]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39         int space = head - tail;
40         if (space <= 0)
41                 space += size;
42         return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47         if (ringbuf->last_retired_head != -1) {
48                 ringbuf->head = ringbuf->last_retired_head;
49                 ringbuf->last_retired_head = -1;
50         }
51
52         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53                                             ringbuf->tail, ringbuf->size);
54 }
55
56 bool intel_engine_stopped(struct intel_engine_cs *engine)
57 {
58         struct drm_i915_private *dev_priv = engine->dev->dev_private;
59         return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
60 }
61
62 static void __intel_ring_advance(struct intel_engine_cs *engine)
63 {
64         struct intel_ringbuffer *ringbuf = engine->buffer;
65         ringbuf->tail &= ringbuf->size - 1;
66         if (intel_engine_stopped(engine))
67                 return;
68         engine->write_tail(engine, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct drm_i915_gem_request *req,
73                        u32      invalidate_domains,
74                        u32      flush_domains)
75 {
76         struct intel_engine_cs *engine = req->engine;
77         u32 cmd;
78         int ret;
79
80         cmd = MI_FLUSH;
81         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82                 cmd |= MI_NO_WRITE_FLUSH;
83
84         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85                 cmd |= MI_READ_FLUSH;
86
87         ret = intel_ring_begin(req, 2);
88         if (ret)
89                 return ret;
90
91         intel_ring_emit(engine, cmd);
92         intel_ring_emit(engine, MI_NOOP);
93         intel_ring_advance(engine);
94
95         return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct drm_i915_gem_request *req,
100                        u32      invalidate_domains,
101                        u32      flush_domains)
102 {
103         struct intel_engine_cs *engine = req->engine;
104         struct drm_device *dev = engine->dev;
105         u32 cmd;
106         int ret;
107
108         /*
109          * read/write caches:
110          *
111          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
112          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
113          * also flushed at 2d versus 3d pipeline switches.
114          *
115          * read-only caches:
116          *
117          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
118          * MI_READ_FLUSH is set, and is always flushed on 965.
119          *
120          * I915_GEM_DOMAIN_COMMAND may not exist?
121          *
122          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
123          * invalidated when MI_EXE_FLUSH is set.
124          *
125          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
126          * invalidated with every MI_FLUSH.
127          *
128          * TLBs:
129          *
130          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
131          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
132          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
133          * are flushed at any MI_FLUSH.
134          */
135
136         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
137         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
138                 cmd &= ~MI_NO_WRITE_FLUSH;
139         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
140                 cmd |= MI_EXE_FLUSH;
141
142         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
143             (IS_G4X(dev) || IS_GEN5(dev)))
144                 cmd |= MI_INVALIDATE_ISP;
145
146         ret = intel_ring_begin(req, 2);
147         if (ret)
148                 return ret;
149
150         intel_ring_emit(engine, cmd);
151         intel_ring_emit(engine, MI_NOOP);
152         intel_ring_advance(engine);
153
154         return 0;
155 }
156
157 /**
158  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
159  * implementing two workarounds on gen6.  From section 1.4.7.1
160  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
161  *
162  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
163  * produced by non-pipelined state commands), software needs to first
164  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
165  * 0.
166  *
167  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
168  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
169  *
170  * And the workaround for these two requires this workaround first:
171  *
172  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
173  * BEFORE the pipe-control with a post-sync op and no write-cache
174  * flushes.
175  *
176  * And this last workaround is tricky because of the requirements on
177  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
178  * volume 2 part 1:
179  *
180  *     "1 of the following must also be set:
181  *      - Render Target Cache Flush Enable ([12] of DW1)
182  *      - Depth Cache Flush Enable ([0] of DW1)
183  *      - Stall at Pixel Scoreboard ([1] of DW1)
184  *      - Depth Stall ([13] of DW1)
185  *      - Post-Sync Operation ([13] of DW1)
186  *      - Notify Enable ([8] of DW1)"
187  *
188  * The cache flushes require the workaround flush that triggered this
189  * one, so we can't use it.  Depth stall would trigger the same.
190  * Post-sync nonzero is what triggered this second workaround, so we
191  * can't use that one either.  Notify enable is IRQs, which aren't
192  * really our business.  That leaves only stall at scoreboard.
193  */
194 static int
195 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
196 {
197         struct intel_engine_cs *engine = req->engine;
198         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
199         int ret;
200
201         ret = intel_ring_begin(req, 6);
202         if (ret)
203                 return ret;
204
205         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
206         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
207                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
208         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
209         intel_ring_emit(engine, 0); /* low dword */
210         intel_ring_emit(engine, 0); /* high dword */
211         intel_ring_emit(engine, MI_NOOP);
212         intel_ring_advance(engine);
213
214         ret = intel_ring_begin(req, 6);
215         if (ret)
216                 return ret;
217
218         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
219         intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
220         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
221         intel_ring_emit(engine, 0);
222         intel_ring_emit(engine, 0);
223         intel_ring_emit(engine, MI_NOOP);
224         intel_ring_advance(engine);
225
226         return 0;
227 }
228
229 static int
230 gen6_render_ring_flush(struct drm_i915_gem_request *req,
231                        u32 invalidate_domains, u32 flush_domains)
232 {
233         struct intel_engine_cs *engine = req->engine;
234         u32 flags = 0;
235         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
236         int ret;
237
238         /* Force SNB workarounds for PIPE_CONTROL flushes */
239         ret = intel_emit_post_sync_nonzero_flush(req);
240         if (ret)
241                 return ret;
242
243         /* Just flush everything.  Experiments have shown that reducing the
244          * number of bits based on the write domains has little performance
245          * impact.
246          */
247         if (flush_domains) {
248                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
249                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
250                 /*
251                  * Ensure that any following seqno writes only happen
252                  * when the render cache is indeed flushed.
253                  */
254                 flags |= PIPE_CONTROL_CS_STALL;
255         }
256         if (invalidate_domains) {
257                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
258                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
260                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
261                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
262                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
263                 /*
264                  * TLB invalidate requires a post-sync write.
265                  */
266                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
267         }
268
269         ret = intel_ring_begin(req, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(engine, flags);
275         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
276         intel_ring_emit(engine, 0);
277         intel_ring_advance(engine);
278
279         return 0;
280 }
281
282 static int
283 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
284 {
285         struct intel_engine_cs *engine = req->engine;
286         int ret;
287
288         ret = intel_ring_begin(req, 4);
289         if (ret)
290                 return ret;
291
292         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
293         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
294                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
295         intel_ring_emit(engine, 0);
296         intel_ring_emit(engine, 0);
297         intel_ring_advance(engine);
298
299         return 0;
300 }
301
302 static int
303 gen7_render_ring_flush(struct drm_i915_gem_request *req,
304                        u32 invalidate_domains, u32 flush_domains)
305 {
306         struct intel_engine_cs *engine = req->engine;
307         u32 flags = 0;
308         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
309         int ret;
310
311         /*
312          * Ensure that any following seqno writes only happen when the render
313          * cache is indeed flushed.
314          *
315          * Workaround: 4th PIPE_CONTROL command (except the ones with only
316          * read-cache invalidate bits set) must have the CS_STALL bit set. We
317          * don't try to be clever and just set it unconditionally.
318          */
319         flags |= PIPE_CONTROL_CS_STALL;
320
321         /* Just flush everything.  Experiments have shown that reducing the
322          * number of bits based on the write domains has little performance
323          * impact.
324          */
325         if (flush_domains) {
326                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
327                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
329                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
330         }
331         if (invalidate_domains) {
332                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
339                 /*
340                  * TLB invalidate requires a post-sync write.
341                  */
342                 flags |= PIPE_CONTROL_QW_WRITE;
343                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
344
345                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
346
347                 /* Workaround: we must issue a pipe_control with CS-stall bit
348                  * set before a pipe_control command that has the state cache
349                  * invalidate bit set. */
350                 gen7_render_ring_cs_stall_wa(req);
351         }
352
353         ret = intel_ring_begin(req, 4);
354         if (ret)
355                 return ret;
356
357         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
358         intel_ring_emit(engine, flags);
359         intel_ring_emit(engine, scratch_addr);
360         intel_ring_emit(engine, 0);
361         intel_ring_advance(engine);
362
363         return 0;
364 }
365
366 static int
367 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
368                        u32 flags, u32 scratch_addr)
369 {
370         struct intel_engine_cs *engine = req->engine;
371         int ret;
372
373         ret = intel_ring_begin(req, 6);
374         if (ret)
375                 return ret;
376
377         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
378         intel_ring_emit(engine, flags);
379         intel_ring_emit(engine, scratch_addr);
380         intel_ring_emit(engine, 0);
381         intel_ring_emit(engine, 0);
382         intel_ring_emit(engine, 0);
383         intel_ring_advance(engine);
384
385         return 0;
386 }
387
388 static int
389 gen8_render_ring_flush(struct drm_i915_gem_request *req,
390                        u32 invalidate_domains, u32 flush_domains)
391 {
392         u32 flags = 0;
393         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
394         int ret;
395
396         flags |= PIPE_CONTROL_CS_STALL;
397
398         if (flush_domains) {
399                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
400                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
401                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
402                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
403         }
404         if (invalidate_domains) {
405                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
406                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
407                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
408                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
409                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
410                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
411                 flags |= PIPE_CONTROL_QW_WRITE;
412                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
413
414                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
415                 ret = gen8_emit_pipe_control(req,
416                                              PIPE_CONTROL_CS_STALL |
417                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
418                                              0);
419                 if (ret)
420                         return ret;
421         }
422
423         return gen8_emit_pipe_control(req, flags, scratch_addr);
424 }
425
426 static void ring_write_tail(struct intel_engine_cs *engine,
427                             u32 value)
428 {
429         struct drm_i915_private *dev_priv = engine->dev->dev_private;
430         I915_WRITE_TAIL(engine, value);
431 }
432
433 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
434 {
435         struct drm_i915_private *dev_priv = engine->dev->dev_private;
436         u64 acthd;
437
438         if (INTEL_INFO(engine->dev)->gen >= 8)
439                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
440                                          RING_ACTHD_UDW(engine->mmio_base));
441         else if (INTEL_INFO(engine->dev)->gen >= 4)
442                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
443         else
444                 acthd = I915_READ(ACTHD);
445
446         return acthd;
447 }
448
449 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
450 {
451         struct drm_i915_private *dev_priv = engine->dev->dev_private;
452         u32 addr;
453
454         addr = dev_priv->status_page_dmah->busaddr;
455         if (INTEL_INFO(engine->dev)->gen >= 4)
456                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
457         I915_WRITE(HWS_PGA, addr);
458 }
459
460 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
461 {
462         struct drm_device *dev = engine->dev;
463         struct drm_i915_private *dev_priv = engine->dev->dev_private;
464         i915_reg_t mmio;
465
466         /* The ring status page addresses are no longer next to the rest of
467          * the ring registers as of gen7.
