]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
Merge branch 'for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head active_thins;
257
258         struct dm_deferred_set *shared_read_ds;
259         struct dm_deferred_set *all_io_ds;
260
261         struct dm_thin_new_mapping *next_mapping;
262         mempool_t *mapping_pool;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272
273         struct dm_bio_prison_cell **cell_sort_array;
274 };
275
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278
279 /*
280  * Target context for a pool.
281  */
282 struct pool_c {
283         struct dm_target *ti;
284         struct pool *pool;
285         struct dm_dev *data_dev;
286         struct dm_dev *metadata_dev;
287         struct dm_target_callbacks callbacks;
288
289         dm_block_t low_water_blocks;
290         struct pool_features requested_pf; /* Features requested during table load */
291         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292 };
293
294 /*
295  * Target context for a thin.
296  */
297 struct thin_c {
298         struct list_head list;
299         struct dm_dev *pool_dev;
300         struct dm_dev *origin_dev;
301         sector_t origin_size;
302         dm_thin_id dev_id;
303
304         struct pool *pool;
305         struct dm_thin_device *td;
306         struct mapped_device *thin_md;
307
308         bool requeue_mode:1;
309         spinlock_t lock;
310         struct list_head deferred_cells;
311         struct bio_list deferred_bio_list;
312         struct bio_list retry_on_resume_list;
313         struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315         /*
316          * Ensures the thin is not destroyed until the worker has finished
317          * iterating the active_thins list.
318          */
319         atomic_t refcount;
320         struct completion can_destroy;
321 };
322
323 /*----------------------------------------------------------------*/
324
325 static bool block_size_is_power_of_two(struct pool *pool)
326 {
327         return pool->sectors_per_block_shift >= 0;
328 }
329
330 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
331 {
332         return block_size_is_power_of_two(pool) ?
333                 (b << pool->sectors_per_block_shift) :
334                 (b * pool->sectors_per_block);
335 }
336
337 /*----------------------------------------------------------------*/
338
339 struct discard_op {
340         struct thin_c *tc;
341         struct blk_plug plug;
342         struct bio *parent_bio;
343         struct bio *bio;
344 };
345
346 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
347 {
348         BUG_ON(!parent);
349
350         op->tc = tc;
351         blk_start_plug(&op->plug);
352         op->parent_bio = parent;
353         op->bio = NULL;
354 }
355
356 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
357 {
358         struct thin_c *tc = op->tc;
359         sector_t s = block_to_sectors(tc->pool, data_b);
360         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
361
362         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
363                                       GFP_NOWAIT, REQ_WRITE | REQ_DISCARD, &op->bio);
364 }
365
366 static void end_discard(struct discard_op *op, int r)
367 {
368         if (op->bio) {
369                 /*
370                  * Even if one of the calls to issue_discard failed, we
371                  * need to wait for the chain to complete.
372                  */
373                 bio_chain(op->bio, op->parent_bio);
374                 submit_bio(REQ_WRITE | REQ_DISCARD, op->bio);
375         }
376
377         blk_finish_plug(&op->plug);
378
379         /*
380          * Even if r is set, there could be sub discards in flight that we
381          * need to wait for.
382          */
383         if (r && !op->parent_bio->bi_error)
384                 op->parent_bio->bi_error = r;
385         bio_endio(op->parent_bio);
386 }
387
388 /*----------------------------------------------------------------*/
389
390 /*
391  * wake_worker() is used when new work is queued and when pool_resume is
392  * ready to continue deferred IO processing.
393  */
394 static void wake_worker(struct pool *pool)
395 {
396         queue_work(pool->wq, &pool->worker);
397 }
398
399 /*----------------------------------------------------------------*/
400
401 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
402                       struct dm_bio_prison_cell **cell_result)
403 {
404         int r;
405         struct dm_bio_prison_cell *cell_prealloc;
406
407         /*
408          * Allocate a cell from the prison's mempool.
409          * This might block but it can't fail.
410          */
411         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
412
413         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
414         if (r)
415                 /*
416                  * We reused an old cell; we can get rid of
417                  * the new one.
418                  */
419                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
420
421         return r;
422 }
423
424 static void cell_release(struct pool *pool,
425                          struct dm_bio_prison_cell *cell,
426                          struct bio_list *bios)
427 {
428         dm_cell_release(pool->prison, cell, bios);
429         dm_bio_prison_free_cell(pool->prison, cell);
430 }
431
432 static void cell_visit_release(struct pool *pool,
433                                void (*fn)(void *, struct dm_bio_prison_cell *),
434                                void *context,
435                                struct dm_bio_prison_cell *cell)
436 {
437         dm_cell_visit_release(pool->prison, fn, context, cell);
438         dm_bio_prison_free_cell(pool->prison, cell);
439 }
440
441 static void cell_release_no_holder(struct pool *pool,
442                                    struct dm_bio_prison_cell *cell,
443                                    struct bio_list *bios)
444 {
445         dm_cell_release_no_holder(pool->prison, cell, bios);
446         dm_bio_prison_free_cell(pool->prison, cell);
447 }
448
449 static void cell_error_with_code(struct pool *pool,
450                                  struct dm_bio_prison_cell *cell, int error_code)
451 {
452         dm_cell_error(pool->prison, cell, error_code);
453         dm_bio_prison_free_cell(pool->prison, cell);
454 }
455
456 static int get_pool_io_error_code(struct pool *pool)
457 {
458         return pool->out_of_data_space ? -ENOSPC : -EIO;
459 }
460
461 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
462 {
463         int error = get_pool_io_error_code(pool);
464
465         cell_error_with_code(pool, cell, error);
466 }
467
468 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
469 {
470         cell_error_with_code(pool, cell, 0);
471 }
472
473 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
474 {
475         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
476 }
477
478 /*----------------------------------------------------------------*/
479
480 /*
481  * A global list of pools that uses a struct mapped_device as a key.
482  */
483 static struct dm_thin_pool_table {
484         struct mutex mutex;
485         struct list_head pools;
486 } dm_thin_pool_table;
487
488 static void pool_table_init(void)
489 {
490         mutex_init(&dm_thin_pool_table.mutex);
491         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
492 }
493
494 static void __pool_table_insert(struct pool *pool)
495 {
496         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
497         list_add(&pool->list, &dm_thin_pool_table.pools);
498 }
499
500 static void __pool_table_remove(struct pool *pool)
501 {
502         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
503         list_del(&pool->list);
504 }
505
506 static struct pool *__pool_table_lookup(struct mapped_device *md)
507 {
508         struct pool *pool = NULL, *tmp;
509
510         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
511
512         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
513                 if (tmp->pool_md == md) {
514                         pool = tmp;
515                         break;
516                 }
517         }
518
519         return pool;
520 }
521
522 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
523 {
524         struct pool *pool = NULL, *tmp;
525
526         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
527
528         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
529                 if (tmp->md_dev == md_dev) {
530                         pool = tmp;
531                         break;
532                 }
533         }
534
535         return pool;
536 }
537
538 /*----------------------------------------------------------------*/
539
540 struct dm_thin_endio_hook {
541         struct thin_c *tc;
542         struct dm_deferred_entry *shared_read_entry;
543         struct dm_deferred_entry *all_io_entry;
544         struct dm_thin_new_mapping *overwrite_mapping;
545         struct rb_node rb_node;
546         struct dm_bio_prison_cell *cell;
547 };
548
549 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
550 {
551         bio_list_merge(bios, master);
552         bio_list_init(master);
553 }
554
555 static void error_bio_list(struct bio_list *bios, int error)
556 {
557         struct bio *bio;
558
559         while ((bio = bio_list_pop(bios))) {
560                 bio->bi_error = error;
561                 bio_endio(bio);
562         }
563 }
564
565 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
566 {
567         struct bio_list bios;
568         unsigned long flags;
569
570         bio_list_init(&bios);
571
572         spin_lock_irqsave(&tc->lock, flags);
573         __merge_bio_list(&bios, master);
574         spin_unlock_irqrestore(&tc->lock, flags);
575
576         error_bio_list(&bios, error);
577 }
578
579 static void requeue_deferred_cells(struct thin_c *tc)
580 {
581         struct pool *pool = tc->pool;
582         unsigned long flags;
583         struct list_head cells;
584         struct dm_bio_prison_cell *cell, *tmp;
585
586         INIT_LIST_HEAD(&cells);
587
588         spin_lock_irqsave(&tc->lock, flags);
589         list_splice_init(&tc->deferred_cells, &cells);
590         spin_unlock_irqrestore(&tc->lock, flags);
591
592         list_for_each_entry_safe(cell, tmp, &cells, user_list)
593                 cell_requeue(pool, cell);
594 }
595
596 static void requeue_io(struct thin_c *tc)
597 {
598         struct bio_list bios;
599         unsigned long flags;
600
601         bio_list_init(&bios);
602
603         spin_lock_irqsave(&tc->lock, flags);
604         __merge_bio_list(&bios, &tc->deferred_bio_list);
605         __merge_bio_list(&bios, &tc->retry_on_resume_list);
606         spin_unlock_irqrestore(&tc->lock, flags);
607
608         error_bio_list(&bios, DM_ENDIO_REQUEUE);
609         requeue_deferred_cells(tc);
610 }
611
612 static void error_retry_list_with_code(struct pool *pool, int error)
613 {
614         struct thin_c *tc;
615
616         rcu_read_lock();
617         list_for_each_entry_rcu(tc, &pool->active_thins, list)
618                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
619         rcu_read_unlock();
620 }
621
622 static void error_retry_list(struct pool *pool)
623 {
624         int error = get_pool_io_error_code(pool);
625
626         error_retry_list_with_code(pool, error);
627 }
628
629 /*
630  * This section of code contains the logic for processing a thin device's IO.
631  * Much of the code depends on pool object resources (lists, workqueues, etc)
632  * but most is exclusively called from the thin target rather than the thin-pool
633  * target.
634  */
635
636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
637 {
638         struct pool *pool = tc->pool;
639         sector_t block_nr = bio->bi_iter.bi_sector;
640
641         if (block_size_is_power_of_two(pool))
642                 block_nr >>= pool->sectors_per_block_shift;
643         else
644                 (void) sector_div(block_nr, pool->sectors_per_block);
645
646         return block_nr;
647 }
648
649 /*
650  * Returns the _complete_ blocks that this bio covers.
651  */
652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
653                                 dm_block_t *begin, dm_block_t *end)
654 {
655         struct pool *pool = tc->pool;
656         sector_t b = bio->bi_iter.bi_sector;
657         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
658
659         b += pool->sectors_per_block - 1ull; /* so we round up */
660
661         if (block_size_is_power_of_two(pool)) {
662                 b >>= pool->sectors_per_block_shift;
663                 e >>= pool->sectors_per_block_shift;
664         } else {
665                 (void) sector_div(b, pool->sectors_per_block);
666                 (void) sector_div(e, pool->sectors_per_block);
667         }
668
669         if (e < b)
670                 /* Can happen if the bio is within a single block. */
671                 e = b;
672
673         *begin = b;
674         *end = e;
675 }
676
677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
678 {
679         struct pool *pool = tc->pool;
680         sector_t bi_sector = bio->bi_iter.bi_sector;
681
682         bio->bi_bdev = tc->pool_dev->bdev;
683         if (block_size_is_power_of_two(pool))
684                 bio->bi_iter.bi_sector =
685                         (block << pool->sectors_per_block_shift) |
686                         (bi_sector & (pool->sectors_per_block - 1));
687         else
688                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
689                                  sector_div(bi_sector, pool->sectors_per_block);
690 }
691
692 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
693 {
694         bio->bi_bdev = tc->origin_dev->bdev;
695 }
696
697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
698 {
699         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
700                 dm_thin_changed_this_transaction(tc->td);
701 }
702
703 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
704 {
705         struct dm_thin_endio_hook *h;
706
707         if (bio->bi_rw & REQ_DISCARD)
708                 return;
709
710         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
711         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
712 }
713
714 static void issue(struct thin_c *tc, struct bio *bio)
715 {
716         struct pool *pool = tc->pool;
717         unsigned long flags;
718
719         if (!bio_triggers_commit(tc, bio)) {
720                 generic_make_request(bio);
721                 return;
722         }
723
724         /*
725          * Complete bio with an error if earlier I/O caused changes to
726          * the metadata that can't be committed e.g, due to I/O errors
727          * on the metadata device.
