]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-cache-target.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24         "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31         spinlock_t lock;
32
33         /*
34          * Sectors of in-flight IO.
35          */
36         sector_t in_flight;
37
38         /*
39          * The time, in jiffies, when this device became idle (if it is
40          * indeed idle).
41          */
42         unsigned long idle_time;
43         unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48         spin_lock_init(&iot->lock);
49         iot->in_flight = 0ul;
50         iot->idle_time = 0ul;
51         iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56         if (iot->in_flight)
57                 return false;
58
59         return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64         bool r;
65         unsigned long flags;
66
67         spin_lock_irqsave(&iot->lock, flags);
68         r = __iot_idle_for(iot, jifs);
69         spin_unlock_irqrestore(&iot->lock, flags);
70
71         return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76         unsigned long flags;
77
78         spin_lock_irqsave(&iot->lock, flags);
79         iot->in_flight += len;
80         spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85         iot->in_flight -= len;
86         if (!iot->in_flight)
87                 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92         unsigned long flags;
93
94         spin_lock_irqsave(&iot->lock, flags);
95         __iot_io_end(iot, len);
96         spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *            either direction
110  */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120         bio_end_io_t *bi_end_io;
121 };
122
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124                         bio_end_io_t *bi_end_io, void *bi_private)
125 {
126         h->bi_end_io = bio->bi_end_io;
127
128         bio->bi_end_io = bi_end_io;
129         bio->bi_private = bi_private;
130 }
131
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134         bio->bi_end_io = h->bi_end_io;
135 }
136
137 /*----------------------------------------------------------------*/
138
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142
143 /*
144  * The block size of the device holding cache data must be
145  * between 32KB and 1GB.
146  */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149
150 enum cache_metadata_mode {
151         CM_WRITE,               /* metadata may be changed */
152         CM_READ_ONLY,           /* metadata may not be changed */
153         CM_FAIL
154 };
155
156 enum cache_io_mode {
157         /*
158          * Data is written to cached blocks only.  These blocks are marked
159          * dirty.  If you lose the cache device you will lose data.
160          * Potential performance increase for both reads and writes.
161          */
162         CM_IO_WRITEBACK,
163
164         /*
165          * Data is written to both cache and origin.  Blocks are never
166          * dirty.  Potential performance benfit for reads only.
167          */
168         CM_IO_WRITETHROUGH,
169
170         /*
171          * A degraded mode useful for various cache coherency situations
172          * (eg, rolling back snapshots).  Reads and writes always go to the
173          * origin.  If a write goes to a cached oblock, then the cache
174          * block is invalidated.
175          */
176         CM_IO_PASSTHROUGH
177 };
178
179 struct cache_features {
180         enum cache_metadata_mode mode;
181         enum cache_io_mode io_mode;
182 };
183
184 struct cache_stats {
185         atomic_t read_hit;
186         atomic_t read_miss;
187         atomic_t write_hit;
188         atomic_t write_miss;
189         atomic_t demotion;
190         atomic_t promotion;
191         atomic_t copies_avoided;
192         atomic_t cache_cell_clash;
193         atomic_t commit_count;
194         atomic_t discard_count;
195 };
196
197 /*
198  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
199  * the one-past-the-end value.
200  */
201 struct cblock_range {
202         dm_cblock_t begin;
203         dm_cblock_t end;
204 };
205
206 struct invalidation_request {
207         struct list_head list;
208         struct cblock_range *cblocks;
209
210         atomic_t complete;
211         int err;
212
213         wait_queue_head_t result_wait;
214 };
215
216 struct cache {
217         struct dm_target *ti;
218         struct dm_target_callbacks callbacks;
219
220         struct dm_cache_metadata *cmd;
221
222         /*
223          * Metadata is written to this device.
224          */
225         struct dm_dev *metadata_dev;
226
227         /*
228          * The slower of the two data devices.  Typically a spindle.
229          */
230         struct dm_dev *origin_dev;
231
232         /*
233          * The faster of the two data devices.  Typically an SSD.
234          */
235         struct dm_dev *cache_dev;
236
237         /*
238          * Size of the origin device in _complete_ blocks and native sectors.
239          */
240         dm_oblock_t origin_blocks;
241         sector_t origin_sectors;
242
243         /*
244          * Size of the cache device in blocks.
245          */
246         dm_cblock_t cache_size;
247
248         /*
249          * Fields for converting from sectors to blocks.
250          */
251         uint32_t sectors_per_block;
252         int sectors_per_block_shift;
253
254         spinlock_t lock;
255         struct list_head deferred_cells;
256         struct bio_list deferred_bios;
257         struct bio_list deferred_flush_bios;
258         struct bio_list deferred_writethrough_bios;
259         struct list_head quiesced_migrations;
260         struct list_head completed_migrations;
261         struct list_head need_commit_migrations;
262         sector_t migration_threshold;
263         wait_queue_head_t migration_wait;
264         atomic_t nr_allocated_migrations;
265
266         /*
267          * The number of in flight migrations that are performing
268          * background io. eg, promotion, writeback.
269          */
270         atomic_t nr_io_migrations;
271
272         wait_queue_head_t quiescing_wait;
273         atomic_t quiescing;
274         atomic_t quiescing_ack;
275
276         /*
277          * cache_size entries, dirty if set
278          */
279         atomic_t nr_dirty;
280         unsigned long *dirty_bitset;
281
282         /*
283          * origin_blocks entries, discarded if set.
284          */
285         dm_dblock_t discard_nr_blocks;
286         unsigned long *discard_bitset;
287         uint32_t discard_block_size; /* a power of 2 times sectors per block */
288
289         /*
290          * Rather than reconstructing the table line for the status we just
291          * save it and regurgitate.
292          */
293         unsigned nr_ctr_args;
294         const char **ctr_args;
295
296         struct dm_kcopyd_client *copier;
297         struct workqueue_struct *wq;
298         struct work_struct worker;
299
300         struct delayed_work waker;
301         unsigned long last_commit_jiffies;
302
303         struct dm_bio_prison *prison;
304         struct dm_deferred_set *all_io_ds;
305
306         mempool_t *migration_pool;
307
308         struct dm_cache_policy *policy;
309         unsigned policy_nr_args;
310
311         bool need_tick_bio:1;
312         bool sized:1;
313         bool invalidate:1;
314         bool commit_requested:1;
315         bool loaded_mappings:1;
316         bool loaded_discards:1;
317
318         /*
319          * Cache features such as write-through.
320          */
321         struct cache_features features;
322
323         struct cache_stats stats;
324
325         /*
326          * Invalidation fields.
327          */
328         spinlock_t invalidation_lock;
329         struct list_head invalidation_requests;
330
331         struct io_tracker origin_tracker;
332 };
333
334 struct per_bio_data {
335         bool tick:1;
336         unsigned req_nr:2;
337         struct dm_deferred_entry *all_io_entry;
338         struct dm_hook_info hook_info;
339         sector_t len;
340
341         /*
342          * writethrough fields.  These MUST remain at the end of this
343          * structure and the 'cache' member must be the first as it
344          * is used to determine the offset of the writethrough fields.
345          */
346         struct cache *cache;
347         dm_cblock_t cblock;
348         struct dm_bio_details bio_details;
349 };
350
351 struct dm_cache_migration {
352         struct list_head list;
353         struct cache *cache;
354
355         unsigned long start_jiffies;
356         dm_oblock_t old_oblock;
357         dm_oblock_t new_oblock;
358         dm_cblock_t cblock;
359
360         bool err:1;
361         bool discard:1;
362         bool writeback:1;
363         bool demote:1;
364         bool promote:1;
365         bool requeue_holder:1;
366         bool invalidate:1;
367
368         struct dm_bio_prison_cell *old_ocell;
369         struct dm_bio_prison_cell *new_ocell;
370 };
371
372 /*
373  * Processing a bio in the worker thread may require these memory
374  * allocations.  We prealloc to avoid deadlocks (the same worker thread
375  * frees them back to the mempool).
376  */
377 struct prealloc {
378         struct dm_cache_migration *mg;
379         struct dm_bio_prison_cell *cell1;
380         struct dm_bio_prison_cell *cell2;
381 };
382
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384
385 static void wake_worker(struct cache *cache)
386 {
387         queue_work(cache->wq, &cache->worker);
388 }
389
390 /*----------------------------------------------------------------*/
391
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394         /* FIXME: change to use a local slab. */
395         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400         dm_bio_prison_free_cell(cache->prison, cell);
401 }
402
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405         struct dm_cache_migration *mg;
406
407         mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408         if (mg) {
409                 mg->cache = cache;
410                 atomic_inc(&mg->cache->nr_allocated_migrations);
411         }
412
413         return mg;
414 }
415
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418         struct cache *cache = mg->cache;
419
420         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421                 wake_up(&cache->migration_wait);
422
423         mempool_free(mg, cache->migration_pool);
424 }
425
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428         if (!p->mg) {
429                 p->mg = alloc_migration(cache);
430                 if (!p->mg)
431                         return -ENOMEM;
432         }
433
434         if (!p->cell1) {
435                 p->cell1 = alloc_prison_cell(cache);
436                 if (!p->cell1)
437                         return -ENOMEM;
438         }
439
440         if (!p->cell2) {
441                 p->cell2 = alloc_prison_cell(cache);
442                 if (!p->cell2)
443                         return -ENOMEM;
444         }
445
446         return 0;
447 }
448
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451         if (p->cell2)
452                 free_prison_cell(cache, p->cell2);
453
454         if (p->cell1)
455                 free_prison_cell(cache, p->cell1);
456
457         if (p->mg)
458                 free_migration(p->mg);
459 }
460
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463         struct dm_cache_migration *mg = p->mg;
464
465         BUG_ON(!mg);
466         p->mg = NULL;
467
468         return mg;
469 }
470
471 /*
472  * You must have a cell within the prealloc struct to return.  If not this
473  * function will BUG() rather than returning NULL.
474  */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477         struct dm_bio_prison_cell *r = NULL;
478
479         if (p->cell1) {
480                 r = p->cell1;
481                 p->cell1 = NULL;
482
483         } else if (p->cell2) {
484                 r = p->cell2;
485                 p->cell2 = NULL;
486         } else
487                 BUG();
488
489         return r;
490 }
491
492 /*
493  * You can't have more than two cells in a prealloc struct.  BUG() will be
494  * called if you try and overfill.
495  */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498         if (!p->cell2)
499                 p->cell2 = cell;
500
501         else if (!p->cell1)
502                 p->cell1 = cell;
503
504         else
505                 BUG();
506 }
507
508 /*----------------------------------------------------------------*/
509
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512         key->virtual = 0;
513         key->dev = 0;
514         key->block_begin = from_oblock(begin);
515         key->block_end = from_oblock(end);
516 }
517
518 /*
519  * The caller hands in a preallocated cell, and a free function for it.
520  * The cell will be freed if there's an error, or if it wasn't used because
521  * a cell with that key already exists.
522  */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526                             struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527                             cell_free_fn free_fn, void *free_context,
528                             struct dm_bio_prison_cell **cell_result)
529 {
530         int r;
531         struct dm_cell_key key;
532
533         build_key(oblock_begin, oblock_end, &key);
534         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535         if (r)
536                 free_fn(free_context, cell_prealloc);
537
538         return r;
539 }
540
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543                       cell_free_fn free_fn, void *free_context,
544                       struct dm_bio_prison_cell **cell_result)
545 {
546         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547         return bio_detain_range(cache, oblock, end, bio,
548                                 cell_prealloc, free_fn, free_context, cell_result);
549 }
550
551 static int get_cell(struct cache *cache,
552                     dm_oblock_t oblock,
553                     struct prealloc *structs,
554                     struct dm_bio_prison_cell **cell_result)
555 {
556         int r;
557         struct dm_cell_key key;
558         struct dm_bio_prison_cell *cell_prealloc;
559
560         cell_prealloc = prealloc_get_cell(structs);
561
562         build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564         if (r)
565                 prealloc_put_cell(structs, cell_prealloc);
566
567         return r;
568 }
569
570 /*----------------------------------------------------------------*/
571
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574         return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580                 atomic_inc(&cache->nr_dirty);
581                 policy_set_dirty(cache->policy, oblock);
582         }
583 }
584
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588                 policy_clear_dirty(cache->policy, oblock);
589                 if (atomic_dec_return(&cache->nr_dirty) == 0)
590                         dm_table_event(cache->ti->table);
591         }
592 }
593
594 /*----------------------------------------------------------------*/
595
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598         return cache->sectors_per_block_shift >= 0;
599 }
600
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607         do_div(b, n);
608
609         return b;
610 }
611
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614         dm_block_t oblocks = cache->discard_block_size;
615
616         if (block_size_is_power_of_two(cache))
617                 oblocks >>= cache->sectors_per_block_shift;
618         else
619                 oblocks = block_div(oblocks, cache->sectors_per_block);
620
621         return oblocks;
622 }
623
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626         return to_dblock(block_div(from_oblock(oblock),
627                                    oblocks_per_dblock(cache)));
628 }
629
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632         return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637         unsigned long flags;
638
639         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640         atomic_inc(&cache->stats.discard_count);
641
642         spin_lock_irqsave(&cache->lock, flags);
643         set_bit(from_dblock(b), cache->discard_bitset);
644         spin_unlock_irqrestore(&cache->lock, flags);
645 }
646
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649         unsigned long flags;
650
651         spin_lock_irqsave(&cache->lock, flags);
652         clear_bit(from_dblock(b), cache->discard_bitset);
653         spin_unlock_irqrestore(&cache->lock, flags);
654 }
655
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658         int r;
659         unsigned long flags;
660
661         spin_lock_irqsave(&cache->lock, flags);
662         r = test_bit(from_dblock(b), cache->discard_bitset);
663         spin_unlock_irqrestore(&cache->lock, flags);
664
665         return r;
666 }
667
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670         int r;
671         unsigned long flags;
672
673         spin_lock_irqsave(&cache->lock, flags);
674         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675                      cache->discard_bitset);
676         spin_unlock_irqrestore(&cache->lock, flags);
677
678         return r;
679 }
680
681 /*----------------------------------------------------------------*/
682
683 static void load_stats(struct cache *cache)
684 {
685         struct dm_cache_statistics stats;
686
687         dm_cache_metadata_get_stats(cache->cmd, &stats);
688         atomic_set(&cache->stats.read_hit, stats.read_hits);
689         atomic_set(&cache->stats.read_miss, stats.read_misses);
690         atomic_set(&cache->stats.write_hit, stats.write_hits);
691         atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693
694 static void save_stats(struct cache *cache)
695 {
696         struct dm_cache_statistics stats;
697
698         if (get_cache_mode(cache) >= CM_READ_ONLY)
699                 return;
700
701         stats.read_hits = atomic_read(&cache->stats.read_hit);
702         stats.read_misses = atomic_read(&cache->stats.read_miss);
703         stats.write_hits = atomic_read(&cache->stats.write_hit);
704         stats.write_misses = atomic_read(&cache->stats.write_miss);
705
706         dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708
709 /*----------------------------------------------------------------
710  * Per bio data
711  *--------------------------------------------------------------*/
712
713 /*
714  * If using writeback, leave out struct per_bio_data's writethrough fields.
