should always be rounded up,
5701  * and include an extra 2 entries to account for clock crossings.
5702  *
5703  * We don't use the sprite, so we can ignore that.  And on Crestline we have
5704  * to set the non-SR watermarks to 8.
5705  */
5706 void intel_update_watermarks(struct intel_crtc *crtc)
5707 {
5708         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5709
5710         if (dev_priv->display.update_wm)
5711                 dev_priv->display.update_wm(crtc);
5712 }
5713
5714 /*
5715  * Lock protecting IPS related data structures
5716  */
5717 DEFINE_SPINLOCK(mchdev_lock);
5718
5719 /* Global for IPS driver to get at the current i915 device. Protected by
5720  * mchdev_lock. */
5721 static struct drm_i915_private *i915_mch_dev;
5722
5723 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5724 {
5725         u16 rgvswctl;
5726
5727         lockdep_assert_held(&mchdev_lock);
5728
5729         rgvswctl = I915_READ16(MEMSWCTL);
5730         if (rgvswctl & MEMCTL_CMD_STS) {
5731                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5732                 return false; /* still busy with another command */
5733         }
5734
5735         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5736                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5737         I915_WRITE16(MEMSWCTL, rgvswctl);
5738         POSTING_READ16(MEMSWCTL);
5739
5740         rgvswctl |= MEMCTL_CMD_STS;
5741         I915_WRITE16(MEMSWCTL, rgvswctl);
5742
5743         return true;
5744 }
5745
5746 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5747 {
5748         u32 rgvmodectl;
5749         u8 fmax, fmin, fstart, vstart;
5750
5751         spin_lock_irq(&mchdev_lock);
5752
5753         rgvmodectl = I915_READ(MEMMODECTL);
5754
5755         /* Enable temp reporting */
5756         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5757         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5758
5759         /* 100ms RC evaluation intervals */
5760         I915_WRITE(RCUPEI, 100000);
5761         I915_WRITE(RCDNEI, 100000);
5762
5763         /* Set max/min thresholds to 90ms and 80ms respectively */
5764         I915_WRITE(RCBMAXAVG, 90000);
5765         I915_WRITE(RCBMINAVG, 80000);
5766
5767         I915_WRITE(MEMIHYST, 1);
5768
5769         /* Set up min, max, and cur for interrupt handling */
5770         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5771         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5772         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5773                 MEMMODE_FSTART_SHIFT;
5774
5775         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5776                 PXVFREQ_PX_SHIFT;
5777
5778         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5779         dev_priv->ips.fstart = fstart;
5780
5781         dev_priv->ips.max_delay = fstart;
5782         dev_priv->ips.min_delay = fmin;
5783         dev_priv->ips.cur_delay = fstart;
5784
5785         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5786                          fmax, fmin, fstart);
5787
5788         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5789
5790         /*
5791          * Interrupts will be enabled in ironlake_irq_postinstall
5792          */
5793
5794         I915_WRITE(VIDSTART, vstart);
5795         POSTING_READ(VIDSTART);
5796
5797         rgvmodectl |= MEMMODE_SWMODE_EN;
5798         I915_WRITE(MEMMODECTL, rgvmodectl);
5799
5800         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5801                 DRM_ERROR("stuck trying to change perf mode\n");
5802         mdelay(1);
5803
5804         ironlake_set_drps(dev_priv, fstart);
5805
5806         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5807                 I915_READ(DDREC) + I915_READ(CSIEC);
5808         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5809         dev_priv->ips.last_count2 = I915_READ(GFXEC);
5810         dev_priv->ips.last_time2 = ktime_get_raw_ns();
5811
5812         spin_unlock_irq(&mchdev_lock);
5813 }
5814
5815 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5816 {
5817         u16 rgvswctl;
5818
5819         spin_lock_irq(&mchdev_lock);
5820
5821         rgvswctl = I915_READ16(MEMSWCTL);
5822
5823         /* Ack interrupts, disable EFC interrupt */
5824         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5825         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5826         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5827         I915_WRITE(DEIIR, DE_PCU_EVENT);
5828         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5829
5830         /* Go back to the starting frequency */
5831         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5832         mdelay(1);
5833         rgvswctl |= MEMCTL_CMD_STS;
5834         I915_WRITE(MEMSWCTL, rgvswctl);
5835         mdelay(1);
5836
5837         spin_unlock_irq(&mchdev_lock);
5838 }
5839
5840 /* There's a funny hw issue where the hw returns all 0 when reading from
5841  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5842  * ourselves, instead of doing a rmw cycle (which might result in us clearing
5843  * all limits and the gpu stuck at whatever frequency it is at atm).
5844  */
5845 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5846 {
5847         u32 limits;
5848
5849         /* Only set the down limit when we've reached the lowest level to avoid
5850          * getting more interrupts, otherwise leave this clear. This prevents a
5851          * race in the hw when coming out of rc6: There's a tiny window where
5852          * the hw runs at the minimal clock before selecting the desired
5853          * frequency, if the down threshold expires in that window we will not
5854          * receive a down interrupt. */
5855         if (IS_GEN9(dev_priv)) {
5856                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5857                 if (val <= dev_priv->rps.min_freq_softlimit)
5858                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5859         } else {
5860                 limits = dev_priv->rps.max_freq_softlimit << 24;
5861                 if (val <= dev_priv->rps.min_freq_softlimit)
5862                         limits |= dev_priv->rps.min_freq_softlimit << 16;
5863         }
5864
5865         return limits;
5866 }
5867
5868 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5869 {
5870         int new_power;
5871         u32 threshold_up = 0, threshold_down = 0; /* in % */
5872         u32 ei_up = 0, ei_down = 0;
5873
5874         new_power = dev_priv->rps.power;
5875         switch (dev_priv->rps.power) {
5876         case LOW_POWER:
5877                 if (val > dev_priv->rps.efficient_freq + 1 &&
5878                     val > dev_priv->rps.cur_freq)
5879                         new_power = BETWEEN;
5880                 break;
5881
5882         case BETWEEN:
5883                 if (val <= dev_priv->rps.efficient_freq &&
5884                     val < dev_priv->rps.cur_freq)
5885                         new_power = LOW_POWER;
5886                 else if (val >= dev_priv->rps.rp0_freq &&
5887                          val > dev_priv->rps.cur_freq)
5888                         new_power = HIGH_POWER;
5889                 break;
5890
5891         case HIGH_POWER:
5892                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5893                     val < dev_priv->rps.cur_freq)
5894                         new_power = BETWEEN;
5895                 break;
5896         }
5897         /* Max/min bins are special */
5898         if (val <= dev_priv->rps.min_freq_softlimit)
5899                 new_power = LOW_POWER;
5900         if (val >= dev_priv->rps.max_freq_softlimit)
5901                 new_power = HIGH_POWER;
5902         if (new_power == dev_priv->rps.power)
5903                 return;
5904
5905         /* Note the units here are not exactly 1us, but 1280ns. */
5906         switch (new_power) {
5907         case LOW_POWER:
5908                 /* Upclock if more than 95% busy over 16ms */
5909                 ei_up = 16000;
5910                 threshold_up = 95;
5911
5912                 /* Downclock if less than 85% busy over 32ms */
5913                 ei_down = 32000;
5914                 threshold_down = 85;
5915                 break;
5916
5917         case BETWEEN:
5918                 /* Upclock if more than 90% busy over 13ms */
5919                 ei_up = 13000;
5920                 threshold_up = 90;
5921
5922                 /* Downclock if less than 75% busy over 32ms */
5923                 ei_down = 32000;
5924                 threshold_down = 75;
5925                 break;
5926
5927         case HIGH_POWER:
5928                 /* Upclock if more than 85% busy over 10ms */
5929                 ei_up = 10000;
5930                 threshold_up = 85;
5931
5932                 /* Downclock if less than 60% busy over 32ms */
5933                 ei_down = 32000;
5934                 threshold_down = 60;
5935                 break;
5936         }
5937
5938         /* When byt can survive without system hang with dynamic
5939          * sw freq adjustments, this restriction can be lifted.
5940          */
5941         if (IS_VALLEYVIEW(dev_priv))
5942                 goto skip_hw_write;
5943
5944         I915_WRITE(GEN6_RP_UP_EI,
5945                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
5946         I915_WRITE(GEN6_RP_UP_THRESHOLD,
5947                    GT_INTERVAL_FROM_US(dev_priv,
5948                                        ei_up * threshold_up / 100));
5949
5950         I915_WRITE(GEN6_RP_DOWN_EI,
5951                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
5952         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5953                    GT_INTERVAL_FROM_US(dev_priv,
5954                                        ei_down * threshold_down / 100));
5955
5956         I915_WRITE(GEN6_RP_CONTROL,
5957                    GEN6_RP_MEDIA_TURBO |
5958                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5959                    GEN6_RP_MEDIA_IS_GFX |
5960                    GEN6_RP_ENABLE |
5961                    GEN6_RP_UP_BUSY_AVG |
5962                    GEN6_RP_DOWN_IDLE_AVG);
5963
5964 skip_hw_write:
5965         dev_priv->rps.power = new_power;
5966         dev_priv->rps.up_threshold = threshold_up;
5967         dev_priv->rps.down_threshold = threshold_down;
5968         dev_priv->rps.last_adj = 0;
5969 }
5970
5971 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5972 {
5973         u32 mask = 0;
5974
5975         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5976         if (val > dev_priv->rps.min_freq_softlimit)
5977                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5978         if (val < dev_priv->rps.max_freq_softlimit)
5979                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5980
5981         mask &= dev_priv->pm_rps_events;
5982
5983         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5984 }
5985
5986 /* gen6_set_rps is called to update the frequency request, but should also be
5987  * called when the range (min_delay and max_delay) is modified so that we can
5988  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5989 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5990 {
5991         /* min/max delay may still have been modified so be sure to
5992          * write the limits value.
5993          */
5994         if (val != dev_priv->rps.cur_freq) {
5995                 gen6_set_rps_thresholds(dev_priv, val);
5996
5997                 if (IS_GEN9(dev_priv))
5998                         I915_WRITE(GEN6_RPNSWREQ,
5999                                    GEN9_FREQUENCY(val));
6000                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6001                         I915_WRITE(GEN6_RPNSWREQ,
6002                                    HSW_FREQUENCY(val));
6003                 else
6004                         I915_WRITE(GEN6_RPNSWREQ,
6005                                    GEN6_FREQUENCY(val) |
6006                                    GEN6_OFFSET(0) |
6007                                    GEN6_AGGRESSIVE_TURBO);
6008         }
6009
6010         /* Make sure we continue to get interrupts
6011          * until we hit the minimum or maximum frequencies.
6012          */
6013         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6014         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6015
6016         dev_priv->rps.cur_freq = val;
6017         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6018
6019         return 0;
6020 }
6021
6022 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6023 {
6024         int err;
6025
6026         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6027                       "Odd GPU freq value\n"))
6028                 val &= ~1;
6029
6030         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6031
6032         if (val != dev_priv->rps.cur_freq) {
6033                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6034                 if (err)
6035                         return err;
6036
6037                 gen6_set_rps_thresholds(dev_priv, val);
6038         }
6039
6040         dev_priv->rps.cur_freq = val;
6041         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6042
6043         return 0;
6044 }
6045
6046 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6047  *
6048  * * If Gfx is Idle, then
6049  * 1. Forcewake Media well.
6050  * 2. Request idle freq.
6051  * 3. Release Forcewake of Media well.
6052 */
6053 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6054 {
6055         u32 val = dev_priv->rps.idle_freq;
6056         int err;
6057
6058         if (dev_priv->rps.cur_freq <= val)
6059                 return;
6060
6061         /* The punit delays the write of the frequency and voltage until it
6062          * determines the GPU is awake. During normal usage we don't want to
6063          * waste power changing the frequency if the GPU is sleeping (rc6).
6064          * However, the GPU and driver is now idle and we do not want to delay
6065          * switching to minimum voltage (reducing power whilst idle) as we do
6066          * not expect to be woken in the near future and so must flush the
6067          * change by waking the device.
6068          *
6069          * We choose to take the media powerwell (either would do to trick the
6070          * punit into committing the voltage change) as that takes a lot less
6071          * power than the render powerwell.
6072          */
6073         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6074         err = valleyview_set_rps(dev_priv, val);
6075         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6076
6077         if (err)
6078                 DRM_ERROR("Failed to set RPS for idle\n");
6079 }
6080
6081 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6082 {
6083         mutex_lock(&dev_priv->rps.hw_lock);
6084         if (dev_priv->rps.enabled) {
6085                 u8 freq;
6086
6087                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6088                         gen6_rps_reset_ei(dev_priv);
6089                 I915_WRITE(GEN6_PMINTRMSK,
6090                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6091
6092                 gen6_enable_rps_interrupts(dev_priv);
6093
6094                 /* Use the user's desired frequency as a guide, but for better
6095                  * performance, jump directly to RPe as our starting frequency.