728          */
729         if (dm_thin_aborted_changes(tc->td)) {
730                 bio_io_error(bio);
731                 return;
732         }
733
734         /*
735          * Batch together any bios that trigger commits and then issue a
736          * single commit for them in process_deferred_bios().
737          */
738         spin_lock_irqsave(&pool->lock, flags);
739         bio_list_add(&pool->deferred_flush_bios, bio);
740         spin_unlock_irqrestore(&pool->lock, flags);
741 }
742
743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
744 {
745         remap_to_origin(tc, bio);
746         issue(tc, bio);
747 }
748
749 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
750                             dm_block_t block)
751 {
752         remap(tc, bio, block);
753         issue(tc, bio);
754 }
755
756 /*----------------------------------------------------------------*/
757
758 /*
759  * Bio endio functions.
760  */
761 struct dm_thin_new_mapping {
762         struct list_head list;
763
764         bool pass_discard:1;
765         bool maybe_shared:1;
766
767         /*
768          * Track quiescing, copying and zeroing preparation actions.  When this
769          * counter hits zero the block is prepared and can be inserted into the
770          * btree.
771          */
772         atomic_t prepare_actions;
773
774         int err;
775         struct thin_c *tc;
776         dm_block_t virt_begin, virt_end;
777         dm_block_t data_block;
778         struct dm_bio_prison_cell *cell;
779
780         /*
781          * If the bio covers the whole area of a block then we can avoid
782          * zeroing or copying.  Instead this bio is hooked.  The bio will
783          * still be in the cell, so care has to be taken to avoid issuing
784          * the bio twice.
785          */
786         struct bio *bio;
787         bio_end_io_t *saved_bi_end_io;
788 };
789
790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
791 {
792         struct pool *pool = m->tc->pool;
793
794         if (atomic_dec_and_test(&m->prepare_actions)) {
795                 list_add_tail(&m->list, &pool->prepared_mappings);
796                 wake_worker(pool);
797         }
798 }
799
800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
801 {
802         unsigned long flags;
803         struct pool *pool = m->tc->pool;
804
805         spin_lock_irqsave(&pool->lock, flags);
806         __complete_mapping_preparation(m);
807         spin_unlock_irqrestore(&pool->lock, flags);
808 }
809
810 static void copy_complete(int read_err, unsigned long write_err, void *context)
811 {
812         struct dm_thin_new_mapping *m = context;
813
814         m->err = read_err || write_err ? -EIO : 0;
815         complete_mapping_preparation(m);
816 }
817
818 static void overwrite_endio(struct bio *bio)
819 {
820         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
821         struct dm_thin_new_mapping *m = h->overwrite_mapping;
822
823         bio->bi_end_io = m->saved_bi_end_io;
824
825         m->err = bio->bi_error;
826         complete_mapping_preparation(m);
827 }
828
829 /*----------------------------------------------------------------*/
830
831 /*
832  * Workqueue.
833  */
834
835 /*
836  * Prepared mapping jobs.
837  */
838
839 /*
840  * This sends the bios in the cell, except the original holder, back
841  * to the deferred_bios list.
842  */
843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
844 {
845         struct pool *pool = tc->pool;
846         unsigned long flags;
847
848         spin_lock_irqsave(&tc->lock, flags);
849         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
850         spin_unlock_irqrestore(&tc->lock, flags);
851
852         wake_worker(pool);
853 }
854
855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
856
857 struct remap_info {
858         struct thin_c *tc;
859         struct bio_list defer_bios;
860         struct bio_list issue_bios;
861 };
862
863 static void __inc_remap_and_issue_cell(void *context,
864                                        struct dm_bio_prison_cell *cell)
865 {
866         struct remap_info *info = context;
867         struct bio *bio;
868
869         while ((bio = bio_list_pop(&cell->bios))) {
870                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
871                         bio_list_add(&info->defer_bios, bio);
872                 else {
873                         inc_all_io_entry(info->tc->pool, bio);
874
875                         /*
876                          * We can't issue the bios with the bio prison lock
877                          * held, so we add them to a list to issue on
878                          * return from this function.
879                          */
880                         bio_list_add(&info->issue_bios, bio);
881                 }
882         }
883 }
884
885 static void inc_remap_and_issue_cell(struct thin_c *tc,
886                                      struct dm_bio_prison_cell *cell,
887                                      dm_block_t block)
888 {
889         struct bio *bio;
890         struct remap_info info;
891
892         info.tc = tc;
893         bio_list_init(&info.defer_bios);
894         bio_list_init(&info.issue_bios);
895
896         /*
897          * We have to be careful to inc any bios we're about to issue
898          * before the cell is released, and avoid a race with new bios
899          * being added to the cell.
900          */
901         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
902                            &info, cell);
903
904         while ((bio = bio_list_pop(&info.defer_bios)))
905                 thin_defer_bio(tc, bio);
906
907         while ((bio = bio_list_pop(&info.issue_bios)))
908                 remap_and_issue(info.tc, bio, block);
909 }
910
911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
912 {
913         cell_error(m->tc->pool, m->cell);
914         list_del(&m->list);
915         mempool_free(m, m->tc->pool->mapping_pool);
916 }
917
918 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
919 {
920         struct thin_c *tc = m->tc;
921         struct pool *pool = tc->pool;
922         struct bio *bio = m->bio;
923         int r;
924
925         if (m->err) {
926                 cell_error(pool, m->cell);
927                 goto out;
928         }
929
930         /*
931          * Commit the prepared block into the mapping btree.
932          * Any I/O for this block arriving after this point will get
933          * remapped to it directly.
934          */
935         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
936         if (r) {
937                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
938                 cell_error(pool, m->cell);
939                 goto out;
940         }
941
942         /*
943          * Release any bios held while the block was being provisioned.
944          * If we are processing a write bio that completely covers the block,
945          * we already processed it so can ignore it now when processing
946          * the bios in the cell.
947          */
948         if (bio) {
949                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
950                 bio_endio(bio);
951         } else {
952                 inc_all_io_entry(tc->pool, m->cell->holder);
953                 remap_and_issue(tc, m->cell->holder, m->data_block);
954                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955         }
956
957 out:
958         list_del(&m->list);
959         mempool_free(m, pool->mapping_pool);
960 }
961
962 /*----------------------------------------------------------------*/
963
964 static void free_discard_mapping(struct dm_thin_new_mapping *m)
965 {
966         struct thin_c *tc = m->tc;
967         if (m->cell)
968                 cell_defer_no_holder(tc, m->cell);
969         mempool_free(m, tc->pool->mapping_pool);
970 }
971
972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
973 {
974         bio_io_error(m->bio);
975         free_discard_mapping(m);
976 }
977
978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
979 {
980         bio_endio(m->bio);
981         free_discard_mapping(m);
982 }
983
984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
985 {
986         int r;
987         struct thin_c *tc = m->tc;
988
989         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
990         if (r) {
991                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
992                 bio_io_error(m->bio);
993         } else
994                 bio_endio(m->bio);
995
996         cell_defer_no_holder(tc, m->cell);
997         mempool_free(m, tc->pool->mapping_pool);
998 }
999
1000 /*----------------------------------------------------------------*/
1001
1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1003 {
1004         /*
1005          * We've already unmapped this range of blocks, but before we
1006          * passdown we have to check that these blocks are now unused.
1007          */
1008         int r = 0;
1009         bool used = true;
1010         struct thin_c *tc = m->tc;
1011         struct pool *pool = tc->pool;
1012         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1013         struct discard_op op;
1014
1015         begin_discard(&op, tc, m->bio);
1016         while (b != end) {
1017                 /* find start of unmapped run */
1018                 for (; b < end; b++) {
1019                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1020                         if (r)
1021                                 goto out;
1022
1023                         if (!used)
1024                                 break;
1025                 }
1026
1027                 if (b == end)
1028                         break;
1029
1030                 /* find end of run */
1031                 for (e = b + 1; e != end; e++) {
1032                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1033                         if (r)
1034                                 goto out;
1035
1036                         if (used)
1037                                 break;
1038                 }
1039
1040                 r = issue_discard(&op, b, e);
1041                 if (r)
1042                         goto out;
1043
1044                 b = e;
1045         }
1046 out:
1047         end_discard(&op, r);
1048 }
1049
1050 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1051 {
1052         int r;
1053         struct thin_c *tc = m->tc;
1054         struct pool *pool = tc->pool;
1055
1056         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1057         if (r) {
1058                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1059                 bio_io_error(m->bio);
1060
1061         } else if (m->maybe_shared) {
1062                 passdown_double_checking_shared_status(m);
1063
1064         } else {
1065                 struct discard_op op;
1066                 begin_discard(&op, tc, m->bio);
1067                 r = issue_discard(&op, m->data_block,
1068                                   m->data_block + (m->virt_end - m->virt_begin));
1069                 end_discard(&op, r);
1070         }
1071
1072         cell_defer_no_holder(tc, m->cell);
1073         mempool_free(m, pool->mapping_pool);
1074 }
1075
1076 static void process_prepared(struct pool *pool, struct list_head *head,
1077                              process_mapping_fn *fn)
1078 {
1079         unsigned long flags;
1080         struct list_head maps;
1081         struct dm_thin_new_mapping *m, *tmp;
1082
1083         INIT_LIST_HEAD(&maps);
1084         spin_lock_irqsave(&pool->lock, flags);
1085         list_splice_init(head, &maps);
1086         spin_unlock_irqrestore(&pool->lock, flags);
1087
1088         list_for_each_entry_safe(m, tmp, &maps, list)
1089                 (*fn)(m);
1090 }
1091
1092 /*
1093  * Deferred bio jobs.
1094  */
1095 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1096 {
1097         return bio->bi_iter.bi_size ==
1098                 (pool->sectors_per_block << SECTOR_SHIFT);
1099 }
1100
1101 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1102 {
1103         return (bio_data_dir(bio) == WRITE) &&
1104                 io_overlaps_block(pool, bio);
1105 }
1106
1107 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1108                                bio_end_io_t *fn)
1109 {
1110         *save = bio->bi_end_io;
1111         bio->bi_end_io = fn;
1112 }
1113
1114 static int ensure_next_mapping(struct pool *pool)
1115 {
1116         if (pool->next_mapping)
1117                 return 0;
1118
1119         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1120
1121         return pool->next_mapping ? 0 : -ENOMEM;
1122 }
1123
1124 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1125 {
1126         struct dm_thin_new_mapping *m = pool->next_mapping;
1127
1128         BUG_ON(!pool->next_mapping);
1129
1130         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1131         INIT_LIST_HEAD(&m->list);
1132         m->bio = NULL;
1133
1134         pool->next_mapping = NULL;
1135
1136         return m;
1137 }
1138
1139 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1140                     sector_t begin, sector_t end)
1141 {
1142         int r;
1143         struct dm_io_region to;
1144
1145         to.bdev = tc->pool_dev->bdev;
1146         to.sector = begin;
1147         to.count = end - begin;
1148
1149         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1150         if (r < 0) {
1151                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1152                 copy_complete(1, 1, m);
1153         }
1154 }
1155
1156 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1157                                       dm_block_t data_begin,
1158                                       struct dm_thin_new_mapping *m)
1159 {
1160         struct pool *pool = tc->pool;
1161         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1162
1163         h->overwrite_mapping = m;
1164         m->bio = bio;
1165         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1166         inc_all_io_entry(pool, bio);
1167         remap_and_issue(tc, bio, data_begin);
1168 }
1169
1170 /*
1171  * A partial copy also needs to zero the uncopied region.