715  */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718
719 static bool writethrough_mode(struct cache_features *f)
720 {
721         return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723
724 static bool writeback_mode(struct cache_features *f)
725 {
726         return f->io_mode == CM_IO_WRITEBACK;
727 }
728
729 static bool passthrough_mode(struct cache_features *f)
730 {
731         return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736         return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741         struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742         BUG_ON(!pb);
743         return pb;
744 }
745
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748         struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749
750         pb->tick = false;
751         pb->req_nr = dm_bio_get_target_bio_nr(bio);
752         pb->all_io_entry = NULL;
753         pb->len = 0;
754
755         return pb;
756 }
757
758 /*----------------------------------------------------------------
759  * Remapping
760  *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763         bio->bi_bdev = cache->origin_dev->bdev;
764 }
765
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767                            dm_cblock_t cblock)
768 {
769         sector_t bi_sector = bio->bi_iter.bi_sector;
770         sector_t block = from_cblock(cblock);
771
772         bio->bi_bdev = cache->cache_dev->bdev;
773         if (!block_size_is_power_of_two(cache))
774                 bio->bi_iter.bi_sector =
775                         (block * cache->sectors_per_block) +
776                         sector_div(bi_sector, cache->sectors_per_block);
777         else
778                 bio->bi_iter.bi_sector =
779                         (block << cache->sectors_per_block_shift) |
780                         (bi_sector & (cache->sectors_per_block - 1));
781 }
782
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785         unsigned long flags;
786         size_t pb_data_size = get_per_bio_data_size(cache);
787         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788
789         spin_lock_irqsave(&cache->lock, flags);
790         if (cache->need_tick_bio &&
791             !(bio->bi_rw & (REQ_FUA | REQ_PREFLUSH)) &&
792             bio_op(bio) != REQ_OP_DISCARD) {
793                 pb->tick = true;
794                 cache->need_tick_bio = false;
795         }
796         spin_unlock_irqrestore(&cache->lock, flags);
797 }
798
799 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
800                                   dm_oblock_t oblock)
801 {
802         check_if_tick_bio_needed(cache, bio);
803         remap_to_origin(cache, bio);
804         if (bio_data_dir(bio) == WRITE)
805                 clear_discard(cache, oblock_to_dblock(cache, oblock));
806 }
807
808 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
809                                  dm_oblock_t oblock, dm_cblock_t cblock)
810 {
811         check_if_tick_bio_needed(cache, bio);
812         remap_to_cache(cache, bio, cblock);
813         if (bio_data_dir(bio) == WRITE) {
814                 set_dirty(cache, oblock, cblock);
815                 clear_discard(cache, oblock_to_dblock(cache, oblock));
816         }
817 }
818
819 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
820 {
821         sector_t block_nr = bio->bi_iter.bi_sector;
822
823         if (!block_size_is_power_of_two(cache))
824                 (void) sector_div(block_nr, cache->sectors_per_block);
825         else
826                 block_nr >>= cache->sectors_per_block_shift;
827
828         return to_oblock(block_nr);
829 }
830
831 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
832 {
833         return bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
834 }
835
836 /*
837  * You must increment the deferred set whilst the prison cell is held.  To
838  * encourage this, we ask for 'cell' to be passed in.
839  */
840 static void inc_ds(struct cache *cache, struct bio *bio,
841                    struct dm_bio_prison_cell *cell)
842 {
843         size_t pb_data_size = get_per_bio_data_size(cache);
844         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
845
846         BUG_ON(!cell);
847         BUG_ON(pb->all_io_entry);
848
849         pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
850 }
851
852 static bool accountable_bio(struct cache *cache, struct bio *bio)
853 {
854         return ((bio->bi_bdev == cache->origin_dev->bdev) &&
855                 bio_op(bio) != REQ_OP_DISCARD);
856 }
857
858 static void accounted_begin(struct cache *cache, struct bio *bio)
859 {
860         size_t pb_data_size = get_per_bio_data_size(cache);
861         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
862
863         if (accountable_bio(cache, bio)) {
864                 pb->len = bio_sectors(bio);
865                 iot_io_begin(&cache->origin_tracker, pb->len);
866         }
867 }
868
869 static void accounted_complete(struct cache *cache, struct bio *bio)
870 {
871         size_t pb_data_size = get_per_bio_data_size(cache);
872         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
873
874         iot_io_end(&cache->origin_tracker, pb->len);
875 }
876
877 static void accounted_request(struct cache *cache, struct bio *bio)
878 {
879         accounted_begin(cache, bio);
880         generic_make_request(bio);
881 }
882
883 static void issue(struct cache *cache, struct bio *bio)
884 {
885         unsigned long flags;
886
887         if (!bio_triggers_commit(cache, bio)) {
888                 accounted_request(cache, bio);
889                 return;
890         }
891
892         /*
893          * Batch together any bios that trigger commits and then issue a
894          * single commit for them in do_worker().
895          */
896         spin_lock_irqsave(&cache->lock, flags);
897         cache->commit_requested = true;
898         bio_list_add(&cache->deferred_flush_bios, bio);
899         spin_unlock_irqrestore(&cache->lock, flags);
900 }
901
902 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
903 {
904         inc_ds(cache, bio, cell);
905         issue(cache, bio);
906 }
907
908 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
909 {
910         unsigned long flags;
911
912         spin_lock_irqsave(&cache->lock, flags);
913         bio_list_add(&cache->deferred_writethrough_bios, bio);
914         spin_unlock_irqrestore(&cache->lock, flags);
915
916         wake_worker(cache);
917 }
918
919 static void writethrough_endio(struct bio *bio)
920 {
921         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
922
923         dm_unhook_bio(&pb->hook_info, bio);
924
925         if (bio->bi_error) {
926                 bio_endio(bio);
927                 return;
928         }
929
930         dm_bio_restore(&pb->bio_details, bio);
931         remap_to_cache(pb->cache, bio, pb->cblock);
932
933         /*
934          * We can't issue this bio directly, since we're in interrupt
935          * context.  So it gets put on a bio list for processing by the
936          * worker thread.
937          */
938         defer_writethrough_bio(pb->cache, bio);
939 }
940
941 /*
942  * When running in writethrough mode we need to send writes to clean blocks
943  * to both the cache and origin devices.  In future we'd like to clone the
944  * bio and send them in parallel, but for now we're doing them in
945  * series as this is easier.
946  */
947 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
948                                        dm_oblock_t oblock, dm_cblock_t cblock)
949 {
950         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
951
952         pb->cache = cache;
953         pb->cblock = cblock;
954         dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
955         dm_bio_record(&pb->bio_details, bio);
956
957         remap_to_origin_clear_discard(pb->cache, bio, oblock);
958 }
959
960 /*----------------------------------------------------------------
961  * Failure modes
962  *--------------------------------------------------------------*/
963 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
964 {
965         return cache->features.mode;
966 }
967
968 static const char *cache_device_name(struct cache *cache)
969 {
970         return dm_device_name(dm_table_get_md(cache->ti->table));
971 }
972
973 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
974 {
975         const char *descs[] = {
976                 "write",
977                 "read-only",
978                 "fail"
979         };
980
981         dm_table_event(cache->ti->table);
982         DMINFO("%s: switching cache to %s mode",
983                cache_device_name(cache), descs[(int)mode]);
984 }
985
986 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
987 {
988         bool needs_check;
989         enum cache_metadata_mode old_mode = get_cache_mode(cache);
990
991         if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
992                 DMERR("unable to read needs_check flag, setting failure mode");
993                 new_mode = CM_FAIL;
994         }
995
996         if (new_mode == CM_WRITE && needs_check) {
997                 DMERR("%s: unable to switch cache to write mode until repaired.",
998                       cache_device_name(cache));
999                 if (old_mode != new_mode)
1000                         new_mode = old_mode;
1001                 else
1002                         new_mode = CM_READ_ONLY;
1003         }
1004
1005         /* Never move out of fail mode */
1006         if (old_mode == CM_FAIL)
1007                 new_mode = CM_FAIL;
1008
1009         switch (new_mode) {
1010         case CM_FAIL:
1011         case CM_READ_ONLY:
1012                 dm_cache_metadata_set_read_only(cache->cmd);
1013                 break;
1014
1015         case CM_WRITE:
1016                 dm_cache_metadata_set_read_write(cache->cmd);
1017                 break;
1018         }
1019
1020         cache->features.mode = new_mode;
1021
1022         if (new_mode != old_mode)
1023                 notify_mode_switch(cache, new_mode);
1024 }
1025
1026 static void abort_transaction(struct cache *cache)
1027 {
1028         const char *dev_name = cache_device_name(cache);
1029
1030         if (get_cache_mode(cache) >= CM_READ_ONLY)
1031                 return;
1032
1033         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1034                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1035                 set_cache_mode(cache, CM_FAIL);
1036         }
1037
1038         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1039         if (dm_cache_metadata_abort(cache->cmd)) {
1040                 DMERR("%s: failed to abort metadata transaction", dev_name);
1041                 set_cache_mode(cache, CM_FAIL);
1042         }
1043 }
1044
1045 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1046 {
1047         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1048                     cache_device_name(cache), op, r);
1049         abort_transaction(cache);
1050         set_cache_mode(cache, CM_READ_ONLY);
1051 }
1052
1053 /*----------------------------------------------------------------
1054  * Migration processing
1055  *
1056  * Migration covers moving data from the origin device to the cache, or
1057  * vice versa.
1058  *--------------------------------------------------------------*/
1059 static void inc_io_migrations(struct cache *cache)
1060 {
1061         atomic_inc(&cache->nr_io_migrations);
1062 }
1063
1064 static void dec_io_migrations(struct cache *cache)
1065 {
1066         atomic_dec(&cache->nr_io_migrations);
1067 }
1068
1069 static bool discard_or_flush(struct bio *bio)
1070 {
1071         return bio_op(bio) == REQ_OP_DISCARD ||
1072                bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1073 }
1074
1075 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1076 {
1077         if (discard_or_flush(cell->holder)) {
1078                 /*
1079                  * We have to handle these bios individually.
1080                  */
1081                 dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1082                 free_prison_cell(cache, cell);
1083         } else
1084                 list_add_tail(&cell->user_list, &cache->deferred_cells);
1085 }
1086
1087 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1088 {
1089         unsigned long flags;
1090
1091         if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1092                 /*
1093                  * There was no prisoner to promote to holder, the
1094                  * cell has been released.
