]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-table.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33         struct mapped_device *md;
34         enum dm_queue_mode type;
35
36         /* btree table */
37         unsigned int depth;
38         unsigned int counts[MAX_DEPTH]; /* in nodes */
39         sector_t *index[MAX_DEPTH];
40
41         unsigned int num_targets;
42         unsigned int num_allocated;
43         sector_t *highs;
44         struct dm_target *targets;
45
46         struct target_type *immutable_target_type;
47
48         bool integrity_supported:1;
49         bool singleton:1;
50         bool all_blk_mq:1;
51         unsigned integrity_added:1;
52
53         /*
54          * Indicates the rw permissions for the new logical
55          * device.  This should be a combination of FMODE_READ
56          * and FMODE_WRITE.
57          */
58         fmode_t mode;
59
60         /* a list of devices used by this table */
61         struct list_head devices;
62
63         /* events get handed up using this callback */
64         void (*event_fn)(void *);
65         void *event_context;
66
67         struct dm_md_mempools *mempools;
68
69         struct list_head target_callbacks;
70 };
71
72 /*
73  * Similar to ceiling(log_size(n))
74  */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77         int result = 0;
78
79         while (n > 1) {
80                 n = dm_div_up(n, base);
81                 result++;
82         }
83
84         return result;
85 }
86
87 /*
88  * Calculate the index of the child node of the n'th node k'th key.
89  */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92         return (n * CHILDREN_PER_NODE) + k;
93 }
94
95 /*
96  * Return the n'th node of level l from table t.
97  */
98 static inline sector_t *get_node(struct dm_table *t,
99                                  unsigned int l, unsigned int n)
100 {
101         return t->index[l] + (n * KEYS_PER_NODE);
102 }
103
104 /*
105  * Return the highest key that you could lookup from the n'th
106  * node on level l of the btree.
107  */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110         for (; l < t->depth - 1; l++)
111                 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113         if (n >= t->counts[l])
114                 return (sector_t) - 1;
115
116         return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118
119 /*
120  * Fills in a level of the btree based on the highs of the level
121  * below it.
122  */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125         unsigned int n, k;
126         sector_t *node;
127
128         for (n = 0U; n < t->counts[l]; n++) {
129                 node = get_node(t, l, n);
130
131                 for (k = 0U; k < KEYS_PER_NODE; k++)
132                         node[k] = high(t, l + 1, get_child(n, k));
133         }
134
135         return 0;
136 }
137
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140         unsigned long size;
141         void *addr;
142
143         /*
144          * Check that we're not going to overflow.
145          */
146         if (nmemb > (ULONG_MAX / elem_size))
147                 return NULL;
148
149         size = nmemb * elem_size;
150         addr = vzalloc(size);
151
152         return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155
156 /*
157  * highs, and targets are managed as dynamic arrays during a
158  * table load.
159  */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162         sector_t *n_highs;
163         struct dm_target *n_targets;
164
165         /*
166          * Allocate both the target array and offset array at once.
167          * Append an empty entry to catch sectors beyond the end of
168          * the device.
169          */
170         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171                                           sizeof(sector_t));
172         if (!n_highs)
173                 return -ENOMEM;
174
175         n_targets = (struct dm_target *) (n_highs + num);
176
177         memset(n_highs, -1, sizeof(*n_highs) * num);
178         vfree(t->highs);
179
180         t->num_allocated = num;
181         t->highs = n_highs;
182         t->targets = n_targets;
183
184         return 0;
185 }
186
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188                     unsigned num_targets, struct mapped_device *md)
189 {
190         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192         if (!t)
193                 return -ENOMEM;
194
195         INIT_LIST_HEAD(&t->devices);
196         INIT_LIST_HEAD(&t->target_callbacks);
197
198         if (!num_targets)
199                 num_targets = KEYS_PER_NODE;
200
201         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203         if (!num_targets) {
204                 kfree(t);
205                 return -ENOMEM;
206         }
207
208         if (alloc_targets(t, num_targets)) {
209                 kfree(t);
210                 return -ENOMEM;
211         }
212
213         t->type = DM_TYPE_NONE;
214         t->mode = mode;
215         t->md = md;
216         *result = t;
217         return 0;
218 }
219
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222         struct list_head *tmp, *next;
223
224         list_for_each_safe(tmp, next, devices) {
225                 struct dm_dev_internal *dd =
226                     list_entry(tmp, struct dm_dev_internal, list);
227                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228                        dm_device_name(md), dd->dm_dev->name);
229                 dm_put_table_device(md, dd->dm_dev);
230                 kfree(dd);
231         }
232 }
233
234 void dm_table_destroy(struct dm_table *t)
235 {
236         unsigned int i;
237
238         if (!t)
239                 return;
240
241         /* free the indexes */
242         if (t->depth >= 2)
243                 vfree(t->index[t->depth - 2]);
244
245         /* free the targets */
246         for (i = 0; i < t->num_targets; i++) {
247                 struct dm_target *tgt = t->targets + i;
248
249                 if (tgt->type->dtr)
250                         tgt->type->dtr(tgt);
251
252                 dm_put_target_type(tgt->type);
253         }
254
255         vfree(t->highs);
256
257         /* free the device list */
258         free_devices(&t->devices, t->md);
259
260         dm_free_md_mempools(t->mempools);
261
262         kfree(t);
263 }
264
265 /*
266  * See if we've already got a device in the list.
267  */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270         struct dm_dev_internal *dd;
271
272         list_for_each_entry (dd, l, list)
273                 if (dd->dm_dev->bdev->bd_dev == dev)
274                         return dd;
275
276         return NULL;
277 }
278
279 /*
280  * If possible, this checks an area of a destination device is invalid.
281  */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283                                   sector_t start, sector_t len, void *data)
284 {
285         struct request_queue *q;
286         struct queue_limits *limits = data;
287         struct block_device *bdev = dev->bdev;
288         sector_t dev_size =
289                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290         unsigned short logical_block_size_sectors =
291                 limits->logical_block_size >> SECTOR_SHIFT;
292         char b[BDEVNAME_SIZE];
293
294         /*
295          * Some devices exist without request functions,
296          * such as loop devices not yet bound to backing files.
297          * Forbid the use of such devices.
298          */
299         q = bdev_get_queue(bdev);
300         if (!q || !q->make_request_fn) {
301                 DMWARN("%s: %s is not yet initialised: "
302                        "start=%llu, len=%llu, dev_size=%llu",
303                        dm_device_name(ti->table->md), bdevname(bdev, b),
304                        (unsigned long long)start,
305                        (unsigned long long)len,
306                        (unsigned long long)dev_size);
307                 return 1;
308         }
309
310         if (!dev_size)
311                 return 0;
312
313         if ((start >= dev_size) || (start + len > dev_size)) {
314                 DMWARN("%s: %s too small for target: "
315                        "start=%llu, len=%llu, dev_size=%llu",
316                        dm_device_name(ti->table->md), bdevname(bdev, b),
317                        (unsigned long long)start,
318                        (unsigned long long)len,
319                        (unsigned long long)dev_size);
320                 return 1;
321         }
322
323         /*
324          * If the target is mapped to zoned block device(s), check
325          * that the zones are not partially mapped.
