]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/bcache/btree.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / bcache / btree.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
36
37 /*
38  * Todo:
39  * register_bcache: Return errors out to userspace correctly
40  *
41  * Writeback: don't undirty key until after a cache flush
42  *
43  * Create an iterator for key pointers
44  *
45  * On btree write error, mark bucket such that it won't be freed from the cache
46  *
47  * Journalling:
48  *   Check for bad keys in replay
49  *   Propagate barriers
50  *   Refcount journal entries in journal_replay
51  *
52  * Garbage collection:
53  *   Finish incremental gc
54  *   Gc should free old UUIDs, data for invalid UUIDs
55  *
56  * Provide a way to list backing device UUIDs we have data cached for, and
57  * probably how long it's been since we've seen them, and a way to invalidate
58  * dirty data for devices that will never be attached again
59  *
60  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61  * that based on that and how much dirty data we have we can keep writeback
62  * from being starved
63  *
64  * Add a tracepoint or somesuch to watch for writeback starvation
65  *
66  * When btree depth > 1 and splitting an interior node, we have to make sure
67  * alloc_bucket() cannot fail. This should be true but is not completely
68  * obvious.
69  *
70  * Plugging?
71  *
72  * If data write is less than hard sector size of ssd, round up offset in open
73  * bucket to the next whole sector
74  *
75  * Superblock needs to be fleshed out for multiple cache devices
76  *
77  * Add a sysfs tunable for the number of writeback IOs in flight
78  *
79  * Add a sysfs tunable for the number of open data buckets
80  *
81  * IO tracking: Can we track when one process is doing io on behalf of another?
82  * IO tracking: Don't use just an average, weigh more recent stuff higher
83  *
84  * Test module load/unload
85  */
86
87 #define MAX_NEED_GC             64
88 #define MAX_SAVE_PRIO           72
89
90 #define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
91
92 #define PTR_HASH(c, k)                                                  \
93         (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
94
95 #define insert_lock(s, b)       ((b)->level <= (s)->lock)
96
97 /*
98  * These macros are for recursing down the btree - they handle the details of
99  * locking and looking up nodes in the cache for you. They're best treated as
100  * mere syntax when reading code that uses them.
101  *
102  * op->lock determines whether we take a read or a write lock at a given depth.
103  * If you've got a read lock and find that you need a write lock (i.e. you're
104  * going to have to split), set op->lock and return -EINTR; btree_root() will
105  * call you again and you'll have the correct lock.
106  */
107
108 /**
109  * btree - recurse down the btree on a specified key
110  * @fn:         function to call, which will be passed the child node
111  * @key:        key to recurse on
112  * @b:          parent btree node
113  * @op:         pointer to struct btree_op
114  */
115 #define btree(fn, key, b, op, ...)                                      \
116 ({                                                                      \
117         int _r, l = (b)->level - 1;                                     \
118         bool _w = l <= (op)->lock;                                      \
119         struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
120                                                   _w, b);               \
121         if (!IS_ERR(_child)) {                                          \
122                 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
123                 rw_unlock(_w, _child);                                  \
124         } else                                                          \
125                 _r = PTR_ERR(_child);                                   \
126         _r;                                                             \
127 })
128
129 /**
130  * btree_root - call a function on the root of the btree
131  * @fn:         function to call, which will be passed the child node
132  * @c:          cache set
133  * @op:         pointer to struct btree_op
134  */
135 #define btree_root(fn, c, op, ...)                                      \
136 ({                                                                      \
137         int _r = -EINTR;                                                \
138         do {                                                            \
139                 struct btree *_b = (c)->root;                           \
140                 bool _w = insert_lock(op, _b);                          \
141                 rw_lock(_w, _b, _b->level);                             \
142                 if (_b == (c)->root &&                                  \
143                     _w == insert_lock(op, _b)) {                        \
144                         _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
145                 }                                                       \
146                 rw_unlock(_w, _b);                                      \
147                 bch_cannibalize_unlock(c);                              \
148                 if (_r == -EINTR)                                       \
149                         schedule();                                     \
150         } while (_r == -EINTR);                                         \
151                                                                         \
152         finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
153         _r;                                                             \
154 })
155
156 static inline struct bset *write_block(struct btree *b)
157 {
158         return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
159 }
160
161 static void bch_btree_init_next(struct btree *b)
162 {
163         /* If not a leaf node, always sort */
164         if (b->level && b->keys.nsets)
165                 bch_btree_sort(&b->keys, &b->c->sort);
166         else
167                 bch_btree_sort_lazy(&b->keys, &b->c->sort);
168
169         if (b->written < btree_blocks(b))
170                 bch_bset_init_next(&b->keys, write_block(b),
171                                    bset_magic(&b->c->sb));
172
173 }
174
175 /* Btree key manipulation */
176
177 void bkey_put(struct cache_set *c, struct bkey *k)
178 {
179         unsigned i;
180
181         for (i = 0; i < KEY_PTRS(k); i++)
182                 if (ptr_available(c, k, i))
183                         atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
184 }
185
186 /* Btree IO */
187
188 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
189 {
190         uint64_t crc = b->key.ptr[0];
191         void *data = (void *) i + 8, *end = bset_bkey_last(i);
192
193         crc = bch_crc64_update(crc, data, end - data);
194         return crc ^ 0xffffffffffffffffULL;
195 }
196
197 void bch_btree_node_read_done(struct btree *b)
198 {
199         const char *err = "bad btree header";
200         struct bset *i = btree_bset_first(b);
201         struct btree_iter *iter;
202
203         iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
204         iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
205         iter->used = 0;
206
207 #ifdef CONFIG_BCACHE_DEBUG
208         iter->b = &b->keys;
209 #endif
210
211         if (!i->seq)
212                 goto err;
213
214         for (;
215              b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
216              i = write_block(b)) {
217                 err = "unsupported bset version";
218                 if (i->version > BCACHE_BSET_VERSION)
219                         goto err;
220
221                 err = "bad btree header";
222                 if (b->written + set_blocks(i, block_bytes(b->c)) >
223                     btree_blocks(b))
224                         goto err;
225
226                 err = "bad magic";
227                 if (i->magic != bset_magic(&b->c->sb))
228                         goto err;
229
230                 err = "bad checksum";
231                 switch (i->version) {
232                 case 0:
233                         if (i->csum != csum_set(i))
234                                 goto err;
235                         break;
236                 case BCACHE_BSET_VERSION:
237                         if (i->csum != btree_csum_set(b, i))
238                                 goto err;
239                         break;
240                 }
241
242                 err = "empty set";
243                 if (i != b->keys.set[0].data && !i->keys)
244                         goto err;
245
246                 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
247
248                 b->written += set_blocks(i, block_bytes(b->c));
249         }
250
251         err = "corrupted btree";
252         for (i = write_block(b);
253              bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
254              i = ((void *) i) + block_bytes(b->c))
255                 if (i->seq == b->keys.set[0].data->seq)
256                         goto err;
257
258         bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
259
260         i = b->keys.set[0].data;
261         err = "short btree key";
262         if (b->keys.set[0].size &&
263             bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
264                 goto err;
265
266         if (b->written < btree_blocks(b))
267                 bch_bset_init_next(&b->keys, write_block(b),
268                                    bset_magic(&b->c->sb));
269 out:
270         mempool_free(iter, b->c->fill_iter);
271         return;
272 err:
273         set_btree_node_io_error(b);
274         bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
275                             err, PTR_BUCKET_NR(b->c, &b->key, 0),
276                             bset_block_offset(b, i), i->keys);
277         goto out;
278 }
279
280 static void btree_node_read_endio(struct bio *bio)
281 {
282         struct closure *cl = bio->bi_private;
283         closure_put(cl);
284 }
285
286 static void bch_btree_node_read(struct btree *b)
287 {
288         uint64_t start_time = local_clock();
289         struct closure cl;
290         struct bio *bio;
291
292         trace_bcache_btree_read(b);
293
294         closure_init_stack(&cl);
295
296         bio = bch_bbio_alloc(b->c);
297         bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
298         bio->bi_end_io  = btree_node_read_endio;
299         bio->bi_private = &cl;
300         bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC);
301
302         bch_bio_map(bio, b->keys.set[0].data);
303
304         bch_submit_bbio(bio, b->c, &b->key, 0);
305         closure_sync(&cl);
306
307         if (bio->bi_error)
308                 set_btree_node_io_error(b);
309
310         bch_bbio_free(bio, b->c);
311
312         if (btree_node_io_error(b))
313                 goto err;
314
315         bch_btree_node_read_done(b);
316         bch_time_stats_update(&b->c->btree_read_time, start_time);
317
318         return;
319 err:
320         bch_cache_set_error(b->c, "io error reading bucket %zu",
321                             PTR_BUCKET_NR(b->c, &b->key, 0));
322 }
323
324 static void btree_complete_write(struct btree *b, struct btree_write *w)
325 {
326         if (w->prio_blocked &&
327             !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
328                 wake_up_allocators(b->c);
329
330         if (w->journal) {
331                 atomic_dec_bug(w->journal);
332                 __closure_wake_up(&b->c->journal.wait);
333         }
334
335         w->prio_blocked = 0;
336         w->journal      = NULL;
337 }
338
339 static void btree_node_write_unlock(struct closure *cl)
340 {
341         struct btree *b = container_of(cl, struct btree, io);
342
343         up(&b->io_mutex);
344 }
345
346 static void __btree_node_write_done(struct closure *cl)
347 {
348         struct btree *b = container_of(cl, struct btree, io);
349         struct btree_write *w = btree_prev_write(b);
350
351         bch_bbio_free(b->bio, b->c);
352         b->bio = NULL;
353         btree_complete_write(b, w);
354
355         if (btree_node_dirty(b))
356                 schedule_delayed_work(&b->work, 30 * HZ);
357
358         closure_return_with_destructor(cl, btree_node_write_unlock);
359 }
360
361 static void btree_node_write_done(struct closure *cl)
362 {
363         struct btree *b = container_of(cl, struct btree, io);
364         struct bio_vec *bv;
365         int n;
366
367         bio_for_each_segment_all(bv, b->bio, n)
368                 __free_page(bv->bv_page);
369
370         __btree_node_write_done(cl);
371 }
372
373 static void btree_node_write_endio(struct bio *bio)
374 {
375         struct closure *cl = bio->bi_private;
376         struct btree *b = container_of(cl, struct btree, io);
377
378         if (bio->bi_error)
379                 set_btree_node_io_error(b);
380
381         bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
382         closure_put(cl);
383 }
384
385 static void do_btree_node_write(struct btree *b)
386 {
387         struct closure *cl = &b->io;
388         struct bset *i = btree_bset_last(b);
389         BKEY_PADDED(key) k;
390
391         i->version      = BCACHE_BSET_VERSION;
392         i->csum         = btree_csum_set(b, i);
393
394         BUG_ON(b->bio);
395         b->bio = bch_bbio_alloc(b->c);
396
397         b->bio->bi_end_io       = btree_node_write_endio;
398         b->bio->bi_private      = cl;
399         b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400         bio_set_op_attrs(b->bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA);
401         bch_bio_map(b->bio, i);
402
403         /*
404          * If we're appending to a leaf node, we don't technically need FUA -
405          * this write just needs to be persisted before the next journal write,
406          * which will be marked FLUSH|FUA.