1095                  */
1096                 free_prison_cell(cache, cell);
1097                 return;
1098         }
1099
1100         spin_lock_irqsave(&cache->lock, flags);
1101         __cell_defer(cache, cell);
1102         spin_unlock_irqrestore(&cache->lock, flags);
1103
1104         wake_worker(cache);
1105 }
1106
1107 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1108 {
1109         dm_cell_error(cache->prison, cell, err);
1110         free_prison_cell(cache, cell);
1111 }
1112
1113 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1114 {
1115         cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1116 }
1117
1118 static void free_io_migration(struct dm_cache_migration *mg)
1119 {
1120         struct cache *cache = mg->cache;
1121
1122         dec_io_migrations(cache);
1123         free_migration(mg);
1124         wake_worker(cache);
1125 }
1126
1127 static void migration_failure(struct dm_cache_migration *mg)
1128 {
1129         struct cache *cache = mg->cache;
1130         const char *dev_name = cache_device_name(cache);
1131
1132         if (mg->writeback) {
1133                 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1134                 set_dirty(cache, mg->old_oblock, mg->cblock);
1135                 cell_defer(cache, mg->old_ocell, false);
1136
1137         } else if (mg->demote) {
1138                 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1139                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1140
1141                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1142                 if (mg->promote)
1143                         cell_defer(cache, mg->new_ocell, true);
1144         } else {
1145                 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1146                 policy_remove_mapping(cache->policy, mg->new_oblock);
1147                 cell_defer(cache, mg->new_ocell, true);
1148         }
1149
1150         free_io_migration(mg);
1151 }
1152
1153 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1154 {
1155         int r;
1156         unsigned long flags;
1157         struct cache *cache = mg->cache;
1158
1159         if (mg->writeback) {
1160                 clear_dirty(cache, mg->old_oblock, mg->cblock);
1161                 cell_defer(cache, mg->old_ocell, false);
1162                 free_io_migration(mg);
1163                 return;
1164
1165         } else if (mg->demote) {
1166                 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1167                 if (r) {
1168                         DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1169                                     cache_device_name(cache));
1170                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1171                         policy_force_mapping(cache->policy, mg->new_oblock,
1172                                              mg->old_oblock);
1173                         if (mg->promote)
1174                                 cell_defer(cache, mg->new_ocell, true);
1175                         free_io_migration(mg);
1176                         return;
1177                 }
1178         } else {
1179                 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1180                 if (r) {
1181                         DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1182                                     cache_device_name(cache));
1183                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1184                         policy_remove_mapping(cache->policy, mg->new_oblock);
1185                         free_io_migration(mg);
1186                         return;
1187                 }
1188         }
1189
1190         spin_lock_irqsave(&cache->lock, flags);
1191         list_add_tail(&mg->list, &cache->need_commit_migrations);
1192         cache->commit_requested = true;
1193         spin_unlock_irqrestore(&cache->lock, flags);
1194 }
1195
1196 static void migration_success_post_commit(struct dm_cache_migration *mg)
1197 {
1198         unsigned long flags;
1199         struct cache *cache = mg->cache;
1200
1201         if (mg->writeback) {
1202                 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1203                              cache_device_name(cache));
1204                 return;
1205
1206         } else if (mg->demote) {
1207                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1208
1209                 if (mg->promote) {
1210                         mg->demote = false;
1211
1212                         spin_lock_irqsave(&cache->lock, flags);
1213                         list_add_tail(&mg->list, &cache->quiesced_migrations);
1214                         spin_unlock_irqrestore(&cache->lock, flags);
1215
1216                 } else {
1217                         if (mg->invalidate)
1218                                 policy_remove_mapping(cache->policy, mg->old_oblock);
1219                         free_io_migration(mg);
1220                 }
1221
1222         } else {
1223                 if (mg->requeue_holder) {
1224                         clear_dirty(cache, mg->new_oblock, mg->cblock);
1225                         cell_defer(cache, mg->new_ocell, true);
1226                 } else {
1227                         /*
1228                          * The block was promoted via an overwrite, so it's dirty.
1229                          */
1230                         set_dirty(cache, mg->new_oblock, mg->cblock);
1231                         bio_endio(mg->new_ocell->holder);
1232                         cell_defer(cache, mg->new_ocell, false);
1233                 }
1234                 free_io_migration(mg);
1235         }
1236 }
1237
1238 static void copy_complete(int read_err, unsigned long write_err, void *context)
1239 {
1240         unsigned long flags;
1241         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1242         struct cache *cache = mg->cache;
1243
1244         if (read_err || write_err)
1245                 mg->err = true;
1246
1247         spin_lock_irqsave(&cache->lock, flags);
1248         list_add_tail(&mg->list, &cache->completed_migrations);
1249         spin_unlock_irqrestore(&cache->lock, flags);
1250
1251         wake_worker(cache);
1252 }
1253
1254 static void issue_copy(struct dm_cache_migration *mg)
1255 {
1256         int r;
1257         struct dm_io_region o_region, c_region;
1258         struct cache *cache = mg->cache;
1259         sector_t cblock = from_cblock(mg->cblock);
1260
1261         o_region.bdev = cache->origin_dev->bdev;
1262         o_region.count = cache->sectors_per_block;
1263
1264         c_region.bdev = cache->cache_dev->bdev;
1265         c_region.sector = cblock * cache->sectors_per_block;
1266         c_region.count = cache->sectors_per_block;
1267
1268         if (mg->writeback || mg->demote) {
1269                 /* demote */
1270                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1271                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1272         } else {
1273                 /* promote */
1274                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1275                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1276         }
1277
1278         if (r < 0) {
1279                 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1280                 migration_failure(mg);
1281         }
1282 }
1283
1284 static void overwrite_endio(struct bio *bio)
1285 {
1286         struct dm_cache_migration *mg = bio->bi_private;
1287         struct cache *cache = mg->cache;
1288         size_t pb_data_size = get_per_bio_data_size(cache);
1289         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1290         unsigned long flags;
1291
1292         dm_unhook_bio(&pb->hook_info, bio);
1293
1294         if (bio->bi_error)
1295                 mg->err = true;
1296
1297         mg->requeue_holder = false;
1298
1299         spin_lock_irqsave(&cache->lock, flags);
1300         list_add_tail(&mg->list, &cache->completed_migrations);
1301         spin_unlock_irqrestore(&cache->lock, flags);
1302
1303         wake_worker(cache);
1304 }
1305
1306 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1307 {
1308         size_t pb_data_size = get_per_bio_data_size(mg->cache);
1309         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1310
1311         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1312         remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1313
1314         /*
1315          * No need to inc_ds() here, since the cell will be held for the
1316          * duration of the io.
1317          */
1318         accounted_request(mg->cache, bio);
1319 }
1320
1321 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1322 {
1323         return (bio_data_dir(bio) == WRITE) &&
1324                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1325 }
1326
1327 static void avoid_copy(struct dm_cache_migration *mg)
1328 {
1329         atomic_inc(&mg->cache->stats.copies_avoided);
1330         migration_success_pre_commit(mg);
1331 }
1332
1333 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1334                                      dm_dblock_t *b, dm_dblock_t *e)
1335 {
1336         sector_t sb = bio->bi_iter.bi_sector;
1337         sector_t se = bio_end_sector(bio);
1338
1339         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1340
1341         if (se - sb < cache->discard_block_size)
1342                 *e = *b;
1343         else
1344                 *e = to_dblock(block_div(se, cache->discard_block_size));
1345 }
1346
1347 static void issue_discard(struct dm_cache_migration *mg)
1348 {
1349         dm_dblock_t b, e;
1350         struct bio *bio = mg->new_ocell->holder;
1351         struct cache *cache = mg->cache;
1352
1353         calc_discard_block_range(cache, bio, &b, &e);
1354         while (b != e) {
1355                 set_discard(cache, b);
1356                 b = to_dblock(from_dblock(b) + 1);
1357         }
1358
1359         bio_endio(bio);
1360         cell_defer(cache, mg->new_ocell, false);
1361         free_migration(mg);
1362         wake_worker(cache);
1363 }
1364
1365 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1366 {
1367         bool avoid;
1368         struct cache *cache = mg->cache;
1369
1370         if (mg->discard) {
1371                 issue_discard(mg);
1372                 return;
1373         }
1374
1375         if (mg->writeback || mg->demote)
1376                 avoid = !is_dirty(cache, mg->cblock) ||
1377                         is_discarded_oblock(cache, mg->old_oblock);
1378         else {
1379                 struct bio *bio = mg->new_ocell->holder;
1380
1381                 avoid = is_discarded_oblock(cache, mg->new_oblock);
1382
1383                 if (writeback_mode(&cache->features) &&
1384                     !avoid && bio_writes_complete_block(cache, bio)) {
1385                         issue_overwrite(mg, bio);
1386                         return;
1387                 }
1388         }
1389
1390         avoid ? avoid_copy(mg) : issue_copy(mg);
1391 }
1392
1393 static void complete_migration(struct dm_cache_migration *mg)
1394 {
1395         if (mg->err)
1396                 migration_failure(mg);
1397         else
1398                 migration_success_pre_commit(mg);
1399 }
1400
1401 static void process_migrations(struct cache *cache, struct list_head *head,
1402                                void (*fn)(struct dm_cache_migration *))
1403 {
1404         unsigned long flags;
1405         struct list_head list;
1406         struct dm_cache_migration *mg, *tmp;
1407
1408         INIT_LIST_HEAD(&list);
1409         spin_lock_irqsave(&cache->lock, flags);
1410         list_splice_init(head, &list);
1411         spin_unlock_irqrestore(&cache->lock, flags);
1412
1413         list_for_each_entry_safe(mg, tmp, &list, list)
1414                 fn(mg);
1415 }
1416
1417 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1418 {
1419         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1420 }
1421
1422 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1423 {
1424         unsigned long flags;
1425         struct cache *cache = mg->cache;
1426
1427         spin_lock_irqsave(&cache->lock, flags);
1428         __queue_quiesced_migration(mg);
1429         spin_unlock_irqrestore(&cache->lock, flags);
1430
1431         wake_worker(cache);
1432 }
1433
1434 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1435 {
1436         unsigned long flags;
1437         struct dm_cache_migration *mg, *tmp;
1438
1439         spin_lock_irqsave(&cache->lock, flags);
1440         list_for_each_entry_safe(mg, tmp, work, list)
1441                 __queue_quiesced_migration(mg);
1442         spin_unlock_irqrestore(&cache->lock, flags);
1443
1444         wake_worker(cache);
1445 }
1446
1447 static void check_for_quiesced_migrations(struct cache *cache,
1448                                           struct per_bio_data *pb)
1449 {
1450         struct list_head work;
1451
1452         if (!pb->all_io_entry)
1453                 return;
1454
1455         INIT_LIST_HEAD(&work);
1456         dm_deferred_entry_dec(pb->all_io_entry, &work);
1457
1458         if (!list_empty(&work))
1459                 queue_quiesced_migrations(cache, &work);
1460 }
1461
1462 static void quiesce_migration(struct dm_cache_migration *mg)
1463 {
1464         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1465                 queue_quiesced_migration(mg);
1466 }
1467
1468 static void promote(struct cache *cache, struct prealloc *structs,
1469                     dm_oblock_t oblock, dm_cblock_t cblock,
1470                     struct dm_bio_prison_cell *cell)
1471 {
1472         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1473
1474         mg->err = false;
1475         mg->discard = false;
1476         mg->writeback = false;
1477         mg->demote = false;
1478         mg->promote = true;
1479         mg->requeue_holder = true;
1480         mg->invalidate = false;
1481         mg->cache = cache;
1482         mg->new_oblock = oblock;
1483         mg->cblock = cblock;
1484         mg->old_ocell = NULL;
1485         mg->new_ocell = cell;
1486         mg->start_jiffies = jiffies;
1487
1488         inc_io_migrations(cache);
1489         quiesce_migration(mg);
1490 }
1491
1492 static void writeback(struct cache *cache, struct prealloc *structs,
1493                       dm_oblock_t oblock, dm_cblock_t cblock,
1494                       struct dm_bio_prison_cell *cell)
1495 {
1496         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1497
1498         mg->err = false;
1499         mg->discard = false;
1500         mg->writeback = true;
1501         mg->demote = false;
1502         mg->promote = false;
1503         mg->requeue_holder = true;
1504         mg->invalidate = false;
1505         mg->cache = cache;
1506         mg->old_oblock = oblock;
1507         mg->cblock = cblock;
1508         mg->old_ocell = cell;
1509         mg->new_ocell = NULL;
1510         mg->start_jiffies = jiffies;
1511
1512         inc_io_migrations(cache);
1513         quiesce_migration(mg);
1514 }
1515
1516 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1517                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1518                                 dm_cblock_t cblock,
1519                                 struct dm_bio_prison_cell *old_ocell,
1520                                 struct dm_bio_prison_cell *new_ocell)
1521 {
1522         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1523
1524         mg->err = false;
1525         mg->discard = false;
1526         mg->writeback = false;
1527         mg->demote = true;
1528         mg->promote = true;
1529         mg->requeue_holder = true;
1530         mg->invalidate = false;
1531         mg->cache = cache;
1532         mg->old_oblock = old_oblock;
1533         mg->new_oblock = new_oblock;
1534         mg->cblock = cblock;
1535         mg->old_ocell = old_ocell;
1536         mg->new_ocell = new_ocell;
1537         mg->start_jiffies = jiffies;
1538
1539         inc_io_migrations(cache);
1540         quiesce_migration(mg);
1541 }
1542
1543 /*
1544  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1545  * block are thrown away.