6096                  */
6097                 freq = max(dev_priv->rps.cur_freq,
6098                            dev_priv->rps.efficient_freq);
6099
6100                 if (intel_set_rps(dev_priv,
6101                                   clamp(freq,
6102                                         dev_priv->rps.min_freq_softlimit,
6103                                         dev_priv->rps.max_freq_softlimit)))
6104                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6105         }
6106         mutex_unlock(&dev_priv->rps.hw_lock);
6107 }
6108
6109 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6110 {
6111         /* Flush our bottom-half so that it does not race with us
6112          * setting the idle frequency and so that it is bounded by
6113          * our rpm wakeref. And then disable the interrupts to stop any
6114          * futher RPS reclocking whilst we are asleep.
6115          */
6116         gen6_disable_rps_interrupts(dev_priv);
6117
6118         mutex_lock(&dev_priv->rps.hw_lock);
6119         if (dev_priv->rps.enabled) {
6120                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6121                         vlv_set_rps_idle(dev_priv);
6122                 else
6123                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6124                 dev_priv->rps.last_adj = 0;
6125                 I915_WRITE(GEN6_PMINTRMSK,
6126                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6127         }
6128         mutex_unlock(&dev_priv->rps.hw_lock);
6129
6130         spin_lock(&dev_priv->rps.client_lock);
6131         while (!list_empty(&dev_priv->rps.clients))
6132                 list_del_init(dev_priv->rps.clients.next);
6133         spin_unlock(&dev_priv->rps.client_lock);
6134 }
6135
6136 void gen6_rps_boost(struct drm_i915_private *dev_priv,
6137                     struct intel_rps_client *rps,
6138                     unsigned long submitted)
6139 {
6140         /* This is intentionally racy! We peek at the state here, then
6141          * validate inside the RPS worker.
6142          */
6143         if (!(dev_priv->gt.awake &&
6144               dev_priv->rps.enabled &&
6145               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
6146                 return;
6147
6148         /* Force a RPS boost (and don't count it against the client) if
6149          * the GPU is severely congested.
6150          */
6151         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
6152                 rps = NULL;
6153
6154         spin_lock(&dev_priv->rps.client_lock);
6155         if (rps == NULL || list_empty(&rps->link)) {
6156                 spin_lock_irq(&dev_priv->irq_lock);
6157                 if (dev_priv->rps.interrupts_enabled) {
6158                         dev_priv->rps.client_boost = true;
6159                         schedule_work(&dev_priv->rps.work);
6160                 }
6161                 spin_unlock_irq(&dev_priv->irq_lock);
6162
6163                 if (rps != NULL) {
6164                         list_add(&rps->link, &dev_priv->rps.clients);
6165                         rps->boosts++;
6166                 } else
6167                         dev_priv->rps.boosts++;
6168         }
6169         spin_unlock(&dev_priv->rps.client_lock);
6170 }
6171
6172 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6173 {
6174         int err;
6175
6176         lockdep_assert_held(&dev_priv->rps.hw_lock);
6177         GEM_BUG_ON(val > dev_priv->rps.max_freq);
6178         GEM_BUG_ON(val < dev_priv->rps.min_freq);
6179
6180         if (!dev_priv->rps.enabled) {
6181                 dev_priv->rps.cur_freq = val;
6182                 return 0;
6183         }
6184
6185         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6186                 err = valleyview_set_rps(dev_priv, val);
6187         else
6188                 err = gen6_set_rps(dev_priv, val);
6189
6190         return err;
6191 }
6192
6193 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6194 {
6195         I915_WRITE(GEN6_RC_CONTROL, 0);
6196         I915_WRITE(GEN9_PG_ENABLE, 0);
6197 }
6198
6199 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6200 {
6201         I915_WRITE(GEN6_RP_CONTROL, 0);
6202 }
6203
6204 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6205 {
6206         I915_WRITE(GEN6_RC_CONTROL, 0);
6207         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6208         I915_WRITE(GEN6_RP_CONTROL, 0);
6209 }
6210
6211 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6212 {
6213         I915_WRITE(GEN6_RC_CONTROL, 0);
6214 }
6215
6216 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6217 {
6218         /* we're doing forcewake before Disabling RC6,
6219          * This what the BIOS expects when going into suspend */
6220         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6221
6222         I915_WRITE(GEN6_RC_CONTROL, 0);
6223
6224         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6225 }
6226
6227 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6228 {
6229         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6230                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6231                         mode = GEN6_RC_CTL_RC6_ENABLE;
6232                 else
6233                         mode = 0;
6234         }
6235         if (HAS_RC6p(dev_priv))
6236                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6237                                  "RC6 %s RC6p %s RC6pp %s\n",
6238                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6239                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6240                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6241
6242         else
6243                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6244                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6245 }
6246
6247 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6248 {
6249         struct i915_ggtt *ggtt = &dev_priv->ggtt;
6250         bool enable_rc6 = true;
6251         unsigned long rc6_ctx_base;
6252         u32 rc_ctl;
6253         int rc_sw_target;
6254
6255         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6256         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6257                        RC_SW_TARGET_STATE_SHIFT;
6258         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6259                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6260                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6261                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6262                          rc_sw_target);
6263
6264         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6265                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6266                 enable_rc6 = false;
6267         }
6268
6269         /*
6270          * The exact context size is not known for BXT, so assume a page size
6271          * for this check.
6272          */
6273         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6274         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6275               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6276                                         ggtt->stolen_reserved_size))) {
6277                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6278                 enable_rc6 = false;
6279         }
6280
6281         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6282               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6283               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6284               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6285                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6286                 enable_rc6 = false;
6287         }
6288
6289         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6290             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6291             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6292                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6293                 enable_rc6 = false;
6294         }
6295
6296         if (!I915_READ(GEN6_GFXPAUSE)) {
6297                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6298                 enable_rc6 = false;
6299         }
6300
6301         if (!I915_READ(GEN8_MISC_CTRL0)) {
6302                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6303                 enable_rc6 = false;
6304         }
6305
6306         return enable_rc6;
6307 }
6308
6309 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6310 {
6311         /* No RC6 before Ironlake and code is gone for ilk. */
6312         if (INTEL_INFO(dev_priv)->gen < 6)
6313                 return 0;
6314
6315         if (!enable_rc6)
6316                 return 0;
6317
6318         if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6319                 DRM_INFO("RC6 disabled by BIOS\n");
6320                 return 0;
6321         }
6322
6323         /* Respect the kernel parameter if it is set */
6324         if (enable_rc6 >= 0) {
6325                 int mask;
6326
6327                 if (HAS_RC6p(dev_priv))
6328                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6329                                INTEL_RC6pp_ENABLE;
6330                 else
6331                         mask = INTEL_RC6_ENABLE;
6332
6333                 if ((enable_rc6 & mask) != enable_rc6)
6334                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6335                                          "(requested %d, valid %d)\n",
6336                                          enable_rc6 & mask, enable_rc6, mask);
6337
6338                 return enable_rc6 & mask;
6339         }
6340
6341         if (IS_IVYBRIDGE(dev_priv))
6342                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6343
6344         return INTEL_RC6_ENABLE;
6345 }
6346
6347 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6348 {
6349         /* All of these values are in units of 50MHz */
6350
6351         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6352         if (IS_GEN9_LP(dev_priv)) {
6353                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6354                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6355                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6356                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
6357         } else {
6358                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6359                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
6360                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6361                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6362         }
6363         /* hw_max = RP0 until we check for overclocking */
6364         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6365
6366         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6367         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6368             IS_GEN9_BC(dev_priv)) {
6369                 u32 ddcc_status = 0;
6370
6371                 if (sandybridge_pcode_read(dev_priv,
6372                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6373                                            &ddcc_status) == 0)
6374                         dev_priv->rps.efficient_freq =
6375                                 clamp_t(u8,
6376                                         ((ddcc_status >> 8) & 0xff),
6377                                         dev_priv->rps.min_freq,
6378                                         dev_priv->rps.max_freq);
6379         }
6380
6381         if (IS_GEN9_BC(dev_priv)) {
6382                 /* Store the frequency values in 16.66 MHZ units, which is
6383                  * the natural hardware unit for SKL
6384                  */
6385                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6386                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6387                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6388                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6389                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6390         }
6391 }
6392
6393 static void reset_rps(struct drm_i915_private *dev_priv,
6394                       int (*set)(struct drm_i915_private *, u8))
6395 {
6396         u8 freq = dev_priv->rps.cur_freq;
6397
6398         /* force a reset */
6399         dev_priv->rps.power = -1;
6400         dev_priv->rps.cur_freq = -1;
6401
6402         if (set(dev_priv, freq))
6403                 DRM_ERROR("Failed to reset RPS to initial values\n");
6404 }
6405
6406 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6407 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6408 {
6409         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6410
6411         /* Program defaults and thresholds for RPS*/
6412         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6413                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6414
6415         /* 1 second timeout*/
6416         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6417                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6418
6419         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6420
6421         /* Leaning on the below call to gen6_set_rps to program/setup the
6422          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6423          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6424         reset_rps(dev_priv, gen6_set_rps);
6425
6426         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6427 }
6428
6429 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6430 {
6431         struct intel_engine_cs *engine;
6432         enum intel_engine_id id;
6433         uint32_t rc6_mask = 0;
6434
6435         /* 1a: Software RC state - RC0 */
6436         I915_WRITE(GEN6_RC_STATE, 0);
6437
6438         /* 1b: Get forcewake during program sequence. Although the driver
6439          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6440         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6441
6442         /* 2a: Disable RC states. */
6443         I915_WRITE(GEN6_RC_CONTROL, 0);
6444
6445         /* 2b: Program RC6 thresholds.*/
6446
6447         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6448         if (IS_SKYLAKE(dev_priv))
6449                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6450         else
6451                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6452         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6453         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6454         for_each_engine(engine, dev_priv, id)
6455                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6456
6457         if (HAS_GUC(dev_priv))
6458                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6459
6460         I915_WRITE(GEN6_RC_SLEEP, 0);
6461
6462         /* 2c: Program Coarse Power Gating Policies. */
6463         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6464         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6465
6466         /* 3a: Enable RC6 */
6467         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6468                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6469         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6470         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6471         I915_WRITE(GEN6_RC_CONTROL,
6472                    GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
6473
6474         /*
6475          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6476          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6477          */
6478         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6479                 I915_WRITE(GEN9_PG_ENABLE, 0);
6480         else
6481                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6482                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6483
6484         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6485 }
6486
6487 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6488 {
6489         struct intel_engine_cs *engine;
6490         enum intel_engine_id id;
6491         uint32_t rc6_mask = 0;
6492
6493         /* 1a: Software RC state - RC0 */
6494         I915_WRITE(GEN6_RC_STATE, 0);
6495
6496         /* 1c & 1d: Get forcewake during program sequence. Although the driver
6497          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6498         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6499
6500         /* 2a: Disable RC states. */
6501         I915_WRITE(GEN6_RC_CONTROL, 0);
6502
6503         /* 2b: Program RC6 thresholds.*/
6504         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6505         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6506         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6507         for_each_engine(engine, dev_priv, id)
6508                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6509         I915_WRITE(GEN6_RC_SLEEP, 0);
6510         if (IS_BROADWELL(dev_priv))
6511                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6512         else
6513                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6514
6515         /* 3: Enable RC6 */
6516         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6517                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6518         intel_print_rc6_info(dev_priv, rc6_mask);
6519         if (IS_BROADWELL(dev_priv))
6520                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6521                                 GEN7_RC_CTL_TO_MODE |
6522                                 rc6_mask);
6523         else
6524                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6525                                 GEN6_RC_CTL_EI_MODE(1) |
6526                                 rc6_mask);
6527
6528         /* 4 Program defaults and thresholds for RPS*/
6529         I915_WRITE(GEN6_RPNSWREQ,
6530                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6531         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6532                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6533         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6534         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6535
6536         /* Docs recommend 900MHz, and 300 MHz respectively */
6537         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6538                    dev_priv->rps.max_freq_softlimit << 24 |
6539                    dev_priv->rps.min_freq_softlimit << 16);
6540
6541         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6542         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6543         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6544         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6545
6546         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6547
6548         /* 5: Enable RPS */
6549         I915_WRITE(GEN6_RP_CONTROL,
6550                    GEN6_RP_MEDIA_TURBO |
6551                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6552                    GEN6_RP_MEDIA_IS_GFX |
6553                    GEN6_RP_ENABLE |
6554                    GEN6_RP_UP_BUSY_AVG |
6555                    GEN6_RP_DOWN_IDLE_AVG);
6556
6557         /* 6: Ring frequency + overclocking (our driver does this later */
6558
6559         reset_rps(dev_priv, gen6_set_rps);
6560
6561         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6562 }
6563
6564 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6565 {
6566         struct intel_engine_cs *engine;
6567         enum intel_engine_id id;
6568         u32 rc6vids, rc6_mask = 0;
6569         u32 gtfifodbg;
6570         int rc6_mode;
6571         int ret;
6572
6573         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6574
6575         /* Here begins a magic sequence of register writes to enable
6576          * auto-downclocking.
