]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iio/accel/bmc150-accel-core.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID                0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW                0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW         0x10
68 #define BMC150_ACCEL_DEF_BW                     125
69
70 #define BMC150_ACCEL_REG_RESET                  0x14
71 #define BMC150_ACCEL_RESET_VAL                  0xB6
72
73 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
75
76 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
80
81 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
85
86 #define BMC150_ACCEL_REG_INT_EN_0               0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
90
91 #define BMC150_ACCEL_REG_INT_EN_1               0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
95
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
98
99 #define BMC150_ACCEL_REG_INT_5                  0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
101
102 #define BMC150_ACCEL_REG_INT_6                  0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
104
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
109
110 #define BMC150_ACCEL_REG_XOUT_L         0x02
111
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
113
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
116 #define BMC150_ACCEL_SLEEP_1_MS         0x06
117 #define BMC150_ACCEL_SLEEP_2_MS         0x07
118 #define BMC150_ACCEL_SLEEP_4_MS         0x08
119 #define BMC150_ACCEL_SLEEP_6_MS         0x09
120 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
126
127 #define BMC150_ACCEL_REG_TEMP                   0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
129
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
132
133 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH                32
138
139 enum bmc150_accel_axis {
140         AXIS_X,
141         AXIS_Y,
142         AXIS_Z,
143         AXIS_MAX,
144 };
145
146 enum bmc150_power_modes {
147         BMC150_ACCEL_SLEEP_MODE_NORMAL,
148         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149         BMC150_ACCEL_SLEEP_MODE_LPM,
150         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152
153 struct bmc150_scale_info {
154         int scale;
155         u8 reg_range;
156 };
157
158 struct bmc150_accel_chip_info {
159         const char *name;
160         u8 chip_id;
161         const struct iio_chan_spec *channels;
162         int num_channels;
163         const struct bmc150_scale_info scale_table[4];
164 };
165
166 struct bmc150_accel_interrupt {
167         const struct bmc150_accel_interrupt_info *info;
168         atomic_t users;
169 };
170
171 struct bmc150_accel_trigger {
172         struct bmc150_accel_data *data;
173         struct iio_trigger *indio_trig;
174         int (*setup)(struct bmc150_accel_trigger *t, bool state);
175         int intr;
176         bool enabled;
177 };
178
179 enum bmc150_accel_interrupt_id {
180         BMC150_ACCEL_INT_DATA_READY,
181         BMC150_ACCEL_INT_ANY_MOTION,
182         BMC150_ACCEL_INT_WATERMARK,
183         BMC150_ACCEL_INTERRUPTS,
184 };
185
186 enum bmc150_accel_trigger_id {
187         BMC150_ACCEL_TRIGGER_DATA_READY,
188         BMC150_ACCEL_TRIGGER_ANY_MOTION,
189         BMC150_ACCEL_TRIGGERS,
190 };
191
192 struct bmc150_accel_data {
193         struct regmap *regmap;
194         int irq;
195         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197         struct mutex mutex;
198         u8 fifo_mode, watermark;
199         s16 buffer[8];
200         u8 bw_bits;
201         u32 slope_dur;
202         u32 slope_thres;
203         u32 range;
204         int ev_enable_state;
205         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206         const struct bmc150_accel_chip_info *chip_info;
207 };
208
209 static const struct {
210         int val;
211         int val2;
212         u8 bw_bits;
213 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
214                                      {31, 260000, 0x09},
215                                      {62, 500000, 0x0A},
216                                      {125, 0, 0x0B},
217                                      {250, 0, 0x0C},
218                                      {500, 0, 0x0D},
219                                      {1000, 0, 0x0E},
220                                      {2000, 0, 0x0F} };
221
222 static const struct {
223         int bw_bits;
224         int msec;
225 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
226                                      {0x09, 32},
227                                      {0x0A, 16},
228                                      {0x0B, 8},
229                                      {0x0C, 4},
230                                      {0x0D, 2},
231                                      {0x0E, 1},
232                                      {0x0F, 1} };
233
234 static const struct {
235         int sleep_dur;
236         u8 reg_value;
237 } bmc150_accel_sleep_value_table[] = { {0, 0},
238                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
239                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
240                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
241                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
242                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
243                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
244                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
245                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
246                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
247                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
248                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
249
250 const struct regmap_config bmc150_regmap_conf = {
251         .reg_bits = 8,
252         .val_bits = 8,
253         .max_register = 0x3f,
254 };
255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
256
257 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
258                                  enum bmc150_power_modes mode,
259                                  int dur_us)
260 {
261         struct device *dev = regmap_get_device(data->regmap);
262         int i;
263         int ret;
264         u8 lpw_bits;
265         int dur_val = -1;
266
267         if (dur_us > 0) {
268                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
269                                                                          ++i) {
270                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
271                                                                         dur_us)
272                                 dur_val =
273                                 bmc150_accel_sleep_value_table[i].reg_value;
274                 }
275         } else {
276                 dur_val = 0;
277         }
278
279         if (dur_val < 0)
280                 return -EINVAL;
281
282         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
283         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
284
285         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286
287         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288         if (ret < 0) {
289                 dev_err(dev, "Error writing reg_pmu_lpw\n");
290                 return ret;
291         }
292
293         return 0;
294 }
295
296 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
297                                int val2)
298 {
299         int i;
300         int ret;
301