1546  */
1547 static void invalidate(struct cache *cache, struct prealloc *structs,
1548                        dm_oblock_t oblock, dm_cblock_t cblock,
1549                        struct dm_bio_prison_cell *cell)
1550 {
1551         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1552
1553         mg->err = false;
1554         mg->discard = false;
1555         mg->writeback = false;
1556         mg->demote = true;
1557         mg->promote = false;
1558         mg->requeue_holder = true;
1559         mg->invalidate = true;
1560         mg->cache = cache;
1561         mg->old_oblock = oblock;
1562         mg->cblock = cblock;
1563         mg->old_ocell = cell;
1564         mg->new_ocell = NULL;
1565         mg->start_jiffies = jiffies;
1566
1567         inc_io_migrations(cache);
1568         quiesce_migration(mg);
1569 }
1570
1571 static void discard(struct cache *cache, struct prealloc *structs,
1572                     struct dm_bio_prison_cell *cell)
1573 {
1574         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1575
1576         mg->err = false;
1577         mg->discard = true;
1578         mg->writeback = false;
1579         mg->demote = false;
1580         mg->promote = false;
1581         mg->requeue_holder = false;
1582         mg->invalidate = false;
1583         mg->cache = cache;
1584         mg->old_ocell = NULL;
1585         mg->new_ocell = cell;
1586         mg->start_jiffies = jiffies;
1587
1588         quiesce_migration(mg);
1589 }
1590
1591 /*----------------------------------------------------------------
1592  * bio processing
1593  *--------------------------------------------------------------*/
1594 static void defer_bio(struct cache *cache, struct bio *bio)
1595 {
1596         unsigned long flags;
1597
1598         spin_lock_irqsave(&cache->lock, flags);
1599         bio_list_add(&cache->deferred_bios, bio);
1600         spin_unlock_irqrestore(&cache->lock, flags);
1601
1602         wake_worker(cache);
1603 }
1604
1605 static void process_flush_bio(struct cache *cache, struct bio *bio)
1606 {
1607         size_t pb_data_size = get_per_bio_data_size(cache);
1608         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1609
1610         BUG_ON(bio->bi_iter.bi_size);
1611         if (!pb->req_nr)
1612                 remap_to_origin(cache, bio);
1613         else
1614                 remap_to_cache(cache, bio, 0);
1615
1616         /*
1617          * REQ_PREFLUSH is not directed at any particular block so we don't
1618          * need to inc_ds().  REQ_FUA's are split into a write + REQ_PREFLUSH
1619          * by dm-core.
1620          */
1621         issue(cache, bio);
1622 }
1623
1624 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1625                                 struct bio *bio)
1626 {
1627         int r;
1628         dm_dblock_t b, e;
1629         struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1630
1631         calc_discard_block_range(cache, bio, &b, &e);
1632         if (b == e) {
1633                 bio_endio(bio);
1634                 return;
1635         }
1636
1637         cell_prealloc = prealloc_get_cell(structs);
1638         r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1639                              (cell_free_fn) prealloc_put_cell,
1640                              structs, &new_ocell);
1641         if (r > 0)
1642                 return;
1643
1644         discard(cache, structs, new_ocell);
1645 }
1646
1647 static bool spare_migration_bandwidth(struct cache *cache)
1648 {
1649         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1650                 cache->sectors_per_block;
1651         return current_volume < cache->migration_threshold;
1652 }
1653
1654 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1655 {
1656         atomic_inc(bio_data_dir(bio) == READ ?
1657                    &cache->stats.read_hit : &cache->stats.write_hit);
1658 }
1659
1660 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1661 {
1662         atomic_inc(bio_data_dir(bio) == READ ?
1663                    &cache->stats.read_miss : &cache->stats.write_miss);
1664 }
1665
1666 /*----------------------------------------------------------------*/
1667
1668 struct inc_detail {
1669         struct cache *cache;
1670         struct bio_list bios_for_issue;
1671         struct bio_list unhandled_bios;
1672         bool any_writes;
1673 };
1674
1675 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1676 {
1677         struct bio *bio;
1678         struct inc_detail *detail = context;
1679         struct cache *cache = detail->cache;
1680
1681         inc_ds(cache, cell->holder, cell);
1682         if (bio_data_dir(cell->holder) == WRITE)
1683                 detail->any_writes = true;
1684
1685         while ((bio = bio_list_pop(&cell->bios))) {
1686                 if (discard_or_flush(bio)) {
1687                         bio_list_add(&detail->unhandled_bios, bio);
1688                         continue;
1689                 }
1690
1691                 if (bio_data_dir(bio) == WRITE)
1692                         detail->any_writes = true;
1693
1694                 bio_list_add(&detail->bios_for_issue, bio);
1695                 inc_ds(cache, bio, cell);
1696         }
1697 }
1698
1699 // FIXME: refactor these two
1700 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1701                                                struct dm_bio_prison_cell *cell,
1702                                                dm_oblock_t oblock, bool issue_holder)
1703 {
1704         struct bio *bio;
1705         unsigned long flags;
1706         struct inc_detail detail;
1707
1708         detail.cache = cache;
1709         bio_list_init(&detail.bios_for_issue);
1710         bio_list_init(&detail.unhandled_bios);
1711         detail.any_writes = false;
1712
1713         spin_lock_irqsave(&cache->lock, flags);
1714         dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1715         bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1716         spin_unlock_irqrestore(&cache->lock, flags);
1717
1718         remap_to_origin(cache, cell->holder);
1719         if (issue_holder)
1720                 issue(cache, cell->holder);
1721         else
1722                 accounted_begin(cache, cell->holder);
1723
1724         if (detail.any_writes)
1725                 clear_discard(cache, oblock_to_dblock(cache, oblock));
1726
1727         while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1728                 remap_to_origin(cache, bio);
1729                 issue(cache, bio);
1730         }
1731
1732         free_prison_cell(cache, cell);
1733 }
1734
1735 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1736                                       dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1737 {
1738         struct bio *bio;
1739         unsigned long flags;
1740         struct inc_detail detail;
1741
1742         detail.cache = cache;
1743         bio_list_init(&detail.bios_for_issue);
1744         bio_list_init(&detail.unhandled_bios);
1745         detail.any_writes = false;
1746
1747         spin_lock_irqsave(&cache->lock, flags);
1748         dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1749         bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1750         spin_unlock_irqrestore(&cache->lock, flags);
1751
1752         remap_to_cache(cache, cell->holder, cblock);
1753         if (issue_holder)
1754                 issue(cache, cell->holder);
1755         else
1756                 accounted_begin(cache, cell->holder);
1757
1758         if (detail.any_writes) {
1759                 set_dirty(cache, oblock, cblock);
1760                 clear_discard(cache, oblock_to_dblock(cache, oblock));
1761         }
1762
1763         while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1764                 remap_to_cache(cache, bio, cblock);
1765                 issue(cache, bio);
1766         }
1767
1768         free_prison_cell(cache, cell);
1769 }
1770
1771 /*----------------------------------------------------------------*/
1772
1773 struct old_oblock_lock {
1774         struct policy_locker locker;
1775         struct cache *cache;
1776         struct prealloc *structs;
1777         struct dm_bio_prison_cell *cell;
1778 };
1779
1780 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1781 {
1782         /* This should never be called */
1783         BUG();
1784         return 0;
1785 }
1786
1787 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1788 {
1789         struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1790         struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1791
1792         return bio_detain(l->cache, b, NULL, cell_prealloc,
1793                           (cell_free_fn) prealloc_put_cell,
1794                           l->structs, &l->cell);
1795 }
1796
1797 static void process_cell(struct cache *cache, struct prealloc *structs,
1798                          struct dm_bio_prison_cell *new_ocell)
1799 {
1800         int r;
1801         bool release_cell = true;
1802         struct bio *bio = new_ocell->holder;
1803         dm_oblock_t block = get_bio_block(cache, bio);
1804         struct policy_result lookup_result;
1805         bool passthrough = passthrough_mode(&cache->features);
1806         bool fast_promotion, can_migrate;
1807         struct old_oblock_lock ool;
1808
1809         fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1810         can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1811
1812         ool.locker.fn = cell_locker;
1813         ool.cache = cache;
1814         ool.structs = structs;
1815         ool.cell = NULL;
1816         r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1817                        bio, &ool.locker, &lookup_result);
1818
1819         if (r == -EWOULDBLOCK)
1820                 /* migration has been denied */
1821                 lookup_result.op = POLICY_MISS;
1822
1823         switch (lookup_result.op) {
1824         case POLICY_HIT:
1825                 if (passthrough) {
1826                         inc_miss_counter(cache, bio);
1827
1828                         /*
1829                          * Passthrough always maps to the origin,
1830                          * invalidating any cache blocks that are written
1831                          * to.
1832                          */
1833
1834                         if (bio_data_dir(bio) == WRITE) {
1835                                 atomic_inc(&cache->stats.demotion);
1836                                 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1837                                 release_cell = false;
1838
1839                         } else {
1840                                 /* FIXME: factor out issue_origin() */
1841                                 remap_to_origin_clear_discard(cache, bio, block);
1842                                 inc_and_issue(cache, bio, new_ocell);
1843                         }
1844                 } else {
1845                         inc_hit_counter(cache, bio);
1846
1847                         if (bio_data_dir(bio) == WRITE &&
1848                             writethrough_mode(&cache->features) &&
1849                             !is_dirty(cache, lookup_result.cblock)) {
1850                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1851                                 inc_and_issue(cache, bio, new_ocell);
1852
1853                         } else {
1854                                 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1855                                 release_cell = false;
1856                         }
1857                 }
1858
1859                 break;
1860
1861         case POLICY_MISS:
1862                 inc_miss_counter(cache, bio);
1863                 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1864                 release_cell = false;
1865                 break;
1866
1867         case POLICY_NEW:
1868                 atomic_inc(&cache->stats.promotion);
1869                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1870                 release_cell = false;
1871                 break;
1872
1873         case POLICY_REPLACE:
1874                 atomic_inc(&cache->stats.demotion);
1875                 atomic_inc(&cache->stats.promotion);
1876                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1877                                     block, lookup_result.cblock,
1878                                     ool.cell, new_ocell);
1879                 release_cell = false;
1880                 break;
1881
1882         default:
1883                 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1884                             cache_device_name(cache), __func__,
1885                             (unsigned) lookup_result.op);
1886                 bio_io_error(bio);
1887         }
1888
1889         if (release_cell)
1890                 cell_defer(cache, new_ocell, false);
1891 }
1892
1893 static void process_bio(struct cache *cache, struct prealloc *structs,
1894                         struct bio *bio)
1895 {
1896         int r;
1897         dm_oblock_t block = get_bio_block(cache, bio);
1898         struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1899
1900         /*
1901          * Check to see if that block is currently migrating.
1902          */
1903         cell_prealloc = prealloc_get_cell(structs);
1904         r = bio_detain(cache, block, bio, cell_prealloc,
1905                        (cell_free_fn) prealloc_put_cell,
1906                        structs, &new_ocell);
1907         if (r > 0)
1908                 return;
1909
1910         process_cell(cache, structs, new_ocell);
1911 }
1912
1913 static int need_commit_due_to_time(struct cache *cache)
1914 {
1915         return jiffies < cache->last_commit_jiffies ||
1916                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1917 }
1918
1919 /*
1920  * A non-zero return indicates read_only or fail_io mode.
1921  */
1922 static int commit(struct cache *cache, bool clean_shutdown)
1923 {
1924         int r;
1925
1926         if (get_cache_mode(cache) >= CM_READ_ONLY)
1927                 return -EINVAL;
1928
1929         atomic_inc(&cache->stats.commit_count);
1930         r = dm_cache_commit(cache->cmd, clean_shutdown);
1931         if (r)
1932                 metadata_operation_failed(cache, "dm_cache_commit", r);
1933
1934         return r;
1935 }
1936
1937 static int commit_if_needed(struct cache *cache)
1938 {
1939         int r = 0;
1940
1941         if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1942             dm_cache_changed_this_transaction(cache->cmd)) {
1943                 r = commit(cache, false);
1944                 cache->commit_requested = false;
1945                 cache->last_commit_jiffies = jiffies;
1946         }
1947
1948         return r;
1949 }
1950
1951 static void process_deferred_bios(struct cache *cache)
1952 {
1953         bool prealloc_used = false;
1954         unsigned long flags;
1955         struct bio_list bios;
1956         struct bio *bio;
1957         struct prealloc structs;
1958
1959         memset(&structs, 0, sizeof(structs));
1960         bio_list_init(&bios);
1961
1962         spin_lock_irqsave(&cache->lock, flags);
1963         bio_list_merge(&bios, &cache->deferred_bios);
1964         bio_list_init(&cache->deferred_bios);
1965         spin_unlock_irqrestore(&cache->lock, flags);
1966
1967         while (!bio_list_empty(&bios)) {
1968                 /*
1969                  * If we've got no free migration structs, and processing
1970                  * this bio might require one, we pause until there are some
1971                  * prepared mappings to process.
1972                  */
1973                 prealloc_used = true;
1974                 if (prealloc_data_structs(cache, &structs)) {
1975                         spin_lock_irqsave(&cache->lock, flags);
1976                         bio_list_merge(&cache->deferred_bios, &bios);
1977                         spin_unlock_irqrestore(&cache->lock, flags);
1978                         break;
1979                 }
1980
1981                 bio = bio_list_pop(&bios);
1982
1983                 if (bio->bi_rw & REQ_PREFLUSH)
1984                         process_flush_bio(cache, bio);
1985                 else if (bio_op(bio) == REQ_OP_DISCARD)
1986                         process_discard_bio(cache, &structs, bio);
1987                 else
1988                         process_bio(cache, &structs, bio);
1989         }
1990
1991         if (prealloc_used)
1992                 prealloc_free_structs(cache, &structs);
1993 }
1994
1995 static void process_deferred_cells(struct cache *cache)
1996 {
1997         bool prealloc_used = false;
1998         unsigned long flags;
1999         struct dm_bio_prison_cell *cell, *tmp;
2000         struct list_head cells;
2001         struct prealloc structs;
2002
2003         memset(&structs, 0, sizeof(structs));
2004
2005         INIT_LIST_HEAD(&cells);
2006
2007         spin_lock_irqsave(&cache->lock, flags);
2008         list_splice_init(&cache->deferred_cells, &cells);
2009         spin_unlock_irqrestore(&cache->lock, flags);
2010
2011         list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2012                 /*
2013                  * If we've got no free migration structs, and processing
2014                  * this bio might require one, we pause until there are some
2015                  * prepared mappings to process.
