]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/bcache/writeback.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <trace/events/bcache.h>
17
18 /* Rate limiting */
19
20 static void __update_writeback_rate(struct cached_dev *dc)
21 {
22         struct cache_set *c = dc->disk.c;
23         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
24         uint64_t cache_dirty_target =
25                 div_u64(cache_sectors * dc->writeback_percent, 100);
26
27         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
28                                    c->cached_dev_sectors);
29
30         /* PD controller */
31
32         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
33         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
34         int64_t proportional = dirty - target;
35         int64_t change;
36
37         dc->disk.sectors_dirty_last = dirty;
38
39         /* Scale to sectors per second */
40
41         proportional *= dc->writeback_rate_update_seconds;
42         proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
43
44         derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
45
46         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
47                               (dc->writeback_rate_d_term /
48                                dc->writeback_rate_update_seconds) ?: 1, 0);
49
50         derivative *= dc->writeback_rate_d_term;
51         derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
52
53         change = proportional + derivative;
54
55         /* Don't increase writeback rate if the device isn't keeping up */
56         if (change > 0 &&
57             time_after64(local_clock(),
58                          dc->writeback_rate.next + NSEC_PER_MSEC))
59                 change = 0;
60
61         dc->writeback_rate.rate =
62                 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
63                         1, NSEC_PER_MSEC);
64
65         dc->writeback_rate_proportional = proportional;
66         dc->writeback_rate_derivative = derivative;
67         dc->writeback_rate_change = change;
68         dc->writeback_rate_target = target;
69 }
70
71 static void update_writeback_rate(struct work_struct *work)
72 {
73         struct cached_dev *dc = container_of(to_delayed_work(work),
74                                              struct cached_dev,
75                                              writeback_rate_update);
76
77         down_read(&dc->writeback_lock);
78
79         if (atomic_read(&dc->has_dirty) &&
80             dc->writeback_percent)
81                 __update_writeback_rate(dc);
82
83         up_read(&dc->writeback_lock);
84
85         schedule_delayed_work(&dc->writeback_rate_update,
86                               dc->writeback_rate_update_seconds * HZ);
87 }
88
89 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
90 {
91         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
92             !dc->writeback_percent)
93                 return 0;
94
95         return bch_next_delay(&dc->writeback_rate, sectors);
96 }
97
98 struct dirty_io {
99         struct closure          cl;
100         struct cached_dev       *dc;
101         struct bio              bio;
102 };
103
104 static void dirty_init(struct keybuf_key *w)
105 {
106         struct dirty_io *io = w->private;
107         struct bio *bio = &io->bio;
108
109         bio_init(bio);
110         if (!io->dc->writeback_percent)
111                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
112
113         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
114         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
115         bio->bi_private         = w;
116         bio->bi_io_vec          = bio->bi_inline_vecs;
117         bch_bio_map(bio, NULL);
118 }
119
120 static void dirty_io_destructor(struct closure *cl)
121 {
122         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
123         kfree(io);
124 }
125
126 static void write_dirty_finish(struct closure *cl)
127 {
128         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
129         struct keybuf_key *w = io->bio.bi_private;
130         struct cached_dev *dc = io->dc;
131         struct bio_vec *bv;
132         int i;
133
134         bio_for_each_segment_all(bv, &io->bio, i)
135                 __free_page(bv->bv_page);
136
137         /* This is kind of a dumb way of signalling errors. */
138         if (KEY_DIRTY(&w->key)) {
139                 int ret;
140                 unsigned i;
141                 struct keylist keys;
142
143                 bch_keylist_init(&keys);
144
145                 bkey_copy(keys.top, &w->key);
146                 SET_KEY_DIRTY(keys.top, false);
147                 bch_keylist_push(&keys);
148
149                 for (i = 0; i < KEY_PTRS(&w->key); i++)
150                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
151
152                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
153
154                 if (ret)
155                         trace_bcache_writeback_collision(&w->key);
156
157                 atomic_long_inc(ret
158                                 ? &dc->disk.c->writeback_keys_failed
159                                 : &dc->disk.c->writeback_keys_done);
160         }
161
162         bch_keybuf_del(&dc->writeback_keys, w);
163         up(&dc->in_flight);
164
165         closure_return_with_destructor(cl, dirty_io_destructor);
166 }
167
168 static void dirty_endio(struct bio *bio)
169 {
170         struct keybuf_key *w = bio->bi_private;
171         struct dirty_io *io = w->private;
172
173         if (bio->bi_error)
174                 SET_KEY_DIRTY(&w->key, false);
175
176         closure_put(&io->cl);
177 }
178
179 static void write_dirty(struct closure *cl)
180 {
181         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
182         struct keybuf_key *w = io->bio.bi_private;
183
184         dirty_init(w);
185         bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
186         io->bio.bi_iter.bi_sector = KEY_START(&w->key);
187         io->bio.bi_bdev         = io->dc->bdev;
188         io->bio.bi_end_io       = dirty_endio;
189
190         closure_bio_submit(&io->bio, cl);
191
192         continue_at(cl, write_dirty_finish, system_wq);
193 }
194
195 static void read_dirty_endio(struct bio *bio)
196 {
197         struct keybuf_key *w = bio->bi_private;
198         struct dirty_io *io = w->private;
199
200         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
201                             bio->bi_error, "reading dirty data from cache");
202
203         dirty_endio(bio);
204 }
205
206 static void read_dirty_submit(struct closure *cl)
207 {
208         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
209
210         closure_bio_submit(&io->bio, cl);
211
212         continue_at(cl, write_dirty, system_wq);
213 }
214
215 static void read_dirty(struct cached_dev *dc)
216 {
217         unsigned delay = 0;
218         struct keybuf_key *w;
219         struct dirty_io *io;
220         struct closure cl;
221
222         closure_init_stack(&cl);
223
224         /*
225          * XXX: if we error, background writeback just spins. Should use some
226          * mempools.