1172  */
1173 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1174                           struct dm_dev *origin, dm_block_t data_origin,
1175                           dm_block_t data_dest,
1176                           struct dm_bio_prison_cell *cell, struct bio *bio,
1177                           sector_t len)
1178 {
1179         int r;
1180         struct pool *pool = tc->pool;
1181         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1182
1183         m->tc = tc;
1184         m->virt_begin = virt_block;
1185         m->virt_end = virt_block + 1u;
1186         m->data_block = data_dest;
1187         m->cell = cell;
1188
1189         /*
1190          * quiesce action + copy action + an extra reference held for the
1191          * duration of this function (we may need to inc later for a
1192          * partial zero).
1193          */
1194         atomic_set(&m->prepare_actions, 3);
1195
1196         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1197                 complete_mapping_preparation(m); /* already quiesced */
1198
1199         /*
1200          * IO to pool_dev remaps to the pool target's data_dev.
1201          *
1202          * If the whole block of data is being overwritten, we can issue the
1203          * bio immediately. Otherwise we use kcopyd to clone the data first.
1204          */
1205         if (io_overwrites_block(pool, bio))
1206                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1207         else {
1208                 struct dm_io_region from, to;
1209
1210                 from.bdev = origin->bdev;
1211                 from.sector = data_origin * pool->sectors_per_block;
1212                 from.count = len;
1213
1214                 to.bdev = tc->pool_dev->bdev;
1215                 to.sector = data_dest * pool->sectors_per_block;
1216                 to.count = len;
1217
1218                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1219                                    0, copy_complete, m);
1220                 if (r < 0) {
1221                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1222                         copy_complete(1, 1, m);
1223
1224                         /*
1225                          * We allow the zero to be issued, to simplify the
1226                          * error path.  Otherwise we'd need to start
1227                          * worrying about decrementing the prepare_actions
1228                          * counter.
1229                          */
1230                 }
1231
1232                 /*
1233                  * Do we need to zero a tail region?
1234                  */
1235                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1236                         atomic_inc(&m->prepare_actions);
1237                         ll_zero(tc, m,
1238                                 data_dest * pool->sectors_per_block + len,
1239                                 (data_dest + 1) * pool->sectors_per_block);
1240                 }
1241         }
1242
1243         complete_mapping_preparation(m); /* drop our ref */
1244 }
1245
1246 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1247                                    dm_block_t data_origin, dm_block_t data_dest,
1248                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1249 {
1250         schedule_copy(tc, virt_block, tc->pool_dev,
1251                       data_origin, data_dest, cell, bio,
1252                       tc->pool->sectors_per_block);
1253 }
1254
1255 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1256                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1257                           struct bio *bio)
1258 {
1259         struct pool *pool = tc->pool;
1260         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1261
1262         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1263         m->tc = tc;
1264         m->virt_begin = virt_block;
1265         m->virt_end = virt_block + 1u;
1266         m->data_block = data_block;
1267         m->cell = cell;
1268
1269         /*
1270          * If the whole block of data is being overwritten or we are not
1271          * zeroing pre-existing data, we can issue the bio immediately.
1272          * Otherwise we use kcopyd to zero the data first.
1273          */
1274         if (pool->pf.zero_new_blocks) {
1275                 if (io_overwrites_block(pool, bio))
1276                         remap_and_issue_overwrite(tc, bio, data_block, m);
1277                 else
1278                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1279                                 (data_block + 1) * pool->sectors_per_block);
1280         } else
1281                 process_prepared_mapping(m);
1282 }
1283
1284 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1285                                    dm_block_t data_dest,
1286                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1287 {
1288         struct pool *pool = tc->pool;
1289         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1290         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1291
1292         if (virt_block_end <= tc->origin_size)
1293                 schedule_copy(tc, virt_block, tc->origin_dev,
1294                               virt_block, data_dest, cell, bio,
1295                               pool->sectors_per_block);
1296
1297         else if (virt_block_begin < tc->origin_size)
1298                 schedule_copy(tc, virt_block, tc->origin_dev,
1299                               virt_block, data_dest, cell, bio,
1300                               tc->origin_size - virt_block_begin);
1301
1302         else
1303                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1304 }
1305
1306 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1307
1308 static void check_for_space(struct pool *pool)
1309 {
1310         int r;
1311         dm_block_t nr_free;
1312
1313         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1314                 return;
1315
1316         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1317         if (r)
1318                 return;
1319
1320         if (nr_free)
1321                 set_pool_mode(pool, PM_WRITE);
1322 }
1323
1324 /*
1325  * A non-zero return indicates read_only or fail_io mode.
1326  * Many callers don't care about the return value.
1327  */
1328 static int commit(struct pool *pool)
1329 {
1330         int r;
1331
1332         if (get_pool_mode(pool) >= PM_READ_ONLY)
1333                 return -EINVAL;
1334
1335         r = dm_pool_commit_metadata(pool->pmd);
1336         if (r)
1337                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1338         else
1339                 check_for_space(pool);
1340
1341         return r;
1342 }
1343
1344 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1345 {
1346         unsigned long flags;
1347
1348         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1349                 DMWARN("%s: reached low water mark for data device: sending event.",
1350                        dm_device_name(pool->pool_md));
1351                 spin_lock_irqsave(&pool->lock, flags);
1352                 pool->low_water_triggered = true;
1353                 spin_unlock_irqrestore(&pool->lock, flags);
1354                 dm_table_event(pool->ti->table);
1355         }
1356 }
1357
1358 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1359 {
1360         int r;
1361         dm_block_t free_blocks;
1362         struct pool *pool = tc->pool;
1363
1364         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1365                 return -EINVAL;
1366
1367         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1368         if (r) {
1369                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1370                 return r;
1371         }
1372
1373         check_low_water_mark(pool, free_blocks);
1374
1375         if (!free_blocks) {
1376                 /*
1377                  * Try to commit to see if that will free up some
1378                  * more space.
1379                  */
1380                 r = commit(pool);
1381                 if (r)
1382                         return r;
1383
1384                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1385                 if (r) {
1386                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1387                         return r;
1388                 }
1389
1390                 if (!free_blocks) {
1391                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1392                         return -ENOSPC;
1393                 }
1394         }
1395
1396         r = dm_pool_alloc_data_block(pool->pmd, result);
1397         if (r) {
1398                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1399                 return r;
1400         }
1401
1402         return 0;
1403 }
1404
1405 /*
1406  * If we have run out of space, queue bios until the device is
1407  * resumed, presumably after having been reloaded with more space.
1408  */
1409 static void retry_on_resume(struct bio *bio)
1410 {
1411         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1412         struct thin_c *tc = h->tc;
1413         unsigned long flags;
1414
1415         spin_lock_irqsave(&tc->lock, flags);
1416         bio_list_add(&tc->retry_on_resume_list, bio);
1417         spin_unlock_irqrestore(&tc->lock, flags);
1418 }
1419
1420 static int should_error_unserviceable_bio(struct pool *pool)
1421 {
1422         enum pool_mode m = get_pool_mode(pool);
1423
1424         switch (m) {
1425         case PM_WRITE:
1426                 /* Shouldn't get here */
1427                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1428                 return -EIO;
1429
1430         case PM_OUT_OF_DATA_SPACE:
1431                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1432
1433         case PM_READ_ONLY:
1434         case PM_FAIL:
1435                 return -EIO;
1436         default:
1437                 /* Shouldn't get here */
1438                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1439                 return -EIO;
1440         }
1441 }
1442
1443 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1444 {
1445         int error = should_error_unserviceable_bio(pool);
1446
1447         if (error) {
1448                 bio->bi_error = error;
1449                 bio_endio(bio);
1450         } else
1451                 retry_on_resume(bio);
1452 }
1453
1454 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1455 {
1456         struct bio *bio;
1457         struct bio_list bios;
1458         int error;
1459
1460         error = should_error_unserviceable_bio(pool);
1461         if (error) {
1462                 cell_error_with_code(pool, cell, error);
1463                 return;
1464         }
1465
1466         bio_list_init(&bios);
1467         cell_release(pool, cell, &bios);
1468
1469         while ((bio = bio_list_pop(&bios)))
1470                 retry_on_resume(bio);
1471 }
1472
1473 static void process_discard_cell_no_passdown(struct thin_c *tc,
1474                                              struct dm_bio_prison_cell *virt_cell)
1475 {
1476         struct pool *pool = tc->pool;
1477         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1478
1479         /*
1480          * We don't need to lock the data blocks, since there's no
1481          * passdown.  We only lock data blocks for allocation and breaking sharing.
1482          */
1483         m->tc = tc;
1484         m->virt_begin = virt_cell->key.block_begin;
1485         m->virt_end = virt_cell->key.block_end;
1486         m->cell = virt_cell;
1487         m->bio = virt_cell->holder;
1488
1489         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1490                 pool->process_prepared_discard(m);
1491 }
1492
1493 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1494                                  struct bio *bio)
1495 {
1496         struct pool *pool = tc->pool;
1497
1498         int r;
1499         bool maybe_shared;
1500         struct dm_cell_key data_key;
1501         struct dm_bio_prison_cell *data_cell;
1502         struct dm_thin_new_mapping *m;
1503         dm_block_t virt_begin, virt_end, data_begin;
1504
1505         while (begin != end) {
1506                 r = ensure_next_mapping(pool);
1507                 if (r)
1508                         /* we did our best */
1509                         return;
1510
1511                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1512                                               &data_begin, &maybe_shared);
1513                 if (r)
1514                         /*
1515                          * Silently fail, letting any mappings we've
1516                          * created complete.
1517                          */
1518                         break;
1519
1520                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1521                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1522                         /* contention, we'll give up with this range */
1523                         begin = virt_end;
1524                         continue;
1525                 }
1526
1527                 /*
1528                  * IO may still be going to the destination block.  We must
1529                  * quiesce before we can do the removal.
1530                  */
1531                 m = get_next_mapping(pool);
1532                 m->tc = tc;
1533                 m->maybe_shared = maybe_shared;
1534                 m->virt_begin = virt_begin;
1535                 m->virt_end = virt_end;
1536                 m->data_block = data_begin;
1537                 m->cell = data_cell;
1538                 m->bio = bio;
1539
1540                 /*
1541                  * The parent bio must not complete before sub discard bios are
1542                  * chained to it (see end_discard's bio_chain)!
1543                  *
1544                  * This per-mapping bi_remaining increment is paired with
1545                  * the implicit decrement that occurs via bio_endio() in
1546                  * end_discard().
1547                  */
1548                 bio_inc_remaining(bio);
1549                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1550                         pool->process_prepared_discard(m);
1551
1552                 begin = virt_end;
1553         }
1554 }
1555
1556 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1557 {
1558         struct bio *bio = virt_cell->holder;
1559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1560
1561         /*
1562          * The virt_cell will only get freed once the origin bio completes.
1563          * This means it will remain locked while all the individual
1564          * passdown bios are in flight.
1565          */
1566         h->cell = virt_cell;
1567         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1568
1569         /*
1570          * We complete the bio now, knowing that the bi_remaining field
1571          * will prevent completion until the sub range discards have
1572          * completed.