2016                  */
2017                 prealloc_used = true;
2018                 if (prealloc_data_structs(cache, &structs)) {
2019                         spin_lock_irqsave(&cache->lock, flags);
2020                         list_splice(&cells, &cache->deferred_cells);
2021                         spin_unlock_irqrestore(&cache->lock, flags);
2022                         break;
2023                 }
2024
2025                 process_cell(cache, &structs, cell);
2026         }
2027
2028         if (prealloc_used)
2029                 prealloc_free_structs(cache, &structs);
2030 }
2031
2032 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2033 {
2034         unsigned long flags;
2035         struct bio_list bios;
2036         struct bio *bio;
2037
2038         bio_list_init(&bios);
2039
2040         spin_lock_irqsave(&cache->lock, flags);
2041         bio_list_merge(&bios, &cache->deferred_flush_bios);
2042         bio_list_init(&cache->deferred_flush_bios);
2043         spin_unlock_irqrestore(&cache->lock, flags);
2044
2045         /*
2046          * These bios have already been through inc_ds()
2047          */
2048         while ((bio = bio_list_pop(&bios)))
2049                 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2050 }
2051
2052 static void process_deferred_writethrough_bios(struct cache *cache)
2053 {
2054         unsigned long flags;
2055         struct bio_list bios;
2056         struct bio *bio;
2057
2058         bio_list_init(&bios);
2059
2060         spin_lock_irqsave(&cache->lock, flags);
2061         bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2062         bio_list_init(&cache->deferred_writethrough_bios);
2063         spin_unlock_irqrestore(&cache->lock, flags);
2064
2065         /*
2066          * These bios have already been through inc_ds()
2067          */
2068         while ((bio = bio_list_pop(&bios)))
2069                 accounted_request(cache, bio);
2070 }
2071
2072 static void writeback_some_dirty_blocks(struct cache *cache)
2073 {
2074         bool prealloc_used = false;
2075         dm_oblock_t oblock;
2076         dm_cblock_t cblock;
2077         struct prealloc structs;
2078         struct dm_bio_prison_cell *old_ocell;
2079         bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2080
2081         memset(&structs, 0, sizeof(structs));
2082
2083         while (spare_migration_bandwidth(cache)) {
2084                 if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2085                         break; /* no work to do */
2086
2087                 prealloc_used = true;
2088                 if (prealloc_data_structs(cache, &structs) ||
2089                     get_cell(cache, oblock, &structs, &old_ocell)) {
2090                         policy_set_dirty(cache->policy, oblock);
2091                         break;
2092                 }
2093
2094                 writeback(cache, &structs, oblock, cblock, old_ocell);
2095         }
2096
2097         if (prealloc_used)
2098                 prealloc_free_structs(cache, &structs);
2099 }
2100
2101 /*----------------------------------------------------------------
2102  * Invalidations.
2103  * Dropping something from the cache *without* writing back.
2104  *--------------------------------------------------------------*/
2105
2106 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2107 {
2108         int r = 0;
2109         uint64_t begin = from_cblock(req->cblocks->begin);
2110         uint64_t end = from_cblock(req->cblocks->end);
2111
2112         while (begin != end) {
2113                 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2114                 if (!r) {
2115                         r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2116                         if (r) {
2117                                 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2118                                 break;
2119                         }
2120
2121                 } else if (r == -ENODATA) {
2122                         /* harmless, already unmapped */
2123                         r = 0;
2124
2125                 } else {
2126                         DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2127                         break;
2128                 }
2129
2130                 begin++;
2131         }
2132
2133         cache->commit_requested = true;
2134
2135         req->err = r;
2136         atomic_set(&req->complete, 1);
2137
2138         wake_up(&req->result_wait);
2139 }
2140
2141 static void process_invalidation_requests(struct cache *cache)
2142 {
2143         struct list_head list;
2144         struct invalidation_request *req, *tmp;
2145
2146         INIT_LIST_HEAD(&list);
2147         spin_lock(&cache->invalidation_lock);
2148         list_splice_init(&cache->invalidation_requests, &list);
2149         spin_unlock(&cache->invalidation_lock);
2150
2151         list_for_each_entry_safe (req, tmp, &list, list)
2152                 process_invalidation_request(cache, req);
2153 }
2154
2155 /*----------------------------------------------------------------
2156  * Main worker loop
2157  *--------------------------------------------------------------*/
2158 static bool is_quiescing(struct cache *cache)
2159 {
2160         return atomic_read(&cache->quiescing);
2161 }
2162
2163 static void ack_quiescing(struct cache *cache)
2164 {
2165         if (is_quiescing(cache)) {
2166                 atomic_inc(&cache->quiescing_ack);
2167                 wake_up(&cache->quiescing_wait);
2168         }
2169 }
2170
2171 static void wait_for_quiescing_ack(struct cache *cache)
2172 {
2173         wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2174 }
2175
2176 static void start_quiescing(struct cache *cache)
2177 {
2178         atomic_inc(&cache->quiescing);
2179         wait_for_quiescing_ack(cache);
2180 }
2181
2182 static void stop_quiescing(struct cache *cache)
2183 {
2184         atomic_set(&cache->quiescing, 0);
2185         atomic_set(&cache->quiescing_ack, 0);
2186 }
2187
2188 static void wait_for_migrations(struct cache *cache)
2189 {
2190         wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2191 }
2192
2193 static void stop_worker(struct cache *cache)
2194 {
2195         cancel_delayed_work(&cache->waker);
2196         flush_workqueue(cache->wq);
2197 }
2198
2199 static void requeue_deferred_cells(struct cache *cache)
2200 {
2201         unsigned long flags;
2202         struct list_head cells;
2203         struct dm_bio_prison_cell *cell, *tmp;
2204
2205         INIT_LIST_HEAD(&cells);
2206         spin_lock_irqsave(&cache->lock, flags);
2207         list_splice_init(&cache->deferred_cells, &cells);
2208         spin_unlock_irqrestore(&cache->lock, flags);
2209
2210         list_for_each_entry_safe(cell, tmp, &cells, user_list)
2211                 cell_requeue(cache, cell);
2212 }
2213
2214 static void requeue_deferred_bios(struct cache *cache)
2215 {
2216         struct bio *bio;
2217         struct bio_list bios;
2218
2219         bio_list_init(&bios);
2220         bio_list_merge(&bios, &cache->deferred_bios);
2221         bio_list_init(&cache->deferred_bios);
2222
2223         while ((bio = bio_list_pop(&bios))) {
2224                 bio->bi_error = DM_ENDIO_REQUEUE;
2225                 bio_endio(bio);
2226         }
2227 }
2228
2229 static int more_work(struct cache *cache)
2230 {
2231         if (is_quiescing(cache))
2232                 return !list_empty(&cache->quiesced_migrations) ||
2233                         !list_empty(&cache->completed_migrations) ||
2234                         !list_empty(&cache->need_commit_migrations);
2235         else
2236                 return !bio_list_empty(&cache->deferred_bios) ||
2237                         !list_empty(&cache->deferred_cells) ||
2238                         !bio_list_empty(&cache->deferred_flush_bios) ||
2239                         !bio_list_empty(&cache->deferred_writethrough_bios) ||
2240                         !list_empty(&cache->quiesced_migrations) ||
2241                         !list_empty(&cache->completed_migrations) ||
2242                         !list_empty(&cache->need_commit_migrations) ||
2243                         cache->invalidate;
2244 }
2245
2246 static void do_worker(struct work_struct *ws)
2247 {
2248         struct cache *cache = container_of(ws, struct cache, worker);
2249
2250         do {
2251                 if (!is_quiescing(cache)) {
2252                         writeback_some_dirty_blocks(cache);
2253                         process_deferred_writethrough_bios(cache);
2254                         process_deferred_bios(cache);
2255                         process_deferred_cells(cache);
2256                         process_invalidation_requests(cache);
2257                 }
2258
2259                 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2260                 process_migrations(cache, &cache->completed_migrations, complete_migration);
2261
2262                 if (commit_if_needed(cache)) {
2263                         process_deferred_flush_bios(cache, false);
2264                         process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2265                 } else {
2266                         process_deferred_flush_bios(cache, true);
2267                         process_migrations(cache, &cache->need_commit_migrations,
2268                                            migration_success_post_commit);
2269                 }
2270
2271                 ack_quiescing(cache);
2272
2273         } while (more_work(cache));
2274 }
2275
2276 /*
2277  * We want to commit periodically so that not too much
2278  * unwritten metadata builds up.
2279  */
2280 static void do_waker(struct work_struct *ws)
2281 {
2282         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2283         policy_tick(cache->policy, true);
2284         wake_worker(cache);
2285         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2286 }
2287
2288 /*----------------------------------------------------------------*/
2289
2290 static int is_congested(struct dm_dev *dev, int bdi_bits)
2291 {
2292         struct request_queue *q = bdev_get_queue(dev->bdev);
2293         return bdi_congested(&q->backing_dev_info, bdi_bits);
2294 }
2295
2296 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2297 {
2298         struct cache *cache = container_of(cb, struct cache, callbacks);
2299
2300         return is_congested(cache->origin_dev, bdi_bits) ||
2301                 is_congested(cache->cache_dev, bdi_bits);
2302 }
2303
2304 /*----------------------------------------------------------------
2305  * Target methods
2306  *--------------------------------------------------------------*/
2307
2308 /*
2309  * This function gets called on the error paths of the constructor, so we
2310  * have to cope with a partially initialised struct.
2311  */
2312 static void destroy(struct cache *cache)
2313 {
2314         unsigned i;
2315
2316         mempool_destroy(cache->migration_pool);
2317
2318         if (cache->all_io_ds)
2319                 dm_deferred_set_destroy(cache->all_io_ds);
2320
2321         if (cache->prison)
2322                 dm_bio_prison_destroy(cache->prison);
2323
2324         if (cache->wq)
2325                 destroy_workqueue(cache->wq);
2326
2327         if (cache->dirty_bitset)
2328                 free_bitset(cache->dirty_bitset);
2329
2330         if (cache->discard_bitset)
2331                 free_bitset(cache->discard_bitset);
2332
2333         if (cache->copier)
2334                 dm_kcopyd_client_destroy(cache->copier);
2335
2336         if (cache->cmd)
2337                 dm_cache_metadata_close(cache->cmd);
2338
2339         if (cache->metadata_dev)
2340                 dm_put_device(cache->ti, cache->metadata_dev);
2341
2342         if (cache->origin_dev)
2343                 dm_put_device(cache->ti, cache->origin_dev);
2344
2345         if (cache->cache_dev)
2346                 dm_put_device(cache->ti, cache->cache_dev);
2347
2348         if (cache->policy)
2349                 dm_cache_policy_destroy(cache->policy);
2350
2351         for (i = 0; i < cache->nr_ctr_args ; i++)
2352                 kfree(cache->ctr_args[i]);
2353         kfree(cache->ctr_args);
2354
2355         kfree(cache);
2356 }
2357
2358 static void cache_dtr(struct dm_target *ti)
2359 {
2360         struct cache *cache = ti->private;
2361
2362         destroy(cache);
2363 }
2364
2365 static sector_t get_dev_size(struct dm_dev *dev)
2366 {
2367         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2368 }
2369
2370 /*----------------------------------------------------------------*/
2371
2372 /*
2373  * Construct a cache device mapping.
2374  *
2375  * cache <metadata dev> <cache dev> <origin dev> <block size>
2376  *       <#feature args> [<feature arg>]*
2377  *       <policy> <#policy args> [<policy arg>]*
2378  *
2379  * metadata dev    : fast device holding the persistent metadata
2380  * cache dev       : fast device holding cached data blocks
2381  * origin dev      : slow device holding original data blocks
2382  * block size      : cache unit size in sectors
2383  *
2384  * #feature args   : number of feature arguments passed
2385  * feature args    : writethrough.  (The default is writeback.)
2386  *
2387  * policy          : the replacement policy to use
2388  * #policy args    : an even number of policy arguments corresponding
2389  *                   to key/value pairs passed to the policy
2390  * policy args     : key/value pairs passed to the policy
2391  *                   E.g. 'sequential_threshold 1024'
2392  *                   See cache-policies.txt for details.
2393  *
2394  * Optional feature arguments are:
2395  *   writethrough  : write through caching that prohibits cache block
2396  *                   content from being different from origin block content.
2397  *                   Without this argument, the default behaviour is to write
2398  *                   back cache block contents later for performance reasons,
2399  *                   so they may differ from the corresponding origin blocks.