468          */
469         if (IS_GEN7(dev)) {
470                 switch (engine->id) {
471                 case RCS:
472                         mmio = RENDER_HWS_PGA_GEN7;
473                         break;
474                 case BCS:
475                         mmio = BLT_HWS_PGA_GEN7;
476                         break;
477                 /*
478                  * VCS2 actually doesn't exist on Gen7. Only shut up
479                  * gcc switch check warning
480                  */
481                 case VCS2:
482                 case VCS:
483                         mmio = BSD_HWS_PGA_GEN7;
484                         break;
485                 case VECS:
486                         mmio = VEBOX_HWS_PGA_GEN7;
487                         break;
488                 }
489         } else if (IS_GEN6(engine->dev)) {
490                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
491         } else {
492                 /* XXX: gen8 returns to sanity */
493                 mmio = RING_HWS_PGA(engine->mmio_base);
494         }
495
496         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
497         POSTING_READ(mmio);
498
499         /*
500          * Flush the TLB for this page
501          *
502          * FIXME: These two bits have disappeared on gen8, so a question
503          * arises: do we still need this and if so how should we go about
504          * invalidating the TLB?
505          */
506         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
507                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
508
509                 /* ring should be idle before issuing a sync flush*/
510                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
511
512                 I915_WRITE(reg,
513                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
514                                               INSTPM_SYNC_FLUSH));
515                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
516                              1000))
517                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
518                                   engine->name);
519         }
520 }
521
522 static bool stop_ring(struct intel_engine_cs *engine)
523 {
524         struct drm_i915_private *dev_priv = to_i915(engine->dev);
525
526         if (!IS_GEN2(engine->dev)) {
527                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
528                 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
529                         DRM_ERROR("%s : timed out trying to stop ring\n",
530                                   engine->name);
531                         /* Sometimes we observe that the idle flag is not
532                          * set even though the ring is empty. So double
533                          * check before giving up.
534                          */
535                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536                                 return false;
537                 }
538         }
539
540         I915_WRITE_CTL(engine, 0);
541         I915_WRITE_HEAD(engine, 0);
542         engine->write_tail(engine, 0);
543
544         if (!IS_GEN2(engine->dev)) {
545                 (void)I915_READ_CTL(engine);
546                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547         }
548
549         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554         memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559         struct drm_device *dev = engine->dev;
560         struct drm_i915_private *dev_priv = dev->dev_private;
561         struct intel_ringbuffer *ringbuf = engine->buffer;
562         struct drm_i915_gem_object *obj = ringbuf->obj;
563         int ret = 0;
564
565         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567         if (!stop_ring(engine)) {
568                 /* G45 ring initialization often fails to reset head to zero */
569                 DRM_DEBUG_KMS("%s head not reset to zero "
570                               "ctl %08x head %08x tail %08x start %08x\n",
571                               engine->name,
572                               I915_READ_CTL(engine),
573                               I915_READ_HEAD(engine),
574                               I915_READ_TAIL(engine),
575                               I915_READ_START(engine));
576
577                 if (!stop_ring(engine)) {
578                         DRM_ERROR("failed to set %s head to zero "
579                                   "ctl %08x head %08x tail %08x start %08x\n",
580                                   engine->name,
581                                   I915_READ_CTL(engine),
582                                   I915_READ_HEAD(engine),
583                                   I915_READ_TAIL(engine),
584                                   I915_READ_START(engine));
585                         ret = -EIO;
586                         goto out;
587                 }
588         }
589
590         if (I915_NEED_GFX_HWS(dev))
591                 intel_ring_setup_status_page(engine);
592         else
593                 ring_setup_phys_status_page(engine);
594
595         /* Enforce ordering by reading HEAD register back */
596         I915_READ_HEAD(engine);
597
598         /* Initialize the ring. This must happen _after_ we've cleared the ring
599          * registers with the above sequence (the readback of the HEAD registers
600          * also enforces ordering), otherwise the hw might lose the new ring
601          * register values. */
602         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
603
604         /* WaClearRingBufHeadRegAtInit:ctg,elk */
605         if (I915_READ_HEAD(engine))
606                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607                           engine->name, I915_READ_HEAD(engine));
608         I915_WRITE_HEAD(engine, 0);
609         (void)I915_READ_HEAD(engine);
610
611         I915_WRITE_CTL(engine,
612                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613                         | RING_VALID);
614
615         /* If the head is still not zero, the ring is dead */
616         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
617                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
618                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
619                 DRM_ERROR("%s initialization failed "
620                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621                           engine->name,
622                           I915_READ_CTL(engine),
623                           I915_READ_CTL(engine) & RING_VALID,
624                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
625                           I915_READ_START(engine),
626                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
627                 ret = -EIO;
628                 goto out;
629         }
630
631         ringbuf->last_retired_head = -1;
632         ringbuf->head = I915_READ_HEAD(engine);
633         ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
634         intel_ring_update_space(ringbuf);
635
636         intel_engine_init_hangcheck(engine);
637
638 out:
639         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
640
641         return ret;
642 }
643
644 void
645 intel_fini_pipe_control(struct intel_engine_cs *engine)
646 {
647         struct drm_device *dev = engine->dev;
648
649         if (engine->scratch.obj == NULL)
650                 return;
651
652         if (INTEL_INFO(dev)->gen >= 5) {
653                 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654                 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655         }
656
657         drm_gem_object_unreference(&engine->scratch.obj->base);
658         engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664         int ret;
665
666         WARN_ON(engine->scratch.obj);
667
668         engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
669         if (engine->scratch.obj == NULL) {
670                 DRM_ERROR("Failed to allocate seqno page\n");
671                 ret = -ENOMEM;
672                 goto err;
673         }
674
675         ret = i915_gem_object_set_cache_level(engine->scratch.obj,
676                                               I915_CACHE_LLC);
677         if (ret)
678                 goto err_unref;
679
680         ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
681         if (ret)
682                 goto err_unref;
683
684         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
685         engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
686         if (engine->scratch.cpu_page == NULL) {
687                 ret = -ENOMEM;
688                 goto err_unpin;
689         }
690
691         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
692                          engine->name, engine->scratch.gtt_offset);
693         return 0;
694
695 err_unpin:
696         i915_gem_object_ggtt_unpin(engine->scratch.obj);
697 err_unref:
698         drm_gem_object_unreference(&engine->scratch.obj->base);
699 err:
700         return ret;
701 }
702
703 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
704 {
705         int ret, i;
706         struct intel_engine_cs *engine = req->engine;
707         struct drm_device *dev = engine->dev;
708         struct drm_i915_private *dev_priv = dev->dev_private;
709         struct i915_workarounds *w = &dev_priv->workarounds;
710
711         if (w->count == 0)
712                 return 0;
713
714         engine->gpu_caches_dirty = true;
715         ret = intel_ring_flush_all_caches(req);
716         if (ret)
717                 return ret;
718
719         ret = intel_ring_begin(req, (w->count * 2 + 2));
720         if (ret)
721                 return ret;
722
723         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
724         for (i = 0; i < w->count; i++) {
725                 intel_ring_emit_reg(engine, w->reg[i].addr);
726                 intel_ring_emit(engine, w->reg[i].value);
727         }
728         intel_ring_emit(engine, MI_NOOP);
729
730         intel_ring_advance(engine);
731
732         engine->gpu_caches_dirty = true;
733         ret = intel_ring_flush_all_caches(req);
734         if (ret)
735                 return ret;
736
737         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
738
739         return 0;
740 }
741
742 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
743 {
744         int ret;
745
746         ret = intel_ring_workarounds_emit(req);
747         if (ret != 0)
748                 return ret;
749
750         ret = i915_gem_render_state_init(req);
751         if (ret)
752                 return ret;
753
754         return 0;
755 }
756
757 static int wa_add(struct drm_i915_private *dev_priv,
758                   i915_reg_t addr,
759                   const u32 mask, const u32 val)
760 {
761         const u32 idx = dev_priv->workarounds.count;
762
763         if (WARN_ON(idx >= I915_MAX_WA_REGS))
764                 return -ENOSPC;
765
766         dev_priv->workarounds.reg[idx].addr = addr;
767         dev_priv->workarounds.reg[idx].value = val;
768         dev_priv->workarounds.reg[idx].mask = mask;
769
770         dev_priv->workarounds.count++;
771
772         return 0;
773 }
774
775 #define WA_REG(addr, mask, val) do { \
776                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
777                 if (r) \
778                         return r; \
779         } while (0)
780
781 #define WA_SET_BIT_MASKED(addr, mask) \
782         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
783
784 #define WA_CLR_BIT_MASKED(addr, mask) \
785         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
786
787 #define WA_SET_FIELD_MASKED(addr, mask, value) \
788         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
789
790 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
791 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
792
793 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
794
795 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
796                                  i915_reg_t reg)
797 {
798         struct drm_i915_private *dev_priv = engine->dev->dev_private;
799         struct i915_workarounds *wa = &dev_priv->workarounds;
800         const uint32_t index = wa->hw_whitelist_count[engine->id];
801
802         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
803                 return -EINVAL;
804
805         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
806                  i915_mmio_reg_offset(reg));
807         wa->hw_whitelist_count[engine->id]++;
808
809         return 0;
810 }
811
812 static int gen8_init_workarounds(struct intel_engine_cs *engine)
813 {
814         struct drm_device *dev = engine->dev;
815         struct drm_i915_private *dev_priv = dev->dev_private;
816
817         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
818
819         /* WaDisableAsyncFlipPerfMode:bdw,chv */
820         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
821
822         /* WaDisablePartialInstShootdown:bdw,chv */
823         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
824                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
825
826         /* Use Force Non-Coherent whenever executing a 3D context. This is a
827          * workaround for for a possible hang in the unlikely event a TLB
828          * invalidation occurs during a PSD flush.
829          */
830         /* WaForceEnableNonCoherent:bdw,chv */
831         /* WaHdcDisableFetchWhenMasked:bdw,chv */
832         WA_SET_BIT_MASKED(HDC_CHICKEN0,
833                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
834                           HDC_FORCE_NON_COHERENT);
835
836         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
837          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
838          *  polygons in the same 8x4 pixel/sample area to be processed without
839          *  stalling waiting for the earlier ones to write to Hierarchical Z
840          *  buffer."
841          *
842          * This optimization is off by default for BDW and CHV; turn it on.
843          */
844         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
845
846         /* Wa4x4STCOptimizationDisable:bdw,chv */
847         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
848
849         /*
850          * BSpec recommends 8x4 when MSAA is used,
851          * however in practice 16x4 seems fastest.
