]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / nouveau / nvkm / engine / gr / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41
42 /*******************************************************************************
43  * Zero Bandwidth Clear
44  ******************************************************************************/
45
46 static void
47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49         struct nvkm_device *device = gr->base.engine.subdev.device;
50         if (gr->zbc_color[zbc].format) {
51                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55         }
56         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57         nvkm_wr32(device, 0x405820, zbc);
58         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60
61 static int
62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63                        const u32 ds[4], const u32 l2[4])
64 {
65         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66         int zbc = -ENOSPC, i;
67
68         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69                 if (gr->zbc_color[i].format) {
70                         if (gr->zbc_color[i].format != format)
71                                 continue;
72                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73                                    gr->zbc_color[i].ds)))
74                                 continue;
75                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76                                    gr->zbc_color[i].l2))) {
77                                 WARN_ON(1);
78                                 return -EINVAL;
79                         }
80                         return i;
81                 } else {
82                         zbc = (zbc < 0) ? i : zbc;
83                 }
84         }
85
86         if (zbc < 0)
87                 return zbc;
88
89         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91         gr->zbc_color[zbc].format = format;
92         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93         gf100_gr_zbc_clear_color(gr, zbc);
94         return zbc;
95 }
96
97 static void
98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100         struct nvkm_device *device = gr->base.engine.subdev.device;
101         if (gr->zbc_depth[zbc].format)
102                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104         nvkm_wr32(device, 0x405820, zbc);
105         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107
108 static int
109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110                        const u32 ds, const u32 l2)
111 {
112         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113         int zbc = -ENOSPC, i;
114
115         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116                 if (gr->zbc_depth[i].format) {
117                         if (gr->zbc_depth[i].format != format)
118                                 continue;
119                         if (gr->zbc_depth[i].ds != ds)
120                                 continue;
121                         if (gr->zbc_depth[i].l2 != l2) {
122                                 WARN_ON(1);
123                                 return -EINVAL;
124                         }
125                         return i;
126                 } else {
127                         zbc = (zbc < 0) ? i : zbc;
128                 }
129         }
130
131         if (zbc < 0)
132                 return zbc;
133
134         gr->zbc_depth[zbc].format = format;
135         gr->zbc_depth[zbc].ds = ds;
136         gr->zbc_depth[zbc].l2 = l2;
137         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138         gf100_gr_zbc_clear_depth(gr, zbc);
139         return zbc;
140 }
141
142 /*******************************************************************************
143  * Graphics object classes
144  ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146
147 struct gf100_gr_object {
148         struct nvkm_object object;
149         struct gf100_gr_chan *chan;
150 };
151
152 static int
153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156         union {
157                 struct fermi_a_zbc_color_v0 v0;
158         } *args = data;
159         int ret = -ENOSYS;
160
161         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162                 switch (args->v0.format) {
163                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183                                                            args->v0.ds,
184                                                            args->v0.l2);
185                         if (ret >= 0) {
186                                 args->v0.index = ret;
187                                 return 0;
188                         }
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return ret;
196 }
197
198 static int
199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202         union {
203                 struct fermi_a_zbc_depth_v0 v0;
204         } *args = data;
205         int ret = -ENOSYS;
206
207         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208                 switch (args->v0.format) {
209                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211                                                            args->v0.ds,
212                                                            args->v0.l2);
213                         return (ret >= 0) ? 0 : -ENOSPC;
214                 default:
215                         return -EINVAL;
216                 }
217         }
218
219         return ret;
220 }
221
222 static int
223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226         switch (mthd) {
227         case FERMI_A_ZBC_COLOR:
228                 return gf100_fermi_mthd_zbc_color(object, data, size);
229         case FERMI_A_ZBC_DEPTH:
230                 return gf100_fermi_mthd_zbc_depth(object, data, size);
231         default:
232                 break;
233         }
234         return -EINVAL;
235 }
236
237 const struct nvkm_object_func
238 gf100_fermi = {
239         .mthd = gf100_fermi_mthd,
240 };
241
242 static void
243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248
249 static bool
250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252         switch (class & 0x00ff) {
253         case 0x97:
254         case 0xc0:
255                 switch (mthd) {
256                 case 0x1528:
257                         gf100_gr_mthd_set_shader_exceptions(device, data);
258                         return true;
259                 default:
260                         break;
261                 }
262                 break;
263         default:
264                 break;
265         }
266         return false;
267 }
268
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272
273 static int
274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275                     struct nvkm_object **pobject)
276 {
277         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278         struct gf100_gr_object *object;
279
280         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281                 return -ENOMEM;
282         *pobject = &object->object;
283
284         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285                          &gf100_gr_object_func, oclass, &object->object);
286         object->chan = chan;
287         return 0;
288 }
289
290 static int
291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293         struct gf100_gr *gr = gf100_gr(base);
294         int c = 0;
295
296         while (gr->func->sclass[c].oclass) {
297                 if (c++ == index) {
298                         *sclass = gr->func->sclass[index];
299                         sclass->ctor = gf100_gr_object_new;
300                         return index;
301                 }
302         }
303
304         return c;
305 }
306
307 /*******************************************************************************
308  * PGRAPH context
309  ******************************************************************************/
310
311 static int
312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313                    int align, struct nvkm_gpuobj **pgpuobj)
314 {
315         struct gf100_gr_chan *chan = gf100_gr_chan(object);
316         struct gf100_gr *gr = chan->gr;
317         int ret, i;
318
319         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320                               align, false, parent, pgpuobj);
321         if (ret)
322                 return ret;
323
324         nvkm_kmap(*pgpuobj);
325         for (i = 0; i < gr->size; i += 4)
326                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327
328         if (!gr->firmware) {
329                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331         } else {
332                 nvkm_wo32(*pgpuobj, 0xf4, 0);
333                 nvkm_wo32(*pgpuobj, 0xf8, 0);
334                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337                 nvkm_wo32(*pgpuobj, 0x1c, 1);
338                 nvkm_wo32(*pgpuobj, 0x20, 0);
339                 nvkm_wo32(*pgpuobj, 0x28, 0);
340                 nvkm_wo32(*pgpuobj, 0x2c, 0);
341         }
342         nvkm_done(*pgpuobj);
343         return 0;
344 }
345
346 static void *
347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349         struct gf100_gr_chan *chan = gf100_gr_chan(object);
350         int i;
351
352         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353                 if (chan->data[i].vma.node) {
354                         nvkm_vm_unmap(&chan->data[i].vma);
355                         nvkm_vm_put(&chan->data[i].vma);
356                 }
357                 nvkm_memory_del(&chan->data[i].mem);
358         }
359
360         if (chan->mmio_vma.node) {
361                 nvkm_vm_unmap(&chan->mmio_vma);
362                 nvkm_vm_put(&chan->mmio_vma);
363         }
364         nvkm_memory_del(&chan->mmio);
365         return chan;
366 }
367
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370         .dtor = gf100_gr_chan_dtor,
371         .bind = gf100_gr_chan_bind,
372 };
373
374 static int
375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376                   const struct nvkm_oclass *oclass,
377                   struct nvkm_object **pobject)
378 {
379         struct gf100_gr *gr = gf100_gr(base);
380         struct gf100_gr_data *data = gr->mmio_data;
381         struct gf100_gr_mmio *mmio = gr->mmio_list;
382         struct gf100_gr_chan *chan;
383         struct nvkm_device *device = gr->base.engine.subdev.device;
384         int ret, i;
385
386         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387                 return -ENOMEM;
388         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389         chan->gr = gr;
390         *pobject = &chan->object;
391
392         /* allocate memory for a "mmio list" buffer that's used by the HUB
393          * fuc to modify some per-context register settings on first load
394          * of the context.
