]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Remove forced stop ring on suspend/unload
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52         if (ring->last_retired_head != -1) {
53                 ring->head = ring->last_retired_head;
54                 ring->last_retired_head = -1;
55         }
56
57         ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58                                          ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64         struct intel_ring *ring = req->ring;
65         u32 cmd;
66         int ret;
67
68         cmd = MI_FLUSH;
69
70         if (mode & EMIT_INVALIDATE)
71                 cmd |= MI_READ_FLUSH;
72
73         ret = intel_ring_begin(req, 2);
74         if (ret)
75                 return ret;
76
77         intel_ring_emit(ring, cmd);
78         intel_ring_emit(ring, MI_NOOP);
79         intel_ring_advance(ring);
80
81         return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87         struct intel_ring *ring = req->ring;
88         u32 cmd;
89         int ret;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         ret = intel_ring_begin(req, 2);
127         if (ret)
128                 return ret;
129
130         intel_ring_emit(ring, cmd);
131         intel_ring_emit(ring, MI_NOOP);
132         intel_ring_advance(ring);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         struct intel_ring *ring = req->ring;
178         u32 scratch_addr =
179                 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180         int ret;
181
182         ret = intel_ring_begin(req, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(req, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213         struct intel_ring *ring = req->ring;
214         u32 scratch_addr =
215                 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216         u32 flags = 0;
217         int ret;
218
219         /* Force SNB workarounds for PIPE_CONTROL flushes */
220         ret = intel_emit_post_sync_nonzero_flush(req);
221         if (ret)
222                 return ret;
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         if (mode & EMIT_FLUSH) {
229                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231                 /*
232                  * Ensure that any following seqno writes only happen
233                  * when the render cache is indeed flushed.
234                  */
235                 flags |= PIPE_CONTROL_CS_STALL;
236         }
237         if (mode & EMIT_INVALIDATE) {
238                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244                 /*
245                  * TLB invalidate requires a post-sync write.
246                  */
247                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248         }
249
250         ret = intel_ring_begin(req, 4);
251         if (ret)
252                 return ret;
253
254         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255         intel_ring_emit(ring, flags);
256         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257         intel_ring_emit(ring, 0);
258         intel_ring_advance(ring);
259
260         return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266         struct intel_ring *ring = req->ring;
267         int ret;
268
269         ret = intel_ring_begin(req, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring,
275                         PIPE_CONTROL_CS_STALL |
276                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
277         intel_ring_emit(ring, 0);
278         intel_ring_emit(ring, 0);
279         intel_ring_advance(ring);
280
281         return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287         struct intel_ring *ring = req->ring;
288         u32 scratch_addr =
289                 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290         u32 flags = 0;
291         int ret;
292
293         /*
294          * Ensure that any following seqno writes only happen when the render
295          * cache is indeed flushed.
296          *
297          * Workaround: 4th PIPE_CONTROL command (except the ones with only
298          * read-cache invalidate bits set) must have the CS_STALL bit set. We
299          * don't try to be clever and just set it unconditionally.
300          */
301         flags |= PIPE_CONTROL_CS_STALL;
302
303         /* Just flush everything.  Experiments have shown that reducing the
304          * number of bits based on the write domains has little performance
305          * impact.
306          */
307         if (mode & EMIT_FLUSH) {
308                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312         }
313         if (mode & EMIT_INVALIDATE) {
314                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321                 /*
322                  * TLB invalidate requires a post-sync write.
323                  */
324                 flags |= PIPE_CONTROL_QW_WRITE;
325                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329                 /* Workaround: we must issue a pipe_control with CS-stall bit
330                  * set before a pipe_control command that has the state cache
331                  * invalidate bit set. */
332                 gen7_render_ring_cs_stall_wa(req);
333         }
334
335         ret = intel_ring_begin(req, 4);
336         if (ret)
337                 return ret;
338
339         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340         intel_ring_emit(ring, flags);
341         intel_ring_emit(ring, scratch_addr);
342         intel_ring_emit(ring, 0);
343         intel_ring_advance(ring);
344
345         return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350                        u32 flags, u32 scratch_addr)
351 {
352         struct intel_ring *ring = req->ring;
353         int ret;
354
355         ret = intel_ring_begin(req, 6);
356         if (ret)
357                 return ret;
358
359         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360         intel_ring_emit(ring, flags);
361         intel_ring_emit(ring, scratch_addr);
362         intel_ring_emit(ring, 0);
363         intel_ring_emit(ring, 0);
364         intel_ring_emit(ring, 0);
365         intel_ring_advance(ring);
366
367         return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374         u32 flags = 0;
375         int ret;
376
377         flags |= PIPE_CONTROL_CS_STALL;
378
379         if (mode & EMIT_FLUSH) {
380                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
381                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
384         }
385         if (mode & EMIT_INVALIDATE) {
386                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
387                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
388                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
389                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
390                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
391                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
392                 flags |= PIPE_CONTROL_QW_WRITE;
393                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394
395                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396                 ret = gen8_emit_pipe_control(req,
397                                              PIPE_CONTROL_CS_STALL |
398                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
399                                              0);
400                 if (ret)
401                         return ret;
402         }
403
404         return gen8_emit_pipe_control(req, flags, scratch_addr);
405 }
406
407 u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408 {
409         struct drm_i915_private *dev_priv = engine->i915;
410         u64 acthd;
411
412         if (INTEL_GEN(dev_priv) >= 8)
413                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
414                                          RING_ACTHD_UDW(engine->mmio_base));
415         else if (INTEL_GEN(dev_priv) >= 4)
416                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417         else
418                 acthd = I915_READ(ACTHD);
419
420         return acthd;
421 }
422
423 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424 {
425         struct drm_i915_private *dev_priv = engine->i915;
426         u32 addr;
427
428         addr = dev_priv->status_page_dmah->busaddr;
429         if (INTEL_GEN(dev_priv) >= 4)
430                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
431         I915_WRITE(HWS_PGA, addr);
432 }
433
434 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435 {
436         struct drm_i915_private *dev_priv = engine->i915;
437         i915_reg_t mmio;
438
439         /* The ring status page addresses are no longer next to the rest of
440          * the ring registers as of gen7.
441          */
442         if (IS_GEN7(dev_priv)) {
443                 switch (engine->id) {
444                 case RCS:
445                         mmio = RENDER_HWS_PGA_GEN7;
446                         break;
447                 case BCS:
448                         mmio = BLT_HWS_PGA_GEN7;
449                         break;
450                 /*
451                  * VCS2 actually doesn't exist on Gen7. Only shut up
452                  * gcc switch check warning
453                  */
454                 case VCS2:
455                 case VCS:
456                         mmio = BSD_HWS_PGA_GEN7;
457                         break;
458                 case VECS:
459                         mmio = VEBOX_HWS_PGA_GEN7;
460                         break;
461                 }
462         } else if (IS_GEN6(dev_priv)) {
463                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464         } else {
465                 /* XXX: gen8 returns to sanity */
466                 mmio = RING_HWS_PGA(engine->mmio_base);
467         }
468
469         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
470         POSTING_READ(mmio);
471
472         /*
473          * Flush the TLB for this page
474          *
475          * FIXME: These two bits have disappeared on gen8, so a question
476          * arises: do we still need this and if so how should we go about
477          * invalidating the TLB?
478          */
479         if (IS_GEN(dev_priv, 6, 7)) {
480                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481
482                 /* ring should be idle before issuing a sync flush*/
483                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484
485                 I915_WRITE(reg,
486                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
487                                               INSTPM_SYNC_FLUSH));
488                 if (intel_wait_for_register(dev_priv,
489                                             reg, INSTPM_SYNC_FLUSH, 0,
490                                             1000))
491                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492                                   engine->name);
493         }
494 }
495
496 static bool stop_ring(struct intel_engine_cs *engine)
497 {
498         struct drm_i915_private *dev_priv = engine->i915;
499
500         if (!IS_GEN2(dev_priv)) {
501                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502                 if (intel_wait_for_register(dev_priv,
503                                             RING_MI_MODE(engine->mmio_base),
504                                             MODE_IDLE,
505                                             MODE_IDLE,
506                                             1000)) {
507                         DRM_ERROR("%s : timed out trying to stop ring\n",
508                                   engine->name);
509                         /* Sometimes we observe that the idle flag is not
510                          * set even though the ring is empty. So double
511                          * check before giving up.