1573          */
1574         bio_endio(bio);
1575 }
1576
1577 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1578 {
1579         dm_block_t begin, end;
1580         struct dm_cell_key virt_key;
1581         struct dm_bio_prison_cell *virt_cell;
1582
1583         get_bio_block_range(tc, bio, &begin, &end);
1584         if (begin == end) {
1585                 /*
1586                  * The discard covers less than a block.
1587                  */
1588                 bio_endio(bio);
1589                 return;
1590         }
1591
1592         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1593         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1594                 /*
1595                  * Potential starvation issue: We're relying on the
1596                  * fs/application being well behaved, and not trying to
1597                  * send IO to a region at the same time as discarding it.
1598                  * If they do this persistently then it's possible this
1599                  * cell will never be granted.
1600                  */
1601                 return;
1602
1603         tc->pool->process_discard_cell(tc, virt_cell);
1604 }
1605
1606 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1607                           struct dm_cell_key *key,
1608                           struct dm_thin_lookup_result *lookup_result,
1609                           struct dm_bio_prison_cell *cell)
1610 {
1611         int r;
1612         dm_block_t data_block;
1613         struct pool *pool = tc->pool;
1614
1615         r = alloc_data_block(tc, &data_block);
1616         switch (r) {
1617         case 0:
1618                 schedule_internal_copy(tc, block, lookup_result->block,
1619                                        data_block, cell, bio);
1620                 break;
1621
1622         case -ENOSPC:
1623                 retry_bios_on_resume(pool, cell);
1624                 break;
1625
1626         default:
1627                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1628                             __func__, r);
1629                 cell_error(pool, cell);
1630                 break;
1631         }
1632 }
1633
1634 static void __remap_and_issue_shared_cell(void *context,
1635                                           struct dm_bio_prison_cell *cell)
1636 {
1637         struct remap_info *info = context;
1638         struct bio *bio;
1639
1640         while ((bio = bio_list_pop(&cell->bios))) {
1641                 if ((bio_data_dir(bio) == WRITE) ||
1642                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1643                         bio_list_add(&info->defer_bios, bio);
1644                 else {
1645                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1646
1647                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1648                         inc_all_io_entry(info->tc->pool, bio);
1649                         bio_list_add(&info->issue_bios, bio);
1650                 }
1651         }
1652 }
1653
1654 static void remap_and_issue_shared_cell(struct thin_c *tc,
1655                                         struct dm_bio_prison_cell *cell,
1656                                         dm_block_t block)
1657 {
1658         struct bio *bio;
1659         struct remap_info info;
1660
1661         info.tc = tc;
1662         bio_list_init(&info.defer_bios);
1663         bio_list_init(&info.issue_bios);
1664
1665         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1666                            &info, cell);
1667
1668         while ((bio = bio_list_pop(&info.defer_bios)))
1669                 thin_defer_bio(tc, bio);
1670
1671         while ((bio = bio_list_pop(&info.issue_bios)))
1672                 remap_and_issue(tc, bio, block);
1673 }
1674
1675 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1676                                dm_block_t block,
1677                                struct dm_thin_lookup_result *lookup_result,
1678                                struct dm_bio_prison_cell *virt_cell)
1679 {
1680         struct dm_bio_prison_cell *data_cell;
1681         struct pool *pool = tc->pool;
1682         struct dm_cell_key key;
1683
1684         /*
1685          * If cell is already occupied, then sharing is already in the process
1686          * of being broken so we have nothing further to do here.
1687          */
1688         build_data_key(tc->td, lookup_result->block, &key);
1689         if (bio_detain(pool, &key, bio, &data_cell)) {
1690                 cell_defer_no_holder(tc, virt_cell);
1691                 return;
1692         }
1693
1694         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1695                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1696                 cell_defer_no_holder(tc, virt_cell);
1697         } else {
1698                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1699
1700                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1701                 inc_all_io_entry(pool, bio);
1702                 remap_and_issue(tc, bio, lookup_result->block);
1703
1704                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1705                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1706         }
1707 }
1708
1709 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1710                             struct dm_bio_prison_cell *cell)
1711 {
1712         int r;
1713         dm_block_t data_block;
1714         struct pool *pool = tc->pool;
1715
1716         /*
1717          * Remap empty bios (flushes) immediately, without provisioning.
1718          */
1719         if (!bio->bi_iter.bi_size) {
1720                 inc_all_io_entry(pool, bio);
1721                 cell_defer_no_holder(tc, cell);
1722
1723                 remap_and_issue(tc, bio, 0);
1724                 return;
1725         }
1726
1727         /*
1728          * Fill read bios with zeroes and complete them immediately.
1729          */
1730         if (bio_data_dir(bio) == READ) {
1731                 zero_fill_bio(bio);
1732                 cell_defer_no_holder(tc, cell);
1733                 bio_endio(bio);
1734                 return;
1735         }
1736
1737         r = alloc_data_block(tc, &data_block);
1738         switch (r) {
1739         case 0:
1740                 if (tc->origin_dev)
1741                         schedule_external_copy(tc, block, data_block, cell, bio);
1742                 else
1743                         schedule_zero(tc, block, data_block, cell, bio);
1744                 break;
1745
1746         case -ENOSPC:
1747                 retry_bios_on_resume(pool, cell);
1748                 break;
1749
1750         default:
1751                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1752                             __func__, r);
1753                 cell_error(pool, cell);
1754                 break;
1755         }
1756 }
1757
1758 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1759 {
1760         int r;
1761         struct pool *pool = tc->pool;
1762         struct bio *bio = cell->holder;
1763         dm_block_t block = get_bio_block(tc, bio);
1764         struct dm_thin_lookup_result lookup_result;
1765
1766         if (tc->requeue_mode) {
1767                 cell_requeue(pool, cell);
1768                 return;
1769         }
1770
1771         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1772         switch (r) {
1773         case 0:
1774                 if (lookup_result.shared)
1775                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1776                 else {
1777                         inc_all_io_entry(pool, bio);
1778                         remap_and_issue(tc, bio, lookup_result.block);
1779                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1780                 }
1781                 break;
1782
1783         case -ENODATA:
1784                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1785                         inc_all_io_entry(pool, bio);
1786                         cell_defer_no_holder(tc, cell);
1787
1788                         if (bio_end_sector(bio) <= tc->origin_size)
1789                                 remap_to_origin_and_issue(tc, bio);
1790
1791                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1792                                 zero_fill_bio(bio);
1793                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1794                                 remap_to_origin_and_issue(tc, bio);
1795
1796                         } else {
1797                                 zero_fill_bio(bio);
1798                                 bio_endio(bio);
1799                         }
1800                 } else
1801                         provision_block(tc, bio, block, cell);
1802                 break;
1803
1804         default:
1805                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1806                             __func__, r);
1807                 cell_defer_no_holder(tc, cell);
1808                 bio_io_error(bio);
1809                 break;
1810         }
1811 }
1812
1813 static void process_bio(struct thin_c *tc, struct bio *bio)
1814 {
1815         struct pool *pool = tc->pool;
1816         dm_block_t block = get_bio_block(tc, bio);
1817         struct dm_bio_prison_cell *cell;
1818         struct dm_cell_key key;
1819
1820         /*
1821          * If cell is already occupied, then the block is already
1822          * being provisioned so we have nothing further to do here.
1823          */
1824         build_virtual_key(tc->td, block, &key);
1825         if (bio_detain(pool, &key, bio, &cell))
1826                 return;
1827
1828         process_cell(tc, cell);
1829 }
1830
1831 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1832                                     struct dm_bio_prison_cell *cell)
1833 {
1834         int r;
1835         int rw = bio_data_dir(bio);
1836         dm_block_t block = get_bio_block(tc, bio);
1837         struct dm_thin_lookup_result lookup_result;
1838
1839         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1840         switch (r) {
1841         case 0:
1842                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1843                         handle_unserviceable_bio(tc->pool, bio);
1844                         if (cell)
1845                                 cell_defer_no_holder(tc, cell);
1846                 } else {
1847                         inc_all_io_entry(tc->pool, bio);
1848                         remap_and_issue(tc, bio, lookup_result.block);
1849                         if (cell)
1850                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1851                 }
1852                 break;
1853
1854         case -ENODATA:
1855                 if (cell)
1856                         cell_defer_no_holder(tc, cell);
1857                 if (rw != READ) {
1858                         handle_unserviceable_bio(tc->pool, bio);
1859                         break;
1860                 }
1861
1862                 if (tc->origin_dev) {
1863                         inc_all_io_entry(tc->pool, bio);
1864                         remap_to_origin_and_issue(tc, bio);
1865                         break;
1866                 }
1867
1868                 zero_fill_bio(bio);
1869                 bio_endio(bio);
1870                 break;
1871
1872         default:
1873                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1874                             __func__, r);
1875                 if (cell)
1876                         cell_defer_no_holder(tc, cell);
1877                 bio_io_error(bio);
1878                 break;
1879         }
1880 }
1881
1882 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1883 {
1884         __process_bio_read_only(tc, bio, NULL);
1885 }
1886
1887 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1888 {
1889         __process_bio_read_only(tc, cell->holder, cell);
1890 }
1891
1892 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1893 {
1894         bio_endio(bio);
1895 }
1896
1897 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1898 {
1899         bio_io_error(bio);
1900 }
1901
1902 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903 {
1904         cell_success(tc->pool, cell);
1905 }
1906
1907 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1908 {
1909         cell_error(tc->pool, cell);
1910 }
1911
1912 /*
1913  * FIXME: should we also commit due to size of transaction, measured in
1914  * metadata blocks?
1915  */
1916 static int need_commit_due_to_time(struct pool *pool)
1917 {
1918         return !time_in_range(jiffies, pool->last_commit_jiffies,
1919                               pool->last_commit_jiffies + COMMIT_PERIOD);
1920 }
1921
1922 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1923 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1924
1925 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1926 {
1927         struct rb_node **rbp, *parent;
1928         struct dm_thin_endio_hook *pbd;
1929         sector_t bi_sector = bio->bi_iter.bi_sector;
1930
1931         rbp = &tc->sort_bio_list.rb_node;
1932         parent = NULL;
1933         while (*rbp) {
1934                 parent = *rbp;
1935                 pbd = thin_pbd(parent);
1936
1937                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1938                         rbp = &(*rbp)->rb_left;
1939                 else
1940                         rbp = &(*rbp)->rb_right;
1941         }
1942
1943         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1944         rb_link_node(&pbd->rb_node, parent, rbp);
1945         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1946 }
1947
1948 static void __extract_sorted_bios(struct thin_c *tc)
1949 {
1950         struct rb_node *node;
1951         struct dm_thin_endio_hook *pbd;
1952         struct bio *bio;
1953
1954         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1955                 pbd = thin_pbd(node);
1956                 bio = thin_bio(pbd);
1957
1958                 bio_list_add(&tc->deferred_bio_list, bio);
1959                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1960         }
1961
1962         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1963 }
1964
1965 static void __sort_thin_deferred_bios(struct thin_c *tc)
1966 {
1967         struct bio *bio;
1968         struct bio_list bios;
1969
1970         bio_list_init(&bios);
1971         bio_list_merge(&bios, &tc->deferred_bio_list);
1972         bio_list_init(&tc->deferred_bio_list);
1973
1974         /* Sort deferred_bio_list using rb-tree */
1975         while ((bio = bio_list_pop(&bios)))
1976                 __thin_bio_rb_add(tc, bio);
1977
1978         /*
1979          * Transfer the sorted bios in sort_bio_list back to
1980          * deferred_bio_list to allow lockless submission of
1981          * all bios.
