]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/bcache/super.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[karo-tx-linux.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/reboot.h>
23 #include <linux/sysfs.h>
24
25 MODULE_LICENSE("GPL");
26 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
27
28 static const char bcache_magic[] = {
29         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
30         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
31 };
32
33 static const char invalid_uuid[] = {
34         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
35         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
36 };
37
38 /* Default is -1; we skip past it for struct cached_dev's cache mode */
39 const char * const bch_cache_modes[] = {
40         "default",
41         "writethrough",
42         "writeback",
43         "writearound",
44         "none",
45         NULL
46 };
47
48 struct uuid_entry_v0 {
49         uint8_t         uuid[16];
50         uint8_t         label[32];
51         uint32_t        first_reg;
52         uint32_t        last_reg;
53         uint32_t        invalidated;
54         uint32_t        pad;
55 };
56
57 static struct kobject *bcache_kobj;
58 struct mutex bch_register_lock;
59 LIST_HEAD(bch_cache_sets);
60 static LIST_HEAD(uncached_devices);
61
62 static int bcache_major, bcache_minor;
63 static wait_queue_head_t unregister_wait;
64 struct workqueue_struct *bcache_wq;
65
66 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
67
68 static void bio_split_pool_free(struct bio_split_pool *p)
69 {
70         if (p->bio_split_hook)
71                 mempool_destroy(p->bio_split_hook);
72
73         if (p->bio_split)
74                 bioset_free(p->bio_split);
75 }
76
77 static int bio_split_pool_init(struct bio_split_pool *p)
78 {
79         p->bio_split = bioset_create(4, 0);
80         if (!p->bio_split)
81                 return -ENOMEM;
82
83         p->bio_split_hook = mempool_create_kmalloc_pool(4,
84                                 sizeof(struct bio_split_hook));
85         if (!p->bio_split_hook)
86                 return -ENOMEM;
87
88         return 0;
89 }
90
91 /* Superblock */
92
93 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
94                               struct page **res)
95 {
96         const char *err;
97         struct cache_sb *s;
98         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
99         unsigned i;
100
101         if (!bh)
102                 return "IO error";
103
104         s = (struct cache_sb *) bh->b_data;
105
106         sb->offset              = le64_to_cpu(s->offset);
107         sb->version             = le64_to_cpu(s->version);
108
109         memcpy(sb->magic,       s->magic, 16);
110         memcpy(sb->uuid,        s->uuid, 16);
111         memcpy(sb->set_uuid,    s->set_uuid, 16);
112         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
113
114         sb->flags               = le64_to_cpu(s->flags);
115         sb->seq                 = le64_to_cpu(s->seq);
116         sb->last_mount          = le32_to_cpu(s->last_mount);
117         sb->first_bucket        = le16_to_cpu(s->first_bucket);
118         sb->keys                = le16_to_cpu(s->keys);
119
120         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
121                 sb->d[i] = le64_to_cpu(s->d[i]);
122
123         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
124                  sb->version, sb->flags, sb->seq, sb->keys);
125
126         err = "Not a bcache superblock";
127         if (sb->offset != SB_SECTOR)
128                 goto err;
129
130         if (memcmp(sb->magic, bcache_magic, 16))
131                 goto err;
132
133         err = "Too many journal buckets";
134         if (sb->keys > SB_JOURNAL_BUCKETS)
135                 goto err;
136
137         err = "Bad checksum";
138         if (s->csum != csum_set(s))
139                 goto err;
140
141         err = "Bad UUID";
142         if (bch_is_zero(sb->uuid, 16))
143                 goto err;
144
145         sb->block_size  = le16_to_cpu(s->block_size);
146
147         err = "Superblock block size smaller than device block size";
148         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
149                 goto err;
150
151         switch (sb->version) {
152         case BCACHE_SB_VERSION_BDEV:
153                 sb->data_offset = BDEV_DATA_START_DEFAULT;
154                 break;
155         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
156                 sb->data_offset = le64_to_cpu(s->data_offset);
157
158                 err = "Bad data offset";
159                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
160                         goto err;
161
162                 break;
163         case BCACHE_SB_VERSION_CDEV:
164         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
165                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
166                 sb->block_size  = le16_to_cpu(s->block_size);
167                 sb->bucket_size = le16_to_cpu(s->bucket_size);
168
169                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
170                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
171
172                 err = "Too many buckets";
173                 if (sb->nbuckets > LONG_MAX)
174                         goto err;
175
176                 err = "Not enough buckets";
177                 if (sb->nbuckets < 1 << 7)
178                         goto err;
179
180                 err = "Bad block/bucket size";
181                 if (!is_power_of_2(sb->block_size) ||
182                     sb->block_size > PAGE_SECTORS ||
183                     !is_power_of_2(sb->bucket_size) ||
184                     sb->bucket_size < PAGE_SECTORS)
185                         goto err;
186
187                 err = "Invalid superblock: device too small";
188                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
189                         goto err;
190
191                 err = "Bad UUID";
192                 if (bch_is_zero(sb->set_uuid, 16))
193                         goto err;
194
195                 err = "Bad cache device number in set";
196                 if (!sb->nr_in_set ||
197                     sb->nr_in_set <= sb->nr_this_dev ||
198                     sb->nr_in_set > MAX_CACHES_PER_SET)
199                         goto err;
200
201                 err = "Journal buckets not sequential";
202                 for (i = 0; i < sb->keys; i++)
203                         if (sb->d[i] != sb->first_bucket + i)
204                                 goto err;
205
206                 err = "Too many journal buckets";
207                 if (sb->first_bucket + sb->keys > sb->nbuckets)
208                         goto err;
209
210                 err = "Invalid superblock: first bucket comes before end of super";
211                 if (sb->first_bucket * sb->bucket_size < 16)
212                         goto err;
213
214                 break;
215         default:
216                 err = "Unsupported superblock version";
217                 goto err;
218         }
219
220         sb->last_mount = get_seconds();
221         err = NULL;
222
223         get_page(bh->b_page);
224         *res = bh->b_page;
225 err:
226         put_bh(bh);
227         return err;
228 }
229
230 static void write_bdev_super_endio(struct bio *bio, int error)
231 {
232         struct cached_dev *dc = bio->bi_private;
233         /* XXX: error checking */
234
235         closure_put(&dc->sb_write.cl);
236 }
237
238 static void __write_super(struct cache_sb *sb, struct bio *bio)
239 {
240         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
241         unsigned i;
242
243         bio->bi_sector  = SB_SECTOR;
244         bio->bi_rw      = REQ_SYNC|REQ_META;
245         bio->bi_size    = SB_SIZE;
246         bch_bio_map(bio, NULL);
247
248         out->offset             = cpu_to_le64(sb->offset);
249         out->version            = cpu_to_le64(sb->version);
250
251         memcpy(out->uuid,       sb->uuid, 16);