512                          */
513                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514                                 return false;
515                 }
516         }
517
518         I915_WRITE_CTL(engine, 0);
519         I915_WRITE_HEAD(engine, 0);
520         I915_WRITE_TAIL(engine, 0);
521
522         if (!IS_GEN2(dev_priv)) {
523                 (void)I915_READ_CTL(engine);
524                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525         }
526
527         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528 }
529
530 static int init_ring_common(struct intel_engine_cs *engine)
531 {
532         struct drm_i915_private *dev_priv = engine->i915;
533         struct intel_ring *ring = engine->buffer;
534         struct drm_i915_gem_object *obj = ring->obj;
535         int ret = 0;
536
537         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538
539         if (!stop_ring(engine)) {
540                 /* G45 ring initialization often fails to reset head to zero */
541                 DRM_DEBUG_KMS("%s head not reset to zero "
542                               "ctl %08x head %08x tail %08x start %08x\n",
543                               engine->name,
544                               I915_READ_CTL(engine),
545                               I915_READ_HEAD(engine),
546                               I915_READ_TAIL(engine),
547                               I915_READ_START(engine));
548
549                 if (!stop_ring(engine)) {
550                         DRM_ERROR("failed to set %s head to zero "
551                                   "ctl %08x head %08x tail %08x start %08x\n",
552                                   engine->name,
553                                   I915_READ_CTL(engine),
554                                   I915_READ_HEAD(engine),
555                                   I915_READ_TAIL(engine),
556                                   I915_READ_START(engine));
557                         ret = -EIO;
558                         goto out;
559                 }
560         }
561
562         if (I915_NEED_GFX_HWS(dev_priv))
563                 intel_ring_setup_status_page(engine);
564         else
565                 ring_setup_phys_status_page(engine);
566
567         /* Enforce ordering by reading HEAD register back */
568         I915_READ_HEAD(engine);
569
570         /* Initialize the ring. This must happen _after_ we've cleared the ring
571          * registers with the above sequence (the readback of the HEAD registers
572          * also enforces ordering), otherwise the hw might lose the new ring
573          * register values. */
574         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
575
576         /* WaClearRingBufHeadRegAtInit:ctg,elk */
577         if (I915_READ_HEAD(engine))
578                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579                           engine->name, I915_READ_HEAD(engine));
580         I915_WRITE_HEAD(engine, 0);
581         (void)I915_READ_HEAD(engine);
582
583         I915_WRITE_CTL(engine,
584                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585                         | RING_VALID);
586
587         /* If the head is still not zero, the ring is dead */
588         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
589                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
590                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591                 DRM_ERROR("%s initialization failed "
592                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
593                           engine->name,
594                           I915_READ_CTL(engine),
595                           I915_READ_CTL(engine) & RING_VALID,
596                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
597                           I915_READ_START(engine),
598                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
599                 ret = -EIO;
600                 goto out;
601         }
602
603         ring->last_retired_head = -1;
604         ring->head = I915_READ_HEAD(engine);
605         ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
606         intel_ring_update_space(ring);
607
608         intel_engine_init_hangcheck(engine);
609
610 out:
611         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612
613         return ret;
614 }
615
616 void intel_fini_pipe_control(struct intel_engine_cs *engine)
617 {
618         if (engine->scratch.obj == NULL)
619                 return;
620
621         i915_gem_object_ggtt_unpin(engine->scratch.obj);
622         i915_gem_object_put(engine->scratch.obj);
623         engine->scratch.obj = NULL;
624 }
625
626 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
627 {
628         struct drm_i915_gem_object *obj;
629         int ret;
630
631         WARN_ON(engine->scratch.obj);
632
633         obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
634         if (!obj)
635                 obj = i915_gem_object_create(&engine->i915->drm, size);
636         if (IS_ERR(obj)) {
637                 DRM_ERROR("Failed to allocate scratch page\n");
638                 ret = PTR_ERR(obj);
639                 goto err;
640         }
641
642         ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, PIN_HIGH);
643         if (ret)
644                 goto err_unref;
645
646         engine->scratch.obj = obj;
647         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
648         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
649                          engine->name, engine->scratch.gtt_offset);
650         return 0;
651
652 err_unref:
653         i915_gem_object_put(engine->scratch.obj);
654 err:
655         return ret;
656 }
657
658 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
659 {
660         struct intel_ring *ring = req->ring;
661         struct i915_workarounds *w = &req->i915->workarounds;
662         int ret, i;
663
664         if (w->count == 0)
665                 return 0;
666
667         ret = req->engine->emit_flush(req, EMIT_BARRIER);
668         if (ret)
669                 return ret;
670
671         ret = intel_ring_begin(req, (w->count * 2 + 2));
672         if (ret)
673                 return ret;
674
675         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
676         for (i = 0; i < w->count; i++) {
677                 intel_ring_emit_reg(ring, w->reg[i].addr);
678                 intel_ring_emit(ring, w->reg[i].value);
679         }
680         intel_ring_emit(ring, MI_NOOP);
681
682         intel_ring_advance(ring);
683
684         ret = req->engine->emit_flush(req, EMIT_BARRIER);
685         if (ret)
686                 return ret;
687
688         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
689
690         return 0;
691 }
692
693 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
694 {
695         int ret;
696
697         ret = intel_ring_workarounds_emit(req);
698         if (ret != 0)
699                 return ret;
700
701         ret = i915_gem_render_state_init(req);
702         if (ret)
703                 return ret;
704
705         return 0;
706 }
707
708 static int wa_add(struct drm_i915_private *dev_priv,
709                   i915_reg_t addr,
710                   const u32 mask, const u32 val)
711 {
712         const u32 idx = dev_priv->workarounds.count;
713
714         if (WARN_ON(idx >= I915_MAX_WA_REGS))
715                 return -ENOSPC;
716
717         dev_priv->workarounds.reg[idx].addr = addr;
718         dev_priv->workarounds.reg[idx].value = val;
719         dev_priv->workarounds.reg[idx].mask = mask;
720
721         dev_priv->workarounds.count++;
722
723         return 0;
724 }
725
726 #define WA_REG(addr, mask, val) do { \
727                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
728                 if (r) \
729                         return r; \
730         } while (0)
731
732 #define WA_SET_BIT_MASKED(addr, mask) \
733         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
734
735 #define WA_CLR_BIT_MASKED(addr, mask) \
736         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
737
738 #define WA_SET_FIELD_MASKED(addr, mask, value) \
739         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
740
741 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
742 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
743
744 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
745
746 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
747                                  i915_reg_t reg)
748 {
749         struct drm_i915_private *dev_priv = engine->i915;
750         struct i915_workarounds *wa = &dev_priv->workarounds;
751         const uint32_t index = wa->hw_whitelist_count[engine->id];
752
753         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
754                 return -EINVAL;
755
756         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
757                  i915_mmio_reg_offset(reg));
758         wa->hw_whitelist_count[engine->id]++;
759
760         return 0;
761 }
762
763 static int gen8_init_workarounds(struct intel_engine_cs *engine)
764 {
765         struct drm_i915_private *dev_priv = engine->i915;
766
767         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
768
769         /* WaDisableAsyncFlipPerfMode:bdw,chv */
770         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
771
772         /* WaDisablePartialInstShootdown:bdw,chv */
773         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
774                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
775
776         /* Use Force Non-Coherent whenever executing a 3D context. This is a
777          * workaround for for a possible hang in the unlikely event a TLB
778          * invalidation occurs during a PSD flush.
779          */
780         /* WaForceEnableNonCoherent:bdw,chv */
781         /* WaHdcDisableFetchWhenMasked:bdw,chv */
782         WA_SET_BIT_MASKED(HDC_CHICKEN0,
783                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
784                           HDC_FORCE_NON_COHERENT);
785
786         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
787          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
788          *  polygons in the same 8x4 pixel/sample area to be processed without
789          *  stalling waiting for the earlier ones to write to Hierarchical Z
790          *  buffer."
791          *
792          * This optimization is off by default for BDW and CHV; turn it on.
793          */
794         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
795
796         /* Wa4x4STCOptimizationDisable:bdw,chv */
797         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
798
799         /*
800          * BSpec recommends 8x4 when MSAA is used,
801          * however in practice 16x4 seems fastest.
802          *
803          * Note that PS/WM thread counts depend on the WIZ hashing
804          * disable bit, which we don't touch here, but it's good
805          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
806          */
807         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
808                             GEN6_WIZ_HASHING_MASK,
809                             GEN6_WIZ_HASHING_16x4);
810
811         return 0;
812 }
813
814 static int bdw_init_workarounds(struct intel_engine_cs *engine)
815 {
816         struct drm_i915_private *dev_priv = engine->i915;
817         int ret;
818
819         ret = gen8_init_workarounds(engine);
820         if (ret)
821                 return ret;
822
823         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
824         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
825
826         /* WaDisableDopClockGating:bdw */
827         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
828                           DOP_CLOCK_GATING_DISABLE);
829
830         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
831                           GEN8_SAMPLER_POWER_BYPASS_DIS);
832
833         WA_SET_BIT_MASKED(HDC_CHICKEN0,
834                           /* WaForceContextSaveRestoreNonCoherent:bdw */
835                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
836                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
837                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
838
839         return 0;
840 }
841
842 static int chv_init_workarounds(struct intel_engine_cs *engine)
843 {
844         struct drm_i915_private *dev_priv = engine->i915;
845         int ret;
846
847         ret = gen8_init_workarounds(engine);
848         if (ret)
849                 return ret;
850
851         /* WaDisableThreadStallDopClockGating:chv */
852         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
853
854         /* Improve HiZ throughput on CHV. */
855         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
856
857         return 0;
858 }
859
860 static int gen9_init_workarounds(struct intel_engine_cs *engine)
861 {
862         struct drm_i915_private *dev_priv = engine->i915;
863         int ret;
864
865         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
866         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
867
868         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
869         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
870                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
871
872         /* WaDisableKillLogic:bxt,skl,kbl */
873         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
874                    ECOCHK_DIS_TLB);
875
876         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
877         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
878         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
879                           FLOW_CONTROL_ENABLE |
880                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
881
882         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
883         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
884                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
885
886         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
887         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
888             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
889                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
890                                   GEN9_DG_MIRROR_FIX_ENABLE);
891
892         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
893         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
894             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
896                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
897                 /*
898                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
899                  * but we do that in per ctx batchbuffer as there is an issue
900                  * with this register not getting restored on ctx restore
901                  */
902         }
903
904         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
905         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
906         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
907                           GEN9_ENABLE_YV12_BUGFIX |
908                           GEN9_ENABLE_GPGPU_PREEMPTION);
909
910         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
911         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
912         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
913                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
914
915         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
916         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
917                           GEN9_CCS_TLB_PREFETCH_ENABLE);
918
919         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
920         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
921             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
922                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
923                                   PIXEL_MASK_CAMMING_DISABLE);
924
925         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
926         WA_SET_BIT_MASKED(HDC_CHICKEN0,
927                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
928                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
929
930         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
931          * both tied to WaForceContextSaveRestoreNonCoherent
932          * in some hsds for skl. We keep the tie for all gen9. The
933          * documentation is a bit hazy and so we want to get common behaviour,
934          * even though there is no clear evidence we would need both on kbl/bxt.
935          * This area has been source of system hangs so we play it safe
936          * and mimic the skl regardless of what bspec says.