852          *
853          * Note that PS/WM thread counts depend on the WIZ hashing
854          * disable bit, which we don't touch here, but it's good
855          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
856          */
857         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
858                             GEN6_WIZ_HASHING_MASK,
859                             GEN6_WIZ_HASHING_16x4);
860
861         return 0;
862 }
863
864 static int bdw_init_workarounds(struct intel_engine_cs *engine)
865 {
866         int ret;
867         struct drm_device *dev = engine->dev;
868         struct drm_i915_private *dev_priv = dev->dev_private;
869
870         ret = gen8_init_workarounds(engine);
871         if (ret)
872                 return ret;
873
874         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
875         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
876
877         /* WaDisableDopClockGating:bdw */
878         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
879                           DOP_CLOCK_GATING_DISABLE);
880
881         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
882                           GEN8_SAMPLER_POWER_BYPASS_DIS);
883
884         WA_SET_BIT_MASKED(HDC_CHICKEN0,
885                           /* WaForceContextSaveRestoreNonCoherent:bdw */
886                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
887                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
888                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
889
890         return 0;
891 }
892
893 static int chv_init_workarounds(struct intel_engine_cs *engine)
894 {
895         int ret;
896         struct drm_device *dev = engine->dev;
897         struct drm_i915_private *dev_priv = dev->dev_private;
898
899         ret = gen8_init_workarounds(engine);
900         if (ret)
901                 return ret;
902
903         /* WaDisableThreadStallDopClockGating:chv */
904         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
905
906         /* Improve HiZ throughput on CHV. */
907         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909         return 0;
910 }
911
912 static int gen9_init_workarounds(struct intel_engine_cs *engine)
913 {
914         struct drm_device *dev = engine->dev;
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         int ret;
917
918         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920
921         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924
925         /* WaDisableKillLogic:bxt,skl,kbl */
926         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927                    ECOCHK_DIS_TLB);
928
929         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
931         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932                           FLOW_CONTROL_ENABLE |
933                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934
935         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938
939         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
941             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
942                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943                                   GEN9_DG_MIRROR_FIX_ENABLE);
944
945         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
947             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
948                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
950                 /*
951                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952                  * but we do that in per ctx batchbuffer as there is an issue
953                  * with this register not getting restored on ctx restore
954                  */
955         }
956
957         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960                           GEN9_ENABLE_YV12_BUGFIX |
961                           GEN9_ENABLE_GPGPU_PREEMPTION);
962
963         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
965         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967
968         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970                           GEN9_CCS_TLB_PREFETCH_ENABLE);
971
972         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
973         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
974             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
975                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976                                   PIXEL_MASK_CAMMING_DISABLE);
977
978         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979         WA_SET_BIT_MASKED(HDC_CHICKEN0,
980                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982
983         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984          * both tied to WaForceContextSaveRestoreNonCoherent
985          * in some hsds for skl. We keep the tie for all gen9. The
986          * documentation is a bit hazy and so we want to get common behaviour,
987          * even though there is no clear evidence we would need both on kbl/bxt.
988          * This area has been source of system hangs so we play it safe
989          * and mimic the skl regardless of what bspec says.
990          *
991          * Use Force Non-Coherent whenever executing a 3D context. This
992          * is a workaround for a possible hang in the unlikely event
993          * a TLB invalidation occurs during a PSD flush.
994          */
995
996         /* WaForceEnableNonCoherent:skl,bxt,kbl */
997         WA_SET_BIT_MASKED(HDC_CHICKEN0,
998                           HDC_FORCE_NON_COHERENT);
999
1000         /* WaDisableHDCInvalidation:skl,bxt,kbl */
1001         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002                    BDW_DISABLE_HDC_INVALIDATION);
1003
1004         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005         if (IS_SKYLAKE(dev_priv) ||
1006             IS_KABYLAKE(dev_priv) ||
1007             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
1010
1011         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013
1014         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
1017
1018         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020         if (ret)
1021                 return ret;
1022
1023         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025         if (ret)
1026                 return ret;
1027
1028         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030         if (ret)
1031                 return ret;
1032
1033         return 0;
1034 }
1035
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038         struct drm_device *dev = engine->dev;
1039         struct drm_i915_private *dev_priv = dev->dev_private;
1040         u8 vals[3] = { 0, 0, 0 };
1041         unsigned int i;
1042
1043         for (i = 0; i < 3; i++) {
1044                 u8 ss;
1045
1046                 /*
1047                  * Only consider slices where one, and only one, subslice has 7
1048                  * EUs
1049                  */
1050                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1051                         continue;
1052
1053                 /*
1054                  * subslice_7eu[i] != 0 (because of the check above) and
1055                  * ss_max == 4 (maximum number of subslices possible per slice)
1056                  *
1057                  * ->    0 <= ss <= 3;
1058                  */
1059                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1060                 vals[i] = 3 - ss;
1061         }
1062
1063         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1064                 return 0;
1065
1066         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1067         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1068                             GEN9_IZ_HASHING_MASK(2) |
1069                             GEN9_IZ_HASHING_MASK(1) |
1070                             GEN9_IZ_HASHING_MASK(0),
1071                             GEN9_IZ_HASHING(2, vals[2]) |
1072                             GEN9_IZ_HASHING(1, vals[1]) |
1073                             GEN9_IZ_HASHING(0, vals[0]));
1074
1075         return 0;
1076 }
1077
1078 static int skl_init_workarounds(struct intel_engine_cs *engine)
1079 {
1080         int ret;
1081         struct drm_device *dev = engine->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083
1084         ret = gen9_init_workarounds(engine);
1085         if (ret)
1086                 return ret;
1087
1088         /*
1089          * Actual WA is to disable percontext preemption granularity control
1090          * until D0 which is the default case so this is equivalent to
1091          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1092          */
1093         if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1094                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1095                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1096         }
1097
1098         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1099                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1100                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1101                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1102         }
1103
1104         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1105          * involving this register should also be added to WA batch as required.
1106          */
1107         if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1108                 /* WaDisableLSQCROPERFforOCL:skl */
1109                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1110                            GEN8_LQSC_RO_PERF_DIS);
1111
1112         /* WaEnableGapsTsvCreditFix:skl */
1113         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1114                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1115                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1116         }
1117
1118         /* WaDisablePowerCompilerClockGating:skl */
1119         if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1120                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1121                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1122
1123         /* WaBarrierPerformanceFixDisable:skl */
1124         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1125                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1126                                   HDC_FENCE_DEST_SLM_DISABLE |
1127                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1128
1129         /* WaDisableSbeCacheDispatchPortSharing:skl */
1130         if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1131                 WA_SET_BIT_MASKED(
1132                         GEN7_HALF_SLICE_CHICKEN1,
1133                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1134
1135         /* WaDisableGafsUnitClkGating:skl */
1136         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1137
1138         /* WaDisableLSQCROPERFforOCL:skl */
1139         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1140         if (ret)
1141                 return ret;
1142
1143         return skl_tune_iz_hashing(engine);
1144 }
1145
1146 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1147 {
1148         int ret;
1149         struct drm_device *dev = engine->dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151
1152         ret = gen9_init_workarounds(engine);
1153         if (ret)
1154                 return ret;
1155
1156         /* WaStoreMultiplePTEenable:bxt */
1157         /* This is a requirement according to Hardware specification */
1158         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1159                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1160
1161         /* WaSetClckGatingDisableMedia:bxt */
1162         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1163                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1164                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1165         }
1166
1167         /* WaDisableThreadStallDopClockGating:bxt */
1168         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1169                           STALL_DOP_GATING_DISABLE);
1170
1171         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1172         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1173                 WA_SET_BIT_MASKED(
1174                         GEN7_HALF_SLICE_CHICKEN1,
1175                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1176         }
1177
1178         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1179         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1180         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1181         /* WaDisableLSQCROPERFforOCL:bxt */
1182         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1183                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1184                 if (ret)
1185                         return ret;
1186
1187                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1188                 if (ret)
1189                         return ret;
1190         }
1191
1192         /* WaInsertDummyPushConstPs:bxt */
1193         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1194                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1195                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1196
1197         return 0;
1198 }
1199
1200 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1201 {
1202         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1203         int ret;
1204
1205         ret = gen9_init_workarounds(engine);
1206         if (ret)
1207                 return ret;
1208
1209         /* WaEnableGapsTsvCreditFix:kbl */
1210         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1211                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1212
1213         /* WaDisableDynamicCreditSharing:kbl */
1214         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1215                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1216                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1217
1218         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1219         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1220                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1221                                   HDC_FENCE_DEST_SLM_DISABLE);
1222
1223         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1224          * involving this register should also be added to WA batch as required.
1225          */
1226         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1227                 /* WaDisableLSQCROPERFforOCL:kbl */
1228                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1229                            GEN8_LQSC_RO_PERF_DIS);
1230
1231         /* WaInsertDummyPushConstPs:kbl */
1232         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1233                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1234                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1235
1236         /* WaDisableGafsUnitClkGating:kbl */
1237         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1238
1239         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1240         WA_SET_BIT_MASKED(
1241                 GEN7_HALF_SLICE_CHICKEN1,
1242                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1243
1244         /* WaDisableLSQCROPERFforOCL:kbl */
1245         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1246         if (ret)
1247                 return ret;
1248
1249         return 0;
1250 }
1251
1252 int init_workarounds_ring(struct intel_engine_cs *engine)
1253 {
1254         struct drm_device *dev = engine->dev;
1255         struct drm_i915_private *dev_priv = dev->dev_private;
1256
1257         WARN_ON(engine->id != RCS);
1258
1259         dev_priv->workarounds.count = 0;
1260         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1261
1262         if (IS_BROADWELL(dev))
1263                 return bdw_init_workarounds(engine);
1264
1265         if (IS_CHERRYVIEW(dev))
1266                 return chv_init_workarounds(engine);
1267
1268         if (IS_SKYLAKE(dev))
1269                 return skl_init_workarounds(engine);
1270
1271         if (IS_BROXTON(dev))
1272                 return bxt_init_workarounds(engine);
1273
1274         if (IS_KABYLAKE(dev_priv))
1275                 return kbl_init_workarounds(engine);
1276
1277         return 0;
1278 }
1279
1280 static int init_render_ring(struct intel_engine_cs *engine)
1281 {
1282         struct drm_device *dev = engine->dev;
1283         struct drm_i915_private *dev_priv = dev->dev_private;
1284         int ret = init_ring_common(engine);
1285         if (ret)
1286                 return ret;
1287
1288         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1289         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1290                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1291
1292         /* We need to disable the AsyncFlip performance optimisations in order
1293          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1294          * programmed to '1' on all products.
1295          *
1296          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1297          */
1298         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1299                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1300
1301         /* Required for the hardware to program scanline values for waiting */
1302         /* WaEnableFlushTlbInvalidationMode:snb */
1303         if (INTEL_INFO(dev)->gen == 6)
1304                 I915_WRITE(GFX_MODE,
1305                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1306
1307         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1308         if (IS_GEN7(dev))
1309                 I915_WRITE(GFX_MODE_GEN7,
1310                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1311                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1312
1313         if (IS_GEN6(dev)) {
1314                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1315                  * "If this bit is set, STCunit will have LRA as replacement
1316                  *  policy. [...] This bit must be reset.  LRA replacement
1317                  *  policy is not supported."