395          */
396         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397                               false, &chan->mmio);
398         if (ret)
399                 return ret;
400
401         ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402                           NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403         if (ret)
404                 return ret;
405
406         nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407
408         /* allocate buffers referenced by mmio list */
409         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411                                       data->size, data->align, false,
412                                       &chan->data[i].mem);
413                 if (ret)
414                         return ret;
415
416                 ret = nvkm_vm_get(fifoch->vm,
417                                   nvkm_memory_size(chan->data[i].mem), 12,
418                                   data->access, &chan->data[i].vma);
419                 if (ret)
420                         return ret;
421
422                 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423                 data++;
424         }
425
426         /* finally, fill in the mmio list and point the context at it */
427         nvkm_kmap(chan->mmio);
428         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429                 u32 addr = mmio->addr;
430                 u32 data = mmio->data;
431
432                 if (mmio->buffer >= 0) {
433                         u64 info = chan->data[mmio->buffer].vma.offset;
434                         data |= info >> mmio->shift;
435                 }
436
437                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439                 mmio++;
440         }
441         nvkm_done(chan->mmio);
442         return 0;
443 }
444
445 /*******************************************************************************
446  * PGRAPH register lists
447  ******************************************************************************/
448
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451         { 0x400080,   1, 0x04, 0x003083c2 },
452         { 0x400088,   1, 0x04, 0x00006fe7 },
453         { 0x40008c,   1, 0x04, 0x00000000 },
454         { 0x400090,   1, 0x04, 0x00000030 },
455         { 0x40013c,   1, 0x04, 0x013901f7 },
456         { 0x400140,   1, 0x04, 0x00000100 },
457         { 0x400144,   1, 0x04, 0x00000000 },
458         { 0x400148,   1, 0x04, 0x00000110 },
459         { 0x400138,   1, 0x04, 0x00000000 },
460         { 0x400130,   2, 0x04, 0x00000000 },
461         { 0x400124,   1, 0x04, 0x00000002 },
462         {}
463 };
464
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467         { 0x40415c,   1, 0x04, 0x00000000 },
468         { 0x404170,   1, 0x04, 0x00000000 },
469         {}
470 };
471
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474         { 0x404488,   2, 0x04, 0x00000000 },
475         {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480         { 0x407808,   1, 0x04, 0x00000000 },
481         {}
482 };
483
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486         { 0x406024,   1, 0x04, 0x00000000 },
487         {}
488 };
489
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492         { 0x405844,   1, 0x04, 0x00ffffff },
493         { 0x405850,   1, 0x04, 0x00000000 },
494         { 0x405908,   1, 0x04, 0x00000000 },
495         {}
496 };
497
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500         { 0x40803c,   1, 0x04, 0x00000000 },
501         {}
502 };
503
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506         { 0x4184a0,   1, 0x04, 0x00000000 },
507         {}
508 };
509
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512         { 0x418604,   1, 0x04, 0x00000000 },
513         { 0x418680,   1, 0x04, 0x00000000 },
514         { 0x418714,   1, 0x04, 0x80000000 },
515         { 0x418384,   1, 0x04, 0x00000000 },
516         {}
517 };
518
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521         { 0x418814,   3, 0x04, 0x00000000 },
522         {}
523 };
524
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527         { 0x418b04,   1, 0x04, 0x00000000 },
528         {}
529 };
530
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533         { 0x4188c8,   1, 0x04, 0x80000000 },
534         { 0x4188cc,   1, 0x04, 0x00000000 },
535         { 0x4188d0,   1, 0x04, 0x00010000 },
536         { 0x4188d4,   1, 0x04, 0x00000001 },
537         {}
538 };
539
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542         { 0x418910,   1, 0x04, 0x00010001 },
543         { 0x418914,   1, 0x04, 0x00000301 },
544         { 0x418918,   1, 0x04, 0x00800000 },
545         { 0x418980,   1, 0x04, 0x77777770 },
546         { 0x418984,   3, 0x04, 0x77777777 },
547         {}
548 };
549
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552         { 0x418c04,   1, 0x04, 0x00000000 },
553         { 0x418c88,   1, 0x04, 0x00000000 },
554         {}
555 };
556
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559         { 0x418d00,   1, 0x04, 0x00000000 },
560         { 0x418f08,   1, 0x04, 0x00000000 },
561         { 0x418e00,   1, 0x04, 0x00000050 },
562         { 0x418e08,   1, 0x04, 0x00000000 },
563         {}
564 };
565
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568         { 0x41900c,   1, 0x04, 0x00000000 },
569         { 0x419018,   1, 0x04, 0x00000000 },
570         {}
571 };
572
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575         { 0x419d08,   2, 0x04, 0x00000000 },
576         { 0x419d10,   1, 0x04, 0x00000014 },
577         {}
578 };
579
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582         { 0x419ab0,   1, 0x04, 0x00000000 },
583         { 0x419ab8,   1, 0x04, 0x000000e7 },
584         { 0x419abc,   2, 0x04, 0x00000000 },
585         {}
586 };
587
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590         { 0x41980c,   3, 0x04, 0x00000000 },
591         { 0x419844,   1, 0x04, 0x00000000 },
592         { 0x41984c,   1, 0x04, 0x00005bc5 },
593         { 0x419850,   4, 0x04, 0x00000000 },
594         {}
595 };
596
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599         { 0x419c98,   1, 0x04, 0x00000000 },
600         { 0x419ca8,   1, 0x04, 0x80000000 },
601         { 0x419cb4,   1, 0x04, 0x00000000 },
602         { 0x419cb8,   1, 0x04, 0x00008bf4 },
603         { 0x419cbc,   1, 0x04, 0x28137606 },
604         { 0x419cc0,   2, 0x04, 0x00000000 },
605         {}
606 };
607
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610         { 0x419bd4,   1, 0x04, 0x00800000 },
611         { 0x419bdc,   1, 0x04, 0x00000000 },
612         {}
613 };
614
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617         { 0x419d2c,   1, 0x04, 0x00000000 },
618         {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623         { 0x419c0c,   1, 0x04, 0x00000000 },
624         {}
625 };
626
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629         { 0x419e00,   1, 0x04, 0x00000000 },
630         { 0x419ea0,   1, 0x04, 0x00000000 },
631         { 0x419ea4,   1, 0x04, 0x00000100 },
632         { 0x419ea8,   1, 0x04, 0x00001100 },
633         { 0x419eac,   1, 0x04, 0x11100702 },
634         { 0x419eb0,   1, 0x04, 0x00000003 },
635         { 0x419eb4,   4, 0x04, 0x00000000 },
636         { 0x419ec8,   1, 0x04, 0x06060618 },
637         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
638         { 0x419ed4,   1, 0x04, 0x011104f1 },
639         { 0x419edc,   1, 0x04, 0x00000000 },
640         { 0x419f00,   1, 0x04, 0x00000000 },
641         { 0x419f2c,   1, 0x04, 0x00000000 },
642         {}
643 };
644
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647         { 0x40880c,   1, 0x04, 0x00000000 },
648         { 0x408910,   9, 0x04, 0x00000000 },
649         { 0x408950,   1, 0x04, 0x00000000 },
650         { 0x408954,   1, 0x04, 0x0000ffff },
651         { 0x408984,   1, 0x04, 0x00000000 },
652         { 0x408988,   1, 0x04, 0x08040201 },
653         { 0x40898c,   1, 0x04, 0x80402010 },
654         {}
655 };
656
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659         { 0x4040f0,   1, 0x04, 0x00000000 },
660         {}
661 };
662
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665         { 0x419880,   1, 0x04, 0x00000002 },
666         {}
667 };
668
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671         { gf100_gr_init_main_0 },
672         { gf100_gr_init_fe_0 },
673         { gf100_gr_init_pri_0 },
674         { gf100_gr_init_rstr2d_0 },
675         { gf100_gr_init_pd_0 },
676         { gf100_gr_init_ds_0 },
677         { gf100_gr_init_scc_0 },
678         { gf100_gr_init_prop_0 },
679         { gf100_gr_init_gpc_unk_0 },
680         { gf100_gr_init_setup_0 },
681         { gf100_gr_init_crstr_0 },
682         { gf100_gr_init_setup_1 },