407          *
408          * Similarly if we're writing a new btree root - the pointer is going to
409          * be in the next journal entry.
410          *
411          * But if we're writing a new btree node (that isn't a root) or
412          * appending to a non leaf btree node, we need either FUA or a flush
413          * when we write the parent with the new pointer. FUA is cheaper than a
414          * flush, and writes appending to leaf nodes aren't blocking anything so
415          * just make all btree node writes FUA to keep things sane.
416          */
417
418         bkey_copy(&k.key, &b->key);
419         SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420                        bset_sector_offset(&b->keys, i));
421
422         if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423                 int j;
424                 struct bio_vec *bv;
425                 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
427                 bio_for_each_segment_all(bv, b->bio, j)
428                         memcpy(page_address(bv->bv_page),
429                                base + j * PAGE_SIZE, PAGE_SIZE);
430
431                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
433                 continue_at(cl, btree_node_write_done, NULL);
434         } else {
435                 b->bio->bi_vcnt = 0;
436                 bch_bio_map(b->bio, i);
437
438                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440                 closure_sync(cl);
441                 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442         }
443 }
444
445 void __bch_btree_node_write(struct btree *b, struct closure *parent)
446 {
447         struct bset *i = btree_bset_last(b);
448
449         lockdep_assert_held(&b->write_lock);
450
451         trace_bcache_btree_write(b);
452
453         BUG_ON(current->bio_list);
454         BUG_ON(b->written >= btree_blocks(b));
455         BUG_ON(b->written && !i->keys);
456         BUG_ON(btree_bset_first(b)->seq != i->seq);
457         bch_check_keys(&b->keys, "writing");
458
459         cancel_delayed_work(&b->work);
460
461         /* If caller isn't waiting for write, parent refcount is cache set */
462         down(&b->io_mutex);
463         closure_init(&b->io, parent ?: &b->c->cl);
464
465         clear_bit(BTREE_NODE_dirty,      &b->flags);
466         change_bit(BTREE_NODE_write_idx, &b->flags);
467
468         do_btree_node_write(b);
469
470         atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
471                         &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
473         b->written += set_blocks(i, block_bytes(b->c));
474 }
475
476 void bch_btree_node_write(struct btree *b, struct closure *parent)
477 {
478         unsigned nsets = b->keys.nsets;
479
480         lockdep_assert_held(&b->lock);
481
482         __bch_btree_node_write(b, parent);
483
484         /*
485          * do verify if there was more than one set initially (i.e. we did a
486          * sort) and we sorted down to a single set:
487          */
488         if (nsets && !b->keys.nsets)
489                 bch_btree_verify(b);
490
491         bch_btree_init_next(b);
492 }
493
494 static void bch_btree_node_write_sync(struct btree *b)
495 {
496         struct closure cl;
497
498         closure_init_stack(&cl);
499
500         mutex_lock(&b->write_lock);
501         bch_btree_node_write(b, &cl);
502         mutex_unlock(&b->write_lock);
503
504         closure_sync(&cl);
505 }
506
507 static void btree_node_write_work(struct work_struct *w)
508 {
509         struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
511         mutex_lock(&b->write_lock);
512         if (btree_node_dirty(b))
513                 __bch_btree_node_write(b, NULL);
514         mutex_unlock(&b->write_lock);
515 }
516
517 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
518 {
519         struct bset *i = btree_bset_last(b);
520         struct btree_write *w = btree_current_write(b);
521
522         lockdep_assert_held(&b->write_lock);
523
524         BUG_ON(!b->written);
525         BUG_ON(!i->keys);
526
527         if (!btree_node_dirty(b))
528                 schedule_delayed_work(&b->work, 30 * HZ);
529
530         set_btree_node_dirty(b);
531
532         if (journal_ref) {
533                 if (w->journal &&
534                     journal_pin_cmp(b->c, w->journal, journal_ref)) {
535                         atomic_dec_bug(w->journal);
536                         w->journal = NULL;
537                 }
538
539                 if (!w->journal) {
540                         w->journal = journal_ref;
541                         atomic_inc(w->journal);
542                 }
543         }
544
545         /* Force write if set is too big */
546         if (set_bytes(i) > PAGE_SIZE - 48 &&
547             !current->bio_list)
548                 bch_btree_node_write(b, NULL);
549 }
550
551 /*
552  * Btree in memory cache - allocation/freeing
553  * mca -> memory cache
554  */
555
556 #define mca_reserve(c)  (((c->root && c->root->level)           \
557                           ? c->root->level : 1) * 8 + 16)
558 #define mca_can_free(c)                                         \
559         max_t(int, 0, c->btree_cache_used - mca_reserve(c))
560
561 static void mca_data_free(struct btree *b)
562 {
563         BUG_ON(b->io_mutex.count != 1);
564
565         bch_btree_keys_free(&b->keys);
566
567         b->c->btree_cache_used--;
568         list_move(&b->list, &b->c->btree_cache_freed);
569 }
570
571 static void mca_bucket_free(struct btree *b)
572 {
573         BUG_ON(btree_node_dirty(b));
574
575         b->key.ptr[0] = 0;
576         hlist_del_init_rcu(&b->hash);
577         list_move(&b->list, &b->c->btree_cache_freeable);
578 }
579
580 static unsigned btree_order(struct bkey *k)
581 {
582         return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583 }
584
585 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586 {
587         if (!bch_btree_keys_alloc(&b->keys,
588                                   max_t(unsigned,
589                                         ilog2(b->c->btree_pages),
590                                         btree_order(k)),
591                                   gfp)) {
592                 b->c->btree_cache_used++;
593                 list_move(&b->list, &b->c->btree_cache);
594         } else {
595                 list_move(&b->list, &b->c->btree_cache_freed);
596         }
597 }
598
599 static struct btree *mca_bucket_alloc(struct cache_set *c,
600                                       struct bkey *k, gfp_t gfp)
601 {
602         struct btree *b = kzalloc(sizeof(struct btree), gfp);
603         if (!b)
604                 return NULL;
605
606         init_rwsem(&b->lock);
607         lockdep_set_novalidate_class(&b->lock);
608         mutex_init(&b->write_lock);
609         lockdep_set_novalidate_class(&b->write_lock);
610         INIT_LIST_HEAD(&b->list);
611         INIT_DELAYED_WORK(&b->work, btree_node_write_work);
612         b->c = c;
613         sema_init(&b->io_mutex, 1);
614
615         mca_data_alloc(b, k, gfp);
616         return b;
617 }
618
619 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
620 {
621         struct closure cl;
622
623         closure_init_stack(&cl);
624         lockdep_assert_held(&b->c->bucket_lock);
625
626         if (!down_write_trylock(&b->lock))
627                 return -ENOMEM;
628
629         BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
630
631         if (b->keys.page_order < min_order)
632                 goto out_unlock;
633
634         if (!flush) {
635                 if (btree_node_dirty(b))
636                         goto out_unlock;
637
638                 if (down_trylock(&b->io_mutex))
639                         goto out_unlock;
640                 up(&b->io_mutex);
641         }
642
643         mutex_lock(&b->write_lock);
644         if (btree_node_dirty(b))
645                 __bch_btree_node_write(b, &cl);
646         mutex_unlock(&b->write_lock);
647
648         closure_sync(&cl);
649
650         /* wait for any in flight btree write */
651         down(&b->io_mutex);
652         up(&b->io_mutex);
653
654         return 0;
655 out_unlock:
656         rw_unlock(true, b);
657         return -ENOMEM;
658 }
659
660 static unsigned long bch_mca_scan(struct shrinker *shrink,
661                                   struct shrink_control *sc)
662 {
663         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664         struct btree *b, *t;
665         unsigned long i, nr = sc->nr_to_scan;
666         unsigned long freed = 0;
667
668         if (c->shrinker_disabled)
669                 return SHRINK_STOP;
670
671         if (c->btree_cache_alloc_lock)
672                 return SHRINK_STOP;
673
674         /* Return -1 if we can't do anything right now */
675         if (sc->gfp_mask & __GFP_IO)
676                 mutex_lock(&c->bucket_lock);
677         else if (!mutex_trylock(&c->bucket_lock))
678                 return -1;
679
680         /*
681          * It's _really_ critical that we don't free too many btree nodes - we
682          * have to always leave ourselves a reserve. The reserve is how we
683          * guarantee that allocating memory for a new btree node can always
684          * succeed, so that inserting keys into the btree can always succeed and