252         memcpy(out->set_uuid,   sb->set_uuid, 16);
253         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
254
255         out->flags              = cpu_to_le64(sb->flags);
256         out->seq                = cpu_to_le64(sb->seq);
257
258         out->last_mount         = cpu_to_le32(sb->last_mount);
259         out->first_bucket       = cpu_to_le16(sb->first_bucket);
260         out->keys               = cpu_to_le16(sb->keys);
261
262         for (i = 0; i < sb->keys; i++)
263                 out->d[i] = cpu_to_le64(sb->d[i]);
264
265         out->csum = csum_set(out);
266
267         pr_debug("ver %llu, flags %llu, seq %llu",
268                  sb->version, sb->flags, sb->seq);
269
270         submit_bio(REQ_WRITE, bio);
271 }
272
273 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
274 {
275         struct closure *cl = &dc->sb_write.cl;
276         struct bio *bio = &dc->sb_bio;
277
278         closure_lock(&dc->sb_write, parent);
279
280         bio_reset(bio);
281         bio->bi_bdev    = dc->bdev;
282         bio->bi_end_io  = write_bdev_super_endio;
283         bio->bi_private = dc;
284
285         closure_get(cl);
286         __write_super(&dc->sb, bio);
287
288         closure_return(cl);
289 }
290
291 static void write_super_endio(struct bio *bio, int error)
292 {
293         struct cache *ca = bio->bi_private;
294
295         bch_count_io_errors(ca, error, "writing superblock");
296         closure_put(&ca->set->sb_write.cl);
297 }
298
299 void bcache_write_super(struct cache_set *c)
300 {
301         struct closure *cl = &c->sb_write.cl;
302         struct cache *ca;
303         unsigned i;
304
305         closure_lock(&c->sb_write, &c->cl);
306
307         c->sb.seq++;
308
309         for_each_cache(ca, c, i) {
310                 struct bio *bio = &ca->sb_bio;
311
312                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
313                 ca->sb.seq              = c->sb.seq;
314                 ca->sb.last_mount       = c->sb.last_mount;
315
316                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
317
318                 bio_reset(bio);
319                 bio->bi_bdev    = ca->bdev;
320                 bio->bi_end_io  = write_super_endio;
321                 bio->bi_private = ca;
322
323                 closure_get(cl);
324                 __write_super(&ca->sb, bio);
325         }
326
327         closure_return(cl);
328 }
329
330 /* UUID io */
331
332 static void uuid_endio(struct bio *bio, int error)
333 {
334         struct closure *cl = bio->bi_private;
335         struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
336
337         cache_set_err_on(error, c, "accessing uuids");
338         bch_bbio_free(bio, c);
339         closure_put(cl);
340 }
341
342 static void uuid_io(struct cache_set *c, unsigned long rw,
343                     struct bkey *k, struct closure *parent)
344 {
345         struct closure *cl = &c->uuid_write.cl;
346         struct uuid_entry *u;
347         unsigned i;
348         char buf[80];
349
350         BUG_ON(!parent);
351         closure_lock(&c->uuid_write, parent);
352
353         for (i = 0; i < KEY_PTRS(k); i++) {
354                 struct bio *bio = bch_bbio_alloc(c);
355
356                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
357                 bio->bi_size    = KEY_SIZE(k) << 9;
358
359                 bio->bi_end_io  = uuid_endio;
360                 bio->bi_private = cl;
361                 bch_bio_map(bio, c->uuids);
362
363                 bch_submit_bbio(bio, c, k, i);
364
365                 if (!(rw & WRITE))
366                         break;
367         }
368
369         bch_bkey_to_text(buf, sizeof(buf), k);
370         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
371
372         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
373                 if (!bch_is_zero(u->uuid, 16))
374                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
375                                  u - c->uuids, u->uuid, u->label,
376                                  u->first_reg, u->last_reg, u->invalidated);
377
378         closure_return(cl);
379 }
380
381 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
382 {
383         struct bkey *k = &j->uuid_bucket;
384
385         if (__bch_ptr_invalid(c, 1, k))
386                 return "bad uuid pointer";
387
388         bkey_copy(&c->uuid_bucket, k);
389         uuid_io(c, READ_SYNC, k, cl);
390
391         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
392                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
393                 struct uuid_entry       *u1 = (void *) c->uuids;
394                 int i;
395
396                 closure_sync(cl);
397
398                 /*
399                  * Since the new uuid entry is bigger than the old, we have to
400                  * convert starting at the highest memory address and work down
401                  * in order to do it in place
402                  */
403
404                 for (i = c->nr_uuids - 1;
405                      i >= 0;
406                      --i) {
407                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
408                         memcpy(u1[i].label,     u0[i].label, 32);
409
410                         u1[i].first_reg         = u0[i].first_reg;
411                         u1[i].last_reg          = u0[i].last_reg;
412                         u1[i].invalidated       = u0[i].invalidated;
413
414                         u1[i].flags     = 0;
415                         u1[i].sectors   = 0;
416                 }
417         }
418
419         return NULL;
420 }
421
422 static int __uuid_write(struct cache_set *c)
423 {
424         BKEY_PADDED(key) k;
425         struct closure cl;
426         closure_init_stack(&cl);
427
428         lockdep_assert_held(&bch_register_lock);
429
430         if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
431                 return 1;
432
433         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434         uuid_io(c, REQ_WRITE, &k.key, &cl);
435         closure_sync(&cl);
436
437         bkey_copy(&c->uuid_bucket, &k.key);
438         __bkey_put(c, &k.key);
439         return 0;
440 }
441
442 int bch_uuid_write(struct cache_set *c)
443 {
444         int ret = __uuid_write(c);
445
446         if (!ret)
447                 bch_journal_meta(c, NULL);
448
449         return ret;
450 }
451
452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
453 {
454         struct uuid_entry *u;
455
456         for (u = c->uuids;
457              u < c->uuids + c->nr_uuids; u++)
458                 if (!memcmp(u->uuid, uuid, 16))
459                         return u;
460
461         return NULL;
462 }
463
464 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
465 {
466         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
467         return uuid_find(c, zero_uuid);
468 }
469
470 /*
471  * Bucket priorities/gens:
472  *
473  * For each bucket, we store on disk its
474    * 8 bit gen
475    * 16 bit priority
476  *
477  * See alloc.c for an explanation of the gen. The priority is used to implement
478  * lru (and in the future other) cache replacement policies; for most purposes
479  * it's just an opaque integer.
480  *
481  * The gens and the priorities don't have a whole lot to do with each other, and
482  * it's actually the gens that must be written out at specific times - it's no
483  * big deal if the priorities don't get written, if we lose them we just reuse
484  * buckets in suboptimal order.
485  *
486  * On disk they're stored in a packed array, and in as many buckets are required
487  * to fit them all. The buckets we use to store them form a list; the journal
488  * header points to the first bucket, the first bucket points to the second
489  * bucket, et cetera.
490  *
491  * This code is used by the allocation code; periodically (whenever it runs out
492  * of buckets to allocate from) the allocation code will invalidate some
493  * buckets, but it can't use those buckets until their new gens are safely on
494  * disk.