1318                  */
1319                 I915_WRITE(CACHE_MODE_0,
1320                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1321         }
1322
1323         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1324                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1325
1326         if (HAS_L3_DPF(dev))
1327                 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1328
1329         return init_workarounds_ring(engine);
1330 }
1331
1332 static void render_ring_cleanup(struct intel_engine_cs *engine)
1333 {
1334         struct drm_device *dev = engine->dev;
1335         struct drm_i915_private *dev_priv = dev->dev_private;
1336
1337         if (dev_priv->semaphore_obj) {
1338                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1339                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1340                 dev_priv->semaphore_obj = NULL;
1341         }
1342
1343         intel_fini_pipe_control(engine);
1344 }
1345
1346 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1347                            unsigned int num_dwords)
1348 {
1349 #define MBOX_UPDATE_DWORDS 8
1350         struct intel_engine_cs *signaller = signaller_req->engine;
1351         struct drm_device *dev = signaller->dev;
1352         struct drm_i915_private *dev_priv = dev->dev_private;
1353         struct intel_engine_cs *waiter;
1354         enum intel_engine_id id;
1355         int ret, num_rings;
1356
1357         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1358         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1359 #undef MBOX_UPDATE_DWORDS
1360
1361         ret = intel_ring_begin(signaller_req, num_dwords);
1362         if (ret)
1363                 return ret;
1364
1365         for_each_engine_id(waiter, dev_priv, id) {
1366                 u32 seqno;
1367                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1368                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1369                         continue;
1370
1371                 seqno = i915_gem_request_get_seqno(signaller_req);
1372                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1373                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1374                                            PIPE_CONTROL_QW_WRITE |
1375                                            PIPE_CONTROL_FLUSH_ENABLE);
1376                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1377                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1378                 intel_ring_emit(signaller, seqno);
1379                 intel_ring_emit(signaller, 0);
1380                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1381                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1382                 intel_ring_emit(signaller, 0);
1383         }
1384
1385         return 0;
1386 }
1387
1388 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1389                            unsigned int num_dwords)
1390 {
1391 #define MBOX_UPDATE_DWORDS 6
1392         struct intel_engine_cs *signaller = signaller_req->engine;
1393         struct drm_device *dev = signaller->dev;
1394         struct drm_i915_private *dev_priv = dev->dev_private;
1395         struct intel_engine_cs *waiter;
1396         enum intel_engine_id id;
1397         int ret, num_rings;
1398
1399         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1400         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1401 #undef MBOX_UPDATE_DWORDS
1402
1403         ret = intel_ring_begin(signaller_req, num_dwords);
1404         if (ret)
1405                 return ret;
1406
1407         for_each_engine_id(waiter, dev_priv, id) {
1408                 u32 seqno;
1409                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1410                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1411                         continue;
1412
1413                 seqno = i915_gem_request_get_seqno(signaller_req);
1414                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1415                                            MI_FLUSH_DW_OP_STOREDW);
1416                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1417                                            MI_FLUSH_DW_USE_GTT);
1418                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1419                 intel_ring_emit(signaller, seqno);
1420                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1421                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1422                 intel_ring_emit(signaller, 0);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1429                        unsigned int num_dwords)
1430 {
1431         struct intel_engine_cs *signaller = signaller_req->engine;
1432         struct drm_device *dev = signaller->dev;
1433         struct drm_i915_private *dev_priv = dev->dev_private;
1434         struct intel_engine_cs *useless;
1435         enum intel_engine_id id;
1436         int ret, num_rings;
1437
1438 #define MBOX_UPDATE_DWORDS 3
1439         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1440         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1441 #undef MBOX_UPDATE_DWORDS
1442
1443         ret = intel_ring_begin(signaller_req, num_dwords);
1444         if (ret)
1445                 return ret;
1446
1447         for_each_engine_id(useless, dev_priv, id) {
1448                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1449
1450                 if (i915_mmio_reg_valid(mbox_reg)) {
1451                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1452
1453                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1454                         intel_ring_emit_reg(signaller, mbox_reg);
1455                         intel_ring_emit(signaller, seqno);
1456                 }
1457         }
1458
1459         /* If num_dwords was rounded, make sure the tail pointer is correct */
1460         if (num_rings % 2 == 0)
1461                 intel_ring_emit(signaller, MI_NOOP);
1462
1463         return 0;
1464 }
1465
1466 /**
1467  * gen6_add_request - Update the semaphore mailbox registers
1468  *
1469  * @request - request to write to the ring
1470  *
1471  * Update the mailbox registers in the *other* rings with the current seqno.
1472  * This acts like a signal in the canonical semaphore.
1473  */
1474 static int
1475 gen6_add_request(struct drm_i915_gem_request *req)
1476 {
1477         struct intel_engine_cs *engine = req->engine;
1478         int ret;
1479
1480         if (engine->semaphore.signal)
1481                 ret = engine->semaphore.signal(req, 4);
1482         else
1483                 ret = intel_ring_begin(req, 4);
1484
1485         if (ret)
1486                 return ret;
1487
1488         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1489         intel_ring_emit(engine,
1490                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1491         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1492         intel_ring_emit(engine, MI_USER_INTERRUPT);
1493         __intel_ring_advance(engine);
1494
1495         return 0;
1496 }
1497
1498 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1499                                               u32 seqno)
1500 {
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         return dev_priv->last_seqno < seqno;
1503 }
1504
1505 /**
1506  * intel_ring_sync - sync the waiter to the signaller on seqno
1507  *
1508  * @waiter - ring that is waiting
1509  * @signaller - ring which has, or will signal
1510  * @seqno - seqno which the waiter will block on
1511  */
1512
1513 static int
1514 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1515                struct intel_engine_cs *signaller,
1516                u32 seqno)
1517 {
1518         struct intel_engine_cs *waiter = waiter_req->engine;
1519         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1520         int ret;
1521
1522         ret = intel_ring_begin(waiter_req, 4);
1523         if (ret)
1524                 return ret;
1525
1526         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1527                                 MI_SEMAPHORE_GLOBAL_GTT |
1528                                 MI_SEMAPHORE_POLL |
1529                                 MI_SEMAPHORE_SAD_GTE_SDD);
1530         intel_ring_emit(waiter, seqno);
1531         intel_ring_emit(waiter,
1532                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1533         intel_ring_emit(waiter,
1534                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1535         intel_ring_advance(waiter);
1536         return 0;
1537 }
1538
1539 static int
1540 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1541                struct intel_engine_cs *signaller,
1542                u32 seqno)
1543 {
1544         struct intel_engine_cs *waiter = waiter_req->engine;
1545         u32 dw1 = MI_SEMAPHORE_MBOX |
1546                   MI_SEMAPHORE_COMPARE |
1547                   MI_SEMAPHORE_REGISTER;
1548         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1549         int ret;
1550
1551         /* Throughout all of the GEM code, seqno passed implies our current
1552          * seqno is >= the last seqno executed. However for hardware the
1553          * comparison is strictly greater than.
1554          */
1555         seqno -= 1;
1556
1557         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1558
1559         ret = intel_ring_begin(waiter_req, 4);
1560         if (ret)
1561                 return ret;
1562
1563         /* If seqno wrap happened, omit the wait with no-ops */
1564         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1565                 intel_ring_emit(waiter, dw1 | wait_mbox);
1566                 intel_ring_emit(waiter, seqno);
1567                 intel_ring_emit(waiter, 0);
1568                 intel_ring_emit(waiter, MI_NOOP);
1569         } else {
1570                 intel_ring_emit(waiter, MI_NOOP);
1571                 intel_ring_emit(waiter, MI_NOOP);
1572                 intel_ring_emit(waiter, MI_NOOP);
1573                 intel_ring_emit(waiter, MI_NOOP);
1574         }
1575         intel_ring_advance(waiter);
1576
1577         return 0;
1578 }
1579
1580 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1581 do {                                                                    \
1582         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1583                  PIPE_CONTROL_DEPTH_STALL);                             \
1584         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1585         intel_ring_emit(ring__, 0);                                                     \
1586         intel_ring_emit(ring__, 0);                                                     \
1587 } while (0)
1588
1589 static int
1590 pc_render_add_request(struct drm_i915_gem_request *req)
1591 {
1592         struct intel_engine_cs *engine = req->engine;
1593         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1594         int ret;
1595
1596         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1597          * incoherent with writes to memory, i.e. completely fubar,
1598          * so we need to use PIPE_NOTIFY instead.
1599          *
1600          * However, we also need to workaround the qword write
1601          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1602          * memory before requesting an interrupt.
1603          */
1604         ret = intel_ring_begin(req, 32);
1605         if (ret)
1606                 return ret;
1607
1608         intel_ring_emit(engine,
1609                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1610                         PIPE_CONTROL_WRITE_FLUSH |
1611                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1612         intel_ring_emit(engine,
1613                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1614         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1615         intel_ring_emit(engine, 0);
1616         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1617         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1618         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1619         scratch_addr += 2 * CACHELINE_BYTES;
1620         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1621         scratch_addr += 2 * CACHELINE_BYTES;
1622         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1623         scratch_addr += 2 * CACHELINE_BYTES;
1624         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1625         scratch_addr += 2 * CACHELINE_BYTES;
1626         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1627
1628         intel_ring_emit(engine,
1629                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1630                         PIPE_CONTROL_WRITE_FLUSH |
1631                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1632                         PIPE_CONTROL_NOTIFY);
1633         intel_ring_emit(engine,
1634                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1635         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1636         intel_ring_emit(engine, 0);
1637         __intel_ring_advance(engine);
1638
1639         return 0;
1640 }
1641
1642 static void
1643 gen6_seqno_barrier(struct intel_engine_cs *engine)
1644 {
1645         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1646
1647         /* Workaround to force correct ordering between irq and seqno writes on
1648          * ivb (and maybe also on snb) by reading from a CS register (like
1649          * ACTHD) before reading the status page.
1650          *
1651          * Note that this effectively stalls the read by the time it takes to
1652          * do a memory transaction, which more or less ensures that the write
1653          * from the GPU has sufficient time to invalidate the CPU cacheline.
1654          * Alternatively we could delay the interrupt from the CS ring to give
1655          * the write time to land, but that would incur a delay after every
1656          * batch i.e. much more frequent than a delay when waiting for the
1657          * interrupt (with the same net latency).
1658          *
1659          * Also note that to prevent whole machine hangs on gen7, we have to
1660          * take the spinlock to guard against concurrent cacheline access.