937          *
938          * Use Force Non-Coherent whenever executing a 3D context. This
939          * is a workaround for a possible hang in the unlikely event
940          * a TLB invalidation occurs during a PSD flush.
941          */
942
943         /* WaForceEnableNonCoherent:skl,bxt,kbl */
944         WA_SET_BIT_MASKED(HDC_CHICKEN0,
945                           HDC_FORCE_NON_COHERENT);
946
947         /* WaDisableHDCInvalidation:skl,bxt,kbl */
948         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
949                    BDW_DISABLE_HDC_INVALIDATION);
950
951         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
952         if (IS_SKYLAKE(dev_priv) ||
953             IS_KABYLAKE(dev_priv) ||
954             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
955                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
956                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
957
958         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
959         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
960
961         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
962         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
963                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
964
965         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
966         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
967         if (ret)
968                 return ret;
969
970         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
971         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
972         if (ret)
973                 return ret;
974
975         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
976         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
977         if (ret)
978                 return ret;
979
980         return 0;
981 }
982
983 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
984 {
985         struct drm_i915_private *dev_priv = engine->i915;
986         u8 vals[3] = { 0, 0, 0 };
987         unsigned int i;
988
989         for (i = 0; i < 3; i++) {
990                 u8 ss;
991
992                 /*
993                  * Only consider slices where one, and only one, subslice has 7
994                  * EUs
995                  */
996                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
997                         continue;
998
999                 /*
1000                  * subslice_7eu[i] != 0 (because of the check above) and
1001                  * ss_max == 4 (maximum number of subslices possible per slice)
1002                  *
1003                  * ->    0 <= ss <= 3;
1004                  */
1005                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1006                 vals[i] = 3 - ss;
1007         }
1008
1009         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1010                 return 0;
1011
1012         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1013         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1014                             GEN9_IZ_HASHING_MASK(2) |
1015                             GEN9_IZ_HASHING_MASK(1) |
1016                             GEN9_IZ_HASHING_MASK(0),
1017                             GEN9_IZ_HASHING(2, vals[2]) |
1018                             GEN9_IZ_HASHING(1, vals[1]) |
1019                             GEN9_IZ_HASHING(0, vals[0]));
1020
1021         return 0;
1022 }
1023
1024 static int skl_init_workarounds(struct intel_engine_cs *engine)
1025 {
1026         struct drm_i915_private *dev_priv = engine->i915;
1027         int ret;
1028
1029         ret = gen9_init_workarounds(engine);
1030         if (ret)
1031                 return ret;
1032
1033         /*
1034          * Actual WA is to disable percontext preemption granularity control
1035          * until D0 which is the default case so this is equivalent to
1036          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1037          */
1038         if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1039                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1040                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1041         }
1042
1043         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1044                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1045                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1046                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1047         }
1048
1049         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1050          * involving this register should also be added to WA batch as required.
1051          */
1052         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1053                 /* WaDisableLSQCROPERFforOCL:skl */
1054                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1055                            GEN8_LQSC_RO_PERF_DIS);
1056
1057         /* WaEnableGapsTsvCreditFix:skl */
1058         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1059                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1060                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1061         }
1062
1063         /* WaDisablePowerCompilerClockGating:skl */
1064         if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1065                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1066                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1067
1068         /* WaBarrierPerformanceFixDisable:skl */
1069         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1070                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1071                                   HDC_FENCE_DEST_SLM_DISABLE |
1072                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1073
1074         /* WaDisableSbeCacheDispatchPortSharing:skl */
1075         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1076                 WA_SET_BIT_MASKED(
1077                         GEN7_HALF_SLICE_CHICKEN1,
1078                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1079
1080         /* WaDisableGafsUnitClkGating:skl */
1081         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1082
1083         /* WaInPlaceDecompressionHang:skl */
1084         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1085                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1086                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1087
1088         /* WaDisableLSQCROPERFforOCL:skl */
1089         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1090         if (ret)
1091                 return ret;
1092
1093         return skl_tune_iz_hashing(engine);
1094 }
1095
1096 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1097 {
1098         struct drm_i915_private *dev_priv = engine->i915;
1099         int ret;
1100
1101         ret = gen9_init_workarounds(engine);
1102         if (ret)
1103                 return ret;
1104
1105         /* WaStoreMultiplePTEenable:bxt */
1106         /* This is a requirement according to Hardware specification */
1107         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1108                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1109
1110         /* WaSetClckGatingDisableMedia:bxt */
1111         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1112                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1113                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1114         }
1115
1116         /* WaDisableThreadStallDopClockGating:bxt */
1117         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1118                           STALL_DOP_GATING_DISABLE);
1119
1120         /* WaDisablePooledEuLoadBalancingFix:bxt */
1121         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1122                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1123                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1124         }
1125
1126         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1127         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1128                 WA_SET_BIT_MASKED(
1129                         GEN7_HALF_SLICE_CHICKEN1,
1130                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1131         }
1132
1133         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1134         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1135         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1136         /* WaDisableLSQCROPERFforOCL:bxt */
1137         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1138                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1139                 if (ret)
1140                         return ret;
1141
1142                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1143                 if (ret)
1144                         return ret;
1145         }
1146
1147         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1148         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1149                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1150                                            L3_HIGH_PRIO_CREDITS(2));
1151
1152         /* WaInsertDummyPushConstPs:bxt */
1153         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1154                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1155                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1156
1157         /* WaInPlaceDecompressionHang:bxt */
1158         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1159                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1160                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1161
1162         return 0;
1163 }
1164
1165 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1166 {
1167         struct drm_i915_private *dev_priv = engine->i915;
1168         int ret;
1169
1170         ret = gen9_init_workarounds(engine);
1171         if (ret)
1172                 return ret;
1173
1174         /* WaEnableGapsTsvCreditFix:kbl */
1175         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1176                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1177
1178         /* WaDisableDynamicCreditSharing:kbl */
1179         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1180                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1181                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1182
1183         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1184         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1185                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1186                                   HDC_FENCE_DEST_SLM_DISABLE);
1187
1188         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1189          * involving this register should also be added to WA batch as required.
1190          */
1191         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1192                 /* WaDisableLSQCROPERFforOCL:kbl */
1193                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1194                            GEN8_LQSC_RO_PERF_DIS);
1195
1196         /* WaInsertDummyPushConstPs:kbl */
1197         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1198                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1199                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1200
1201         /* WaDisableGafsUnitClkGating:kbl */
1202         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203
1204         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1205         WA_SET_BIT_MASKED(
1206                 GEN7_HALF_SLICE_CHICKEN1,
1207                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1208
1209         /* WaInPlaceDecompressionHang:kbl */
1210         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1211                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1212
1213         /* WaDisableLSQCROPERFforOCL:kbl */
1214         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1215         if (ret)
1216                 return ret;
1217
1218         return 0;
1219 }
1220
1221 int init_workarounds_ring(struct intel_engine_cs *engine)
1222 {
1223         struct drm_i915_private *dev_priv = engine->i915;
1224
1225         WARN_ON(engine->id != RCS);
1226
1227         dev_priv->workarounds.count = 0;
1228         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1229
1230         if (IS_BROADWELL(dev_priv))
1231                 return bdw_init_workarounds(engine);
1232
1233         if (IS_CHERRYVIEW(dev_priv))
1234                 return chv_init_workarounds(engine);
1235
1236         if (IS_SKYLAKE(dev_priv))
1237                 return skl_init_workarounds(engine);
1238
1239         if (IS_BROXTON(dev_priv))
1240                 return bxt_init_workarounds(engine);
1241
1242         if (IS_KABYLAKE(dev_priv))
1243                 return kbl_init_workarounds(engine);
1244
1245         return 0;
1246 }
1247
1248 static int init_render_ring(struct intel_engine_cs *engine)
1249 {
1250         struct drm_i915_private *dev_priv = engine->i915;
1251         int ret = init_ring_common(engine);
1252         if (ret)
1253                 return ret;
1254
1255         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1256         if (IS_GEN(dev_priv, 4, 6))
1257                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1258
1259         /* We need to disable the AsyncFlip performance optimisations in order
1260          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1261          * programmed to '1' on all products.
1262          *
1263          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1264          */
1265         if (IS_GEN(dev_priv, 6, 7))
1266                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1267
1268         /* Required for the hardware to program scanline values for waiting */
1269         /* WaEnableFlushTlbInvalidationMode:snb */
1270         if (IS_GEN6(dev_priv))
1271                 I915_WRITE(GFX_MODE,
1272                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1273
1274         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1275         if (IS_GEN7(dev_priv))
1276                 I915_WRITE(GFX_MODE_GEN7,
1277                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1278                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1279
1280         if (IS_GEN6(dev_priv)) {
1281                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1282                  * "If this bit is set, STCunit will have LRA as replacement
1283                  *  policy. [...] This bit must be reset.  LRA replacement
1284                  *  policy is not supported."