6577          *
6578          * Perhaps there might be some value in exposing these to
6579          * userspace...
6580          */
6581         I915_WRITE(GEN6_RC_STATE, 0);
6582
6583         /* Clear the DBG now so we don't confuse earlier errors */
6584         gtfifodbg = I915_READ(GTFIFODBG);
6585         if (gtfifodbg) {
6586                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6587                 I915_WRITE(GTFIFODBG, gtfifodbg);
6588         }
6589
6590         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6591
6592         /* disable the counters and set deterministic thresholds */
6593         I915_WRITE(GEN6_RC_CONTROL, 0);
6594
6595         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6596         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6597         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6598         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6599         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6600
6601         for_each_engine(engine, dev_priv, id)
6602                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6603
6604         I915_WRITE(GEN6_RC_SLEEP, 0);
6605         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6606         if (IS_IVYBRIDGE(dev_priv))
6607                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6608         else
6609                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6610         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6611         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6612
6613         /* Check if we are enabling RC6 */
6614         rc6_mode = intel_enable_rc6();
6615         if (rc6_mode & INTEL_RC6_ENABLE)
6616                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6617
6618         /* We don't use those on Haswell */
6619         if (!IS_HASWELL(dev_priv)) {
6620                 if (rc6_mode & INTEL_RC6p_ENABLE)
6621                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6622
6623                 if (rc6_mode & INTEL_RC6pp_ENABLE)
6624                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6625         }
6626
6627         intel_print_rc6_info(dev_priv, rc6_mask);
6628
6629         I915_WRITE(GEN6_RC_CONTROL,
6630                    rc6_mask |
6631                    GEN6_RC_CTL_EI_MODE(1) |
6632                    GEN6_RC_CTL_HW_ENABLE);
6633
6634         /* Power down if completely idle for over 50ms */
6635         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6636         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6637
6638         reset_rps(dev_priv, gen6_set_rps);
6639
6640         rc6vids = 0;
6641         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6642         if (IS_GEN6(dev_priv) && ret) {
6643                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6644         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6645                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6646                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6647                 rc6vids &= 0xffff00;
6648                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6649                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6650                 if (ret)
6651                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6652         }
6653
6654         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6655 }
6656
6657 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6658 {
6659         int min_freq = 15;
6660         unsigned int gpu_freq;
6661         unsigned int max_ia_freq, min_ring_freq;
6662         unsigned int max_gpu_freq, min_gpu_freq;
6663         int scaling_factor = 180;
6664         struct cpufreq_policy *policy;
6665
6666         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6667
6668         policy = cpufreq_cpu_get(0);
6669         if (policy) {
6670                 max_ia_freq = policy->cpuinfo.max_freq;
6671                 cpufreq_cpu_put(policy);
6672         } else {
6673                 /*
6674                  * Default to measured freq if none found, PCU will ensure we
6675                  * don't go over
6676                  */
6677                 max_ia_freq = tsc_khz;
6678         }
6679
6680         /* Convert from kHz to MHz */
6681         max_ia_freq /= 1000;
6682
6683         min_ring_freq = I915_READ(DCLK) & 0xf;
6684         /* convert DDR frequency from units of 266.6MHz to bandwidth */
6685         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6686
6687         if (IS_GEN9_BC(dev_priv)) {
6688                 /* Convert GT frequency to 50 HZ units */
6689                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6690                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6691         } else {
6692                 min_gpu_freq = dev_priv->rps.min_freq;
6693                 max_gpu_freq = dev_priv->rps.max_freq;
6694         }
6695
6696         /*
6697          * For each potential GPU frequency, load a ring frequency we'd like
6698          * to use for memory access.  We do this by specifying the IA frequency
6699          * the PCU should use as a reference to determine the ring frequency.
6700          */
6701         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6702                 int diff = max_gpu_freq - gpu_freq;
6703                 unsigned int ia_freq = 0, ring_freq = 0;
6704
6705                 if (IS_GEN9_BC(dev_priv)) {
6706                         /*
6707                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
6708                          * No floor required for ring frequency on SKL.
6709                          */
6710                         ring_freq = gpu_freq;
6711                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6712                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
6713                         ring_freq = max(min_ring_freq, gpu_freq);
6714                 } else if (IS_HASWELL(dev_priv)) {
6715                         ring_freq = mult_frac(gpu_freq, 5, 4);
6716                         ring_freq = max(min_ring_freq, ring_freq);
6717                         /* leave ia_freq as the default, chosen by cpufreq */
6718                 } else {
6719                         /* On older processors, there is no separate ring
6720                          * clock domain, so in order to boost the bandwidth
6721                          * of the ring, we need to upclock the CPU (ia_freq).
6722                          *
6723                          * For GPU frequencies less than 750MHz,
6724                          * just use the lowest ring freq.
6725                          */
6726                         if (gpu_freq < min_freq)
6727                                 ia_freq = 800;
6728                         else
6729                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6730                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6731                 }
6732
6733                 sandybridge_pcode_write(dev_priv,
6734                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6735                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6736                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6737                                         gpu_freq);
6738         }
6739 }
6740
6741 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6742 {
6743         u32 val, rp0;
6744
6745         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6746
6747         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6748         case 8:
6749                 /* (2 * 4) config */
6750                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6751                 break;
6752         case 12:
6753                 /* (2 * 6) config */
6754                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6755                 break;
6756         case 16:
6757                 /* (2 * 8) config */
6758         default:
6759                 /* Setting (2 * 8) Min RP0 for any other combination */
6760                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6761                 break;
6762         }
6763
6764         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6765
6766         return rp0;
6767 }
6768
6769 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6770 {
6771         u32 val, rpe;
6772
6773         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6774         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6775
6776         return rpe;
6777 }
6778
6779 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6780 {
6781         u32 val, rp1;
6782
6783         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6784         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6785
6786         return rp1;
6787 }
6788
6789 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6790 {
6791         u32 val, rpn;
6792
6793         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6794         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6795                        FB_GFX_FREQ_FUSE_MASK);
6796
6797         return rpn;
6798 }
6799
6800 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6801 {
6802         u32 val, rp1;
6803
6804         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6805
6806         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6807
6808         return rp1;
6809 }
6810
6811 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6812 {
6813         u32 val, rp0;
6814
6815         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6816
6817         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6818         /* Clamp to max */
6819         rp0 = min_t(u32, rp0, 0xea);
6820
6821         return rp0;
6822 }
6823
6824 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6825 {
6826         u32 val, rpe;
6827
6828         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6829         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6830         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6831         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6832
6833         return rpe;
6834 }
6835
6836 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6837 {
6838         u32 val;
6839
6840         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6841         /*
6842          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6843          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6844          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6845          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6846          * to make sure it matches what Punit accepts.
6847          */
6848         return max_t(u32, val, 0xc0);
6849 }
6850
6851 /* Check that the pctx buffer wasn't move under us. */
6852 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6853 {
6854         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6855
6856         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6857                              dev_priv->vlv_pctx->stolen->start);
6858 }
6859
6860
6861 /* Check that the pcbr address is not empty. */
6862 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6863 {
6864         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6865
6866         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6867 }
6868
6869 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6870 {
6871         struct i915_ggtt *ggtt = &dev_priv->ggtt;
6872         unsigned long pctx_paddr, paddr;
6873         u32 pcbr;
6874         int pctx_size = 32*1024;
6875
6876         pcbr = I915_READ(VLV_PCBR);
6877         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6878                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6879                 paddr = (dev_priv->mm.stolen_base +
6880                          (ggtt->stolen_size - pctx_size));
6881
6882                 pctx_paddr = (paddr & (~4095));
6883                 I915_WRITE(VLV_PCBR, pctx_paddr);
6884         }
6885
6886         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6887 }
6888
6889 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6890 {
6891         struct drm_i915_gem_object *pctx;
6892         unsigned long pctx_paddr;
6893         u32 pcbr;
6894         int pctx_size = 24*1024;
6895
6896         pcbr = I915_READ(VLV_PCBR);
6897         if (pcbr) {
6898                 /* BIOS set it up already, grab the pre-alloc'd space */
6899                 int pcbr_offset;
6900
6901                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6902                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6903                                                                       pcbr_offset,
6904                                                                       I915_GTT_OFFSET_NONE,
6905                                                                       pctx_size);
6906                 goto out;
6907         }
6908
6909         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6910
6911         /*
6912          * From the Gunit register HAS:
6913          * The Gfx driver is expected to program this register and ensure
6914          * proper allocation within Gfx stolen memory.  For example, this
6915          * register should be programmed such than the PCBR range does not
6916          * overlap with other ranges, such as the frame buffer, protected
6917          * memory, or any other relevant ranges.