302         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
303                 if (bmc150_accel_samp_freq_table[i].val == val &&
304                     bmc150_accel_samp_freq_table[i].val2 == val2) {
305                         ret = regmap_write(data->regmap,
306                                 BMC150_ACCEL_REG_PMU_BW,
307                                 bmc150_accel_samp_freq_table[i].bw_bits);
308                         if (ret < 0)
309                                 return ret;
310
311                         data->bw_bits =
312                                 bmc150_accel_samp_freq_table[i].bw_bits;
313                         return 0;
314                 }
315         }
316
317         return -EINVAL;
318 }
319
320 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
321 {
322         struct device *dev = regmap_get_device(data->regmap);
323         int ret;
324
325         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326                                         data->slope_thres);
327         if (ret < 0) {
328                 dev_err(dev, "Error writing reg_int_6\n");
329                 return ret;
330         }
331
332         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
333                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334         if (ret < 0) {
335                 dev_err(dev, "Error updating reg_int_5\n");
336                 return ret;
337         }
338
339         dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
340                 data->slope_dur);
341
342         return ret;
343 }
344
345 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
346                                          bool state)
347 {
348         if (state)
349                 return bmc150_accel_update_slope(t->data);
350
351         return 0;
352 }
353
354 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
355                                int *val2)
356 {
357         int i;
358
359         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361                         *val = bmc150_accel_samp_freq_table[i].val;
362                         *val2 = bmc150_accel_samp_freq_table[i].val2;
363                         return IIO_VAL_INT_PLUS_MICRO;
364                 }
365         }
366
367         return -EINVAL;
368 }
369
370 #ifdef CONFIG_PM
371 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
372 {
373         int i;
374
375         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377                         return bmc150_accel_sample_upd_time[i].msec;
378         }
379
380         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
381 }
382
383 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
384 {
385         struct device *dev = regmap_get_device(data->regmap);
386         int ret;
387
388         if (on) {
389                 ret = pm_runtime_get_sync(dev);
390         } else {
391                 pm_runtime_mark_last_busy(dev);
392                 ret = pm_runtime_put_autosuspend(dev);
393         }
394
395         if (ret < 0) {
396                 dev_err(dev,
397                         "Failed: bmc150_accel_set_power_state for %d\n", on);
398                 if (on)
399                         pm_runtime_put_noidle(dev);
400
401                 return ret;
402         }
403
404         return 0;
405 }
406 #else
407 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
408 {
409         return 0;
410 }
411 #endif
412
413 static const struct bmc150_accel_interrupt_info {
414         u8 map_reg;
415         u8 map_bitmask;
416         u8 en_reg;
417         u8 en_bitmask;
418 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419         { /* data ready interrupt */
420                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
423                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
424         },
425         {  /* motion interrupt */
426                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
429                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
430                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
432         },
433         { /* fifo watermark interrupt */
434                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
437                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
438         },
439 };
440
441 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442                                           struct bmc150_accel_data *data)
443 {
444         int i;
445
446         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
448 }
449
450 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451                                       bool state)
452 {
453         struct device *dev = regmap_get_device(data->regmap);
454         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455         const struct bmc150_accel_interrupt_info *info = intr->info;
456         int ret;
457
458         if (state) {
459                 if (atomic_inc_return(&intr->users) > 1)
460                         return 0;
461         } else {
462                 if (atomic_dec_return(&intr->users) > 0)
463                         return 0;
464         }
465
466         /*
467          * We will expect the enable and disable to do operation in reverse
468          * order. This will happen here anyway, as our resume operation uses
469          * sync mode runtime pm calls. The suspend operation will be delayed
470          * by autosuspend delay.
471          * So the disable operation will still happen in reverse order of
472          * enable operation. When runtime pm is disabled the mode is always on,
473          * so sequence doesn't matter.
474          */
475         ret = bmc150_accel_set_power_state(data, state);
476         if (ret < 0)
477                 return ret;
478
479         /* map the interrupt to the appropriate pins */
480         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481                                  (state ? info->map_bitmask : 0));
482         if (ret < 0) {
483                 dev_err(dev, "Error updating reg_int_map\n");
484                 goto out_fix_power_state;
485         }
486
487         /* enable/disable the interrupt */
488         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489                                  (state ? info->en_bitmask : 0));
490         if (ret < 0) {
491                 dev_err(dev, "Error updating reg_int_en\n");
492                 goto out_fix_power_state;
493         }
494
495         return 0;
496
497 out_fix_power_state:
498         bmc150_accel_set_power_state(data, false);
499         return ret;
500 }
501
502 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
503 {
504         struct device *dev = regmap_get_device(data->regmap);
505         int ret, i;
506
507         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508                 if (data->chip_info->scale_table[i].scale == val) {
509                         ret = regmap_write(data->regmap,
510                                      BMC150_ACCEL_REG_PMU_RANGE,
511                                      data->chip_info->scale_table[i].reg_range);
512                         if (ret < 0) {
513                                 dev_err(dev, "Error writing pmu_range\n");
514                                 return ret;
515                         }
516
517                         data->range = data->chip_info->scale_table[i].reg_range;
518                         return 0;
519                 }
520         }
521
522         return -EINVAL;
523 }
524
525 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
526 {
