]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-era-target.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / dm-era-target.c
1 #include "dm.h"
2 #include "persistent-data/dm-transaction-manager.h"
3 #include "persistent-data/dm-bitset.h"
4 #include "persistent-data/dm-space-map.h"
5
6 #include <linux/dm-io.h>
7 #include <linux/dm-kcopyd.h>
8 #include <linux/init.h>
9 #include <linux/mempool.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13
14 #define DM_MSG_PREFIX "era"
15
16 #define SUPERBLOCK_LOCATION 0
17 #define SUPERBLOCK_MAGIC 2126579579
18 #define SUPERBLOCK_CSUM_XOR 146538381
19 #define MIN_ERA_VERSION 1
20 #define MAX_ERA_VERSION 1
21 #define INVALID_WRITESET_ROOT SUPERBLOCK_LOCATION
22 #define MIN_BLOCK_SIZE 8
23
24 /*----------------------------------------------------------------
25  * Writeset
26  *--------------------------------------------------------------*/
27 struct writeset_metadata {
28         uint32_t nr_bits;
29         dm_block_t root;
30 };
31
32 struct writeset {
33         struct writeset_metadata md;
34
35         /*
36          * An in core copy of the bits to save constantly doing look ups on
37          * disk.
38          */
39         unsigned long *bits;
40 };
41
42 /*
43  * This does not free off the on disk bitset as this will normally be done
44  * after digesting into the era array.
45  */
46 static void writeset_free(struct writeset *ws)
47 {
48         vfree(ws->bits);
49 }
50
51 static int setup_on_disk_bitset(struct dm_disk_bitset *info,
52                                 unsigned nr_bits, dm_block_t *root)
53 {
54         int r;
55
56         r = dm_bitset_empty(info, root);
57         if (r)
58                 return r;
59
60         return dm_bitset_resize(info, *root, 0, nr_bits, false, root);
61 }
62
63 static size_t bitset_size(unsigned nr_bits)
64 {
65         return sizeof(unsigned long) * dm_div_up(nr_bits, BITS_PER_LONG);
66 }
67
68 /*
69  * Allocates memory for the in core bitset.
70  */
71 static int writeset_alloc(struct writeset *ws, dm_block_t nr_blocks)
72 {
73         ws->md.nr_bits = nr_blocks;
74         ws->md.root = INVALID_WRITESET_ROOT;
75         ws->bits = vzalloc(bitset_size(nr_blocks));
76         if (!ws->bits) {
77                 DMERR("%s: couldn't allocate in memory bitset", __func__);
78                 return -ENOMEM;
79         }
80
81         return 0;
82 }
83
84 /*
85  * Wipes the in-core bitset, and creates a new on disk bitset.
86  */
87 static int writeset_init(struct dm_disk_bitset *info, struct writeset *ws)
88 {
89         int r;
90
91         memset(ws->bits, 0, bitset_size(ws->md.nr_bits));
92
93         r = setup_on_disk_bitset(info, ws->md.nr_bits, &ws->md.root);
94         if (r) {
95                 DMERR("%s: setup_on_disk_bitset failed", __func__);
96                 return r;
97         }
98
99         return 0;
100 }
101
102 static bool writeset_marked(struct writeset *ws, dm_block_t block)
103 {
104         return test_bit(block, ws->bits);
105 }
106
107 static int writeset_marked_on_disk(struct dm_disk_bitset *info,
108                                    struct writeset_metadata *m, dm_block_t block,
109                                    bool *result)
110 {
111         dm_block_t old = m->root;
112
113         /*
114          * The bitset was flushed when it was archived, so we know there'll
115          * be no change to the root.
116          */
117         int r = dm_bitset_test_bit(info, m->root, block, &m->root, result);
118         if (r) {
119                 DMERR("%s: dm_bitset_test_bit failed", __func__);
120                 return r;
121         }
122
123         BUG_ON(m->root != old);
124
125         return r;
126 }
127
128 /*
129  * Returns < 0 on error, 0 if the bit wasn't previously set, 1 if it was.
130  */
131 static int writeset_test_and_set(struct dm_disk_bitset *info,
132                                  struct writeset *ws, uint32_t block)
133 {
134         int r;
135
136         if (!test_and_set_bit(block, ws->bits)) {
137                 r = dm_bitset_set_bit(info, ws->md.root, block, &ws->md.root);
138                 if (r) {
139                         /* FIXME: fail mode */
140                         return r;
141                 }
142
143                 return 0;
144         }
145
146         return 1;
147 }
148
149 /*----------------------------------------------------------------
150  * On disk metadata layout
151  *--------------------------------------------------------------*/
152 #define SPACE_MAP_ROOT_SIZE 128
153 #define UUID_LEN 16
154
155 struct writeset_disk {
156         __le32 nr_bits;
157         __le64 root;
158 } __packed;
159
160 struct superblock_disk {
161         __le32 csum;
162         __le32 flags;
163         __le64 blocknr;
164
165         __u8 uuid[UUID_LEN];
166         __le64 magic;
167         __le32 version;
168
169         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
170
171         __le32 data_block_size;
172         __le32 metadata_block_size;
173         __le32 nr_blocks;
174
175         __le32 current_era;
176         struct writeset_disk current_writeset;
177
178         /*
179          * Only these two fields are valid within the metadata snapshot.