2400  */
2401 struct cache_args {
2402         struct dm_target *ti;
2403
2404         struct dm_dev *metadata_dev;
2405
2406         struct dm_dev *cache_dev;
2407         sector_t cache_sectors;
2408
2409         struct dm_dev *origin_dev;
2410         sector_t origin_sectors;
2411
2412         uint32_t block_size;
2413
2414         const char *policy_name;
2415         int policy_argc;
2416         const char **policy_argv;
2417
2418         struct cache_features features;
2419 };
2420
2421 static void destroy_cache_args(struct cache_args *ca)
2422 {
2423         if (ca->metadata_dev)
2424                 dm_put_device(ca->ti, ca->metadata_dev);
2425
2426         if (ca->cache_dev)
2427                 dm_put_device(ca->ti, ca->cache_dev);
2428
2429         if (ca->origin_dev)
2430                 dm_put_device(ca->ti, ca->origin_dev);
2431
2432         kfree(ca);
2433 }
2434
2435 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2436 {
2437         if (!as->argc) {
2438                 *error = "Insufficient args";
2439                 return false;
2440         }
2441
2442         return true;
2443 }
2444
2445 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2446                               char **error)
2447 {
2448         int r;
2449         sector_t metadata_dev_size;
2450         char b[BDEVNAME_SIZE];
2451
2452         if (!at_least_one_arg(as, error))
2453                 return -EINVAL;
2454
2455         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2456                           &ca->metadata_dev);
2457         if (r) {
2458                 *error = "Error opening metadata device";
2459                 return r;
2460         }
2461
2462         metadata_dev_size = get_dev_size(ca->metadata_dev);
2463         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2464                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2465                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2466
2467         return 0;
2468 }
2469
2470 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2471                            char **error)
2472 {
2473         int r;
2474
2475         if (!at_least_one_arg(as, error))
2476                 return -EINVAL;
2477
2478         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2479                           &ca->cache_dev);
2480         if (r) {
2481                 *error = "Error opening cache device";
2482                 return r;
2483         }
2484         ca->cache_sectors = get_dev_size(ca->cache_dev);
2485
2486         return 0;
2487 }
2488
2489 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2490                             char **error)
2491 {
2492         int r;
2493
2494         if (!at_least_one_arg(as, error))
2495                 return -EINVAL;
2496
2497         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2498                           &ca->origin_dev);
2499         if (r) {
2500                 *error = "Error opening origin device";
2501                 return r;
2502         }
2503
2504         ca->origin_sectors = get_dev_size(ca->origin_dev);
2505         if (ca->ti->len > ca->origin_sectors) {
2506                 *error = "Device size larger than cached device";
2507                 return -EINVAL;
2508         }
2509
2510         return 0;
2511 }
2512
2513 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2514                             char **error)
2515 {
2516         unsigned long block_size;
2517
2518         if (!at_least_one_arg(as, error))
2519                 return -EINVAL;
2520
2521         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2522             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2523             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2524             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2525                 *error = "Invalid data block size";
2526                 return -EINVAL;
2527         }
2528
2529         if (block_size > ca->cache_sectors) {
2530                 *error = "Data block size is larger than the cache device";
2531                 return -EINVAL;
2532         }
2533
2534         ca->block_size = block_size;
2535
2536         return 0;
2537 }
2538
2539 static void init_features(struct cache_features *cf)
2540 {
2541         cf->mode = CM_WRITE;
2542         cf->io_mode = CM_IO_WRITEBACK;
2543 }
2544
2545 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2546                           char **error)
2547 {
2548         static struct dm_arg _args[] = {
2549                 {0, 1, "Invalid number of cache feature arguments"},
2550         };
2551
2552         int r;
2553         unsigned argc;
2554         const char *arg;
2555         struct cache_features *cf = &ca->features;
2556
2557         init_features(cf);
2558
2559         r = dm_read_arg_group(_args, as, &argc, error);
2560         if (r)
2561                 return -EINVAL;
2562
2563         while (argc--) {
2564                 arg = dm_shift_arg(as);
2565
2566                 if (!strcasecmp(arg, "writeback"))
2567                         cf->io_mode = CM_IO_WRITEBACK;
2568
2569                 else if (!strcasecmp(arg, "writethrough"))
2570                         cf->io_mode = CM_IO_WRITETHROUGH;
2571
2572                 else if (!strcasecmp(arg, "passthrough"))
2573                         cf->io_mode = CM_IO_PASSTHROUGH;
2574
2575                 else {
2576                         *error = "Unrecognised cache feature requested";
2577                         return -EINVAL;
2578                 }
2579         }
2580
2581         return 0;
2582 }
2583
2584 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2585                         char **error)
2586 {
2587         static struct dm_arg _args[] = {
2588                 {0, 1024, "Invalid number of policy arguments"},
2589         };
2590
2591         int r;
2592
2593         if (!at_least_one_arg(as, error))
2594                 return -EINVAL;
2595
2596         ca->policy_name = dm_shift_arg(as);
2597
2598         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2599         if (r)
2600                 return -EINVAL;
2601
2602         ca->policy_argv = (const char **)as->argv;
2603         dm_consume_args(as, ca->policy_argc);
2604
2605         return 0;
2606 }
2607
2608 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2609                             char **error)
2610 {
2611         int r;
2612         struct dm_arg_set as;
2613
2614         as.argc = argc;
2615         as.argv = argv;
2616
2617         r = parse_metadata_dev(ca, &as, error);
2618         if (r)
2619                 return r;
2620
2621         r = parse_cache_dev(ca, &as, error);
2622         if (r)
2623                 return r;
2624
2625         r = parse_origin_dev(ca, &as, error);
2626         if (r)
2627                 return r;
2628
2629         r = parse_block_size(ca, &as, error);
2630         if (r)
2631                 return r;
2632
2633         r = parse_features(ca, &as, error);
2634         if (r)
2635                 return r;
2636
2637         r = parse_policy(ca, &as, error);
2638         if (r)
2639                 return r;
2640
2641         return 0;
2642 }
2643
2644 /*----------------------------------------------------------------*/
2645
2646 static struct kmem_cache *migration_cache;
2647
2648 #define NOT_CORE_OPTION 1
2649
2650 static int process_config_option(struct cache *cache, const char *key, const char *value)
2651 {
2652         unsigned long tmp;
2653
2654         if (!strcasecmp(key, "migration_threshold")) {
2655                 if (kstrtoul(value, 10, &tmp))
2656                         return -EINVAL;
2657
2658                 cache->migration_threshold = tmp;
2659                 return 0;
2660         }
2661
2662         return NOT_CORE_OPTION;
2663 }
2664
2665 static int set_config_value(struct cache *cache, const char *key, const char *value)
2666 {
2667         int r = process_config_option(cache, key, value);
2668
2669         if (r == NOT_CORE_OPTION)
2670                 r = policy_set_config_value(cache->policy, key, value);
2671
2672         if (r)
2673                 DMWARN("bad config value for %s: %s", key, value);
2674
2675         return r;
2676 }
2677
2678 static int set_config_values(struct cache *cache, int argc, const char **argv)
2679 {
2680         int r = 0;
2681
2682         if (argc & 1) {
2683                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2684                 return -EINVAL;
2685         }
2686
2687         while (argc) {
2688                 r = set_config_value(cache, argv[0], argv[1]);
2689                 if (r)
2690                         break;
2691
2692                 argc -= 2;
2693                 argv += 2;
2694         }
2695
2696         return r;
2697 }
2698
2699 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2700                                char **error)
2701 {
2702         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2703                                                            cache->cache_size,
2704                                                            cache->origin_sectors,
2705                                                            cache->sectors_per_block);
2706         if (IS_ERR(p)) {
2707                 *error = "Error creating cache's policy";
2708                 return PTR_ERR(p);
2709         }
2710         cache->policy = p;
2711
2712         return 0;
2713 }
2714
2715 /*
2716  * We want the discard block size to be at least the size of the cache
2717  * block size and have no more than 2^14 discard blocks across the origin.
2718  */
2719 #define MAX_DISCARD_BLOCKS (1 << 14)
2720
2721 static bool too_many_discard_blocks(sector_t discard_block_size,
2722                                     sector_t origin_size)
2723 {
2724         (void) sector_div(origin_size, discard_block_size);
2725
2726         return origin_size > MAX_DISCARD_BLOCKS;
2727 }
2728
2729 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2730                                              sector_t origin_size)
2731 {
2732         sector_t discard_block_size = cache_block_size;
2733
2734         if (origin_size)
2735                 while (too_many_discard_blocks(discard_block_size, origin_size))
2736                         discard_block_size *= 2;
2737
2738         return discard_block_size;
2739 }
2740
2741 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2742 {
2743         dm_block_t nr_blocks = from_cblock(size);
2744
2745         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2746                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2747                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2748                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2749                              (unsigned long long) nr_blocks);
2750
2751         cache->cache_size = size;
2752 }
2753
2754 #define DEFAULT_MIGRATION_THRESHOLD 2048
2755
2756 static int cache_create(struct cache_args *ca, struct cache **result)
2757 {
2758         int r = 0;
2759         char **error = &ca->ti->error;
2760         struct cache *cache;
2761         struct dm_target *ti = ca->ti;
2762         dm_block_t origin_blocks;
2763         struct dm_cache_metadata *cmd;
2764         bool may_format = ca->features.mode == CM_WRITE;
2765
2766         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2767         if (!cache)
2768                 return -ENOMEM;
2769
2770         cache->ti = ca->ti;
2771         ti->private = cache;
2772         ti->num_flush_bios = 2;
2773         ti->flush_supported = true;
2774
2775         ti->num_discard_bios = 1;
2776         ti->discards_supported = true;
2777         ti->discard_zeroes_data_unsupported = true;
2778         ti->split_discard_bios = false;
2779
2780         cache->features = ca->features;
2781         ti->per_io_data_size = get_per_bio_data_size(cache);
2782
2783         cache->callbacks.congested_fn = cache_is_congested;
2784         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2785
2786         cache->metadata_dev = ca->metadata_dev;
2787         cache->origin_dev = ca->origin_dev;
2788         cache->cache_dev = ca->cache_dev;
2789
2790         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2791
2792         /* FIXME: factor out this whole section */
2793         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2794         origin_blocks = block_div(origin_blocks, ca->block_size);
2795         cache->origin_blocks = to_oblock(origin_blocks);
2796
2797         cache->sectors_per_block = ca->block_size;
2798         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2799                 r = -EINVAL;
2800                 goto bad;
2801         }
2802
2803         if (ca->block_size & (ca->block_size - 1)) {
2804                 dm_block_t cache_size = ca->cache_sectors;
2805
2806                 cache->sectors_per_block_shift = -1;
2807                 cache_size = block_div(cache_size, ca->block_size);
2808                 set_cache_size(cache, to_cblock(cache_size));
2809         } else {
2810                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2811                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2812         }
2813
2814         r = create_cache_policy(cache, ca, error);
2815         if (r)
2816                 goto bad;
2817
2818         cache->policy_nr_args = ca->policy_argc;
2819         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2820
2821         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2822         if (r) {
2823                 *error = "Error setting cache policy's config values";
2824                 goto bad;
2825         }
2826
2827         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2828                                      ca->block_size, may_format,
2829                                      dm_cache_policy_get_hint_size(cache->policy));
2830         if (IS_ERR(cmd)) {
2831                 *error = "Error creating metadata object";
2832                 r = PTR_ERR(cmd);
2833                 goto bad;
2834         }
2835         cache->cmd = cmd;
2836         set_cache_mode(cache, CM_WRITE);
2837         if (get_cache_mode(cache) != CM_WRITE) {
2838                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2839                 r = -EINVAL;
2840                 goto bad;
2841         }
2842
2843         if (passthrough_mode(&cache->features)) {
2844                 bool all_clean;
2845
2846                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2847                 if (r) {
2848                         *error = "dm_cache_metadata_all_clean() failed";
2849                         goto bad;
2850                 }
2851
2852                 if (!all_clean) {
2853                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2854                         r = -EINVAL;
2855                         goto bad;
2856                 }
2857         }
2858
2859         spin_lock_init(&cache->lock);
2860         INIT_LIST_HEAD(&cache->deferred_cells);
2861         bio_list_init(&cache->deferred_bios);
2862         bio_list_init(&cache->deferred_flush_bios);
2863         bio_list_init(&cache->deferred_writethrough_bios);
2864         INIT_LIST_HEAD(&cache->quiesced_migrations);
2865         INIT_LIST_HEAD(&cache->completed_migrations);
2866         INIT_LIST_HEAD(&cache->need_commit_migrations);
2867         atomic_set(&cache->nr_allocated_migrations, 0);
2868         atomic_set(&cache->nr_io_migrations, 0);
2869         init_waitqueue_head(&cache->migration_wait);
2870
2871         init_waitqueue_head(&cache->quiescing_wait);
2872         atomic_set(&cache->quiescing, 0);
2873         atomic_set(&cache->quiescing_ack, 0);
2874
2875         r = -ENOMEM;
2876         atomic_set(&cache->nr_dirty, 0);
2877         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2878         if (!cache->dirty_bitset) {
2879                 *error = "could not allocate dirty bitset";
2880                 goto bad;
2881         }
2882         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2883
2884         cache->discard_block_size =
2885                 calculate_discard_block_size(cache->sectors_per_block,
2886                                              cache->origin_sectors);
2887         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2888                                                               cache->discard_block_size));
2889         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2890         if (!cache->discard_bitset) {
2891                 *error = "could not allocate discard bitset";
2892                 goto bad;
2893         }
2894         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2895
2896         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2897         if (IS_ERR(cache->copier)) {
2898                 *error = "could not create kcopyd client";
2899                 r = PTR_ERR(cache->copier);
2900                 goto bad;
2901         }
2902
2903         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2904         if (!cache->wq) {
2905                 *error = "could not create workqueue for metadata object";
2906                 goto bad;
2907         }
2908         INIT_WORK(&cache->worker, do_worker);
2909         INIT_DELAYED_WORK(&cache->waker, do_waker);
2910         cache->last_commit_jiffies = jiffies;
2911
2912         cache->prison = dm_bio_prison_create();
2913         if (!cache->prison) {
2914                 *error = "could not create bio prison";
2915                 goto bad;
2916         }
2917
2918         cache->all_io_ds = dm_deferred_set_create();
2919         if (!cache->all_io_ds) {
2920                 *error = "could not create all_io deferred set";
2921                 goto bad;
2922         }
2923
2924         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2925                                                          migration_cache);
2926         if (!cache->migration_pool) {
2927                 *error = "Error creating cache's migration mempool";
2928                 goto bad;
2929         }
2930
2931         cache->need_tick_bio = true;
2932         cache->sized = false;
2933         cache->invalidate = false;
2934         cache->commit_requested = false;
2935         cache->loaded_mappings = false;
2936         cache->loaded_discards = false;
2937
2938         load_stats(cache);
2939
2940         atomic_set(&cache->stats.demotion, 0);
2941         atomic_set(&cache->stats.promotion, 0);
2942         atomic_set(&cache->stats.copies_avoided, 0);
2943         atomic_set(&cache->stats.cache_cell_clash, 0);
2944         atomic_set(&cache->stats.commit_count, 0);
2945         atomic_set(&cache->stats.discard_count, 0);
2946
2947         spin_lock_init(&cache->invalidation_lock);
2948         INIT_LIST_HEAD(&cache->invalidation_requests);
2949
2950         iot_init(&cache->origin_tracker);
2951
2952         *result = cache;
2953         return 0;
2954
2955 bad:
2956         destroy(cache);
2957         return r;
2958 }
2959
2960 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2961 {
2962         unsigned i;
2963         const char **copy;
2964
2965         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2966         if (!copy)
2967                 return -ENOMEM;
2968         for (i = 0; i < argc; i++) {
2969                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2970                 if (!copy[i]) {
2971                         while (i--)
2972                                 kfree(copy[i]);
2973                         kfree(copy);
2974                         return -ENOMEM;
2975                 }
2976         }
2977
2978         cache->nr_ctr_args = argc;
2979         cache->ctr_args = copy;
2980
2981         return 0;
2982 }
2983
2984 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2985 {
2986         int r = -EINVAL;
2987         struct cache_args *ca;
2988         struct cache *cache = NULL;
2989
2990         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2991         if (!ca) {
2992                 ti->error = "Error allocating memory for cache";
2993                 return -ENOMEM;
2994         }
2995         ca->ti = ti;
2996
2997         r = parse_cache_args(ca, argc, argv, &ti->error);
2998         if (r)
2999                 goto out;
3000
3001         r = cache_create(ca, &cache);
3002         if (r)
3003                 goto out;
3004
3005         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3006         if (r) {
3007                 destroy(cache);
3008                 goto out;
3009         }
3010
3011         ti->private = cache;
3012
3013 out:
3014         destroy_cache_args(ca);
3015         return r;
3016 }
3017
3018 /*----------------------------------------------------------------*/
3019
3020 static int cache_map(struct dm_target *ti, struct bio *bio)
3021 {
3022         struct cache *cache = ti->private;
3023
3024         int r;
3025         struct dm_bio_prison_cell *cell = NULL;
3026         dm_oblock_t block = get_bio_block(cache, bio);
3027         size_t pb_data_size = get_per_bio_data_size(cache);
3028         bool can_migrate = false;
3029         bool fast_promotion;
3030         struct policy_result lookup_result;
3031         struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3032         struct old_oblock_lock ool;
3033
3034         ool.locker.fn = null_locker;
3035
3036         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3037                 /*
3038                  * This can only occur if the io goes to a partial block at
3039                  * the end of the origin device.  We don't cache these.