6918          */
6919         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6920         if (!pctx) {
6921                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6922                 goto out;
6923         }
6924
6925         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6926         I915_WRITE(VLV_PCBR, pctx_paddr);
6927
6928 out:
6929         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6930         dev_priv->vlv_pctx = pctx;
6931 }
6932
6933 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6934 {
6935         if (WARN_ON(!dev_priv->vlv_pctx))
6936                 return;
6937
6938         i915_gem_object_put(dev_priv->vlv_pctx);
6939         dev_priv->vlv_pctx = NULL;
6940 }
6941
6942 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6943 {
6944         dev_priv->rps.gpll_ref_freq =
6945                 vlv_get_cck_clock(dev_priv, "GPLL ref",
6946                                   CCK_GPLL_CLOCK_CONTROL,
6947                                   dev_priv->czclk_freq);
6948
6949         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6950                          dev_priv->rps.gpll_ref_freq);
6951 }
6952
6953 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6954 {
6955         u32 val;
6956
6957         valleyview_setup_pctx(dev_priv);
6958
6959         vlv_init_gpll_ref_freq(dev_priv);
6960
6961         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6962         switch ((val >> 6) & 3) {
6963         case 0:
6964         case 1:
6965                 dev_priv->mem_freq = 800;
6966                 break;
6967         case 2:
6968                 dev_priv->mem_freq = 1066;
6969                 break;
6970         case 3:
6971                 dev_priv->mem_freq = 1333;
6972                 break;
6973         }
6974         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6975
6976         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6977         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6978         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6979                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6980                          dev_priv->rps.max_freq);
6981
6982         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6983         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6984                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6985                          dev_priv->rps.efficient_freq);
6986
6987         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6988         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6989                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6990                          dev_priv->rps.rp1_freq);
6991
6992         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6993         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6994                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6995                          dev_priv->rps.min_freq);
6996 }
6997
6998 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6999 {
7000         u32 val;
7001
7002         cherryview_setup_pctx(dev_priv);
7003
7004         vlv_init_gpll_ref_freq(dev_priv);
7005
7006         mutex_lock(&dev_priv->sb_lock);
7007         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7008         mutex_unlock(&dev_priv->sb_lock);
7009
7010         switch ((val >> 2) & 0x7) {
7011         case 3:
7012                 dev_priv->mem_freq = 2000;
7013                 break;
7014         default:
7015                 dev_priv->mem_freq = 1600;
7016                 break;
7017         }
7018         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7019
7020         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
7021         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7022         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7023                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7024                          dev_priv->rps.max_freq);
7025
7026         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7027         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7028                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7029                          dev_priv->rps.efficient_freq);
7030
7031         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
7032         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7033                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7034                          dev_priv->rps.rp1_freq);
7035
7036         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7037         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7038                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7039                          dev_priv->rps.min_freq);
7040
7041         WARN_ONCE((dev_priv->rps.max_freq |
7042                    dev_priv->rps.efficient_freq |
7043                    dev_priv->rps.rp1_freq |
7044                    dev_priv->rps.min_freq) & 1,
7045                   "Odd GPU freq values\n");
7046 }
7047
7048 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7049 {
7050         valleyview_cleanup_pctx(dev_priv);
7051 }
7052
7053 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7054 {
7055         struct intel_engine_cs *engine;
7056         enum intel_engine_id id;
7057         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7058
7059         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7060
7061         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7062                                              GT_FIFO_FREE_ENTRIES_CHV);
7063         if (gtfifodbg) {
7064                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7065                                  gtfifodbg);
7066                 I915_WRITE(GTFIFODBG, gtfifodbg);
7067         }
7068
7069         cherryview_check_pctx(dev_priv);
7070
7071         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7072          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7073         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7074
7075         /*  Disable RC states. */
7076         I915_WRITE(GEN6_RC_CONTROL, 0);
7077
7078         /* 2a: Program RC6 thresholds.*/
7079         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7080         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7081         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7082
7083         for_each_engine(engine, dev_priv, id)
7084                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7085         I915_WRITE(GEN6_RC_SLEEP, 0);
7086
7087         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7088         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7089
7090         /* allows RC6 residency counter to work */
7091         I915_WRITE(VLV_COUNTER_CONTROL,
7092                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7093                                       VLV_MEDIA_RC6_COUNT_EN |
7094                                       VLV_RENDER_RC6_COUNT_EN));
7095
7096         /* For now we assume BIOS is allocating and populating the PCBR  */
7097         pcbr = I915_READ(VLV_PCBR);
7098
7099         /* 3: Enable RC6 */
7100         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
7101             (pcbr >> VLV_PCBR_ADDR_SHIFT))
7102                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7103
7104         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7105
7106         /* 4 Program defaults and thresholds for RPS*/
7107         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7108         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7109         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7110         I915_WRITE(GEN6_RP_UP_EI, 66000);
7111         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7112
7113         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7114
7115         /* 5: Enable RPS */
7116         I915_WRITE(GEN6_RP_CONTROL,
7117                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7118                    GEN6_RP_MEDIA_IS_GFX |
7119                    GEN6_RP_ENABLE |
7120                    GEN6_RP_UP_BUSY_AVG |
7121                    GEN6_RP_DOWN_IDLE_AVG);
7122
7123         /* Setting Fixed Bias */
7124         val = VLV_OVERRIDE_EN |
7125                   VLV_SOC_TDP_EN |
7126                   CHV_BIAS_CPU_50_SOC_50;
7127         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7128
7129         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7130
7131         /* RPS code assumes GPLL is used */
7132         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7133
7134         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7135         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7136
7137         reset_rps(dev_priv, valleyview_set_rps);
7138
7139         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7140 }
7141
7142 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7143 {
7144         struct intel_engine_cs *engine;
7145         enum intel_engine_id id;
7146         u32 gtfifodbg, val, rc6_mode = 0;
7147
7148         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7149
7150         valleyview_check_pctx(dev_priv);
7151
7152         gtfifodbg = I915_READ(GTFIFODBG);
7153         if (gtfifodbg) {
7154                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7155                                  gtfifodbg);
7156                 I915_WRITE(GTFIFODBG, gtfifodbg);
7157         }
7158
7159         /* If VLV, Forcewake all wells, else re-direct to regular path */
7160         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7161
7162         /*  Disable RC states. */
7163         I915_WRITE(GEN6_RC_CONTROL, 0);
7164
7165         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7166         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7167         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7168         I915_WRITE(GEN6_RP_UP_EI, 66000);
7169         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7170
7171         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7172
7173         I915_WRITE(GEN6_RP_CONTROL,
7174                    GEN6_RP_MEDIA_TURBO |
7175                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7176                    GEN6_RP_MEDIA_IS_GFX |
7177                    GEN6_RP_ENABLE |
7178                    GEN6_RP_UP_BUSY_AVG |
7179                    GEN6_RP_DOWN_IDLE_CONT);
7180
7181         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7182         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7183         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7184
7185         for_each_engine(engine, dev_priv, id)
7186                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7187
7188         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7189
7190         /* allows RC6 residency counter to work */
7191         I915_WRITE(VLV_COUNTER_CONTROL,
7192                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7193                                       VLV_MEDIA_RC0_COUNT_EN |
7194                                       VLV_RENDER_RC0_COUNT_EN |
7195                                       VLV_MEDIA_RC6_COUNT_EN |
7196                                       VLV_RENDER_RC6_COUNT_EN));
7197
7198         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7199                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7200
7201         intel_print_rc6_info(dev_priv, rc6_mode);
7202
7203         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7204
7205         /* Setting Fixed Bias */
7206         val = VLV_OVERRIDE_EN |
7207                   VLV_SOC_TDP_EN |
7208                   VLV_BIAS_CPU_125_SOC_875;
7209         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7210
7211         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7212
7213         /* RPS code assumes GPLL is used */
7214         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7215
7216         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7217         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7218
7219         reset_rps(dev_priv, valleyview_set_rps);
7220
7221         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7222 }
7223
7224 static unsigned long intel_pxfreq(u32 vidfreq)
7225 {
7226         unsigned long freq;
7227         int div = (vidfreq & 0x3f0000) >> 16;
7228         int post = (vidfreq & 0x3000) >> 12;
7229         int pre = (vidfreq & 0x7);
7230
7231         if (!pre)
7232                 return 0;
7233
7234         freq = ((div * 133333) / ((1<<post) * pre));
7235
7236         return freq;
7237 }
7238
7239 static const struct cparams {
7240         u16 i;
7241         u16 t;
7242         u16 m;
7243         u16 c;
7244 } cparams[] = {
7245         { 1, 1333, 301, 28664 },
7246         { 1, 1066, 294, 24460 },
7247         { 1, 800, 294, 25192 },
7248         { 0, 1333, 276, 27605 },
7249         { 0, 1066, 276, 27605 },
7250         { 0, 800, 231, 23784 },
7251 };
7252
7253 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7254 {
7255         u64 total_count, diff, ret;
7256         u32 count1, count2, count3, m = 0, c = 0;
7257         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7258         int i;
7259
7260         lockdep_assert_held(&mchdev_lock);
7261
7262         diff1 = now - dev_priv->ips.last_time1;
7263
7264         /* Prevent division-by-zero if we are asking too fast.
7265          * Also, we don't get interesting results if we are polling
7266          * faster than once in 10ms, so just return the saved value
7267          * in such cases.
7268          */
7269         if (diff1 <= 10)
7270                 return dev_priv->ips.chipset_power;
7271
7272         count1 = I915_READ(DMIEC);
7273         count2 = I915_READ(DDREC);
7274         count3 = I915_READ(CSIEC);
7275
7276         total_count = count1 + count2 + count3;
7277
7278         /* FIXME: handle per-counter overflow */
7279         if (total_count < dev_priv->ips.last_count1) {
7280                 diff = ~0UL - dev_priv->ips.last_count1;
7281                 diff += total_count;
7282         } else {
7283                 diff = total_count - dev_priv->ips.last_count1;
7284         }
7285
7286         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7287                 if (cparams[i].i == dev_priv->ips.c_m &&
7288                     cparams[i].t == dev_priv->ips.r_t) {
7289                         m = cparams[i].m;
7290                         c = cparams[i].c;
7291                         break;
7292                 }
7293         }
7294
7295         diff = div_u64(diff, diff1);
7296         ret = ((m * diff) + c);
7297         ret = div_u64(ret, 10);
7298
7299         dev_priv->ips.last_count1 = total_count;
7300         dev_priv->ips.last_time1 = now;
7301
7302         dev_priv->ips.chipset_power = ret;
7303
7304         return ret;
7305 }
7306
7307 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7308 {
7309         unsigned long val;
7310
7311         if (INTEL_INFO(dev_priv)->gen != 5)
7312                 return 0;
7313
7314         spin_lock_irq(&mchdev_lock);
7315
7316         val = __i915_chipset_val(dev_priv);
7317
7318         spin_unlock_irq(&mchdev_lock);
7319
7320         return val;
7321 }
7322
7323 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7324 {
7325         unsigned long m, x, b;
7326         u32 tsfs;
7327
7328         tsfs = I915_READ(TSFS);
7329
7330         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7331         x = I915_READ8(TR1);
7332
7333         b = tsfs & TSFS_INTR_MASK;
7334
7335         return ((m * x) / 127) - b;
7336 }
7337
7338 static int _pxvid_to_vd(u8 pxvid)
7339 {
7340         if (pxvid == 0)
7341                 return 0;
7342
7343         if (pxvid >= 8 && pxvid < 31)
7344                 pxvid = 31;
7345
7346         return (pxvid + 2) * 125;
7347 }
7348
7349 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7350 {
7351         const int vd = _pxvid_to_vd(pxvid);
7352         const int vm = vd - 1125;
7353
7354         if (INTEL_INFO(dev_priv)->is_mobile)
7355                 return vm > 0 ? vm : 0;
7356
7357         return vd;
7358 }
7359
7360 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7361 {
7362         u64 now, diff, diffms;
7363         u32 count;
7364
7365         lockdep_assert_held(&mchdev_lock);
7366
7367         now = ktime_get_raw_ns();
7368         diffms = now - dev_priv->ips.last_time2;
7369         do_div(diffms, NSEC_PER_MSEC);
7370
7371         /* Don't divide by 0 */
7372         if (!diffms)
7373                 return;
7374
7375         count = I915_READ(GFXEC);
7376
7377         if (count < dev_priv->ips.last_count2) {
7378                 diff = ~0UL - dev_priv->ips.last_count2;
7379                 diff += count;
7380         } else {
7381                 diff = count - dev_priv->ips.last_count2;
7382         }
7383
7384         dev_priv->ips.last_count2 = count;
7385         dev_priv->ips.last_time2 = now;
7386
7387         /* More magic constants... */
7388         diff = diff * 1181;
7389         diff = div_u64(diff, diffms * 10);
7390         dev_priv->ips.gfx_power = diff;
7391 }
7392
7393 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7394 {
7395         if (INTEL_INFO(dev_priv)->gen != 5)
7396                 return;
7397
7398         spin_lock_irq(&mchdev_lock);
7399
7400         __i915_update_gfx_val(dev_priv);
7401
7402         spin_unlock_irq(&mchdev_lock);
7403 }
7404
7405 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7406 {
7407         unsigned long t, corr, state1, corr2, state2;
7408         u32 pxvid, ext_v;
7409
7410         lockdep_assert_held(&mchdev_lock);
7411
7412         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7413         pxvid = (pxvid >> 24) & 0x7f;
7414         ext_v = pvid_to_extvid(dev_priv, pxvid);
7415
7416         state1 = ext_v;
7417
7418         t = i915_mch_val(dev_priv);
7419
7420         /* Revel in the empirically derived constants */
7421
7422         /* Correction factor in 1/100000 units */
7423         if (t > 80)
7424                 corr = ((t * 2349) + 135940);
7425         else if (t >= 50)
7426                 corr = ((t * 964) + 29317);
7427         else /* < 50 */
7428                 corr = ((t * 301) + 1004);
7429
7430         corr = corr * ((150142 * state1) / 10000 - 78642);
7431         corr /= 100000;
7432         corr2 = (corr * dev_priv->ips.corr);
7433
7434         state2 = (corr2 * state1) / 10000;
7435         state2 /= 100; /* convert to mW */
7436
7437         __i915_update_gfx_val(dev_priv);
7438
7439         return dev_priv->ips.gfx_power + state2;
7440 }
7441
7442 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7443 {
7444         unsigned long val;
7445
7446         if (INTEL_INFO(dev_priv)->gen != 5)
7447                 return 0;
7448
7449         spin_lock_irq(&mchdev_lock);
7450
7451         val = __i915_gfx_val(dev_priv);
7452
7453         spin_unlock_irq(&mchdev_lock);
7454
7455         return val;
7456 }
7457
7458 /**
7459  * i915_read_mch_val - return value for IPS use
7460  *
7461  * Calculate and return a value for the IPS driver to use when deciding whether
7462  * we have thermal and power headroom to increase CPU or GPU power budget.
7463  */
7464 unsigned long i915_read_mch_val(void)
7465 {
7466         struct drm_i915_private *dev_priv;
7467         unsigned long chipset_val, graphics_val, ret = 0;
7468
7469         spin_lock_irq(&mchdev_lock);
7470         if (!i915_mch_dev)
7471                 goto out_unlock;
7472         dev_priv = i915_mch_dev;
7473
7474         chipset_val = __i915_chipset_val(dev_priv);
7475         graphics_val = __i915_gfx_val(dev_priv);
7476
7477         ret = chipset_val + graphics_val;
7478
7479 out_unlock:
7480         spin_unlock_irq(&mchdev_lock);
7481
7482         return ret;
7483 }
7484 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7485
7486 /**
7487  * i915_gpu_raise - raise GPU frequency limit
7488  *
7489  * Raise the limit; IPS indicates we have thermal headroom.
7490  */
7491 bool i915_gpu_raise(void)
7492 {
7493         struct drm_i915_private *dev_priv;
7494         bool ret = true;
7495
7496         spin_lock_irq(&mchdev_lock);
7497         if (!i915_mch_dev) {
7498                 ret = false;
7499                 goto out_unlock;
7500         }
7501         dev_priv = i915_mch_dev;
7502
7503         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7504                 dev_priv->ips.max_delay--;
7505
7506 out_unlock:
7507         spin_unlock_irq(&mchdev_lock);
7508
7509         return ret;
7510 }
7511 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7512
7513 /**
7514  * i915_gpu_lower - lower GPU frequency limit
7515  *
7516  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7517  * frequency maximum.