326          */
327         if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330                 if (start & (zone_sectors - 1)) {
331                         DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332                                dm_device_name(ti->table->md),
333                                (unsigned long long)start,
334                                zone_sectors, bdevname(bdev, b));
335                         return 1;
336                 }
337
338                 /*
339                  * Note: The last zone of a zoned block device may be smaller
340                  * than other zones. So for a target mapping the end of a
341                  * zoned block device with such a zone, len would not be zone
342                  * aligned. We do not allow such last smaller zone to be part
343                  * of the mapping here to ensure that mappings with multiple
344                  * devices do not end up with a smaller zone in the middle of
345                  * the sector range.
346                  */
347                 if (len & (zone_sectors - 1)) {
348                         DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349                                dm_device_name(ti->table->md),
350                                (unsigned long long)len,
351                                zone_sectors, bdevname(bdev, b));
352                         return 1;
353                 }
354         }
355
356         if (logical_block_size_sectors <= 1)
357                 return 0;
358
359         if (start & (logical_block_size_sectors - 1)) {
360                 DMWARN("%s: start=%llu not aligned to h/w "
361                        "logical block size %u of %s",
362                        dm_device_name(ti->table->md),
363                        (unsigned long long)start,
364                        limits->logical_block_size, bdevname(bdev, b));
365                 return 1;
366         }
367
368         if (len & (logical_block_size_sectors - 1)) {
369                 DMWARN("%s: len=%llu not aligned to h/w "
370                        "logical block size %u of %s",
371                        dm_device_name(ti->table->md),
372                        (unsigned long long)len,
373                        limits->logical_block_size, bdevname(bdev, b));
374                 return 1;
375         }
376
377         return 0;
378 }
379
380 /*
381  * This upgrades the mode on an already open dm_dev, being
382  * careful to leave things as they were if we fail to reopen the
383  * device and not to touch the existing bdev field in case
384  * it is accessed concurrently inside dm_table_any_congested().
385  */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387                         struct mapped_device *md)
388 {
389         int r;
390         struct dm_dev *old_dev, *new_dev;
391
392         old_dev = dd->dm_dev;
393
394         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395                                 dd->dm_dev->mode | new_mode, &new_dev);
396         if (r)
397                 return r;
398
399         dd->dm_dev = new_dev;
400         dm_put_table_device(md, old_dev);
401
402         return 0;
403 }
404
405 /*
406  * Convert the path to a device
407  */
408 dev_t dm_get_dev_t(const char *path)
409 {
410         dev_t dev;
411         struct block_device *bdev;
412
413         bdev = lookup_bdev(path);
414         if (IS_ERR(bdev))
415                 dev = name_to_dev_t(path);
416         else {
417                 dev = bdev->bd_dev;
418                 bdput(bdev);
419         }
420
421         return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425 /*
426  * Add a device to the list, or just increment the usage count if
427  * it's already present.
428  */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430                   struct dm_dev **result)
431 {
432         int r;
433         dev_t dev;
434         struct dm_dev_internal *dd;
435         struct dm_table *t = ti->table;
436
437         BUG_ON(!t);
438
439         dev = dm_get_dev_t(path);
440         if (!dev)
441                 return -ENODEV;
442
443         dd = find_device(&t->devices, dev);
444         if (!dd) {
445                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446                 if (!dd)
447                         return -ENOMEM;
448
449                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450                         kfree(dd);
451                         return r;
452                 }
453
454                 atomic_set(&dd->count, 0);
455                 list_add(&dd->list, &t->devices);
456
457         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458                 r = upgrade_mode(dd, mode, t->md);
459                 if (r)
460                         return r;
461         }
462         atomic_inc(&dd->count);
463
464         *result = dd->dm_dev;
465         return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468
469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470                                 sector_t start, sector_t len, void *data)
471 {
472         struct queue_limits *limits = data;
473         struct block_device *bdev = dev->bdev;
474         struct request_queue *q = bdev_get_queue(bdev);
475         char b[BDEVNAME_SIZE];
476
477         if (unlikely(!q)) {
478                 DMWARN("%s: Cannot set limits for nonexistent device %s",
479                        dm_device_name(ti->table->md), bdevname(bdev, b));
480                 return 0;
481         }
482
483         if (bdev_stack_limits(limits, bdev, start) < 0)
484                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485                        "physical_block_size=%u, logical_block_size=%u, "
486                        "alignment_offset=%u, start=%llu",
487                        dm_device_name(ti->table->md), bdevname(bdev, b),
488                        q->limits.physical_block_size,
489                        q->limits.logical_block_size,
490                        q->limits.alignment_offset,
491                        (unsigned long long) start << SECTOR_SHIFT);
492
493         limits->zoned = blk_queue_zoned_model(q);
494
495         return 0;
496 }
497
498 /*
499  * Decrement a device's use count and remove it if necessary.
500  */
501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503         int found = 0;
504         struct list_head *devices = &ti->table->devices;
505         struct dm_dev_internal *dd;
506
507         list_for_each_entry(dd, devices, list) {
508                 if (dd->dm_dev == d) {
509                         found = 1;
510                         break;
511                 }
512         }
513         if (!found) {
514                 DMWARN("%s: device %s not in table devices list",
515                        dm_device_name(ti->table->md), d->name);
516                 return;
517         }
518         if (atomic_dec_and_test(&dd->count)) {
519                 dm_put_table_device(ti->table->md, d);
520                 list_del(&dd->list);
521                 kfree(dd);
522         }
523 }
524 EXPORT_SYMBOL(dm_put_device);
525
526 /*
527  * Checks to see if the target joins onto the end of the table.
528  */
529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531         struct dm_target *prev;
532
533         if (!table->num_targets)
534                 return !ti->begin;
535
536         prev = &table->targets[table->num_targets - 1];
537         return (ti->begin == (prev->begin + prev->len));
538 }
539
540 /*
541  * Used to dynamically allocate the arg array.
542  *
543  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544  * process messages even if some device is suspended. These messages have a
545  * small fixed number of arguments.
546  *
547  * On the other hand, dm-switch needs to process bulk data using messages and
548  * excessive use of GFP_NOIO could cause trouble.
549  */
550 static char **realloc_argv(unsigned *array_size, char **old_argv)
551 {
552         char **argv;
553         unsigned new_size;
554         gfp_t gfp;
555
556         if (*array_size) {
557                 new_size = *array_size * 2;
558                 gfp = GFP_KERNEL;
559         } else {
560                 new_size = 8;
561                 gfp = GFP_NOIO;
562         }
563         argv = kmalloc(new_size * sizeof(*argv), gfp);
564         if (argv) {
565                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
566                 *array_size = new_size;
567         }
568
569         kfree(old_argv);
570         return argv;
571 }
572
573 /*
574  * Destructively splits up the argument list to pass to ctr.