495  */
496
497 static void prio_endio(struct bio *bio, int error)
498 {
499         struct cache *ca = bio->bi_private;
500
501         cache_set_err_on(error, ca->set, "accessing priorities");
502         bch_bbio_free(bio, ca->set);
503         closure_put(&ca->prio);
504 }
505
506 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
507 {
508         struct closure *cl = &ca->prio;
509         struct bio *bio = bch_bbio_alloc(ca->set);
510
511         closure_init_stack(cl);
512
513         bio->bi_sector  = bucket * ca->sb.bucket_size;
514         bio->bi_bdev    = ca->bdev;
515         bio->bi_rw      = REQ_SYNC|REQ_META|rw;
516         bio->bi_size    = bucket_bytes(ca);
517
518         bio->bi_end_io  = prio_endio;
519         bio->bi_private = ca;
520         bch_bio_map(bio, ca->disk_buckets);
521
522         closure_bio_submit(bio, &ca->prio, ca);
523         closure_sync(cl);
524 }
525
526 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
527         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
528
529 void bch_prio_write(struct cache *ca)
530 {
531         int i;
532         struct bucket *b;
533         struct closure cl;
534
535         closure_init_stack(&cl);
536
537         lockdep_assert_held(&ca->set->bucket_lock);
538
539         for (b = ca->buckets;
540              b < ca->buckets + ca->sb.nbuckets; b++)
541                 b->disk_gen = b->gen;
542
543         ca->disk_buckets->seq++;
544
545         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
546                         &ca->meta_sectors_written);
547
548         pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
549                  fifo_used(&ca->free_inc), fifo_used(&ca->unused));
550
551         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
552                 long bucket;
553                 struct prio_set *p = ca->disk_buckets;
554                 struct bucket_disk *d = p->data;
555                 struct bucket_disk *end = d + prios_per_bucket(ca);
556
557                 for (b = ca->buckets + i * prios_per_bucket(ca);
558                      b < ca->buckets + ca->sb.nbuckets && d < end;
559                      b++, d++) {
560                         d->prio = cpu_to_le16(b->prio);
561                         d->gen = b->gen;
562                 }
563
564                 p->next_bucket  = ca->prio_buckets[i + 1];
565                 p->magic        = pset_magic(ca);
566                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
567
568                 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
569                 BUG_ON(bucket == -1);
570
571                 mutex_unlock(&ca->set->bucket_lock);
572                 prio_io(ca, bucket, REQ_WRITE);
573                 mutex_lock(&ca->set->bucket_lock);
574
575                 ca->prio_buckets[i] = bucket;
576                 atomic_dec_bug(&ca->buckets[bucket].pin);
577         }
578
579         mutex_unlock(&ca->set->bucket_lock);
580
581         bch_journal_meta(ca->set, &cl);
582         closure_sync(&cl);
583
584         mutex_lock(&ca->set->bucket_lock);
585
586         ca->need_save_prio = 0;
587
588         /*
589          * Don't want the old priorities to get garbage collected until after we
590          * finish writing the new ones, and they're journalled
591          */
592         for (i = 0; i < prio_buckets(ca); i++)
593                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
594 }
595
596 static void prio_read(struct cache *ca, uint64_t bucket)
597 {
598         struct prio_set *p = ca->disk_buckets;
599         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
600         struct bucket *b;
601         unsigned bucket_nr = 0;
602
603         for (b = ca->buckets;
604              b < ca->buckets + ca->sb.nbuckets;
605              b++, d++) {
606                 if (d == end) {
607                         ca->prio_buckets[bucket_nr] = bucket;
608                         ca->prio_last_buckets[bucket_nr] = bucket;
609                         bucket_nr++;
610
611                         prio_io(ca, bucket, READ_SYNC);
612
613                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
614                                 pr_warn("bad csum reading priorities");
615
616                         if (p->magic != pset_magic(ca))
617                                 pr_warn("bad magic reading priorities");
618
619                         bucket = p->next_bucket;
620                         d = p->data;
621                 }
622
623                 b->prio = le16_to_cpu(d->prio);
624                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
625         }
626 }
627
628 /* Bcache device */
629
630 static int open_dev(struct block_device *b, fmode_t mode)
631 {
632         struct bcache_device *d = b->bd_disk->private_data;
633         if (atomic_read(&d->closing))
634                 return -ENXIO;
635
636         closure_get(&d->cl);
637         return 0;
638 }
639
640 static void release_dev(struct gendisk *b, fmode_t mode)
641 {
642         struct bcache_device *d = b->private_data;
643         closure_put(&d->cl);
644 }
645
646 static int ioctl_dev(struct block_device *b, fmode_t mode,
647                      unsigned int cmd, unsigned long arg)
648 {
649         struct bcache_device *d = b->bd_disk->private_data;
650         return d->ioctl(d, mode, cmd, arg);
651 }
652
653 static const struct block_device_operations bcache_ops = {
654         .open           = open_dev,
655         .release        = release_dev,
656         .ioctl          = ioctl_dev,
657         .owner          = THIS_MODULE,
658 };
659
660 void bcache_device_stop(struct bcache_device *d)
661 {
662         if (!atomic_xchg(&d->closing, 1))
663                 closure_queue(&d->cl);
664 }
665
666 static void bcache_device_unlink(struct bcache_device *d)
667 {
668         unsigned i;
669         struct cache *ca;
670
671         sysfs_remove_link(&d->c->kobj, d->name);
672         sysfs_remove_link(&d->kobj, "cache");
673
674         for_each_cache(ca, d->c, i)
675                 bd_unlink_disk_holder(ca->bdev, d->disk);
676 }
677
678 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
679                                const char *name)
680 {
681         unsigned i;
682         struct cache *ca;
683
684         for_each_cache(ca, d->c, i)
685                 bd_link_disk_holder(ca->bdev, d->disk);
686
687         snprintf(d->name, BCACHEDEVNAME_SIZE,
688                  "%s%u", name, d->id);
689
690         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
691              sysfs_create_link(&c->kobj, &d->kobj, d->name),
692              "Couldn't create device <-> cache set symlinks");
693 }
694
695 static void bcache_device_detach(struct bcache_device *d)
696 {
697         lockdep_assert_held(&bch_register_lock);
698
699         if (atomic_read(&d->detaching)) {
700                 struct uuid_entry *u = d->c->uuids + d->id;
701
702                 SET_UUID_FLASH_ONLY(u, 0);
703                 memcpy(u->uuid, invalid_uuid, 16);
704                 u->invalidated = cpu_to_le32(get_seconds());
705                 bch_uuid_write(d->c);
706
707                 atomic_set(&d->detaching, 0);
708         }
709
710         if (!d->flush_done)
711                 bcache_device_unlink(d);
712
713         d->c->devices[d->id] = NULL;
714         closure_put(&d->c->caching);
715         d->c = NULL;
716 }
717
718 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
719                                  unsigned id)
720 {
721         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
722
723         d->id = id;
724         d->c = c;
725         c->devices[id] = d;
726
727         closure_get(&c->caching);
728 }
729
730 static void bcache_device_free(struct bcache_device *d)
731 {
732         lockdep_assert_held(&bch_register_lock);
733
734         pr_info("%s stopped", d->disk->disk_name);
735
736         if (d->c)
737                 bcache_device_detach(d);
738         if (d->disk && d->disk->flags & GENHD_FL_UP)
739                 del_gendisk(d->disk);
740         if (d->disk && d->disk->queue)