1982          */
1983         __extract_sorted_bios(tc);
1984 }
1985
1986 static void process_thin_deferred_bios(struct thin_c *tc)
1987 {
1988         struct pool *pool = tc->pool;
1989         unsigned long flags;
1990         struct bio *bio;
1991         struct bio_list bios;
1992         struct blk_plug plug;
1993         unsigned count = 0;
1994
1995         if (tc->requeue_mode) {
1996                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1997                 return;
1998         }
1999
2000         bio_list_init(&bios);
2001
2002         spin_lock_irqsave(&tc->lock, flags);
2003
2004         if (bio_list_empty(&tc->deferred_bio_list)) {
2005                 spin_unlock_irqrestore(&tc->lock, flags);
2006                 return;
2007         }
2008
2009         __sort_thin_deferred_bios(tc);
2010
2011         bio_list_merge(&bios, &tc->deferred_bio_list);
2012         bio_list_init(&tc->deferred_bio_list);
2013
2014         spin_unlock_irqrestore(&tc->lock, flags);
2015
2016         blk_start_plug(&plug);
2017         while ((bio = bio_list_pop(&bios))) {
2018                 /*
2019                  * If we've got no free new_mapping structs, and processing
2020                  * this bio might require one, we pause until there are some
2021                  * prepared mappings to process.
2022                  */
2023                 if (ensure_next_mapping(pool)) {
2024                         spin_lock_irqsave(&tc->lock, flags);
2025                         bio_list_add(&tc->deferred_bio_list, bio);
2026                         bio_list_merge(&tc->deferred_bio_list, &bios);
2027                         spin_unlock_irqrestore(&tc->lock, flags);
2028                         break;
2029                 }
2030
2031                 if (bio->bi_rw & REQ_DISCARD)
2032                         pool->process_discard(tc, bio);
2033                 else
2034                         pool->process_bio(tc, bio);
2035
2036                 if ((count++ & 127) == 0) {
2037                         throttle_work_update(&pool->throttle);
2038                         dm_pool_issue_prefetches(pool->pmd);
2039                 }
2040         }
2041         blk_finish_plug(&plug);
2042 }
2043
2044 static int cmp_cells(const void *lhs, const void *rhs)
2045 {
2046         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2047         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2048
2049         BUG_ON(!lhs_cell->holder);
2050         BUG_ON(!rhs_cell->holder);
2051
2052         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2053                 return -1;
2054
2055         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2056                 return 1;
2057
2058         return 0;
2059 }
2060
2061 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2062 {
2063         unsigned count = 0;
2064         struct dm_bio_prison_cell *cell, *tmp;
2065
2066         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2067                 if (count >= CELL_SORT_ARRAY_SIZE)
2068                         break;
2069
2070                 pool->cell_sort_array[count++] = cell;
2071                 list_del(&cell->user_list);
2072         }
2073
2074         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2075
2076         return count;
2077 }
2078
2079 static void process_thin_deferred_cells(struct thin_c *tc)
2080 {
2081         struct pool *pool = tc->pool;
2082         unsigned long flags;
2083         struct list_head cells;
2084         struct dm_bio_prison_cell *cell;
2085         unsigned i, j, count;
2086
2087         INIT_LIST_HEAD(&cells);
2088
2089         spin_lock_irqsave(&tc->lock, flags);
2090         list_splice_init(&tc->deferred_cells, &cells);
2091         spin_unlock_irqrestore(&tc->lock, flags);
2092
2093         if (list_empty(&cells))
2094                 return;
2095
2096         do {
2097                 count = sort_cells(tc->pool, &cells);
2098
2099                 for (i = 0; i < count; i++) {
2100                         cell = pool->cell_sort_array[i];
2101                         BUG_ON(!cell->holder);
2102
2103                         /*
2104                          * If we've got no free new_mapping structs, and processing
2105                          * this bio might require one, we pause until there are some
2106                          * prepared mappings to process.
2107                          */
2108                         if (ensure_next_mapping(pool)) {
2109                                 for (j = i; j < count; j++)
2110                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2111
2112                                 spin_lock_irqsave(&tc->lock, flags);
2113                                 list_splice(&cells, &tc->deferred_cells);
2114                                 spin_unlock_irqrestore(&tc->lock, flags);
2115                                 return;
2116                         }
2117
2118                         if (cell->holder->bi_rw & REQ_DISCARD)
2119                                 pool->process_discard_cell(tc, cell);
2120                         else
2121                                 pool->process_cell(tc, cell);
2122                 }
2123         } while (!list_empty(&cells));
2124 }
2125
2126 static void thin_get(struct thin_c *tc);
2127 static void thin_put(struct thin_c *tc);
2128
2129 /*
2130  * We can't hold rcu_read_lock() around code that can block.  So we
2131  * find a thin with the rcu lock held; bump a refcount; then drop
2132  * the lock.
2133  */
2134 static struct thin_c *get_first_thin(struct pool *pool)
2135 {
2136         struct thin_c *tc = NULL;
2137
2138         rcu_read_lock();
2139         if (!list_empty(&pool->active_thins)) {
2140                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2141                 thin_get(tc);
2142         }
2143         rcu_read_unlock();
2144
2145         return tc;
2146 }
2147
2148 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2149 {
2150         struct thin_c *old_tc = tc;
2151
2152         rcu_read_lock();
2153         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2154                 thin_get(tc);
2155                 thin_put(old_tc);
2156                 rcu_read_unlock();
2157                 return tc;
2158         }
2159         thin_put(old_tc);
2160         rcu_read_unlock();
2161
2162         return NULL;
2163 }
2164
2165 static void process_deferred_bios(struct pool *pool)
2166 {
2167         unsigned long flags;
2168         struct bio *bio;
2169         struct bio_list bios;
2170         struct thin_c *tc;
2171
2172         tc = get_first_thin(pool);
2173         while (tc) {
2174                 process_thin_deferred_cells(tc);
2175                 process_thin_deferred_bios(tc);
2176                 tc = get_next_thin(pool, tc);
2177         }
2178
2179         /*
2180          * If there are any deferred flush bios, we must commit
2181          * the metadata before issuing them.
2182          */
2183         bio_list_init(&bios);
2184         spin_lock_irqsave(&pool->lock, flags);
2185         bio_list_merge(&bios, &pool->deferred_flush_bios);
2186         bio_list_init(&pool->deferred_flush_bios);
2187         spin_unlock_irqrestore(&pool->lock, flags);
2188
2189         if (bio_list_empty(&bios) &&
2190             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2191                 return;
2192
2193         if (commit(pool)) {
2194                 while ((bio = bio_list_pop(&bios)))
2195                         bio_io_error(bio);
2196                 return;
2197         }
2198         pool->last_commit_jiffies = jiffies;
2199
2200         while ((bio = bio_list_pop(&bios)))
2201                 generic_make_request(bio);
2202 }
2203
2204 static void do_worker(struct work_struct *ws)
2205 {
2206         struct pool *pool = container_of(ws, struct pool, worker);
2207
2208         throttle_work_start(&pool->throttle);
2209         dm_pool_issue_prefetches(pool->pmd);
2210         throttle_work_update(&pool->throttle);
2211         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2212         throttle_work_update(&pool->throttle);
2213         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2214         throttle_work_update(&pool->throttle);
2215         process_deferred_bios(pool);
2216         throttle_work_complete(&pool->throttle);
2217 }
2218
2219 /*
2220  * We want to commit periodically so that not too much
2221  * unwritten data builds up.
2222  */
2223 static void do_waker(struct work_struct *ws)
2224 {
2225         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2226         wake_worker(pool);
2227         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2228 }
2229
2230 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2231
2232 /*
2233  * We're holding onto IO to allow userland time to react.  After the
2234  * timeout either the pool will have been resized (and thus back in
2235  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2236  */
2237 static void do_no_space_timeout(struct work_struct *ws)
2238 {
2239         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2240                                          no_space_timeout);
2241
2242         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2243                 pool->pf.error_if_no_space = true;
2244                 notify_of_pool_mode_change_to_oods(pool);
2245                 error_retry_list_with_code(pool, -ENOSPC);
2246         }
2247 }
2248
2249 /*----------------------------------------------------------------*/
2250
2251 struct pool_work {
2252         struct work_struct worker;
2253         struct completion complete;
2254 };
2255
2256 static struct pool_work *to_pool_work(struct work_struct *ws)
2257 {
2258         return container_of(ws, struct pool_work, worker);
2259 }
2260
2261 static void pool_work_complete(struct pool_work *pw)
2262 {
2263         complete(&pw->complete);
2264 }
2265
2266 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2267                            void (*fn)(struct work_struct *))
2268 {
2269         INIT_WORK_ONSTACK(&pw->worker, fn);
2270         init_completion(&pw->complete);
2271         queue_work(pool->wq, &pw->worker);
2272         wait_for_completion(&pw->complete);
2273 }
2274
2275 /*----------------------------------------------------------------*/
2276
2277 struct noflush_work {
2278         struct pool_work pw;
2279         struct thin_c *tc;
2280 };
2281
2282 static struct noflush_work *to_noflush(struct work_struct *ws)
2283 {
2284         return container_of(to_pool_work(ws), struct noflush_work, pw);
2285 }
2286
2287 static void do_noflush_start(struct work_struct *ws)
2288 {
2289         struct noflush_work *w = to_noflush(ws);
2290         w->tc->requeue_mode = true;
2291         requeue_io(w->tc);
2292         pool_work_complete(&w->pw);
2293 }
2294
2295 static void do_noflush_stop(struct work_struct *ws)
2296 {
2297         struct noflush_work *w = to_noflush(ws);
2298         w->tc->requeue_mode = false;
2299         pool_work_complete(&w->pw);
2300 }
2301
2302 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2303 {
2304         struct noflush_work w;
2305
2306         w.tc = tc;
2307         pool_work_wait(&w.pw, tc->pool, fn);
2308 }
2309
2310 /*----------------------------------------------------------------*/
2311
2312 static enum pool_mode get_pool_mode(struct pool *pool)
2313 {
2314         return pool->pf.mode;
2315 }
2316
2317 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2318 {
2319         dm_table_event(pool->ti->table);
2320         DMINFO("%s: switching pool to %s mode",
2321                dm_device_name(pool->pool_md), new_mode);
2322 }
2323
2324 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2325 {
2326         if (!pool->pf.error_if_no_space)
2327                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2328         else
2329                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2330 }
2331
2332 static bool passdown_enabled(struct pool_c *pt)
2333 {
2334         return pt->adjusted_pf.discard_passdown;
2335 }
2336
2337 static void set_discard_callbacks(struct pool *pool)
2338 {
2339         struct pool_c *pt = pool->ti->private;
2340
2341         if (passdown_enabled(pt)) {
2342                 pool->process_discard_cell = process_discard_cell_passdown;
2343                 pool->process_prepared_discard = process_prepared_discard_passdown;
2344         } else {
2345                 pool->process_discard_cell = process_discard_cell_no_passdown;
2346                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2347         }
2348 }
2349
2350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2351 {
2352         struct pool_c *pt = pool->ti->private;
2353         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2354         enum pool_mode old_mode = get_pool_mode(pool);
2355         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2356
2357         /*
2358          * Never allow the pool to transition to PM_WRITE mode if user
2359          * intervention is required to verify metadata and data consistency.
2360          */
2361         if (new_mode == PM_WRITE && needs_check) {
2362                 DMERR("%s: unable to switch pool to write mode until repaired.",
2363                       dm_device_name(pool->pool_md));
2364                 if (old_mode != new_mode)
2365                         new_mode = old_mode;
2366                 else
2367                         new_mode = PM_READ_ONLY;
2368         }
2369         /*
2370          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2371          * not going to recover without a thin_repair.  So we never let the
2372          * pool move out of the old mode.