527         struct device *dev = regmap_get_device(data->regmap);
528         int ret;
529         unsigned int value;
530
531         mutex_lock(&data->mutex);
532
533         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534         if (ret < 0) {
535                 dev_err(dev, "Error reading reg_temp\n");
536                 mutex_unlock(&data->mutex);
537                 return ret;
538         }
539         *val = sign_extend32(value, 7);
540
541         mutex_unlock(&data->mutex);
542
543         return IIO_VAL_INT;
544 }
545
546 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547                                  struct iio_chan_spec const *chan,
548                                  int *val)
549 {
550         struct device *dev = regmap_get_device(data->regmap);
551         int ret;
552         int axis = chan->scan_index;
553         __le16 raw_val;
554
555         mutex_lock(&data->mutex);
556         ret = bmc150_accel_set_power_state(data, true);
557         if (ret < 0) {
558                 mutex_unlock(&data->mutex);
559                 return ret;
560         }
561
562         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563                                &raw_val, sizeof(raw_val));
564         if (ret < 0) {
565                 dev_err(dev, "Error reading axis %d\n", axis);
566                 bmc150_accel_set_power_state(data, false);
567                 mutex_unlock(&data->mutex);
568                 return ret;
569         }
570         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571                              chan->scan_type.realbits - 1);
572         ret = bmc150_accel_set_power_state(data, false);
573         mutex_unlock(&data->mutex);
574         if (ret < 0)
575                 return ret;
576
577         return IIO_VAL_INT;
578 }
579
580 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581                                  struct iio_chan_spec const *chan,
582                                  int *val, int *val2, long mask)
583 {
584         struct bmc150_accel_data *data = iio_priv(indio_dev);
585         int ret;
586
587         switch (mask) {
588         case IIO_CHAN_INFO_RAW:
589                 switch (chan->type) {
590                 case IIO_TEMP:
591                         return bmc150_accel_get_temp(data, val);
592                 case IIO_ACCEL:
593                         if (iio_buffer_enabled(indio_dev))
594                                 return -EBUSY;
595                         else
596                                 return bmc150_accel_get_axis(data, chan, val);
597                 default:
598                         return -EINVAL;
599                 }
600         case IIO_CHAN_INFO_OFFSET:
601                 if (chan->type == IIO_TEMP) {
602                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
603                         return IIO_VAL_INT;
604                 } else {
605                         return -EINVAL;
606                 }
607         case IIO_CHAN_INFO_SCALE:
608                 *val = 0;
609                 switch (chan->type) {
610                 case IIO_TEMP:
611                         *val2 = 500000;
612                         return IIO_VAL_INT_PLUS_MICRO;
613                 case IIO_ACCEL:
614                 {
615                         int i;
616                         const struct bmc150_scale_info *si;
617                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618
619                         for (i = 0; i < st_size; ++i) {
620                                 si = &data->chip_info->scale_table[i];
621                                 if (si->reg_range == data->range) {
622                                         *val2 = si->scale;
623                                         return IIO_VAL_INT_PLUS_MICRO;
624                                 }
625                         }
626                         return -EINVAL;
627                 }
628                 default:
629                         return -EINVAL;
630                 }
631         case IIO_CHAN_INFO_SAMP_FREQ:
632                 mutex_lock(&data->mutex);
633                 ret = bmc150_accel_get_bw(data, val, val2);
634                 mutex_unlock(&data->mutex);
635                 return ret;
636         default:
637                 return -EINVAL;
638         }
639 }
640
641 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642                                   struct iio_chan_spec const *chan,
643                                   int val, int val2, long mask)
644 {
645         struct bmc150_accel_data *data = iio_priv(indio_dev);
646         int ret;
647
648         switch (mask) {
649         case IIO_CHAN_INFO_SAMP_FREQ:
650                 mutex_lock(&data->mutex);
651                 ret = bmc150_accel_set_bw(data, val, val2);
652                 mutex_unlock(&data->mutex);
653                 break;
654         case IIO_CHAN_INFO_SCALE:
655                 if (val)
656                         return -EINVAL;
657
658                 mutex_lock(&data->mutex);
659                 ret = bmc150_accel_set_scale(data, val2);
660                 mutex_unlock(&data->mutex);
661                 return ret;
662         default:
663                 ret = -EINVAL;
664         }
665
666         return ret;
667 }
668
669 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670                                    const struct iio_chan_spec *chan,
671                                    enum iio_event_type type,
672                                    enum iio_event_direction dir,
673                                    enum iio_event_info info,
674                                    int *val, int *val2)
675 {
676         struct bmc150_accel_data *data = iio_priv(indio_dev);
677
678         *val2 = 0;
679         switch (info) {
680         case IIO_EV_INFO_VALUE:
681                 *val = data->slope_thres;
682                 break;
683         case IIO_EV_INFO_PERIOD:
684                 *val = data->slope_dur;
685                 break;
686         default:
687                 return -EINVAL;
688         }
689
690         return IIO_VAL_INT;
691 }
692
693 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694                                     const struct iio_chan_spec *chan,
695                                     enum iio_event_type type,
696                                     enum iio_event_direction dir,
697                                     enum iio_event_info info,
698                                     int val, int val2)
699 {
700         struct bmc150_accel_data *data = iio_priv(indio_dev);
701
702         if (data->ev_enable_state)
703                 return -EBUSY;
704
705         switch (info) {
706         case IIO_EV_INFO_VALUE:
707                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708                 break;
709         case IIO_EV_INFO_PERIOD:
710                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         return 0;
717 }
718
719 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720                                           const struct iio_chan_spec *chan,
721                                           enum iio_event_type type,
722                                           enum iio_event_direction dir)
723 {
724         struct bmc150_accel_data *data = iio_priv(indio_dev);
725
726         return data->ev_enable_state;
727 }
728
729 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730                                            const struct iio_chan_spec *chan,
731                                            enum iio_event_type type,