180          */
181         __le64 writeset_tree_root;
182         __le64 era_array_root;
183
184         __le64 metadata_snap;
185 } __packed;
186
187 /*----------------------------------------------------------------
188  * Superblock validation
189  *--------------------------------------------------------------*/
190 static void sb_prepare_for_write(struct dm_block_validator *v,
191                                  struct dm_block *b,
192                                  size_t sb_block_size)
193 {
194         struct superblock_disk *disk = dm_block_data(b);
195
196         disk->blocknr = cpu_to_le64(dm_block_location(b));
197         disk->csum = cpu_to_le32(dm_bm_checksum(&disk->flags,
198                                                 sb_block_size - sizeof(__le32),
199                                                 SUPERBLOCK_CSUM_XOR));
200 }
201
202 static int check_metadata_version(struct superblock_disk *disk)
203 {
204         uint32_t metadata_version = le32_to_cpu(disk->version);
205         if (metadata_version < MIN_ERA_VERSION || metadata_version > MAX_ERA_VERSION) {
206                 DMERR("Era metadata version %u found, but only versions between %u and %u supported.",
207                       metadata_version, MIN_ERA_VERSION, MAX_ERA_VERSION);
208                 return -EINVAL;
209         }
210
211         return 0;
212 }
213
214 static int sb_check(struct dm_block_validator *v,
215                     struct dm_block *b,
216                     size_t sb_block_size)
217 {
218         struct superblock_disk *disk = dm_block_data(b);
219         __le32 csum_le;
220
221         if (dm_block_location(b) != le64_to_cpu(disk->blocknr)) {
222                 DMERR("sb_check failed: blocknr %llu: wanted %llu",
223                       le64_to_cpu(disk->blocknr),
224                       (unsigned long long)dm_block_location(b));
225                 return -ENOTBLK;
226         }
227
228         if (le64_to_cpu(disk->magic) != SUPERBLOCK_MAGIC) {
229                 DMERR("sb_check failed: magic %llu: wanted %llu",
230                       le64_to_cpu(disk->magic),
231                       (unsigned long long) SUPERBLOCK_MAGIC);
232                 return -EILSEQ;
233         }
234
235         csum_le = cpu_to_le32(dm_bm_checksum(&disk->flags,
236                                              sb_block_size - sizeof(__le32),
237                                              SUPERBLOCK_CSUM_XOR));
238         if (csum_le != disk->csum) {
239                 DMERR("sb_check failed: csum %u: wanted %u",
240                       le32_to_cpu(csum_le), le32_to_cpu(disk->csum));
241                 return -EILSEQ;
242         }
243
244         return check_metadata_version(disk);
245 }
246
247 static struct dm_block_validator sb_validator = {
248         .name = "superblock",
249         .prepare_for_write = sb_prepare_for_write,
250         .check = sb_check
251 };
252
253 /*----------------------------------------------------------------
254  * Low level metadata handling
255  *--------------------------------------------------------------*/
256 #define DM_ERA_METADATA_BLOCK_SIZE 4096
257 #define DM_ERA_METADATA_CACHE_SIZE 64
258 #define ERA_MAX_CONCURRENT_LOCKS 5
259
260 struct era_metadata {
261         struct block_device *bdev;
262         struct dm_block_manager *bm;
263         struct dm_space_map *sm;
264         struct dm_transaction_manager *tm;
265
266         dm_block_t block_size;
267         uint32_t nr_blocks;
268
269         uint32_t current_era;
270
271         /*
272          * We preallocate 2 writesets.  When an era rolls over we
273          * switch between them. This means the allocation is done at
274          * preresume time, rather than on the io path.
275          */
276         struct writeset writesets[2];
277         struct writeset *current_writeset;
278
279         dm_block_t writeset_tree_root;
280         dm_block_t era_array_root;
281
282         struct dm_disk_bitset bitset_info;
283         struct dm_btree_info writeset_tree_info;
284         struct dm_array_info era_array_info;
285
286         dm_block_t metadata_snap;
287
288         /*
289          * A flag that is set whenever a writeset has been archived.
290          */
291         bool archived_writesets;
292
293         /*
294          * Reading the space map root can fail, so we read it into this
295          * buffer before the superblock is locked and updated.
296          */
297         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
298 };
299
300 static int superblock_read_lock(struct era_metadata *md,
301                                 struct dm_block **sblock)
302 {
303         return dm_bm_read_lock(md->bm, SUPERBLOCK_LOCATION,
304                                &sb_validator, sblock);
305 }
306
307 static int superblock_lock_zero(struct era_metadata *md,
308                                 struct dm_block **sblock)
309 {
310         return dm_bm_write_lock_zero(md->bm, SUPERBLOCK_LOCATION,
311                                      &sb_validator, sblock);
312 }
313
314 static int superblock_lock(struct era_metadata *md,
315                            struct dm_block **sblock)
316 {
317         return dm_bm_write_lock(md->bm, SUPERBLOCK_LOCATION,
318                                 &sb_validator, sblock);
319 }
320
321 /* FIXME: duplication with cache and thin */
322 static int superblock_all_zeroes(struct dm_block_manager *bm, bool *result)
323 {
324         int r;
325         unsigned i;
326         struct dm_block *b;
327         __le64 *data_le, zero = cpu_to_le64(0);
328         unsigned sb_block_size = dm_bm_block_size(bm) / sizeof(__le64);
329
330         /*
331          * We can't use a validator here - it may be all zeroes.
332          */
333         r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &b);
334         if (r)
335                 return r;
336
337         data_le = dm_block_data(b);
338         *result = true;
339         for (i = 0; i < sb_block_size; i++) {
340                 if (data_le[i] != zero) {
341                         *result = false;
342                         break;
343                 }
344         }
345
346         dm_bm_unlock(b);
347
348         return 0;
349 }
350
351 /*----------------------------------------------------------------*/
352
353 static void ws_pack(const struct writeset_metadata *core, struct writeset_disk *disk)
354 {
355         disk->nr_bits = cpu_to_le32(core->nr_bits);
356         disk->root = cpu_to_le64(core->root);
357 }
358
359 static void ws_unpack(const struct writeset_disk *disk, struct writeset_metadata *core)
360 {
361         core->nr_bits = le32_to_cpu(disk->nr_bits);
362         core->root = le64_to_cpu(disk->root);
363 }
364
365 static void ws_inc(void *context, const void *value)
366 {
367         struct era_metadata *md = context;
368         struct writeset_disk ws_d;
369         dm_block_t b;
370
371         memcpy(&ws_d, value, sizeof(ws_d));
372         b = le64_to_cpu(ws_d.root);
373
374         dm_tm_inc(md->tm, b);
375 }
376
377 static void ws_dec(void *context, const void *value)
378 {
379         struct era_metadata *md = context;
380         struct writeset_disk ws_d;
381         dm_block_t b;
382
383         memcpy(&ws_d, value, sizeof(ws_d));
384         b = le64_to_cpu(ws_d.root);
385
386         dm_bitset_del(&md->bitset_info, b);
387 }
388
389 static int ws_eq(void *context, const void *value1, const void *value2)
390 {
391         return !memcmp(value1, value2, sizeof(struct writeset_metadata));
392 }
393
394 /*----------------------------------------------------------------*/
395
396 static void setup_writeset_tree_info(struct era_metadata *md)
397 {
398         struct dm_btree_value_type *vt = &md->writeset_tree_info.value_type;
399         md->writeset_tree_info.tm = md->tm;
400         md->writeset_tree_info.levels = 1;
401         vt->context = md;
402         vt->size = sizeof(struct writeset_disk);
403         vt->inc = ws_inc;
404         vt->dec = ws_dec;
405         vt->equal = ws_eq;
406 }
407
408 static void setup_era_array_info(struct era_metadata *md)
409
410 {
411         struct dm_btree_value_type vt;
412         vt.context = NULL;
413         vt.size = sizeof(__le32);
414         vt.inc = NULL;
415         vt.dec = NULL;
416         vt.equal = NULL;
417
418         dm_array_info_init(&md->era_array_info, md->tm, &vt);
419 }
420
421 static void setup_infos(struct era_metadata *md)
422 {
423         dm_disk_bitset_init(md->tm, &md->bitset_info);
424         setup_writeset_tree_info(md);
425         setup_era_array_info(md);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 static int create_fresh_metadata(struct era_metadata *md)
431 {
432         int r;
433
434         r = dm_tm_create_with_sm(md->bm, SUPERBLOCK_LOCATION,
435                                  &md->tm, &md->sm);
436         if (r < 0) {
437                 DMERR("dm_tm_create_with_sm failed");
438                 return r;
439         }
440
441         setup_infos(md);
442
443         r = dm_btree_empty(&md->writeset_tree_info, &md->writeset_tree_root);
444         if (r) {
445                 DMERR("couldn't create new writeset tree");
446                 goto bad;
447         }
448
449         r = dm_array_empty(&md->era_array_info, &md->era_array_root);
450         if (r) {
451                 DMERR("couldn't create era array");
452                 goto bad;
453         }
454
455         return 0;
456
457 bad:
458         dm_sm_destroy(md->sm);
459         dm_tm_destroy(md->tm);
460
461         return r;
462 }
463
464 static int save_sm_root(struct era_metadata *md)
465 {
466         int r;
467         size_t metadata_len;
468
469         r = dm_sm_root_size(md->sm, &metadata_len);
470         if (r < 0)
471                 return r;
472
473         return dm_sm_copy_root(md->sm, &md->metadata_space_map_root,
474                                metadata_len);
475 }
476
477 static void copy_sm_root(struct era_metadata *md, struct superblock_disk *disk)
478 {
479         memcpy(&disk->metadata_space_map_root,
480                &md->metadata_space_map_root,
481                sizeof(md->metadata_space_map_root));
482 }
483
484 /*
485  * Writes a superblock, including the static fields that don't get updated
486  * with every commit (possible optimisation here).  'md' should be fully
487  * constructed when this is called.