683         { gf100_gr_init_zcull_0 },
684         { gf100_gr_init_gpm_0 },
685         { gf100_gr_init_gpc_unk_1 },
686         { gf100_gr_init_gcc_0 },
687         { gf100_gr_init_tpccs_0 },
688         { gf100_gr_init_tex_0 },
689         { gf100_gr_init_pe_0 },
690         { gf100_gr_init_l1c_0 },
691         { gf100_gr_init_wwdx_0 },
692         { gf100_gr_init_tpccs_1 },
693         { gf100_gr_init_mpc_0 },
694         { gf100_gr_init_sm_0 },
695         { gf100_gr_init_be_0 },
696         { gf100_gr_init_fe_1 },
697         { gf100_gr_init_pe_1 },
698         {}
699 };
700
701 /*******************************************************************************
702  * PGRAPH engine/subdev functions
703  ******************************************************************************/
704
705 int
706 gf100_gr_rops(struct gf100_gr *gr)
707 {
708         struct nvkm_device *device = gr->base.engine.subdev.device;
709         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
710 }
711
712 void
713 gf100_gr_zbc_init(struct gf100_gr *gr)
714 {
715         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
716                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
717         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
718                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
719         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
720                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
721         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
722                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
723         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
724         int index;
725
726         if (!gr->zbc_color[0].format) {
727                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
728                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
729                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
730                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
731                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
732                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
733         }
734
735         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
736                 gf100_gr_zbc_clear_color(gr, index);
737         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
738                 gf100_gr_zbc_clear_depth(gr, index);
739 }
740
741 /**
742  * Wait until GR goes idle. GR is considered idle if it is disabled by the
743  * MC (0x200) register, or GR is not busy and a context switch is not in
744  * progress.
745  */
746 int
747 gf100_gr_wait_idle(struct gf100_gr *gr)
748 {
749         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
750         struct nvkm_device *device = subdev->device;
751         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
752         bool gr_enabled, ctxsw_active, gr_busy;
753
754         do {
755                 /*
756                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
757                  * up-to-date
758                  */
759                 nvkm_rd32(device, 0x400700);
760
761                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
762                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
763                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
764
765                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
766                         return 0;
767         } while (time_before(jiffies, end_jiffies));
768
769         nvkm_error(subdev,
770                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
771                    gr_enabled, ctxsw_active, gr_busy);
772         return -EAGAIN;
773 }
774
775 void
776 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
777 {
778         struct nvkm_device *device = gr->base.engine.subdev.device;
779         const struct gf100_gr_pack *pack;
780         const struct gf100_gr_init *init;
781
782         pack_for_each_init(init, pack, p) {
783                 u32 next = init->addr + init->count * init->pitch;
784                 u32 addr = init->addr;
785                 while (addr < next) {
786                         nvkm_wr32(device, addr, init->data);
787                         addr += init->pitch;
788                 }
789         }
790 }
791
792 void
793 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
794 {
795         struct nvkm_device *device = gr->base.engine.subdev.device;
796         const struct gf100_gr_pack *pack;
797         const struct gf100_gr_init *init;
798         u32 data = 0;
799
800         nvkm_wr32(device, 0x400208, 0x80000000);
801
802         pack_for_each_init(init, pack, p) {
803                 u32 next = init->addr + init->count * init->pitch;
804                 u32 addr = init->addr;
805
806                 if ((pack == p && init == p->init) || data != init->data) {
807                         nvkm_wr32(device, 0x400204, init->data);
808                         data = init->data;
809                 }
810
811                 while (addr < next) {
812                         nvkm_wr32(device, 0x400200, addr);
813                         /**
814                          * Wait for GR to go idle after submitting a
815                          * GO_IDLE bundle
816                          */
817                         if ((addr & 0xffff) == 0xe100)
818                                 gf100_gr_wait_idle(gr);
819                         nvkm_msec(device, 2000,
820                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
821                                         break;
822                         );
823                         addr += init->pitch;
824                 }
825         }
826
827         nvkm_wr32(device, 0x400208, 0x00000000);
828 }
829
830 void
831 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
832 {
833         struct nvkm_device *device = gr->base.engine.subdev.device;
834         const struct gf100_gr_pack *pack;
835         const struct gf100_gr_init *init;
836         u32 data = 0;
837
838         pack_for_each_init(init, pack, p) {
839                 u32 ctrl = 0x80000000 | pack->type;
840                 u32 next = init->addr + init->count * init->pitch;
841                 u32 addr = init->addr;
842
843                 if ((pack == p && init == p->init) || data != init->data) {
844                         nvkm_wr32(device, 0x40448c, init->data);
845                         data = init->data;
846                 }
847
848                 while (addr < next) {
849                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
850                         addr += init->pitch;
851                 }
852         }
853 }
854
855 u64
856 gf100_gr_units(struct nvkm_gr *base)
857 {
858         struct gf100_gr *gr = gf100_gr(base);
859         u64 cfg;
860
861         cfg  = (u32)gr->gpc_nr;
862         cfg |= (u32)gr->tpc_total << 8;
863         cfg |= (u64)gr->rop_nr << 32;
864
865         return cfg;
866 }
867
868 static const struct nvkm_bitfield gf100_dispatch_error[] = {
869         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
870         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
871         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
872         {}
873 };
874
875 static const struct nvkm_bitfield gf100_m2mf_error[] = {
876         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
877         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
878         {}
879 };
880
881 static const struct nvkm_bitfield gf100_unk6_error[] = {
882         { 0x00000001, "TEMP_TOO_SMALL" },
883         {}
884 };
885
886 static const struct nvkm_bitfield gf100_ccache_error[] = {
887         { 0x00000001, "INTR" },
888         { 0x00000002, "LDCONST_OOB" },
889         {}
890 };
891
892 static const struct nvkm_bitfield gf100_macro_error[] = {
893         { 0x00000001, "TOO_FEW_PARAMS" },
894         { 0x00000002, "TOO_MANY_PARAMS" },
895         { 0x00000004, "ILLEGAL_OPCODE" },
896         { 0x00000008, "DOUBLE_BRANCH" },
897         { 0x00000010, "WATCHDOG" },
898         {}
899 };
900
901 static const struct nvkm_bitfield gk104_sked_error[] = {
902         { 0x00000040, "CTA_RESUME" },
903         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
904         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
905         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
906         { 0x00000800, "WARP_CSTACK_SIZE" },
907         { 0x00001000, "TOTAL_TEMP_SIZE" },
908         { 0x00002000, "REGISTER_COUNT" },
909         { 0x00040000, "TOTAL_THREADS" },
910         { 0x00100000, "PROGRAM_OFFSET" },
911         { 0x00200000, "SHARED_MEMORY_SIZE" },
912         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