741                 blk_cleanup_queue(d->disk->queue);
742         if (d->disk)
743                 put_disk(d->disk);
744
745         bio_split_pool_free(&d->bio_split_hook);
746         if (d->unaligned_bvec)
747                 mempool_destroy(d->unaligned_bvec);
748         if (d->bio_split)
749                 bioset_free(d->bio_split);
750         if (is_vmalloc_addr(d->stripe_sectors_dirty))
751                 vfree(d->stripe_sectors_dirty);
752         else
753                 kfree(d->stripe_sectors_dirty);
754
755         closure_debug_destroy(&d->cl);
756 }
757
758 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
759                               sector_t sectors)
760 {
761         struct request_queue *q;
762         size_t n;
763
764         if (!d->stripe_size_bits)
765                 d->stripe_size_bits = 31;
766
767         d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
768                 d->stripe_size_bits;
769
770         if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
771                 return -ENOMEM;
772
773         n = d->nr_stripes * sizeof(atomic_t);
774         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
775                 ? kzalloc(n, GFP_KERNEL)
776                 : vzalloc(n);
777         if (!d->stripe_sectors_dirty)
778                 return -ENOMEM;
779
780         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
781             !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
782                                 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
783             bio_split_pool_init(&d->bio_split_hook) ||
784             !(d->disk = alloc_disk(1)) ||
785             !(q = blk_alloc_queue(GFP_KERNEL)))
786                 return -ENOMEM;
787
788         set_capacity(d->disk, sectors);
789         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
790
791         d->disk->major          = bcache_major;
792         d->disk->first_minor    = bcache_minor++;
793         d->disk->fops           = &bcache_ops;
794         d->disk->private_data   = d;
795
796         blk_queue_make_request(q, NULL);
797         d->disk->queue                  = q;
798         q->queuedata                    = d;
799         q->backing_dev_info.congested_data = d;
800         q->limits.max_hw_sectors        = UINT_MAX;
801         q->limits.max_sectors           = UINT_MAX;
802         q->limits.max_segment_size      = UINT_MAX;
803         q->limits.max_segments          = BIO_MAX_PAGES;
804         q->limits.max_discard_sectors   = UINT_MAX;
805         q->limits.io_min                = block_size;
806         q->limits.logical_block_size    = block_size;
807         q->limits.physical_block_size   = block_size;
808         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
809         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
810
811         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
812
813         return 0;
814 }
815
816 /* Cached device */
817
818 static void calc_cached_dev_sectors(struct cache_set *c)
819 {
820         uint64_t sectors = 0;
821         struct cached_dev *dc;
822
823         list_for_each_entry(dc, &c->cached_devs, list)
824                 sectors += bdev_sectors(dc->bdev);
825
826         c->cached_dev_sectors = sectors;
827 }
828
829 void bch_cached_dev_run(struct cached_dev *dc)
830 {
831         struct bcache_device *d = &dc->disk;
832         char buf[SB_LABEL_SIZE + 1];
833         char *env[] = {
834                 "DRIVER=bcache",
835                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
836                 NULL,
837                 NULL,
838         };
839
840         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
841         buf[SB_LABEL_SIZE] = '\0';
842         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
843
844         if (atomic_xchg(&dc->running, 1))
845                 return;
846
847         if (!d->c &&
848             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
849                 struct closure cl;
850                 closure_init_stack(&cl);
851
852                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
853                 bch_write_bdev_super(dc, &cl);
854                 closure_sync(&cl);
855         }
856
857         add_disk(d->disk);
858         bd_link_disk_holder(dc->bdev, dc->disk.disk);
859         /* won't show up in the uevent file, use udevadm monitor -e instead
860          * only class / kset properties are persistent */
861         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
862         kfree(env[1]);
863         kfree(env[2]);
864
865         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
866             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
867                 pr_debug("error creating sysfs link");
868 }
869
870 static void cached_dev_detach_finish(struct work_struct *w)
871 {
872         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
873         char buf[BDEVNAME_SIZE];
874         struct closure cl;
875         closure_init_stack(&cl);
876
877         BUG_ON(!atomic_read(&dc->disk.detaching));
878         BUG_ON(atomic_read(&dc->count));
879
880         mutex_lock(&bch_register_lock);
881
882         memset(&dc->sb.set_uuid, 0, 16);
883         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
884
885         bch_write_bdev_super(dc, &cl);
886         closure_sync(&cl);
887
888         bcache_device_detach(&dc->disk);
889         list_move(&dc->list, &uncached_devices);
890
891         mutex_unlock(&bch_register_lock);
892
893         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
894
895         /* Drop ref we took in cached_dev_detach() */
896         closure_put(&dc->disk.cl);
897 }
898
899 void bch_cached_dev_detach(struct cached_dev *dc)
900 {
901         lockdep_assert_held(&bch_register_lock);
902
903         if (atomic_read(&dc->disk.closing))
904                 return;
905
906         if (atomic_xchg(&dc->disk.detaching, 1))
907                 return;
908
909         /*
910          * Block the device from being closed and freed until we're finished
911          * detaching
912          */
913         closure_get(&dc->disk.cl);
914
915         bch_writeback_queue(dc);
916         cached_dev_put(dc);
917 }
918
919 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
920 {
921         uint32_t rtime = cpu_to_le32(get_seconds());
922         struct uuid_entry *u;
923         char buf[BDEVNAME_SIZE];
924
925         bdevname(dc->bdev, buf);
926
927         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
928                 return -ENOENT;
929
930         if (dc->disk.c) {
931                 pr_err("Can't attach %s: already attached", buf);
932                 return -EINVAL;
933         }
934
935         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
936                 pr_err("Can't attach %s: shutting down", buf);
937                 return -EINVAL;
938         }
939
940         if (dc->sb.block_size < c->sb.block_size) {
941                 /* Will die */
942                 pr_err("Couldn't attach %s: block size less than set's block size",
943                        buf);
944                 return -EINVAL;
945         }
946
947         u = uuid_find(c, dc->sb.uuid);
948
949         if (u &&
950             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
951              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
952                 memcpy(u->uuid, invalid_uuid, 16);
953                 u->invalidated = cpu_to_le32(get_seconds());
954                 u = NULL;
955         }
956
957         if (!u) {
958                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
959                         pr_err("Couldn't find uuid for %s in set", buf);
960                         return -ENOENT;
961                 }
962
963                 u = uuid_find_empty(c);
964                 if (!u) {
965                         pr_err("Not caching %s, no room for UUID", buf);
966                         return -EINVAL;
967                 }
968         }
969
970         /* Deadlocks since we're called via sysfs...