575  */
576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578         char *start, *end = input, *out, **argv = NULL;
579         unsigned array_size = 0;
580
581         *argc = 0;
582
583         if (!input) {
584                 *argvp = NULL;
585                 return 0;
586         }
587
588         argv = realloc_argv(&array_size, argv);
589         if (!argv)
590                 return -ENOMEM;
591
592         while (1) {
593                 /* Skip whitespace */
594                 start = skip_spaces(end);
595
596                 if (!*start)
597                         break;  /* success, we hit the end */
598
599                 /* 'out' is used to remove any back-quotes */
600                 end = out = start;
601                 while (*end) {
602                         /* Everything apart from '\0' can be quoted */
603                         if (*end == '\\' && *(end + 1)) {
604                                 *out++ = *(end + 1);
605                                 end += 2;
606                                 continue;
607                         }
608
609                         if (isspace(*end))
610                                 break;  /* end of token */
611
612                         *out++ = *end++;
613                 }
614
615                 /* have we already filled the array ? */
616                 if ((*argc + 1) > array_size) {
617                         argv = realloc_argv(&array_size, argv);
618                         if (!argv)
619                                 return -ENOMEM;
620                 }
621
622                 /* we know this is whitespace */
623                 if (*end)
624                         end++;
625
626                 /* terminate the string and put it in the array */
627                 *out = '\0';
628                 argv[*argc] = start;
629                 (*argc)++;
630         }
631
632         *argvp = argv;
633         return 0;
634 }
635
636 /*
637  * Impose necessary and sufficient conditions on a devices's table such
638  * that any incoming bio which respects its logical_block_size can be
639  * processed successfully.  If it falls across the boundary between
640  * two or more targets, the size of each piece it gets split into must
641  * be compatible with the logical_block_size of the target processing it.
642  */
643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644                                                  struct queue_limits *limits)
645 {
646         /*
647          * This function uses arithmetic modulo the logical_block_size
648          * (in units of 512-byte sectors).
649          */
650         unsigned short device_logical_block_size_sects =
651                 limits->logical_block_size >> SECTOR_SHIFT;
652
653         /*
654          * Offset of the start of the next table entry, mod logical_block_size.
655          */
656         unsigned short next_target_start = 0;
657
658         /*
659          * Given an aligned bio that extends beyond the end of a
660          * target, how many sectors must the next target handle?
661          */
662         unsigned short remaining = 0;
663
664         struct dm_target *uninitialized_var(ti);
665         struct queue_limits ti_limits;
666         unsigned i;
667
668         /*
669          * Check each entry in the table in turn.
670          */
671         for (i = 0; i < dm_table_get_num_targets(table); i++) {
672                 ti = dm_table_get_target(table, i);
673
674                 blk_set_stacking_limits(&ti_limits);
675
676                 /* combine all target devices' limits */
677                 if (ti->type->iterate_devices)
678                         ti->type->iterate_devices(ti, dm_set_device_limits,
679                                                   &ti_limits);
680
681                 /*
682                  * If the remaining sectors fall entirely within this
683                  * table entry are they compatible with its logical_block_size?
684                  */
685                 if (remaining < ti->len &&
686                     remaining & ((ti_limits.logical_block_size >>
687                                   SECTOR_SHIFT) - 1))
688                         break;  /* Error */
689
690                 next_target_start =
691                     (unsigned short) ((next_target_start + ti->len) &
692                                       (device_logical_block_size_sects - 1));
693                 remaining = next_target_start ?
694                     device_logical_block_size_sects - next_target_start : 0;
695         }
696
697         if (remaining) {
698                 DMWARN("%s: table line %u (start sect %llu len %llu) "
699                        "not aligned to h/w logical block size %u",
700                        dm_device_name(table->md), i,
701                        (unsigned long long) ti->begin,
702                        (unsigned long long) ti->len,
703                        limits->logical_block_size);
704                 return -EINVAL;
705         }
706
707         return 0;
708 }
709
710 int dm_table_add_target(struct dm_table *t, const char *type,
711                         sector_t start, sector_t len, char *params)
712 {
713         int r = -EINVAL, argc;
714         char **argv;
715         struct dm_target *tgt;
716
717         if (t->singleton) {
718                 DMERR("%s: target type %s must appear alone in table",
719                       dm_device_name(t->md), t->targets->type->name);
720                 return -EINVAL;
721         }
722
723         BUG_ON(t->num_targets >= t->num_allocated);
724
725         tgt = t->targets + t->num_targets;
726         memset(tgt, 0, sizeof(*tgt));
727
728         if (!len) {
729                 DMERR("%s: zero-length target", dm_device_name(t->md));
730                 return -EINVAL;
731         }
732
733         tgt->type = dm_get_target_type(type);
734         if (!tgt->type) {
735                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736                 return -EINVAL;
737         }
738
739         if (dm_target_needs_singleton(tgt->type)) {
740                 if (t->num_targets) {
741                         tgt->error = "singleton target type must appear alone in table";
742                         goto bad;
743                 }
744                 t->singleton = true;
745         }
746
747         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748                 tgt->error = "target type may not be included in a read-only table";
749                 goto bad;
750         }
751
752         if (t->immutable_target_type) {
753                 if (t->immutable_target_type != tgt->type) {
754                         tgt->error = "immutable target type cannot be mixed with other target types";
755                         goto bad;
756                 }
757         } else if (dm_target_is_immutable(tgt->type)) {
758                 if (t->num_targets) {
759                         tgt->error = "immutable target type cannot be mixed with other target types";
760                         goto bad;
761                 }
762                 t->immutable_target_type = tgt->type;
763         }
764
765         if (dm_target_has_integrity(tgt->type))
766                 t->integrity_added = 1;
767
768         tgt->table = t;
769         tgt->begin = start;
770         tgt->len = len;
771         tgt->error = "Unknown error";
772
773         /*
774          * Does this target adjoin the previous one ?
775          */
776         if (!adjoin(t, tgt)) {
777                 tgt->error = "Gap in table";
778                 goto bad;
779         }
780
781         r = dm_split_args(&argc, &argv, params);
782         if (r) {
783                 tgt->error = "couldn't split parameters (insufficient memory)";
784                 goto bad;
785         }
786
787         r = tgt->type->ctr(tgt, argc, argv);
788         kfree(argv);
789         if (r)
790                 goto bad;
791
792         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
794         if (!tgt->num_discard_bios && tgt->discards_supported)
795                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796                        dm_device_name(t->md), type);
797
798         return 0;
799
800  bad:
801         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802         dm_put_target_type(tgt->type);
803         return r;
804 }
805
806 /*
807  * Target argument parsing helpers.