732                                            enum iio_event_direction dir,
733                                            int state)
734 {
735         struct bmc150_accel_data *data = iio_priv(indio_dev);
736         int ret;
737
738         if (state == data->ev_enable_state)
739                 return 0;
740
741         mutex_lock(&data->mutex);
742
743         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
744                                          state);
745         if (ret < 0) {
746                 mutex_unlock(&data->mutex);
747                 return ret;
748         }
749
750         data->ev_enable_state = state;
751         mutex_unlock(&data->mutex);
752
753         return 0;
754 }
755
756 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757                                          struct iio_trigger *trig)
758 {
759         struct bmc150_accel_data *data = iio_priv(indio_dev);
760         int i;
761
762         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763                 if (data->triggers[i].indio_trig == trig)
764                         return 0;
765         }
766
767         return -EINVAL;
768 }
769
770 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771                                                struct device_attribute *attr,
772                                                char *buf)
773 {
774         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775         struct bmc150_accel_data *data = iio_priv(indio_dev);
776         int wm;
777
778         mutex_lock(&data->mutex);
779         wm = data->watermark;
780         mutex_unlock(&data->mutex);
781
782         return sprintf(buf, "%d\n", wm);
783 }
784
785 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786                                            struct device_attribute *attr,
787                                            char *buf)
788 {
789         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790         struct bmc150_accel_data *data = iio_priv(indio_dev);
791         bool state;
792
793         mutex_lock(&data->mutex);
794         state = data->fifo_mode;
795         mutex_unlock(&data->mutex);
796
797         return sprintf(buf, "%d\n", state);
798 }
799
800 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
801 static IIO_CONST_ATTR(hwfifo_watermark_max,
802                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
803 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
804                        bmc150_accel_get_fifo_state, NULL, 0);
805 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
806                        bmc150_accel_get_fifo_watermark, NULL, 0);
807
808 static const struct attribute *bmc150_accel_fifo_attributes[] = {
809         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
810         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
811         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
812         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
813         NULL,
814 };
815
816 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
817 {
818         struct bmc150_accel_data *data = iio_priv(indio_dev);
819
820         if (val > BMC150_ACCEL_FIFO_LENGTH)
821                 val = BMC150_ACCEL_FIFO_LENGTH;
822
823         mutex_lock(&data->mutex);
824         data->watermark = val;
825         mutex_unlock(&data->mutex);
826
827         return 0;
828 }
829
830 /*
831  * We must read at least one full frame in one burst, otherwise the rest of the
832  * frame data is discarded.
833  */
834 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
835                                       char *buffer, int samples)
836 {
837         struct device *dev = regmap_get_device(data->regmap);
838         int sample_length = 3 * 2;
839         int ret;
840         int total_length = samples * sample_length;
841         int i;
842         size_t step = regmap_get_raw_read_max(data->regmap);
843
844         if (!step || step > total_length)
845                 step = total_length;
846         else if (step < total_length)
847                 step = sample_length;
848
849         /*
850          * Seems we have a bus with size limitation so we have to execute
851          * multiple reads
852          */
853         for (i = 0; i < total_length; i += step) {
854                 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
855                                       &buffer[i], step);
856                 if (ret)
857                         break;
858         }
859
860         if (ret)
861                 dev_err(dev,
862                         "Error transferring data from fifo in single steps of %zu\n",
863                         step);
864
865         return ret;
866 }
867
868 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
869                                      unsigned samples, bool irq)
870 {
871         struct bmc150_accel_data *data = iio_priv(indio_dev);
872         struct device *dev = regmap_get_device(data->regmap);
873         int ret, i;
874         u8 count;
875         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
876         int64_t tstamp;
877         uint64_t sample_period;
878         unsigned int val;
879
880         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
881         if (ret < 0) {
882                 dev_err(dev, "Error reading reg_fifo_status\n");
883                 return ret;
884         }
885
886         count = val & 0x7F;
887
888         if (!count)
889                 return 0;
890
891         /*
892          * If we getting called from IRQ handler we know the stored timestamp is
893          * fairly accurate for the last stored sample. Otherwise, if we are
894          * called as a result of a read operation from userspace and hence
895          * before the watermark interrupt was triggered, take a timestamp
896          * now. We can fall anywhere in between two samples so the error in this
897          * case is at most one sample period.
898          */
899         if (!irq) {
900                 data->old_timestamp = data->timestamp;
901                 data->timestamp = iio_get_time_ns(indio_dev);
902         }
903
904         /*
905          * Approximate timestamps for each of the sample based on the sampling
906          * frequency, timestamp for last sample and number of samples.
907          *
908          * Note that we can't use the current bandwidth settings to compute the
909          * sample period because the sample rate varies with the device
910          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
911          * small variation adds when we store a large number of samples and
912          * creates significant jitter between the last and first samples in
913          * different batches (e.g. 32ms vs 21ms).
914          *
915          * To avoid this issue we compute the actual sample period ourselves
916          * based on the timestamp delta between the last two flush operations.
917          */
918         sample_period = (data->timestamp - data->old_timestamp);
919         do_div(sample_period, count);
920         tstamp = data->timestamp - (count - 1) * sample_period;
921
922         if (samples && count > samples)
923                 count = samples;
924
925         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
926         if (ret)
927                 return ret;
928
929         /*
930          * Ideally we want the IIO core to handle the demux when running in fifo
931          * mode but not when running in triggered buffer mode. Unfortunately
932          * this does not seem to be possible, so stick with driver demux for
933          * now.