1661          */
1662         spin_lock_irq(&dev_priv->uncore.lock);
1663         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1664         spin_unlock_irq(&dev_priv->uncore.lock);
1665 }
1666
1667 static u32
1668 ring_get_seqno(struct intel_engine_cs *engine)
1669 {
1670         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1671 }
1672
1673 static void
1674 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1675 {
1676         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1677 }
1678
1679 static u32
1680 pc_render_get_seqno(struct intel_engine_cs *engine)
1681 {
1682         return engine->scratch.cpu_page[0];
1683 }
1684
1685 static void
1686 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1687 {
1688         engine->scratch.cpu_page[0] = seqno;
1689 }
1690
1691 static bool
1692 gen5_ring_get_irq(struct intel_engine_cs *engine)
1693 {
1694         struct drm_device *dev = engine->dev;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         unsigned long flags;
1697
1698         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1699                 return false;
1700
1701         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1702         if (engine->irq_refcount++ == 0)
1703                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1704         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1705
1706         return true;
1707 }
1708
1709 static void
1710 gen5_ring_put_irq(struct intel_engine_cs *engine)
1711 {
1712         struct drm_device *dev = engine->dev;
1713         struct drm_i915_private *dev_priv = dev->dev_private;
1714         unsigned long flags;
1715
1716         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1717         if (--engine->irq_refcount == 0)
1718                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1719         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1720 }
1721
1722 static bool
1723 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1724 {
1725         struct drm_device *dev = engine->dev;
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727         unsigned long flags;
1728
1729         if (!intel_irqs_enabled(dev_priv))
1730                 return false;
1731
1732         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1733         if (engine->irq_refcount++ == 0) {
1734                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1735                 I915_WRITE(IMR, dev_priv->irq_mask);
1736                 POSTING_READ(IMR);
1737         }
1738         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1739
1740         return true;
1741 }
1742
1743 static void
1744 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1745 {
1746         struct drm_device *dev = engine->dev;
1747         struct drm_i915_private *dev_priv = dev->dev_private;
1748         unsigned long flags;
1749
1750         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1751         if (--engine->irq_refcount == 0) {
1752                 dev_priv->irq_mask |= engine->irq_enable_mask;
1753                 I915_WRITE(IMR, dev_priv->irq_mask);
1754                 POSTING_READ(IMR);
1755         }
1756         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1757 }
1758
1759 static bool
1760 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1761 {
1762         struct drm_device *dev = engine->dev;
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         unsigned long flags;
1765
1766         if (!intel_irqs_enabled(dev_priv))
1767                 return false;
1768
1769         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1770         if (engine->irq_refcount++ == 0) {
1771                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1772                 I915_WRITE16(IMR, dev_priv->irq_mask);
1773                 POSTING_READ16(IMR);
1774         }
1775         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1776
1777         return true;
1778 }
1779
1780 static void
1781 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1782 {
1783         struct drm_device *dev = engine->dev;
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         unsigned long flags;
1786
1787         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1788         if (--engine->irq_refcount == 0) {
1789                 dev_priv->irq_mask |= engine->irq_enable_mask;
1790                 I915_WRITE16(IMR, dev_priv->irq_mask);
1791                 POSTING_READ16(IMR);
1792         }
1793         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1794 }
1795
1796 static int
1797 bsd_ring_flush(struct drm_i915_gem_request *req,
1798                u32     invalidate_domains,
1799                u32     flush_domains)
1800 {
1801         struct intel_engine_cs *engine = req->engine;
1802         int ret;
1803
1804         ret = intel_ring_begin(req, 2);
1805         if (ret)
1806                 return ret;
1807
1808         intel_ring_emit(engine, MI_FLUSH);
1809         intel_ring_emit(engine, MI_NOOP);
1810         intel_ring_advance(engine);
1811         return 0;
1812 }
1813
1814 static int
1815 i9xx_add_request(struct drm_i915_gem_request *req)
1816 {
1817         struct intel_engine_cs *engine = req->engine;
1818         int ret;
1819
1820         ret = intel_ring_begin(req, 4);
1821         if (ret)
1822                 return ret;
1823
1824         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1825         intel_ring_emit(engine,
1826                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1827         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1828         intel_ring_emit(engine, MI_USER_INTERRUPT);
1829         __intel_ring_advance(engine);
1830
1831         return 0;
1832 }
1833
1834 static bool
1835 gen6_ring_get_irq(struct intel_engine_cs *engine)
1836 {
1837         struct drm_device *dev = engine->dev;
1838         struct drm_i915_private *dev_priv = dev->dev_private;
1839         unsigned long flags;
1840
1841         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1842                 return false;
1843
1844         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1845         if (engine->irq_refcount++ == 0) {
1846                 if (HAS_L3_DPF(dev) && engine->id == RCS)
1847                         I915_WRITE_IMR(engine,
1848                                        ~(engine->irq_enable_mask |
1849                                          GT_PARITY_ERROR(dev)));
1850                 else
1851                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1852                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1853         }
1854         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1855
1856         return true;
1857 }
1858
1859 static void
1860 gen6_ring_put_irq(struct intel_engine_cs *engine)
1861 {
1862         struct drm_device *dev = engine->dev;
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         unsigned long flags;
1865
1866         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1867         if (--engine->irq_refcount == 0) {
1868                 if (HAS_L3_DPF(dev) && engine->id == RCS)
1869                         I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1870                 else
1871                         I915_WRITE_IMR(engine, ~0);
1872                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1873         }
1874         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1875 }
1876
1877 static bool
1878 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1879 {
1880         struct drm_device *dev = engine->dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         unsigned long flags;
1883
1884         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1885                 return false;
1886
1887         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1888         if (engine->irq_refcount++ == 0) {
1889                 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1890                 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1891         }
1892         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1893
1894         return true;
1895 }
1896
1897 static void
1898 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1899 {
1900         struct drm_device *dev = engine->dev;
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         unsigned long flags;
1903
1904         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1905         if (--engine->irq_refcount == 0) {
1906                 I915_WRITE_IMR(engine, ~0);
1907                 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1908         }
1909         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1910 }
1911
1912 static bool
1913 gen8_ring_get_irq(struct intel_engine_cs *engine)
1914 {
1915         struct drm_device *dev = engine->dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         unsigned long flags;
1918
1919         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1920                 return false;
1921
1922         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1923         if (engine->irq_refcount++ == 0) {
1924                 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1925                         I915_WRITE_IMR(engine,
1926                                        ~(engine->irq_enable_mask |
1927                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1928                 } else {
1929                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1930                 }
1931                 POSTING_READ(RING_IMR(engine->mmio_base));
1932         }
1933         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1934
1935         return true;
1936 }
1937
1938 static void
1939 gen8_ring_put_irq(struct intel_engine_cs *engine)
1940 {
1941         struct drm_device *dev = engine->dev;
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         unsigned long flags;
1944
1945         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1946         if (--engine->irq_refcount == 0) {
1947                 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1948                         I915_WRITE_IMR(engine,
1949                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1950                 } else {
1951                         I915_WRITE_IMR(engine, ~0);
1952                 }
1953                 POSTING_READ(RING_IMR(engine->mmio_base));
1954         }
1955         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1956 }
1957
1958 static int
1959 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1960                          u64 offset, u32 length,
1961                          unsigned dispatch_flags)
1962 {
1963         struct intel_engine_cs *engine = req->engine;
1964         int ret;
1965
1966         ret = intel_ring_begin(req, 2);
1967         if (ret)
1968                 return ret;
1969
1970         intel_ring_emit(engine,
1971                         MI_BATCH_BUFFER_START |
1972                         MI_BATCH_GTT |
1973                         (dispatch_flags & I915_DISPATCH_SECURE ?
1974                          0 : MI_BATCH_NON_SECURE_I965));
1975         intel_ring_emit(engine, offset);
1976         intel_ring_advance(engine);
1977
1978         return 0;
1979 }
1980
1981 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1982 #define I830_BATCH_LIMIT (256*1024)
1983 #define I830_TLB_ENTRIES (2)
1984 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1985 static int
1986 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1987                          u64 offset, u32 len,
1988                          unsigned dispatch_flags)
1989 {
1990         struct intel_engine_cs *engine = req->engine;
1991         u32 cs_offset = engine->scratch.gtt_offset;
1992         int ret;
1993
1994         ret = intel_ring_begin(req, 6);
1995         if (ret)
1996                 return ret;
1997
1998         /* Evict the invalid PTE TLBs */
1999         intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2000         intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2001         intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2002         intel_ring_emit(engine, cs_offset);
2003         intel_ring_emit(engine, 0xdeadbeef);
2004         intel_ring_emit(engine, MI_NOOP);
2005         intel_ring_advance(engine);
2006
2007         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2008                 if (len > I830_BATCH_LIMIT)
2009                         return -ENOSPC;
2010
2011                 ret = intel_ring_begin(req, 6 + 2);
2012                 if (ret)
2013                         return ret;
2014
2015                 /* Blit the batch (which has now all relocs applied) to the
2016                  * stable batch scratch bo area (so that the CS never
2017                  * stumbles over its tlb invalidation bug) ...
2018                  */
2019                 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2020                 intel_ring_emit(engine,
2021                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2022                 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2023                 intel_ring_emit(engine, cs_offset);
2024                 intel_ring_emit(engine, 4096);
2025                 intel_ring_emit(engine, offset);
2026
2027                 intel_ring_emit(engine, MI_FLUSH);
2028                 intel_ring_emit(engine, MI_NOOP);
2029                 intel_ring_advance(engine);
2030
2031                 /* ... and execute it. */
2032                 offset = cs_offset;
2033         }
2034
2035         ret = intel_ring_begin(req, 2);
2036         if (ret)
2037                 return ret;
2038
2039         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2040         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2041                                           0 : MI_BATCH_NON_SECURE));
2042         intel_ring_advance(engine);
2043
2044         return 0;
2045 }
2046
2047 static int
2048 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2049                          u64 offset, u32 len,
2050                          unsigned dispatch_flags)
2051 {
2052         struct intel_engine_cs *engine = req->engine;
2053         int ret;
2054
2055         ret = intel_ring_begin(req, 2);
2056         if (ret)
2057                 return ret;
2058
2059         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2060         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2061                                           0 : MI_BATCH_NON_SECURE));
2062         intel_ring_advance(engine);
2063
2064         return 0;
2065 }
2066
2067 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2068 {
2069         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2070
2071         if (!dev_priv->status_page_dmah)
2072                 return;
2073
2074         drm_pci_free(engine->dev, dev_priv->status_page_dmah);
2075         engine->status_page.page_addr = NULL;
2076 }
2077
2078 static void cleanup_status_page(struct intel_engine_cs *engine)
2079 {
2080         struct drm_i915_gem_object *obj;
2081
2082         obj = engine->status_page.obj;
2083         if (obj == NULL)
2084                 return;
2085
2086         kunmap(sg_page(obj->pages->sgl));
2087         i915_gem_object_ggtt_unpin(obj);
2088         drm_gem_object_unreference(&obj->base);
2089         engine->status_page.obj = NULL;
2090 }
2091
2092 static int init_status_page(struct intel_engine_cs *engine)
2093 {
2094         struct drm_i915_gem_object *obj = engine->status_page.obj;
2095
2096         if (obj == NULL) {
2097                 unsigned flags;
2098                 int ret;
2099
2100                 obj = i915_gem_alloc_object(engine->dev, 4096);
2101                 if (obj == NULL) {
2102                         DRM_ERROR("Failed to allocate status page\n");
2103                         return -ENOMEM;
2104                 }
2105
2106                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2107                 if (ret)
2108                         goto err_unref;
2109
2110                 flags = 0;
2111                 if (!HAS_LLC(engine->dev))
2112                         /* On g33, we cannot place HWS above 256MiB, so
2113                          * restrict its pinning to the low mappable arena.
2114                          * Though this restriction is not documented for
2115                          * gen4, gen5, or byt, they also behave similarly
2116                          * and hang if the HWS is placed at the top of the
2117                          * GTT. To generalise, it appears that all !llc
2118                          * platforms have issues with us placing the HWS
2119                          * above the mappable region (even though we never
2120                          * actualy map it).