488  */
489 static void prepare_superblock(struct era_metadata *md, struct superblock_disk *disk)
490 {
491         disk->magic = cpu_to_le64(SUPERBLOCK_MAGIC);
492         disk->flags = cpu_to_le32(0ul);
493
494         /* FIXME: can't keep blanking the uuid (uuid is currently unused though) */
495         memset(disk->uuid, 0, sizeof(disk->uuid));
496         disk->version = cpu_to_le32(MAX_ERA_VERSION);
497
498         copy_sm_root(md, disk);
499
500         disk->data_block_size = cpu_to_le32(md->block_size);
501         disk->metadata_block_size = cpu_to_le32(DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
502         disk->nr_blocks = cpu_to_le32(md->nr_blocks);
503         disk->current_era = cpu_to_le32(md->current_era);
504
505         ws_pack(&md->current_writeset->md, &disk->current_writeset);
506         disk->writeset_tree_root = cpu_to_le64(md->writeset_tree_root);
507         disk->era_array_root = cpu_to_le64(md->era_array_root);
508         disk->metadata_snap = cpu_to_le64(md->metadata_snap);
509 }
510
511 static int write_superblock(struct era_metadata *md)
512 {
513         int r;
514         struct dm_block *sblock;
515         struct superblock_disk *disk;
516
517         r = save_sm_root(md);
518         if (r) {
519                 DMERR("%s: save_sm_root failed", __func__);
520                 return r;
521         }
522
523         r = superblock_lock_zero(md, &sblock);
524         if (r)
525                 return r;
526
527         disk = dm_block_data(sblock);
528         prepare_superblock(md, disk);
529
530         return dm_tm_commit(md->tm, sblock);
531 }
532
533 /*
534  * Assumes block_size and the infos are set.
535  */
536 static int format_metadata(struct era_metadata *md)
537 {
538         int r;
539
540         r = create_fresh_metadata(md);
541         if (r)
542                 return r;
543
544         r = write_superblock(md);
545         if (r) {
546                 dm_sm_destroy(md->sm);
547                 dm_tm_destroy(md->tm);
548                 return r;
549         }
550
551         return 0;
552 }
553
554 static int open_metadata(struct era_metadata *md)
555 {
556         int r;
557         struct dm_block *sblock;
558         struct superblock_disk *disk;
559
560         r = superblock_read_lock(md, &sblock);
561         if (r) {
562                 DMERR("couldn't read_lock superblock");
563                 return r;
564         }
565
566         disk = dm_block_data(sblock);
567         r = dm_tm_open_with_sm(md->bm, SUPERBLOCK_LOCATION,
568                                disk->metadata_space_map_root,
569                                sizeof(disk->metadata_space_map_root),
570                                &md->tm, &md->sm);
571         if (r) {
572                 DMERR("dm_tm_open_with_sm failed");
573                 goto bad;
574         }
575
576         setup_infos(md);
577
578         md->block_size = le32_to_cpu(disk->data_block_size);
579         md->nr_blocks = le32_to_cpu(disk->nr_blocks);
580         md->current_era = le32_to_cpu(disk->current_era);
581
582         md->writeset_tree_root = le64_to_cpu(disk->writeset_tree_root);
583         md->era_array_root = le64_to_cpu(disk->era_array_root);
584         md->metadata_snap = le64_to_cpu(disk->metadata_snap);
585         md->archived_writesets = true;
586
587         dm_bm_unlock(sblock);
588
589         return 0;
590
591 bad:
592         dm_bm_unlock(sblock);
593         return r;
594 }
595
596 static int open_or_format_metadata(struct era_metadata *md,
597                                    bool may_format)
598 {
599         int r;
600         bool unformatted = false;
601
602         r = superblock_all_zeroes(md->bm, &unformatted);
603         if (r)
604                 return r;
605
606         if (unformatted)
607                 return may_format ? format_metadata(md) : -EPERM;
608
609         return open_metadata(md);
610 }
611
612 static int create_persistent_data_objects(struct era_metadata *md,
613                                           bool may_format)
614 {
615         int r;
616
617         md->bm = dm_block_manager_create(md->bdev, DM_ERA_METADATA_BLOCK_SIZE,
618                                          DM_ERA_METADATA_CACHE_SIZE,
619                                          ERA_MAX_CONCURRENT_LOCKS);
620         if (IS_ERR(md->bm)) {
621                 DMERR("could not create block manager");
622                 return PTR_ERR(md->bm);
623         }
624
625         r = open_or_format_metadata(md, may_format);
626         if (r)
627                 dm_block_manager_destroy(md->bm);
628
629         return r;
630 }
631
632 static void destroy_persistent_data_objects(struct era_metadata *md)
633 {
634         dm_sm_destroy(md->sm);
635         dm_tm_destroy(md->tm);
636         dm_block_manager_destroy(md->bm);
637 }
638
639 /*
640  * This waits until all era_map threads have picked up the new filter.
641  */
642 static void swap_writeset(struct era_metadata *md, struct writeset *new_writeset)
643 {
644         rcu_assign_pointer(md->current_writeset, new_writeset);
645         synchronize_rcu();
646 }
647
648 /*----------------------------------------------------------------
649  * Writesets get 'digested' into the main era array.