934          */
935         for (i = 0; i < count; i++) {
936                 u16 sample[8];
937                 int j, bit;
938
939                 j = 0;
940                 for_each_set_bit(bit, indio_dev->active_scan_mask,
941                                  indio_dev->masklength)
942                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
943
944                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
945
946                 tstamp += sample_period;
947         }
948
949         return count;
950 }
951
952 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
953 {
954         struct bmc150_accel_data *data = iio_priv(indio_dev);
955         int ret;
956
957         mutex_lock(&data->mutex);
958         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
959         mutex_unlock(&data->mutex);
960
961         return ret;
962 }
963
964 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
965                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
966
967 static struct attribute *bmc150_accel_attributes[] = {
968         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
969         NULL,
970 };
971
972 static const struct attribute_group bmc150_accel_attrs_group = {
973         .attrs = bmc150_accel_attributes,
974 };
975
976 static const struct iio_event_spec bmc150_accel_event = {
977                 .type = IIO_EV_TYPE_ROC,
978                 .dir = IIO_EV_DIR_EITHER,
979                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
980                                  BIT(IIO_EV_INFO_ENABLE) |
981                                  BIT(IIO_EV_INFO_PERIOD)
982 };
983
984 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
985         .type = IIO_ACCEL,                                              \
986         .modified = 1,                                                  \
987         .channel2 = IIO_MOD_##_axis,                                    \
988         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
989         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
990                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
991         .scan_index = AXIS_##_axis,                                     \
992         .scan_type = {                                                  \
993                 .sign = 's',                                            \
994                 .realbits = (bits),                                     \
995                 .storagebits = 16,                                      \
996                 .shift = 16 - (bits),                                   \
997                 .endianness = IIO_LE,                                   \
998         },                                                              \
999         .event_spec = &bmc150_accel_event,                              \
1000         .num_event_specs = 1                                            \
1001 }
1002
1003 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
1004         {                                                               \
1005                 .type = IIO_TEMP,                                       \
1006                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1007                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1008                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1009                 .scan_index = -1,                                       \
1010         },                                                              \
1011         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1012         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1013         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1014         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1015 }
1016
1017 static const struct iio_chan_spec bma222e_accel_channels[] =
1018         BMC150_ACCEL_CHANNELS(8);
1019 static const struct iio_chan_spec bma250e_accel_channels[] =
1020         BMC150_ACCEL_CHANNELS(10);
1021 static const struct iio_chan_spec bmc150_accel_channels[] =
1022         BMC150_ACCEL_CHANNELS(12);
1023 static const struct iio_chan_spec bma280_accel_channels[] =
1024         BMC150_ACCEL_CHANNELS(14);
1025
1026 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1027         [bmc150] = {
1028                 .name = "BMC150A",
1029                 .chip_id = 0xFA,
1030                 .channels = bmc150_accel_channels,
1031                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1032                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1033                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1034                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1035                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1036         },
1037         [bmi055] = {
1038                 .name = "BMI055A",
1039                 .chip_id = 0xFA,
1040                 .channels = bmc150_accel_channels,
1041                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1042                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1043                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1044                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1045                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1046         },
1047         [bma255] = {
1048                 .name = "BMA0255",
1049                 .chip_id = 0xFA,
1050                 .channels = bmc150_accel_channels,
1051                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1052                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1053                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1054                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1055                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1056         },
1057         [bma250e] = {
1058                 .name = "BMA250E",
1059                 .chip_id = 0xF9,
1060                 .channels = bma250e_accel_channels,
1061                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1062                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1063                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1064                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1065                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1066         },
1067         [bma222e] = {
1068                 .name = "BMA222E",
1069                 .chip_id = 0xF8,
1070                 .channels = bma222e_accel_channels,
1071                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1072                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1073                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1074                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1075                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1076         },
1077         [bma280] = {
1078                 .name = "BMA0280",
1079                 .chip_id = 0xFB,
1080                 .channels = bma280_accel_channels,
1081                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1082                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1083                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1084                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1085                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1086         },
1087 };
1088
1089 static const struct iio_info bmc150_accel_info = {
1090         .attrs                  = &bmc150_accel_attrs_group,
1091         .read_raw               = bmc150_accel_read_raw,
1092         .write_raw              = bmc150_accel_write_raw,
1093         .read_event_value       = bmc150_accel_read_event,
1094         .write_event_value      = bmc150_accel_write_event,
1095         .write_event_config     = bmc150_accel_write_event_config,
1096         .read_event_config      = bmc150_accel_read_event_config,
1097         .driver_module          = THIS_MODULE,
1098 };
1099
1100 static const struct iio_info bmc150_accel_info_fifo = {
1101         .attrs                  = &bmc150_accel_attrs_group,
1102         .read_raw               = bmc150_accel_read_raw,
1103         .write_raw              = bmc150_accel_write_raw,
1104         .read_event_value       = bmc150_accel_read_event,
1105         .write_event_value      = bmc150_accel_write_event,
1106         .write_event_config     = bmc150_accel_write_event_config,
1107         .read_event_config      = bmc150_accel_read_event_config,
1108         .validate_trigger       = bmc150_accel_validate_trigger,
1109         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1110         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1111         .driver_module          = THIS_MODULE,
1112 };
1113
1114 static const unsigned long bmc150_accel_scan_masks[] = {
1115                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1116                                         0};
1117
1118 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1119 {