808  */
809 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
810                              unsigned *value, char **error, unsigned grouped)
811 {
812         const char *arg_str = dm_shift_arg(arg_set);
813         char dummy;
814
815         if (!arg_str ||
816             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
817             (*value < arg->min) ||
818             (*value > arg->max) ||
819             (grouped && arg_set->argc < *value)) {
820                 *error = arg->error;
821                 return -EINVAL;
822         }
823
824         return 0;
825 }
826
827 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
828                 unsigned *value, char **error)
829 {
830         return validate_next_arg(arg, arg_set, value, error, 0);
831 }
832 EXPORT_SYMBOL(dm_read_arg);
833
834 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
835                       unsigned *value, char **error)
836 {
837         return validate_next_arg(arg, arg_set, value, error, 1);
838 }
839 EXPORT_SYMBOL(dm_read_arg_group);
840
841 const char *dm_shift_arg(struct dm_arg_set *as)
842 {
843         char *r;
844
845         if (as->argc) {
846                 as->argc--;
847                 r = *as->argv;
848                 as->argv++;
849                 return r;
850         }
851
852         return NULL;
853 }
854 EXPORT_SYMBOL(dm_shift_arg);
855
856 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
857 {
858         BUG_ON(as->argc < num_args);
859         as->argc -= num_args;
860         as->argv += num_args;
861 }
862 EXPORT_SYMBOL(dm_consume_args);
863
864 static bool __table_type_bio_based(enum dm_queue_mode table_type)
865 {
866         return (table_type == DM_TYPE_BIO_BASED ||
867                 table_type == DM_TYPE_DAX_BIO_BASED);
868 }
869
870 static bool __table_type_request_based(enum dm_queue_mode table_type)
871 {
872         return (table_type == DM_TYPE_REQUEST_BASED ||
873                 table_type == DM_TYPE_MQ_REQUEST_BASED);
874 }
875
876 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
877 {
878         t->type = type;
879 }
880 EXPORT_SYMBOL_GPL(dm_table_set_type);
881
882 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883                                sector_t start, sector_t len, void *data)
884 {
885         struct request_queue *q = bdev_get_queue(dev->bdev);
886
887         return q && blk_queue_dax(q);
888 }
889
890 static bool dm_table_supports_dax(struct dm_table *t)
891 {
892         struct dm_target *ti;
893         unsigned i;
894
895         /* Ensure that all targets support DAX. */
896         for (i = 0; i < dm_table_get_num_targets(t); i++) {
897                 ti = dm_table_get_target(t, i);
898
899                 if (!ti->type->direct_access)
900                         return false;
901
902                 if (!ti->type->iterate_devices ||
903                     !ti->type->iterate_devices(ti, device_supports_dax, NULL))
904                         return false;
905         }
906
907         return true;
908 }
909
910 static int dm_table_determine_type(struct dm_table *t)
911 {
912         unsigned i;
913         unsigned bio_based = 0, request_based = 0, hybrid = 0;
914         unsigned sq_count = 0, mq_count = 0;
915         struct dm_target *tgt;
916         struct dm_dev_internal *dd;
917         struct list_head *devices = dm_table_get_devices(t);
918         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
919
920         if (t->type != DM_TYPE_NONE) {
921                 /* target already set the table's type */
922                 if (t->type == DM_TYPE_BIO_BASED)
923                         return 0;
924                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
925                 goto verify_rq_based;
926         }
927
928         for (i = 0; i < t->num_targets; i++) {
929                 tgt = t->targets + i;
930                 if (dm_target_hybrid(tgt))
931                         hybrid = 1;
932                 else if (dm_target_request_based(tgt))
933                         request_based = 1;
934                 else
935                         bio_based = 1;
936
937                 if (bio_based && request_based) {
938                         DMWARN("Inconsistent table: different target types"
939                                " can't be mixed up");
940                         return -EINVAL;
941                 }
942         }
943
944         if (hybrid && !bio_based && !request_based) {
945                 /*
946                  * The targets can work either way.
947                  * Determine the type from the live device.
948                  * Default to bio-based if device is new.
949                  */
950                 if (__table_type_request_based(live_md_type))
951                         request_based = 1;
952                 else
953                         bio_based = 1;
954         }
955
956         if (bio_based) {
957                 /* We must use this table as bio-based */
958                 t->type = DM_TYPE_BIO_BASED;
959                 if (dm_table_supports_dax(t) ||
960                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
961                         t->type = DM_TYPE_DAX_BIO_BASED;
962                 return 0;
963         }
964
965         BUG_ON(!request_based); /* No targets in this table */
966
967         /*
968          * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
969          * having a compatible target use dm_table_set_type.
970          */
971         t->type = DM_TYPE_REQUEST_BASED;
972
973 verify_rq_based:
974         /*
975          * Request-based dm supports only tables that have a single target now.
976          * To support multiple targets, request splitting support is needed,
977          * and that needs lots of changes in the block-layer.
978          * (e.g. request completion process for partial completion.)