685          * IO can always make forward progress:
686          */
687         nr /= c->btree_pages;
688         nr = min_t(unsigned long, nr, mca_can_free(c));
689
690         i = 0;
691         list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
692                 if (freed >= nr)
693                         break;
694
695                 if (++i > 3 &&
696                     !mca_reap(b, 0, false)) {
697                         mca_data_free(b);
698                         rw_unlock(true, b);
699                         freed++;
700                 }
701         }
702
703         for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
704                 if (list_empty(&c->btree_cache))
705                         goto out;
706
707                 b = list_first_entry(&c->btree_cache, struct btree, list);
708                 list_rotate_left(&c->btree_cache);
709
710                 if (!b->accessed &&
711                     !mca_reap(b, 0, false)) {
712                         mca_bucket_free(b);
713                         mca_data_free(b);
714                         rw_unlock(true, b);
715                         freed++;
716                 } else
717                         b->accessed = 0;
718         }
719 out:
720         mutex_unlock(&c->bucket_lock);
721         return freed;
722 }
723
724 static unsigned long bch_mca_count(struct shrinker *shrink,
725                                    struct shrink_control *sc)
726 {
727         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
728
729         if (c->shrinker_disabled)
730                 return 0;
731
732         if (c->btree_cache_alloc_lock)
733                 return 0;
734
735         return mca_can_free(c) * c->btree_pages;
736 }
737
738 void bch_btree_cache_free(struct cache_set *c)
739 {
740         struct btree *b;
741         struct closure cl;
742         closure_init_stack(&cl);
743
744         if (c->shrink.list.next)
745                 unregister_shrinker(&c->shrink);
746
747         mutex_lock(&c->bucket_lock);
748
749 #ifdef CONFIG_BCACHE_DEBUG
750         if (c->verify_data)
751                 list_move(&c->verify_data->list, &c->btree_cache);
752
753         free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
754 #endif
755
756         list_splice(&c->btree_cache_freeable,
757                     &c->btree_cache);
758
759         while (!list_empty(&c->btree_cache)) {
760                 b = list_first_entry(&c->btree_cache, struct btree, list);
761
762                 if (btree_node_dirty(b))
763                         btree_complete_write(b, btree_current_write(b));
764                 clear_bit(BTREE_NODE_dirty, &b->flags);
765
766                 mca_data_free(b);
767         }
768
769         while (!list_empty(&c->btree_cache_freed)) {
770                 b = list_first_entry(&c->btree_cache_freed,
771                                      struct btree, list);
772                 list_del(&b->list);
773                 cancel_delayed_work_sync(&b->work);
774                 kfree(b);
775         }
776
777         mutex_unlock(&c->bucket_lock);
778 }
779
780 int bch_btree_cache_alloc(struct cache_set *c)
781 {
782         unsigned i;
783
784         for (i = 0; i < mca_reserve(c); i++)
785                 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
786                         return -ENOMEM;
787
788         list_splice_init(&c->btree_cache,
789                          &c->btree_cache_freeable);
790
791 #ifdef CONFIG_BCACHE_DEBUG
792         mutex_init(&c->verify_lock);
793
794         c->verify_ondisk = (void *)
795                 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
796
797         c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
798
799         if (c->verify_data &&
800             c->verify_data->keys.set->data)
801                 list_del_init(&c->verify_data->list);
802         else
803                 c->verify_data = NULL;
804 #endif
805
806         c->shrink.count_objects = bch_mca_count;
807         c->shrink.scan_objects = bch_mca_scan;
808         c->shrink.seeks = 4;
809         c->shrink.batch = c->btree_pages * 2;
810         register_shrinker(&c->shrink);
811
812         return 0;
813 }
814
815 /* Btree in memory cache - hash table */
816
817 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
818 {
819         return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
820 }
821
822 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
823 {
824         struct btree *b;
825
826         rcu_read_lock();
827         hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
828                 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
829                         goto out;
830         b = NULL;
831 out:
832         rcu_read_unlock();
833         return b;
834 }
835
836 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
837 {
838         struct task_struct *old;
839
840         old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
841         if (old && old != current) {
842                 if (op)
843                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
844                                         TASK_UNINTERRUPTIBLE);
845                 return -EINTR;
846         }
847
848         return 0;
849 }
850
851 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
852                                      struct bkey *k)
853 {
854         struct btree *b;
855
856         trace_bcache_btree_cache_cannibalize(c);
857
858         if (mca_cannibalize_lock(c, op))
859                 return ERR_PTR(-EINTR);
860
861         list_for_each_entry_reverse(b, &c->btree_cache, list)
862                 if (!mca_reap(b, btree_order(k), false))
863                         return b;
864
865         list_for_each_entry_reverse(b, &c->btree_cache, list)
866                 if (!mca_reap(b, btree_order(k), true))
867                         return b;
868
869         WARN(1, "btree cache cannibalize failed\n");
870         return ERR_PTR(-ENOMEM);
871 }
872
873 /*
874  * We can only have one thread cannibalizing other cached btree nodes at a time,
875  * or we'll deadlock. We use an open coded mutex to ensure that, which a
876  * cannibalize_bucket() will take. This means every time we unlock the root of
877  * the btree, we need to release this lock if we have it held.
878  */
879 static void bch_cannibalize_unlock(struct cache_set *c)
880 {
881         if (c->btree_cache_alloc_lock == current) {
882                 c->btree_cache_alloc_lock = NULL;
883                 wake_up(&c->btree_cache_wait);
884         }
885 }
886
887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
888                                struct bkey *k, int level)
889 {
890         struct btree *b;
891
892         BUG_ON(current->bio_list);
893
894         lockdep_assert_held(&c->bucket_lock);
895
896         if (mca_find(c, k))
897                 return NULL;
898
899         /* btree_free() doesn't free memory; it sticks the node on the end of
900          * the list. Check if there's any freed nodes there:
901          */
902         list_for_each_entry(b, &c->btree_cache_freeable, list)
903                 if (!mca_reap(b, btree_order(k), false))
904                         goto out;
905
906         /* We never free struct btree itself, just the memory that holds the on
907          * disk node. Check the freed list before allocating a new one:
908          */
909         list_for_each_entry(b, &c->btree_cache_freed, list)
910                 if (!mca_reap(b, 0, false)) {
911                         mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
912                         if (!b->keys.set[0].data)
913                                 goto err;
914                         else
915                                 goto out;
916                 }
917
918         b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
919         if (!b)
920                 goto err;
921
922         BUG_ON(!down_write_trylock(&b->lock));
923         if (!b->keys.set->data)
924                 goto err;
925 out:
926         BUG_ON(b->io_mutex.count != 1);
927
928         bkey_copy(&b->key, k);
929         list_move(&b->list, &c->btree_cache);
930         hlist_del_init_rcu(&b->hash);
931         hlist_add_head_rcu(&b->hash, mca_hash(c, k));
932
933         lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
934         b->parent       = (void *) ~0UL;
935         b->flags        = 0;
936         b->written      = 0;
937         b->level        = level;
938
939         if (!b->level)
940                 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
941                                     &b->c->expensive_debug_checks);
942         else
943                 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
944                                     &b->c->expensive_debug_checks);
945
946         return b;
947 err:
948         if (b)
949                 rw_unlock(true, b);
950
951         b = mca_cannibalize(c, op, k);
952         if (!IS_ERR(b))
953                 goto out;
954
955         return b;
956 }
957
958 /**
959  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
960  * in from disk if necessary.
961  *
962  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
963  *
964  * The btree node will have either a read or a write lock held, depending on
965  * level and op->lock.