2121                          */
2122                         flags |= PIN_MAPPABLE;
2123                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2124                 if (ret) {
2125 err_unref:
2126                         drm_gem_object_unreference(&obj->base);
2127                         return ret;
2128                 }
2129
2130                 engine->status_page.obj = obj;
2131         }
2132
2133         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2134         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2135         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2136
2137         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2138                         engine->name, engine->status_page.gfx_addr);
2139
2140         return 0;
2141 }
2142
2143 static int init_phys_status_page(struct intel_engine_cs *engine)
2144 {
2145         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2146
2147         if (!dev_priv->status_page_dmah) {
2148                 dev_priv->status_page_dmah =
2149                         drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2150                 if (!dev_priv->status_page_dmah)
2151                         return -ENOMEM;
2152         }
2153
2154         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2155         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2156
2157         return 0;
2158 }
2159
2160 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2161 {
2162         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2163                 i915_gem_object_unpin_map(ringbuf->obj);
2164         else
2165                 iounmap(ringbuf->virtual_start);
2166         ringbuf->virtual_start = NULL;
2167         ringbuf->vma = NULL;
2168         i915_gem_object_ggtt_unpin(ringbuf->obj);
2169 }
2170
2171 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2172                                      struct intel_ringbuffer *ringbuf)
2173 {
2174         struct drm_i915_private *dev_priv = to_i915(dev);
2175         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2176         struct drm_i915_gem_object *obj = ringbuf->obj;
2177         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2178         unsigned flags = PIN_OFFSET_BIAS | 4096;
2179         void *addr;
2180         int ret;
2181
2182         if (HAS_LLC(dev_priv) && !obj->stolen) {
2183                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2184                 if (ret)
2185                         return ret;
2186
2187                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2188                 if (ret)
2189                         goto err_unpin;
2190
2191                 addr = i915_gem_object_pin_map(obj);
2192                 if (IS_ERR(addr)) {
2193                         ret = PTR_ERR(addr);
2194                         goto err_unpin;
2195                 }
2196         } else {
2197                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2198                                             flags | PIN_MAPPABLE);
2199                 if (ret)
2200                         return ret;
2201
2202                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2203                 if (ret)
2204                         goto err_unpin;
2205
2206                 /* Access through the GTT requires the device to be awake. */
2207                 assert_rpm_wakelock_held(dev_priv);
2208
2209                 addr = ioremap_wc(ggtt->mappable_base +
2210                                   i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2211                 if (addr == NULL) {
2212                         ret = -ENOMEM;
2213                         goto err_unpin;
2214                 }
2215         }
2216
2217         ringbuf->virtual_start = addr;
2218         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2219         return 0;
2220
2221 err_unpin:
2222         i915_gem_object_ggtt_unpin(obj);
2223         return ret;
2224 }
2225
2226 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2227 {
2228         drm_gem_object_unreference(&ringbuf->obj->base);
2229         ringbuf->obj = NULL;
2230 }
2231
2232 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2233                                       struct intel_ringbuffer *ringbuf)
2234 {
2235         struct drm_i915_gem_object *obj;
2236
2237         obj = NULL;
2238         if (!HAS_LLC(dev))
2239                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2240         if (obj == NULL)
2241                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2242         if (obj == NULL)
2243                 return -ENOMEM;
2244
2245         /* mark ring buffers as read-only from GPU side by default */
2246         obj->gt_ro = 1;
2247
2248         ringbuf->obj = obj;
2249
2250         return 0;
2251 }
2252
2253 struct intel_ringbuffer *
2254 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2255 {
2256         struct intel_ringbuffer *ring;
2257         int ret;
2258
2259         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2260         if (ring == NULL) {
2261                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2262                                  engine->name);
2263                 return ERR_PTR(-ENOMEM);
2264         }
2265
2266         ring->engine = engine;
2267         list_add(&ring->link, &engine->buffers);
2268
2269         ring->size = size;
2270         /* Workaround an erratum on the i830 which causes a hang if
2271          * the TAIL pointer points to within the last 2 cachelines
2272          * of the buffer.
2273          */
2274         ring->effective_size = size;
2275         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2276                 ring->effective_size -= 2 * CACHELINE_BYTES;
2277
2278         ring->last_retired_head = -1;
2279         intel_ring_update_space(ring);
2280
2281         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2282         if (ret) {
2283                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2284                                  engine->name, ret);
2285                 list_del(&ring->link);
2286                 kfree(ring);
2287                 return ERR_PTR(ret);
2288         }
2289
2290         return ring;
2291 }
2292
2293 void
2294 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2295 {
2296         intel_destroy_ringbuffer_obj(ring);
2297         list_del(&ring->link);
2298         kfree(ring);
2299 }
2300
2301 static int intel_init_ring_buffer(struct drm_device *dev,
2302                                   struct intel_engine_cs *engine)
2303 {
2304         struct intel_ringbuffer *ringbuf;
2305         int ret;
2306
2307         WARN_ON(engine->buffer);
2308
2309         engine->dev = dev;
2310         INIT_LIST_HEAD(&engine->active_list);
2311         INIT_LIST_HEAD(&engine->request_list);
2312         INIT_LIST_HEAD(&engine->execlist_queue);
2313         INIT_LIST_HEAD(&engine->buffers);
2314         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2315         memset(engine->semaphore.sync_seqno, 0,
2316                sizeof(engine->semaphore.sync_seqno));
2317
2318         init_waitqueue_head(&engine->irq_queue);
2319
2320         ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2321         if (IS_ERR(ringbuf)) {
2322                 ret = PTR_ERR(ringbuf);
2323                 goto error;
2324         }
2325         engine->buffer = ringbuf;
2326
2327         if (I915_NEED_GFX_HWS(dev)) {
2328                 ret = init_status_page(engine);
2329                 if (ret)
2330                         goto error;
2331         } else {
2332                 WARN_ON(engine->id != RCS);
2333                 ret = init_phys_status_page(engine);
2334                 if (ret)
2335                         goto error;
2336         }
2337
2338         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2339         if (ret) {
2340                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2341                                 engine->name, ret);
2342                 intel_destroy_ringbuffer_obj(ringbuf);
2343                 goto error;
2344         }
2345
2346         ret = i915_cmd_parser_init_ring(engine);
2347         if (ret)
2348                 goto error;
2349
2350         return 0;
2351
2352 error:
2353         intel_cleanup_engine(engine);
2354         return ret;
2355 }
2356
2357 void intel_cleanup_engine(struct intel_engine_cs *engine)
2358 {
2359         struct drm_i915_private *dev_priv;
2360
2361         if (!intel_engine_initialized(engine))
2362                 return;
2363
2364         dev_priv = to_i915(engine->dev);
2365
2366         if (engine->buffer) {
2367                 intel_stop_engine(engine);
2368                 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2369
2370                 intel_unpin_ringbuffer_obj(engine->buffer);
2371                 intel_ringbuffer_free(engine->buffer);
2372                 engine->buffer = NULL;
2373         }
2374
2375         if (engine->cleanup)
2376                 engine->cleanup(engine);
2377
2378         if (I915_NEED_GFX_HWS(engine->dev)) {
2379                 cleanup_status_page(engine);
2380         } else {
2381                 WARN_ON(engine->id != RCS);
2382                 cleanup_phys_status_page(engine);
2383         }
2384
2385         i915_cmd_parser_fini_ring(engine);
2386         i915_gem_batch_pool_fini(&engine->batch_pool);
2387         engine->dev = NULL;
2388 }
2389
2390 int intel_engine_idle(struct intel_engine_cs *engine)
2391 {
2392         struct drm_i915_gem_request *req;
2393
2394         /* Wait upon the last request to be completed */
2395         if (list_empty(&engine->request_list))
2396                 return 0;
2397
2398         req = list_entry(engine->request_list.prev,
2399                          struct drm_i915_gem_request,
2400                          list);
2401
2402         /* Make sure we do not trigger any retires */
2403         return __i915_wait_request(req,
2404                                    req->i915->mm.interruptible,
2405                                    NULL, NULL);
2406 }
2407
2408 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2409 {
2410         request->ringbuf = request->engine->buffer;
2411         return 0;
2412 }
2413
2414 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2415 {
2416         /*
2417          * The first call merely notes the reserve request and is common for
2418          * all back ends. The subsequent localised _begin() call actually
2419          * ensures that the reservation is available. Without the begin, if
2420          * the request creator immediately submitted the request without
2421          * adding any commands to it then there might not actually be
2422          * sufficient room for the submission commands.
2423          */
2424         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2425
2426         return intel_ring_begin(request, 0);
2427 }
2428
2429 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2430 {
2431         GEM_BUG_ON(ringbuf->reserved_size);
2432         ringbuf->reserved_size = size;
2433 }
2434
2435 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2436 {
2437         GEM_BUG_ON(!ringbuf->reserved_size);
2438         ringbuf->reserved_size   = 0;
2439 }
2440
2441 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2442 {
2443         GEM_BUG_ON(!ringbuf->reserved_size);
2444         ringbuf->reserved_size   = 0;
2445 }
2446
2447 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2448 {
2449         GEM_BUG_ON(ringbuf->reserved_size);
2450 }
2451
2452 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2453 {
2454         struct intel_ringbuffer *ringbuf = req->ringbuf;
2455         struct intel_engine_cs *engine = req->engine;
2456         struct drm_i915_gem_request *target;
2457
2458         intel_ring_update_space(ringbuf);
2459         if (ringbuf->space >= bytes)
2460                 return 0;
2461
2462         /*
2463          * Space is reserved in the ringbuffer for finalising the request,
2464          * as that cannot be allowed to fail. During request finalisation,
2465          * reserved_space is set to 0 to stop the overallocation and the
2466          * assumption is that then we never need to wait (which has the
2467          * risk of failing with EINTR).
2468          *
2469          * See also i915_gem_request_alloc() and i915_add_request().
2470          */
2471         GEM_BUG_ON(!ringbuf->reserved_size);
2472
2473         list_for_each_entry(target, &engine->request_list, list) {
2474                 unsigned space;
2475
2476                 /*
2477                  * The request queue is per-engine, so can contain requests
2478                  * from multiple ringbuffers. Here, we must ignore any that
2479                  * aren't from the ringbuffer we're considering.
2480                  */
2481                 if (target->ringbuf != ringbuf)
2482                         continue;
2483
2484                 /* Would completion of this request free enough space? */
2485                 space = __intel_ring_space(target->postfix, ringbuf->tail,
2486                                            ringbuf->size);
2487                 if (space >= bytes)
2488                         break;
2489         }
2490
2491         if (WARN_ON(&target->list == &engine->request_list))
2492                 return -ENOSPC;
2493
2494         return i915_wait_request(target);
2495 }
2496
2497 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2498 {
2499         struct intel_ringbuffer *ringbuf = req->ringbuf;
2500         int remain_actual = ringbuf->size - ringbuf->tail;
2501         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2502         int bytes = num_dwords * sizeof(u32);
2503         int total_bytes, wait_bytes;
2504         bool need_wrap = false;
2505
2506         total_bytes = bytes + ringbuf->reserved_size;
2507
2508         if (unlikely(bytes > remain_usable)) {
2509                 /*
2510                  * Not enough space for the basic request. So need to flush
2511                  * out the remainder and then wait for base + reserved.
2512                  */
2513                 wait_bytes = remain_actual + total_bytes;
2514                 need_wrap = true;
2515         } else if (unlikely(total_bytes > remain_usable)) {
2516                 /*
2517                  * The base request will fit but the reserved space
2518                  * falls off the end. So we don't need an immediate wrap
2519                  * and only need to effectively wait for the reserved
2520                  * size space from the start of ringbuffer.
2521                  */
2522                 wait_bytes = remain_actual + ringbuf->reserved_size;
2523         } else {
2524                 /* No wrapping required, just waiting. */
2525                 wait_bytes = total_bytes;
2526         }
2527
2528         if (wait_bytes > ringbuf->space) {
2529                 int ret = wait_for_space(req, wait_bytes);
2530                 if (unlikely(ret))
2531                         return ret;
2532
2533                 intel_ring_update_space(ringbuf);
2534                 if (unlikely(ringbuf->space < wait_bytes))
2535                         return -EAGAIN;
2536         }
2537
2538         if (unlikely(need_wrap)) {
2539                 GEM_BUG_ON(remain_actual > ringbuf->space);
2540                 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2541
2542                 /* Fill the tail with MI_NOOP */
2543                 memset(ringbuf->virtual_start + ringbuf->tail,
2544                        0, remain_actual);
2545                 ringbuf->tail = 0;
2546                 ringbuf->space -= remain_actual;
2547         }
2548
2549         ringbuf->space -= bytes;
2550         GEM_BUG_ON(ringbuf->space < 0);
2551         return 0;
2552 }
2553
2554 /* Align the ring tail to a cacheline boundary */
2555 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2556 {
2557         struct intel_engine_cs *engine = req->engine;
2558         int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2559         int ret;
2560
2561         if (num_dwords == 0)
2562                 return 0;
2563
2564         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2565         ret = intel_ring_begin(req, num_dwords);
2566         if (ret)
2567                 return ret;
2568
2569         while (num_dwords--)
2570                 intel_ring_emit(engine, MI_NOOP);
2571
2572         intel_ring_advance(engine);
2573
2574         return 0;
2575 }
2576
2577 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2578 {
2579         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2580
2581         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2582          * so long as the semaphore value in the register/page is greater
2583          * than the sync value), so whenever we reset the seqno,
2584          * so long as we reset the tracking semaphore value to 0, it will
2585          * always be before the next request's seqno. If we don't reset
2586          * the semaphore value, then when the seqno moves backwards all
2587          * future waits will complete instantly (causing rendering corruption).