979          */
980         if (t->num_targets > 1) {
981                 DMWARN("Request-based dm doesn't support multiple targets yet");
982                 return -EINVAL;
983         }
984
985         if (list_empty(devices)) {
986                 int srcu_idx;
987                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
988
989                 /* inherit live table's type and all_blk_mq */
990                 if (live_table) {
991                         t->type = live_table->type;
992                         t->all_blk_mq = live_table->all_blk_mq;
993                 }
994                 dm_put_live_table(t->md, srcu_idx);
995                 return 0;
996         }
997
998         /* Non-request-stackable devices can't be used for request-based dm */
999         list_for_each_entry(dd, devices, list) {
1000                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1001
1002                 if (!blk_queue_stackable(q)) {
1003                         DMERR("table load rejected: including"
1004                               " non-request-stackable devices");
1005                         return -EINVAL;
1006                 }
1007
1008                 if (q->mq_ops)
1009                         mq_count++;
1010                 else
1011                         sq_count++;
1012         }
1013         if (sq_count && mq_count) {
1014                 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1015                 return -EINVAL;
1016         }
1017         t->all_blk_mq = mq_count > 0;
1018
1019         if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1020                 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1021                 return -EINVAL;
1022         }
1023
1024         return 0;
1025 }
1026
1027 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1028 {
1029         return t->type;
1030 }
1031
1032 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1033 {
1034         return t->immutable_target_type;
1035 }
1036
1037 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1038 {
1039         /* Immutable target is implicitly a singleton */
1040         if (t->num_targets > 1 ||
1041             !dm_target_is_immutable(t->targets[0].type))
1042                 return NULL;
1043
1044         return t->targets;
1045 }
1046
1047 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1048 {
1049         struct dm_target *ti;
1050         unsigned i;
1051
1052         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1053                 ti = dm_table_get_target(t, i);
1054                 if (dm_target_is_wildcard(ti->type))
1055                         return ti;
1056         }
1057
1058         return NULL;
1059 }
1060
1061 bool dm_table_bio_based(struct dm_table *t)
1062 {
1063         return __table_type_bio_based(dm_table_get_type(t));
1064 }
1065
1066 bool dm_table_request_based(struct dm_table *t)
1067 {
1068         return __table_type_request_based(dm_table_get_type(t));
1069 }
1070
1071 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1072 {
1073         return t->all_blk_mq;
1074 }
1075
1076 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1077 {
1078         enum dm_queue_mode type = dm_table_get_type(t);
1079         unsigned per_io_data_size = 0;
1080         struct dm_target *tgt;
1081         unsigned i;
1082
1083         if (unlikely(type == DM_TYPE_NONE)) {
1084                 DMWARN("no table type is set, can't allocate mempools");
1085                 return -EINVAL;
1086         }
1087
1088         if (__table_type_bio_based(type))
1089                 for (i = 0; i < t->num_targets; i++) {
1090                         tgt = t->targets + i;
1091                         per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1092                 }
1093
1094         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1095         if (!t->mempools)
1096                 return -ENOMEM;
1097
1098         return 0;
1099 }
1100
1101 void dm_table_free_md_mempools(struct dm_table *t)
1102 {
1103         dm_free_md_mempools(t->mempools);
1104         t->mempools = NULL;
1105 }
1106
1107 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1108 {
1109         return t->mempools;
1110 }
1111
1112 static int setup_indexes(struct dm_table *t)
1113 {
1114         int i;
1115         unsigned int total = 0;
1116         sector_t *indexes;
1117
1118         /* allocate the space for *all* the indexes */
1119         for (i = t->depth - 2; i >= 0; i--) {
1120                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1121                 total += t->counts[i];
1122         }
1123
1124         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1125         if (!indexes)
1126                 return -ENOMEM;
1127
1128         /* set up internal nodes, bottom-up */
1129         for (i = t->depth - 2; i >= 0; i--) {
1130                 t->index[i] = indexes;
1131                 indexes += (KEYS_PER_NODE * t->counts[i]);
1132                 setup_btree_index(i, t);
1133         }
1134
1135         return 0;
1136 }
1137
1138 /*
1139  * Builds the btree to index the map.
1140  */
1141 static int dm_table_build_index(struct dm_table *t)
1142 {
1143         int r = 0;
1144         unsigned int leaf_nodes;
1145
1146         /* how many indexes will the btree have ? */
1147         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1148         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1149
1150         /* leaf layer has already been set up */
1151         t->counts[t->depth - 1] = leaf_nodes;
1152         t->index[t->depth - 1] = t->highs;
1153
1154         if (t->depth >= 2)
1155                 r = setup_indexes(t);
1156
1157         return r;
1158 }
1159
1160 static bool integrity_profile_exists(struct gendisk *disk)
1161 {
1162         return !!blk_get_integrity(disk);
1163 }
1164
1165 /*
1166  * Get a disk whose integrity profile reflects the table's profile.
1167  * Returns NULL if integrity support was inconsistent or unavailable.
1168  */
1169 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1170 {
1171         struct list_head *devices = dm_table_get_devices(t);
1172         struct dm_dev_internal *dd = NULL;
1173         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1174         unsigned i;
1175
1176         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1177                 struct dm_target *ti = dm_table_get_target(t, i);
1178                 if (!dm_target_passes_integrity(ti->type))
1179                         goto no_integrity;
1180         }
1181
1182         list_for_each_entry(dd, devices, list) {
1183                 template_disk = dd->dm_dev->bdev->bd_disk;
1184                 if (!integrity_profile_exists(template_disk))
1185                         goto no_integrity;
1186                 else if (prev_disk &&
1187                          blk_integrity_compare(prev_disk, template_disk) < 0)
1188                         goto no_integrity;
1189                 prev_disk = template_disk;
1190         }
1191
1192         return template_disk;
1193
1194 no_integrity:
1195         if (prev_disk)
1196                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1197                        dm_device_name(t->md),
1198                        prev_disk->disk_name,
1199                        template_disk->disk_name);
1200         return NULL;
1201 }
1202
1203 /*
1204  * Register the mapped device for blk_integrity support if the
1205  * underlying devices have an integrity profile.  But all devices may
1206  * not have matching profiles (checking all devices isn't reliable
1207  * during table load because this table may use other DM device(s) which
1208  * must be resumed before they will have an initialized integity
1209  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1210  * profile validation: First pass during table load, final pass during
1211  * resume.
1212  */
1213 static int dm_table_register_integrity(struct dm_table *t)
1214 {
1215         struct mapped_device *md = t->md;
1216         struct gendisk *template_disk = NULL;
1217
1218         /* If target handles integrity itself do not register it here. */
1219         if (t->integrity_added)
1220                 return 0;
1221
1222         template_disk = dm_table_get_integrity_disk(t);
1223         if (!template_disk)
1224                 return 0;
1225
1226         if (!integrity_profile_exists(dm_disk(md))) {
1227                 t->integrity_supported = true;
1228                 /*
1229                  * Register integrity profile during table load; we can do
1230                  * this because the final profile must match during resume.
1231                  */
1232                 blk_integrity_register(dm_disk(md),
1233                                        blk_get_integrity(template_disk));
1234                 return 0;
1235         }
1236
1237         /*
1238          * If DM device already has an initialized integrity
1239          * profile the new profile should not conflict.
1240          */
1241         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1242                 DMWARN("%s: conflict with existing integrity profile: "
1243                        "%s profile mismatch",
1244                        dm_device_name(t->md),
1245                        template_disk->disk_name);
1246                 return 1;
1247         }
1248
1249         /* Preserve existing integrity profile */
1250         t->integrity_supported = true;
1251         return 0;
1252 }
1253
1254 /*
1255  * Prepares the table for use by building the indices,
1256  * setting the type, and allocating mempools.
1257  */
1258 int dm_table_complete(struct dm_table *t)
1259 {
1260         int r;
1261
1262         r = dm_table_determine_type(t);
1263         if (r) {
1264                 DMERR("unable to determine table type");
1265                 return r;
1266         }
1267
1268         r = dm_table_build_index(t);
1269         if (r) {
1270                 DMERR("unable to build btrees");
1271                 return r;
1272         }
1273
1274         r = dm_table_register_integrity(t);
1275         if (r) {
1276                 DMERR("could not register integrity profile.");
1277                 return r;
1278         }
1279
1280         r = dm_table_alloc_md_mempools(t, t->md);
1281         if (r)
1282                 DMERR("unable to allocate mempools");
1283
1284         return r;
1285 }
1286
1287 static DEFINE_MUTEX(_event_lock);
1288 void dm_table_event_callback(struct dm_table *t,
1289                              void (*fn)(void *), void *context)
1290 {
1291         mutex_lock(&_event_lock);
1292         t->event_fn = fn;
1293         t->event_context = context;
1294         mutex_unlock(&_event_lock);
1295 }
1296
1297 void dm_table_event(struct dm_table *t)
1298 {
1299         /*
1300          * You can no longer call dm_table_event() from interrupt
1301          * context, use a bottom half instead.