966  */
967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
968                                  struct bkey *k, int level, bool write,
969                                  struct btree *parent)
970 {
971         int i = 0;
972         struct btree *b;
973
974         BUG_ON(level < 0);
975 retry:
976         b = mca_find(c, k);
977
978         if (!b) {
979                 if (current->bio_list)
980                         return ERR_PTR(-EAGAIN);
981
982                 mutex_lock(&c->bucket_lock);
983                 b = mca_alloc(c, op, k, level);
984                 mutex_unlock(&c->bucket_lock);
985
986                 if (!b)
987                         goto retry;
988                 if (IS_ERR(b))
989                         return b;
990
991                 bch_btree_node_read(b);
992
993                 if (!write)
994                         downgrade_write(&b->lock);
995         } else {
996                 rw_lock(write, b, level);
997                 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
998                         rw_unlock(write, b);
999                         goto retry;
1000                 }
1001                 BUG_ON(b->level != level);
1002         }
1003
1004         b->parent = parent;
1005         b->accessed = 1;
1006
1007         for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1008                 prefetch(b->keys.set[i].tree);
1009                 prefetch(b->keys.set[i].data);
1010         }
1011
1012         for (; i <= b->keys.nsets; i++)
1013                 prefetch(b->keys.set[i].data);
1014
1015         if (btree_node_io_error(b)) {
1016                 rw_unlock(write, b);
1017                 return ERR_PTR(-EIO);
1018         }
1019
1020         BUG_ON(!b->written);
1021
1022         return b;
1023 }
1024
1025 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1026 {
1027         struct btree *b;
1028
1029         mutex_lock(&parent->c->bucket_lock);
1030         b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1031         mutex_unlock(&parent->c->bucket_lock);
1032
1033         if (!IS_ERR_OR_NULL(b)) {
1034                 b->parent = parent;
1035                 bch_btree_node_read(b);
1036                 rw_unlock(true, b);
1037         }
1038 }
1039
1040 /* Btree alloc */
1041
1042 static void btree_node_free(struct btree *b)
1043 {
1044         trace_bcache_btree_node_free(b);
1045
1046         BUG_ON(b == b->c->root);
1047
1048         mutex_lock(&b->write_lock);
1049
1050         if (btree_node_dirty(b))
1051                 btree_complete_write(b, btree_current_write(b));
1052         clear_bit(BTREE_NODE_dirty, &b->flags);
1053
1054         mutex_unlock(&b->write_lock);
1055
1056         cancel_delayed_work(&b->work);
1057
1058         mutex_lock(&b->c->bucket_lock);
1059         bch_bucket_free(b->c, &b->key);
1060         mca_bucket_free(b);
1061         mutex_unlock(&b->c->bucket_lock);
1062 }
1063
1064 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1065                                      int level, bool wait,
1066                                      struct btree *parent)
1067 {
1068         BKEY_PADDED(key) k;
1069         struct btree *b = ERR_PTR(-EAGAIN);
1070
1071         mutex_lock(&c->bucket_lock);
1072 retry:
1073         if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1074                 goto err;
1075
1076         bkey_put(c, &k.key);
1077         SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1078
1079         b = mca_alloc(c, op, &k.key, level);
1080         if (IS_ERR(b))
1081                 goto err_free;
1082
1083         if (!b) {
1084                 cache_bug(c,
1085                         "Tried to allocate bucket that was in btree cache");
1086                 goto retry;
1087         }
1088
1089         b->accessed = 1;
1090         b->parent = parent;
1091         bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1092
1093         mutex_unlock(&c->bucket_lock);
1094
1095         trace_bcache_btree_node_alloc(b);
1096         return b;
1097 err_free:
1098         bch_bucket_free(c, &k.key);
1099 err:
1100         mutex_unlock(&c->bucket_lock);
1101
1102         trace_bcache_btree_node_alloc_fail(c);
1103         return b;
1104 }
1105
1106 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1107                                           struct btree_op *op, int level,
1108                                           struct btree *parent)
1109 {
1110         return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1111 }
1112
1113 static struct btree *btree_node_alloc_replacement(struct btree *b,
1114                                                   struct btree_op *op)
1115 {
1116         struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1117         if (!IS_ERR_OR_NULL(n)) {
1118                 mutex_lock(&n->write_lock);
1119                 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1120                 bkey_copy_key(&n->key, &b->key);
1121                 mutex_unlock(&n->write_lock);
1122         }
1123
1124         return n;
1125 }
1126
1127 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1128 {
1129         unsigned i;
1130
1131         mutex_lock(&b->c->bucket_lock);
1132
1133         atomic_inc(&b->c->prio_blocked);
1134
1135         bkey_copy(k, &b->key);
1136         bkey_copy_key(k, &ZERO_KEY);
1137
1138         for (i = 0; i < KEY_PTRS(k); i++)
1139                 SET_PTR_GEN(k, i,
1140                             bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1141                                         PTR_BUCKET(b->c, &b->key, i)));
1142
1143         mutex_unlock(&b->c->bucket_lock);
1144 }
1145
1146 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1147 {
1148         struct cache_set *c = b->c;
1149         struct cache *ca;
1150         unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1151
1152         mutex_lock(&c->bucket_lock);
1153
1154         for_each_cache(ca, c, i)
1155                 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1156                         if (op)
1157                                 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1158                                                 TASK_UNINTERRUPTIBLE);
1159                         mutex_unlock(&c->bucket_lock);
1160                         return -EINTR;
1161                 }
1162
1163         mutex_unlock(&c->bucket_lock);
1164
1165         return mca_cannibalize_lock(b->c, op);
1166 }
1167
1168 /* Garbage collection */
1169
1170 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1171                                     struct bkey *k)
1172 {
1173         uint8_t stale = 0;
1174         unsigned i;
1175         struct bucket *g;
1176
1177         /*
1178          * ptr_invalid() can't return true for the keys that mark btree nodes as
1179          * freed, but since ptr_bad() returns true we'll never actually use them
1180          * for anything and thus we don't want mark their pointers here
1181          */
1182         if (!bkey_cmp(k, &ZERO_KEY))
1183                 return stale;
1184
1185         for (i = 0; i < KEY_PTRS(k); i++) {
1186                 if (!ptr_available(c, k, i))
1187                         continue;
1188
1189                 g = PTR_BUCKET(c, k, i);
1190
1191                 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1192                         g->last_gc = PTR_GEN(k, i);
1193
1194                 if (ptr_stale(c, k, i)) {
1195                         stale = max(stale, ptr_stale(c, k, i));
1196                         continue;
1197                 }
1198
1199                 cache_bug_on(GC_MARK(g) &&
1200                              (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1201                              c, "inconsistent ptrs: mark = %llu, level = %i",
1202                              GC_MARK(g), level);
1203
1204                 if (level)
1205                         SET_GC_MARK(g, GC_MARK_METADATA);
1206                 else if (KEY_DIRTY(k))
1207                         SET_GC_MARK(g, GC_MARK_DIRTY);
1208                 else if (!GC_MARK(g))
1209                         SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1210
1211                 /* guard against overflow */
1212                 SET_GC_SECTORS_USED(g, min_t(unsigned,
1213                                              GC_SECTORS_USED(g) + KEY_SIZE(k),
1214                                              MAX_GC_SECTORS_USED));
1215
1216                 BUG_ON(!GC_SECTORS_USED(g));
1217         }
1218
1219         return stale;
1220 }
1221
1222 #define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1223
1224 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1225 {
1226         unsigned i;
1227
1228         for (i = 0; i < KEY_PTRS(k); i++)
1229                 if (ptr_available(c, k, i) &&
1230                     !ptr_stale(c, k, i)) {
1231                         struct bucket *b = PTR_BUCKET(c, k, i);
1232
1233                         b->gen = PTR_GEN(k, i);
1234
1235                         if (level && bkey_cmp(k, &ZERO_KEY))
1236                                 b->prio = BTREE_PRIO;
1237                         else if (!level && b->prio == BTREE_PRIO)
1238                                 b->prio = INITIAL_PRIO;
1239                 }
1240
1241         __bch_btree_mark_key(c, level, k);
1242 }
1243
1244 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1245 {
1246         uint8_t stale = 0;
1247         unsigned keys = 0, good_keys = 0;
1248         struct bkey *k;
1249         struct btree_iter iter;
1250         struct bset_tree *t;
1251
1252         gc->nodes++;
1253
1254         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1255                 stale = max(stale, btree_mark_key(b, k));
1256                 keys++;
1257
1258                 if (bch_ptr_bad(&b->keys, k))
1259                         continue;
1260
1261                 gc->key_bytes += bkey_u64s(k);
1262                 gc->nkeys++;
1263                 good_keys++;
1264
1265                 gc->data += KEY_SIZE(k);
1266         }
1267
1268         for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1269                 btree_bug_on(t->size &&
1270                              bset_written(&b->keys, t) &&
1271                              bkey_cmp(&b->key, &t->end) < 0,
1272                              b, "found short btree key in gc");
1273
1274         if (b->c->gc_always_rewrite)
1275                 return true;