650  *
651  * We're using a coroutine here so the worker thread can do the digestion,
652  * thus avoiding synchronisation of the metadata.  Digesting a whole
653  * writeset in one go would cause too much latency.
654  *--------------------------------------------------------------*/
655 struct digest {
656         uint32_t era;
657         unsigned nr_bits, current_bit;
658         struct writeset_metadata writeset;
659         __le32 value;
660         struct dm_disk_bitset info;
661
662         int (*step)(struct era_metadata *, struct digest *);
663 };
664
665 static int metadata_digest_lookup_writeset(struct era_metadata *md,
666                                            struct digest *d);
667
668 static int metadata_digest_remove_writeset(struct era_metadata *md,
669                                            struct digest *d)
670 {
671         int r;
672         uint64_t key = d->era;
673
674         r = dm_btree_remove(&md->writeset_tree_info, md->writeset_tree_root,
675                             &key, &md->writeset_tree_root);
676         if (r) {
677                 DMERR("%s: dm_btree_remove failed", __func__);
678                 return r;
679         }
680
681         d->step = metadata_digest_lookup_writeset;
682         return 0;
683 }
684
685 #define INSERTS_PER_STEP 100
686
687 static int metadata_digest_transcribe_writeset(struct era_metadata *md,
688                                                struct digest *d)
689 {
690         int r;
691         bool marked;
692         unsigned b, e = min(d->current_bit + INSERTS_PER_STEP, d->nr_bits);
693
694         for (b = d->current_bit; b < e; b++) {
695                 r = writeset_marked_on_disk(&d->info, &d->writeset, b, &marked);
696                 if (r) {
697                         DMERR("%s: writeset_marked_on_disk failed", __func__);
698                         return r;
699                 }
700
701                 if (!marked)
702                         continue;
703
704                 __dm_bless_for_disk(&d->value);
705                 r = dm_array_set_value(&md->era_array_info, md->era_array_root,
706                                        b, &d->value, &md->era_array_root);
707                 if (r) {
708                         DMERR("%s: dm_array_set_value failed", __func__);
709                         return r;
710                 }
711         }
712
713         if (b == d->nr_bits)
714                 d->step = metadata_digest_remove_writeset;
715         else
716                 d->current_bit = b;
717
718         return 0;
719 }
720
721 static int metadata_digest_lookup_writeset(struct era_metadata *md,
722                                            struct digest *d)
723 {
724         int r;
725         uint64_t key;
726         struct writeset_disk disk;
727
728         r = dm_btree_find_lowest_key(&md->writeset_tree_info,
729                                      md->writeset_tree_root, &key);
730         if (r < 0)
731                 return r;
732
733         d->era = key;
734
735         r = dm_btree_lookup(&md->writeset_tree_info,
736                             md->writeset_tree_root, &key, &disk);
737         if (r) {
738                 if (r == -ENODATA) {
739                         d->step = NULL;
740                         return 0;
741                 }
742
743                 DMERR("%s: dm_btree_lookup failed", __func__);
744                 return r;
745         }
746
747         ws_unpack(&disk, &d->writeset);
748         d->value = cpu_to_le32(key);
749
750         d->nr_bits = min(d->writeset.nr_bits, md->nr_blocks);
751         d->current_bit = 0;
752         d->step = metadata_digest_transcribe_writeset;
753
754         return 0;
755 }
756
757 static int metadata_digest_start(struct era_metadata *md, struct digest *d)
758 {
759         if (d->step)
760                 return 0;
761
762         memset(d, 0, sizeof(*d));
763
764         /*
765          * We initialise another bitset info to avoid any caching side
766          * effects with the previous one.
767          */
768         dm_disk_bitset_init(md->tm, &d->info);
769         d->step = metadata_digest_lookup_writeset;
770
771         return 0;
772 }
773
774 /*----------------------------------------------------------------
775  * High level metadata interface.  Target methods should use these, and not
776  * the lower level ones.
777  *--------------------------------------------------------------*/
778 static struct era_metadata *metadata_open(struct block_device *bdev,
779                                           sector_t block_size,
780                                           bool may_format)
781 {
782         int r;
783         struct era_metadata *md = kzalloc(sizeof(*md), GFP_KERNEL);
784
785         if (!md)
786                 return NULL;
787
788         md->bdev = bdev;
789         md->block_size = block_size;
790
791         md->writesets[0].md.root = INVALID_WRITESET_ROOT;
792         md->writesets[1].md.root = INVALID_WRITESET_ROOT;
793         md->current_writeset = &md->writesets[0];
794
795         r = create_persistent_data_objects(md, may_format);
796         if (r) {
797                 kfree(md);
798                 return ERR_PTR(r);
799         }
800
801         return md;
802 }
803
804 static void metadata_close(struct era_metadata *md)
805 {
806         destroy_persistent_data_objects(md);
807         kfree(md);
808 }
809
810 static bool valid_nr_blocks(dm_block_t n)
811 {
812         /*
813          * dm_bitset restricts us to 2^32.  test_bit & co. restrict us
814          * further to 2^31 - 1
815          */
816         return n < (1ull << 31);
817 }
818
819 static int metadata_resize(struct era_metadata *md, void *arg)
820 {
821         int r;
822         dm_block_t *new_size = arg;
823         __le32 value;
824
825         if (!valid_nr_blocks(*new_size)) {
826                 DMERR("Invalid number of origin blocks %llu",
827                       (unsigned long long) *new_size);
828                 return -EINVAL;
829         }
830
831         writeset_free(&md->writesets[0]);
832         writeset_free(&md->writesets[1]);
833
834         r = writeset_alloc(&md->writesets[0], *new_size);
835         if (r) {
836                 DMERR("%s: writeset_alloc failed for writeset 0", __func__);
837                 return r;
838         }
839
840         r = writeset_alloc(&md->writesets[1], *new_size);
841         if (r) {
842                 DMERR("%s: writeset_alloc failed for writeset 1", __func__);
843                 return r;
844         }
845
846         value = cpu_to_le32(0u);
847         __dm_bless_for_disk(&value);
848         r = dm_array_resize(&md->era_array_info, md->era_array_root,
849                             md->nr_blocks, *new_size,
850                             &value, &md->era_array_root);
851         if (r) {
852                 DMERR("%s: dm_array_resize failed", __func__);
853                 return r;
854         }
855
856         md->nr_blocks = *new_size;
857         return 0;
858 }
859
860 static int metadata_era_archive(struct era_metadata *md)
861 {
862         int r;
863         uint64_t keys[1];
864         struct writeset_disk value;
865
866         r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
867                             &md->current_writeset->md.root);
868         if (r) {
869                 DMERR("%s: dm_bitset_flush failed", __func__);
870                 return r;
871         }
872
873         ws_pack(&md->current_writeset->md, &value);
874         md->current_writeset->md.root = INVALID_WRITESET_ROOT;
875
876         keys[0] = md->current_era;
877         __dm_bless_for_disk(&value);
878         r = dm_btree_insert(&md->writeset_tree_info, md->writeset_tree_root,
879                             keys, &value, &md->writeset_tree_root);
880         if (r) {
881                 DMERR("%s: couldn't insert writeset into btree", __func__);
882                 /* FIXME: fail mode */
883                 return r;
884         }
885
886         md->archived_writesets = true;
887
888         return 0;
889 }
890
891 static struct writeset *next_writeset(struct era_metadata *md)
892 {
893         return (md->current_writeset == &md->writesets[0]) ?