1120         struct iio_poll_func *pf = p;
1121         struct iio_dev *indio_dev = pf->indio_dev;
1122         struct bmc150_accel_data *data = iio_priv(indio_dev);
1123         int ret;
1124
1125         mutex_lock(&data->mutex);
1126         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1127                                data->buffer, AXIS_MAX * 2);
1128         mutex_unlock(&data->mutex);
1129         if (ret < 0)
1130                 goto err_read;
1131
1132         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1133                                            pf->timestamp);
1134 err_read:
1135         iio_trigger_notify_done(indio_dev->trig);
1136
1137         return IRQ_HANDLED;
1138 }
1139
1140 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1141 {
1142         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1143         struct bmc150_accel_data *data = t->data;
1144         struct device *dev = regmap_get_device(data->regmap);
1145         int ret;
1146
1147         /* new data interrupts don't need ack */
1148         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1149                 return 0;
1150
1151         mutex_lock(&data->mutex);
1152         /* clear any latched interrupt */
1153         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1154                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1155                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1156         mutex_unlock(&data->mutex);
1157         if (ret < 0) {
1158                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1159                 return ret;
1160         }
1161
1162         return 0;
1163 }
1164
1165 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1166                                           bool state)
1167 {
1168         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1169         struct bmc150_accel_data *data = t->data;
1170         int ret;
1171
1172         mutex_lock(&data->mutex);
1173
1174         if (t->enabled == state) {
1175                 mutex_unlock(&data->mutex);
1176                 return 0;
1177         }
1178
1179         if (t->setup) {
1180                 ret = t->setup(t, state);
1181                 if (ret < 0) {
1182                         mutex_unlock(&data->mutex);
1183                         return ret;
1184                 }
1185         }
1186
1187         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1188         if (ret < 0) {
1189                 mutex_unlock(&data->mutex);
1190                 return ret;
1191         }
1192
1193         t->enabled = state;
1194
1195         mutex_unlock(&data->mutex);
1196
1197         return ret;
1198 }
1199
1200 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1201         .set_trigger_state = bmc150_accel_trigger_set_state,
1202         .try_reenable = bmc150_accel_trig_try_reen,
1203         .owner = THIS_MODULE,
1204 };
1205
1206 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1207 {
1208         struct bmc150_accel_data *data = iio_priv(indio_dev);
1209         struct device *dev = regmap_get_device(data->regmap);
1210         int dir;
1211         int ret;
1212         unsigned int val;
1213
1214         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1215         if (ret < 0) {
1216                 dev_err(dev, "Error reading reg_int_status_2\n");
1217                 return ret;
1218         }
1219
1220         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1221                 dir = IIO_EV_DIR_FALLING;
1222         else
1223                 dir = IIO_EV_DIR_RISING;
1224
1225         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1226                 iio_push_event(indio_dev,
1227                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1228                                                   0,
1229                                                   IIO_MOD_X,
1230                                                   IIO_EV_TYPE_ROC,
1231                                                   dir),
1232                                data->timestamp);
1233
1234         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1235                 iio_push_event(indio_dev,
1236                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1237                                                   0,
1238                                                   IIO_MOD_Y,
1239                                                   IIO_EV_TYPE_ROC,
1240                                                   dir),
1241                                data->timestamp);
1242
1243         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1244                 iio_push_event(indio_dev,
1245                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1246                                                   0,
1247                                                   IIO_MOD_Z,
1248                                                   IIO_EV_TYPE_ROC,
1249                                                   dir),
1250                                data->timestamp);
1251
1252         return ret;
1253 }
1254
1255 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1256 {
1257         struct iio_dev *indio_dev = private;
1258         struct bmc150_accel_data *data = iio_priv(indio_dev);
1259         struct device *dev = regmap_get_device(data->regmap);
1260         bool ack = false;
1261         int ret;
1262
1263         mutex_lock(&data->mutex);
1264
1265         if (data->fifo_mode) {
1266                 ret = __bmc150_accel_fifo_flush(indio_dev,
1267                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1268                 if (ret > 0)
1269                         ack = true;
1270         }
1271
1272         if (data->ev_enable_state) {
1273                 ret = bmc150_accel_handle_roc_event(indio_dev);
1274                 if (ret > 0)
1275                         ack = true;
1276         }
1277
1278         if (ack) {
1279                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1280                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1281                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1282                 if (ret)
1283                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1284
1285                 ret = IRQ_HANDLED;
1286         } else {
1287                 ret = IRQ_NONE;
1288         }
1289
1290         mutex_unlock(&data->mutex);
1291
1292         return ret;
1293 }
1294
1295 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1296 {
1297         struct iio_dev *indio_dev = private;
1298         struct bmc150_accel_data *data = iio_priv(indio_dev);
1299         bool ack = false;
1300         int i;
1301
1302         data->old_timestamp = data->timestamp;
1303         data->timestamp = iio_get_time_ns(indio_dev);
1304
1305         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1306                 if (data->triggers[i].enabled) {
1307                         iio_trigger_poll(data->triggers[i].indio_trig);
1308                         ack = true;
1309                         break;
1310                 }
1311         }
1312
1313         if (data->ev_enable_state || data->fifo_mode)
1314                 return IRQ_WAKE_THREAD;
1315
1316         if (ack)
1317                 return IRQ_HANDLED;
1318
1319         return IRQ_NONE;
1320 }
1321
1322 static const struct {
1323         int intr;
1324         const char *name;
1325         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1326 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1327         {
1328                 .intr = 0,
1329                 .name = "%s-dev%d",
1330         },
1331         {
1332                 .intr = 1,
1333                 .name = "%s-any-motion-dev%d",
1334                 .setup = bmc150_accel_any_motion_setup,
1335         },
1336 };
1337
1338 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1339                                              int from)
1340 {
1341         int i;
1342
1343         for (i = from; i >= 0; i--) {
1344                 if (data->triggers[i].indio_trig) {
1345                         iio_trigger_unregister(data->triggers[i].indio_trig);
1346                         data->triggers[i].indio_trig = NULL;
1347                 }
1348         }
1349 }
1350
1351 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1352                                        struct bmc150_accel_data *data)
1353 {
1354         struct device *dev = regmap_get_device(data->regmap);
1355         int i, ret;
1356
1357         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1358                 struct bmc150_accel_trigger *t = &data->triggers[i];
1359
1360                 t->indio_trig = devm_iio_trigger_alloc(dev,
1361                                         bmc150_accel_triggers[i].name,
1362                                                        indio_dev->name,
1363                                                        indio_dev->id);
1364                 if (!t->indio_trig) {
1365                         ret = -ENOMEM;
1366                         break;
1367                 }
1368