1285                  */
1286                 I915_WRITE(CACHE_MODE_0,
1287                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1288         }
1289
1290         if (IS_GEN(dev_priv, 6, 7))
1291                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1292
1293         if (INTEL_INFO(dev_priv)->gen >= 6)
1294                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1295
1296         return init_workarounds_ring(engine);
1297 }
1298
1299 static void render_ring_cleanup(struct intel_engine_cs *engine)
1300 {
1301         struct drm_i915_private *dev_priv = engine->i915;
1302
1303         if (dev_priv->semaphore_obj) {
1304                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1305                 i915_gem_object_put(dev_priv->semaphore_obj);
1306                 dev_priv->semaphore_obj = NULL;
1307         }
1308
1309         intel_fini_pipe_control(engine);
1310 }
1311
1312 static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1313 {
1314         struct intel_ring *ring = req->ring;
1315         struct drm_i915_private *dev_priv = req->i915;
1316         struct intel_engine_cs *waiter;
1317         enum intel_engine_id id;
1318         int ret, num_rings;
1319
1320         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1321         ret = intel_ring_begin(req, (num_rings-1) * 8);
1322         if (ret)
1323                 return ret;
1324
1325         for_each_engine_id(waiter, dev_priv, id) {
1326                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1327                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1328                         continue;
1329
1330                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1331                 intel_ring_emit(ring,
1332                                 PIPE_CONTROL_GLOBAL_GTT_IVB |
1333                                 PIPE_CONTROL_QW_WRITE |
1334                                 PIPE_CONTROL_CS_STALL);
1335                 intel_ring_emit(ring, lower_32_bits(gtt_offset));
1336                 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1337                 intel_ring_emit(ring, req->fence.seqno);
1338                 intel_ring_emit(ring, 0);
1339                 intel_ring_emit(ring,
1340                                 MI_SEMAPHORE_SIGNAL |
1341                                 MI_SEMAPHORE_TARGET(waiter->hw_id));
1342                 intel_ring_emit(ring, 0);
1343         }
1344         intel_ring_advance(ring);
1345
1346         return 0;
1347 }
1348
1349 static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1350 {
1351         struct intel_ring *ring = req->ring;
1352         struct drm_i915_private *dev_priv = req->i915;
1353         struct intel_engine_cs *waiter;
1354         enum intel_engine_id id;
1355         int ret, num_rings;
1356
1357         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1358         ret = intel_ring_begin(req, (num_rings-1) * 6);
1359         if (ret)
1360                 return ret;
1361
1362         for_each_engine_id(waiter, dev_priv, id) {
1363                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1364                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1365                         continue;
1366
1367                 intel_ring_emit(ring,
1368                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1369                 intel_ring_emit(ring,
1370                                 lower_32_bits(gtt_offset) |
1371                                 MI_FLUSH_DW_USE_GTT);
1372                 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1373                 intel_ring_emit(ring, req->fence.seqno);
1374                 intel_ring_emit(ring,
1375                                 MI_SEMAPHORE_SIGNAL |
1376                                 MI_SEMAPHORE_TARGET(waiter->hw_id));
1377                 intel_ring_emit(ring, 0);
1378         }
1379         intel_ring_advance(ring);
1380
1381         return 0;
1382 }
1383
1384 static int gen6_signal(struct drm_i915_gem_request *req)
1385 {
1386         struct intel_ring *ring = req->ring;
1387         struct drm_i915_private *dev_priv = req->i915;
1388         struct intel_engine_cs *useless;
1389         enum intel_engine_id id;
1390         int ret, num_rings;
1391
1392         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1393         ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1394         if (ret)
1395                 return ret;
1396
1397         for_each_engine_id(useless, dev_priv, id) {
1398                 i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1399
1400                 if (i915_mmio_reg_valid(mbox_reg)) {
1401                         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1402                         intel_ring_emit_reg(ring, mbox_reg);
1403                         intel_ring_emit(ring, req->fence.seqno);
1404                 }
1405         }
1406
1407         /* If num_dwords was rounded, make sure the tail pointer is correct */
1408         if (num_rings % 2 == 0)
1409                 intel_ring_emit(ring, MI_NOOP);
1410         intel_ring_advance(ring);
1411
1412         return 0;
1413 }
1414
1415 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1416 {
1417         struct drm_i915_private *dev_priv = request->i915;
1418
1419         I915_WRITE_TAIL(request->engine,
1420                         intel_ring_offset(request->ring, request->tail));
1421 }
1422
1423 static int i9xx_emit_request(struct drm_i915_gem_request *req)
1424 {
1425         struct intel_ring *ring = req->ring;
1426         int ret;
1427
1428         ret = intel_ring_begin(req, 4);
1429         if (ret)
1430                 return ret;
1431
1432         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1433         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1434         intel_ring_emit(ring, req->fence.seqno);
1435         intel_ring_emit(ring, MI_USER_INTERRUPT);
1436         intel_ring_advance(ring);
1437
1438         req->tail = ring->tail;
1439
1440         return 0;
1441 }
1442
1443 /**
1444  * gen6_sema_emit_request - Update the semaphore mailbox registers
1445  *
1446  * @request - request to write to the ring
1447  *
1448  * Update the mailbox registers in the *other* rings with the current seqno.
1449  * This acts like a signal in the canonical semaphore.
1450  */
1451 static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1452 {
1453         int ret;
1454
1455         ret = req->engine->semaphore.signal(req);
1456         if (ret)
1457                 return ret;
1458
1459         return i9xx_emit_request(req);
1460 }
1461
1462 static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1463 {
1464         struct intel_engine_cs *engine = req->engine;
1465         struct intel_ring *ring = req->ring;
1466         int ret;
1467
1468         if (engine->semaphore.signal) {
1469                 ret = engine->semaphore.signal(req);
1470                 if (ret)
1471                         return ret;
1472         }
1473
1474         ret = intel_ring_begin(req, 8);
1475         if (ret)
1476                 return ret;
1477
1478         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1479         intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1480                                PIPE_CONTROL_CS_STALL |
1481                                PIPE_CONTROL_QW_WRITE));
1482         intel_ring_emit(ring, intel_hws_seqno_address(engine));
1483         intel_ring_emit(ring, 0);
1484         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1485         /* We're thrashing one dword of HWS. */
1486         intel_ring_emit(ring, 0);
1487         intel_ring_emit(ring, MI_USER_INTERRUPT);
1488         intel_ring_emit(ring, MI_NOOP);
1489         intel_ring_advance(ring);
1490
1491         req->tail = ring->tail;
1492
1493         return 0;
1494 }
1495
1496 /**
1497  * intel_ring_sync - sync the waiter to the signaller on seqno
1498  *
1499  * @waiter - ring that is waiting
1500  * @signaller - ring which has, or will signal
1501  * @seqno - seqno which the waiter will block on
1502  */
1503
1504 static int
1505 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1506                   struct drm_i915_gem_request *signal)
1507 {
1508         struct intel_ring *ring = req->ring;
1509         struct drm_i915_private *dev_priv = req->i915;
1510         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1511         struct i915_hw_ppgtt *ppgtt;
1512         int ret;
1513
1514         ret = intel_ring_begin(req, 4);
1515         if (ret)
1516                 return ret;
1517
1518         intel_ring_emit(ring,
1519                         MI_SEMAPHORE_WAIT |
1520                         MI_SEMAPHORE_GLOBAL_GTT |
1521                         MI_SEMAPHORE_SAD_GTE_SDD);
1522         intel_ring_emit(ring, signal->fence.seqno);
1523         intel_ring_emit(ring, lower_32_bits(offset));
1524         intel_ring_emit(ring, upper_32_bits(offset));
1525         intel_ring_advance(ring);
1526
1527         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1528          * pagetables and we must reload them before executing the batch.
1529          * We do this on the i915_switch_context() following the wait and
1530          * before the dispatch.
1531          */
1532         ppgtt = req->ctx->ppgtt;
1533         if (ppgtt && req->engine->id != RCS)
1534                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1535         return 0;
1536 }
1537
1538 static int
1539 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1540                   struct drm_i915_gem_request *signal)
1541 {
1542         struct intel_ring *ring = req->ring;
1543         u32 dw1 = MI_SEMAPHORE_MBOX |
1544                   MI_SEMAPHORE_COMPARE |
1545                   MI_SEMAPHORE_REGISTER;
1546         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1547         int ret;
1548
1549         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1550
1551         ret = intel_ring_begin(req, 4);
1552         if (ret)
1553                 return ret;
1554
1555         intel_ring_emit(ring, dw1 | wait_mbox);
1556         /* Throughout all of the GEM code, seqno passed implies our current
1557          * seqno is >= the last seqno executed. However for hardware the
1558          * comparison is strictly greater than.
1559          */
1560         intel_ring_emit(ring, signal->fence.seqno - 1);
1561         intel_ring_emit(ring, 0);
1562         intel_ring_emit(ring, MI_NOOP);
1563         intel_ring_advance(ring);
1564
1565         return 0;
1566 }
1567
1568 static void
1569 gen5_seqno_barrier(struct intel_engine_cs *engine)
1570 {
1571         /* MI_STORE are internally buffered by the GPU and not flushed
1572          * either by MI_FLUSH or SyncFlush or any other combination of
1573          * MI commands.
1574          *
1575          * "Only the submission of the store operation is guaranteed.
1576          * The write result will be complete (coherent) some time later
1577          * (this is practically a finite period but there is no guaranteed
1578          * latency)."
1579          *
1580          * Empirically, we observe that we need a delay of at least 75us to
1581          * be sure that the seqno write is visible by the CPU.
1582          */
1583         usleep_range(125, 250);
1584 }
1585
1586 static void
1587 gen6_seqno_barrier(struct intel_engine_cs *engine)
1588 {
1589         struct drm_i915_private *dev_priv = engine->i915;
1590
1591         /* Workaround to force correct ordering between irq and seqno writes on
1592          * ivb (and maybe also on snb) by reading from a CS register (like
1593          * ACTHD) before reading the status page.
1594          *
1595          * Note that this effectively stalls the read by the time it takes to
1596          * do a memory transaction, which more or less ensures that the write
1597          * from the GPU has sufficient time to invalidate the CPU cacheline.
1598          * Alternatively we could delay the interrupt from the CS ring to give
1599          * the write time to land, but that would incur a delay after every
1600          * batch i.e. much more frequent than a delay when waiting for the
1601          * interrupt (with the same net latency).
1602          *
1603          * Also note that to prevent whole machine hangs on gen7, we have to
1604          * take the spinlock to guard against concurrent cacheline access.