2588          */
2589         if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2590                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2591                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2592                 if (HAS_VEBOX(dev_priv))
2593                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2594         }
2595         if (dev_priv->semaphore_obj) {
2596                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2597                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2598                 void *semaphores = kmap(page);
2599                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2600                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2601                 kunmap(page);
2602         }
2603         memset(engine->semaphore.sync_seqno, 0,
2604                sizeof(engine->semaphore.sync_seqno));
2605
2606         engine->set_seqno(engine, seqno);
2607         engine->last_submitted_seqno = seqno;
2608
2609         engine->hangcheck.seqno = seqno;
2610 }
2611
2612 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2613                                      u32 value)
2614 {
2615         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2616
2617        /* Every tail move must follow the sequence below */
2618
2619         /* Disable notification that the ring is IDLE. The GT
2620          * will then assume that it is busy and bring it out of rc6.
2621          */
2622         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2623                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2624
2625         /* Clear the context id. Here be magic! */
2626         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2627
2628         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2629         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2630                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2631                      50))
2632                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2633
2634         /* Now that the ring is fully powered up, update the tail */
2635         I915_WRITE_TAIL(engine, value);
2636         POSTING_READ(RING_TAIL(engine->mmio_base));
2637
2638         /* Let the ring send IDLE messages to the GT again,
2639          * and so let it sleep to conserve power when idle.
2640          */
2641         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2642                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2643 }
2644
2645 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2646                                u32 invalidate, u32 flush)
2647 {
2648         struct intel_engine_cs *engine = req->engine;
2649         uint32_t cmd;
2650         int ret;
2651
2652         ret = intel_ring_begin(req, 4);
2653         if (ret)
2654                 return ret;
2655
2656         cmd = MI_FLUSH_DW;
2657         if (INTEL_INFO(engine->dev)->gen >= 8)
2658                 cmd += 1;
2659
2660         /* We always require a command barrier so that subsequent
2661          * commands, such as breadcrumb interrupts, are strictly ordered
2662          * wrt the contents of the write cache being flushed to memory
2663          * (and thus being coherent from the CPU).
2664          */
2665         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2666
2667         /*
2668          * Bspec vol 1c.5 - video engine command streamer:
2669          * "If ENABLED, all TLBs will be invalidated once the flush
2670          * operation is complete. This bit is only valid when the
2671          * Post-Sync Operation field is a value of 1h or 3h."
2672          */
2673         if (invalidate & I915_GEM_GPU_DOMAINS)
2674                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2675
2676         intel_ring_emit(engine, cmd);
2677         intel_ring_emit(engine,
2678                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2679         if (INTEL_INFO(engine->dev)->gen >= 8) {
2680                 intel_ring_emit(engine, 0); /* upper addr */
2681                 intel_ring_emit(engine, 0); /* value */
2682         } else  {
2683                 intel_ring_emit(engine, 0);
2684                 intel_ring_emit(engine, MI_NOOP);
2685         }
2686         intel_ring_advance(engine);
2687         return 0;
2688 }
2689
2690 static int
2691 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2692                               u64 offset, u32 len,
2693                               unsigned dispatch_flags)
2694 {
2695         struct intel_engine_cs *engine = req->engine;
2696         bool ppgtt = USES_PPGTT(engine->dev) &&
2697                         !(dispatch_flags & I915_DISPATCH_SECURE);
2698         int ret;
2699
2700         ret = intel_ring_begin(req, 4);
2701         if (ret)
2702                 return ret;
2703
2704         /* FIXME(BDW): Address space and security selectors. */
2705         intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2706                         (dispatch_flags & I915_DISPATCH_RS ?
2707                          MI_BATCH_RESOURCE_STREAMER : 0));
2708         intel_ring_emit(engine, lower_32_bits(offset));
2709         intel_ring_emit(engine, upper_32_bits(offset));
2710         intel_ring_emit(engine, MI_NOOP);
2711         intel_ring_advance(engine);
2712
2713         return 0;
2714 }
2715
2716 static int
2717 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2718                              u64 offset, u32 len,
2719                              unsigned dispatch_flags)
2720 {
2721         struct intel_engine_cs *engine = req->engine;
2722         int ret;
2723
2724         ret = intel_ring_begin(req, 2);
2725         if (ret)
2726                 return ret;
2727
2728         intel_ring_emit(engine,
2729                         MI_BATCH_BUFFER_START |
2730                         (dispatch_flags & I915_DISPATCH_SECURE ?
2731                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2732                         (dispatch_flags & I915_DISPATCH_RS ?
2733                          MI_BATCH_RESOURCE_STREAMER : 0));
2734         /* bit0-7 is the length on GEN6+ */
2735         intel_ring_emit(engine, offset);
2736         intel_ring_advance(engine);
2737
2738         return 0;
2739 }
2740
2741 static int
2742 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2743                               u64 offset, u32 len,
2744                               unsigned dispatch_flags)
2745 {
2746         struct intel_engine_cs *engine = req->engine;
2747         int ret;
2748
2749         ret = intel_ring_begin(req, 2);
2750         if (ret)
2751                 return ret;
2752
2753         intel_ring_emit(engine,
2754                         MI_BATCH_BUFFER_START |
2755                         (dispatch_flags & I915_DISPATCH_SECURE ?
2756                          0 : MI_BATCH_NON_SECURE_I965));
2757         /* bit0-7 is the length on GEN6+ */
2758         intel_ring_emit(engine, offset);
2759         intel_ring_advance(engine);
2760
2761         return 0;
2762 }
2763
2764 /* Blitter support (SandyBridge+) */
2765
2766 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2767                            u32 invalidate, u32 flush)
2768 {
2769         struct intel_engine_cs *engine = req->engine;
2770         struct drm_device *dev = engine->dev;
2771         uint32_t cmd;
2772         int ret;
2773
2774         ret = intel_ring_begin(req, 4);
2775         if (ret)
2776                 return ret;
2777
2778         cmd = MI_FLUSH_DW;
2779         if (INTEL_INFO(dev)->gen >= 8)
2780                 cmd += 1;
2781
2782         /* We always require a command barrier so that subsequent
2783          * commands, such as breadcrumb interrupts, are strictly ordered
2784          * wrt the contents of the write cache being flushed to memory
2785          * (and thus being coherent from the CPU).
2786          */
2787         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2788
2789         /*
2790          * Bspec vol 1c.3 - blitter engine command streamer:
2791          * "If ENABLED, all TLBs will be invalidated once the flush
2792          * operation is complete. This bit is only valid when the
2793          * Post-Sync Operation field is a value of 1h or 3h."
2794          */
2795         if (invalidate & I915_GEM_DOMAIN_RENDER)
2796                 cmd |= MI_INVALIDATE_TLB;
2797         intel_ring_emit(engine, cmd);
2798         intel_ring_emit(engine,
2799                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2800         if (INTEL_INFO(dev)->gen >= 8) {
2801                 intel_ring_emit(engine, 0); /* upper addr */
2802                 intel_ring_emit(engine, 0); /* value */
2803         } else  {
2804                 intel_ring_emit(engine, 0);
2805                 intel_ring_emit(engine, MI_NOOP);
2806         }
2807         intel_ring_advance(engine);
2808
2809         return 0;
2810 }
2811
2812 int intel_init_render_ring_buffer(struct drm_device *dev)
2813 {
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2816         struct drm_i915_gem_object *obj;
2817         int ret;
2818
2819         engine->name = "render ring";
2820         engine->id = RCS;
2821         engine->exec_id = I915_EXEC_RENDER;
2822         engine->hw_id = 0;
2823         engine->mmio_base = RENDER_RING_BASE;
2824
2825         if (INTEL_INFO(dev)->gen >= 8) {
2826                 if (i915_semaphore_is_enabled(dev)) {
2827                         obj = i915_gem_alloc_object(dev, 4096);
2828                         if (obj == NULL) {
2829                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2830                                 i915.semaphores = 0;
2831                         } else {
2832                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2833                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2834                                 if (ret != 0) {
2835                                         drm_gem_object_unreference(&obj->base);
2836                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2837                                         i915.semaphores = 0;
2838                                 } else
2839                                         dev_priv->semaphore_obj = obj;
2840                         }
2841                 }
2842
2843                 engine->init_context = intel_rcs_ctx_init;
2844                 engine->add_request = gen6_add_request;
2845                 engine->flush = gen8_render_ring_flush;
2846                 engine->irq_get = gen8_ring_get_irq;
2847                 engine->irq_put = gen8_ring_put_irq;
2848                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2849                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2850                 engine->get_seqno = ring_get_seqno;
2851                 engine->set_seqno = ring_set_seqno;
2852                 if (i915_semaphore_is_enabled(dev)) {
2853                         WARN_ON(!dev_priv->semaphore_obj);
2854                         engine->semaphore.sync_to = gen8_ring_sync;
2855                         engine->semaphore.signal = gen8_rcs_signal;
2856                         GEN8_RING_SEMAPHORE_INIT(engine);
2857                 }
2858         } else if (INTEL_INFO(dev)->gen >= 6) {
2859                 engine->init_context = intel_rcs_ctx_init;
2860                 engine->add_request = gen6_add_request;
2861                 engine->flush = gen7_render_ring_flush;
2862                 if (INTEL_INFO(dev)->gen == 6)
2863                         engine->flush = gen6_render_ring_flush;
2864                 engine->irq_get = gen6_ring_get_irq;
2865                 engine->irq_put = gen6_ring_put_irq;
2866                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2867                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2868                 engine->get_seqno = ring_get_seqno;
2869                 engine->set_seqno = ring_set_seqno;
2870                 if (i915_semaphore_is_enabled(dev)) {
2871                         engine->semaphore.sync_to = gen6_ring_sync;
2872                         engine->semaphore.signal = gen6_signal;
2873                         /*
2874                          * The current semaphore is only applied on pre-gen8
2875                          * platform.  And there is no VCS2 ring on the pre-gen8
2876                          * platform. So the semaphore between RCS and VCS2 is
2877                          * initialized as INVALID.  Gen8 will initialize the
2878                          * sema between VCS2 and RCS later.