3040                  * Just remap to the origin and carry on.
3041                  */
3042                 remap_to_origin(cache, bio);
3043                 accounted_begin(cache, bio);
3044                 return DM_MAPIO_REMAPPED;
3045         }
3046
3047         if (discard_or_flush(bio)) {
3048                 defer_bio(cache, bio);
3049                 return DM_MAPIO_SUBMITTED;
3050         }
3051
3052         /*
3053          * Check to see if that block is currently migrating.
3054          */
3055         cell = alloc_prison_cell(cache);
3056         if (!cell) {
3057                 defer_bio(cache, bio);
3058                 return DM_MAPIO_SUBMITTED;
3059         }
3060
3061         r = bio_detain(cache, block, bio, cell,
3062                        (cell_free_fn) free_prison_cell,
3063                        cache, &cell);
3064         if (r) {
3065                 if (r < 0)
3066                         defer_bio(cache, bio);
3067
3068                 return DM_MAPIO_SUBMITTED;
3069         }
3070
3071         fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3072
3073         r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3074                        bio, &ool.locker, &lookup_result);
3075         if (r == -EWOULDBLOCK) {
3076                 cell_defer(cache, cell, true);
3077                 return DM_MAPIO_SUBMITTED;
3078
3079         } else if (r) {
3080                 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3081                             cache_device_name(cache), r);
3082                 cell_defer(cache, cell, false);
3083                 bio_io_error(bio);
3084                 return DM_MAPIO_SUBMITTED;
3085         }
3086
3087         r = DM_MAPIO_REMAPPED;
3088         switch (lookup_result.op) {
3089         case POLICY_HIT:
3090                 if (passthrough_mode(&cache->features)) {
3091                         if (bio_data_dir(bio) == WRITE) {
3092                                 /*
3093                                  * We need to invalidate this block, so
3094                                  * defer for the worker thread.
3095                                  */
3096                                 cell_defer(cache, cell, true);
3097                                 r = DM_MAPIO_SUBMITTED;
3098
3099                         } else {
3100                                 inc_miss_counter(cache, bio);
3101                                 remap_to_origin_clear_discard(cache, bio, block);
3102                                 accounted_begin(cache, bio);
3103                                 inc_ds(cache, bio, cell);
3104                                 // FIXME: we want to remap hits or misses straight
3105                                 // away rather than passing over to the worker.
3106                                 cell_defer(cache, cell, false);
3107                         }
3108
3109                 } else {
3110                         inc_hit_counter(cache, bio);
3111                         if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3112                             !is_dirty(cache, lookup_result.cblock)) {
3113                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3114                                 accounted_begin(cache, bio);
3115                                 inc_ds(cache, bio, cell);
3116                                 cell_defer(cache, cell, false);
3117
3118                         } else
3119                                 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3120                 }
3121                 break;
3122
3123         case POLICY_MISS:
3124                 inc_miss_counter(cache, bio);
3125                 if (pb->req_nr != 0) {
3126                         /*
3127                          * This is a duplicate writethrough io that is no
3128                          * longer needed because the block has been demoted.
3129                          */
3130                         bio_endio(bio);
3131                         // FIXME: remap everything as a miss
3132                         cell_defer(cache, cell, false);
3133                         r = DM_MAPIO_SUBMITTED;
3134
3135                 } else
3136                         remap_cell_to_origin_clear_discard(cache, cell, block, false);
3137                 break;
3138
3139         default:
3140                 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3141                             cache_device_name(cache), __func__,
3142                             (unsigned) lookup_result.op);
3143                 cell_defer(cache, cell, false);
3144                 bio_io_error(bio);
3145                 r = DM_MAPIO_SUBMITTED;
3146         }
3147
3148         return r;
3149 }
3150
3151 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3152 {
3153         struct cache *cache = ti->private;
3154         unsigned long flags;
3155         size_t pb_data_size = get_per_bio_data_size(cache);
3156         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3157
3158         if (pb->tick) {
3159                 policy_tick(cache->policy, false);
3160
3161                 spin_lock_irqsave(&cache->lock, flags);
3162                 cache->need_tick_bio = true;
3163                 spin_unlock_irqrestore(&cache->lock, flags);
3164         }
3165
3166         check_for_quiesced_migrations(cache, pb);
3167         accounted_complete(cache, bio);
3168
3169         return 0;
3170 }
3171
3172 static int write_dirty_bitset(struct cache *cache)
3173 {
3174         unsigned i, r;
3175
3176         if (get_cache_mode(cache) >= CM_READ_ONLY)
3177                 return -EINVAL;
3178
3179         for (i = 0; i < from_cblock(cache->cache_size); i++) {
3180                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3181                                        is_dirty(cache, to_cblock(i)));
3182                 if (r) {
3183                         metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3184                         return r;
3185                 }
3186         }
3187
3188         return 0;
3189 }
3190
3191 static int write_discard_bitset(struct cache *cache)
3192 {
3193         unsigned i, r;
3194
3195         if (get_cache_mode(cache) >= CM_READ_ONLY)
3196                 return -EINVAL;
3197
3198         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3199                                            cache->discard_nr_blocks);
3200         if (r) {
3201                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3202                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3203                 return r;
3204         }
3205
3206         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3207                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3208                                          is_discarded(cache, to_dblock(i)));
3209                 if (r) {
3210                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
3211                         return r;
3212                 }
3213         }
3214
3215         return 0;
3216 }
3217
3218 static int write_hints(struct cache *cache)
3219 {
3220         int r;
3221
3222         if (get_cache_mode(cache) >= CM_READ_ONLY)
3223                 return -EINVAL;
3224
3225         r = dm_cache_write_hints(cache->cmd, cache->policy);
3226         if (r) {
3227                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3228                 return r;
3229         }
3230
3231         return 0;
3232 }
3233
3234 /*
3235  * returns true on success
3236  */
3237 static bool sync_metadata(struct cache *cache)
3238 {
3239         int r1, r2, r3, r4;
3240
3241         r1 = write_dirty_bitset(cache);
3242         if (r1)
3243                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3244
3245         r2 = write_discard_bitset(cache);
3246         if (r2)
3247                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3248
3249         save_stats(cache);
3250
3251         r3 = write_hints(cache);
3252         if (r3)
3253                 DMERR("%s: could not write hints", cache_device_name(cache));
3254
3255         /*
3256          * If writing the above metadata failed, we still commit, but don't
3257          * set the clean shutdown flag.  This will effectively force every
3258          * dirty bit to be set on reload.
3259          */
3260         r4 = commit(cache, !r1 && !r2 && !r3);
3261         if (r4)
3262                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3263
3264         return !r1 && !r2 && !r3 && !r4;
3265 }
3266
3267 static void cache_postsuspend(struct dm_target *ti)
3268 {
3269         struct cache *cache = ti->private;
3270
3271         start_quiescing(cache);
3272         wait_for_migrations(cache);
3273         stop_worker(cache);
3274         requeue_deferred_bios(cache);
3275         requeue_deferred_cells(cache);
3276         stop_quiescing(cache);
3277
3278         if (get_cache_mode(cache) == CM_WRITE)
3279                 (void) sync_metadata(cache);
3280 }
3281
3282 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3283                         bool dirty, uint32_t hint, bool hint_valid)
3284 {
3285         int r;
3286         struct cache *cache = context;
3287
3288         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3289         if (r)
3290                 return r;
3291
3292         if (dirty)
3293                 set_dirty(cache, oblock, cblock);
3294         else
3295                 clear_dirty(cache, oblock, cblock);
3296
3297         return 0;
3298 }
3299
3300 /*
3301  * The discard block size in the on disk metadata is not
3302  * neccessarily the same as we're currently using.  So we have to
3303  * be careful to only set the discarded attribute if we know it
3304  * covers a complete block of the new size.
3305  */
3306 struct discard_load_info {
3307         struct cache *cache;
3308
3309         /*
3310          * These blocks are sized using the on disk dblock size, rather
3311          * than the current one.
3312          */
3313         dm_block_t block_size;
3314         dm_block_t discard_begin, discard_end;
3315 };
3316
3317 static void discard_load_info_init(struct cache *cache,
3318                                    struct discard_load_info *li)
3319 {
3320         li->cache = cache;
3321         li->discard_begin = li->discard_end = 0;
3322 }
3323
3324 static void set_discard_range(struct discard_load_info *li)
3325 {
3326         sector_t b, e;
3327
3328         if (li->discard_begin == li->discard_end)
3329                 return;
3330
3331         /*
3332          * Convert to sectors.
3333          */
3334         b = li->discard_begin * li->block_size;
3335         e = li->discard_end * li->block_size;
3336
3337         /*
3338          * Then convert back to the current dblock size.
3339          */
3340         b = dm_sector_div_up(b, li->cache->discard_block_size);
3341         sector_div(e, li->cache->discard_block_size);
3342
3343         /*
3344          * The origin may have shrunk, so we need to check we're still in
3345          * bounds.
3346          */
3347         if (e > from_dblock(li->cache->discard_nr_blocks))
3348                 e = from_dblock(li->cache->discard_nr_blocks);
3349
3350         for (; b < e; b++)
3351                 set_discard(li->cache, to_dblock(b));
3352 }
3353
3354 static int load_discard(void *context, sector_t discard_block_size,
3355                         dm_dblock_t dblock, bool discard)
3356 {
3357         struct discard_load_info *li = context;
3358
3359         li->block_size = discard_block_size;
3360
3361         if (discard) {
3362                 if (from_dblock(dblock) == li->discard_end)
3363                         /*
3364                          * We're already in a discard range, just extend it.
3365                          */
3366                         li->discard_end = li->discard_end + 1ULL;
3367
3368                 else {
3369                         /*
3370                          * Emit the old range and start a new one.