1369                 t->indio_trig->dev.parent = dev;
1370                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1371                 t->intr = bmc150_accel_triggers[i].intr;
1372                 t->data = data;
1373                 t->setup = bmc150_accel_triggers[i].setup;
1374                 iio_trigger_set_drvdata(t->indio_trig, t);
1375
1376                 ret = iio_trigger_register(t->indio_trig);
1377                 if (ret)
1378                         break;
1379         }
1380
1381         if (ret)
1382                 bmc150_accel_unregister_triggers(data, i - 1);
1383
1384         return ret;
1385 }
1386
1387 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1388 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1389 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1390
1391 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1392 {
1393         struct device *dev = regmap_get_device(data->regmap);
1394         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1395         int ret;
1396
1397         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1398         if (ret < 0) {
1399                 dev_err(dev, "Error writing reg_fifo_config1\n");
1400                 return ret;
1401         }
1402
1403         if (!data->fifo_mode)
1404                 return 0;
1405
1406         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1407                            data->watermark);
1408         if (ret < 0)
1409                 dev_err(dev, "Error writing reg_fifo_config0\n");
1410
1411         return ret;
1412 }
1413
1414 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1415 {
1416         struct bmc150_accel_data *data = iio_priv(indio_dev);
1417
1418         return bmc150_accel_set_power_state(data, true);
1419 }
1420
1421 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1422 {
1423         struct bmc150_accel_data *data = iio_priv(indio_dev);
1424         int ret = 0;
1425
1426         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1427                 return iio_triggered_buffer_postenable(indio_dev);
1428
1429         mutex_lock(&data->mutex);
1430
1431         if (!data->watermark)
1432                 goto out;
1433
1434         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1435                                          true);
1436         if (ret)
1437                 goto out;
1438
1439         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1440
1441         ret = bmc150_accel_fifo_set_mode(data);
1442         if (ret) {
1443                 data->fifo_mode = 0;
1444                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1445                                            false);
1446         }
1447
1448 out:
1449         mutex_unlock(&data->mutex);
1450
1451         return ret;
1452 }
1453
1454 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1455 {
1456         struct bmc150_accel_data *data = iio_priv(indio_dev);
1457
1458         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1459                 return iio_triggered_buffer_predisable(indio_dev);
1460
1461         mutex_lock(&data->mutex);
1462
1463         if (!data->fifo_mode)
1464                 goto out;
1465
1466         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1467         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1468         data->fifo_mode = 0;
1469         bmc150_accel_fifo_set_mode(data);
1470
1471 out:
1472         mutex_unlock(&data->mutex);
1473
1474         return 0;
1475 }
1476
1477 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1478 {
1479         struct bmc150_accel_data *data = iio_priv(indio_dev);
1480
1481         return bmc150_accel_set_power_state(data, false);
1482 }
1483
1484 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1485         .preenable = bmc150_accel_buffer_preenable,
1486         .postenable = bmc150_accel_buffer_postenable,
1487         .predisable = bmc150_accel_buffer_predisable,
1488         .postdisable = bmc150_accel_buffer_postdisable,
1489 };
1490
1491 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1492 {
1493         struct device *dev = regmap_get_device(data->regmap);
1494         int ret, i;
1495         unsigned int val;
1496
1497         /*
1498          * Reset chip to get it in a known good state. A delay of 1.8ms after
1499          * reset is required according to the data sheets of supported chips.
1500          */
1501         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1502                      BMC150_ACCEL_RESET_VAL);
1503         usleep_range(1800, 2500);
1504
1505         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1506         if (ret < 0) {
1507                 dev_err(dev, "Error: Reading chip id\n");
1508                 return ret;
1509         }
1510
1511         dev_dbg(dev, "Chip Id %x\n", val);
1512         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1513                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1514                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1515                         break;
1516                 }
1517         }
1518
1519         if (!data->chip_info) {
1520                 dev_err(dev, "Invalid chip %x\n", val);
1521                 return -ENODEV;
1522         }
1523
1524         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1525         if (ret < 0)
1526                 return ret;
1527
1528         /* Set Bandwidth */
1529         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1530         if (ret < 0)
1531                 return ret;
1532
1533         /* Set Default Range */
1534         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1535                            BMC150_ACCEL_DEF_RANGE_4G);
1536         if (ret < 0) {
1537                 dev_err(dev, "Error writing reg_pmu_range\n");
1538                 return ret;
1539         }
1540
1541         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1542
1543         /* Set default slope duration and thresholds */
1544         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1545         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1546         ret = bmc150_accel_update_slope(data);
1547         if (ret < 0)
1548                 return ret;
1549
1550         /* Set default as latched interrupts */
1551         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1552                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1553                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1554         if (ret < 0) {
1555                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1556                 return ret;
1557         }
1558
1559         return 0;
1560 }
1561
1562 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1563                             const char *name, bool block_supported)
1564 {
1565         struct bmc150_accel_data *data;
1566         struct iio_dev *indio_dev;
1567         int ret;
1568
1569         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1570         if (!indio_dev)
1571                 return -ENOMEM;
1572
1573         data = iio_priv(indio_dev);
1574         dev_set_drvdata(dev, indio_dev);
1575         data->irq = irq;
1576
1577         data->regmap = regmap;
1578
1579         ret = bmc150_accel_chip_init(data);
1580         if (ret < 0)
1581                 return ret;
1582
1583         mutex_init(&data->mutex);
1584
1585         indio_dev->dev.parent = dev;
1586         indio_dev->channels = data->chip_info->channels;
1587         indio_dev->num_channels = data->chip_info->num_channels;
1588         indio_dev->name = name ? name : data->chip_info->name;
1589         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1590         indio_dev->modes = INDIO_DIRECT_MODE;
1591         indio_dev->info = &bmc150_accel_info;
1592
1593         ret = iio_triggered_buffer_setup(indio_dev,
1594                                          &iio_pollfunc_store_time,
1595                                          bmc150_accel_trigger_handler,
1596                                          &bmc150_accel_buffer_ops);
1597         if (ret < 0) {
1598                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1599                 return ret;
1600         }
1601
1602         if (data->irq > 0) {
1603                 ret = devm_request_threaded_irq(
1604                                                 dev, data->irq,
1605                                                 bmc150_accel_irq_handler,
1606                                                 bmc150_accel_irq_thread_handler,
1607                                                 IRQF_TRIGGER_RISING,
1608                                                 BMC150_ACCEL_IRQ_NAME,
1609                                                 indio_dev);
1610                 if (ret)
1611                         goto err_buffer_cleanup;
1612
1613                 /*
1614                  * Set latched mode interrupt. While certain interrupts are
1615                  * non-latched regardless of this settings (e.g. new data) we
1616                  * want to use latch mode when we can to prevent interrupt
1617                  * flooding.