913         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
914         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
915         { 0x04000000, "TOTAL_REGISTER_COUNT" },
916         {}
917 };
918
919 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
920         { 0x00000002, "RT_PITCH_OVERRUN" },
921         { 0x00000010, "RT_WIDTH_OVERRUN" },
922         { 0x00000020, "RT_HEIGHT_OVERRUN" },
923         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
924         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
925         { 0x00000400, "RT_LINEAR_MISMATCH" },
926         {}
927 };
928
929 static void
930 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
931 {
932         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
933         struct nvkm_device *device = subdev->device;
934         char error[128];
935         u32 trap[4];
936
937         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
938         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
939         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
940         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
941
942         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
943
944         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
945                            "format = %x, storage type = %x\n",
946                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
947                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
948         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
949 }
950
951 static const struct nvkm_enum gf100_mp_warp_error[] = {
952         { 0x01, "STACK_ERROR" },
953         { 0x02, "API_STACK_ERROR" },
954         { 0x03, "RET_EMPTY_STACK_ERROR" },
955         { 0x04, "PC_WRAP" },
956         { 0x05, "MISALIGNED_PC" },
957         { 0x06, "PC_OVERFLOW" },
958         { 0x07, "MISALIGNED_IMMC_ADDR" },
959         { 0x08, "MISALIGNED_REG" },
960         { 0x09, "ILLEGAL_INSTR_ENCODING" },
961         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
962         { 0x0b, "ILLEGAL_INSTR_PARAM" },
963         { 0x0c, "INVALID_CONST_ADDR" },
964         { 0x0d, "OOR_REG" },
965         { 0x0e, "OOR_ADDR" },
966         { 0x0f, "MISALIGNED_ADDR" },
967         { 0x10, "INVALID_ADDR_SPACE" },
968         { 0x11, "ILLEGAL_INSTR_PARAM2" },
969         { 0x12, "INVALID_CONST_ADDR_LDC" },
970         { 0x13, "GEOMETRY_SM_ERROR" },
971         { 0x14, "DIVERGENT" },
972         { 0x15, "WARP_EXIT" },
973         {}
974 };
975
976 static const struct nvkm_bitfield gf100_mp_global_error[] = {
977         { 0x00000001, "SM_TO_SM_FAULT" },
978         { 0x00000002, "L1_ERROR" },
979         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
980         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
981         { 0x00000010, "BPT_INT" },
982         { 0x00000020, "BPT_PAUSE" },
983         { 0x00000040, "SINGLE_STEP_COMPLETE" },
984         { 0x20000000, "ECC_SEC_ERROR" },
985         { 0x40000000, "ECC_DED_ERROR" },
986         { 0x80000000, "TIMEOUT" },
987         {}
988 };
989
990 static void
991 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
992 {
993         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
994         struct nvkm_device *device = subdev->device;
995         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
996         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
997         const struct nvkm_enum *warp;
998         char glob[128];
999
1000         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1001         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1002
1003         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1004                            "global %08x [%s] warp %04x [%s]\n",
1005                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1006
1007         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1008         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1009 }
1010
1011 static void
1012 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1013 {
1014         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1015         struct nvkm_device *device = subdev->device;
1016         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1017
1018         if (stat & 0x00000001) {
1019                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1020                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1021                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1022                 stat &= ~0x00000001;
1023         }
1024
1025         if (stat & 0x00000002) {
1026                 gf100_gr_trap_mp(gr, gpc, tpc);
1027                 stat &= ~0x00000002;
1028         }
1029
1030         if (stat & 0x00000004) {
1031                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1032                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1033                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1034                 stat &= ~0x00000004;
1035         }
1036
1037         if (stat & 0x00000008) {
1038                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1039                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1040                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1041                 stat &= ~0x00000008;
1042         }
1043
1044         if (stat) {
1045                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1046         }
1047 }
1048
1049 static void
1050 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1051 {
1052         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1053         struct nvkm_device *device = subdev->device;
1054         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1055         int tpc;
1056
1057         if (stat & 0x00000001) {
1058                 gf100_gr_trap_gpc_rop(gr, gpc);
1059                 stat &= ~0x00000001;
1060         }
1061
1062         if (stat & 0x00000002) {
1063                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1064                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1065                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1066                 stat &= ~0x00000002;
1067         }
1068
1069         if (stat & 0x00000004) {
1070                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1071                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1072                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1073                 stat &= ~0x00000004;
1074         }
1075
1076         if (stat & 0x00000008) {
1077                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1078                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1079                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1080                 stat &= ~0x00000009;
1081         }
1082
1083         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1084                 u32 mask = 0x00010000 << tpc;
1085                 if (stat & mask) {
1086                         gf100_gr_trap_tpc(gr, gpc, tpc);
1087                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1088                         stat &= ~mask;
1089                 }
1090         }
1091
1092         if (stat) {
1093                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1094         }
1095 }
1096
1097 static void
1098 gf100_gr_trap_intr(struct gf100_gr *gr)
1099 {
1100         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1101         struct nvkm_device *device = subdev->device;
1102         char error[128];
1103         u32 trap = nvkm_rd32(device, 0x400108);
1104         int rop, gpc;
1105
1106         if (trap & 0x00000001) {
1107                 u32 stat = nvkm_rd32(device, 0x404000);
1108
1109                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1110                                stat & 0x3fffffff);
1111                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1112                 nvkm_wr32(device, 0x404000, 0xc0000000);
1113                 nvkm_wr32(device, 0x400108, 0x00000001);
1114                 trap &= ~0x00000001;
1115         }
1116
1117         if (trap & 0x00000002) {
1118                 u32 stat = nvkm_rd32(device, 0x404600);
1119
1120                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1121                                stat & 0x3fffffff);
1122                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1123
1124                 nvkm_wr32(device, 0x404600, 0xc0000000);
1125                 nvkm_wr32(device, 0x400108, 0x00000002);
1126                 trap &= ~0x00000002;
1127         }
1128
1129         if (trap & 0x00000008) {
1130                 u32 stat = nvkm_rd32(device, 0x408030);
1131