1302          */
1303         BUG_ON(in_interrupt());
1304
1305         mutex_lock(&_event_lock);
1306         if (t->event_fn)
1307                 t->event_fn(t->event_context);
1308         mutex_unlock(&_event_lock);
1309 }
1310 EXPORT_SYMBOL(dm_table_event);
1311
1312 sector_t dm_table_get_size(struct dm_table *t)
1313 {
1314         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1315 }
1316 EXPORT_SYMBOL(dm_table_get_size);
1317
1318 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1319 {
1320         if (index >= t->num_targets)
1321                 return NULL;
1322
1323         return t->targets + index;
1324 }
1325
1326 /*
1327  * Search the btree for the correct target.
1328  *
1329  * Caller should check returned pointer with dm_target_is_valid()
1330  * to trap I/O beyond end of device.
1331  */
1332 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1333 {
1334         unsigned int l, n = 0, k = 0;
1335         sector_t *node;
1336
1337         for (l = 0; l < t->depth; l++) {
1338                 n = get_child(n, k);
1339                 node = get_node(t, l, n);
1340
1341                 for (k = 0; k < KEYS_PER_NODE; k++)
1342                         if (node[k] >= sector)
1343                                 break;
1344         }
1345
1346         return &t->targets[(KEYS_PER_NODE * n) + k];
1347 }
1348
1349 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1350                         sector_t start, sector_t len, void *data)
1351 {
1352         unsigned *num_devices = data;
1353
1354         (*num_devices)++;
1355
1356         return 0;
1357 }
1358
1359 /*
1360  * Check whether a table has no data devices attached using each
1361  * target's iterate_devices method.
1362  * Returns false if the result is unknown because a target doesn't
1363  * support iterate_devices.
1364  */
1365 bool dm_table_has_no_data_devices(struct dm_table *table)
1366 {
1367         struct dm_target *ti;
1368         unsigned i, num_devices;
1369
1370         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1371                 ti = dm_table_get_target(table, i);
1372
1373                 if (!ti->type->iterate_devices)
1374                         return false;
1375
1376                 num_devices = 0;
1377                 ti->type->iterate_devices(ti, count_device, &num_devices);
1378                 if (num_devices)
1379                         return false;
1380         }
1381
1382         return true;
1383 }
1384
1385 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1386                                  sector_t start, sector_t len, void *data)
1387 {
1388         struct request_queue *q = bdev_get_queue(dev->bdev);
1389         enum blk_zoned_model *zoned_model = data;
1390
1391         return q && blk_queue_zoned_model(q) == *zoned_model;
1392 }
1393
1394 static bool dm_table_supports_zoned_model(struct dm_table *t,
1395                                           enum blk_zoned_model zoned_model)
1396 {
1397         struct dm_target *ti;
1398         unsigned i;
1399
1400         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1401                 ti = dm_table_get_target(t, i);
1402
1403                 if (zoned_model == BLK_ZONED_HM &&
1404                     !dm_target_supports_zoned_hm(ti->type))
1405                         return false;
1406
1407                 if (!ti->type->iterate_devices ||
1408                     !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1409                         return false;
1410         }
1411
1412         return true;
1413 }
1414
1415 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1416                                        sector_t start, sector_t len, void *data)
1417 {
1418         struct request_queue *q = bdev_get_queue(dev->bdev);
1419         unsigned int *zone_sectors = data;
1420
1421         return q && blk_queue_zone_sectors(q) == *zone_sectors;
1422 }
1423
1424 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1425                                           unsigned int zone_sectors)
1426 {
1427         struct dm_target *ti;
1428         unsigned i;
1429
1430         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1431                 ti = dm_table_get_target(t, i);
1432
1433                 if (!ti->type->iterate_devices ||
1434                     !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1435                         return false;
1436         }
1437
1438         return true;
1439 }
1440
1441 static int validate_hardware_zoned_model(struct dm_table *table,
1442                                          enum blk_zoned_model zoned_model,
1443                                          unsigned int zone_sectors)
1444 {
1445         if (zoned_model == BLK_ZONED_NONE)
1446                 return 0;
1447
1448         if (!dm_table_supports_zoned_model(table, zoned_model)) {
1449                 DMERR("%s: zoned model is not consistent across all devices",
1450                       dm_device_name(table->md));
1451                 return -EINVAL;
1452         }
1453
1454         /* Check zone size validity and compatibility */
1455         if (!zone_sectors || !is_power_of_2(zone_sectors))
1456                 return -EINVAL;
1457
1458         if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1459                 DMERR("%s: zone sectors is not consistent across all devices",
1460                       dm_device_name(table->md));
1461                 return -EINVAL;
1462         }
1463
1464         return 0;
1465 }
1466
1467 /*
1468  * Establish the new table's queue_limits and validate them.
1469  */
1470 int dm_calculate_queue_limits(struct dm_table *table,
1471                               struct queue_limits *limits)
1472 {
1473         struct dm_target *ti;
1474         struct queue_limits ti_limits;
1475         unsigned i;
1476         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1477         unsigned int zone_sectors = 0;
1478
1479         blk_set_stacking_limits(limits);
1480
1481         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1482                 blk_set_stacking_limits(&ti_limits);
1483
1484                 ti = dm_table_get_target(table, i);
1485
1486                 if (!ti->type->iterate_devices)
1487                         goto combine_limits;
1488
1489                 /*
1490                  * Combine queue limits of all the devices this target uses.
1491                  */
1492                 ti->type->iterate_devices(ti, dm_set_device_limits,
1493                                           &ti_limits);
1494
1495                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1496                         /*
1497                          * After stacking all limits, validate all devices
1498                          * in table support this zoned model and zone sectors.
1499                          */
1500                         zoned_model = ti_limits.zoned;
1501                         zone_sectors = ti_limits.chunk_sectors;
1502                 }
1503
1504                 /* Set I/O hints portion of queue limits */
1505                 if (ti->type->io_hints)
1506                         ti->type->io_hints(ti, &ti_limits);
1507
1508                 /*
1509                  * Check each device area is consistent with the target's
1510                  * overall queue limits.
1511                  */
1512                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1513                                               &ti_limits))
1514                         return -EINVAL;
1515
1516 combine_limits:
1517                 /*
1518                  * Merge this target's queue limits into the overall limits
1519                  * for the table.
1520                  */
1521                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1522                         DMWARN("%s: adding target device "
1523                                "(start sect %llu len %llu) "
1524                                "caused an alignment inconsistency",
1525                                dm_device_name(table->md),
1526                                (unsigned long long) ti->begin,
1527                                (unsigned long long) ti->len);
1528
1529                 /*
1530                  * FIXME: this should likely be moved to blk_stack_limits(), would
1531                  * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1532                  */
1533                 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1534                         /*
1535                          * By default, the stacked limits zoned model is set to
1536                          * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1537                          * this model using the first target model reported
1538                          * that is not BLK_ZONED_NONE. This will be either the
1539                          * first target device zoned model or the model reported
1540                          * by the target .io_hints.