1618                  */
1619                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1620                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1621                 if (ret < 0) {
1622                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1623                         goto err_buffer_cleanup;
1624                 }
1625
1626                 bmc150_accel_interrupts_setup(indio_dev, data);
1627
1628                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1629                 if (ret)
1630                         goto err_buffer_cleanup;
1631
1632                 if (block_supported) {
1633                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1634                         indio_dev->info = &bmc150_accel_info_fifo;
1635                         iio_buffer_set_attrs(indio_dev->buffer,
1636                                              bmc150_accel_fifo_attributes);
1637                 }
1638         }
1639
1640         ret = pm_runtime_set_active(dev);
1641         if (ret)
1642                 goto err_trigger_unregister;
1643
1644         pm_runtime_enable(dev);
1645         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1646         pm_runtime_use_autosuspend(dev);
1647
1648         ret = iio_device_register(indio_dev);
1649         if (ret < 0) {
1650                 dev_err(dev, "Unable to register iio device\n");
1651                 goto err_trigger_unregister;
1652         }
1653
1654         return 0;
1655
1656 err_trigger_unregister:
1657         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1658 err_buffer_cleanup:
1659         iio_triggered_buffer_cleanup(indio_dev);
1660
1661         return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1664
1665 int bmc150_accel_core_remove(struct device *dev)
1666 {
1667         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1668         struct bmc150_accel_data *data = iio_priv(indio_dev);
1669
1670         iio_device_unregister(indio_dev);
1671
1672         pm_runtime_disable(dev);
1673         pm_runtime_set_suspended(dev);
1674         pm_runtime_put_noidle(dev);
1675
1676         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1677
1678         iio_triggered_buffer_cleanup(indio_dev);
1679
1680         mutex_lock(&data->mutex);
1681         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1682         mutex_unlock(&data->mutex);
1683
1684         return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1687
1688 #ifdef CONFIG_PM_SLEEP
1689 static int bmc150_accel_suspend(struct device *dev)
1690 {
1691         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1692         struct bmc150_accel_data *data = iio_priv(indio_dev);
1693
1694         mutex_lock(&data->mutex);
1695         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1696         mutex_unlock(&data->mutex);
1697
1698         return 0;
1699 }
1700
1701 static int bmc150_accel_resume(struct device *dev)
1702 {
1703         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1704         struct bmc150_accel_data *data = iio_priv(indio_dev);
1705
1706         mutex_lock(&data->mutex);
1707         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1708         bmc150_accel_fifo_set_mode(data);
1709         mutex_unlock(&data->mutex);
1710
1711         return 0;
1712 }
1713 #endif
1714
1715 #ifdef CONFIG_PM
1716 static int bmc150_accel_runtime_suspend(struct device *dev)
1717 {
1718         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1719         struct bmc150_accel_data *data = iio_priv(indio_dev);
1720         int ret;
1721
1722         dev_dbg(dev,  __func__);
1723         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1724         if (ret < 0)
1725                 return -EAGAIN;
1726
1727         return 0;
1728 }
1729
1730 static int bmc150_accel_runtime_resume(struct device *dev)
1731 {
1732         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1733         struct bmc150_accel_data *data = iio_priv(indio_dev);
1734         int ret;
1735         int sleep_val;
1736
1737         dev_dbg(dev,  __func__);
1738
1739         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1740         if (ret < 0)
1741                 return ret;
1742         ret = bmc150_accel_fifo_set_mode(data);
1743         if (ret < 0)
1744                 return ret;
1745
1746         sleep_val = bmc150_accel_get_startup_times(data);
1747         if (sleep_val < 20)
1748                 usleep_range(sleep_val * 1000, 20000);
1749         else
1750                 msleep_interruptible(sleep_val);
1751
1752         return 0;
1753 }
1754 #endif
1755
1756 const struct dev_pm_ops bmc150_accel_pm_ops = {
1757         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1758         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1759                            bmc150_accel_runtime_resume, NULL)
1760 };
1761 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1762
1763 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1764 MODULE_LICENSE("GPL v2");
1765 MODULE_DESCRIPTION("BMC150 accelerometer driver");