2879                          */
2880                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2881                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2882                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2883                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2884                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2885                         engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2886                         engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2887                         engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2888                         engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2889                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2890                 }
2891         } else if (IS_GEN5(dev)) {
2892                 engine->add_request = pc_render_add_request;
2893                 engine->flush = gen4_render_ring_flush;
2894                 engine->get_seqno = pc_render_get_seqno;
2895                 engine->set_seqno = pc_render_set_seqno;
2896                 engine->irq_get = gen5_ring_get_irq;
2897                 engine->irq_put = gen5_ring_put_irq;
2898                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2899                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2900         } else {
2901                 engine->add_request = i9xx_add_request;
2902                 if (INTEL_INFO(dev)->gen < 4)
2903                         engine->flush = gen2_render_ring_flush;
2904                 else
2905                         engine->flush = gen4_render_ring_flush;
2906                 engine->get_seqno = ring_get_seqno;
2907                 engine->set_seqno = ring_set_seqno;
2908                 if (IS_GEN2(dev)) {
2909                         engine->irq_get = i8xx_ring_get_irq;
2910                         engine->irq_put = i8xx_ring_put_irq;
2911                 } else {
2912                         engine->irq_get = i9xx_ring_get_irq;
2913                         engine->irq_put = i9xx_ring_put_irq;
2914                 }
2915                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2916         }
2917         engine->write_tail = ring_write_tail;
2918
2919         if (IS_HASWELL(dev))
2920                 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2921         else if (IS_GEN8(dev))
2922                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2923         else if (INTEL_INFO(dev)->gen >= 6)
2924                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2925         else if (INTEL_INFO(dev)->gen >= 4)
2926                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2927         else if (IS_I830(dev) || IS_845G(dev))
2928                 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2929         else
2930                 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2931         engine->init_hw = init_render_ring;
2932         engine->cleanup = render_ring_cleanup;
2933
2934         /* Workaround batchbuffer to combat CS tlb bug. */
2935         if (HAS_BROKEN_CS_TLB(dev)) {
2936                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2937                 if (obj == NULL) {
2938                         DRM_ERROR("Failed to allocate batch bo\n");
2939                         return -ENOMEM;
2940                 }
2941
2942                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2943                 if (ret != 0) {
2944                         drm_gem_object_unreference(&obj->base);
2945                         DRM_ERROR("Failed to ping batch bo\n");
2946                         return ret;
2947                 }
2948
2949                 engine->scratch.obj = obj;
2950                 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2951         }
2952
2953         ret = intel_init_ring_buffer(dev, engine);
2954         if (ret)
2955                 return ret;
2956
2957         if (INTEL_INFO(dev)->gen >= 5) {
2958                 ret = intel_init_pipe_control(engine);
2959                 if (ret)
2960                         return ret;
2961         }
2962
2963         return 0;
2964 }
2965
2966 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2967 {
2968         struct drm_i915_private *dev_priv = dev->dev_private;
2969         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2970
2971         engine->name = "bsd ring";
2972         engine->id = VCS;
2973         engine->exec_id = I915_EXEC_BSD;
2974         engine->hw_id = 1;
2975
2976         engine->write_tail = ring_write_tail;
2977         if (INTEL_INFO(dev)->gen >= 6) {
2978                 engine->mmio_base = GEN6_BSD_RING_BASE;
2979                 /* gen6 bsd needs a special wa for tail updates */
2980                 if (IS_GEN6(dev))
2981                         engine->write_tail = gen6_bsd_ring_write_tail;
2982                 engine->flush = gen6_bsd_ring_flush;
2983                 engine->add_request = gen6_add_request;
2984                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2985                 engine->get_seqno = ring_get_seqno;
2986                 engine->set_seqno = ring_set_seqno;
2987                 if (INTEL_INFO(dev)->gen >= 8) {
2988                         engine->irq_enable_mask =
2989                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2990                         engine->irq_get = gen8_ring_get_irq;
2991                         engine->irq_put = gen8_ring_put_irq;
2992                         engine->dispatch_execbuffer =
2993                                 gen8_ring_dispatch_execbuffer;
2994                         if (i915_semaphore_is_enabled(dev)) {
2995                                 engine->semaphore.sync_to = gen8_ring_sync;
2996                                 engine->semaphore.signal = gen8_xcs_signal;
2997                                 GEN8_RING_SEMAPHORE_INIT(engine);
2998                         }
2999                 } else {
3000                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3001                         engine->irq_get = gen6_ring_get_irq;
3002                         engine->irq_put = gen6_ring_put_irq;
3003                         engine->dispatch_execbuffer =
3004                                 gen6_ring_dispatch_execbuffer;
3005                         if (i915_semaphore_is_enabled(dev)) {
3006                                 engine->semaphore.sync_to = gen6_ring_sync;
3007                                 engine->semaphore.signal = gen6_signal;
3008                                 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3009                                 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3010                                 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3011                                 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3012                                 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3013                                 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3014                                 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3015                                 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3016                                 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3017                                 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3018                         }
3019                 }
3020         } else {
3021                 engine->mmio_base = BSD_RING_BASE;
3022                 engine->flush = bsd_ring_flush;
3023                 engine->add_request = i9xx_add_request;
3024                 engine->get_seqno = ring_get_seqno;
3025                 engine->set_seqno = ring_set_seqno;
3026                 if (IS_GEN5(dev)) {
3027                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3028                         engine->irq_get = gen5_ring_get_irq;
3029                         engine->irq_put = gen5_ring_put_irq;
3030                 } else {
3031                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3032                         engine->irq_get = i9xx_ring_get_irq;
3033                         engine->irq_put = i9xx_ring_put_irq;
3034                 }
3035                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3036         }
3037         engine->init_hw = init_ring_common;
3038
3039         return intel_init_ring_buffer(dev, engine);
3040 }
3041
3042 /**
3043  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3044  */
3045 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3046 {
3047         struct drm_i915_private *dev_priv = dev->dev_private;
3048         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3049
3050         engine->name = "bsd2 ring";
3051         engine->id = VCS2;
3052         engine->exec_id = I915_EXEC_BSD;
3053         engine->hw_id = 4;
3054
3055         engine->write_tail = ring_write_tail;
3056         engine->mmio_base = GEN8_BSD2_RING_BASE;
3057         engine->flush = gen6_bsd_ring_flush;
3058         engine->add_request = gen6_add_request;
3059         engine->irq_seqno_barrier = gen6_seqno_barrier;
3060         engine->get_seqno = ring_get_seqno;
3061         engine->set_seqno = ring_set_seqno;
3062         engine->irq_enable_mask =
3063                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3064         engine->irq_get = gen8_ring_get_irq;
3065         engine->irq_put = gen8_ring_put_irq;
3066         engine->dispatch_execbuffer =
3067                         gen8_ring_dispatch_execbuffer;
3068         if (i915_semaphore_is_enabled(dev)) {
3069                 engine->semaphore.sync_to = gen8_ring_sync;
3070                 engine->semaphore.signal = gen8_xcs_signal;
3071                 GEN8_RING_SEMAPHORE_INIT(engine);
3072         }
3073         engine->init_hw = init_ring_common;
3074
3075         return intel_init_ring_buffer(dev, engine);
3076 }
3077
3078 int intel_init_blt_ring_buffer(struct drm_device *dev)
3079 {
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3082
3083         engine->name = "blitter ring";
3084         engine->id = BCS;
3085         engine->exec_id = I915_EXEC_BLT;
3086         engine->hw_id = 2;
3087
3088         engine->mmio_base = BLT_RING_BASE;
3089         engine->write_tail = ring_write_tail;
3090         engine->flush = gen6_ring_flush;
3091         engine->add_request = gen6_add_request;
3092         engine->irq_seqno_barrier = gen6_seqno_barrier;
3093         engine->get_seqno = ring_get_seqno;
3094         engine->set_seqno = ring_set_seqno;
3095         if (INTEL_INFO(dev)->gen >= 8) {
3096                 engine->irq_enable_mask =
3097                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3098                 engine->irq_get = gen8_ring_get_irq;
3099                 engine->irq_put = gen8_ring_put_irq;
3100                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3101                 if (i915_semaphore_is_enabled(dev)) {
3102                         engine->semaphore.sync_to = gen8_ring_sync;
3103                         engine->semaphore.signal = gen8_xcs_signal;
3104                         GEN8_RING_SEMAPHORE_INIT(engine);
3105                 }
3106         } else {
3107                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3108                 engine->irq_get = gen6_ring_get_irq;
3109                 engine->irq_put = gen6_ring_put_irq;
3110                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3111                 if (i915_semaphore_is_enabled(dev)) {
3112                         engine->semaphore.signal = gen6_signal;
3113                         engine->semaphore.sync_to = gen6_ring_sync;
3114                         /*
3115                          * The current semaphore is only applied on pre-gen8
3116                          * platform.  And there is no VCS2 ring on the pre-gen8
3117                          * platform. So the semaphore between BCS and VCS2 is
3118                          * initialized as INVALID.  Gen8 will initialize the
3119                          * sema between BCS and VCS2 later.
3120                          */
3121                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3122                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3123                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3124                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3125                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3126                         engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3127                         engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3128                         engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3129                         engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3130                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3131                 }
3132         }
3133         engine->init_hw = init_ring_common;
3134
3135         return intel_init_ring_buffer(dev, engine);
3136 }
3137
3138 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3139 {
3140         struct drm_i915_private *dev_priv = dev->dev_private;
3141         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3142
3143         engine->name = "video enhancement ring";
3144         engine->id = VECS;
3145         engine->exec_id = I915_EXEC_VEBOX;
3146         engine->hw_id = 3;
3147
3148         engine->mmio_base = VEBOX_RING_BASE;
3149         engine->write_tail = ring_write_tail;
3150         engine->flush = gen6_ring_flush;
3151         engine->add_request = gen6_add_request;
3152         engine->irq_seqno_barrier = gen6_seqno_barrier;
3153         engine->get_seqno = ring_get_seqno;
3154         engine->set_seqno = ring_set_seqno;
3155
3156         if (INTEL_INFO(dev)->gen >= 8) {
3157                 engine->irq_enable_mask =
3158                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3159                 engine->irq_get = gen8_ring_get_irq;
3160                 engine->irq_put = gen8_ring_put_irq;
3161                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3162                 if (i915_semaphore_is_enabled(dev)) {
3163                         engine->semaphore.sync_to = gen8_ring_sync;
3164                         engine->semaphore.signal = gen8_xcs_signal;
3165                         GEN8_RING_SEMAPHORE_INIT(engine);
3166                 }
3167         } else {
3168                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3169                 engine->irq_get = hsw_vebox_get_irq;
3170                 engine->irq_put = hsw_vebox_put_irq;
3171                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3172                 if (i915_semaphore_is_enabled(dev)) {
3173                         engine->semaphore.sync_to = gen6_ring_sync;
3174                         engine->semaphore.signal = gen6_signal;
3175                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3176                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3177                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3178                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3179                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3180                         engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3181                         engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3182                         engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3183                         engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3184                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3185                 }
3186         }
3187         engine->init_hw = init_ring_common;
3188
3189         return intel_init_ring_buffer(dev, engine);
3190 }
3191
3192 int
3193 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3194 {
3195         struct intel_engine_cs *engine = req->engine;
3196         int ret;
3197
3198         if (!engine->gpu_caches_dirty)
3199                 return 0;
3200
3201         ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3202         if (ret)
3203                 return ret;
3204
3205         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3206
3207         engine->gpu_caches_dirty = false;
3208         return 0;
3209 }
3210
3211 int
3212 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3213 {
3214         struct intel_engine_cs *engine = req->engine;
3215         uint32_t flush_domains;
3216         int ret;
3217
3218         flush_domains = 0;
3219         if (engine->gpu_caches_dirty)
3220                 flush_domains = I915_GEM_GPU_DOMAINS;
3221
3222         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3223         if (ret)
3224                 return ret;
3225
3226         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3227
3228         engine->gpu_caches_dirty = false;
3229         return 0;
3230 }
3231
3232 void
3233 intel_stop_engine(struct intel_engine_cs *engine)
3234 {
3235         int ret;
3236
3237         if (!intel_engine_initialized(engine))
3238                 return;
3239
3240         ret = intel_engine_idle(engine);
3241         if (ret)
3242                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3243                           engine->name, ret);
3244
3245         stop_ring(engine);
3246 }