1276
1277         if (stale > 10)
1278                 return true;
1279
1280         if ((keys - good_keys) * 2 > keys)
1281                 return true;
1282
1283         return false;
1284 }
1285
1286 #define GC_MERGE_NODES  4U
1287
1288 struct gc_merge_info {
1289         struct btree    *b;
1290         unsigned        keys;
1291 };
1292
1293 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1294                                  struct keylist *, atomic_t *, struct bkey *);
1295
1296 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1297                              struct gc_stat *gc, struct gc_merge_info *r)
1298 {
1299         unsigned i, nodes = 0, keys = 0, blocks;
1300         struct btree *new_nodes[GC_MERGE_NODES];
1301         struct keylist keylist;
1302         struct closure cl;
1303         struct bkey *k;
1304
1305         bch_keylist_init(&keylist);
1306
1307         if (btree_check_reserve(b, NULL))
1308                 return 0;
1309
1310         memset(new_nodes, 0, sizeof(new_nodes));
1311         closure_init_stack(&cl);
1312
1313         while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1314                 keys += r[nodes++].keys;
1315
1316         blocks = btree_default_blocks(b->c) * 2 / 3;
1317
1318         if (nodes < 2 ||
1319             __set_blocks(b->keys.set[0].data, keys,
1320                          block_bytes(b->c)) > blocks * (nodes - 1))
1321                 return 0;
1322
1323         for (i = 0; i < nodes; i++) {
1324                 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1325                 if (IS_ERR_OR_NULL(new_nodes[i]))
1326                         goto out_nocoalesce;
1327         }
1328
1329         /*
1330          * We have to check the reserve here, after we've allocated our new
1331          * nodes, to make sure the insert below will succeed - we also check
1332          * before as an optimization to potentially avoid a bunch of expensive
1333          * allocs/sorts
1334          */
1335         if (btree_check_reserve(b, NULL))
1336                 goto out_nocoalesce;
1337
1338         for (i = 0; i < nodes; i++)
1339                 mutex_lock(&new_nodes[i]->write_lock);
1340
1341         for (i = nodes - 1; i > 0; --i) {
1342                 struct bset *n1 = btree_bset_first(new_nodes[i]);
1343                 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1344                 struct bkey *k, *last = NULL;
1345
1346                 keys = 0;
1347
1348                 if (i > 1) {
1349                         for (k = n2->start;
1350                              k < bset_bkey_last(n2);
1351                              k = bkey_next(k)) {
1352                                 if (__set_blocks(n1, n1->keys + keys +
1353                                                  bkey_u64s(k),
1354                                                  block_bytes(b->c)) > blocks)
1355                                         break;
1356
1357                                 last = k;
1358                                 keys += bkey_u64s(k);
1359                         }
1360                 } else {
1361                         /*
1362                          * Last node we're not getting rid of - we're getting
1363                          * rid of the node at r[0]. Have to try and fit all of
1364                          * the remaining keys into this node; we can't ensure
1365                          * they will always fit due to rounding and variable
1366                          * length keys (shouldn't be possible in practice,
1367                          * though)
1368                          */
1369                         if (__set_blocks(n1, n1->keys + n2->keys,
1370                                          block_bytes(b->c)) >
1371                             btree_blocks(new_nodes[i]))
1372                                 goto out_nocoalesce;
1373
1374                         keys = n2->keys;
1375                         /* Take the key of the node we're getting rid of */
1376                         last = &r->b->key;
1377                 }
1378
1379                 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1380                        btree_blocks(new_nodes[i]));
1381
1382                 if (last)
1383                         bkey_copy_key(&new_nodes[i]->key, last);
1384
1385                 memcpy(bset_bkey_last(n1),
1386                        n2->start,
1387                        (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1388
1389                 n1->keys += keys;
1390                 r[i].keys = n1->keys;
1391
1392                 memmove(n2->start,
1393                         bset_bkey_idx(n2, keys),
1394                         (void *) bset_bkey_last(n2) -
1395                         (void *) bset_bkey_idx(n2, keys));
1396
1397                 n2->keys -= keys;
1398
1399                 if (__bch_keylist_realloc(&keylist,
1400                                           bkey_u64s(&new_nodes[i]->key)))
1401                         goto out_nocoalesce;
1402
1403                 bch_btree_node_write(new_nodes[i], &cl);
1404                 bch_keylist_add(&keylist, &new_nodes[i]->key);
1405         }
1406
1407         for (i = 0; i < nodes; i++)
1408                 mutex_unlock(&new_nodes[i]->write_lock);
1409
1410         closure_sync(&cl);
1411
1412         /* We emptied out this node */
1413         BUG_ON(btree_bset_first(new_nodes[0])->keys);
1414         btree_node_free(new_nodes[0]);
1415         rw_unlock(true, new_nodes[0]);
1416         new_nodes[0] = NULL;
1417
1418         for (i = 0; i < nodes; i++) {
1419                 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1420                         goto out_nocoalesce;
1421
1422                 make_btree_freeing_key(r[i].b, keylist.top);
1423                 bch_keylist_push(&keylist);
1424         }
1425
1426         bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1427         BUG_ON(!bch_keylist_empty(&keylist));
1428
1429         for (i = 0; i < nodes; i++) {
1430                 btree_node_free(r[i].b);
1431                 rw_unlock(true, r[i].b);
1432
1433                 r[i].b = new_nodes[i];
1434         }
1435
1436         memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1437         r[nodes - 1].b = ERR_PTR(-EINTR);
1438
1439         trace_bcache_btree_gc_coalesce(nodes);
1440         gc->nodes--;
1441
1442         bch_keylist_free(&keylist);
1443
1444         /* Invalidated our iterator */
1445         return -EINTR;
1446
1447 out_nocoalesce:
1448         closure_sync(&cl);
1449         bch_keylist_free(&keylist);
1450
1451         while ((k = bch_keylist_pop(&keylist)))
1452                 if (!bkey_cmp(k, &ZERO_KEY))
1453                         atomic_dec(&b->c->prio_blocked);
1454
1455         for (i = 0; i < nodes; i++)
1456                 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1457                         btree_node_free(new_nodes[i]);
1458                         rw_unlock(true, new_nodes[i]);
1459                 }
1460         return 0;
1461 }
1462
1463 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1464                                  struct btree *replace)
1465 {
1466         struct keylist keys;
1467         struct btree *n;
1468
1469         if (btree_check_reserve(b, NULL))
1470                 return 0;
1471
1472         n = btree_node_alloc_replacement(replace, NULL);
1473
1474         /* recheck reserve after allocating replacement node */
1475         if (btree_check_reserve(b, NULL)) {
1476                 btree_node_free(n);
1477                 rw_unlock(true, n);
1478                 return 0;
1479         }
1480
1481         bch_btree_node_write_sync(n);
1482
1483         bch_keylist_init(&keys);
1484         bch_keylist_add(&keys, &n->key);
1485
1486         make_btree_freeing_key(replace, keys.top);
1487         bch_keylist_push(&keys);
1488
1489         bch_btree_insert_node(b, op, &keys, NULL, NULL);
1490         BUG_ON(!bch_keylist_empty(&keys));
1491
1492         btree_node_free(replace);
1493         rw_unlock(true, n);
1494
1495         /* Invalidated our iterator */
1496         return -EINTR;
1497 }
1498
1499 static unsigned btree_gc_count_keys(struct btree *b)
1500 {
1501         struct bkey *k;
1502         struct btree_iter iter;
1503         unsigned ret = 0;
1504
1505         for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1506                 ret += bkey_u64s(k);
1507
1508         return ret;
1509 }
1510
1511 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1512                             struct closure *writes, struct gc_stat *gc)
1513 {
1514         int ret = 0;
1515         bool should_rewrite;
1516         struct bkey *k;
1517         struct btree_iter iter;
1518         struct gc_merge_info r[GC_MERGE_NODES];
1519         struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1520
1521         bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1522
1523         for (i = r; i < r + ARRAY_SIZE(r); i++)
1524                 i->b = ERR_PTR(-EINTR);
1525
1526         while (1) {
1527                 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1528                 if (k) {
1529                         r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1530                                                   true, b);
1531                         if (IS_ERR(r->b)) {
1532                                 ret = PTR_ERR(r->b);
1533                                 break;
1534                         }
1535
1536                         r->keys = btree_gc_count_keys(r->b);
1537
1538                         ret = btree_gc_coalesce(b, op, gc, r);
1539                         if (ret)
1540                                 break;
1541                 }
1542
1543                 if (!last->b)
1544                         break;
1545
1546                 if (!IS_ERR(last->b)) {
1547                         should_rewrite = btree_gc_mark_node(last->b, gc);
1548                         if (should_rewrite) {
1549                                 ret = btree_gc_rewrite_node(b, op, last->b);
1550                                 if (ret)
1551                                         break;
1552                         }
1553
1554                         if (last->b->level) {
1555                                 ret = btree_gc_recurse(last->b, op, writes, gc);
1556                                 if (ret)