227          */
228
229         while (!kthread_should_stop()) {
230
231                 w = bch_keybuf_next(&dc->writeback_keys);
232                 if (!w)
233                         break;
234
235                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
236
237                 if (KEY_START(&w->key) != dc->last_read ||
238                     jiffies_to_msecs(delay) > 50)
239                         while (!kthread_should_stop() && delay)
240                                 delay = schedule_timeout_interruptible(delay);
241
242                 dc->last_read   = KEY_OFFSET(&w->key);
243
244                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
245                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
246                              GFP_KERNEL);
247                 if (!io)
248                         goto err;
249
250                 w->private      = io;
251                 io->dc          = dc;
252
253                 dirty_init(w);
254                 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
255                 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
256                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
257                                                     &w->key, 0)->bdev;
258                 io->bio.bi_end_io       = read_dirty_endio;
259
260                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
261                         goto err_free;
262
263                 trace_bcache_writeback(&w->key);
264
265                 down(&dc->in_flight);
266                 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
267
268                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
269         }
270
271         if (0) {
272 err_free:
273                 kfree(w->private);
274 err:
275                 bch_keybuf_del(&dc->writeback_keys, w);
276         }
277
278         /*
279          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
280          * freed) before refilling again
281          */
282         closure_sync(&cl);
283 }
284
285 /* Scan for dirty data */
286
287 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
288                                   uint64_t offset, int nr_sectors)
289 {
290         struct bcache_device *d = c->devices[inode];
291         unsigned stripe_offset, stripe, sectors_dirty;
292
293         if (!d)
294                 return;
295
296         stripe = offset_to_stripe(d, offset);
297         stripe_offset = offset & (d->stripe_size - 1);
298
299         while (nr_sectors) {
300                 int s = min_t(unsigned, abs(nr_sectors),
301                               d->stripe_size - stripe_offset);
302
303                 if (nr_sectors < 0)
304                         s = -s;
305
306                 if (stripe >= d->nr_stripes)
307                         return;
308
309                 sectors_dirty = atomic_add_return(s,
310                                         d->stripe_sectors_dirty + stripe);
311                 if (sectors_dirty == d->stripe_size)
312                         set_bit(stripe, d->full_dirty_stripes);
313                 else
314                         clear_bit(stripe, d->full_dirty_stripes);
315
316                 nr_sectors -= s;
317                 stripe_offset = 0;
318                 stripe++;
319         }
320 }
321
322 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
323 {
324         struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
325
326         BUG_ON(KEY_INODE(k) != dc->disk.id);
327
328         return KEY_DIRTY(k);
329 }
330
331 static void refill_full_stripes(struct cached_dev *dc)
332 {
333         struct keybuf *buf = &dc->writeback_keys;
334         unsigned start_stripe, stripe, next_stripe;
335         bool wrapped = false;
336
337         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
338
339         if (stripe >= dc->disk.nr_stripes)
340                 stripe = 0;
341
342         start_stripe = stripe;
343
344         while (1) {
345                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
346                                        dc->disk.nr_stripes, stripe);
347
348                 if (stripe == dc->disk.nr_stripes)
349                         goto next;
350
351                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
352                                                  dc->disk.nr_stripes, stripe);
353
354                 buf->last_scanned = KEY(dc->disk.id,
355                                         stripe * dc->disk.stripe_size, 0);
356
357                 bch_refill_keybuf(dc->disk.c, buf,
358                                   &KEY(dc->disk.id,
359                                        next_stripe * dc->disk.stripe_size, 0),
360                                   dirty_pred);
361
362                 if (array_freelist_empty(&buf->freelist))
363                         return;
364
365                 stripe = next_stripe;
366 next:
367                 if (wrapped && stripe > start_stripe)
368                         return;
369
370                 if (stripe == dc->disk.nr_stripes) {
371                         stripe = 0;
372                         wrapped = true;
373                 }
374         }
375 }
376
377 /*
378  * Returns true if we scanned the entire disk
379  */
380 static bool refill_dirty(struct cached_dev *dc)
381 {
382         struct keybuf *buf = &dc->writeback_keys;