2373          */
2374         if (old_mode == PM_FAIL)
2375                 new_mode = old_mode;
2376
2377         switch (new_mode) {
2378         case PM_FAIL:
2379                 if (old_mode != new_mode)
2380                         notify_of_pool_mode_change(pool, "failure");
2381                 dm_pool_metadata_read_only(pool->pmd);
2382                 pool->process_bio = process_bio_fail;
2383                 pool->process_discard = process_bio_fail;
2384                 pool->process_cell = process_cell_fail;
2385                 pool->process_discard_cell = process_cell_fail;
2386                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2387                 pool->process_prepared_discard = process_prepared_discard_fail;
2388
2389                 error_retry_list(pool);
2390                 break;
2391
2392         case PM_READ_ONLY:
2393                 if (old_mode != new_mode)
2394                         notify_of_pool_mode_change(pool, "read-only");
2395                 dm_pool_metadata_read_only(pool->pmd);
2396                 pool->process_bio = process_bio_read_only;
2397                 pool->process_discard = process_bio_success;
2398                 pool->process_cell = process_cell_read_only;
2399                 pool->process_discard_cell = process_cell_success;
2400                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2401                 pool->process_prepared_discard = process_prepared_discard_success;
2402
2403                 error_retry_list(pool);
2404                 break;
2405
2406         case PM_OUT_OF_DATA_SPACE:
2407                 /*
2408                  * Ideally we'd never hit this state; the low water mark
2409                  * would trigger userland to extend the pool before we
2410                  * completely run out of data space.  However, many small
2411                  * IOs to unprovisioned space can consume data space at an
2412                  * alarming rate.  Adjust your low water mark if you're
2413                  * frequently seeing this mode.
2414                  */
2415                 if (old_mode != new_mode)
2416                         notify_of_pool_mode_change_to_oods(pool);
2417                 pool->out_of_data_space = true;
2418                 pool->process_bio = process_bio_read_only;
2419                 pool->process_discard = process_discard_bio;
2420                 pool->process_cell = process_cell_read_only;
2421                 pool->process_prepared_mapping = process_prepared_mapping;
2422                 set_discard_callbacks(pool);
2423
2424                 if (!pool->pf.error_if_no_space && no_space_timeout)
2425                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2426                 break;
2427
2428         case PM_WRITE:
2429                 if (old_mode != new_mode)
2430                         notify_of_pool_mode_change(pool, "write");
2431                 pool->out_of_data_space = false;
2432                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2433                 dm_pool_metadata_read_write(pool->pmd);
2434                 pool->process_bio = process_bio;
2435                 pool->process_discard = process_discard_bio;
2436                 pool->process_cell = process_cell;
2437                 pool->process_prepared_mapping = process_prepared_mapping;
2438                 set_discard_callbacks(pool);
2439                 break;
2440         }
2441
2442         pool->pf.mode = new_mode;
2443         /*
2444          * The pool mode may have changed, sync it so bind_control_target()
2445          * doesn't cause an unexpected mode transition on resume.
2446          */
2447         pt->adjusted_pf.mode = new_mode;
2448 }
2449
2450 static void abort_transaction(struct pool *pool)
2451 {
2452         const char *dev_name = dm_device_name(pool->pool_md);
2453
2454         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2455         if (dm_pool_abort_metadata(pool->pmd)) {
2456                 DMERR("%s: failed to abort metadata transaction", dev_name);
2457                 set_pool_mode(pool, PM_FAIL);
2458         }
2459
2460         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2461                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2462                 set_pool_mode(pool, PM_FAIL);
2463         }
2464 }
2465
2466 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2467 {
2468         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2469                     dm_device_name(pool->pool_md), op, r);
2470
2471         abort_transaction(pool);
2472         set_pool_mode(pool, PM_READ_ONLY);
2473 }
2474
2475 /*----------------------------------------------------------------*/
2476
2477 /*
2478  * Mapping functions.
2479  */
2480
2481 /*
2482  * Called only while mapping a thin bio to hand it over to the workqueue.
2483  */
2484 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2485 {
2486         unsigned long flags;
2487         struct pool *pool = tc->pool;
2488
2489         spin_lock_irqsave(&tc->lock, flags);
2490         bio_list_add(&tc->deferred_bio_list, bio);
2491         spin_unlock_irqrestore(&tc->lock, flags);
2492
2493         wake_worker(pool);
2494 }
2495
2496 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2497 {
2498         struct pool *pool = tc->pool;
2499
2500         throttle_lock(&pool->throttle);
2501         thin_defer_bio(tc, bio);
2502         throttle_unlock(&pool->throttle);
2503 }
2504
2505 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2506 {
2507         unsigned long flags;
2508         struct pool *pool = tc->pool;
2509
2510         throttle_lock(&pool->throttle);
2511         spin_lock_irqsave(&tc->lock, flags);
2512         list_add_tail(&cell->user_list, &tc->deferred_cells);
2513         spin_unlock_irqrestore(&tc->lock, flags);
2514         throttle_unlock(&pool->throttle);
2515
2516         wake_worker(pool);
2517 }
2518
2519 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2520 {
2521         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2522
2523         h->tc = tc;
2524         h->shared_read_entry = NULL;
2525         h->all_io_entry = NULL;
2526         h->overwrite_mapping = NULL;
2527         h->cell = NULL;
2528 }
2529
2530 /*
2531  * Non-blocking function called from the thin target's map function.
2532  */
2533 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2534 {
2535         int r;
2536         struct thin_c *tc = ti->private;
2537         dm_block_t block = get_bio_block(tc, bio);
2538         struct dm_thin_device *td = tc->td;
2539         struct dm_thin_lookup_result result;
2540         struct dm_bio_prison_cell *virt_cell, *data_cell;
2541         struct dm_cell_key key;
2542
2543         thin_hook_bio(tc, bio);
2544
2545         if (tc->requeue_mode) {
2546                 bio->bi_error = DM_ENDIO_REQUEUE;
2547                 bio_endio(bio);
2548                 return DM_MAPIO_SUBMITTED;
2549         }
2550
2551         if (get_pool_mode(tc->pool) == PM_FAIL) {
2552                 bio_io_error(bio);
2553                 return DM_MAPIO_SUBMITTED;
2554         }
2555
2556         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2557                 thin_defer_bio_with_throttle(tc, bio);
2558                 return DM_MAPIO_SUBMITTED;
2559         }
2560
2561         /*
2562          * We must hold the virtual cell before doing the lookup, otherwise
2563          * there's a race with discard.
2564          */
2565         build_virtual_key(tc->td, block, &key);
2566         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2567                 return DM_MAPIO_SUBMITTED;
2568
2569         r = dm_thin_find_block(td, block, 0, &result);
2570
2571         /*
2572          * Note that we defer readahead too.
2573          */
2574         switch (r) {
2575         case 0:
2576                 if (unlikely(result.shared)) {
2577                         /*
2578                          * We have a race condition here between the
2579                          * result.shared value returned by the lookup and
2580                          * snapshot creation, which may cause new
2581                          * sharing.
2582                          *
2583                          * To avoid this always quiesce the origin before
2584                          * taking the snap.  You want to do this anyway to
2585                          * ensure a consistent application view
2586                          * (i.e. lockfs).
2587                          *
2588                          * More distant ancestors are irrelevant. The
2589                          * shared flag will be set in their case.
2590                          */
2591                         thin_defer_cell(tc, virt_cell);
2592                         return DM_MAPIO_SUBMITTED;
2593                 }
2594
2595                 build_data_key(tc->td, result.block, &key);
2596                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2597                         cell_defer_no_holder(tc, virt_cell);
2598                         return DM_MAPIO_SUBMITTED;
2599                 }
2600
2601                 inc_all_io_entry(tc->pool, bio);
2602                 cell_defer_no_holder(tc, data_cell);
2603                 cell_defer_no_holder(tc, virt_cell);
2604
2605                 remap(tc, bio, result.block);
2606                 return DM_MAPIO_REMAPPED;
2607
2608         case -ENODATA:
2609         case -EWOULDBLOCK:
2610                 thin_defer_cell(tc, virt_cell);
2611                 return DM_MAPIO_SUBMITTED;
2612
2613         default:
2614                 /*
2615                  * Must always call bio_io_error on failure.
2616                  * dm_thin_find_block can fail with -EINVAL if the
2617                  * pool is switched to fail-io mode.
2618                  */
2619                 bio_io_error(bio);
2620                 cell_defer_no_holder(tc, virt_cell);
2621                 return DM_MAPIO_SUBMITTED;
2622         }
2623 }
2624
2625 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2626 {
2627         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2628         struct request_queue *q;
2629
2630         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2631                 return 1;
2632
2633         q = bdev_get_queue(pt->data_dev->bdev);
2634         return bdi_congested(&q->backing_dev_info, bdi_bits);
2635 }
2636
2637 static void requeue_bios(struct pool *pool)
2638 {
2639         unsigned long flags;
2640         struct thin_c *tc;
2641
2642         rcu_read_lock();
2643         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2644                 spin_lock_irqsave(&tc->lock, flags);
2645                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2646                 bio_list_init(&tc->retry_on_resume_list);
2647                 spin_unlock_irqrestore(&tc->lock, flags);
2648         }
2649         rcu_read_unlock();
2650 }
2651
2652 /*----------------------------------------------------------------
2653  * Binding of control targets to a pool object
2654  *--------------------------------------------------------------*/
2655 static bool data_dev_supports_discard(struct pool_c *pt)
2656 {
2657         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2658
2659         return q && blk_queue_discard(q);
2660 }
2661
2662 static bool is_factor(sector_t block_size, uint32_t n)
2663 {
2664         return !sector_div(block_size, n);
2665 }
2666
2667 /*
2668  * If discard_passdown was enabled verify that the data device
2669  * supports discards.  Disable discard_passdown if not.
2670  */
2671 static void disable_passdown_if_not_supported(struct pool_c *pt)
2672 {
2673         struct pool *pool = pt->pool;
2674         struct block_device *data_bdev = pt->data_dev->bdev;
2675         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2676         const char *reason = NULL;
2677         char buf[BDEVNAME_SIZE];
2678
2679         if (!pt->adjusted_pf.discard_passdown)
2680                 return;
2681
2682         if (!data_dev_supports_discard(pt))
2683                 reason = "discard unsupported";
2684
2685         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2686                 reason = "max discard sectors smaller than a block";
2687
2688         if (reason) {
2689                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2690                 pt->adjusted_pf.discard_passdown = false;
2691         }
2692 }
2693
2694 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2695 {
2696         struct pool_c *pt = ti->private;
2697
2698         /*
2699          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2700          */
2701         enum pool_mode old_mode = get_pool_mode(pool);
2702         enum pool_mode new_mode = pt->adjusted_pf.mode;
2703
2704         /*
2705          * Don't change the pool's mode until set_pool_mode() below.
2706          * Otherwise the pool's process_* function pointers may
2707          * not match the desired pool mode.