894                 &md->writesets[1] : &md->writesets[0];
895 }
896
897 static int metadata_new_era(struct era_metadata *md)
898 {
899         int r;
900         struct writeset *new_writeset = next_writeset(md);
901
902         r = writeset_init(&md->bitset_info, new_writeset);
903         if (r) {
904                 DMERR("%s: writeset_init failed", __func__);
905                 return r;
906         }
907
908         swap_writeset(md, new_writeset);
909         md->current_era++;
910
911         return 0;
912 }
913
914 static int metadata_era_rollover(struct era_metadata *md)
915 {
916         int r;
917
918         if (md->current_writeset->md.root != INVALID_WRITESET_ROOT) {
919                 r = metadata_era_archive(md);
920                 if (r) {
921                         DMERR("%s: metadata_archive_era failed", __func__);
922                         /* FIXME: fail mode? */
923                         return r;
924                 }
925         }
926
927         r = metadata_new_era(md);
928         if (r) {
929                 DMERR("%s: new era failed", __func__);
930                 /* FIXME: fail mode */
931                 return r;
932         }
933
934         return 0;
935 }
936
937 static bool metadata_current_marked(struct era_metadata *md, dm_block_t block)
938 {
939         bool r;
940         struct writeset *ws;
941
942         rcu_read_lock();
943         ws = rcu_dereference(md->current_writeset);
944         r = writeset_marked(ws, block);
945         rcu_read_unlock();
946
947         return r;
948 }
949
950 static int metadata_commit(struct era_metadata *md)
951 {
952         int r;
953         struct dm_block *sblock;
954
955         if (md->current_writeset->md.root != SUPERBLOCK_LOCATION) {
956                 r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
957                                     &md->current_writeset->md.root);
958                 if (r) {
959                         DMERR("%s: bitset flush failed", __func__);
960                         return r;
961                 }
962         }
963
964         r = save_sm_root(md);
965         if (r) {
966                 DMERR("%s: save_sm_root failed", __func__);
967                 return r;
968         }
969
970         r = dm_tm_pre_commit(md->tm);
971         if (r) {
972                 DMERR("%s: pre commit failed", __func__);
973                 return r;
974         }
975
976         r = superblock_lock(md, &sblock);
977         if (r) {
978                 DMERR("%s: superblock lock failed", __func__);
979                 return r;
980         }
981
982         prepare_superblock(md, dm_block_data(sblock));
983
984         return dm_tm_commit(md->tm, sblock);
985 }
986
987 static int metadata_checkpoint(struct era_metadata *md)
988 {
989         /*
990          * For now we just rollover, but later I want to put a check in to
991          * avoid this if the filter is still pretty fresh.
992          */
993         return metadata_era_rollover(md);
994 }
995
996 /*
997  * Metadata snapshots allow userland to access era data.
998  */
999 static int metadata_take_snap(struct era_metadata *md)
1000 {
1001         int r, inc;
1002         struct dm_block *clone;
1003
1004         if (md->metadata_snap != SUPERBLOCK_LOCATION) {
1005                 DMERR("%s: metadata snapshot already exists", __func__);
1006                 return -EINVAL;
1007         }
1008
1009         r = metadata_era_rollover(md);
1010         if (r) {
1011                 DMERR("%s: era rollover failed", __func__);
1012                 return r;
1013         }
1014
1015         r = metadata_commit(md);
1016         if (r) {
1017                 DMERR("%s: pre commit failed", __func__);
1018                 return r;
1019         }
1020
1021         r = dm_sm_inc_block(md->sm, SUPERBLOCK_LOCATION);
1022         if (r) {
1023                 DMERR("%s: couldn't increment superblock", __func__);
1024                 return r;
1025         }
1026
1027         r = dm_tm_shadow_block(md->tm, SUPERBLOCK_LOCATION,
1028                                &sb_validator, &clone, &inc);
1029         if (r) {
1030                 DMERR("%s: couldn't shadow superblock", __func__);
1031                 dm_sm_dec_block(md->sm, SUPERBLOCK_LOCATION);
1032                 return r;
1033         }
1034         BUG_ON(!inc);
1035
1036         r = dm_sm_inc_block(md->sm, md->writeset_tree_root);
1037         if (r) {
1038                 DMERR("%s: couldn't inc writeset tree root", __func__);
1039                 dm_tm_unlock(md->tm, clone);
1040                 return r;
1041         }
1042
1043         r = dm_sm_inc_block(md->sm, md->era_array_root);
1044         if (r) {
1045                 DMERR("%s: couldn't inc era tree root", __func__);
1046                 dm_sm_dec_block(md->sm, md->writeset_tree_root);
1047                 dm_tm_unlock(md->tm, clone);
1048                 return r;
1049         }
1050
1051         md->metadata_snap = dm_block_location(clone);
1052
1053         dm_tm_unlock(md->tm, clone);
1054
1055         return 0;
1056 }
1057
1058 static int metadata_drop_snap(struct era_metadata *md)
1059 {
1060         int r;
1061         dm_block_t location;
1062         struct dm_block *clone;
1063         struct superblock_disk *disk;
1064
1065         if (md->metadata_snap == SUPERBLOCK_LOCATION) {
1066                 DMERR("%s: no snap to drop", __func__);
1067                 return -EINVAL;
1068         }
1069
1070         r = dm_tm_read_lock(md->tm, md->metadata_snap, &sb_validator, &clone);
1071         if (r) {
1072                 DMERR("%s: couldn't read lock superblock clone", __func__);
1073                 return r;
1074         }
1075
1076         /*
1077          * Whatever happens now we'll commit with no record of the metadata
1078          * snap.