1557                                         break;
1558                         }
1559
1560                         bkey_copy_key(&b->c->gc_done, &last->b->key);
1561
1562                         /*
1563                          * Must flush leaf nodes before gc ends, since replace
1564                          * operations aren't journalled
1565                          */
1566                         mutex_lock(&last->b->write_lock);
1567                         if (btree_node_dirty(last->b))
1568                                 bch_btree_node_write(last->b, writes);
1569                         mutex_unlock(&last->b->write_lock);
1570                         rw_unlock(true, last->b);
1571                 }
1572
1573                 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1574                 r->b = NULL;
1575
1576                 if (need_resched()) {
1577                         ret = -EAGAIN;
1578                         break;
1579                 }
1580         }
1581
1582         for (i = r; i < r + ARRAY_SIZE(r); i++)
1583                 if (!IS_ERR_OR_NULL(i->b)) {
1584                         mutex_lock(&i->b->write_lock);
1585                         if (btree_node_dirty(i->b))
1586                                 bch_btree_node_write(i->b, writes);
1587                         mutex_unlock(&i->b->write_lock);
1588                         rw_unlock(true, i->b);
1589                 }
1590
1591         return ret;
1592 }
1593
1594 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1595                              struct closure *writes, struct gc_stat *gc)
1596 {
1597         struct btree *n = NULL;
1598         int ret = 0;
1599         bool should_rewrite;
1600
1601         should_rewrite = btree_gc_mark_node(b, gc);
1602         if (should_rewrite) {
1603                 n = btree_node_alloc_replacement(b, NULL);
1604
1605                 if (!IS_ERR_OR_NULL(n)) {
1606                         bch_btree_node_write_sync(n);
1607
1608                         bch_btree_set_root(n);
1609                         btree_node_free(b);
1610                         rw_unlock(true, n);
1611
1612                         return -EINTR;
1613                 }
1614         }
1615
1616         __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1617
1618         if (b->level) {
1619                 ret = btree_gc_recurse(b, op, writes, gc);
1620                 if (ret)
1621                         return ret;
1622         }
1623
1624         bkey_copy_key(&b->c->gc_done, &b->key);
1625
1626         return ret;
1627 }
1628
1629 static void btree_gc_start(struct cache_set *c)
1630 {
1631         struct cache *ca;
1632         struct bucket *b;
1633         unsigned i;
1634
1635         if (!c->gc_mark_valid)
1636                 return;
1637
1638         mutex_lock(&c->bucket_lock);
1639
1640         c->gc_mark_valid = 0;
1641         c->gc_done = ZERO_KEY;
1642
1643         for_each_cache(ca, c, i)
1644                 for_each_bucket(b, ca) {
1645                         b->last_gc = b->gen;
1646                         if (!atomic_read(&b->pin)) {
1647                                 SET_GC_MARK(b, 0);
1648                                 SET_GC_SECTORS_USED(b, 0);
1649                         }
1650                 }
1651
1652         mutex_unlock(&c->bucket_lock);
1653 }
1654
1655 static size_t bch_btree_gc_finish(struct cache_set *c)
1656 {
1657         size_t available = 0;
1658         struct bucket *b;
1659         struct cache *ca;
1660         unsigned i;
1661
1662         mutex_lock(&c->bucket_lock);
1663
1664         set_gc_sectors(c);
1665         c->gc_mark_valid = 1;
1666         c->need_gc      = 0;
1667
1668         for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1669                 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1670                             GC_MARK_METADATA);
1671
1672         /* don't reclaim buckets to which writeback keys point */
1673         rcu_read_lock();
1674         for (i = 0; i < c->nr_uuids; i++) {
1675                 struct bcache_device *d = c->devices[i];
1676                 struct cached_dev *dc;
1677                 struct keybuf_key *w, *n;
1678                 unsigned j;
1679
1680                 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1681                         continue;
1682                 dc = container_of(d, struct cached_dev, disk);
1683
1684                 spin_lock(&dc->writeback_keys.lock);
1685                 rbtree_postorder_for_each_entry_safe(w, n,
1686                                         &dc->writeback_keys.keys, node)
1687                         for (j = 0; j < KEY_PTRS(&w->key); j++)
1688                                 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1689                                             GC_MARK_DIRTY);
1690                 spin_unlock(&dc->writeback_keys.lock);
1691         }
1692         rcu_read_unlock();
1693
1694         for_each_cache(ca, c, i) {
1695                 uint64_t *i;
1696
1697                 ca->invalidate_needs_gc = 0;
1698
1699                 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1700                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1701
1702                 for (i = ca->prio_buckets;
1703                      i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1704                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1705
1706                 for_each_bucket(b, ca) {
1707                         c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1708
1709                         if (atomic_read(&b->pin))
1710                                 continue;
1711
1712                         BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1713
1714                         if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1715                                 available++;
1716                 }
1717         }
1718
1719         mutex_unlock(&c->bucket_lock);
1720         return available;
1721 }
1722
1723 static void bch_btree_gc(struct cache_set *c)
1724 {
1725         int ret;
1726         unsigned long available;
1727         struct gc_stat stats;
1728         struct closure writes;
1729         struct btree_op op;
1730         uint64_t start_time = local_clock();
1731
1732         trace_bcache_gc_start(c);
1733
1734         memset(&stats, 0, sizeof(struct gc_stat));
1735         closure_init_stack(&writes);
1736         bch_btree_op_init(&op, SHRT_MAX);
1737
1738         btree_gc_start(c);
1739
1740         do {
1741                 ret = btree_root(gc_root, c, &op, &writes, &stats);
1742                 closure_sync(&writes);
1743                 cond_resched();
1744
1745                 if (ret && ret != -EAGAIN)
1746                         pr_warn("gc failed!");
1747         } while (ret);
1748
1749         available = bch_btree_gc_finish(c);
1750         wake_up_allocators(c);
1751
1752         bch_time_stats_update(&c->btree_gc_time, start_time);
1753
1754         stats.key_bytes *= sizeof(uint64_t);
1755         stats.data      <<= 9;
1756         stats.in_use    = (c->nbuckets - available) * 100 / c->nbuckets;
1757         memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1758
1759         trace_bcache_gc_end(c);
1760
1761         bch_moving_gc(c);
1762 }
1763
1764 static int bch_gc_thread(void *arg)
1765 {
1766         struct cache_set *c = arg;
1767         struct cache *ca;
1768         unsigned i;
1769
1770         while (1) {
1771 again:
1772                 bch_btree_gc(c);
1773
1774                 set_current_state(TASK_INTERRUPTIBLE);
1775                 if (kthread_should_stop())
1776                         break;
1777
1778                 mutex_lock(&c->bucket_lock);
1779
1780                 for_each_cache(ca, c, i)
1781                         if (ca->invalidate_needs_gc) {
1782                                 mutex_unlock(&c->bucket_lock);
1783                                 set_current_state(TASK_RUNNING);
1784                                 goto again;
1785                         }
1786
1787                 mutex_unlock(&c->bucket_lock);
1788
1789                 schedule();
1790         }
1791
1792         return 0;
1793 }
1794
1795 int bch_gc_thread_start(struct cache_set *c)
1796 {
1797         c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1798         if (IS_ERR(c->gc_thread))
1799                 return PTR_ERR(c->gc_thread);
1800
1801         set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1802         return 0;
1803 }
1804
1805 /* Initial partial gc */
1806
1807 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1808 {
1809         int ret = 0;
1810         struct bkey *k, *p = NULL;
1811         struct btree_iter iter;
1812
1813         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1814                 bch_initial_mark_key(b->c, b->level, k);
1815
1816         bch_initial_mark_key(b->c, b->level + 1, &b->key);
1817
1818         if (b->level) {
1819                 bch_btree_iter_init(&b->keys, &iter, NULL);
1820
1821                 do {
1822                         k = bch_btree_iter_next_filter(&iter, &b->keys,
1823                                                        bch_ptr_bad);
1824                         if (k)
1825                                 btree_node_prefetch(b, k);
1826
1827                         if (p)
1828                                 ret = btree(check_recurse, p, b, op);
1829
1830                         p = k;
1831                 } while (p && !ret);
1832         }
1833
1834         return ret;
1835 }
1836
1837 int bch_btree_check(struct cache_set *c)
1838 {
1839         struct btree_op op;
1840
1841         bch_btree_op_init(&op, SHRT_MAX);
1842
1843         return btree_root(check_recurse, c, &op);
1844 }
1845
1846 void bch_initial_gc_finish(struct cache_set *c)
1847 {
1848         struct cache *ca;
1849         struct bucket *b;
1850         unsigned i;
1851
1852         bch_btree_gc_finish(c);
1853
1854         mutex_lock(&c->bucket_lock);
1855
1856         /*
1857          * We need to put some unused buckets directly on the prio freelist in
1858          * order to get the allocator thread started - it needs freed buckets in
1859          * order to rewrite the prios and gens, and it needs to rewrite prios
1860          * and gens in order to free buckets.
1861          *
1862          * This is only safe for buckets that have no live data in them, which
1863          * there should always be some of.