1605          */
1606         spin_lock_irq(&dev_priv->uncore.lock);
1607         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1608         spin_unlock_irq(&dev_priv->uncore.lock);
1609 }
1610
1611 static void
1612 gen5_irq_enable(struct intel_engine_cs *engine)
1613 {
1614         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1615 }
1616
1617 static void
1618 gen5_irq_disable(struct intel_engine_cs *engine)
1619 {
1620         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1621 }
1622
1623 static void
1624 i9xx_irq_enable(struct intel_engine_cs *engine)
1625 {
1626         struct drm_i915_private *dev_priv = engine->i915;
1627
1628         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1629         I915_WRITE(IMR, dev_priv->irq_mask);
1630         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1631 }
1632
1633 static void
1634 i9xx_irq_disable(struct intel_engine_cs *engine)
1635 {
1636         struct drm_i915_private *dev_priv = engine->i915;
1637
1638         dev_priv->irq_mask |= engine->irq_enable_mask;
1639         I915_WRITE(IMR, dev_priv->irq_mask);
1640 }
1641
1642 static void
1643 i8xx_irq_enable(struct intel_engine_cs *engine)
1644 {
1645         struct drm_i915_private *dev_priv = engine->i915;
1646
1647         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1648         I915_WRITE16(IMR, dev_priv->irq_mask);
1649         POSTING_READ16(RING_IMR(engine->mmio_base));
1650 }
1651
1652 static void
1653 i8xx_irq_disable(struct intel_engine_cs *engine)
1654 {
1655         struct drm_i915_private *dev_priv = engine->i915;
1656
1657         dev_priv->irq_mask |= engine->irq_enable_mask;
1658         I915_WRITE16(IMR, dev_priv->irq_mask);
1659 }
1660
1661 static int
1662 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1663 {
1664         struct intel_ring *ring = req->ring;
1665         int ret;
1666
1667         ret = intel_ring_begin(req, 2);
1668         if (ret)
1669                 return ret;
1670
1671         intel_ring_emit(ring, MI_FLUSH);
1672         intel_ring_emit(ring, MI_NOOP);
1673         intel_ring_advance(ring);
1674         return 0;
1675 }
1676
1677 static void
1678 gen6_irq_enable(struct intel_engine_cs *engine)
1679 {
1680         struct drm_i915_private *dev_priv = engine->i915;
1681
1682         I915_WRITE_IMR(engine,
1683                        ~(engine->irq_enable_mask |
1684                          engine->irq_keep_mask));
1685         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1686 }
1687
1688 static void
1689 gen6_irq_disable(struct intel_engine_cs *engine)
1690 {
1691         struct drm_i915_private *dev_priv = engine->i915;
1692
1693         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1694         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1695 }
1696
1697 static void
1698 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1699 {
1700         struct drm_i915_private *dev_priv = engine->i915;
1701
1702         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1703         gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1704 }
1705
1706 static void
1707 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1708 {
1709         struct drm_i915_private *dev_priv = engine->i915;
1710
1711         I915_WRITE_IMR(engine, ~0);
1712         gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1713 }
1714
1715 static void
1716 gen8_irq_enable(struct intel_engine_cs *engine)
1717 {
1718         struct drm_i915_private *dev_priv = engine->i915;
1719
1720         I915_WRITE_IMR(engine,
1721                        ~(engine->irq_enable_mask |
1722                          engine->irq_keep_mask));
1723         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1724 }
1725
1726 static void
1727 gen8_irq_disable(struct intel_engine_cs *engine)
1728 {
1729         struct drm_i915_private *dev_priv = engine->i915;
1730
1731         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1732 }
1733
1734 static int
1735 i965_emit_bb_start(struct drm_i915_gem_request *req,
1736                    u64 offset, u32 length,
1737                    unsigned int dispatch_flags)
1738 {
1739         struct intel_ring *ring = req->ring;
1740         int ret;
1741
1742         ret = intel_ring_begin(req, 2);
1743         if (ret)
1744                 return ret;
1745
1746         intel_ring_emit(ring,
1747                         MI_BATCH_BUFFER_START |
1748                         MI_BATCH_GTT |
1749                         (dispatch_flags & I915_DISPATCH_SECURE ?
1750                          0 : MI_BATCH_NON_SECURE_I965));
1751         intel_ring_emit(ring, offset);
1752         intel_ring_advance(ring);
1753
1754         return 0;
1755 }
1756
1757 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1758 #define I830_BATCH_LIMIT (256*1024)
1759 #define I830_TLB_ENTRIES (2)
1760 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1761 static int
1762 i830_emit_bb_start(struct drm_i915_gem_request *req,
1763                    u64 offset, u32 len,
1764                    unsigned int dispatch_flags)
1765 {
1766         struct intel_ring *ring = req->ring;
1767         u32 cs_offset = req->engine->scratch.gtt_offset;
1768         int ret;
1769
1770         ret = intel_ring_begin(req, 6);
1771         if (ret)
1772                 return ret;
1773
1774         /* Evict the invalid PTE TLBs */
1775         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1776         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1777         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1778         intel_ring_emit(ring, cs_offset);
1779         intel_ring_emit(ring, 0xdeadbeef);
1780         intel_ring_emit(ring, MI_NOOP);
1781         intel_ring_advance(ring);
1782
1783         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1784                 if (len > I830_BATCH_LIMIT)
1785                         return -ENOSPC;
1786
1787                 ret = intel_ring_begin(req, 6 + 2);
1788                 if (ret)
1789                         return ret;
1790
1791                 /* Blit the batch (which has now all relocs applied) to the
1792                  * stable batch scratch bo area (so that the CS never
1793                  * stumbles over its tlb invalidation bug) ...
1794                  */
1795                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1796                 intel_ring_emit(ring,
1797                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1798                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1799                 intel_ring_emit(ring, cs_offset);
1800                 intel_ring_emit(ring, 4096);
1801                 intel_ring_emit(ring, offset);
1802
1803                 intel_ring_emit(ring, MI_FLUSH);
1804                 intel_ring_emit(ring, MI_NOOP);
1805                 intel_ring_advance(ring);
1806
1807                 /* ... and execute it. */
1808                 offset = cs_offset;
1809         }
1810
1811         ret = intel_ring_begin(req, 2);
1812         if (ret)
1813                 return ret;
1814
1815         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1816         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1817                                         0 : MI_BATCH_NON_SECURE));
1818         intel_ring_advance(ring);
1819
1820         return 0;
1821 }
1822
1823 static int
1824 i915_emit_bb_start(struct drm_i915_gem_request *req,
1825                    u64 offset, u32 len,
1826                    unsigned int dispatch_flags)
1827 {
1828         struct intel_ring *ring = req->ring;
1829         int ret;
1830
1831         ret = intel_ring_begin(req, 2);
1832         if (ret)
1833                 return ret;
1834
1835         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1836         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1837                                         0 : MI_BATCH_NON_SECURE));
1838         intel_ring_advance(ring);
1839
1840         return 0;
1841 }
1842
1843 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1844 {
1845         struct drm_i915_private *dev_priv = engine->i915;
1846
1847         if (!dev_priv->status_page_dmah)
1848                 return;
1849
1850         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1851         engine->status_page.page_addr = NULL;
1852 }
1853
1854 static void cleanup_status_page(struct intel_engine_cs *engine)
1855 {
1856         struct drm_i915_gem_object *obj;
1857
1858         obj = engine->status_page.obj;
1859         if (obj == NULL)
1860                 return;
1861
1862         kunmap(sg_page(obj->pages->sgl));
1863         i915_gem_object_ggtt_unpin(obj);
1864         i915_gem_object_put(obj);
1865         engine->status_page.obj = NULL;
1866 }
1867
1868 static int init_status_page(struct intel_engine_cs *engine)
1869 {
1870         struct drm_i915_gem_object *obj = engine->status_page.obj;
1871
1872         if (obj == NULL) {
1873                 unsigned flags;
1874                 int ret;
1875
1876                 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1877                 if (IS_ERR(obj)) {
1878                         DRM_ERROR("Failed to allocate status page\n");
1879                         return PTR_ERR(obj);
1880                 }
1881
1882                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1883                 if (ret)
1884                         goto err_unref;
1885
1886                 flags = 0;
1887                 if (!HAS_LLC(engine->i915))
1888                         /* On g33, we cannot place HWS above 256MiB, so
1889                          * restrict its pinning to the low mappable arena.
1890                          * Though this restriction is not documented for
1891                          * gen4, gen5, or byt, they also behave similarly
1892                          * and hang if the HWS is placed at the top of the
1893                          * GTT. To generalise, it appears that all !llc
1894                          * platforms have issues with us placing the HWS
1895                          * above the mappable region (even though we never
1896                          * actualy map it).