1079          */
1080         md->metadata_snap = SUPERBLOCK_LOCATION;
1081
1082         disk = dm_block_data(clone);
1083         r = dm_btree_del(&md->writeset_tree_info,
1084                          le64_to_cpu(disk->writeset_tree_root));
1085         if (r) {
1086                 DMERR("%s: error deleting writeset tree clone", __func__);
1087                 dm_tm_unlock(md->tm, clone);
1088                 return r;
1089         }
1090
1091         r = dm_array_del(&md->era_array_info, le64_to_cpu(disk->era_array_root));
1092         if (r) {
1093                 DMERR("%s: error deleting era array clone", __func__);
1094                 dm_tm_unlock(md->tm, clone);
1095                 return r;
1096         }
1097
1098         location = dm_block_location(clone);
1099         dm_tm_unlock(md->tm, clone);
1100
1101         return dm_sm_dec_block(md->sm, location);
1102 }
1103
1104 struct metadata_stats {
1105         dm_block_t used;
1106         dm_block_t total;
1107         dm_block_t snap;
1108         uint32_t era;
1109 };
1110
1111 static int metadata_get_stats(struct era_metadata *md, void *ptr)
1112 {
1113         int r;
1114         struct metadata_stats *s = ptr;
1115         dm_block_t nr_free, nr_total;
1116
1117         r = dm_sm_get_nr_free(md->sm, &nr_free);
1118         if (r) {
1119                 DMERR("dm_sm_get_nr_free returned %d", r);
1120                 return r;
1121         }
1122
1123         r = dm_sm_get_nr_blocks(md->sm, &nr_total);
1124         if (r) {
1125                 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
1126                 return r;
1127         }
1128
1129         s->used = nr_total - nr_free;
1130         s->total = nr_total;
1131         s->snap = md->metadata_snap;
1132         s->era = md->current_era;
1133
1134         return 0;
1135 }
1136
1137 /*----------------------------------------------------------------*/
1138
1139 struct era {
1140         struct dm_target *ti;
1141         struct dm_target_callbacks callbacks;
1142
1143         struct dm_dev *metadata_dev;
1144         struct dm_dev *origin_dev;
1145
1146         dm_block_t nr_blocks;
1147         uint32_t sectors_per_block;
1148         int sectors_per_block_shift;
1149         struct era_metadata *md;
1150
1151         struct workqueue_struct *wq;
1152         struct work_struct worker;
1153
1154         spinlock_t deferred_lock;
1155         struct bio_list deferred_bios;
1156
1157         spinlock_t rpc_lock;
1158         struct list_head rpc_calls;
1159
1160         struct digest digest;
1161         atomic_t suspended;
1162 };
1163
1164 struct rpc {
1165         struct list_head list;
1166
1167         int (*fn0)(struct era_metadata *);
1168         int (*fn1)(struct era_metadata *, void *);
1169         void *arg;
1170         int result;
1171
1172         struct completion complete;
1173 };
1174
1175 /*----------------------------------------------------------------
1176  * Remapping.
1177  *---------------------------------------------------------------*/
1178 static bool block_size_is_power_of_two(struct era *era)
1179 {
1180         return era->sectors_per_block_shift >= 0;
1181 }
1182
1183 static dm_block_t get_block(struct era *era, struct bio *bio)
1184 {
1185         sector_t block_nr = bio->bi_iter.bi_sector;
1186
1187         if (!block_size_is_power_of_two(era))
1188                 (void) sector_div(block_nr, era->sectors_per_block);
1189         else
1190                 block_nr >>= era->sectors_per_block_shift;
1191
1192         return block_nr;
1193 }
1194
1195 static void remap_to_origin(struct era *era, struct bio *bio)
1196 {
1197         bio->bi_bdev = era->origin_dev->bdev;
1198 }
1199
1200 /*----------------------------------------------------------------
1201  * Worker thread
1202  *--------------------------------------------------------------*/
1203 static void wake_worker(struct era *era)
1204 {
1205         if (!atomic_read(&era->suspended))
1206                 queue_work(era->wq, &era->worker);
1207 }
1208
1209 static void process_old_eras(struct era *era)
1210 {
1211         int r;
1212
1213         if (!era->digest.step)
1214                 return;
1215
1216         r = era->digest.step(era->md, &era->digest);
1217         if (r < 0) {
1218                 DMERR("%s: digest step failed, stopping digestion", __func__);
1219                 era->digest.step = NULL;
1220
1221         } else if (era->digest.step)
1222                 wake_worker(era);
1223 }
1224
1225 static void process_deferred_bios(struct era *era)
1226 {
1227         int r;
1228         struct bio_list deferred_bios, marked_bios;
1229         struct bio *bio;
1230         bool commit_needed = false;
1231         bool failed = false;
1232
1233         bio_list_init(&deferred_bios);
1234         bio_list_init(&marked_bios);
1235
1236         spin_lock(&era->deferred_lock);
1237         bio_list_merge(&deferred_bios, &era->deferred_bios);
1238         bio_list_init(&era->deferred_bios);
1239         spin_unlock(&era->deferred_lock);
1240
1241         while ((bio = bio_list_pop(&deferred_bios))) {
1242                 r = writeset_test_and_set(&era->md->bitset_info,
1243                                           era->md->current_writeset,
1244                                           get_block(era, bio));
1245                 if (r < 0) {
1246                         /*
1247                          * This is bad news, we need to rollback.
1248                          * FIXME: finish.
1249                          */
1250                         failed = true;
1251
1252                 } else if (r == 0)
1253                         commit_needed = true;
1254
1255                 bio_list_add(&marked_bios, bio);
1256         }
1257
1258         if (commit_needed) {
1259                 r = metadata_commit(era->md);
1260                 if (r)
1261                         failed = true;
1262         }
1263
1264         if (failed)
1265                 while ((bio = bio_list_pop(&marked_bios)))
1266                         bio_io_error(bio);
1267         else
1268                 while ((bio = bio_list_pop(&marked_bios)))
1269                         generic_make_request(bio);
1270 }
1271
1272 static void process_rpc_calls(struct era *era)
1273 {
1274         int r;
1275         bool need_commit = false;
1276         struct list_head calls;
1277         struct rpc *rpc, *tmp;
1278
1279         INIT_LIST_HEAD(&calls);
1280         spin_lock(&era->rpc_lock);
1281         list_splice_init(&era->rpc_calls, &calls);
1282         spin_unlock(&era->rpc_lock);
1283
1284         list_for_each_entry_safe(rpc, tmp, &calls, list) {
1285                 rpc->result = rpc->fn0 ? rpc->fn0(era->md) : rpc->fn1(era->md, rpc->arg);
1286                 need_commit = true;
1287         }
1288
1289         if (need_commit) {
1290                 r = metadata_commit(era->md);
1291                 if (r)
1292                         list_for_each_entry_safe(rpc, tmp, &calls, list)
1293                                 rpc->result = r;
1294         }
1295
1296         list_for_each_entry_safe(rpc, tmp, &calls, list)
1297                 complete(&rpc->complete);
1298 }
1299
1300 static void kick_off_digest(struct era *era)
1301 {
1302         if (era->md->archived_writesets) {
1303                 era->md->archived_writesets = false;
1304                 metadata_digest_start(era->md, &era->digest);
1305         }
1306 }
1307
1308 static void do_work(struct work_struct *ws)
1309 {
1310         struct era *era = container_of(ws, struct era, worker);
1311
1312         kick_off_digest(era);
1313         process_old_eras(era);
1314         process_deferred_bios(era);
1315         process_rpc_calls(era);
1316 }
1317
1318 static void defer_bio(struct era *era, struct bio *bio)
1319 {
1320         spin_lock(&era->deferred_lock);
1321         bio_list_add(&era->deferred_bios, bio);
1322         spin_unlock(&era->deferred_lock);
1323
1324         wake_worker(era);
1325 }
1326
1327 /*
1328  * Make an rpc call to the worker to change the metadata.