971         sysfs_remove_file(&dc->kobj, &sysfs_attach);
972          */
973
974         if (bch_is_zero(u->uuid, 16)) {
975                 struct closure cl;
976                 closure_init_stack(&cl);
977
978                 memcpy(u->uuid, dc->sb.uuid, 16);
979                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
980                 u->first_reg = u->last_reg = rtime;
981                 bch_uuid_write(c);
982
983                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
984                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
985
986                 bch_write_bdev_super(dc, &cl);
987                 closure_sync(&cl);
988         } else {
989                 u->last_reg = rtime;
990                 bch_uuid_write(c);
991         }
992
993         bcache_device_attach(&dc->disk, c, u - c->uuids);
994         list_move(&dc->list, &c->cached_devs);
995         calc_cached_dev_sectors(c);
996
997         smp_wmb();
998         /*
999          * dc->c must be set before dc->count != 0 - paired with the mb in
1000          * cached_dev_get()
1001          */
1002         atomic_set(&dc->count, 1);
1003
1004         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1005                 bch_sectors_dirty_init(dc);
1006                 atomic_set(&dc->has_dirty, 1);
1007                 atomic_inc(&dc->count);
1008                 bch_writeback_queue(dc);
1009         }
1010
1011         bch_cached_dev_run(dc);
1012         bcache_device_link(&dc->disk, c, "bdev");
1013
1014         pr_info("Caching %s as %s on set %pU",
1015                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1016                 dc->disk.c->sb.set_uuid);
1017         return 0;
1018 }
1019
1020 void bch_cached_dev_release(struct kobject *kobj)
1021 {
1022         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1023                                              disk.kobj);
1024         kfree(dc);
1025         module_put(THIS_MODULE);
1026 }
1027
1028 static void cached_dev_free(struct closure *cl)
1029 {
1030         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1031
1032         cancel_delayed_work_sync(&dc->writeback_rate_update);
1033
1034         mutex_lock(&bch_register_lock);
1035
1036         if (atomic_read(&dc->running))
1037                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1038         bcache_device_free(&dc->disk);
1039         list_del(&dc->list);
1040
1041         mutex_unlock(&bch_register_lock);
1042
1043         if (!IS_ERR_OR_NULL(dc->bdev)) {
1044                 if (dc->bdev->bd_disk)
1045                         blk_sync_queue(bdev_get_queue(dc->bdev));
1046
1047                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1048         }
1049
1050         wake_up(&unregister_wait);
1051
1052         kobject_put(&dc->disk.kobj);
1053 }
1054
1055 static void cached_dev_flush(struct closure *cl)
1056 {
1057         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1058         struct bcache_device *d = &dc->disk;
1059
1060         mutex_lock(&bch_register_lock);
1061         d->flush_done = 1;
1062
1063         if (d->c)
1064                 bcache_device_unlink(d);
1065
1066         mutex_unlock(&bch_register_lock);
1067
1068         bch_cache_accounting_destroy(&dc->accounting);
1069         kobject_del(&d->kobj);
1070
1071         continue_at(cl, cached_dev_free, system_wq);
1072 }
1073
1074 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1075 {
1076         int ret;
1077         struct io *io;
1078         struct request_queue *q = bdev_get_queue(dc->bdev);
1079
1080         __module_get(THIS_MODULE);
1081         INIT_LIST_HEAD(&dc->list);
1082         closure_init(&dc->disk.cl, NULL);
1083         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1084         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1085         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1086         closure_init_unlocked(&dc->sb_write);
1087         INIT_LIST_HEAD(&dc->io_lru);
1088         spin_lock_init(&dc->io_lock);
1089         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1090
1091         dc->sequential_merge            = true;
1092         dc->sequential_cutoff           = 4 << 20;
1093
1094         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1095                 list_add(&io->lru, &dc->io_lru);
1096                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1097         }
1098
1099         ret = bcache_device_init(&dc->disk, block_size,
1100                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1101         if (ret)
1102                 return ret;
1103
1104         set_capacity(dc->disk.disk,
1105                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1106
1107         dc->disk.disk->queue->backing_dev_info.ra_pages =
1108                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1109                     q->backing_dev_info.ra_pages);
1110
1111         bch_cached_dev_request_init(dc);
1112         bch_cached_dev_writeback_init(dc);
1113         return 0;
1114 }
1115
1116 /* Cached device - bcache superblock */
1117
1118 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1119                                  struct block_device *bdev,
1120                                  struct cached_dev *dc)
1121 {
1122         char name[BDEVNAME_SIZE];
1123         const char *err = "cannot allocate memory";
1124         struct cache_set *c;
1125
1126         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1127         dc->bdev = bdev;
1128         dc->bdev->bd_holder = dc;
1129
1130         bio_init(&dc->sb_bio);
1131         dc->sb_bio.bi_max_vecs  = 1;
1132         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1133         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1134         get_page(sb_page);
1135
1136         if (cached_dev_init(dc, sb->block_size << 9))
1137                 goto err;
1138
1139         err = "error creating kobject";
1140         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1141                         "bcache"))
1142                 goto err;
1143         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1144                 goto err;
1145
1146         pr_info("registered backing device %s", bdevname(bdev, name));
1147
1148         list_add(&dc->list, &uncached_devices);
1149         list_for_each_entry(c, &bch_cache_sets, list)
1150                 bch_cached_dev_attach(dc, c);
1151
1152         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1153             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1154                 bch_cached_dev_run(dc);
1155
1156         return;
1157 err:
1158         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1159         bcache_device_stop(&dc->disk);
1160 }
1161
1162 /* Flash only volumes */
1163
1164 void bch_flash_dev_release(struct kobject *kobj)
1165 {
1166         struct bcache_device *d = container_of(kobj, struct bcache_device,
1167                                                kobj);
1168         kfree(d);
1169 }
1170
1171 static void flash_dev_free(struct closure *cl)
1172 {
1173         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1174         bcache_device_free(d);
1175         kobject_put(&d->kobj);
1176 }
1177
1178 static void flash_dev_flush(struct closure *cl)
1179 {
1180         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1181
1182         bcache_device_unlink(d);
1183         kobject_del(&d->kobj);
1184         continue_at(cl, flash_dev_free, system_wq);
1185 }
1186
1187 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1188 {
1189         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1190                                           GFP_KERNEL);
1191         if (!d)
1192                 return -ENOMEM;
1193
1194         closure_init(&d->cl, NULL);
1195         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1196
1197         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1198
1199         if (bcache_device_init(d, block_bytes(c), u->sectors))
1200                 goto err;
1201
1202         bcache_device_attach(d, c, u - c->uuids);
1203         bch_flash_dev_request_init(d);
1204         add_disk(d->disk);
1205
1206         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1207                 goto err;
1208
1209         bcache_device_link(d, c, "volume");
1210
1211         return 0;
1212 err:
1213         kobject_put(&d->kobj);
1214         return -ENOMEM;
1215 }
1216
1217 static int flash_devs_run(struct cache_set *c)
1218 {
1219         int ret = 0;
1220         struct uuid_entry *u;
1221
1222         for (u = c->uuids;
1223              u < c->uuids + c->nr_uuids && !ret;
1224              u++)
1225                 if (UUID_FLASH_ONLY(u))
1226                         ret = flash_dev_run(c, u);
1227
1228         return ret;
1229 }
1230
1231 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1232 {
1233         struct uuid_entry *u;
1234
1235         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1236                 return -EINTR;
1237
1238         u = uuid_find_empty(c);
1239         if (!u) {
1240                 pr_err("Can't create volume, no room for UUID");
1241                 return -EINVAL;
1242         }
1243
1244         get_random_bytes(u->uuid, 16);
1245         memset(u->label, 0, 32);
1246         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1247
1248         SET_UUID_FLASH_ONLY(u, 1);
1249         u->sectors = size >> 9;
1250
1251         bch_uuid_write(c);
1252
1253         return flash_dev_run(c, u);
1254 }
1255
1256 /* Cache set */
1257
1258 __printf(2, 3)
1259 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1260 {
1261         va_list args;
1262
1263         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1264                 return false;
1265
1266         /* XXX: we can be called from atomic context
1267         acquire_console_sem();
1268         */
1269
1270         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1271
1272         va_start(args, fmt);
1273         vprintk(fmt, args);
1274         va_end(args);
1275
1276         printk(", disabling caching\n");
1277
1278         bch_cache_set_unregister(c);