1897                          */
1898                         flags |= PIN_MAPPABLE;
1899                 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, flags);
1900                 if (ret) {
1901 err_unref:
1902                         i915_gem_object_put(obj);
1903                         return ret;
1904                 }
1905
1906                 engine->status_page.obj = obj;
1907         }
1908
1909         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1910         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1911         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1912
1913         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1914                         engine->name, engine->status_page.gfx_addr);
1915
1916         return 0;
1917 }
1918
1919 static int init_phys_status_page(struct intel_engine_cs *engine)
1920 {
1921         struct drm_i915_private *dev_priv = engine->i915;
1922
1923         if (!dev_priv->status_page_dmah) {
1924                 dev_priv->status_page_dmah =
1925                         drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1926                 if (!dev_priv->status_page_dmah)
1927                         return -ENOMEM;
1928         }
1929
1930         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1931         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1932
1933         return 0;
1934 }
1935
1936 int intel_ring_pin(struct intel_ring *ring)
1937 {
1938         struct drm_i915_private *dev_priv = ring->engine->i915;
1939         struct drm_i915_gem_object *obj = ring->obj;
1940         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1941         unsigned flags = PIN_OFFSET_BIAS | 4096;
1942         void *addr;
1943         int ret;
1944
1945         if (HAS_LLC(dev_priv) && !obj->stolen) {
1946                 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE, flags);
1947                 if (ret)
1948                         return ret;
1949
1950                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1951                 if (ret)
1952                         goto err_unpin;
1953
1954                 addr = i915_gem_object_pin_map(obj);
1955                 if (IS_ERR(addr)) {
1956                         ret = PTR_ERR(addr);
1957                         goto err_unpin;
1958                 }
1959         } else {
1960                 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, PAGE_SIZE,
1961                                                flags | PIN_MAPPABLE);
1962                 if (ret)
1963                         return ret;
1964
1965                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1966                 if (ret)
1967                         goto err_unpin;
1968
1969                 /* Access through the GTT requires the device to be awake. */
1970                 assert_rpm_wakelock_held(dev_priv);
1971
1972                 addr = (void __force *)
1973                         i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
1974                 if (IS_ERR(addr)) {
1975                         ret = PTR_ERR(addr);
1976                         goto err_unpin;
1977                 }
1978         }
1979
1980         ring->vaddr = addr;
1981         ring->vma = i915_gem_obj_to_ggtt(obj);
1982         return 0;
1983
1984 err_unpin:
1985         i915_gem_object_ggtt_unpin(obj);
1986         return ret;
1987 }
1988
1989 void intel_ring_unpin(struct intel_ring *ring)
1990 {
1991         GEM_BUG_ON(!ring->vma);
1992         GEM_BUG_ON(!ring->vaddr);
1993
1994         if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
1995                 i915_gem_object_unpin_map(ring->obj);
1996         else
1997                 i915_vma_unpin_iomap(ring->vma);
1998         ring->vaddr = NULL;
1999
2000         i915_gem_object_ggtt_unpin(ring->obj);
2001         ring->vma = NULL;
2002 }
2003
2004 static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
2005 {
2006         i915_gem_object_put(ring->obj);
2007         ring->obj = NULL;
2008 }
2009
2010 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2011                                       struct intel_ring *ring)
2012 {
2013         struct drm_i915_gem_object *obj;
2014
2015         obj = NULL;
2016         if (!HAS_LLC(dev))
2017                 obj = i915_gem_object_create_stolen(dev, ring->size);
2018         if (obj == NULL)
2019                 obj = i915_gem_object_create(dev, ring->size);
2020         if (IS_ERR(obj))
2021                 return PTR_ERR(obj);
2022
2023         /* mark ring buffers as read-only from GPU side by default */
2024         obj->gt_ro = 1;
2025
2026         ring->obj = obj;
2027
2028         return 0;
2029 }
2030
2031 struct intel_ring *
2032 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2033 {
2034         struct intel_ring *ring;
2035         int ret;
2036
2037         GEM_BUG_ON(!is_power_of_2(size));
2038
2039         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2040         if (ring == NULL) {
2041                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2042                                  engine->name);
2043                 return ERR_PTR(-ENOMEM);
2044         }
2045
2046         ring->engine = engine;
2047         list_add(&ring->link, &engine->buffers);
2048
2049         INIT_LIST_HEAD(&ring->request_list);
2050
2051         ring->size = size;
2052         /* Workaround an erratum on the i830 which causes a hang if
2053          * the TAIL pointer points to within the last 2 cachelines
2054          * of the buffer.
2055          */
2056         ring->effective_size = size;
2057         if (IS_I830(engine->i915) || IS_845G(engine->i915))
2058                 ring->effective_size -= 2 * CACHELINE_BYTES;
2059
2060         ring->last_retired_head = -1;
2061         intel_ring_update_space(ring);
2062
2063         ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2064         if (ret) {
2065                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2066                                  engine->name, ret);
2067                 list_del(&ring->link);
2068                 kfree(ring);
2069                 return ERR_PTR(ret);
2070         }
2071
2072         return ring;
2073 }
2074
2075 void
2076 intel_ring_free(struct intel_ring *ring)
2077 {
2078         intel_destroy_ringbuffer_obj(ring);
2079         list_del(&ring->link);
2080         kfree(ring);
2081 }
2082
2083 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2084                                   struct intel_engine_cs *engine)
2085 {
2086         struct intel_context *ce = &ctx->engine[engine->id];
2087         int ret;
2088
2089         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2090
2091         if (ce->pin_count++)
2092                 return 0;
2093
2094         if (ce->state) {
2095                 ret = i915_gem_object_ggtt_pin(ce->state, NULL, 0,
2096                                                ctx->ggtt_alignment, 0);
2097                 if (ret)
2098                         goto error;
2099         }
2100
2101         /* The kernel context is only used as a placeholder for flushing the
2102          * active context. It is never used for submitting user rendering and
2103          * as such never requires the golden render context, and so we can skip
2104          * emitting it when we switch to the kernel context. This is required
2105          * as during eviction we cannot allocate and pin the renderstate in
2106          * order to initialise the context.
2107          */
2108         if (ctx == ctx->i915->kernel_context)
2109                 ce->initialised = true;
2110
2111         i915_gem_context_get(ctx);
2112         return 0;
2113
2114 error:
2115         ce->pin_count = 0;
2116         return ret;
2117 }
2118
2119 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2120                                      struct intel_engine_cs *engine)
2121 {
2122         struct intel_context *ce = &ctx->engine[engine->id];
2123
2124         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2125
2126         if (--ce->pin_count)
2127                 return;
2128
2129         if (ce->state)
2130                 i915_gem_object_ggtt_unpin(ce->state);
2131
2132         i915_gem_context_put(ctx);
2133 }
2134
2135 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2136 {
2137         struct drm_i915_private *dev_priv = engine->i915;
2138         struct intel_ring *ring;
2139         int ret;
2140
2141         WARN_ON(engine->buffer);
2142
2143         intel_engine_setup_common(engine);
2144
2145         memset(engine->semaphore.sync_seqno, 0,
2146                sizeof(engine->semaphore.sync_seqno));
2147
2148         ret = intel_engine_init_common(engine);
2149         if (ret)
2150                 goto error;
2151
2152         /* We may need to do things with the shrinker which
2153          * require us to immediately switch back to the default
2154          * context. This can cause a problem as pinning the
2155          * default context also requires GTT space which may not
2156          * be available. To avoid this we always pin the default
2157          * context.
2158          */
2159         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2160         if (ret)
2161                 goto error;
2162
2163         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2164         if (IS_ERR(ring)) {
2165                 ret = PTR_ERR(ring);
2166                 goto error;
2167         }
2168         engine->buffer = ring;
2169
2170         if (I915_NEED_GFX_HWS(dev_priv)) {
2171                 ret = init_status_page(engine);
2172                 if (ret)
2173                         goto error;
2174         } else {
2175                 WARN_ON(engine->id != RCS);
2176                 ret = init_phys_status_page(engine);
2177                 if (ret)
2178                         goto error;
2179         }
2180
2181         ret = intel_ring_pin(ring);
2182         if (ret) {
2183                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2184                                 engine->name, ret);
2185                 intel_destroy_ringbuffer_obj(ring);
2186                 goto error;
2187         }
2188
2189         return 0;
2190
2191 error:
2192         intel_engine_cleanup(engine);
2193         return ret;
2194 }
2195
2196 void intel_engine_cleanup(struct intel_engine_cs *engine)
2197 {
2198         struct drm_i915_private *dev_priv;
2199
2200         if (!intel_engine_initialized(engine))
2201                 return;
2202
2203         dev_priv = engine->i915;
2204
2205         if (engine->buffer) {
2206                 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2207
2208                 intel_ring_unpin(engine->buffer);
2209                 intel_ring_free(engine->buffer);
2210                 engine->buffer = NULL;
2211         }
2212
2213         if (engine->cleanup)
2214                 engine->cleanup(engine);
2215
2216         if (I915_NEED_GFX_HWS(dev_priv)) {
2217                 cleanup_status_page(engine);
2218         } else {
2219                 WARN_ON(engine->id != RCS);
2220                 cleanup_phys_status_page(engine);
2221         }
2222
2223         intel_engine_cleanup_common(engine);
2224
2225         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2226
2227         engine->i915 = NULL;
2228 }
2229
2230 int intel_engine_idle(struct intel_engine_cs *engine)
2231 {
2232         struct drm_i915_gem_request *req;
2233
2234         /* Wait upon the last request to be completed */
2235         if (list_empty(&engine->request_list))
2236                 return 0;
2237
2238         req = list_entry(engine->request_list.prev,
2239                          struct drm_i915_gem_request,
2240                          link);
2241
2242         /* Make sure we do not trigger any retires */
2243         return i915_wait_request(req,
2244                                  req->i915->mm.interruptible,
2245                                  NULL, NULL);
2246 }
2247
2248 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2249 {
2250         int ret;
2251
2252         /* Flush enough space to reduce the likelihood of waiting after
2253          * we start building the request - in which case we will just
2254          * have to repeat work.
2255          */
2256         request->reserved_space += LEGACY_REQUEST_SIZE;
2257
2258         request->ring = request->engine->buffer;
2259
2260         ret = intel_ring_begin(request, 0);
2261         if (ret)
2262                 return ret;
2263
2264         request->reserved_space -= LEGACY_REQUEST_SIZE;
2265         return 0;
2266 }
2267
2268 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2269 {
2270         struct intel_ring *ring = req->ring;
2271         struct drm_i915_gem_request *target;
2272         int ret;
2273
2274         intel_ring_update_space(ring);
2275         if (ring->space >= bytes)
2276                 return 0;
2277
2278         /*
2279          * Space is reserved in the ringbuffer for finalising the request,
2280          * as that cannot be allowed to fail. During request finalisation,
2281          * reserved_space is set to 0 to stop the overallocation and the
2282          * assumption is that then we never need to wait (which has the
2283          * risk of failing with EINTR).
2284          *
2285          * See also i915_gem_request_alloc() and i915_add_request().