1541                          */
1542                         limits->zoned = ti_limits.zoned;
1543                 }
1544         }
1545
1546         /*
1547          * Verify that the zoned model and zone sectors, as determined before
1548          * any .io_hints override, are the same across all devices in the table.
1549          * - this is especially relevant if .io_hints is emulating a disk-managed
1550          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1551          * BUT...
1552          */
1553         if (limits->zoned != BLK_ZONED_NONE) {
1554                 /*
1555                  * ...IF the above limits stacking determined a zoned model
1556                  * validate that all of the table's devices conform to it.
1557                  */
1558                 zoned_model = limits->zoned;
1559                 zone_sectors = limits->chunk_sectors;
1560         }
1561         if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1562                 return -EINVAL;
1563
1564         return validate_hardware_logical_block_alignment(table, limits);
1565 }
1566
1567 /*
1568  * Verify that all devices have an integrity profile that matches the
1569  * DM device's registered integrity profile.  If the profiles don't
1570  * match then unregister the DM device's integrity profile.
1571  */
1572 static void dm_table_verify_integrity(struct dm_table *t)
1573 {
1574         struct gendisk *template_disk = NULL;
1575
1576         if (t->integrity_added)
1577                 return;
1578
1579         if (t->integrity_supported) {
1580                 /*
1581                  * Verify that the original integrity profile
1582                  * matches all the devices in this table.
1583                  */
1584                 template_disk = dm_table_get_integrity_disk(t);
1585                 if (template_disk &&
1586                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1587                         return;
1588         }
1589
1590         if (integrity_profile_exists(dm_disk(t->md))) {
1591                 DMWARN("%s: unable to establish an integrity profile",
1592                        dm_device_name(t->md));
1593                 blk_integrity_unregister(dm_disk(t->md));
1594         }
1595 }
1596
1597 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1598                                 sector_t start, sector_t len, void *data)
1599 {
1600         unsigned long flush = (unsigned long) data;
1601         struct request_queue *q = bdev_get_queue(dev->bdev);
1602
1603         return q && (q->queue_flags & flush);
1604 }
1605
1606 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1607 {
1608         struct dm_target *ti;
1609         unsigned i;
1610
1611         /*
1612          * Require at least one underlying device to support flushes.
1613          * t->devices includes internal dm devices such as mirror logs
1614          * so we need to use iterate_devices here, which targets
1615          * supporting flushes must provide.
1616          */
1617         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1618                 ti = dm_table_get_target(t, i);
1619
1620                 if (!ti->num_flush_bios)
1621                         continue;
1622
1623                 if (ti->flush_supported)
1624                         return true;
1625
1626                 if (ti->type->iterate_devices &&
1627                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1628                         return true;
1629         }
1630
1631         return false;
1632 }
1633
1634 static int device_dax_write_cache_enabled(struct dm_target *ti,
1635                                           struct dm_dev *dev, sector_t start,
1636                                           sector_t len, void *data)
1637 {
1638         struct dax_device *dax_dev = dev->dax_dev;
1639
1640         if (!dax_dev)
1641                 return false;
1642
1643         if (dax_write_cache_enabled(dax_dev))
1644                 return true;
1645         return false;
1646 }
1647
1648 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1649 {
1650         struct dm_target *ti;
1651         unsigned i;
1652
1653         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1654                 ti = dm_table_get_target(t, i);
1655
1656                 if (ti->type->iterate_devices &&
1657                     ti->type->iterate_devices(ti,
1658                                 device_dax_write_cache_enabled, NULL))
1659                         return true;
1660         }
1661
1662         return false;
1663 }
1664
1665 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1666                             sector_t start, sector_t len, void *data)
1667 {
1668         struct request_queue *q = bdev_get_queue(dev->bdev);
1669
1670         return q && blk_queue_nonrot(q);
1671 }
1672
1673 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1674                              sector_t start, sector_t len, void *data)
1675 {
1676         struct request_queue *q = bdev_get_queue(dev->bdev);
1677
1678         return q && !blk_queue_add_random(q);
1679 }
1680
1681 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1682                                    sector_t start, sector_t len, void *data)
1683 {
1684         struct request_queue *q = bdev_get_queue(dev->bdev);
1685
1686         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1687 }
1688
1689 static bool dm_table_all_devices_attribute(struct dm_table *t,
1690                                            iterate_devices_callout_fn func)
1691 {
1692         struct dm_target *ti;
1693         unsigned i;
1694
1695         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696                 ti = dm_table_get_target(t, i);
1697
1698                 if (!ti->type->iterate_devices ||
1699                     !ti->type->iterate_devices(ti, func, NULL))
1700                         return false;
1701         }
1702
1703         return true;
1704 }
1705
1706 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1707                                          sector_t start, sector_t len, void *data)
1708 {
1709         struct request_queue *q = bdev_get_queue(dev->bdev);
1710
1711         return q && !q->limits.max_write_same_sectors;
1712 }
1713
1714 static bool dm_table_supports_write_same(struct dm_table *t)
1715 {
1716         struct dm_target *ti;
1717         unsigned i;
1718
1719         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1720                 ti = dm_table_get_target(t, i);
1721
1722                 if (!ti->num_write_same_bios)
1723                         return false;
1724
1725                 if (!ti->type->iterate_devices ||
1726                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1727                         return false;
1728         }
1729
1730         return true;
1731 }
1732
1733 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1734                                            sector_t start, sector_t len, void *data)
1735 {
1736         struct request_queue *q = bdev_get_queue(dev->bdev);
1737
1738         return q && !q->limits.max_write_zeroes_sectors;
1739 }
1740
1741 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1742 {
1743         struct dm_target *ti;
1744         unsigned i = 0;
1745
1746         while (i < dm_table_get_num_targets(t)) {
1747                 ti = dm_table_get_target(t, i++);
1748
1749                 if (!ti->num_write_zeroes_bios)
1750                         return false;
1751
1752                 if (!ti->type->iterate_devices ||
1753                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1754                         return false;
1755         }
1756
1757         return true;
1758 }
1759
1760
1761 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1762                                   sector_t start, sector_t len, void *data)
1763 {
1764         struct request_queue *q = bdev_get_queue(dev->bdev);
1765
1766         return q && blk_queue_discard(q);
1767 }
1768
1769 static bool dm_table_supports_discards(struct dm_table *t)
1770 {
1771         struct dm_target *ti;
1772         unsigned i;
1773
1774         /*
1775          * Unless any target used by the table set discards_supported,
1776          * require at least one underlying device to support discards.
1777          * t->devices includes internal dm devices such as mirror logs
1778          * so we need to use iterate_devices here, which targets
1779          * supporting discard selectively must provide.