1329  */
1330 static int perform_rpc(struct era *era, struct rpc *rpc)
1331 {
1332         rpc->result = 0;
1333         init_completion(&rpc->complete);
1334
1335         spin_lock(&era->rpc_lock);
1336         list_add(&rpc->list, &era->rpc_calls);
1337         spin_unlock(&era->rpc_lock);
1338
1339         wake_worker(era);
1340         wait_for_completion(&rpc->complete);
1341
1342         return rpc->result;
1343 }
1344
1345 static int in_worker0(struct era *era, int (*fn)(struct era_metadata *))
1346 {
1347         struct rpc rpc;
1348         rpc.fn0 = fn;
1349         rpc.fn1 = NULL;
1350
1351         return perform_rpc(era, &rpc);
1352 }
1353
1354 static int in_worker1(struct era *era,
1355                       int (*fn)(struct era_metadata *, void *), void *arg)
1356 {
1357         struct rpc rpc;
1358         rpc.fn0 = NULL;
1359         rpc.fn1 = fn;
1360         rpc.arg = arg;
1361
1362         return perform_rpc(era, &rpc);
1363 }
1364
1365 static void start_worker(struct era *era)
1366 {
1367         atomic_set(&era->suspended, 0);
1368 }
1369
1370 static void stop_worker(struct era *era)
1371 {
1372         atomic_set(&era->suspended, 1);
1373         flush_workqueue(era->wq);
1374 }
1375
1376 /*----------------------------------------------------------------
1377  * Target methods
1378  *--------------------------------------------------------------*/
1379 static int dev_is_congested(struct dm_dev *dev, int bdi_bits)
1380 {
1381         struct request_queue *q = bdev_get_queue(dev->bdev);
1382         return bdi_congested(&q->backing_dev_info, bdi_bits);
1383 }
1384
1385 static int era_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1386 {
1387         struct era *era = container_of(cb, struct era, callbacks);
1388         return dev_is_congested(era->origin_dev, bdi_bits);
1389 }
1390
1391 static void era_destroy(struct era *era)
1392 {
1393         if (era->md)
1394                 metadata_close(era->md);
1395
1396         if (era->wq)
1397                 destroy_workqueue(era->wq);
1398
1399         if (era->origin_dev)
1400                 dm_put_device(era->ti, era->origin_dev);
1401
1402         if (era->metadata_dev)
1403                 dm_put_device(era->ti, era->metadata_dev);
1404
1405         kfree(era);
1406 }
1407
1408 static dm_block_t calc_nr_blocks(struct era *era)
1409 {
1410         return dm_sector_div_up(era->ti->len, era->sectors_per_block);
1411 }
1412
1413 static bool valid_block_size(dm_block_t block_size)
1414 {
1415         bool greater_than_zero = block_size > 0;
1416         bool multiple_of_min_block_size = (block_size & (MIN_BLOCK_SIZE - 1)) == 0;
1417
1418         return greater_than_zero && multiple_of_min_block_size;
1419 }
1420
1421 /*
1422  * <metadata dev> <data dev> <data block size (sectors)>
1423  */
1424 static int era_ctr(struct dm_target *ti, unsigned argc, char **argv)
1425 {
1426         int r;
1427         char dummy;
1428         struct era *era;
1429         struct era_metadata *md;
1430
1431         if (argc != 3) {
1432                 ti->error = "Invalid argument count";
1433                 return -EINVAL;
1434         }
1435
1436         era = kzalloc(sizeof(*era), GFP_KERNEL);
1437         if (!era) {
1438                 ti->error = "Error allocating era structure";
1439                 return -ENOMEM;
1440         }
1441
1442         era->ti = ti;
1443
1444         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &era->metadata_dev);
1445         if (r) {
1446                 ti->error = "Error opening metadata device";
1447                 era_destroy(era);
1448                 return -EINVAL;
1449         }
1450
1451         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &era->origin_dev);
1452         if (r) {
1453                 ti->error = "Error opening data device";
1454                 era_destroy(era);
1455                 return -EINVAL;
1456         }
1457
1458         r = sscanf(argv[2], "%u%c", &era->sectors_per_block, &dummy);
1459         if (r != 1) {
1460                 ti->error = "Error parsing block size";
1461                 era_destroy(era);
1462                 return -EINVAL;
1463         }
1464
1465         r = dm_set_target_max_io_len(ti, era->sectors_per_block);
1466         if (r) {
1467                 ti->error = "could not set max io len";
1468                 era_destroy(era);
1469                 return -EINVAL;
1470         }
1471
1472         if (!valid_block_size(era->sectors_per_block)) {
1473                 ti->error = "Invalid block size";
1474                 era_destroy(era);
1475                 return -EINVAL;
1476         }
1477         if (era->sectors_per_block & (era->sectors_per_block - 1))
1478                 era->sectors_per_block_shift = -1;
1479         else
1480                 era->sectors_per_block_shift = __ffs(era->sectors_per_block);
1481
1482         md = metadata_open(era->metadata_dev->bdev, era->sectors_per_block, true);
1483         if (IS_ERR(md)) {
1484                 ti->error = "Error reading metadata";
1485                 era_destroy(era);
1486                 return PTR_ERR(md);
1487         }
1488         era->md = md;
1489
1490         era->nr_blocks = calc_nr_blocks(era);
1491
1492         r = metadata_resize(era->md, &era->nr_blocks);
1493         if (r) {
1494                 ti->error = "couldn't resize metadata";
1495                 era_destroy(era);
1496                 return -ENOMEM;
1497         }
1498
1499         era->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1500         if (!era->wq) {
1501                 ti->error = "could not create workqueue for metadata object";
1502                 era_destroy(era);
1503                 return -ENOMEM;
1504         }
1505         INIT_WORK(&era->worker, do_work);
1506
1507         spin_lock_init(&era->deferred_lock);
1508         bio_list_init(&era->deferred_bios);
1509
1510         spin_lock_init(&era->rpc_lock);
1511         INIT_LIST_HEAD(&era->rpc_calls);
1512
1513         ti->private = era;
1514         ti->num_flush_bios = 1;
1515         ti->flush_supported = true;
1516
1517         ti->num_discard_bios = 1;
1518         ti->discards_supported = true;
1519         era->callbacks.congested_fn = era_is_congested;
1520         dm_table_add_target_callbacks(ti->table, &era->callbacks);
1521
1522         return 0;
1523 }
1524
1525 static void era_dtr(struct dm_target *ti)
1526 {
1527         era_destroy(ti->private);
1528 }
1529
1530 static int era_map(struct dm_target *ti, struct bio *bio)
1531 {
1532         struct era *era = ti->private;
1533         dm_block_t block = get_block(era, bio);
1534
1535         /*
1536          * All bios get remapped to the origin device.  We do this now, but
1537          * it may not get issued until later.  Depending on whether the
1538          * block is marked in this era.