2286          */
2287         GEM_BUG_ON(!req->reserved_space);
2288
2289         list_for_each_entry(target, &ring->request_list, ring_link) {
2290                 unsigned space;
2291
2292                 /* Would completion of this request free enough space? */
2293                 space = __intel_ring_space(target->postfix, ring->tail,
2294                                            ring->size);
2295                 if (space >= bytes)
2296                         break;
2297         }
2298
2299         if (WARN_ON(&target->ring_link == &ring->request_list))
2300                 return -ENOSPC;
2301
2302         ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2303         if (ret)
2304                 return ret;
2305
2306         if (i915_reset_in_progress(&target->i915->gpu_error))
2307                 return -EAGAIN;
2308
2309         i915_gem_request_retire_upto(target);
2310
2311         intel_ring_update_space(ring);
2312         GEM_BUG_ON(ring->space < bytes);
2313         return 0;
2314 }
2315
2316 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2317 {
2318         struct intel_ring *ring = req->ring;
2319         int remain_actual = ring->size - ring->tail;
2320         int remain_usable = ring->effective_size - ring->tail;
2321         int bytes = num_dwords * sizeof(u32);
2322         int total_bytes, wait_bytes;
2323         bool need_wrap = false;
2324
2325         total_bytes = bytes + req->reserved_space;
2326
2327         if (unlikely(bytes > remain_usable)) {
2328                 /*
2329                  * Not enough space for the basic request. So need to flush
2330                  * out the remainder and then wait for base + reserved.
2331                  */
2332                 wait_bytes = remain_actual + total_bytes;
2333                 need_wrap = true;
2334         } else if (unlikely(total_bytes > remain_usable)) {
2335                 /*
2336                  * The base request will fit but the reserved space
2337                  * falls off the end. So we don't need an immediate wrap
2338                  * and only need to effectively wait for the reserved
2339                  * size space from the start of ringbuffer.
2340                  */
2341                 wait_bytes = remain_actual + req->reserved_space;
2342         } else {
2343                 /* No wrapping required, just waiting. */
2344                 wait_bytes = total_bytes;
2345         }
2346
2347         if (wait_bytes > ring->space) {
2348                 int ret = wait_for_space(req, wait_bytes);
2349                 if (unlikely(ret))
2350                         return ret;
2351         }
2352
2353         if (unlikely(need_wrap)) {
2354                 GEM_BUG_ON(remain_actual > ring->space);
2355                 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2356
2357                 /* Fill the tail with MI_NOOP */
2358                 memset(ring->vaddr + ring->tail, 0, remain_actual);
2359                 ring->tail = 0;
2360                 ring->space -= remain_actual;
2361         }
2362
2363         ring->space -= bytes;
2364         GEM_BUG_ON(ring->space < 0);
2365         return 0;
2366 }
2367
2368 /* Align the ring tail to a cacheline boundary */
2369 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2370 {
2371         struct intel_ring *ring = req->ring;
2372         int num_dwords =
2373                 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2374         int ret;
2375
2376         if (num_dwords == 0)
2377                 return 0;
2378
2379         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2380         ret = intel_ring_begin(req, num_dwords);
2381         if (ret)
2382                 return ret;
2383
2384         while (num_dwords--)
2385                 intel_ring_emit(ring, MI_NOOP);
2386
2387         intel_ring_advance(ring);
2388
2389         return 0;
2390 }
2391
2392 void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2393 {
2394         struct drm_i915_private *dev_priv = engine->i915;
2395
2396         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2397          * so long as the semaphore value in the register/page is greater
2398          * than the sync value), so whenever we reset the seqno,
2399          * so long as we reset the tracking semaphore value to 0, it will
2400          * always be before the next request's seqno. If we don't reset
2401          * the semaphore value, then when the seqno moves backwards all
2402          * future waits will complete instantly (causing rendering corruption).
2403          */
2404         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2405                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2406                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2407                 if (HAS_VEBOX(dev_priv))
2408                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2409         }
2410         if (dev_priv->semaphore_obj) {
2411                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2412                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2413                 void *semaphores = kmap(page);
2414                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2415                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2416                 kunmap(page);
2417         }
2418         memset(engine->semaphore.sync_seqno, 0,
2419                sizeof(engine->semaphore.sync_seqno));
2420
2421         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2422         if (engine->irq_seqno_barrier)
2423                 engine->irq_seqno_barrier(engine);
2424         engine->last_submitted_seqno = seqno;
2425
2426         engine->hangcheck.seqno = seqno;
2427
2428         /* After manually advancing the seqno, fake the interrupt in case
2429          * there are any waiters for that seqno.
2430          */
2431         rcu_read_lock();
2432         intel_engine_wakeup(engine);
2433         rcu_read_unlock();
2434 }
2435
2436 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2437 {
2438         struct drm_i915_private *dev_priv = request->i915;
2439
2440         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2441
2442        /* Every tail move must follow the sequence below */
2443
2444         /* Disable notification that the ring is IDLE. The GT
2445          * will then assume that it is busy and bring it out of rc6.
2446          */
2447         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2448                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2449
2450         /* Clear the context id. Here be magic! */
2451         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2452
2453         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2454         if (intel_wait_for_register_fw(dev_priv,
2455                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2456                                        GEN6_BSD_SLEEP_INDICATOR,
2457                                        0,
2458                                        50))
2459                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2460
2461         /* Now that the ring is fully powered up, update the tail */
2462         i9xx_submit_request(request);
2463
2464         /* Let the ring send IDLE messages to the GT again,
2465          * and so let it sleep to conserve power when idle.
2466          */
2467         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2468                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2469
2470         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2471 }
2472
2473 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2474 {
2475         struct intel_ring *ring = req->ring;
2476         uint32_t cmd;
2477         int ret;
2478
2479         ret = intel_ring_begin(req, 4);
2480         if (ret)
2481                 return ret;
2482
2483         cmd = MI_FLUSH_DW;
2484         if (INTEL_GEN(req->i915) >= 8)
2485                 cmd += 1;
2486
2487         /* We always require a command barrier so that subsequent
2488          * commands, such as breadcrumb interrupts, are strictly ordered
2489          * wrt the contents of the write cache being flushed to memory
2490          * (and thus being coherent from the CPU).
2491          */
2492         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2493
2494         /*
2495          * Bspec vol 1c.5 - video engine command streamer:
2496          * "If ENABLED, all TLBs will be invalidated once the flush
2497          * operation is complete. This bit is only valid when the
2498          * Post-Sync Operation field is a value of 1h or 3h."
2499          */
2500         if (mode & EMIT_INVALIDATE)
2501                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2502
2503         intel_ring_emit(ring, cmd);
2504         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2505         if (INTEL_GEN(req->i915) >= 8) {
2506                 intel_ring_emit(ring, 0); /* upper addr */
2507                 intel_ring_emit(ring, 0); /* value */
2508         } else  {
2509                 intel_ring_emit(ring, 0);
2510                 intel_ring_emit(ring, MI_NOOP);
2511         }
2512         intel_ring_advance(ring);
2513         return 0;
2514 }
2515
2516 static int
2517 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2518                    u64 offset, u32 len,
2519                    unsigned int dispatch_flags)
2520 {
2521         struct intel_ring *ring = req->ring;
2522         bool ppgtt = USES_PPGTT(req->i915) &&
2523                         !(dispatch_flags & I915_DISPATCH_SECURE);
2524         int ret;
2525
2526         ret = intel_ring_begin(req, 4);
2527         if (ret)
2528                 return ret;
2529
2530         /* FIXME(BDW): Address space and security selectors. */
2531         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2532                         (dispatch_flags & I915_DISPATCH_RS ?
2533                          MI_BATCH_RESOURCE_STREAMER : 0));
2534         intel_ring_emit(ring, lower_32_bits(offset));
2535         intel_ring_emit(ring, upper_32_bits(offset));
2536         intel_ring_emit(ring, MI_NOOP);
2537         intel_ring_advance(ring);
2538
2539         return 0;
2540 }
2541
2542 static int
2543 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2544                   u64 offset, u32 len,
2545                   unsigned int dispatch_flags)
2546 {
2547         struct intel_ring *ring = req->ring;
2548         int ret;
2549
2550         ret = intel_ring_begin(req, 2);
2551         if (ret)
2552                 return ret;
2553
2554         intel_ring_emit(ring,
2555                         MI_BATCH_BUFFER_START |
2556                         (dispatch_flags & I915_DISPATCH_SECURE ?
2557                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2558                         (dispatch_flags & I915_DISPATCH_RS ?
2559                          MI_BATCH_RESOURCE_STREAMER : 0));
2560         /* bit0-7 is the length on GEN6+ */
2561         intel_ring_emit(ring, offset);
2562         intel_ring_advance(ring);
2563
2564         return 0;
2565 }
2566
2567 static int
2568 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2569                    u64 offset, u32 len,
2570                    unsigned int dispatch_flags)
2571 {
2572         struct intel_ring *ring = req->ring;
2573         int ret;
2574
2575         ret = intel_ring_begin(req, 2);
2576         if (ret)
2577                 return ret;
2578
2579         intel_ring_emit(ring,
2580                         MI_BATCH_BUFFER_START |
2581                         (dispatch_flags & I915_DISPATCH_SECURE ?
2582                          0 : MI_BATCH_NON_SECURE_I965));
2583         /* bit0-7 is the length on GEN6+ */
2584         intel_ring_emit(ring, offset);
2585         intel_ring_advance(ring);
2586
2587         return 0;
2588 }
2589
2590 /* Blitter support (SandyBridge+) */
2591
2592 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2593 {
2594         struct intel_ring *ring = req->ring;
2595         uint32_t cmd;
2596         int ret;
2597
2598         ret = intel_ring_begin(req, 4);
2599         if (ret)
2600                 return ret;
2601
2602         cmd = MI_FLUSH_DW;
2603         if (INTEL_GEN(req->i915) >= 8)
2604                 cmd += 1;
2605
2606         /* We always require a command barrier so that subsequent
2607          * commands, such as breadcrumb interrupts, are strictly ordered
2608          * wrt the contents of the write cache being flushed to memory
2609          * (and thus being coherent from the CPU).