1780          */
1781         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1782                 ti = dm_table_get_target(t, i);
1783
1784                 if (!ti->num_discard_bios)
1785                         continue;
1786
1787                 if (ti->discards_supported)
1788                         return true;
1789
1790                 if (ti->type->iterate_devices &&
1791                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1792                         return true;
1793         }
1794
1795         return false;
1796 }
1797
1798 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1799                                struct queue_limits *limits)
1800 {
1801         bool wc = false, fua = false;
1802
1803         /*
1804          * Copy table's limits to the DM device's request_queue
1805          */
1806         q->limits = *limits;
1807
1808         if (!dm_table_supports_discards(t))
1809                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1810         else
1811                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1812
1813         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1814                 wc = true;
1815                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1816                         fua = true;
1817         }
1818         blk_queue_write_cache(q, wc, fua);
1819
1820         if (dm_table_supports_dax_write_cache(t))
1821                 dax_write_cache(t->md->dax_dev, true);
1822
1823         /* Ensure that all underlying devices are non-rotational. */
1824         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1825                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1826         else
1827                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1828
1829         if (!dm_table_supports_write_same(t))
1830                 q->limits.max_write_same_sectors = 0;
1831         if (!dm_table_supports_write_zeroes(t))
1832                 q->limits.max_write_zeroes_sectors = 0;
1833
1834         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1835                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1836         else
1837                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1838
1839         dm_table_verify_integrity(t);
1840
1841         /*
1842          * Determine whether or not this queue's I/O timings contribute
1843          * to the entropy pool, Only request-based targets use this.
1844          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1845          * have it set.
1846          */
1847         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1848                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1849
1850         /*
1851          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1852          * visible to other CPUs because, once the flag is set, incoming bios
1853          * are processed by request-based dm, which refers to the queue
1854          * settings.
1855          * Until the flag set, bios are passed to bio-based dm and queued to
1856          * md->deferred where queue settings are not needed yet.
1857          * Those bios are passed to request-based dm at the resume time.
1858          */
1859         smp_mb();
1860         if (dm_table_request_based(t))
1861                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1862 }
1863
1864 unsigned int dm_table_get_num_targets(struct dm_table *t)
1865 {
1866         return t->num_targets;
1867 }
1868
1869 struct list_head *dm_table_get_devices(struct dm_table *t)
1870 {
1871         return &t->devices;
1872 }
1873
1874 fmode_t dm_table_get_mode(struct dm_table *t)
1875 {
1876         return t->mode;
1877 }
1878 EXPORT_SYMBOL(dm_table_get_mode);
1879
1880 enum suspend_mode {
1881         PRESUSPEND,
1882         PRESUSPEND_UNDO,
1883         POSTSUSPEND,
1884 };
1885
1886 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1887 {
1888         int i = t->num_targets;
1889         struct dm_target *ti = t->targets;
1890
1891         lockdep_assert_held(&t->md->suspend_lock);
1892
1893         while (i--) {
1894                 switch (mode) {
1895                 case PRESUSPEND:
1896                         if (ti->type->presuspend)
1897                                 ti->type->presuspend(ti);
1898                         break;
1899                 case PRESUSPEND_UNDO:
1900                         if (ti->type->presuspend_undo)
1901                                 ti->type->presuspend_undo(ti);
1902                         break;
1903                 case POSTSUSPEND:
1904                         if (ti->type->postsuspend)
1905                                 ti->type->postsuspend(ti);
1906                         break;
1907                 }
1908                 ti++;
1909         }
1910 }
1911
1912 void dm_table_presuspend_targets(struct dm_table *t)
1913 {
1914         if (!t)
1915                 return;
1916
1917         suspend_targets(t, PRESUSPEND);
1918 }
1919
1920 void dm_table_presuspend_undo_targets(struct dm_table *t)
1921 {
1922         if (!t)
1923                 return;
1924
1925         suspend_targets(t, PRESUSPEND_UNDO);
1926 }
1927
1928 void dm_table_postsuspend_targets(struct dm_table *t)
1929 {
1930         if (!t)
1931                 return;
1932
1933         suspend_targets(t, POSTSUSPEND);
1934 }
1935
1936 int dm_table_resume_targets(struct dm_table *t)
1937 {
1938         int i, r = 0;
1939
1940         lockdep_assert_held(&t->md->suspend_lock);
1941
1942         for (i = 0; i < t->num_targets; i++) {
1943                 struct dm_target *ti = t->targets + i;
1944
1945                 if (!ti->type->preresume)
1946                         continue;
1947
1948                 r = ti->type->preresume(ti);
1949                 if (r) {
1950                         DMERR("%s: %s: preresume failed, error = %d",
1951                               dm_device_name(t->md), ti->type->name, r);
1952                         return r;
1953                 }
1954         }
1955
1956         for (i = 0; i < t->num_targets; i++) {
1957                 struct dm_target *ti = t->targets + i;
1958
1959                 if (ti->type->resume)
1960                         ti->type->resume(ti);
1961         }
1962
1963         return 0;
1964 }
1965
1966 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1967 {
1968         list_add(&cb->list, &t->target_callbacks);
1969 }
1970 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1971
1972 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1973 {
1974         struct dm_dev_internal *dd;
1975         struct list_head *devices = dm_table_get_devices(t);
1976         struct dm_target_callbacks *cb;
1977         int r = 0;
1978
1979         list_for_each_entry(dd, devices, list) {
1980                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1981                 char b[BDEVNAME_SIZE];
1982
1983                 if (likely(q))
1984                         r |= bdi_congested(q->backing_dev_info, bdi_bits);
1985                 else
1986                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1987                                      dm_device_name(t->md),
1988                                      bdevname(dd->dm_dev->bdev, b));
1989         }
1990
1991         list_for_each_entry(cb, &t->target_callbacks, list)
1992                 if (cb->congested_fn)
1993                         r |= cb->congested_fn(cb, bdi_bits);
1994
1995         return r;
1996 }
1997
1998 struct mapped_device *dm_table_get_md(struct dm_table *t)
1999 {
2000         return t->md;
2001 }
2002 EXPORT_SYMBOL(dm_table_get_md);
2003
2004 void dm_table_run_md_queue_async(struct dm_table *t)
2005 {
2006         struct mapped_device *md;
2007         struct request_queue *queue;
2008         unsigned long flags;
2009
2010         if (!dm_table_request_based(t))
2011                 return;
2012
2013         md = dm_table_get_md(t);
2014         queue = dm_get_md_queue(md);
2015         if (queue) {
2016                 if (queue->mq_ops)
2017                         blk_mq_run_hw_queues(queue, true);
2018                 else {
2019                         spin_lock_irqsave(queue->queue_lock, flags);
2020                         blk_run_queue_async(queue);
2021                         spin_unlock_irqrestore(queue->queue_lock, flags);
2022                 }
2023         }
2024 }
2025 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2026