1279         return true;
1280 }
1281
1282 void bch_cache_set_release(struct kobject *kobj)
1283 {
1284         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1285         kfree(c);
1286         module_put(THIS_MODULE);
1287 }
1288
1289 static void cache_set_free(struct closure *cl)
1290 {
1291         struct cache_set *c = container_of(cl, struct cache_set, cl);
1292         struct cache *ca;
1293         unsigned i;
1294
1295         if (!IS_ERR_OR_NULL(c->debug))
1296                 debugfs_remove(c->debug);
1297
1298         bch_open_buckets_free(c);
1299         bch_btree_cache_free(c);
1300         bch_journal_free(c);
1301
1302         for_each_cache(ca, c, i)
1303                 if (ca)
1304                         kobject_put(&ca->kobj);
1305
1306         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1307         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1308
1309         if (c->bio_split)
1310                 bioset_free(c->bio_split);
1311         if (c->fill_iter)
1312                 mempool_destroy(c->fill_iter);
1313         if (c->bio_meta)
1314                 mempool_destroy(c->bio_meta);
1315         if (c->search)
1316                 mempool_destroy(c->search);
1317         kfree(c->devices);
1318
1319         mutex_lock(&bch_register_lock);
1320         list_del(&c->list);
1321         mutex_unlock(&bch_register_lock);
1322
1323         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1324         wake_up(&unregister_wait);
1325
1326         closure_debug_destroy(&c->cl);
1327         kobject_put(&c->kobj);
1328 }
1329
1330 static void cache_set_flush(struct closure *cl)
1331 {
1332         struct cache_set *c = container_of(cl, struct cache_set, caching);
1333         struct cache *ca;
1334         struct btree *b;
1335         unsigned i;
1336
1337         bch_cache_accounting_destroy(&c->accounting);
1338
1339         kobject_put(&c->internal);
1340         kobject_del(&c->kobj);
1341
1342         if (!IS_ERR_OR_NULL(c->root))
1343                 list_add(&c->root->list, &c->btree_cache);
1344
1345         /* Should skip this if we're unregistering because of an error */
1346         list_for_each_entry(b, &c->btree_cache, list)
1347                 if (btree_node_dirty(b))
1348                         bch_btree_node_write(b, NULL);
1349
1350         for_each_cache(ca, c, i)
1351                 if (ca->alloc_thread)
1352                         kthread_stop(ca->alloc_thread);
1353
1354         closure_return(cl);
1355 }
1356
1357 static void __cache_set_unregister(struct closure *cl)
1358 {
1359         struct cache_set *c = container_of(cl, struct cache_set, caching);
1360         struct cached_dev *dc;
1361         size_t i;
1362
1363         mutex_lock(&bch_register_lock);
1364
1365         for (i = 0; i < c->nr_uuids; i++)
1366                 if (c->devices[i]) {
1367                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1368                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1369                                 dc = container_of(c->devices[i],
1370                                                   struct cached_dev, disk);
1371                                 bch_cached_dev_detach(dc);
1372                         } else {
1373                                 bcache_device_stop(c->devices[i]);
1374                         }
1375                 }
1376
1377         mutex_unlock(&bch_register_lock);
1378
1379         continue_at(cl, cache_set_flush, system_wq);
1380 }
1381
1382 void bch_cache_set_stop(struct cache_set *c)
1383 {
1384         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1385                 closure_queue(&c->caching);
1386 }
1387
1388 void bch_cache_set_unregister(struct cache_set *c)
1389 {
1390         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1391         bch_cache_set_stop(c);
1392 }
1393
1394 #define alloc_bucket_pages(gfp, c)                      \
1395         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1396
1397 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1398 {
1399         int iter_size;
1400         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1401         if (!c)
1402                 return NULL;
1403
1404         __module_get(THIS_MODULE);
1405         closure_init(&c->cl, NULL);
1406         set_closure_fn(&c->cl, cache_set_free, system_wq);
1407
1408         closure_init(&c->caching, &c->cl);
1409         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1410
1411         /* Maybe create continue_at_noreturn() and use it here? */
1412         closure_set_stopped(&c->cl);
1413         closure_put(&c->cl);
1414
1415         kobject_init(&c->kobj, &bch_cache_set_ktype);
1416         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1417
1418         bch_cache_accounting_init(&c->accounting, &c->cl);
1419
1420         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1421         c->sb.block_size        = sb->block_size;
1422         c->sb.bucket_size       = sb->bucket_size;
1423         c->sb.nr_in_set         = sb->nr_in_set;
1424         c->sb.last_mount        = sb->last_mount;
1425         c->bucket_bits          = ilog2(sb->bucket_size);
1426         c->block_bits           = ilog2(sb->block_size);
1427         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1428
1429         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1430         if (c->btree_pages > BTREE_MAX_PAGES)
1431                 c->btree_pages = max_t(int, c->btree_pages / 4,
1432                                        BTREE_MAX_PAGES);
1433
1434         c->sort_crit_factor = int_sqrt(c->btree_pages);
1435
1436         mutex_init(&c->bucket_lock);
1437         mutex_init(&c->sort_lock);
1438         spin_lock_init(&c->sort_time_lock);
1439         closure_init_unlocked(&c->sb_write);
1440         closure_init_unlocked(&c->uuid_write);
1441         spin_lock_init(&c->btree_read_time_lock);
1442         bch_moving_init_cache_set(c);
1443
1444         INIT_LIST_HEAD(&c->list);
1445         INIT_LIST_HEAD(&c->cached_devs);
1446         INIT_LIST_HEAD(&c->btree_cache);
1447         INIT_LIST_HEAD(&c->btree_cache_freeable);
1448         INIT_LIST_HEAD(&c->btree_cache_freed);
1449         INIT_LIST_HEAD(&c->data_buckets);
1450
1451         c->search = mempool_create_slab_pool(32, bch_search_cache);
1452         if (!c->search)
1453                 goto err;
1454
1455         iter_size = (sb->bucket_size / sb->block_size + 1) *
1456                 sizeof(struct btree_iter_set);
1457
1458         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1459             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1460                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1461                                 bucket_pages(c))) ||
1462             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1463             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1464             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1465             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1466             bch_journal_alloc(c) ||
1467             bch_btree_cache_alloc(c) ||
1468             bch_open_buckets_alloc(c))
1469                 goto err;
1470
1471         c->congested_read_threshold_us  = 2000;
1472         c->congested_write_threshold_us = 20000;
1473         c->error_limit  = 8 << IO_ERROR_SHIFT;
1474
1475         return c;
1476 err:
1477         bch_cache_set_unregister(c);
1478         return NULL;
1479 }
1480
1481 static void run_cache_set(struct cache_set *c)
1482 {
1483         const char *err = "cannot allocate memory";
1484         struct cached_dev *dc, *t;
1485         struct cache *ca;
1486         unsigned i;
1487
1488         struct btree_op op;
1489         bch_btree_op_init_stack(&op);
1490         op.lock = SHRT_MAX;
1491
1492         for_each_cache(ca, c, i)
1493                 c->nbuckets += ca->sb.nbuckets;
1494
1495         if (CACHE_SYNC(&c->sb)) {
1496                 LIST_HEAD(journal);
1497                 struct bkey *k;
1498                 struct jset *j;
1499
1500                 err = "cannot allocate memory for journal";
1501                 if (bch_journal_read(c, &journal, &op))
1502                         goto err;
1503
1504                 pr_debug("btree_journal_read() done");
1505
1506                 err = "no journal entries found";
1507                 if (list_empty(&journal))
1508                         goto err;
1509
1510                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1511
1512                 err = "IO error reading priorities";
1513                 for_each_cache(ca, c, i)
1514                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1515
1516                 /*
1517                  * If prio_read() fails it'll call cache_set_error and we'll
1518                  * tear everything down right away, but if we perhaps checked
1519                  * sooner we could avoid journal replay.
1520                  */
1521
1522                 k = &j->btree_root;
1523
1524                 err = "bad btree root";
1525                 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1526                         goto err;
1527
1528                 err = "error reading btree root";
1529                 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1530                 if (IS_ERR_OR_NULL(c->root))
1531                         goto err;
1532
1533                 list_del_init(&c->root->list);
1534                 rw_unlock(true, c->root);
1535
1536                 err = uuid_read(c, j, &op.cl);
1537                 if (err)
1538                         goto err;
1539
1540                 err = "error in recovery";
1541                 if (bch_btree_check(c, &op))
1542                         goto err;
1543
1544                 bch_journal_mark(c, &journal);
1545                 bch_btree_gc_finish(c);
1546                 pr_debug("btree_check() done");
1547
1548                 /*
1549                  * bcache_journal_next() can't happen sooner, or
1550                  * btree_gc_finish() will give spurious errors about last_gc >
1551                  * gc_gen - this is a hack but oh well.