1539          */
1540         remap_to_origin(era, bio);
1541
1542         /*
1543          * REQ_PREFLUSH bios carry no data, so we're not interested in them.
1544          */
1545         if (!(bio->bi_rw & REQ_PREFLUSH) &&
1546             (bio_data_dir(bio) == WRITE) &&
1547             !metadata_current_marked(era->md, block)) {
1548                 defer_bio(era, bio);
1549                 return DM_MAPIO_SUBMITTED;
1550         }
1551
1552         return DM_MAPIO_REMAPPED;
1553 }
1554
1555 static void era_postsuspend(struct dm_target *ti)
1556 {
1557         int r;
1558         struct era *era = ti->private;
1559
1560         r = in_worker0(era, metadata_era_archive);
1561         if (r) {
1562                 DMERR("%s: couldn't archive current era", __func__);
1563                 /* FIXME: fail mode */
1564         }
1565
1566         stop_worker(era);
1567 }
1568
1569 static int era_preresume(struct dm_target *ti)
1570 {
1571         int r;
1572         struct era *era = ti->private;
1573         dm_block_t new_size = calc_nr_blocks(era);
1574
1575         if (era->nr_blocks != new_size) {
1576                 r = in_worker1(era, metadata_resize, &new_size);
1577                 if (r)
1578                         return r;
1579
1580                 era->nr_blocks = new_size;
1581         }
1582
1583         start_worker(era);
1584
1585         r = in_worker0(era, metadata_new_era);
1586         if (r) {
1587                 DMERR("%s: metadata_era_rollover failed", __func__);
1588                 return r;
1589         }
1590
1591         return 0;
1592 }
1593
1594 /*
1595  * Status format:
1596  *
1597  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
1598  * <current era> <held metadata root | '-'>
1599  */
1600 static void era_status(struct dm_target *ti, status_type_t type,
1601                        unsigned status_flags, char *result, unsigned maxlen)
1602 {
1603         int r;
1604         struct era *era = ti->private;
1605         ssize_t sz = 0;
1606         struct metadata_stats stats;
1607         char buf[BDEVNAME_SIZE];
1608
1609         switch (type) {
1610         case STATUSTYPE_INFO:
1611                 r = in_worker1(era, metadata_get_stats, &stats);
1612                 if (r)
1613                         goto err;
1614
1615                 DMEMIT("%u %llu/%llu %u",
1616                        (unsigned) (DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
1617                        (unsigned long long) stats.used,
1618                        (unsigned long long) stats.total,
1619                        (unsigned) stats.era);
1620
1621                 if (stats.snap != SUPERBLOCK_LOCATION)
1622                         DMEMIT(" %llu", stats.snap);
1623                 else
1624                         DMEMIT(" -");
1625                 break;
1626
1627         case STATUSTYPE_TABLE:
1628                 format_dev_t(buf, era->metadata_dev->bdev->bd_dev);
1629                 DMEMIT("%s ", buf);
1630                 format_dev_t(buf, era->origin_dev->bdev->bd_dev);
1631                 DMEMIT("%s %u", buf, era->sectors_per_block);
1632                 break;
1633         }
1634
1635         return;
1636
1637 err:
1638         DMEMIT("Error");
1639 }
1640
1641 static int era_message(struct dm_target *ti, unsigned argc, char **argv)
1642 {
1643         struct era *era = ti->private;
1644
1645         if (argc != 1) {
1646                 DMERR("incorrect number of message arguments");
1647                 return -EINVAL;
1648         }
1649
1650         if (!strcasecmp(argv[0], "checkpoint"))
1651                 return in_worker0(era, metadata_checkpoint);
1652
1653         if (!strcasecmp(argv[0], "take_metadata_snap"))
1654                 return in_worker0(era, metadata_take_snap);
1655
1656         if (!strcasecmp(argv[0], "drop_metadata_snap"))
1657                 return in_worker0(era, metadata_drop_snap);
1658
1659         DMERR("unsupported message '%s'", argv[0]);
1660         return -EINVAL;
1661 }
1662
1663 static sector_t get_dev_size(struct dm_dev *dev)
1664 {
1665         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1666 }
1667
1668 static int era_iterate_devices(struct dm_target *ti,
1669                                iterate_devices_callout_fn fn, void *data)
1670 {
1671         struct era *era = ti->private;
1672         return fn(ti, era->origin_dev, 0, get_dev_size(era->origin_dev), data);
1673 }
1674
1675 static void era_io_hints(struct dm_target *ti, struct queue_limits *limits)
1676 {
1677         struct era *era = ti->private;
1678         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
1679
1680         /*
1681          * If the system-determined stacked limits are compatible with the
1682          * era device's blocksize (io_opt is a factor) do not override them.
1683          */
1684         if (io_opt_sectors < era->sectors_per_block ||
1685             do_div(io_opt_sectors, era->sectors_per_block)) {
1686                 blk_limits_io_min(limits, 0);
1687                 blk_limits_io_opt(limits, era->sectors_per_block << SECTOR_SHIFT);
1688         }
1689 }
1690
1691 /*----------------------------------------------------------------*/
1692
1693 static struct target_type era_target = {
1694         .name = "era",
1695         .version = {1, 0, 0},
1696         .module = THIS_MODULE,
1697         .ctr = era_ctr,
1698         .dtr = era_dtr,
1699         .map = era_map,
1700         .postsuspend = era_postsuspend,
1701         .preresume = era_preresume,
1702         .status = era_status,
1703         .message = era_message,
1704         .iterate_devices = era_iterate_devices,
1705         .io_hints = era_io_hints
1706 };
1707
1708 static int __init dm_era_init(void)
1709 {
1710         int r;
1711
1712         r = dm_register_target(&era_target);
1713         if (r) {
1714                 DMERR("era target registration failed: %d", r);
1715                 return r;
1716         }
1717
1718         return 0;
1719 }
1720
1721 static void __exit dm_era_exit(void)
1722 {
1723         dm_unregister_target(&era_target);
1724 }
1725
1726 module_init(dm_era_init);
1727 module_exit(dm_era_exit);
1728
1729 MODULE_DESCRIPTION(DM_NAME " era target");
1730 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
1731 MODULE_LICENSE("GPL");