7518  */
7519 bool i915_gpu_lower(void)
7520 {
7521         struct drm_i915_private *dev_priv;
7522         bool ret = true;
7523
7524         spin_lock_irq(&mchdev_lock);
7525         if (!i915_mch_dev) {
7526                 ret = false;
7527                 goto out_unlock;
7528         }
7529         dev_priv = i915_mch_dev;
7530
7531         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7532                 dev_priv->ips.max_delay++;
7533
7534 out_unlock:
7535         spin_unlock_irq(&mchdev_lock);
7536
7537         return ret;
7538 }
7539 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7540
7541 /**
7542  * i915_gpu_busy - indicate GPU business to IPS
7543  *
7544  * Tell the IPS driver whether or not the GPU is busy.
7545  */
7546 bool i915_gpu_busy(void)
7547 {
7548         bool ret = false;
7549
7550         spin_lock_irq(&mchdev_lock);
7551         if (i915_mch_dev)
7552                 ret = i915_mch_dev->gt.awake;
7553         spin_unlock_irq(&mchdev_lock);
7554
7555         return ret;
7556 }
7557 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7558
7559 /**
7560  * i915_gpu_turbo_disable - disable graphics turbo
7561  *
7562  * Disable graphics turbo by resetting the max frequency and setting the
7563  * current frequency to the default.
7564  */
7565 bool i915_gpu_turbo_disable(void)
7566 {
7567         struct drm_i915_private *dev_priv;
7568         bool ret = true;
7569
7570         spin_lock_irq(&mchdev_lock);
7571         if (!i915_mch_dev) {
7572                 ret = false;
7573                 goto out_unlock;
7574         }
7575         dev_priv = i915_mch_dev;
7576
7577         dev_priv->ips.max_delay = dev_priv->ips.fstart;
7578
7579         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7580                 ret = false;
7581
7582 out_unlock:
7583         spin_unlock_irq(&mchdev_lock);
7584
7585         return ret;
7586 }
7587 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7588
7589 /**
7590  * Tells the intel_ips driver that the i915 driver is now loaded, if
7591  * IPS got loaded first.
7592  *
7593  * This awkward dance is so that neither module has to depend on the
7594  * other in order for IPS to do the appropriate communication of
7595  * GPU turbo limits to i915.
7596  */
7597 static void
7598 ips_ping_for_i915_load(void)
7599 {
7600         void (*link)(void);
7601
7602         link = symbol_get(ips_link_to_i915_driver);
7603         if (link) {
7604                 link();
7605                 symbol_put(ips_link_to_i915_driver);
7606         }
7607 }
7608
7609 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7610 {
7611         /* We only register the i915 ips part with intel-ips once everything is
7612          * set up, to avoid intel-ips sneaking in and reading bogus values. */
7613         spin_lock_irq(&mchdev_lock);
7614         i915_mch_dev = dev_priv;
7615         spin_unlock_irq(&mchdev_lock);
7616
7617         ips_ping_for_i915_load();
7618 }
7619
7620 void intel_gpu_ips_teardown(void)
7621 {
7622         spin_lock_irq(&mchdev_lock);
7623         i915_mch_dev = NULL;
7624         spin_unlock_irq(&mchdev_lock);
7625 }
7626
7627 static void intel_init_emon(struct drm_i915_private *dev_priv)
7628 {
7629         u32 lcfuse;
7630         u8 pxw[16];
7631         int i;
7632
7633         /* Disable to program */
7634         I915_WRITE(ECR, 0);
7635         POSTING_READ(ECR);
7636
7637         /* Program energy weights for various events */
7638         I915_WRITE(SDEW, 0x15040d00);
7639         I915_WRITE(CSIEW0, 0x007f0000);
7640         I915_WRITE(CSIEW1, 0x1e220004);
7641         I915_WRITE(CSIEW2, 0x04000004);
7642
7643         for (i = 0; i < 5; i++)
7644                 I915_WRITE(PEW(i), 0);
7645         for (i = 0; i < 3; i++)
7646                 I915_WRITE(DEW(i), 0);
7647
7648         /* Program P-state weights to account for frequency power adjustment */
7649         for (i = 0; i < 16; i++) {
7650                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7651                 unsigned long freq = intel_pxfreq(pxvidfreq);
7652                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7653                         PXVFREQ_PX_SHIFT;
7654                 unsigned long val;
7655
7656                 val = vid * vid;
7657                 val *= (freq / 1000);
7658                 val *= 255;
7659                 val /= (127*127*900);
7660                 if (val > 0xff)
7661                         DRM_ERROR("bad pxval: %ld\n", val);
7662                 pxw[i] = val;
7663         }
7664         /* Render standby states get 0 weight */
7665         pxw[14] = 0;
7666         pxw[15] = 0;
7667
7668         for (i = 0; i < 4; i++) {
7669                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7670                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7671                 I915_WRITE(PXW(i), val);
7672         }
7673
7674         /* Adjust magic regs to magic values (more experimental results) */
7675         I915_WRITE(OGW0, 0);
7676         I915_WRITE(OGW1, 0);
7677         I915_WRITE(EG0, 0x00007f00);
7678         I915_WRITE(EG1, 0x0000000e);
7679         I915_WRITE(EG2, 0x000e0000);
7680         I915_WRITE(EG3, 0x68000300);
7681         I915_WRITE(EG4, 0x42000000);
7682         I915_WRITE(EG5, 0x00140031);
7683         I915_WRITE(EG6, 0);
7684         I915_WRITE(EG7, 0);
7685
7686         for (i = 0; i < 8; i++)
7687                 I915_WRITE(PXWL(i), 0);
7688
7689         /* Enable PMON + select events */
7690         I915_WRITE(ECR, 0x80000019);
7691
7692         lcfuse = I915_READ(LCFUSE02);
7693
7694         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7695 }
7696
7697 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7698 {
7699         /*
7700          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7701          * requirement.
7702          */
7703         if (!i915.enable_rc6) {
7704                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7705                 intel_runtime_pm_get(dev_priv);
7706         }
7707
7708         mutex_lock(&dev_priv->drm.struct_mutex);
7709         mutex_lock(&dev_priv->rps.hw_lock);
7710
7711         /* Initialize RPS limits (for userspace) */
7712         if (IS_CHERRYVIEW(dev_priv))
7713                 cherryview_init_gt_powersave(dev_priv);
7714         else if (IS_VALLEYVIEW(dev_priv))
7715                 valleyview_init_gt_powersave(dev_priv);
7716         else if (INTEL_GEN(dev_priv) >= 6)
7717                 gen6_init_rps_frequencies(dev_priv);
7718
7719         /* Derive initial user preferences/limits from the hardware limits */
7720         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7721         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7722
7723         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7724         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7725
7726         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7727                 dev_priv->rps.min_freq_softlimit =
7728                         max_t(int,
7729                               dev_priv->rps.efficient_freq,
7730                               intel_freq_opcode(dev_priv, 450));
7731
7732         /* After setting max-softlimit, find the overclock max freq */
7733         if (IS_GEN6(dev_priv) ||
7734             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7735                 u32 params = 0;
7736
7737                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7738                 if (params & BIT(31)) { /* OC supported */
7739                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7740                                          (dev_priv->rps.max_freq & 0xff) * 50,
7741                                          (params & 0xff) * 50);
7742                         dev_priv->rps.max_freq = params & 0xff;
7743                 }
7744         }
7745
7746         /* Finally allow us to boost to max by default */
7747         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7748
7749         mutex_unlock(&dev_priv->rps.hw_lock);
7750         mutex_unlock(&dev_priv->drm.struct_mutex);
7751
7752         intel_autoenable_gt_powersave(dev_priv);
7753 }
7754
7755 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7756 {
7757         if (IS_VALLEYVIEW(dev_priv))
7758                 valleyview_cleanup_gt_powersave(dev_priv);
7759
7760         if (!i915.enable_rc6)
7761                 intel_runtime_pm_put(dev_priv);
7762 }
7763
7764 /**
7765  * intel_suspend_gt_powersave - suspend PM work and helper threads
7766  * @dev_priv: i915 device
7767  *
7768  * We don't want to disable RC6 or other features here, we just want
7769  * to make sure any work we've queued has finished and won't bother
7770  * us while we're suspended.
7771  */
7772 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7773 {
7774         if (INTEL_GEN(dev_priv) < 6)
7775                 return;
7776
7777         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7778                 intel_runtime_pm_put(dev_priv);
7779
7780         /* gen6_rps_idle() will be called later to disable interrupts */
7781 }
7782
7783 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7784 {
7785         dev_priv->rps.enabled = true; /* force disabling */
7786         intel_disable_gt_powersave(dev_priv);
7787
7788         gen6_reset_rps_interrupts(dev_priv);
7789 }
7790
7791 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7792 {
7793         if (!READ_ONCE(dev_priv->rps.enabled))
7794                 return;
7795
7796         mutex_lock(&dev_priv->rps.hw_lock);
7797
7798         if (INTEL_GEN(dev_priv) >= 9) {
7799                 gen9_disable_rc6(dev_priv);
7800                 gen9_disable_rps(dev_priv);
7801         } else if (IS_CHERRYVIEW(dev_priv)) {
7802                 cherryview_disable_rps(dev_priv);
7803         } else if (IS_VALLEYVIEW(dev_priv)) {
7804                 valleyview_disable_rps(dev_priv);
7805         } else if (INTEL_GEN(dev_priv) >= 6) {
7806                 gen6_disable_rps(dev_priv);
7807         }  else if (IS_IRONLAKE_M(dev_priv)) {
7808                 ironlake_disable_drps(dev_priv);
7809         }
7810
7811         dev_priv->rps.enabled = false;
7812         mutex_unlock(&dev_priv->rps.hw_lock);
7813 }
7814
7815 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7816 {
7817         /* We shouldn't be disabling as we submit, so this should be less
7818          * racy than it appears!
7819          */
7820         if (READ_ONCE(dev_priv->rps.enabled))
7821                 return;
7822
7823         /* Powersaving is controlled by the host when inside a VM */
7824         if (intel_vgpu_active(dev_priv))
7825                 return;
7826
7827         mutex_lock(&dev_priv->rps.hw_lock);
7828
7829         if (IS_CHERRYVIEW(dev_priv)) {
7830                 cherryview_enable_rps(dev_priv);
7831         } else if (IS_VALLEYVIEW(dev_priv)) {
7832                 valleyview_enable_rps(dev_priv);
7833         } else if (INTEL_GEN(dev_priv) >= 9) {
7834                 gen9_enable_rc6(dev_priv);
7835                 gen9_enable_rps(dev_priv);
7836                 if (IS_GEN9_BC(dev_priv))
7837                         gen6_update_ring_freq(dev_priv);
7838         } else if (IS_BROADWELL(dev_priv)) {
7839                 gen8_enable_rps(dev_priv);
7840                 gen6_update_ring_freq(dev_priv);
7841         } else if (INTEL_GEN(dev_priv) >= 6) {
7842                 gen6_enable_rps(dev_priv);
7843                 gen6_update_ring_freq(dev_priv);
7844         } else if (IS_IRONLAKE_M(dev_priv)) {
7845                 ironlake_enable_drps(dev_priv);
7846                 intel_init_emon(dev_priv);
7847         }
7848
7849         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7850         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7851
7852         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7853         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7854
7855         dev_priv->rps.enabled = true;
7856         mutex_unlock(&dev_priv->rps.hw_lock);
7857 }
7858
7859 static void __intel_autoenable_gt_powersave(struct work_struct *work)
7860 {
7861         struct drm_i915_private *dev_priv =
7862                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7863         struct intel_engine_cs *rcs;
7864         struct drm_i915_gem_request *req;
7865
7866         if (READ_ONCE(dev_priv->rps.enabled))
7867                 goto out;
7868
7869         rcs = dev_priv->engine[RCS];
7870         if (rcs->last_retired_context)
7871                 goto out;
7872
7873         if (!rcs->init_context)
7874                 goto out;
7875
7876         mutex_lock(&dev_priv->drm.struct_mutex);
7877
7878         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7879         if (IS_ERR(req))
7880                 goto unlock;
7881
7882         if (!i915.enable_execlists && i915_switch_context(req) == 0)
7883                 rcs->init_context(req);
7884
7885         /* Mark the device busy, calling intel_enable_gt_powersave() */
7886         i915_add_request(req);
7887
7888 unlock:
7889         mutex_unlock(&dev_priv->drm.struct_mutex);
7890 out:
7891         intel_runtime_pm_put(dev_priv);
7892 }
7893
7894 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7895 {
7896         if (READ_ONCE(dev_priv->rps.enabled))
7897                 return;
7898
7899         if (IS_IRONLAKE_M(dev_priv)) {
7900                 ironlake_enable_drps(dev_priv);
7901                 intel_init_emon(dev_priv);
7902         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7903                 /*
7904                  * PCU communication is slow and this doesn't need to be
7905                  * done at any specific time, so do this out of our fast path
7906                  * to make resume and init faster.