1552                  */
1553                 bch_journal_next(&c->journal);
1554
1555                 err = "error starting allocator thread";
1556                 for_each_cache(ca, c, i)
1557                         if (bch_cache_allocator_start(ca))
1558                                 goto err;
1559
1560                 /*
1561                  * First place it's safe to allocate: btree_check() and
1562                  * btree_gc_finish() have to run before we have buckets to
1563                  * allocate, and bch_bucket_alloc_set() might cause a journal
1564                  * entry to be written so bcache_journal_next() has to be called
1565                  * first.
1566                  *
1567                  * If the uuids were in the old format we have to rewrite them
1568                  * before the next journal entry is written:
1569                  */
1570                 if (j->version < BCACHE_JSET_VERSION_UUID)
1571                         __uuid_write(c);
1572
1573                 bch_journal_replay(c, &journal, &op);
1574         } else {
1575                 pr_notice("invalidating existing data");
1576                 /* Don't want invalidate_buckets() to queue a gc yet */
1577                 closure_lock(&c->gc, NULL);
1578
1579                 for_each_cache(ca, c, i) {
1580                         unsigned j;
1581
1582                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1583                                               2, SB_JOURNAL_BUCKETS);
1584
1585                         for (j = 0; j < ca->sb.keys; j++)
1586                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1587                 }
1588
1589                 bch_btree_gc_finish(c);
1590
1591                 err = "error starting allocator thread";
1592                 for_each_cache(ca, c, i)
1593                         if (bch_cache_allocator_start(ca))
1594                                 goto err;
1595
1596                 mutex_lock(&c->bucket_lock);
1597                 for_each_cache(ca, c, i)
1598                         bch_prio_write(ca);
1599                 mutex_unlock(&c->bucket_lock);
1600
1601                 err = "cannot allocate new UUID bucket";
1602                 if (__uuid_write(c))
1603                         goto err_unlock_gc;
1604
1605                 err = "cannot allocate new btree root";
1606                 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1607                 if (IS_ERR_OR_NULL(c->root))
1608                         goto err_unlock_gc;
1609
1610                 bkey_copy_key(&c->root->key, &MAX_KEY);
1611                 bch_btree_node_write(c->root, &op.cl);
1612
1613                 bch_btree_set_root(c->root);
1614                 rw_unlock(true, c->root);
1615
1616                 /*
1617                  * We don't want to write the first journal entry until
1618                  * everything is set up - fortunately journal entries won't be
1619                  * written until the SET_CACHE_SYNC() here:
1620                  */
1621                 SET_CACHE_SYNC(&c->sb, true);
1622
1623                 bch_journal_next(&c->journal);
1624                 bch_journal_meta(c, &op.cl);
1625
1626                 /* Unlock */
1627                 closure_set_stopped(&c->gc.cl);
1628                 closure_put(&c->gc.cl);
1629         }
1630
1631         closure_sync(&op.cl);
1632         c->sb.last_mount = get_seconds();
1633         bcache_write_super(c);
1634
1635         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1636                 bch_cached_dev_attach(dc, c);
1637
1638         flash_devs_run(c);
1639
1640         return;
1641 err_unlock_gc:
1642         closure_set_stopped(&c->gc.cl);
1643         closure_put(&c->gc.cl);
1644 err:
1645         closure_sync(&op.cl);
1646         /* XXX: test this, it's broken */
1647         bch_cache_set_error(c, err);
1648 }
1649
1650 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1651 {
1652         return ca->sb.block_size        == c->sb.block_size &&
1653                 ca->sb.bucket_size      == c->sb.block_size &&
1654                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1655 }
1656
1657 static const char *register_cache_set(struct cache *ca)
1658 {
1659         char buf[12];
1660         const char *err = "cannot allocate memory";
1661         struct cache_set *c;
1662
1663         list_for_each_entry(c, &bch_cache_sets, list)
1664                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1665                         if (c->cache[ca->sb.nr_this_dev])
1666                                 return "duplicate cache set member";
1667
1668                         if (!can_attach_cache(ca, c))
1669                                 return "cache sb does not match set";
1670
1671                         if (!CACHE_SYNC(&ca->sb))
1672                                 SET_CACHE_SYNC(&c->sb, false);
1673
1674                         goto found;
1675                 }
1676
1677         c = bch_cache_set_alloc(&ca->sb);
1678         if (!c)
1679                 return err;
1680
1681         err = "error creating kobject";
1682         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1683             kobject_add(&c->internal, &c->kobj, "internal"))
1684                 goto err;
1685
1686         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1687                 goto err;
1688
1689         bch_debug_init_cache_set(c);
1690
1691         list_add(&c->list, &bch_cache_sets);
1692 found:
1693         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1694         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1695             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1696                 goto err;
1697
1698         if (ca->sb.seq > c->sb.seq) {
1699                 c->sb.version           = ca->sb.version;
1700                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1701                 c->sb.flags             = ca->sb.flags;
1702                 c->sb.seq               = ca->sb.seq;
1703                 pr_debug("set version = %llu", c->sb.version);
1704         }
1705
1706         ca->set = c;
1707         ca->set->cache[ca->sb.nr_this_dev] = ca;
1708         c->cache_by_alloc[c->caches_loaded++] = ca;
1709
1710         if (c->caches_loaded == c->sb.nr_in_set)
1711                 run_cache_set(c);
1712
1713         return NULL;
1714 err:
1715         bch_cache_set_unregister(c);
1716         return err;
1717 }
1718
1719 /* Cache device */
1720
1721 void bch_cache_release(struct kobject *kobj)
1722 {
1723         struct cache *ca = container_of(kobj, struct cache, kobj);
1724
1725         if (ca->set)
1726                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1727
1728         bch_cache_allocator_exit(ca);
1729
1730         bio_split_pool_free(&ca->bio_split_hook);
1731
1732         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1733         kfree(ca->prio_buckets);
1734         vfree(ca->buckets);
1735
1736         free_heap(&ca->heap);
1737         free_fifo(&ca->unused);
1738         free_fifo(&ca->free_inc);
1739         free_fifo(&ca->free);
1740
1741         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1742                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1743
1744         if (!IS_ERR_OR_NULL(ca->bdev)) {
1745                 blk_sync_queue(bdev_get_queue(ca->bdev));
1746                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1747         }
1748
1749         kfree(ca);
1750         module_put(THIS_MODULE);
1751 }
1752
1753 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1754 {
1755         size_t free;
1756         struct bucket *b;
1757
1758         __module_get(THIS_MODULE);
1759         kobject_init(&ca->kobj, &bch_cache_ktype);
1760
1761         INIT_LIST_HEAD(&ca->discards);
1762
1763         bio_init(&ca->journal.bio);
1764         ca->journal.bio.bi_max_vecs = 8;
1765         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1766
1767         free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1768         free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1769
1770         if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1771             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1772             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1773             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1774             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1775                                           ca->sb.nbuckets)) ||
1776             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1777                                           2, GFP_KERNEL)) ||
1778             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1779             bio_split_pool_init(&ca->bio_split_hook))
1780                 return -ENOMEM;
1781
1782         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1783
1784         for_each_bucket(b, ca)
1785                 atomic_set(&b->pin, 0);
1786
1787         if (bch_cache_allocator_init(ca))
1788                 goto err;
1789
1790         return 0;
1791 err:
1792         kobject_put(&ca->kobj);
1793         return -ENOMEM;