2610          */
2611         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2612
2613         /*
2614          * Bspec vol 1c.3 - blitter engine command streamer:
2615          * "If ENABLED, all TLBs will be invalidated once the flush
2616          * operation is complete. This bit is only valid when the
2617          * Post-Sync Operation field is a value of 1h or 3h."
2618          */
2619         if (mode & EMIT_INVALIDATE)
2620                 cmd |= MI_INVALIDATE_TLB;
2621         intel_ring_emit(ring, cmd);
2622         intel_ring_emit(ring,
2623                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2624         if (INTEL_GEN(req->i915) >= 8) {
2625                 intel_ring_emit(ring, 0); /* upper addr */
2626                 intel_ring_emit(ring, 0); /* value */
2627         } else  {
2628                 intel_ring_emit(ring, 0);
2629                 intel_ring_emit(ring, MI_NOOP);
2630         }
2631         intel_ring_advance(ring);
2632
2633         return 0;
2634 }
2635
2636 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2637                                        struct intel_engine_cs *engine)
2638 {
2639         struct drm_i915_gem_object *obj;
2640         int ret, i;
2641
2642         if (!i915.semaphores)
2643                 return;
2644
2645         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2646                 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2647                 if (IS_ERR(obj)) {
2648                         DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2649                         i915.semaphores = 0;
2650                 } else {
2651                         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2652                         ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
2653                         if (ret != 0) {
2654                                 i915_gem_object_put(obj);
2655                                 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2656                                 i915.semaphores = 0;
2657                         } else {
2658                                 dev_priv->semaphore_obj = obj;
2659                         }
2660                 }
2661         }
2662
2663         if (!i915.semaphores)
2664                 return;
2665
2666         if (INTEL_GEN(dev_priv) >= 8) {
2667                 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2668
2669                 engine->semaphore.sync_to = gen8_ring_sync_to;
2670                 engine->semaphore.signal = gen8_xcs_signal;
2671
2672                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2673                         u64 ring_offset;
2674
2675                         if (i != engine->id)
2676                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2677                         else
2678                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2679
2680                         engine->semaphore.signal_ggtt[i] = ring_offset;
2681                 }
2682         } else if (INTEL_GEN(dev_priv) >= 6) {
2683                 engine->semaphore.sync_to = gen6_ring_sync_to;
2684                 engine->semaphore.signal = gen6_signal;
2685
2686                 /*
2687                  * The current semaphore is only applied on pre-gen8
2688                  * platform.  And there is no VCS2 ring on the pre-gen8
2689                  * platform. So the semaphore between RCS and VCS2 is
2690                  * initialized as INVALID.  Gen8 will initialize the
2691                  * sema between VCS2 and RCS later.
2692                  */
2693                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2694                         static const struct {
2695                                 u32 wait_mbox;
2696                                 i915_reg_t mbox_reg;
2697                         } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2698                                 [RCS] = {
2699                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2700                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2701                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2702                                 },
2703                                 [VCS] = {
2704                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2705                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2706                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2707                                 },
2708                                 [BCS] = {
2709                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2710                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2711                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2712                                 },
2713                                 [VECS] = {
2714                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2715                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2716                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2717                                 },
2718                         };
2719                         u32 wait_mbox;
2720                         i915_reg_t mbox_reg;
2721
2722                         if (i == engine->id || i == VCS2) {
2723                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2724                                 mbox_reg = GEN6_NOSYNC;
2725                         } else {
2726                                 wait_mbox = sem_data[engine->id][i].wait_mbox;
2727                                 mbox_reg = sem_data[engine->id][i].mbox_reg;
2728                         }
2729
2730                         engine->semaphore.mbox.wait[i] = wait_mbox;
2731                         engine->semaphore.mbox.signal[i] = mbox_reg;
2732                 }
2733         }
2734 }
2735
2736 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2737                                 struct intel_engine_cs *engine)
2738 {
2739         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2740
2741         if (INTEL_GEN(dev_priv) >= 8) {
2742                 engine->irq_enable = gen8_irq_enable;
2743                 engine->irq_disable = gen8_irq_disable;
2744                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2745         } else if (INTEL_GEN(dev_priv) >= 6) {
2746                 engine->irq_enable = gen6_irq_enable;
2747                 engine->irq_disable = gen6_irq_disable;
2748                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2749         } else if (INTEL_GEN(dev_priv) >= 5) {
2750                 engine->irq_enable = gen5_irq_enable;
2751                 engine->irq_disable = gen5_irq_disable;
2752                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2753         } else if (INTEL_GEN(dev_priv) >= 3) {
2754                 engine->irq_enable = i9xx_irq_enable;
2755                 engine->irq_disable = i9xx_irq_disable;
2756         } else {
2757                 engine->irq_enable = i8xx_irq_enable;
2758                 engine->irq_disable = i8xx_irq_disable;
2759         }
2760 }
2761
2762 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2763                                       struct intel_engine_cs *engine)
2764 {
2765         intel_ring_init_irq(dev_priv, engine);
2766         intel_ring_init_semaphores(dev_priv, engine);
2767
2768         engine->init_hw = init_ring_common;
2769
2770         engine->emit_request = i9xx_emit_request;
2771         if (i915.semaphores)
2772                 engine->emit_request = gen6_sema_emit_request;
2773         engine->submit_request = i9xx_submit_request;
2774
2775         if (INTEL_GEN(dev_priv) >= 8)
2776                 engine->emit_bb_start = gen8_emit_bb_start;
2777         else if (INTEL_GEN(dev_priv) >= 6)
2778                 engine->emit_bb_start = gen6_emit_bb_start;
2779         else if (INTEL_GEN(dev_priv) >= 4)
2780                 engine->emit_bb_start = i965_emit_bb_start;
2781         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2782                 engine->emit_bb_start = i830_emit_bb_start;
2783         else
2784                 engine->emit_bb_start = i915_emit_bb_start;
2785 }
2786
2787 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2788 {
2789         struct drm_i915_private *dev_priv = engine->i915;
2790         int ret;
2791
2792         intel_ring_default_vfuncs(dev_priv, engine);
2793
2794         if (HAS_L3_DPF(dev_priv))
2795                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2796
2797         if (INTEL_GEN(dev_priv) >= 8) {
2798                 engine->init_context = intel_rcs_ctx_init;
2799                 engine->emit_request = gen8_render_emit_request;
2800                 engine->emit_flush = gen8_render_ring_flush;
2801                 if (i915.semaphores)
2802                         engine->semaphore.signal = gen8_rcs_signal;
2803         } else if (INTEL_GEN(dev_priv) >= 6) {
2804                 engine->init_context = intel_rcs_ctx_init;
2805                 engine->emit_flush = gen7_render_ring_flush;
2806                 if (IS_GEN6(dev_priv))
2807                         engine->emit_flush = gen6_render_ring_flush;
2808         } else if (IS_GEN5(dev_priv)) {
2809                 engine->emit_flush = gen4_render_ring_flush;
2810         } else {
2811                 if (INTEL_GEN(dev_priv) < 4)
2812                         engine->emit_flush = gen2_render_ring_flush;
2813                 else
2814                         engine->emit_flush = gen4_render_ring_flush;
2815                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2816         }
2817
2818         if (IS_HASWELL(dev_priv))
2819                 engine->emit_bb_start = hsw_emit_bb_start;
2820
2821         engine->init_hw = init_render_ring;
2822         engine->cleanup = render_ring_cleanup;
2823
2824         ret = intel_init_ring_buffer(engine);
2825         if (ret)
2826                 return ret;
2827
2828         if (INTEL_GEN(dev_priv) >= 6) {
2829                 ret = intel_init_pipe_control(engine, 4096);
2830                 if (ret)
2831                         return ret;
2832         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2833                 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2834                 if (ret)
2835                         return ret;
2836         }
2837
2838         return 0;
2839 }
2840
2841 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2842 {
2843         struct drm_i915_private *dev_priv = engine->i915;
2844
2845         intel_ring_default_vfuncs(dev_priv, engine);
2846
2847         if (INTEL_GEN(dev_priv) >= 6) {
2848                 /* gen6 bsd needs a special wa for tail updates */
2849                 if (IS_GEN6(dev_priv))
2850                         engine->submit_request = gen6_bsd_submit_request;
2851                 engine->emit_flush = gen6_bsd_ring_flush;
2852                 if (INTEL_GEN(dev_priv) < 8)
2853                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2854         } else {
2855                 engine->mmio_base = BSD_RING_BASE;
2856                 engine->emit_flush = bsd_ring_flush;
2857                 if (IS_GEN5(dev_priv))
2858                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2859                 else
2860                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2861         }
2862
2863         return intel_init_ring_buffer(engine);
2864 }
2865
2866 /**
2867  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2868  */
2869 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2870 {
2871         struct drm_i915_private *dev_priv = engine->i915;
2872
2873         intel_ring_default_vfuncs(dev_priv, engine);
2874
2875         engine->emit_flush = gen6_bsd_ring_flush;
2876
2877         return intel_init_ring_buffer(engine);
2878 }
2879
2880 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2881 {
2882         struct drm_i915_private *dev_priv = engine->i915;
2883
2884         intel_ring_default_vfuncs(dev_priv, engine);
2885
2886         engine->emit_flush = gen6_ring_flush;
2887         if (INTEL_GEN(dev_priv) < 8)
2888                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2889
2890         return intel_init_ring_buffer(engine);
2891 }
2892
2893 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2894 {
2895         struct drm_i915_private *dev_priv = engine->i915;
2896
2897         intel_ring_default_vfuncs(dev_priv, engine);
2898
2899         engine->emit_flush = gen6_ring_flush;
2900
2901         if (INTEL_GEN(dev_priv) < 8) {
2902                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2903                 engine->irq_enable = hsw_vebox_irq_enable;
2904                 engine->irq_disable = hsw_vebox_irq_disable;
2905         }
2906
2907         return intel_init_ring_buffer(engine);
2908 }