2708          */
2709         pt->adjusted_pf.mode = old_mode;
2710
2711         pool->ti = ti;
2712         pool->pf = pt->adjusted_pf;
2713         pool->low_water_blocks = pt->low_water_blocks;
2714
2715         set_pool_mode(pool, new_mode);
2716
2717         return 0;
2718 }
2719
2720 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2721 {
2722         if (pool->ti == ti)
2723                 pool->ti = NULL;
2724 }
2725
2726 /*----------------------------------------------------------------
2727  * Pool creation
2728  *--------------------------------------------------------------*/
2729 /* Initialize pool features. */
2730 static void pool_features_init(struct pool_features *pf)
2731 {
2732         pf->mode = PM_WRITE;
2733         pf->zero_new_blocks = true;
2734         pf->discard_enabled = true;
2735         pf->discard_passdown = true;
2736         pf->error_if_no_space = false;
2737 }
2738
2739 static void __pool_destroy(struct pool *pool)
2740 {
2741         __pool_table_remove(pool);
2742
2743         vfree(pool->cell_sort_array);
2744         if (dm_pool_metadata_close(pool->pmd) < 0)
2745                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2746
2747         dm_bio_prison_destroy(pool->prison);
2748         dm_kcopyd_client_destroy(pool->copier);
2749
2750         if (pool->wq)
2751                 destroy_workqueue(pool->wq);
2752
2753         if (pool->next_mapping)
2754                 mempool_free(pool->next_mapping, pool->mapping_pool);
2755         mempool_destroy(pool->mapping_pool);
2756         dm_deferred_set_destroy(pool->shared_read_ds);
2757         dm_deferred_set_destroy(pool->all_io_ds);
2758         kfree(pool);
2759 }
2760
2761 static struct kmem_cache *_new_mapping_cache;
2762
2763 static struct pool *pool_create(struct mapped_device *pool_md,
2764                                 struct block_device *metadata_dev,
2765                                 unsigned long block_size,
2766                                 int read_only, char **error)
2767 {
2768         int r;
2769         void *err_p;
2770         struct pool *pool;
2771         struct dm_pool_metadata *pmd;
2772         bool format_device = read_only ? false : true;
2773
2774         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2775         if (IS_ERR(pmd)) {
2776                 *error = "Error creating metadata object";
2777                 return (struct pool *)pmd;
2778         }
2779
2780         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2781         if (!pool) {
2782                 *error = "Error allocating memory for pool";
2783                 err_p = ERR_PTR(-ENOMEM);
2784                 goto bad_pool;
2785         }
2786
2787         pool->pmd = pmd;
2788         pool->sectors_per_block = block_size;
2789         if (block_size & (block_size - 1))
2790                 pool->sectors_per_block_shift = -1;
2791         else
2792                 pool->sectors_per_block_shift = __ffs(block_size);
2793         pool->low_water_blocks = 0;
2794         pool_features_init(&pool->pf);
2795         pool->prison = dm_bio_prison_create();
2796         if (!pool->prison) {
2797                 *error = "Error creating pool's bio prison";
2798                 err_p = ERR_PTR(-ENOMEM);
2799                 goto bad_prison;
2800         }
2801
2802         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2803         if (IS_ERR(pool->copier)) {
2804                 r = PTR_ERR(pool->copier);
2805                 *error = "Error creating pool's kcopyd client";
2806                 err_p = ERR_PTR(r);
2807                 goto bad_kcopyd_client;
2808         }
2809
2810         /*
2811          * Create singlethreaded workqueue that will service all devices
2812          * that use this metadata.
2813          */
2814         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2815         if (!pool->wq) {
2816                 *error = "Error creating pool's workqueue";
2817                 err_p = ERR_PTR(-ENOMEM);
2818                 goto bad_wq;
2819         }
2820
2821         throttle_init(&pool->throttle);
2822         INIT_WORK(&pool->worker, do_worker);
2823         INIT_DELAYED_WORK(&pool->waker, do_waker);
2824         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2825         spin_lock_init(&pool->lock);
2826         bio_list_init(&pool->deferred_flush_bios);
2827         INIT_LIST_HEAD(&pool->prepared_mappings);
2828         INIT_LIST_HEAD(&pool->prepared_discards);
2829         INIT_LIST_HEAD(&pool->active_thins);
2830         pool->low_water_triggered = false;
2831         pool->suspended = true;
2832         pool->out_of_data_space = false;
2833
2834         pool->shared_read_ds = dm_deferred_set_create();
2835         if (!pool->shared_read_ds) {
2836                 *error = "Error creating pool's shared read deferred set";
2837                 err_p = ERR_PTR(-ENOMEM);
2838                 goto bad_shared_read_ds;
2839         }
2840
2841         pool->all_io_ds = dm_deferred_set_create();
2842         if (!pool->all_io_ds) {
2843                 *error = "Error creating pool's all io deferred set";
2844                 err_p = ERR_PTR(-ENOMEM);
2845                 goto bad_all_io_ds;
2846         }
2847
2848         pool->next_mapping = NULL;
2849         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2850                                                       _new_mapping_cache);
2851         if (!pool->mapping_pool) {
2852                 *error = "Error creating pool's mapping mempool";
2853                 err_p = ERR_PTR(-ENOMEM);
2854                 goto bad_mapping_pool;
2855         }
2856
2857         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2858         if (!pool->cell_sort_array) {
2859                 *error = "Error allocating cell sort array";
2860                 err_p = ERR_PTR(-ENOMEM);
2861                 goto bad_sort_array;
2862         }
2863
2864         pool->ref_count = 1;
2865         pool->last_commit_jiffies = jiffies;
2866         pool->pool_md = pool_md;
2867         pool->md_dev = metadata_dev;
2868         __pool_table_insert(pool);
2869
2870         return pool;
2871
2872 bad_sort_array:
2873         mempool_destroy(pool->mapping_pool);
2874 bad_mapping_pool:
2875         dm_deferred_set_destroy(pool->all_io_ds);
2876 bad_all_io_ds:
2877         dm_deferred_set_destroy(pool->shared_read_ds);
2878 bad_shared_read_ds:
2879         destroy_workqueue(pool->wq);
2880 bad_wq:
2881         dm_kcopyd_client_destroy(pool->copier);
2882 bad_kcopyd_client:
2883         dm_bio_prison_destroy(pool->prison);
2884 bad_prison:
2885         kfree(pool);
2886 bad_pool:
2887         if (dm_pool_metadata_close(pmd))
2888                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2889
2890         return err_p;
2891 }
2892
2893 static void __pool_inc(struct pool *pool)
2894 {
2895         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2896         pool->ref_count++;
2897 }
2898
2899 static void __pool_dec(struct pool *pool)
2900 {
2901         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2902         BUG_ON(!pool->ref_count);
2903         if (!--pool->ref_count)
2904                 __pool_destroy(pool);
2905 }
2906
2907 static struct pool *__pool_find(struct mapped_device *pool_md,
2908                                 struct block_device *metadata_dev,
2909                                 unsigned long block_size, int read_only,
2910                                 char **error, int *created)
2911 {
2912         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2913
2914         if (pool) {
2915                 if (pool->pool_md != pool_md) {
2916                         *error = "metadata device already in use by a pool";
2917                         return ERR_PTR(-EBUSY);
2918                 }
2919                 __pool_inc(pool);
2920
2921         } else {
2922                 pool = __pool_table_lookup(pool_md);
2923                 if (pool) {
2924                         if (pool->md_dev != metadata_dev) {
2925                                 *error = "different pool cannot replace a pool";
2926                                 return ERR_PTR(-EINVAL);
2927                         }
2928                         __pool_inc(pool);
2929
2930                 } else {
2931                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2932                         *created = 1;
2933                 }
2934         }
2935
2936         return pool;
2937 }
2938
2939 /*----------------------------------------------------------------
2940  * Pool target methods
2941  *--------------------------------------------------------------*/
2942 static void pool_dtr(struct dm_target *ti)
2943 {
2944         struct pool_c *pt = ti->private;
2945
2946         mutex_lock(&dm_thin_pool_table.mutex);
2947
2948         unbind_control_target(pt->pool, ti);
2949         __pool_dec(pt->pool);
2950         dm_put_device(ti, pt->metadata_dev);
2951         dm_put_device(ti, pt->data_dev);
2952         kfree(pt);
2953
2954         mutex_unlock(&dm_thin_pool_table.mutex);
2955 }
2956
2957 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2958                                struct dm_target *ti)
2959 {
2960         int r;
2961         unsigned argc;
2962         const char *arg_name;
2963
2964         static struct dm_arg _args[] = {
2965                 {0, 4, "Invalid number of pool feature arguments"},
2966         };
2967
2968         /*
2969          * No feature arguments supplied.
2970          */
2971         if (!as->argc)
2972                 return 0;
2973
2974         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2975         if (r)
2976                 return -EINVAL;
2977
2978         while (argc && !r) {
2979                 arg_name = dm_shift_arg(as);
2980                 argc--;
2981
2982                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2983                         pf->zero_new_blocks = false;
2984
2985                 else if (!strcasecmp(arg_name, "ignore_discard"))
2986                         pf->discard_enabled = false;
2987
2988                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2989                         pf->discard_passdown = false;
2990
2991                 else if (!strcasecmp(arg_name, "read_only"))
2992                         pf->mode = PM_READ_ONLY;
2993
2994                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2995                         pf->error_if_no_space = true;
2996
2997                 else {
2998                         ti->error = "Unrecognised pool feature requested";
2999                         r = -EINVAL;
3000                         break;
3001                 }
3002         }
3003
3004         return r;
3005 }
3006
3007 static void metadata_low_callback(void *context)
3008 {
3009         struct pool *pool = context;
3010
3011         DMWARN("%s: reached low water mark for metadata device: sending event.",
3012                dm_device_name(pool->pool_md));
3013
3014         dm_table_event(pool->ti->table);
3015 }
3016
3017 static sector_t get_dev_size(struct block_device *bdev)
3018 {
3019         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3020 }
3021
3022 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3023 {
3024         sector_t metadata_dev_size = get_dev_size(bdev);
3025         char buffer[BDEVNAME_SIZE];
3026
3027         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3028                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3029                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3030 }
3031
3032 static sector_t get_metadata_dev_size(struct block_device *bdev)
3033 {
3034         sector_t metadata_dev_size = get_dev_size(bdev);
3035
3036         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3037                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3038
3039         return metadata_dev_size;
3040 }
3041
3042 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3043 {
3044         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3045
3046         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3047
3048         return metadata_dev_size;
3049 }
3050
3051 /*
3052  * When a metadata threshold is crossed a dm event is triggered, and
3053  * userland should respond by growing the metadata device.  We could let
3054  * userland set the threshold, like we do with the data threshold, but I'm
3055  * not sure they know enough to do this well.
3056  */
3057 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3058 {
3059         /*
3060          * 4M is ample for all ops with the possible exception of thin
3061          * device deletion which is harmless if it fails (just retry the
3062          * delete after you've grown the device).
3063          */
3064         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3065         return min((dm_block_t)1024ULL /* 4M */, quarter);
3066 }
3067
3068 /*
3069  * thin-pool <metadata dev> <data dev>
3070  *           <data block size (sectors)>
3071  *           <low water mark (blocks)>
3072  *           [<#feature args> [<arg>]*]
3073  *
3074  * Optional feature arguments are:
3075  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3076  *           ignore_discard: disable discard
3077  *           no_discard_passdown: don't pass discards down to the data device
3078  *           read_only: Don't allow any changes to be made to the pool metadata.
3079  *           error_if_no_space: error IOs, instead of queueing, if no space.
3080  */
3081 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3082 {
3083         int r, pool_created = 0;
3084         struct pool_c *pt;
3085         struct pool *pool;
3086         struct pool_features pf;
3087         struct dm_arg_set as;
3088         struct dm_dev *data_dev;
3089         unsigned long block_size;
3090         dm_block_t low_water_blocks;
3091         struct dm_dev *metadata_dev;
3092         fmode_t metadata_mode;
3093
3094         /*
3095          * FIXME Remove validation from scope of lock.
3096          */
3097         mutex_lock(&dm_thin_pool_table.mutex);
3098
3099         if (argc < 4) {
3100                 ti->error = "Invalid argument count";
3101                 r = -EINVAL;
3102                 goto out_unlock;
3103         }
3104
3105         as.argc = argc;
3106         as.argv = argv;
3107
3108         /*
3109          * Set default pool features.