1794 }
1795
1796 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1797                                   struct block_device *bdev, struct cache *ca)
1798 {
1799         char name[BDEVNAME_SIZE];
1800         const char *err = "cannot allocate memory";
1801
1802         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1803         ca->bdev = bdev;
1804         ca->bdev->bd_holder = ca;
1805
1806         bio_init(&ca->sb_bio);
1807         ca->sb_bio.bi_max_vecs  = 1;
1808         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1809         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1810         get_page(sb_page);
1811
1812         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1813                 ca->discard = CACHE_DISCARD(&ca->sb);
1814
1815         if (cache_alloc(sb, ca) != 0)
1816                 goto err;
1817
1818         err = "error creating kobject";
1819         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1820                 goto err;
1821
1822         err = register_cache_set(ca);
1823         if (err)
1824                 goto err;
1825
1826         pr_info("registered cache device %s", bdevname(bdev, name));
1827         return;
1828 err:
1829         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1830         kobject_put(&ca->kobj);
1831 }
1832
1833 /* Global interfaces/init */
1834
1835 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1836                                const char *, size_t);
1837
1838 kobj_attribute_write(register,          register_bcache);
1839 kobj_attribute_write(register_quiet,    register_bcache);
1840
1841 static bool bch_is_open_backing(struct block_device *bdev) {
1842         struct cache_set *c, *tc;
1843         struct cached_dev *dc, *t;
1844
1845         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1846                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1847                         if (dc->bdev == bdev)
1848                                 return true;
1849         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1850                 if (dc->bdev == bdev)
1851                         return true;
1852         return false;
1853 }
1854
1855 static bool bch_is_open_cache(struct block_device *bdev) {
1856         struct cache_set *c, *tc;
1857         struct cache *ca;
1858         unsigned i;
1859
1860         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1861                 for_each_cache(ca, c, i)
1862                         if (ca->bdev == bdev)
1863                                 return true;
1864         return false;
1865 }
1866
1867 static bool bch_is_open(struct block_device *bdev) {
1868         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1869 }
1870
1871 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1872                                const char *buffer, size_t size)
1873 {
1874         ssize_t ret = size;
1875         const char *err = "cannot allocate memory";
1876         char *path = NULL;
1877         struct cache_sb *sb = NULL;
1878         struct block_device *bdev = NULL;
1879         struct page *sb_page = NULL;
1880
1881         if (!try_module_get(THIS_MODULE))
1882                 return -EBUSY;
1883
1884         mutex_lock(&bch_register_lock);
1885
1886         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1887             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1888                 goto err;
1889
1890         err = "failed to open device";
1891         bdev = blkdev_get_by_path(strim(path),
1892                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1893                                   sb);
1894         if (IS_ERR(bdev)) {
1895                 if (bdev == ERR_PTR(-EBUSY)) {
1896                         bdev = lookup_bdev(strim(path));
1897                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1898                                 err = "device already registered";
1899                         else
1900                                 err = "device busy";
1901                 }
1902                 goto err;
1903         }
1904
1905         err = "failed to set blocksize";
1906         if (set_blocksize(bdev, 4096))
1907                 goto err_close;
1908
1909         err = read_super(sb, bdev, &sb_page);
1910         if (err)
1911                 goto err_close;
1912
1913         if (SB_IS_BDEV(sb)) {
1914                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1915                 if (!dc)
1916                         goto err_close;
1917
1918                 register_bdev(sb, sb_page, bdev, dc);
1919         } else {
1920                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1921                 if (!ca)
1922                         goto err_close;
1923
1924                 register_cache(sb, sb_page, bdev, ca);
1925         }
1926 out:
1927         if (sb_page)
1928                 put_page(sb_page);
1929         kfree(sb);
1930         kfree(path);
1931         mutex_unlock(&bch_register_lock);
1932         module_put(THIS_MODULE);
1933         return ret;
1934
1935 err_close:
1936         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1937 err:
1938         if (attr != &ksysfs_register_quiet)
1939                 pr_info("error opening %s: %s", path, err);
1940         ret = -EINVAL;
1941         goto out;
1942 }
1943
1944 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1945 {
1946         if (code == SYS_DOWN ||
1947             code == SYS_HALT ||
1948             code == SYS_POWER_OFF) {
1949                 DEFINE_WAIT(wait);
1950                 unsigned long start = jiffies;
1951                 bool stopped = false;
1952
1953                 struct cache_set *c, *tc;
1954                 struct cached_dev *dc, *tdc;
1955
1956                 mutex_lock(&bch_register_lock);
1957
1958                 if (list_empty(&bch_cache_sets) &&
1959                     list_empty(&uncached_devices))
1960                         goto out;
1961
1962                 pr_info("Stopping all devices:");
1963
1964                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1965                         bch_cache_set_stop(c);
1966
1967                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1968                         bcache_device_stop(&dc->disk);
1969
1970                 /* What's a condition variable? */
1971                 while (1) {
1972                         long timeout = start + 2 * HZ - jiffies;
1973
1974                         stopped = list_empty(&bch_cache_sets) &&
1975                                 list_empty(&uncached_devices);
1976
1977                         if (timeout < 0 || stopped)
1978                                 break;
1979
1980                         prepare_to_wait(&unregister_wait, &wait,
1981                                         TASK_UNINTERRUPTIBLE);
1982
1983                         mutex_unlock(&bch_register_lock);
1984                         schedule_timeout(timeout);
1985                         mutex_lock(&bch_register_lock);
1986                 }
1987
1988                 finish_wait(&unregister_wait, &wait);
1989
1990                 if (stopped)
1991                         pr_info("All devices stopped");
1992                 else
1993                         pr_notice("Timeout waiting for devices to be closed");
1994 out:
1995                 mutex_unlock(&bch_register_lock);
1996         }
1997
1998         return NOTIFY_DONE;
1999 }
2000
2001 static struct notifier_block reboot = {
2002         .notifier_call  = bcache_reboot,
2003         .priority       = INT_MAX, /* before any real devices */
2004 };
2005
2006 static void bcache_exit(void)
2007 {
2008         bch_debug_exit();
2009         bch_writeback_exit();
2010         bch_request_exit();
2011         bch_btree_exit();
2012         if (bcache_kobj)
2013                 kobject_put(bcache_kobj);
2014         if (bcache_wq)
2015                 destroy_workqueue(bcache_wq);
2016         unregister_blkdev(bcache_major, "bcache");
2017         unregister_reboot_notifier(&reboot);
2018 }
2019
2020 static int __init bcache_init(void)
2021 {
2022         static const struct attribute *files[] = {
2023                 &ksysfs_register.attr,
2024                 &ksysfs_register_quiet.attr,
2025                 NULL
2026         };
2027
2028         mutex_init(&bch_register_lock);
2029         init_waitqueue_head(&unregister_wait);
2030         register_reboot_notifier(&reboot);
2031         closure_debug_init();
2032
2033         bcache_major = register_blkdev(0, "bcache");
2034         if (bcache_major < 0)
2035                 return bcache_major;
2036
2037         if (!(bcache_wq = create_workqueue("bcache")) ||
2038             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2039             sysfs_create_files(bcache_kobj, files) ||
2040             bch_btree_init() ||
2041             bch_request_init() ||
2042             bch_writeback_init() ||
2043             bch_debug_init(bcache_kobj))
2044                 goto err;
2045
2046         return 0;
2047 err:
2048         bcache_exit();
2049         return -ENOMEM;
2050 }
2051
2052 module_exit(bcache_exit);
2053 module_init(bcache_init);