3371                          */
3372                         set_discard_range(li);
3373                         li->discard_begin = from_dblock(dblock);
3374                         li->discard_end = li->discard_begin + 1ULL;
3375                 }
3376         } else {
3377                 set_discard_range(li);
3378                 li->discard_begin = li->discard_end = 0;
3379         }
3380
3381         return 0;
3382 }
3383
3384 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3385 {
3386         sector_t size = get_dev_size(cache->cache_dev);
3387         (void) sector_div(size, cache->sectors_per_block);
3388         return to_cblock(size);
3389 }
3390
3391 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3392 {
3393         if (from_cblock(new_size) > from_cblock(cache->cache_size))
3394                 return true;
3395
3396         /*
3397          * We can't drop a dirty block when shrinking the cache.
3398          */
3399         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3400                 new_size = to_cblock(from_cblock(new_size) + 1);
3401                 if (is_dirty(cache, new_size)) {
3402                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3403                               cache_device_name(cache),
3404                               (unsigned long long) from_cblock(new_size));
3405                         return false;
3406                 }
3407         }
3408
3409         return true;
3410 }
3411
3412 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3413 {
3414         int r;
3415
3416         r = dm_cache_resize(cache->cmd, new_size);
3417         if (r) {
3418                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3419                 metadata_operation_failed(cache, "dm_cache_resize", r);
3420                 return r;
3421         }
3422
3423         set_cache_size(cache, new_size);
3424
3425         return 0;
3426 }
3427
3428 static int cache_preresume(struct dm_target *ti)
3429 {
3430         int r = 0;
3431         struct cache *cache = ti->private;
3432         dm_cblock_t csize = get_cache_dev_size(cache);
3433
3434         /*
3435          * Check to see if the cache has resized.
3436          */
3437         if (!cache->sized) {
3438                 r = resize_cache_dev(cache, csize);
3439                 if (r)
3440                         return r;
3441
3442                 cache->sized = true;
3443
3444         } else if (csize != cache->cache_size) {
3445                 if (!can_resize(cache, csize))
3446                         return -EINVAL;
3447
3448                 r = resize_cache_dev(cache, csize);
3449                 if (r)
3450                         return r;
3451         }
3452
3453         if (!cache->loaded_mappings) {
3454                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3455                                            load_mapping, cache);
3456                 if (r) {
3457                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
3458                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3459                         return r;
3460                 }
3461
3462                 cache->loaded_mappings = true;
3463         }
3464
3465         if (!cache->loaded_discards) {
3466                 struct discard_load_info li;
3467
3468                 /*
3469                  * The discard bitset could have been resized, or the
3470                  * discard block size changed.  To be safe we start by
3471                  * setting every dblock to not discarded.
3472                  */
3473                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3474
3475                 discard_load_info_init(cache, &li);
3476                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3477                 if (r) {
3478                         DMERR("%s: could not load origin discards", cache_device_name(cache));
3479                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
3480                         return r;
3481                 }
3482                 set_discard_range(&li);
3483
3484                 cache->loaded_discards = true;
3485         }
3486
3487         return r;
3488 }
3489
3490 static void cache_resume(struct dm_target *ti)
3491 {
3492         struct cache *cache = ti->private;
3493
3494         cache->need_tick_bio = true;
3495         do_waker(&cache->waker.work);
3496 }
3497
3498 /*
3499  * Status format:
3500  *
3501  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3502  * <cache block size> <#used cache blocks>/<#total cache blocks>
3503  * <#read hits> <#read misses> <#write hits> <#write misses>
3504  * <#demotions> <#promotions> <#dirty>
3505  * <#features> <features>*
3506  * <#core args> <core args>
3507  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3508  */
3509 static void cache_status(struct dm_target *ti, status_type_t type,
3510                          unsigned status_flags, char *result, unsigned maxlen)
3511 {
3512         int r = 0;
3513         unsigned i;
3514         ssize_t sz = 0;
3515         dm_block_t nr_free_blocks_metadata = 0;
3516         dm_block_t nr_blocks_metadata = 0;
3517         char buf[BDEVNAME_SIZE];
3518         struct cache *cache = ti->private;
3519         dm_cblock_t residency;
3520         bool needs_check;
3521
3522         switch (type) {
3523         case STATUSTYPE_INFO:
3524                 if (get_cache_mode(cache) == CM_FAIL) {
3525                         DMEMIT("Fail");
3526                         break;
3527                 }
3528
3529                 /* Commit to ensure statistics aren't out-of-date */
3530                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3531                         (void) commit(cache, false);
3532
3533                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3534                 if (r) {
3535                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3536                               cache_device_name(cache), r);
3537                         goto err;
3538                 }
3539
3540                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3541                 if (r) {
3542                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3543                               cache_device_name(cache), r);
3544                         goto err;
3545                 }
3546
3547                 residency = policy_residency(cache->policy);
3548
3549                 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3550                        (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3551                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3552                        (unsigned long long)nr_blocks_metadata,
3553                        cache->sectors_per_block,
3554                        (unsigned long long) from_cblock(residency),
3555                        (unsigned long long) from_cblock(cache->cache_size),
3556                        (unsigned) atomic_read(&cache->stats.read_hit),
3557                        (unsigned) atomic_read(&cache->stats.read_miss),
3558                        (unsigned) atomic_read(&cache->stats.write_hit),
3559                        (unsigned) atomic_read(&cache->stats.write_miss),
3560                        (unsigned) atomic_read(&cache->stats.demotion),
3561                        (unsigned) atomic_read(&cache->stats.promotion),
3562                        (unsigned long) atomic_read(&cache->nr_dirty));
3563
3564                 if (writethrough_mode(&cache->features))
3565                         DMEMIT("1 writethrough ");
3566
3567                 else if (passthrough_mode(&cache->features))
3568                         DMEMIT("1 passthrough ");
3569
3570                 else if (writeback_mode(&cache->features))
3571                         DMEMIT("1 writeback ");
3572
3573                 else {
3574                         DMERR("%s: internal error: unknown io mode: %d",
3575                               cache_device_name(cache), (int) cache->features.io_mode);
3576                         goto err;
3577                 }
3578
3579                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3580
3581                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3582                 if (sz < maxlen) {
3583                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3584                         if (r)
3585                                 DMERR("%s: policy_emit_config_values returned %d",
3586                                       cache_device_name(cache), r);
3587                 }
3588
3589                 if (get_cache_mode(cache) == CM_READ_ONLY)
3590                         DMEMIT("ro ");
3591                 else
3592                         DMEMIT("rw ");
3593
3594                 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3595
3596                 if (r || needs_check)
3597                         DMEMIT("needs_check ");
3598                 else
3599                         DMEMIT("- ");
3600
3601                 break;
3602
3603         case STATUSTYPE_TABLE:
3604                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3605                 DMEMIT("%s ", buf);
3606                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3607                 DMEMIT("%s ", buf);
3608                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3609                 DMEMIT("%s", buf);
3610
3611                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3612                         DMEMIT(" %s", cache->ctr_args[i]);
3613                 if (cache->nr_ctr_args)
3614                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3615         }
3616
3617         return;
3618
3619 err:
3620         DMEMIT("Error");
3621 }
3622
3623 /*
3624  * A cache block range can take two forms:
3625  *
3626  * i) A single cblock, eg. '3456'
3627  * ii) A begin and end cblock with dots between, eg. 123-234
3628  */
3629 static int parse_cblock_range(struct cache *cache, const char *str,
3630                               struct cblock_range *result)
3631 {
3632         char dummy;
3633         uint64_t b, e;
3634         int r;
3635
3636         /*
3637          * Try and parse form (ii) first.
3638          */
3639         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3640         if (r < 0)
3641                 return r;
3642
3643         if (r == 2) {
3644                 result->begin = to_cblock(b);
3645                 result->end = to_cblock(e);
3646                 return 0;
3647         }
3648
3649         /*
3650          * That didn't work, try form (i).
3651          */
3652         r = sscanf(str, "%llu%c", &b, &dummy);
3653         if (r < 0)
3654                 return r;
3655
3656         if (r == 1) {
3657                 result->begin = to_cblock(b);
3658                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3659                 return 0;
3660         }
3661
3662         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3663         return -EINVAL;
3664 }
3665
3666 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3667 {
3668         uint64_t b = from_cblock(range->begin);
3669         uint64_t e = from_cblock(range->end);
3670         uint64_t n = from_cblock(cache->cache_size);
3671
3672         if (b >= n) {
3673                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3674                       cache_device_name(cache), b, n);
3675                 return -EINVAL;
3676         }
3677
3678         if (e > n) {
3679                 DMERR("%s: end cblock out of range: %llu > %llu",
3680                       cache_device_name(cache), e, n);
3681                 return -EINVAL;
3682         }
3683
3684         if (b >= e) {
3685                 DMERR("%s: invalid cblock range: %llu >= %llu",
3686                       cache_device_name(cache), b, e);
3687                 return -EINVAL;
3688         }
3689
3690         return 0;
3691 }
3692
3693 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3694 {
3695         struct invalidation_request req;
3696
3697         INIT_LIST_HEAD(&req.list);
3698         req.cblocks = range;
3699         atomic_set(&req.complete, 0);
3700         req.err = 0;
3701         init_waitqueue_head(&req.result_wait);
3702
3703         spin_lock(&cache->invalidation_lock);
3704         list_add(&req.list, &cache->invalidation_requests);
3705         spin_unlock(&cache->invalidation_lock);
3706         wake_worker(cache);
3707
3708         wait_event(req.result_wait, atomic_read(&req.complete));
3709         return req.err;
3710 }
3711
3712 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3713                                               const char **cblock_ranges)
3714 {
3715         int r = 0;
3716         unsigned i;
3717         struct cblock_range range;
3718
3719         if (!passthrough_mode(&cache->features)) {
3720                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3721                       cache_device_name(cache));
3722                 return -EPERM;
3723         }
3724
3725         for (i = 0; i < count; i++) {
3726                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3727                 if (r)
3728                         break;
3729
3730                 r = validate_cblock_range(cache, &range);
3731                 if (r)
3732                         break;
3733
3734                 /*
3735                  * Pass begin and end origin blocks to the worker and wake it.
3736                  */
3737                 r = request_invalidation(cache, &range);
3738                 if (r)
3739                         break;
3740         }
3741
3742         return r;
3743 }
3744
3745 /*
3746  * Supports
3747  *      "<key> <value>"
3748  * and
3749  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3750  *
3751  * The key migration_threshold is supported by the cache target core.
3752  */
3753 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3754 {
3755         struct cache *cache = ti->private;
3756
3757         if (!argc)
3758                 return -EINVAL;
3759
3760         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3761                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3762                       cache_device_name(cache));
3763                 return -EOPNOTSUPP;
3764         }
3765
3766         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3767                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3768
3769         if (argc != 2)
3770                 return -EINVAL;
3771
3772         return set_config_value(cache, argv[0], argv[1]);
3773 }
3774
3775 static int cache_iterate_devices(struct dm_target *ti,
3776                                  iterate_devices_callout_fn fn, void *data)
3777 {
3778         int r = 0;
3779         struct cache *cache = ti->private;
3780
3781         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3782         if (!r)
3783                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3784
3785         return r;
3786 }
3787
3788 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3789 {
3790         /*
3791          * FIXME: these limits may be incompatible with the cache device
3792          */
3793         limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3794                                             cache->origin_sectors);
3795         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3796 }
3797
3798 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3799 {
3800         struct cache *cache = ti->private;
3801         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3802
3803         /*
3804          * If the system-determined stacked limits are compatible with the
3805          * cache's blocksize (io_opt is a factor) do not override them.
3806          */
3807         if (io_opt_sectors < cache->sectors_per_block ||
3808             do_div(io_opt_sectors, cache->sectors_per_block)) {
3809                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3810                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3811         }
3812         set_discard_limits(cache, limits);
3813 }
3814
3815 /*----------------------------------------------------------------*/
3816
3817 static struct target_type cache_target = {
3818         .name = "cache",
3819         .version = {1, 9, 0},
3820         .module = THIS_MODULE,
3821         .ctr = cache_ctr,
3822         .dtr = cache_dtr,
3823         .map = cache_map,
3824         .end_io = cache_end_io,
3825         .postsuspend = cache_postsuspend,
3826         .preresume = cache_preresume,
3827         .resume = cache_resume,
3828         .status = cache_status,
3829         .message = cache_message,
3830         .iterate_devices = cache_iterate_devices,
3831         .io_hints = cache_io_hints,
3832 };
3833
3834 static int __init dm_cache_init(void)
3835 {
3836         int r;
3837
3838         r = dm_register_target(&cache_target);
3839         if (r) {
3840                 DMERR("cache target registration failed: %d", r);
3841                 return r;
3842         }
3843
3844         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3845         if (!migration_cache) {
3846                 dm_unregister_target(&cache_target);
3847                 return -ENOMEM;
3848         }
3849
3850         return 0;
3851 }
3852
3853 static void __exit dm_cache_exit(void)
3854 {
3855         dm_unregister_target(&cache_target);
3856         kmem_cache_destroy(migration_cache);
3857 }
3858
3859 module_init(dm_cache_init);
3860 module_exit(dm_cache_exit);
3861
3862 MODULE_DESCRIPTION(DM_NAME " cache target");
3863 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3864 MODULE_LICENSE("GPL");