1132                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1133                                stat & 0x3fffffff);
1134                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1135                 nvkm_wr32(device, 0x408030, 0xc0000000);
1136                 nvkm_wr32(device, 0x400108, 0x00000008);
1137                 trap &= ~0x00000008;
1138         }
1139
1140         if (trap & 0x00000010) {
1141                 u32 stat = nvkm_rd32(device, 0x405840);
1142                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1143                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1144                 nvkm_wr32(device, 0x405840, 0xc0000000);
1145                 nvkm_wr32(device, 0x400108, 0x00000010);
1146                 trap &= ~0x00000010;
1147         }
1148
1149         if (trap & 0x00000040) {
1150                 u32 stat = nvkm_rd32(device, 0x40601c);
1151
1152                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1153                                stat & 0x3fffffff);
1154                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1155
1156                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1157                 nvkm_wr32(device, 0x400108, 0x00000040);
1158                 trap &= ~0x00000040;
1159         }
1160
1161         if (trap & 0x00000080) {
1162                 u32 stat = nvkm_rd32(device, 0x404490);
1163                 u32 pc = nvkm_rd32(device, 0x404494);
1164                 u32 op = nvkm_rd32(device, 0x40449c);
1165
1166                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1167                                stat & 0x1fffffff);
1168                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1169                            stat, error, pc & 0x7ff,
1170                            (pc & 0x10000000) ? "" : " (invalid)",
1171                            op);
1172
1173                 nvkm_wr32(device, 0x404490, 0xc0000000);
1174                 nvkm_wr32(device, 0x400108, 0x00000080);
1175                 trap &= ~0x00000080;
1176         }
1177
1178         if (trap & 0x00000100) {
1179                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1180
1181                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1182                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1183
1184                 if (stat)
1185                         nvkm_wr32(device, 0x407020, 0x40000000);
1186                 nvkm_wr32(device, 0x400108, 0x00000100);
1187                 trap &= ~0x00000100;
1188         }
1189
1190         if (trap & 0x01000000) {
1191                 u32 stat = nvkm_rd32(device, 0x400118);
1192                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1193                         u32 mask = 0x00000001 << gpc;
1194                         if (stat & mask) {
1195                                 gf100_gr_trap_gpc(gr, gpc);
1196                                 nvkm_wr32(device, 0x400118, mask);
1197                                 stat &= ~mask;
1198                         }
1199                 }
1200                 nvkm_wr32(device, 0x400108, 0x01000000);
1201                 trap &= ~0x01000000;
1202         }
1203
1204         if (trap & 0x02000000) {
1205                 for (rop = 0; rop < gr->rop_nr; rop++) {
1206                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1207                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1208                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1209                                  rop, statz, statc);
1210                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1211                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1212                 }
1213                 nvkm_wr32(device, 0x400108, 0x02000000);
1214                 trap &= ~0x02000000;
1215         }
1216
1217         if (trap) {
1218                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1219                 nvkm_wr32(device, 0x400108, trap);
1220         }
1221 }
1222
1223 static void
1224 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1225 {
1226         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1227         struct nvkm_device *device = subdev->device;
1228         nvkm_error(subdev, "%06x - done %08x\n", base,
1229                    nvkm_rd32(device, base + 0x400));
1230         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1231                    nvkm_rd32(device, base + 0x800),
1232                    nvkm_rd32(device, base + 0x804),
1233                    nvkm_rd32(device, base + 0x808),
1234                    nvkm_rd32(device, base + 0x80c));
1235         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1236                    nvkm_rd32(device, base + 0x810),
1237                    nvkm_rd32(device, base + 0x814),
1238                    nvkm_rd32(device, base + 0x818),
1239                    nvkm_rd32(device, base + 0x81c));
1240 }
1241
1242 void
1243 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1244 {
1245         struct nvkm_device *device = gr->base.engine.subdev.device;
1246         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1247         u32 gpc;
1248
1249         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1250         for (gpc = 0; gpc < gpcnr; gpc++)
1251                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1252 }
1253
1254 static void
1255 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1256 {
1257         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1258         struct nvkm_device *device = subdev->device;
1259         u32 stat = nvkm_rd32(device, 0x409c18);
1260
1261         if (stat & 0x00000001) {
1262                 u32 code = nvkm_rd32(device, 0x409814);
1263                 if (code == E_BAD_FWMTHD) {
1264                         u32 class = nvkm_rd32(device, 0x409808);
1265                         u32  addr = nvkm_rd32(device, 0x40980c);
1266                         u32  subc = (addr & 0x00070000) >> 16;
1267                         u32  mthd = (addr & 0x00003ffc);
1268                         u32  data = nvkm_rd32(device, 0x409810);
1269
1270                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1271                                            "mthd %04x data %08x\n",
1272                                    subc, class, mthd, data);
1273
1274                         nvkm_wr32(device, 0x409c20, 0x00000001);
1275                         stat &= ~0x00000001;
1276                 } else {
1277                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1278                 }
1279         }
1280
1281         if (stat & 0x00080000) {
1282                 nvkm_error(subdev, "FECS watchdog timeout\n");
1283                 gf100_gr_ctxctl_debug(gr);
1284                 nvkm_wr32(device, 0x409c20, 0x00080000);
1285                 stat &= ~0x00080000;
1286         }
1287
1288         if (stat) {
1289                 nvkm_error(subdev, "FECS %08x\n", stat);
1290                 gf100_gr_ctxctl_debug(gr);
1291                 nvkm_wr32(device, 0x409c20, stat);
1292         }
1293 }
1294
1295 static void
1296 gf100_gr_intr(struct nvkm_gr *base)
1297 {
1298         struct gf100_gr *gr = gf100_gr(base);
1299         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1300         struct nvkm_device *device = subdev->device;
1301         struct nvkm_fifo_chan *chan;
1302         unsigned long flags;
1303         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1304         u32 stat = nvkm_rd32(device, 0x400100);
1305         u32 addr = nvkm_rd32(device, 0x400704);
1306         u32 mthd = (addr & 0x00003ffc);
1307         u32 subc = (addr & 0x00070000) >> 16;
1308         u32 data = nvkm_rd32(device, 0x400708);
1309         u32 code = nvkm_rd32(device, 0x400110);
1310         u32 class;
1311         const char *name = "unknown";
1312         int chid = -1;
1313
1314         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1315         if (chan) {
1316                 name = chan->object.client->name;
1317                 chid = chan->chid;
1318         }
1319
1320         if (device->card_type < NV_E0 || subc < 4)
1321                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1322         else
1323                 class = 0x0000;
1324
1325         if (stat & 0x00000001) {
1326                 /*
1327                  * notifier interrupt, only needed for cyclestats
1328                  * can be safely ignored
1329                  */
1330                 nvkm_wr32(device, 0x400100, 0x00000001);
1331                 stat &= ~0x00000001;
1332         }
1333
1334         if (stat & 0x00000010) {
1335                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1336                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1337                                    "subc %d class %04x mthd %04x data %08x\n",