7907                  *
7908                  * We depend on the HW RC6 power context save/restore
7909                  * mechanism when entering D3 through runtime PM suspend. So
7910                  * disable RPM until RPS/RC6 is properly setup. We can only
7911                  * get here via the driver load/system resume/runtime resume
7912                  * paths, so the _noresume version is enough (and in case of
7913                  * runtime resume it's necessary).
7914                  */
7915                 if (queue_delayed_work(dev_priv->wq,
7916                                        &dev_priv->rps.autoenable_work,
7917                                        round_jiffies_up_relative(HZ)))
7918                         intel_runtime_pm_get_noresume(dev_priv);
7919         }
7920 }
7921
7922 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7923 {
7924         /*
7925          * On Ibex Peak and Cougar Point, we need to disable clock
7926          * gating for the panel power sequencer or it will fail to
7927          * start up when no ports are active.
7928          */
7929         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7930 }
7931
7932 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7933 {
7934         enum pipe pipe;
7935
7936         for_each_pipe(dev_priv, pipe) {
7937                 I915_WRITE(DSPCNTR(pipe),
7938                            I915_READ(DSPCNTR(pipe)) |
7939                            DISPPLANE_TRICKLE_FEED_DISABLE);
7940
7941                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7942                 POSTING_READ(DSPSURF(pipe));
7943         }
7944 }
7945
7946 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7947 {
7948         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7949         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7950         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7951
7952         /*
7953          * Don't touch WM1S_LP_EN here.
7954          * Doing so could cause underruns.
7955          */
7956 }
7957
7958 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7959 {
7960         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7961
7962         /*
7963          * Required for FBC
7964          * WaFbcDisableDpfcClockGating:ilk
7965          */
7966         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7967                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7968                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7969
7970         I915_WRITE(PCH_3DCGDIS0,
7971                    MARIUNIT_CLOCK_GATE_DISABLE |
7972                    SVSMUNIT_CLOCK_GATE_DISABLE);
7973         I915_WRITE(PCH_3DCGDIS1,
7974                    VFMUNIT_CLOCK_GATE_DISABLE);
7975
7976         /*
7977          * According to the spec the following bits should be set in
7978          * order to enable memory self-refresh
7979          * The bit 22/21 of 0x42004
7980          * The bit 5 of 0x42020
7981          * The bit 15 of 0x45000
7982          */
7983         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7984                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7985                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7986         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7987         I915_WRITE(DISP_ARB_CTL,
7988                    (I915_READ(DISP_ARB_CTL) |
7989                     DISP_FBC_WM_DIS));
7990
7991         ilk_init_lp_watermarks(dev_priv);
7992
7993         /*
7994          * Based on the document from hardware guys the following bits
7995          * should be set unconditionally in order to enable FBC.
7996          * The bit 22 of 0x42000
7997          * The bit 22 of 0x42004
7998          * The bit 7,8,9 of 0x42020.
7999          */
8000         if (IS_IRONLAKE_M(dev_priv)) {
8001                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8002                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8003                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8004                            ILK_FBCQ_DIS);
8005                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8006                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8007                            ILK_DPARB_GATE);
8008         }
8009
8010         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8011
8012         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8013                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8014                    ILK_ELPIN_409_SELECT);
8015         I915_WRITE(_3D_CHICKEN2,
8016                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8017                    _3D_CHICKEN2_WM_READ_PIPELINED);
8018
8019         /* WaDisableRenderCachePipelinedFlush:ilk */
8020         I915_WRITE(CACHE_MODE_0,
8021                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8022
8023         /* WaDisable_RenderCache_OperationalFlush:ilk */
8024         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8025
8026         g4x_disable_trickle_feed(dev_priv);
8027
8028         ibx_init_clock_gating(dev_priv);
8029 }
8030
8031 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8032 {
8033         int pipe;
8034         uint32_t val;
8035
8036         /*
8037          * On Ibex Peak and Cougar Point, we need to disable clock
8038          * gating for the panel power sequencer or it will fail to
8039          * start up when no ports are active.
8040          */
8041         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8042                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8043                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8044         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8045                    DPLS_EDP_PPS_FIX_DIS);
8046         /* The below fixes the weird display corruption, a few pixels shifted
8047          * downward, on (only) LVDS of some HP laptops with IVY.
8048          */
8049         for_each_pipe(dev_priv, pipe) {
8050                 val = I915_READ(TRANS_CHICKEN2(pipe));
8051                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8052                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8053                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8054                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8055                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8056                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8057                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8058                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8059         }
8060         /* WADP0ClockGatingDisable */
8061         for_each_pipe(dev_priv, pipe) {
8062                 I915_WRITE(TRANS_CHICKEN1(pipe),
8063                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8064         }
8065 }
8066
8067 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8068 {
8069         uint32_t tmp;
8070
8071         tmp = I915_READ(MCH_SSKPD);
8072         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8073                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8074                               tmp);
8075 }
8076
8077 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8078 {
8079         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8080
8081         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8082
8083         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8084                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8085                    ILK_ELPIN_409_SELECT);
8086
8087         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8088         I915_WRITE(_3D_CHICKEN,
8089                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8090
8091         /* WaDisable_RenderCache_OperationalFlush:snb */
8092         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8093
8094         /*
8095          * BSpec recoomends 8x4 when MSAA is used,
8096          * however in practice 16x4 seems fastest.
8097          *
8098          * Note that PS/WM thread counts depend on the WIZ hashing
8099          * disable bit, which we don't touch here, but it's good
8100          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8101          */
8102         I915_WRITE(GEN6_GT_MODE,
8103                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8104
8105         ilk_init_lp_watermarks(dev_priv);
8106
8107         I915_WRITE(CACHE_MODE_0,
8108                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8109
8110         I915_WRITE(GEN6_UCGCTL1,
8111                    I915_READ(GEN6_UCGCTL1) |
8112                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8113                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8114
8115         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8116          * gating disable must be set.  Failure to set it results in
8117          * flickering pixels due to Z write ordering failures after
8118          * some amount of runtime in the Mesa "fire" demo, and Unigine
8119          * Sanctuary and Tropics, and apparently anything else with
8120          * alpha test or pixel discard.
8121          *
8122          * According to the spec, bit 11 (RCCUNIT) must also be set,
8123          * but we didn't debug actual testcases to find it out.
8124          *
8125          * WaDisableRCCUnitClockGating:snb
8126          * WaDisableRCPBUnitClockGating:snb
8127          */
8128         I915_WRITE(GEN6_UCGCTL2,
8129                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8130                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8131
8132         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8133         I915_WRITE(_3D_CHICKEN3,
8134                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8135
8136         /*
8137          * Bspec says:
8138          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8139          * 3DSTATE_SF number of SF output attributes is more than 16."
8140          */
8141         I915_WRITE(_3D_CHICKEN3,
8142                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8143
8144         /*
8145          * According to the spec the following bits should be
8146          * set in order to enable memory self-refresh and fbc:
8147          * The bit21 and bit22 of 0x42000
8148          * The bit21 and bit22 of 0x42004
8149          * The bit5 and bit7 of 0x42020
8150          * The bit14 of 0x70180
8151          * The bit14 of 0x71180
8152          *
8153          * WaFbcAsynchFlipDisableFbcQueue:snb
8154          */
8155         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8156                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8157                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8158         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8159                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8160                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8161         I915_WRITE(ILK_DSPCLK_GATE_D,
8162                    I915_READ(ILK_DSPCLK_GATE_D) |
8163                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8164                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8165
8166         g4x_disable_trickle_feed(dev_priv);
8167
8168         cpt_init_clock_gating(dev_priv);
8169
8170         gen6_check_mch_setup(dev_priv);
8171 }
8172
8173 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8174 {
8175         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8176
8177         /*
8178          * WaVSThreadDispatchOverride:ivb,vlv
8179          *
8180          * This actually overrides the dispatch
8181          * mode for all thread types.
8182          */
8183         reg &= ~GEN7_FF_SCHED_MASK;
8184         reg |= GEN7_FF_TS_SCHED_HW;
8185         reg |= GEN7_FF_VS_SCHED_HW;
8186         reg |= GEN7_FF_DS_SCHED_HW;
8187
8188         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8189 }
8190
8191 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8192 {
8193         /*
8194          * TODO: this bit should only be enabled when really needed, then
8195          * disabled when not needed anymore in order to save power.
8196          */
8197         if (HAS_PCH_LPT_LP(dev_priv))
8198                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8199                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8200                            PCH_LP_PARTITION_LEVEL_DISABLE);
8201
8202         /* WADPOClockGatingDisable:hsw */
8203         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8204                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8205                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8206 }
8207
8208 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8209 {
8210         if (HAS_PCH_LPT_LP(dev_priv)) {
8211                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8212
8213                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8214                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8215         }
8216 }
8217
8218 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8219                                    int general_prio_credits,
8220                                    int high_prio_credits)
8221 {
8222         u32 misccpctl;
8223
8224         /* WaTempDisableDOPClkGating:bdw */
8225         misccpctl = I915_READ(GEN7_MISCCPCTL);
8226         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8227
8228         I915_WRITE(GEN8_L3SQCREG1,
8229                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
8230                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
8231
8232         /*
8233          * Wait at least 100 clocks before re-enabling clock gating.
8234          * See the definition of L3SQCREG1 in BSpec.
8235          */
8236         POSTING_READ(GEN8_L3SQCREG1);
8237         udelay(1);
8238         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8239 }
8240
8241 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8242 {
8243         gen9_init_clock_gating(dev_priv);
8244
8245         /* WaDisableSDEUnitClockGating:kbl */
8246         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8247                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8248                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8249
8250         /* WaDisableGamClockGating:kbl */
8251         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8252                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8253                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8254
8255         /* WaFbcNukeOnHostModify:kbl,cfl */
8256         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8257                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8258 }
8259
8260 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8261 {
8262         gen9_init_clock_gating(dev_priv);
8263
8264         /* WAC6entrylatency:skl */
8265         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8266                    FBC_LLC_FULLY_OPEN);
8267
8268         /* WaFbcNukeOnHostModify:skl */
8269         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8270                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8271 }
8272
8273 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
8274 {
8275         enum pipe pipe;
8276
8277         ilk_init_lp_watermarks(dev_priv);
8278
8279         /* WaSwitchSolVfFArbitrationPriority:bdw */
8280         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8281
8282         /* WaPsrDPAMaskVBlankInSRD:bdw */
8283         I915_WRITE(CHICKEN_PAR1_1,
8284                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8285
8286         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8287         for_each_pipe(dev_priv, pipe) {
8288                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8289                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
8290                            BDW_DPRS_MASK_VBLANK_SRD);
8291         }
8292
8293         /* WaVSRefCountFullforceMissDisable:bdw */
8294         /* WaDSRefCountFullforceMissDisable:bdw */
8295         I915_WRITE(GEN7_FF_THREAD_MODE,
8296                    I915_READ(GEN7_FF_THREAD_MODE) &
8297                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8298
8299         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8300                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8301
8302         /* WaDisableSDEUnitClockGating:bdw */
8303         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8304                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8305
8306         /* WaProgramL3SqcReg1Default:bdw */
8307         gen8_set_l3sqc_credits(dev_priv, 30, 2);
8308
8309         /*
8310          * WaGttCachingOffByDefault:bdw
8311          * GTT cache may not work with big pages, so if those
8312          * are ever enabled GTT cache may need to be disabled.
8313          */
8314         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8315
8316         /* WaKVMNotificationOnConfigChange:bdw */
8317         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8318                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8319
8320         lpt_init_clock_gating(dev_priv);
8321
8322         /* WaDisableDopClockGating:bdw
8323          *
8324          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8325          * clock gating.