1864          */
1865         for_each_cache(ca, c, i) {
1866                 for_each_bucket(b, ca) {
1867                         if (fifo_full(&ca->free[RESERVE_PRIO]))
1868                                 break;
1869
1870                         if (bch_can_invalidate_bucket(ca, b) &&
1871                             !GC_MARK(b)) {
1872                                 __bch_invalidate_one_bucket(ca, b);
1873                                 fifo_push(&ca->free[RESERVE_PRIO],
1874                                           b - ca->buckets);
1875                         }
1876                 }
1877         }
1878
1879         mutex_unlock(&c->bucket_lock);
1880 }
1881
1882 /* Btree insertion */
1883
1884 static bool btree_insert_key(struct btree *b, struct bkey *k,
1885                              struct bkey *replace_key)
1886 {
1887         unsigned status;
1888
1889         BUG_ON(bkey_cmp(k, &b->key) > 0);
1890
1891         status = bch_btree_insert_key(&b->keys, k, replace_key);
1892         if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1893                 bch_check_keys(&b->keys, "%u for %s", status,
1894                                replace_key ? "replace" : "insert");
1895
1896                 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1897                                               status);
1898                 return true;
1899         } else
1900                 return false;
1901 }
1902
1903 static size_t insert_u64s_remaining(struct btree *b)
1904 {
1905         long ret = bch_btree_keys_u64s_remaining(&b->keys);
1906
1907         /*
1908          * Might land in the middle of an existing extent and have to split it
1909          */
1910         if (b->keys.ops->is_extents)
1911                 ret -= KEY_MAX_U64S;
1912
1913         return max(ret, 0L);
1914 }
1915
1916 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1917                                   struct keylist *insert_keys,
1918                                   struct bkey *replace_key)
1919 {
1920         bool ret = false;
1921         int oldsize = bch_count_data(&b->keys);
1922
1923         while (!bch_keylist_empty(insert_keys)) {
1924                 struct bkey *k = insert_keys->keys;
1925
1926                 if (bkey_u64s(k) > insert_u64s_remaining(b))
1927                         break;
1928
1929                 if (bkey_cmp(k, &b->key) <= 0) {
1930                         if (!b->level)
1931                                 bkey_put(b->c, k);
1932
1933                         ret |= btree_insert_key(b, k, replace_key);
1934                         bch_keylist_pop_front(insert_keys);
1935                 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1936                         BKEY_PADDED(key) temp;
1937                         bkey_copy(&temp.key, insert_keys->keys);
1938
1939                         bch_cut_back(&b->key, &temp.key);
1940                         bch_cut_front(&b->key, insert_keys->keys);
1941
1942                         ret |= btree_insert_key(b, &temp.key, replace_key);
1943                         break;
1944                 } else {
1945                         break;
1946                 }
1947         }
1948
1949         if (!ret)
1950                 op->insert_collision = true;
1951
1952         BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1953
1954         BUG_ON(bch_count_data(&b->keys) < oldsize);
1955         return ret;
1956 }
1957
1958 static int btree_split(struct btree *b, struct btree_op *op,
1959                        struct keylist *insert_keys,
1960                        struct bkey *replace_key)
1961 {
1962         bool split;
1963         struct btree *n1, *n2 = NULL, *n3 = NULL;
1964         uint64_t start_time = local_clock();
1965         struct closure cl;
1966         struct keylist parent_keys;
1967
1968         closure_init_stack(&cl);
1969         bch_keylist_init(&parent_keys);
1970
1971         if (btree_check_reserve(b, op)) {
1972                 if (!b->level)
1973                         return -EINTR;
1974                 else
1975                         WARN(1, "insufficient reserve for split\n");
1976         }
1977
1978         n1 = btree_node_alloc_replacement(b, op);
1979         if (IS_ERR(n1))
1980                 goto err;
1981
1982         split = set_blocks(btree_bset_first(n1),
1983                            block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1984
1985         if (split) {
1986                 unsigned keys = 0;
1987
1988                 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1989
1990                 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1991                 if (IS_ERR(n2))
1992                         goto err_free1;
1993
1994                 if (!b->parent) {
1995                         n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1996                         if (IS_ERR(n3))
1997                                 goto err_free2;
1998                 }
1999
2000                 mutex_lock(&n1->write_lock);
2001                 mutex_lock(&n2->write_lock);
2002
2003                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2004
2005                 /*
2006                  * Has to be a linear search because we don't have an auxiliary
2007                  * search tree yet
2008                  */
2009
2010                 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2011                         keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2012                                                         keys));
2013
2014                 bkey_copy_key(&n1->key,
2015                               bset_bkey_idx(btree_bset_first(n1), keys));
2016                 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2017
2018                 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2019                 btree_bset_first(n1)->keys = keys;
2020
2021                 memcpy(btree_bset_first(n2)->start,
2022                        bset_bkey_last(btree_bset_first(n1)),
2023                        btree_bset_first(n2)->keys * sizeof(uint64_t));
2024
2025                 bkey_copy_key(&n2->key, &b->key);
2026
2027                 bch_keylist_add(&parent_keys, &n2->key);
2028                 bch_btree_node_write(n2, &cl);
2029                 mutex_unlock(&n2->write_lock);
2030                 rw_unlock(true, n2);
2031         } else {
2032                 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2033
2034                 mutex_lock(&n1->write_lock);
2035                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2036         }
2037
2038         bch_keylist_add(&parent_keys, &n1->key);
2039         bch_btree_node_write(n1, &cl);
2040         mutex_unlock(&n1->write_lock);
2041
2042         if (n3) {
2043                 /* Depth increases, make a new root */
2044                 mutex_lock(&n3->write_lock);
2045                 bkey_copy_key(&n3->key, &MAX_KEY);
2046                 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2047                 bch_btree_node_write(n3, &cl);
2048                 mutex_unlock(&n3->write_lock);
2049
2050                 closure_sync(&cl);
2051                 bch_btree_set_root(n3);
2052                 rw_unlock(true, n3);
2053         } else if (!b->parent) {
2054                 /* Root filled up but didn't need to be split */
2055                 closure_sync(&cl);
2056                 bch_btree_set_root(n1);
2057         } else {
2058                 /* Split a non root node */
2059                 closure_sync(&cl);
2060                 make_btree_freeing_key(b, parent_keys.top);
2061                 bch_keylist_push(&parent_keys);
2062
2063                 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2064                 BUG_ON(!bch_keylist_empty(&parent_keys));
2065         }
2066
2067         btree_node_free(b);
2068         rw_unlock(true, n1);
2069
2070         bch_time_stats_update(&b->c->btree_split_time, start_time);
2071
2072         return 0;
2073 err_free2:
2074         bkey_put(b->c, &n2->key);
2075         btree_node_free(n2);
2076         rw_unlock(true, n2);
2077 err_free1:
2078         bkey_put(b->c, &n1->key);
2079         btree_node_free(n1);
2080         rw_unlock(true, n1);
2081 err:
2082         WARN(1, "bcache: btree split failed (level %u)", b->level);
2083
2084         if (n3 == ERR_PTR(-EAGAIN) ||
2085             n2 == ERR_PTR(-EAGAIN) ||
2086             n1 == ERR_PTR(-EAGAIN))
2087                 return -EAGAIN;
2088
2089         return -ENOMEM;
2090 }
2091
2092 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2093                                  struct keylist *insert_keys,
2094                                  atomic_t *journal_ref,
2095                                  struct bkey *replace_key)
2096 {
2097         struct closure cl;
2098
2099         BUG_ON(b->level && replace_key);
2100
2101         closure_init_stack(&cl);
2102
2103         mutex_lock(&b->write_lock);
2104
2105         if (write_block(b) != btree_bset_last(b) &&
2106             b->keys.last_set_unwritten)
2107                 bch_btree_init_next(b); /* just wrote a set */
2108
2109         if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2110                 mutex_unlock(&b->write_lock);
2111                 goto split;
2112         }
2113
2114         BUG_ON(write_block(b) != btree_bset_last(b));
2115
2116         if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2117                 if (!b->level)
2118                         bch_btree_leaf_dirty(b, journal_ref);
2119                 else
2120                         bch_btree_node_write(b, &cl);
2121         }
2122
2123         mutex_unlock(&b->write_lock);
2124
2125         /* wait for btree node write if necessary, after unlock */
2126         closure_sync(&cl);
2127
2128         return 0;
2129 split:
2130         if (current->bio_list) {
2131                 op->lock = b->c->root->level + 1;
2132                 return -EAGAIN;
2133         } else if (op->lock <= b->c->root->level) {
2134                 op->lock = b->c->root->level + 1;
2135                 return -EINTR;
2136         } else {
2137                 /* Invalidated all iterators */
2138                 int ret = btree_split(b, op, insert_keys, replace_key);
2139
2140                 if (bch_keylist_empty(insert_keys))
2141                         return 0;
2142                 else if (!ret)
2143                         return -EINTR;
2144                 return ret;
2145         }
2146 }
2147
2148 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2149                                struct bkey *check_key)
2150 {
2151         int ret = -EINTR;
2152         uint64_t btree_ptr = b->key.ptr[0];
2153         unsigned long seq = b->seq;
2154         struct keylist insert;
2155         bool upgrade = op->lock == -1;
2156
2157         bch_keylist_init(&insert);
2158
2159         if (upgrade) {
2160                 rw_unlock(false, b);
2161                 rw_lock(true, b, b->level);
2162
2163                 if (b->key.ptr[0] != btree_ptr ||
2164                    b->seq != seq + 1) {
2165                        op->lock = b->level;
2166                         goto out;
2167                }
2168         }
2169
2170         SET_KEY_PTRS(check_key, 1);
2171         get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2172
2173         SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2174
2175         bch_keylist_add(&insert, check_key);
2176