1338                                    chid, inst << 12, name, subc,
1339                                    class, mthd, data);
1340                 }
1341                 nvkm_wr32(device, 0x400100, 0x00000010);
1342                 stat &= ~0x00000010;
1343         }
1344
1345         if (stat & 0x00000020) {
1346                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1347                            "subc %d class %04x mthd %04x data %08x\n",
1348                            chid, inst << 12, name, subc, class, mthd, data);
1349                 nvkm_wr32(device, 0x400100, 0x00000020);
1350                 stat &= ~0x00000020;
1351         }
1352
1353         if (stat & 0x00100000) {
1354                 const struct nvkm_enum *en =
1355                         nvkm_enum_find(nv50_data_error_names, code);
1356                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1357                                    "subc %d class %04x mthd %04x data %08x\n",
1358                            code, en ? en->name : "", chid, inst << 12,
1359                            name, subc, class, mthd, data);
1360                 nvkm_wr32(device, 0x400100, 0x00100000);
1361                 stat &= ~0x00100000;
1362         }
1363
1364         if (stat & 0x00200000) {
1365                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1366                            chid, inst << 12, name);
1367                 gf100_gr_trap_intr(gr);
1368                 nvkm_wr32(device, 0x400100, 0x00200000);
1369                 stat &= ~0x00200000;
1370         }
1371
1372         if (stat & 0x00080000) {
1373                 gf100_gr_ctxctl_isr(gr);
1374                 nvkm_wr32(device, 0x400100, 0x00080000);
1375                 stat &= ~0x00080000;
1376         }
1377
1378         if (stat) {
1379                 nvkm_error(subdev, "intr %08x\n", stat);
1380                 nvkm_wr32(device, 0x400100, stat);
1381         }
1382
1383         nvkm_wr32(device, 0x400500, 0x00010001);
1384         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1385 }
1386
1387 void
1388 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
1389                  struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1390 {
1391         struct nvkm_device *device = gr->base.engine.subdev.device;
1392         int i;
1393
1394         nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000);
1395         for (i = 0; i < data->size / 4; i++)
1396                 nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]);
1397
1398         nvkm_wr32(device, fuc_base + 0x0180, 0x01000000);
1399         for (i = 0; i < code->size / 4; i++) {
1400                 if ((i & 0x3f) == 0)
1401                         nvkm_wr32(device, fuc_base + 0x0188, i >> 6);
1402                 nvkm_wr32(device, fuc_base + 0x0184, code->data[i]);
1403         }
1404
1405         /* code must be padded to 0x40 words */
1406         for (; i & 0x3f; i++)
1407                 nvkm_wr32(device, fuc_base + 0x0184, 0);
1408 }
1409
1410 static void
1411 gf100_gr_init_csdata(struct gf100_gr *gr,
1412                      const struct gf100_gr_pack *pack,
1413                      u32 falcon, u32 starstar, u32 base)
1414 {
1415         struct nvkm_device *device = gr->base.engine.subdev.device;
1416         const struct gf100_gr_pack *iter;
1417         const struct gf100_gr_init *init;
1418         u32 addr = ~0, prev = ~0, xfer = 0;
1419         u32 star, temp;
1420
1421         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1422         star = nvkm_rd32(device, falcon + 0x01c4);
1423         temp = nvkm_rd32(device, falcon + 0x01c4);
1424         if (temp > star)
1425                 star = temp;
1426         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1427
1428         pack_for_each_init(init, iter, pack) {
1429                 u32 head = init->addr - base;
1430                 u32 tail = head + init->count * init->pitch;
1431                 while (head < tail) {
1432                         if (head != prev + 4 || xfer >= 32) {
1433                                 if (xfer) {
1434                                         u32 data = ((--xfer << 26) | addr);
1435                                         nvkm_wr32(device, falcon + 0x01c4, data);
1436                                         star += 4;
1437                                 }
1438                                 addr = head;
1439                                 xfer = 0;
1440                         }
1441                         prev = head;
1442                         xfer = xfer + 1;
1443                         head = head + init->pitch;
1444                 }
1445         }
1446
1447         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1448         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1449         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1450 }
1451
1452 int
1453 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1454 {
1455         const struct gf100_grctx_func *grctx = gr->func->grctx;
1456         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1457         struct nvkm_device *device = subdev->device;
1458         struct nvkm_secboot *sb = device->secboot;
1459         int i;
1460
1461         if (gr->firmware) {
1462                 /* load fuc microcode */
1463                 nvkm_mc_unk260(device->mc, 0);
1464
1465                 /* securely-managed falcons must be reset using secure boot */
1466                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1467                         nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS);
1468                 else
1469                         gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c,
1470                                          &gr->fuc409d);
1471                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1472                         nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS);
1473                 else
1474                         gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac,
1475                                          &gr->fuc41ad);
1476
1477                 nvkm_mc_unk260(device->mc, 1);
1478
1479                 /* start both of them running */
1480                 nvkm_wr32(device, 0x409840, 0xffffffff);
1481                 nvkm_wr32(device, 0x41a10c, 0x00000000);
1482                 nvkm_wr32(device, 0x40910c, 0x00000000);
1483
1484                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1485                         nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS);
1486                 else
1487                         nvkm_wr32(device, 0x41a100, 0x00000002);
1488                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1489                         nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS);
1490                 else
1491                         nvkm_wr32(device, 0x409100, 0x00000002);
1492                 if (nvkm_msec(device, 2000,
1493                         if (nvkm_rd32(device, 0x409800) & 0x00000001)
1494                                 break;
1495                 ) < 0)
1496                         return -EBUSY;
1497
1498                 nvkm_wr32(device, 0x409840, 0xffffffff);
1499                 nvkm_wr32(device, 0x409500, 0x7fffffff);
1500                 nvkm_wr32(device, 0x409504, 0x00000021);
1501
1502                 nvkm_wr32(device, 0x409840, 0xffffffff);
1503                 nvkm_wr32(device, 0x409500, 0x00000000);
1504                 nvkm_wr32(device, 0x409504, 0x00000010);
1505                 if (nvkm_msec(device, 2000,
1506                         if ((gr->size = nvkm_rd32(device, 0x409800)))
1507                                 break;
1508                 ) < 0)
1509                         return -EBUSY;
1510
1511                 nvkm_wr32(device, 0x409840, 0xffffffff);
1512                 nvkm_wr32(device, 0x409500, 0x00000000);
1513                 nvkm_wr32(device, 0x409504, 0x00000016);
1514                 if (nvkm_msec(device, 2000,
1515                         if (nvkm_rd32(device, 0x409800))
1516                                 break;
1517                 ) < 0)
1518                         return -EBUSY;
1519
1520                 nvkm_wr32(device, 0x409840, 0xffffffff);
1521                 nvkm_wr32(device, 0x409500, 0x00000000);
1522                 nvkm_wr32(device, 0x409504, 0x00000025);
1523                 if (nvkm_msec(device, 2000,
1524                         if (nvkm_rd32(device, 0x409800))
1525                                 break;
1526                 ) < 0)
1527                         return -EBUSY;
1528
1529                 if (device->chipset >= 0xe0) {
1530                         nvkm_wr32(device, 0x409800, 0x00000000);