383         struct bkey start = KEY(dc->disk.id, 0, 0);
384         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
385         struct bkey start_pos;
386
387         /*
388          * make sure keybuf pos is inside the range for this disk - at bringup
389          * we might not be attached yet so this disk's inode nr isn't
390          * initialized then
391          */
392         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
393             bkey_cmp(&buf->last_scanned, &end) > 0)
394                 buf->last_scanned = start;
395
396         if (dc->partial_stripes_expensive) {
397                 refill_full_stripes(dc);
398                 if (array_freelist_empty(&buf->freelist))
399                         return false;
400         }
401
402         start_pos = buf->last_scanned;
403         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
404
405         if (bkey_cmp(&buf->last_scanned, &end) < 0)
406                 return false;
407
408         /*
409          * If we get to the end start scanning again from the beginning, and
410          * only scan up to where we initially started scanning from:
411          */
412         buf->last_scanned = start;
413         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
414
415         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
416 }
417
418 static int bch_writeback_thread(void *arg)
419 {
420         struct cached_dev *dc = arg;
421         bool searched_full_index;
422
423         while (!kthread_should_stop()) {
424                 down_write(&dc->writeback_lock);
425                 if (!atomic_read(&dc->has_dirty) ||
426                     (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
427                      !dc->writeback_running)) {
428                         up_write(&dc->writeback_lock);
429                         set_current_state(TASK_INTERRUPTIBLE);
430
431                         if (kthread_should_stop())
432                                 return 0;
433
434                         schedule();
435                         continue;
436                 }
437
438                 searched_full_index = refill_dirty(dc);
439
440                 if (searched_full_index &&
441                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
442                         atomic_set(&dc->has_dirty, 0);
443                         cached_dev_put(dc);
444                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
445                         bch_write_bdev_super(dc, NULL);
446                 }
447
448                 up_write(&dc->writeback_lock);
449
450                 bch_ratelimit_reset(&dc->writeback_rate);
451                 read_dirty(dc);
452
453                 if (searched_full_index) {
454                         unsigned delay = dc->writeback_delay * HZ;
455
456                         while (delay &&
457                                !kthread_should_stop() &&
458                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
459                                 delay = schedule_timeout_interruptible(delay);
460                 }
461         }
462
463         return 0;
464 }
465
466 /* Init */
467
468 struct sectors_dirty_init {
469         struct btree_op op;
470         unsigned        inode;
471 };
472
473 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
474                                  struct bkey *k)
475 {
476         struct sectors_dirty_init *op = container_of(_op,
477                                                 struct sectors_dirty_init, op);
478         if (KEY_INODE(k) > op->inode)
479                 return MAP_DONE;
480
481         if (KEY_DIRTY(k))
482                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
483                                              KEY_START(k), KEY_SIZE(k));
484
485         return MAP_CONTINUE;
486 }
487
488 void bch_sectors_dirty_init(struct cached_dev *dc)
489 {
490         struct sectors_dirty_init op;
491
492         bch_btree_op_init(&op.op, -1);
493         op.inode = dc->disk.id;
494
495         bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
496                            sectors_dirty_init_fn, 0);
497
498         dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
499 }
500
501 void bch_cached_dev_writeback_init(struct cached_dev *dc)
502 {
503         sema_init(&dc->in_flight, 64);
504         init_rwsem(&dc->writeback_lock);
505         bch_keybuf_init(&dc->writeback_keys);
506
507         dc->writeback_metadata          = true;
508         dc->writeback_running           = true;
509         dc->writeback_percent           = 10;
510         dc->writeback_delay             = 30;
511         dc->writeback_rate.rate         = 1024;
512
513         dc->writeback_rate_update_seconds = 5;
514         dc->writeback_rate_d_term       = 30;
515         dc->writeback_rate_p_term_inverse = 6000;
516
517         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
518 }
519
520 int bch_cached_dev_writeback_start(struct cached_dev *dc)
521 {
522         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
523                                               "bcache_writeback");
524         if (IS_ERR(dc->writeback_thread))
525                 return PTR_ERR(dc->writeback_thread);
526
527         schedule_delayed_work(&dc->writeback_rate_update,
528                               dc->writeback_rate_update_seconds * HZ);
529
530         bch_writeback_queue(dc);
531
532         return 0;
533 }