2177         ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2178
2179         BUG_ON(!ret && !bch_keylist_empty(&insert));
2180 out:
2181         if (upgrade)
2182                 downgrade_write(&b->lock);
2183         return ret;
2184 }
2185
2186 struct btree_insert_op {
2187         struct btree_op op;
2188         struct keylist  *keys;
2189         atomic_t        *journal_ref;
2190         struct bkey     *replace_key;
2191 };
2192
2193 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2194 {
2195         struct btree_insert_op *op = container_of(b_op,
2196                                         struct btree_insert_op, op);
2197
2198         int ret = bch_btree_insert_node(b, &op->op, op->keys,
2199                                         op->journal_ref, op->replace_key);
2200         if (ret && !bch_keylist_empty(op->keys))
2201                 return ret;
2202         else
2203                 return MAP_DONE;
2204 }
2205
2206 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2207                      atomic_t *journal_ref, struct bkey *replace_key)
2208 {
2209         struct btree_insert_op op;
2210         int ret = 0;
2211
2212         BUG_ON(current->bio_list);
2213         BUG_ON(bch_keylist_empty(keys));
2214
2215         bch_btree_op_init(&op.op, 0);
2216         op.keys         = keys;
2217         op.journal_ref  = journal_ref;
2218         op.replace_key  = replace_key;
2219
2220         while (!ret && !bch_keylist_empty(keys)) {
2221                 op.op.lock = 0;
2222                 ret = bch_btree_map_leaf_nodes(&op.op, c,
2223                                                &START_KEY(keys->keys),
2224                                                btree_insert_fn);
2225         }
2226
2227         if (ret) {
2228                 struct bkey *k;
2229
2230                 pr_err("error %i", ret);
2231
2232                 while ((k = bch_keylist_pop(keys)))
2233                         bkey_put(c, k);
2234         } else if (op.op.insert_collision)
2235                 ret = -ESRCH;
2236
2237         return ret;
2238 }
2239
2240 void bch_btree_set_root(struct btree *b)
2241 {
2242         unsigned i;
2243         struct closure cl;
2244
2245         closure_init_stack(&cl);
2246
2247         trace_bcache_btree_set_root(b);
2248
2249         BUG_ON(!b->written);
2250
2251         for (i = 0; i < KEY_PTRS(&b->key); i++)
2252                 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2253
2254         mutex_lock(&b->c->bucket_lock);
2255         list_del_init(&b->list);
2256         mutex_unlock(&b->c->bucket_lock);
2257
2258         b->c->root = b;
2259
2260         bch_journal_meta(b->c, &cl);
2261         closure_sync(&cl);
2262 }
2263
2264 /* Map across nodes or keys */
2265
2266 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2267                                        struct bkey *from,
2268                                        btree_map_nodes_fn *fn, int flags)
2269 {
2270         int ret = MAP_CONTINUE;
2271
2272         if (b->level) {
2273                 struct bkey *k;
2274                 struct btree_iter iter;
2275
2276                 bch_btree_iter_init(&b->keys, &iter, from);
2277
2278                 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2279                                                        bch_ptr_bad))) {
2280                         ret = btree(map_nodes_recurse, k, b,
2281                                     op, from, fn, flags);
2282                         from = NULL;
2283
2284                         if (ret != MAP_CONTINUE)
2285                                 return ret;
2286                 }
2287         }
2288
2289         if (!b->level || flags == MAP_ALL_NODES)
2290                 ret = fn(op, b);
2291
2292         return ret;
2293 }
2294
2295 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2296                           struct bkey *from, btree_map_nodes_fn *fn, int flags)
2297 {
2298         return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2299 }
2300
2301 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2302                                       struct bkey *from, btree_map_keys_fn *fn,
2303                                       int flags)
2304 {
2305         int ret = MAP_CONTINUE;
2306         struct bkey *k;
2307         struct btree_iter iter;
2308
2309         bch_btree_iter_init(&b->keys, &iter, from);
2310
2311         while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2312                 ret = !b->level
2313                         ? fn(op, b, k)
2314                         : btree(map_keys_recurse, k, b, op, from, fn, flags);
2315                 from = NULL;
2316
2317                 if (ret != MAP_CONTINUE)
2318                         return ret;
2319         }
2320
2321         if (!b->level && (flags & MAP_END_KEY))
2322                 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2323                                      KEY_OFFSET(&b->key), 0));
2324
2325         return ret;
2326 }
2327
2328 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2329                        struct bkey *from, btree_map_keys_fn *fn, int flags)
2330 {
2331         return btree_root(map_keys_recurse, c, op, from, fn, flags);
2332 }
2333
2334 /* Keybuf code */
2335
2336 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2337 {
2338         /* Overlapping keys compare equal */
2339         if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2340                 return -1;
2341         if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2342                 return 1;
2343         return 0;
2344 }
2345
2346 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2347                                             struct keybuf_key *r)
2348 {
2349         return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2350 }
2351
2352 struct refill {
2353         struct btree_op op;
2354         unsigned        nr_found;
2355         struct keybuf   *buf;
2356         struct bkey     *end;
2357         keybuf_pred_fn  *pred;
2358 };
2359
2360 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2361                             struct bkey *k)
2362 {
2363         struct refill *refill = container_of(op, struct refill, op);
2364         struct keybuf *buf = refill->buf;
2365         int ret = MAP_CONTINUE;
2366
2367         if (bkey_cmp(k, refill->end) >= 0) {
2368                 ret = MAP_DONE;
2369                 goto out;
2370         }
2371
2372         if (!KEY_SIZE(k)) /* end key */
2373                 goto out;
2374
2375         if (refill->pred(buf, k)) {
2376                 struct keybuf_key *w;
2377
2378                 spin_lock(&buf->lock);
2379
2380                 w = array_alloc(&buf->freelist);
2381                 if (!w) {
2382                         spin_unlock(&buf->lock);
2383                         return MAP_DONE;
2384                 }
2385
2386                 w->private = NULL;
2387                 bkey_copy(&w->key, k);
2388
2389                 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2390                         array_free(&buf->freelist, w);
2391                 else
2392                         refill->nr_found++;
2393
2394                 if (array_freelist_empty(&buf->freelist))
2395                         ret = MAP_DONE;
2396
2397                 spin_unlock(&buf->lock);
2398         }
2399 out:
2400         buf->last_scanned = *k;
2401         return ret;
2402 }
2403
2404 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2405                        struct bkey *end, keybuf_pred_fn *pred)
2406 {
2407         struct bkey start = buf->last_scanned;
2408         struct refill refill;
2409
2410         cond_resched();
2411
2412         bch_btree_op_init(&refill.op, -1);
2413         refill.nr_found = 0;
2414         refill.buf      = buf;
2415         refill.end      = end;
2416         refill.pred     = pred;
2417
2418         bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2419                            refill_keybuf_fn, MAP_END_KEY);
2420
2421         trace_bcache_keyscan(refill.nr_found,
2422                              KEY_INODE(&start), KEY_OFFSET(&start),
2423                              KEY_INODE(&buf->last_scanned),
2424                              KEY_OFFSET(&buf->last_scanned));
2425
2426         spin_lock(&buf->lock);
2427
2428         if (!RB_EMPTY_ROOT(&buf->keys)) {
2429                 struct keybuf_key *w;
2430                 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2431                 buf->start      = START_KEY(&w->key);
2432
2433                 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2434                 buf->end        = w->key;
2435         } else {
2436                 buf->start      = MAX_KEY;
2437                 buf->end        = MAX_KEY;
2438         }
2439
2440         spin_unlock(&buf->lock);
2441 }
2442
2443 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2444 {
2445         rb_erase(&w->node, &buf->keys);
2446         array_free(&buf->freelist, w);
2447 }
2448
2449 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2450 {
2451         spin_lock(&buf->lock);
2452         __bch_keybuf_del(buf, w);
2453         spin_unlock(&buf->lock);
2454 }
2455
2456 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2457                                   struct bkey *end)
2458 {
2459         bool ret = false;
2460         struct keybuf_key *p, *w, s;
2461         s.key = *start;
2462
2463         if (bkey_cmp(end, &buf->start) <= 0 ||
2464             bkey_cmp(start, &buf->end) >= 0)
2465                 return false;
2466
2467         spin_lock(&buf->lock);
2468         w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2469
2470         while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2471                 p = w;
2472                 w = RB_NEXT(w, node);
2473
2474                 if (p->private)
2475                         ret = true;
2476                 else
2477                         __bch_keybuf_del(buf, p);
2478         }
2479
2480         spin_unlock(&buf->lock);
2481         return ret;
2482 }
2483
2484 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2485 {
2486         struct keybuf_key *w;
2487         spin_lock(&buf->lock);
2488
2489         w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2490
2491         while (w && w->private)
2492                 w = RB_NEXT(w, node);
2493
2494         if (w)
2495                 w->private = ERR_PTR(-EINTR);
2496
2497         spin_unlock(&buf->lock);
2498         return w;
2499 }
2500
2501 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2502                                           struct keybuf *buf,
2503                                           struct bkey *end,
2504                                           keybuf_pred_fn *pred)
2505 {
2506         struct keybuf_key *ret;
2507
2508         while (1) {
2509                 ret = bch_keybuf_next(buf);
2510                 if (ret)
2511                         break;
2512
2513                 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2514                         pr_debug("scan finished");
2515                         break;
2516                 }
2517
2518                 bch_refill_keybuf(c, buf, end, pred);
2519         }
2520
2521         return ret;
2522 }
2523
2524 void bch_keybuf_init(struct keybuf *buf)
2525 {
2526         buf->last_scanned       = MAX_KEY;
2527         buf->keys               = RB_ROOT;
2528
2529         spin_lock_init(&buf->lock);
2530         array_allocator_init(&buf->freelist);
2531 }