1531                         nvkm_wr32(device, 0x409500, 0x00000001);
1532                         nvkm_wr32(device, 0x409504, 0x00000030);
1533                         if (nvkm_msec(device, 2000,
1534                                 if (nvkm_rd32(device, 0x409800))
1535                                         break;
1536                         ) < 0)
1537                                 return -EBUSY;
1538
1539                         nvkm_wr32(device, 0x409810, 0xb00095c8);
1540                         nvkm_wr32(device, 0x409800, 0x00000000);
1541                         nvkm_wr32(device, 0x409500, 0x00000001);
1542                         nvkm_wr32(device, 0x409504, 0x00000031);
1543                         if (nvkm_msec(device, 2000,
1544                                 if (nvkm_rd32(device, 0x409800))
1545                                         break;
1546                         ) < 0)
1547                                 return -EBUSY;
1548
1549                         nvkm_wr32(device, 0x409810, 0x00080420);
1550                         nvkm_wr32(device, 0x409800, 0x00000000);
1551                         nvkm_wr32(device, 0x409500, 0x00000001);
1552                         nvkm_wr32(device, 0x409504, 0x00000032);
1553                         if (nvkm_msec(device, 2000,
1554                                 if (nvkm_rd32(device, 0x409800))
1555                                         break;
1556                         ) < 0)
1557                                 return -EBUSY;
1558
1559                         nvkm_wr32(device, 0x409614, 0x00000070);
1560                         nvkm_wr32(device, 0x409614, 0x00000770);
1561                         nvkm_wr32(device, 0x40802c, 0x00000001);
1562                 }
1563
1564                 if (gr->data == NULL) {
1565                         int ret = gf100_grctx_generate(gr);
1566                         if (ret) {
1567                                 nvkm_error(subdev, "failed to construct context\n");
1568                                 return ret;
1569                         }
1570                 }
1571
1572                 return 0;
1573         } else
1574         if (!gr->func->fecs.ucode) {
1575                 return -ENOSYS;
1576         }
1577
1578         /* load HUB microcode */
1579         nvkm_mc_unk260(device->mc, 0);
1580         nvkm_wr32(device, 0x4091c0, 0x01000000);
1581         for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++)
1582                 nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]);
1583
1584         nvkm_wr32(device, 0x409180, 0x01000000);
1585         for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) {
1586                 if ((i & 0x3f) == 0)
1587                         nvkm_wr32(device, 0x409188, i >> 6);
1588                 nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]);
1589         }
1590
1591         /* load GPC microcode */
1592         nvkm_wr32(device, 0x41a1c0, 0x01000000);
1593         for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++)
1594                 nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]);
1595
1596         nvkm_wr32(device, 0x41a180, 0x01000000);
1597         for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) {
1598                 if ((i & 0x3f) == 0)
1599                         nvkm_wr32(device, 0x41a188, i >> 6);
1600                 nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]);
1601         }
1602         nvkm_mc_unk260(device->mc, 1);
1603
1604         /* load register lists */
1605         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1606         gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1607         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1608         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1609
1610         /* start HUB ucode running, it'll init the GPCs */
1611         nvkm_wr32(device, 0x40910c, 0x00000000);
1612         nvkm_wr32(device, 0x409100, 0x00000002);
1613         if (nvkm_msec(device, 2000,
1614                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1615                         break;
1616         ) < 0) {
1617                 gf100_gr_ctxctl_debug(gr);
1618                 return -EBUSY;
1619         }
1620
1621         gr->size = nvkm_rd32(device, 0x409804);
1622         if (gr->data == NULL) {
1623                 int ret = gf100_grctx_generate(gr);
1624                 if (ret) {
1625                         nvkm_error(subdev, "failed to construct context\n");
1626                         return ret;
1627                 }
1628         }
1629
1630         return 0;
1631 }
1632
1633 static int
1634 gf100_gr_oneinit(struct nvkm_gr *base)
1635 {
1636         struct gf100_gr *gr = gf100_gr(base);
1637         struct nvkm_device *device = gr->base.engine.subdev.device;
1638         int i, j;
1639
1640         nvkm_pmu_pgob(device->pmu, false);
1641
1642         gr->rop_nr = gr->func->rops(gr);
1643         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1644         for (i = 0; i < gr->gpc_nr; i++) {
1645                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1646                 gr->tpc_total += gr->tpc_nr[i];
1647                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1648                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1649                         u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1650                         if (mask)
1651                                 gr->ppc_mask[i] |= (1 << j);
1652                         gr->ppc_tpc_nr[i][j] = hweight8(mask);
1653                 }
1654         }
1655
1656         /*XXX: these need figuring out... though it might not even matter */
1657         switch (device->chipset) {
1658         case 0xc0:
1659                 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1660                         gr->screen_tile_row_offset = 0x07;
1661                 } else
1662                 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1663                         gr->screen_tile_row_offset = 0x05;
1664                 } else
1665                 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1666                         gr->screen_tile_row_offset = 0x06;
1667                 }
1668                 break;
1669         case 0xc3: /* 450, 4/0/0/0, 2 */
1670                 gr->screen_tile_row_offset = 0x03;
1671                 break;
1672         case 0xc4: /* 460, 3/4/0/0, 4 */
1673                 gr->screen_tile_row_offset = 0x01;
1674                 break;
1675         case 0xc1: /* 2/0/0/0, 1 */
1676                 gr->screen_tile_row_offset = 0x01;
1677                 break;
1678         case 0xc8: /* 4/4/3/4, 5 */
1679                 gr->screen_tile_row_offset = 0x06;
1680                 break;
1681         case 0xce: /* 4/4/0/0, 4 */
1682                 gr->screen_tile_row_offset = 0x03;
1683                 break;
1684         case 0xcf: /* 4/0/0/0, 3 */
1685                 gr->screen_tile_row_offset = 0x03;
1686                 break;
1687         case 0xd7:
1688         case 0xd9: /* 1/0/0/0, 1 */
1689         case 0xea: /* gk20a */
1690         case 0x12b: /* gm20b */
1691                 gr->screen_tile_row_offset = 0x01;
1692                 break;
1693         }
1694
1695         return 0;
1696 }
1697
1698 int
1699 gf100_gr_init_(struct nvkm_gr *base)
1700 {
1701         struct gf100_gr *gr = gf100_gr(base);
1702         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1703         return gr->func->init(gr);
1704 }
1705
1706 void
1707 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1708 {
1709         kfree(fuc->data);
1710         fuc->data = NULL;
1711 }
1712
1713 static void
1714 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1715 {
1716         vfree(pack);
1717 }
1718
1719 void *
1720 gf100_gr_dtor(struct nvkm_gr *base)
1721 {
1722         struct gf100_gr *gr = gf100_gr(base);
1723
1724         if (gr->func->dtor)
1725                 gr->func->dtor(gr);
1726         kfree(gr->data);
1727
1728         gf100_gr_dtor_fw(&gr->fuc409c);
1729         gf100_gr_dtor_fw(&gr->fuc409d);
1730         gf100_gr_dtor_fw(&gr->fuc41ac);
1731         gf100_gr_dtor_fw(&gr->fuc41ad);
1732
1733         gf100_gr_dtor_init(gr->fuc_bundle);
1734         gf100_gr_dtor_init(gr->fuc_method);
1735         gf100_gr_dtor_init(gr->fuc_sw_ctx);
1736         gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1737
1738         return gr;
1739 }
1740
1741 static const struct nvkm_gr_func
1742 gf100_gr_ = {
1743         .dtor = gf100_gr_dtor,
1744         .oneinit = gf100_gr_oneinit,
1745         .init = gf100_gr_init_,
1746         .intr = gf100_gr_intr,
1747         .units = gf100_gr_units,
1748         .chan_new = gf100_gr_chan_new,
1749         .object_get = gf100_gr_object_get,