8326          */
8327         I915_WRITE(GEN6_UCGCTL1,
8328                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8329 }
8330
8331 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8332 {
8333         ilk_init_lp_watermarks(dev_priv);
8334
8335         /* L3 caching of data atomics doesn't work -- disable it. */
8336         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8337         I915_WRITE(HSW_ROW_CHICKEN3,
8338                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8339
8340         /* This is required by WaCatErrorRejectionIssue:hsw */
8341         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8342                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8343                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8344
8345         /* WaVSRefCountFullforceMissDisable:hsw */
8346         I915_WRITE(GEN7_FF_THREAD_MODE,
8347                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8348
8349         /* WaDisable_RenderCache_OperationalFlush:hsw */
8350         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8351
8352         /* enable HiZ Raw Stall Optimization */
8353         I915_WRITE(CACHE_MODE_0_GEN7,
8354                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8355
8356         /* WaDisable4x2SubspanOptimization:hsw */
8357         I915_WRITE(CACHE_MODE_1,
8358                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8359
8360         /*
8361          * BSpec recommends 8x4 when MSAA is used,
8362          * however in practice 16x4 seems fastest.
8363          *
8364          * Note that PS/WM thread counts depend on the WIZ hashing
8365          * disable bit, which we don't touch here, but it's good
8366          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8367          */
8368         I915_WRITE(GEN7_GT_MODE,
8369                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8370
8371         /* WaSampleCChickenBitEnable:hsw */
8372         I915_WRITE(HALF_SLICE_CHICKEN3,
8373                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8374
8375         /* WaSwitchSolVfFArbitrationPriority:hsw */
8376         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8377
8378         /* WaRsPkgCStateDisplayPMReq:hsw */
8379         I915_WRITE(CHICKEN_PAR1_1,
8380                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8381
8382         lpt_init_clock_gating(dev_priv);
8383 }
8384
8385 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8386 {
8387         uint32_t snpcr;
8388
8389         ilk_init_lp_watermarks(dev_priv);
8390
8391         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8392
8393         /* WaDisableEarlyCull:ivb */
8394         I915_WRITE(_3D_CHICKEN3,
8395                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8396
8397         /* WaDisableBackToBackFlipFix:ivb */
8398         I915_WRITE(IVB_CHICKEN3,
8399                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8400                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8401
8402         /* WaDisablePSDDualDispatchEnable:ivb */
8403         if (IS_IVB_GT1(dev_priv))
8404                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8405                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8406
8407         /* WaDisable_RenderCache_OperationalFlush:ivb */
8408         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8409
8410         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8411         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8412                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8413
8414         /* WaApplyL3ControlAndL3ChickenMode:ivb */
8415         I915_WRITE(GEN7_L3CNTLREG1,
8416                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8417         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8418                    GEN7_WA_L3_CHICKEN_MODE);
8419         if (IS_IVB_GT1(dev_priv))
8420                 I915_WRITE(GEN7_ROW_CHICKEN2,
8421                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8422         else {
8423                 /* must write both registers */
8424                 I915_WRITE(GEN7_ROW_CHICKEN2,
8425                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8426                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8427                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8428         }
8429
8430         /* WaForceL3Serialization:ivb */
8431         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8432                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8433
8434         /*
8435          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8436          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8437          */
8438         I915_WRITE(GEN6_UCGCTL2,
8439                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8440
8441         /* This is required by WaCatErrorRejectionIssue:ivb */
8442         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8443                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8444                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8445
8446         g4x_disable_trickle_feed(dev_priv);
8447
8448         gen7_setup_fixed_func_scheduler(dev_priv);
8449
8450         if (0) { /* causes HiZ corruption on ivb:gt1 */
8451                 /* enable HiZ Raw Stall Optimization */
8452                 I915_WRITE(CACHE_MODE_0_GEN7,
8453                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8454         }
8455
8456         /* WaDisable4x2SubspanOptimization:ivb */
8457         I915_WRITE(CACHE_MODE_1,
8458                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8459
8460         /*
8461          * BSpec recommends 8x4 when MSAA is used,
8462          * however in practice 16x4 seems fastest.
8463          *
8464          * Note that PS/WM thread counts depend on the WIZ hashing
8465          * disable bit, which we don't touch here, but it's good
8466          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8467          */
8468         I915_WRITE(GEN7_GT_MODE,
8469                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8470
8471         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8472         snpcr &= ~GEN6_MBC_SNPCR_MASK;
8473         snpcr |= GEN6_MBC_SNPCR_MED;
8474         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8475
8476         if (!HAS_PCH_NOP(dev_priv))
8477                 cpt_init_clock_gating(dev_priv);
8478
8479         gen6_check_mch_setup(dev_priv);
8480 }
8481
8482 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8483 {
8484         /* WaDisableEarlyCull:vlv */
8485         I915_WRITE(_3D_CHICKEN3,
8486                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8487
8488         /* WaDisableBackToBackFlipFix:vlv */
8489         I915_WRITE(IVB_CHICKEN3,
8490                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8491                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8492
8493         /* WaPsdDispatchEnable:vlv */
8494         /* WaDisablePSDDualDispatchEnable:vlv */
8495         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8496                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8497                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8498
8499         /* WaDisable_RenderCache_OperationalFlush:vlv */
8500         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8501
8502         /* WaForceL3Serialization:vlv */
8503         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8504                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8505
8506         /* WaDisableDopClockGating:vlv */
8507         I915_WRITE(GEN7_ROW_CHICKEN2,
8508                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8509
8510         /* This is required by WaCatErrorRejectionIssue:vlv */
8511         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8512                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8513                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8514
8515         gen7_setup_fixed_func_scheduler(dev_priv);
8516
8517         /*
8518          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8519          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8520          */
8521         I915_WRITE(GEN6_UCGCTL2,
8522                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8523
8524         /* WaDisableL3Bank2xClockGate:vlv
8525          * Disabling L3 clock gating- MMIO 940c[25] = 1
8526          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8527         I915_WRITE(GEN7_UCGCTL4,
8528                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8529
8530         /*
8531          * BSpec says this must be set, even though
8532          * WaDisable4x2SubspanOptimization isn't listed for VLV.
8533          */
8534         I915_WRITE(CACHE_MODE_1,
8535                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8536
8537         /*
8538          * BSpec recommends 8x4 when MSAA is used,
8539          * however in practice 16x4 seems fastest.
8540          *
8541          * Note that PS/WM thread counts depend on the WIZ hashing
8542          * disable bit, which we don't touch here, but it's good
8543          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8544          */
8545         I915_WRITE(GEN7_GT_MODE,
8546                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8547
8548         /*
8549          * WaIncreaseL3CreditsForVLVB0:vlv
8550          * This is the hardware default actually.
8551          */
8552         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8553
8554         /*
8555          * WaDisableVLVClockGating_VBIIssue:vlv
8556          * Disable clock gating on th GCFG unit to prevent a delay
8557          * in the reporting of vblank events.
8558          */
8559         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8560 }
8561
8562 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8563 {
8564         /* WaVSRefCountFullforceMissDisable:chv */
8565         /* WaDSRefCountFullforceMissDisable:chv */
8566         I915_WRITE(GEN7_FF_THREAD_MODE,
8567                    I915_READ(GEN7_FF_THREAD_MODE) &
8568                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8569
8570         /* WaDisableSemaphoreAndSyncFlipWait:chv */
8571         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8572                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8573
8574         /* WaDisableCSUnitClockGating:chv */
8575         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8576                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8577
8578         /* WaDisableSDEUnitClockGating:chv */
8579         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8580                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8581
8582         /*
8583          * WaProgramL3SqcReg1Default:chv
8584          * See gfxspecs/Related Documents/Performance Guide/
8585          * LSQC Setting Recommendations.
8586          */
8587         gen8_set_l3sqc_credits(dev_priv, 38, 2);
8588
8589         /*
8590          * GTT cache may not work with big pages, so if those
8591          * are ever enabled GTT cache may need to be disabled.
8592          */
8593         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8594 }
8595
8596 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8597 {
8598         uint32_t dspclk_gate;
8599
8600         I915_WRITE(RENCLK_GATE_D1, 0);
8601         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8602                    GS_UNIT_CLOCK_GATE_DISABLE |
8603                    CL_UNIT_CLOCK_GATE_DISABLE);
8604         I915_WRITE(RAMCLK_GATE_D, 0);
8605         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8606                 OVRUNIT_CLOCK_GATE_DISABLE |
8607                 OVCUNIT_CLOCK_GATE_DISABLE;
8608         if (IS_GM45(dev_priv))
8609                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8610         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8611
8612         /* WaDisableRenderCachePipelinedFlush */
8613         I915_WRITE(CACHE_MODE_0,
8614                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8615
8616         /* WaDisable_RenderCache_OperationalFlush:g4x */
8617         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8618
8619         g4x_disable_trickle_feed(dev_priv);
8620 }
8621
8622 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8623 {
8624         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8625         I915_WRITE(RENCLK_GATE_D2, 0);
8626         I915_WRITE(DSPCLK_GATE_D, 0);
8627         I915_WRITE(RAMCLK_GATE_D, 0);
8628         I915_WRITE16(DEUC, 0);
8629         I915_WRITE(MI_ARB_STATE,
8630                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8631
8632         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8633         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8634 }
8635
8636 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8637 {
8638         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8639                    I965_RCC_CLOCK_GATE_DISABLE |
8640                    I965_RCPB_CLOCK_GATE_DISABLE |
8641                    I965_ISC_CLOCK_GATE_DISABLE |
8642                    I965_FBC_CLOCK_GATE_DISABLE);
8643         I915_WRITE(RENCLK_GATE_D2, 0);
8644         I915_WRITE(MI_ARB_STATE,
8645                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8646
8647         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8648         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8649 }
8650
8651 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8652 {
8653         u32 dstate = I915_READ(D_STATE);
8654
8655         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8656                 DSTATE_DOT_CLOCK_GATING;
8657         I915_WRITE(D_STATE, dstate);
8658
8659         if (IS_PINEVIEW(dev_priv))
8660                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8661
8662         /* IIR "flip pending" means done if this bit is set */
8663         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8664
8665         /* interrupts should cause a wake up from C3 */
8666         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8667
8668         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8669         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8670
8671         I915_WRITE(MI_ARB_STATE,
8672                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8673 }
8674
8675 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8676 {
8677         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8678
8679         /* interrupts should cause a wake up from C3 */
8680         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8681                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8682
8683         I915_WRITE(MEM_MODE,
8684                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8685 }
8686
8687 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8688 {
8689         I915_WRITE(MEM_MODE,
8690                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8691                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8692 }
8693
8694 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8695 {
8696         dev_priv->display.init_clock_gating(dev_priv);
8697 }
8698
8699 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8700 {
8701         if (HAS_PCH_LPT(dev_priv))
8702                 lpt_suspend_hw(dev_priv);
8703 }
8704
8705 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8706 {
8707         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8708 }
8709
8710 /**
8711  * intel_init_clock_gating_hooks - setup the clock gating hooks
8712  * @dev_priv: device private
8713  *
8714  * Setup the hooks that configure which clocks of a given platform can be
8715  * gated and also apply various GT and display specific workarounds for these
8716  * platforms. Note that some GT specific workarounds are applied separately
8717  * when GPU contexts or batchbuffers start their execution.