1750 };
1751
1752 int
1753 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1754                  struct gf100_gr_fuc *fuc)
1755 {
1756         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1757         struct nvkm_device *device = subdev->device;
1758         const struct firmware *fw;
1759         int ret;
1760
1761         ret = nvkm_firmware_get(device, fwname, &fw);
1762         if (ret) {
1763                 nvkm_error(subdev, "failed to load %s\n", fwname);
1764                 return ret;
1765         }
1766
1767         fuc->size = fw->size;
1768         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1769         nvkm_firmware_put(fw);
1770         return (fuc->data != NULL) ? 0 : -ENOMEM;
1771 }
1772
1773 int
1774 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1775               int index, struct gf100_gr *gr)
1776 {
1777         int ret;
1778
1779         gr->func = func;
1780         gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1781                                     func->fecs.ucode == NULL);
1782
1783         ret = nvkm_gr_ctor(&gf100_gr_, device, index,
1784                            gr->firmware || func->fecs.ucode != NULL,
1785                            &gr->base);
1786         if (ret)
1787                 return ret;
1788
1789         return 0;
1790 }
1791
1792 int
1793 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1794               int index, struct nvkm_gr **pgr)
1795 {
1796         struct gf100_gr *gr;
1797         int ret;
1798
1799         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1800                 return -ENOMEM;
1801         *pgr = &gr->base;
1802
1803         ret = gf100_gr_ctor(func, device, index, gr);
1804         if (ret)
1805                 return ret;
1806
1807         if (gr->firmware) {
1808                 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1809                     gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1810                     gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1811                     gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1812                         return -ENODEV;
1813         }
1814
1815         return 0;
1816 }
1817
1818 int
1819 gf100_gr_init(struct gf100_gr *gr)
1820 {
1821         struct nvkm_device *device = gr->base.engine.subdev.device;
1822         struct nvkm_fb *fb = device->fb;
1823         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1824         u32 data[TPC_MAX / 8] = {};
1825         u8  tpcnr[GPC_MAX];
1826         int gpc, tpc, rop;
1827         int i;
1828
1829         nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1830         nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1831         nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1832         nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1833         nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1834         nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1835         nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8);
1836         nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8);
1837
1838         gf100_gr_mmio(gr, gr->func->mmio);
1839
1840         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1841
1842         memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1843         for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1844                 do {
1845                         gpc = (gpc + 1) % gr->gpc_nr;
1846                 } while (!tpcnr[gpc]);
1847                 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1848
1849                 data[i / 8] |= tpc << ((i % 8) * 4);
1850         }
1851
1852         nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1853         nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1854         nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1855         nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1856
1857         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1858                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1859                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1860                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1861                                                          gr->tpc_total);
1862                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1863         }
1864
1865         if (device->chipset != 0xd7)
1866                 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1867         else
1868                 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1869
1870         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1871
1872         nvkm_wr32(device, 0x400500, 0x00010001);
1873
1874         nvkm_wr32(device, 0x400100, 0xffffffff);
1875         nvkm_wr32(device, 0x40013c, 0xffffffff);
1876
1877         nvkm_wr32(device, 0x409c24, 0x000f0000);
1878         nvkm_wr32(device, 0x404000, 0xc0000000);
1879         nvkm_wr32(device, 0x404600, 0xc0000000);
1880         nvkm_wr32(device, 0x408030, 0xc0000000);
1881         nvkm_wr32(device, 0x40601c, 0xc0000000);
1882         nvkm_wr32(device, 0x404490, 0xc0000000);
1883         nvkm_wr32(device, 0x406018, 0xc0000000);
1884         nvkm_wr32(device, 0x405840, 0xc0000000);
1885         nvkm_wr32(device, 0x405844, 0x00ffffff);
1886         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1887         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1888
1889         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1890                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1891                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1892                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1893                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1894                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1895                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1896                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1897                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1898                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1899                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1900                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1901                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1902                 }
1903                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1904                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1905         }
1906
1907         for (rop = 0; rop < gr->rop_nr; rop++) {
1908                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1909                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1910                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1911                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
1912         }
1913
1914         nvkm_wr32(device, 0x400108, 0xffffffff);
1915         nvkm_wr32(device, 0x400138, 0xffffffff);
1916         nvkm_wr32(device, 0x400118, 0xffffffff);
1917         nvkm_wr32(device, 0x400130, 0xffffffff);
1918         nvkm_wr32(device, 0x40011c, 0xffffffff);
1919         nvkm_wr32(device, 0x400134, 0xffffffff);
1920
1921         nvkm_wr32(device, 0x400054, 0x34ce3464);
1922
1923         gf100_gr_zbc_init(gr);
1924
1925         return gf100_gr_init_ctxctl(gr);
1926 }
1927
1928 #include "fuc/hubgf100.fuc3.h"
1929
1930 struct gf100_gr_ucode
1931 gf100_gr_fecs_ucode = {
1932         .code.data = gf100_grhub_code,
1933         .code.size = sizeof(gf100_grhub_code),
1934         .data.data = gf100_grhub_data,
1935         .data.size = sizeof(gf100_grhub_data),
1936 };
1937
1938 #include "fuc/gpcgf100.fuc3.h"
1939
1940 struct gf100_gr_ucode
1941 gf100_gr_gpccs_ucode = {
1942         .code.data = gf100_grgpc_code,
1943         .code.size = sizeof(gf100_grgpc_code),
1944         .data.data = gf100_grgpc_data,
1945         .data.size = sizeof(gf100_grgpc_data),
1946 };
1947
1948 static const struct gf100_gr_func
1949 gf100_gr = {
1950         .init = gf100_gr_init,
1951         .mmio = gf100_gr_pack_mmio,
1952         .fecs.ucode = &gf100_gr_fecs_ucode,
1953         .gpccs.ucode = &gf100_gr_gpccs_ucode,
1954         .rops = gf100_gr_rops,
1955         .grctx = &gf100_grctx,
1956         .sclass = {
1957                 { -1, -1, FERMI_TWOD_A },
1958                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
1959                 { -1, -1, FERMI_A, &gf100_fermi },
1960                 { -1, -1, FERMI_COMPUTE_A },
1961                 {}
1962         }
1963 };
1964
1965 int
1966 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
1967 {
1968         return gf100_gr_new_(&gf100_gr, device, index, pgr);
1969 }