8718  */
8719 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8720 {
8721         if (IS_SKYLAKE(dev_priv))
8722                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8723         else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8724                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8725         else if (IS_BROXTON(dev_priv))
8726                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8727         else if (IS_GEMINILAKE(dev_priv))
8728                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
8729         else if (IS_BROADWELL(dev_priv))
8730                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
8731         else if (IS_CHERRYVIEW(dev_priv))
8732                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
8733         else if (IS_HASWELL(dev_priv))
8734                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
8735         else if (IS_IVYBRIDGE(dev_priv))
8736                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8737         else if (IS_VALLEYVIEW(dev_priv))
8738                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
8739         else if (IS_GEN6(dev_priv))
8740                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8741         else if (IS_GEN5(dev_priv))
8742                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8743         else if (IS_G4X(dev_priv))
8744                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8745         else if (IS_I965GM(dev_priv))
8746                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8747         else if (IS_I965G(dev_priv))
8748                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8749         else if (IS_GEN3(dev_priv))
8750                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8751         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8752                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8753         else if (IS_GEN2(dev_priv))
8754                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8755         else {
8756                 MISSING_CASE(INTEL_DEVID(dev_priv));
8757                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8758         }
8759 }
8760
8761 /* Set up chip specific power management-related functions */
8762 void intel_init_pm(struct drm_i915_private *dev_priv)
8763 {
8764         intel_fbc_init(dev_priv);
8765
8766         /* For cxsr */
8767         if (IS_PINEVIEW(dev_priv))
8768                 i915_pineview_get_mem_freq(dev_priv);
8769         else if (IS_GEN5(dev_priv))
8770                 i915_ironlake_get_mem_freq(dev_priv);
8771
8772         /* For FIFO watermark updates */
8773         if (INTEL_GEN(dev_priv) >= 9) {
8774                 skl_setup_wm_latency(dev_priv);
8775                 dev_priv->display.initial_watermarks = skl_initial_wm;
8776                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8777                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8778         } else if (HAS_PCH_SPLIT(dev_priv)) {
8779                 ilk_setup_wm_latency(dev_priv);
8780
8781                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8782                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8783                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8784                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8785                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8786                         dev_priv->display.compute_intermediate_wm =
8787                                 ilk_compute_intermediate_wm;
8788                         dev_priv->display.initial_watermarks =
8789                                 ilk_initial_watermarks;
8790                         dev_priv->display.optimize_watermarks =
8791                                 ilk_optimize_watermarks;
8792                 } else {
8793                         DRM_DEBUG_KMS("Failed to read display plane latency. "
8794                                       "Disable CxSR\n");
8795                 }
8796         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8797                 vlv_setup_wm_latency(dev_priv);
8798                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8799                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8800                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8801                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8802                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8803         } else if (IS_G4X(dev_priv)) {
8804                 g4x_setup_wm_latency(dev_priv);
8805                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8806                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8807                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8808                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8809         } else if (IS_PINEVIEW(dev_priv)) {
8810                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8811                                             dev_priv->is_ddr3,
8812                                             dev_priv->fsb_freq,
8813                                             dev_priv->mem_freq)) {
8814                         DRM_INFO("failed to find known CxSR latency "
8815                                  "(found ddr%s fsb freq %d, mem freq %d), "
8816                                  "disabling CxSR\n",
8817                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8818                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8819                         /* Disable CxSR and never update its watermark again */
8820                         intel_set_memory_cxsr(dev_priv, false);
8821                         dev_priv->display.update_wm = NULL;
8822                 } else
8823                         dev_priv->display.update_wm = pineview_update_wm;
8824         } else if (IS_GEN4(dev_priv)) {
8825                 dev_priv->display.update_wm = i965_update_wm;
8826         } else if (IS_GEN3(dev_priv)) {
8827                 dev_priv->display.update_wm = i9xx_update_wm;
8828                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8829         } else if (IS_GEN2(dev_priv)) {
8830                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8831                         dev_priv->display.update_wm = i845_update_wm;
8832                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8833                 } else {
8834                         dev_priv->display.update_wm = i9xx_update_wm;
8835                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8836                 }
8837         } else {
8838                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8839         }
8840 }
8841
8842 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8843 {
8844         uint32_t flags =
8845                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8846
8847         switch (flags) {
8848         case GEN6_PCODE_SUCCESS:
8849                 return 0;
8850         case GEN6_PCODE_UNIMPLEMENTED_CMD:
8851         case GEN6_PCODE_ILLEGAL_CMD:
8852                 return -ENXIO;
8853         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8854         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8855                 return -EOVERFLOW;
8856         case GEN6_PCODE_TIMEOUT:
8857                 return -ETIMEDOUT;
8858         default:
8859                 MISSING_CASE(flags);
8860                 return 0;
8861         }
8862 }
8863
8864 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8865 {
8866         uint32_t flags =
8867                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8868
8869         switch (flags) {
8870         case GEN6_PCODE_SUCCESS:
8871                 return 0;
8872         case GEN6_PCODE_ILLEGAL_CMD:
8873                 return -ENXIO;
8874         case GEN7_PCODE_TIMEOUT:
8875                 return -ETIMEDOUT;
8876         case GEN7_PCODE_ILLEGAL_DATA:
8877                 return -EINVAL;
8878         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8879                 return -EOVERFLOW;
8880         default:
8881                 MISSING_CASE(flags);
8882                 return 0;
8883         }
8884 }
8885
8886 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8887 {
8888         int status;
8889
8890         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8891
8892         /* GEN6_PCODE_* are outside of the forcewake domain, we can
8893          * use te fw I915_READ variants to reduce the amount of work
8894          * required when reading/writing.
8895          */
8896
8897         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8898                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8899                 return -EAGAIN;
8900         }
8901
8902         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8903         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8904         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8905
8906         if (__intel_wait_for_register_fw(dev_priv,
8907                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8908                                          500, 0, NULL)) {
8909                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8910                 return -ETIMEDOUT;
8911         }
8912
8913         *val = I915_READ_FW(GEN6_PCODE_DATA);
8914         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8915
8916         if (INTEL_GEN(dev_priv) > 6)
8917                 status = gen7_check_mailbox_status(dev_priv);
8918         else
8919                 status = gen6_check_mailbox_status(dev_priv);
8920
8921         if (status) {
8922                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8923                                  status);
8924                 return status;
8925         }
8926
8927         return 0;
8928 }
8929
8930 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8931                             u32 mbox, u32 val)
8932 {
8933         int status;
8934
8935         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8936
8937         /* GEN6_PCODE_* are outside of the forcewake domain, we can
8938          * use te fw I915_READ variants to reduce the amount of work
8939          * required when reading/writing.
8940          */
8941
8942         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8943                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8944                 return -EAGAIN;
8945         }
8946
8947         I915_WRITE_FW(GEN6_PCODE_DATA, val);
8948         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8949         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8950
8951         if (__intel_wait_for_register_fw(dev_priv,
8952                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8953                                          500, 0, NULL)) {
8954                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8955                 return -ETIMEDOUT;
8956         }
8957
8958         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8959
8960         if (INTEL_GEN(dev_priv) > 6)
8961                 status = gen7_check_mailbox_status(dev_priv);
8962         else
8963                 status = gen6_check_mailbox_status(dev_priv);
8964
8965         if (status) {
8966                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8967                                  status);
8968                 return status;
8969         }
8970
8971         return 0;
8972 }
8973
8974 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8975                                   u32 request, u32 reply_mask, u32 reply,
8976                                   u32 *status)
8977 {
8978         u32 val = request;
8979
8980         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8981
8982         return *status || ((val & reply_mask) == reply);
8983 }
8984
8985 /**
8986  * skl_pcode_request - send PCODE request until acknowledgment
8987  * @dev_priv: device private
8988  * @mbox: PCODE mailbox ID the request is targeted for
8989  * @request: request ID
8990  * @reply_mask: mask used to check for request acknowledgment
8991  * @reply: value used to check for request acknowledgment
8992  * @timeout_base_ms: timeout for polling with preemption enabled
8993  *
8994  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8995  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8996  * The request is acknowledged once the PCODE reply dword equals @reply after
8997  * applying @reply_mask. Polling is first attempted with preemption enabled
8998  * for @timeout_base_ms and if this times out for another 50 ms with
8999  * preemption disabled.
9000  *
9001  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9002  * other error as reported by PCODE.
9003  */
9004 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9005                       u32 reply_mask, u32 reply, int timeout_base_ms)
9006 {
9007         u32 status;
9008         int ret;
9009
9010         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
9011
9012 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9013                                    &status)
9014
9015         /*
9016          * Prime the PCODE by doing a request first. Normally it guarantees
9017          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9018          * _wait_for() doesn't guarantee when its passed condition is evaluated
9019          * first, so send the first request explicitly.
9020          */
9021         if (COND) {
9022                 ret = 0;
9023                 goto out;
9024         }
9025         ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9026         if (!ret)
9027                 goto out;
9028
9029         /*
9030          * The above can time out if the number of requests was low (2 in the
9031          * worst case) _and_ PCODE was busy for some reason even after a
9032          * (queued) request and @timeout_base_ms delay. As a workaround retry
9033          * the poll with preemption disabled to maximize the number of
9034          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9035          * account for interrupts that could reduce the number of these
9036          * requests, and for any quirks of the PCODE firmware that delays
9037          * the request completion.
9038          */
9039         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9040         WARN_ON_ONCE(timeout_base_ms > 3);
9041         preempt_disable();
9042         ret = wait_for_atomic(COND, 50);
9043         preempt_enable();
9044
9045 out:
9046         return ret ? ret : status;
9047 #undef COND
9048 }
9049
9050 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9051 {
9052         /*
9053          * N = val - 0xb7
9054          * Slow = Fast = GPLL ref * N
9055          */
9056         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9057 }
9058
9059 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9060 {
9061         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9062 }
9063
9064 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9065 {
9066         /*
9067          * N = val / 2
9068          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9069          */
9070         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9071 }
9072
9073 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9074 {
9075         /* CHV needs even values */
9076         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9077 }
9078
9079 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9080 {
9081         if (IS_GEN9(dev_priv))
9082                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9083                                          GEN9_FREQ_SCALER);
9084         else if (IS_CHERRYVIEW(dev_priv))
9085                 return chv_gpu_freq(dev_priv, val);
9086         else if (IS_VALLEYVIEW(dev_priv))
9087                 return byt_gpu_freq(dev_priv, val);
9088         else
9089                 return val * GT_FREQUENCY_MULTIPLIER;
9090 }
9091
9092 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9093 {
9094         if (IS_GEN9(dev_priv))
9095                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9096                                          GT_FREQUENCY_MULTIPLIER);
9097         else if (IS_CHERRYVIEW(dev_priv))
9098                 return chv_freq_opcode(dev_priv, val);
9099         else if (IS_VALLEYVIEW(dev_priv))
9100                 return byt_freq_opcode(dev_priv, val);
9101         else
9102                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9103 }
9104
9105 struct request_boost {
9106         struct work_struct work;
9107         struct drm_i915_gem_request *req;
9108 };
9109
9110 static void __intel_rps_boost_work(struct work_struct *work)
9111 {
9112         struct request_boost *boost = container_of(work, struct request_boost, work);
9113         struct drm_i915_gem_request *req = boost->req;
9114
9115         if (!i915_gem_request_completed(req))
9116                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
9117
9118         i915_gem_request_put(req);
9119         kfree(boost);
9120 }
9121
9122 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
9123 {
9124         struct request_boost *boost;
9125
9126         if (req == NULL || INTEL_GEN(req->i915) < 6)
9127                 return;
9128
9129         if (i915_gem_request_completed(req))
9130                 return;
9131
9132         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
9133         if (boost == NULL)
9134                 return;
9135
9136         boost->req = i915_gem_request_get(req);
9137
9138         INIT_WORK(&boost->work, __intel_rps_boost_work);
9139         queue_work(req->i915->wq, &boost->work);
9140 }
9141
9142 void intel_pm_setup(struct drm_i915_private *dev_priv)
9143 {
9144         mutex_init(&dev_priv->rps.hw_lock);
9145         spin_lock_init(&dev_priv->rps.client_lock);
9146
9147         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9148                           __intel_autoenable_gt_powersave);
9149         INIT_LIST_HEAD(&dev_priv->rps.clients);
9150
9151         dev_priv->pm.suspended = false;
9152         atomic_set(&dev_priv->pm.wakeref_count, 0);
9153 }
9154
9155 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9156                              const i915_reg_t reg)
9157 {
9158         u32 lower, upper, tmp;
9159         int loop = 2;
9160
9161         /* The register accessed do not need forcewake. We borrow
9162          * uncore lock to prevent concurrent access to range reg.
9163          */
9164         spin_lock_irq(&dev_priv->uncore.lock);
9165
9166         /* vlv and chv residency counters are 40 bits in width.
9167          * With a control bit, we can choose between upper or lower
9168          * 32bit window into this counter.
9169          *
9170          * Although we always use the counter in high-range mode elsewhere,
9171          * userspace may attempt to read the value before rc6 is initialised,
9172          * before we have set the default VLV_COUNTER_CONTROL value. So always
9173          * set the high bit to be safe.
9174          */
9175         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9176                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9177         upper = I915_READ_FW(reg);
9178         do {
9179                 tmp = upper;
9180
9181                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9182                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9183                 lower = I915_READ_FW(reg);
9184
9185                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9186                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9187                 upper = I915_READ_FW(reg);
9188         } while (upper != tmp && --loop);
9189
9190         /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9191          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9192          * now.
9193          */
9194
9195         spin_unlock_irq(&dev_priv->uncore.lock);
9196
9197         return lower | (u64)upper << 8;
9198 }
9199
9200 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9201                            const i915_reg_t reg)
9202 {
9203         u64 time_hw, units, div;
9204
9205         if (!intel_enable_rc6())
9206                 return 0;
9207
9208         intel_runtime_pm_get(dev_priv);
9209
9210         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9211         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9212                 units = 1000;
9213                 div = dev_priv->czclk_freq;
9214
9215                 time_hw = vlv_residency_raw(dev_priv, reg);
9216         } else if (IS_GEN9_LP(dev_priv)) {
9217                 units = 1000;
9218                 div = 1200;             /* 833.33ns */
9219
9220                 time_hw = I915_READ(reg);
9221         } else {
9222                 units = 128000; /* 1.28us */
9223                 div = 100000;
9224
9225                 time_hw = I915_READ(reg);
9226         }
9227
9228         intel_runtime_pm_put(dev_priv);
9229         return DIV_ROUND_UP_ULL(time_hw * units, div);
9230 }