3110          */
3111         pool_features_init(&pf);
3112
3113         dm_consume_args(&as, 4);
3114         r = parse_pool_features(&as, &pf, ti);
3115         if (r)
3116                 goto out_unlock;
3117
3118         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3119         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3120         if (r) {
3121                 ti->error = "Error opening metadata block device";
3122                 goto out_unlock;
3123         }
3124         warn_if_metadata_device_too_big(metadata_dev->bdev);
3125
3126         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3127         if (r) {
3128                 ti->error = "Error getting data device";
3129                 goto out_metadata;
3130         }
3131
3132         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3133             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3134             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3135             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3136                 ti->error = "Invalid block size";
3137                 r = -EINVAL;
3138                 goto out;
3139         }
3140
3141         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3142                 ti->error = "Invalid low water mark";
3143                 r = -EINVAL;
3144                 goto out;
3145         }
3146
3147         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3148         if (!pt) {
3149                 r = -ENOMEM;
3150                 goto out;
3151         }
3152
3153         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3154                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3155         if (IS_ERR(pool)) {
3156                 r = PTR_ERR(pool);
3157                 goto out_free_pt;
3158         }
3159
3160         /*
3161          * 'pool_created' reflects whether this is the first table load.
3162          * Top level discard support is not allowed to be changed after
3163          * initial load.  This would require a pool reload to trigger thin
3164          * device changes.
3165          */
3166         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3167                 ti->error = "Discard support cannot be disabled once enabled";
3168                 r = -EINVAL;
3169                 goto out_flags_changed;
3170         }
3171
3172         pt->pool = pool;
3173         pt->ti = ti;
3174         pt->metadata_dev = metadata_dev;
3175         pt->data_dev = data_dev;
3176         pt->low_water_blocks = low_water_blocks;
3177         pt->adjusted_pf = pt->requested_pf = pf;
3178         ti->num_flush_bios = 1;
3179
3180         /*
3181          * Only need to enable discards if the pool should pass
3182          * them down to the data device.  The thin device's discard
3183          * processing will cause mappings to be removed from the btree.
3184          */
3185         ti->discard_zeroes_data_unsupported = true;
3186         if (pf.discard_enabled && pf.discard_passdown) {
3187                 ti->num_discard_bios = 1;
3188
3189                 /*
3190                  * Setting 'discards_supported' circumvents the normal
3191                  * stacking of discard limits (this keeps the pool and
3192                  * thin devices' discard limits consistent).
3193                  */
3194                 ti->discards_supported = true;
3195         }
3196         ti->private = pt;
3197
3198         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3199                                                 calc_metadata_threshold(pt),
3200                                                 metadata_low_callback,
3201                                                 pool);
3202         if (r)
3203                 goto out_flags_changed;
3204
3205         pt->callbacks.congested_fn = pool_is_congested;
3206         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3207
3208         mutex_unlock(&dm_thin_pool_table.mutex);
3209
3210         return 0;
3211
3212 out_flags_changed:
3213         __pool_dec(pool);
3214 out_free_pt:
3215         kfree(pt);
3216 out:
3217         dm_put_device(ti, data_dev);
3218 out_metadata:
3219         dm_put_device(ti, metadata_dev);
3220 out_unlock:
3221         mutex_unlock(&dm_thin_pool_table.mutex);
3222
3223         return r;
3224 }
3225
3226 static int pool_map(struct dm_target *ti, struct bio *bio)
3227 {
3228         int r;
3229         struct pool_c *pt = ti->private;
3230         struct pool *pool = pt->pool;
3231         unsigned long flags;
3232
3233         /*
3234          * As this is a singleton target, ti->begin is always zero.
3235          */
3236         spin_lock_irqsave(&pool->lock, flags);
3237         bio->bi_bdev = pt->data_dev->bdev;
3238         r = DM_MAPIO_REMAPPED;
3239         spin_unlock_irqrestore(&pool->lock, flags);
3240
3241         return r;
3242 }
3243
3244 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3245 {
3246         int r;
3247         struct pool_c *pt = ti->private;
3248         struct pool *pool = pt->pool;
3249         sector_t data_size = ti->len;
3250         dm_block_t sb_data_size;
3251
3252         *need_commit = false;
3253
3254         (void) sector_div(data_size, pool->sectors_per_block);
3255
3256         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3257         if (r) {
3258                 DMERR("%s: failed to retrieve data device size",
3259                       dm_device_name(pool->pool_md));
3260                 return r;
3261         }
3262
3263         if (data_size < sb_data_size) {
3264                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3265                       dm_device_name(pool->pool_md),
3266                       (unsigned long long)data_size, sb_data_size);
3267                 return -EINVAL;
3268
3269         } else if (data_size > sb_data_size) {
3270                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3271                         DMERR("%s: unable to grow the data device until repaired.",
3272                               dm_device_name(pool->pool_md));
3273                         return 0;
3274                 }
3275
3276                 if (sb_data_size)
3277                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3278                                dm_device_name(pool->pool_md),
3279                                sb_data_size, (unsigned long long)data_size);
3280                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3281                 if (r) {
3282                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3283                         return r;
3284                 }
3285
3286                 *need_commit = true;
3287         }
3288
3289         return 0;
3290 }
3291
3292 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3293 {
3294         int r;
3295         struct pool_c *pt = ti->private;
3296         struct pool *pool = pt->pool;
3297         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3298
3299         *need_commit = false;
3300
3301         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3302
3303         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3304         if (r) {
3305                 DMERR("%s: failed to retrieve metadata device size",
3306                       dm_device_name(pool->pool_md));
3307                 return r;
3308         }
3309
3310         if (metadata_dev_size < sb_metadata_dev_size) {
3311                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3312                       dm_device_name(pool->pool_md),
3313                       metadata_dev_size, sb_metadata_dev_size);
3314                 return -EINVAL;
3315
3316         } else if (metadata_dev_size > sb_metadata_dev_size) {
3317                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3318                         DMERR("%s: unable to grow the metadata device until repaired.",
3319                               dm_device_name(pool->pool_md));
3320                         return 0;
3321                 }
3322
3323                 warn_if_metadata_device_too_big(pool->md_dev);
3324                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3325                        dm_device_name(pool->pool_md),
3326                        sb_metadata_dev_size, metadata_dev_size);
3327                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3328                 if (r) {
3329                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3330                         return r;
3331                 }
3332
3333                 *need_commit = true;
3334         }
3335
3336         return 0;
3337 }
3338
3339 /*
3340  * Retrieves the number of blocks of the data device from
3341  * the superblock and compares it to the actual device size,
3342  * thus resizing the data device in case it has grown.
3343  *
3344  * This both copes with opening preallocated data devices in the ctr
3345  * being followed by a resume
3346  * -and-
3347  * calling the resume method individually after userspace has
3348  * grown the data device in reaction to a table event.
3349  */
3350 static int pool_preresume(struct dm_target *ti)
3351 {
3352         int r;
3353         bool need_commit1, need_commit2;
3354         struct pool_c *pt = ti->private;
3355         struct pool *pool = pt->pool;
3356
3357         /*
3358          * Take control of the pool object.
3359          */
3360         r = bind_control_target(pool, ti);
3361         if (r)
3362                 return r;
3363
3364         r = maybe_resize_data_dev(ti, &need_commit1);
3365         if (r)
3366                 return r;
3367
3368         r = maybe_resize_metadata_dev(ti, &need_commit2);
3369         if (r)
3370                 return r;
3371
3372         if (need_commit1 || need_commit2)
3373                 (void) commit(pool);
3374
3375         return 0;
3376 }
3377
3378 static void pool_suspend_active_thins(struct pool *pool)
3379 {
3380         struct thin_c *tc;
3381
3382         /* Suspend all active thin devices */
3383         tc = get_first_thin(pool);
3384         while (tc) {
3385                 dm_internal_suspend_noflush(tc->thin_md);
3386                 tc = get_next_thin(pool, tc);
3387         }
3388 }
3389
3390 static void pool_resume_active_thins(struct pool *pool)
3391 {
3392         struct thin_c *tc;
3393
3394         /* Resume all active thin devices */
3395         tc = get_first_thin(pool);
3396         while (tc) {
3397                 dm_internal_resume(tc->thin_md);
3398                 tc = get_next_thin(pool, tc);
3399         }
3400 }
3401
3402 static void pool_resume(struct dm_target *ti)
3403 {
3404         struct pool_c *pt = ti->private;
3405         struct pool *pool = pt->pool;
3406         unsigned long flags;
3407
3408         /*
3409          * Must requeue active_thins' bios and then resume
3410          * active_thins _before_ clearing 'suspend' flag.
3411          */
3412         requeue_bios(pool);
3413         pool_resume_active_thins(pool);
3414
3415         spin_lock_irqsave(&pool->lock, flags);
3416         pool->low_water_triggered = false;
3417         pool->suspended = false;
3418         spin_unlock_irqrestore(&pool->lock, flags);
3419
3420         do_waker(&pool->waker.work);
3421 }
3422
3423 static void pool_presuspend(struct dm_target *ti)
3424 {
3425         struct pool_c *pt = ti->private;
3426         struct pool *pool = pt->pool;
3427         unsigned long flags;
3428
3429         spin_lock_irqsave(&pool->lock, flags);
3430         pool->suspended = true;
3431         spin_unlock_irqrestore(&pool->lock, flags);
3432
3433         pool_suspend_active_thins(pool);
3434 }
3435
3436 static void pool_presuspend_undo(struct dm_target *ti)
3437 {
3438         struct pool_c *pt = ti->private;
3439         struct pool *pool = pt->pool;
3440         unsigned long flags;
3441
3442         pool_resume_active_thins(pool);
3443
3444         spin_lock_irqsave(&pool->lock, flags);
3445         pool->suspended = false;
3446         spin_unlock_irqrestore(&pool->lock, flags);
3447 }
3448
3449 static void pool_postsuspend(struct dm_target *ti)
3450 {
3451         struct pool_c *pt = ti->private;
3452         struct pool *pool = pt->pool;
3453
3454         cancel_delayed_work_sync(&pool->waker);
3455         cancel_delayed_work_sync(&pool->no_space_timeout);
3456         flush_workqueue(pool->wq);
3457         (void) commit(pool);
3458 }
3459
3460 static int check_arg_count(unsigned argc, unsigned args_required)
3461 {
3462         if (argc != args_required) {
3463                 DMWARN("Message received with %u arguments instead of %u.",
3464                        argc, args_required);
3465                 return -EINVAL;
3466         }
3467
3468         return 0;
3469 }
3470
3471 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3472 {
3473         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3474             *dev_id <= MAX_DEV_ID)
3475                 return 0;
3476
3477         if (warning)
3478                 DMWARN("Message received with invalid device id: %s", arg);
3479
3480         return -EINVAL;
3481 }
3482
3483 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3484 {
3485         dm_thin_id dev_id;
3486         int r;
3487
3488         r = check_arg_count(argc, 2);
3489         if (r)
3490                 return r;
3491
3492         r = read_dev_id(argv[1], &dev_id, 1);
3493         if (r)
3494                 return r;
3495
3496         r = dm_pool_create_thin(pool->pmd, dev_id);
3497         if (r) {
3498                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3499                        argv[1]);
3500                 return r;
3501         }
3502
3503         return 0;
3504 }
3505
3506 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3507 {
3508         dm_thin_id dev_id;
3509         dm_thin_id origin_dev_id;
3510         int r;
3511
3512         r = check_arg_count(argc, 3);
3513         if (r)
3514                 return r;
3515
3516         r = read_dev_id(argv[1], &dev_id, 1);
3517         if (r)
3518                 return r;
3519
3520         r = read_dev_id(argv[2], &origin_dev_id, 1);
3521         if (r)
3522                 return r;
3523
3524         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3525         if (r) {
3526                 DMWARN("Creation of new snapshot %s of device %s failed.",
3527                        argv[1], argv[2]);
3528                 return r;
3529         }
3530
3531         return 0;
3532 }
3533
3534 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3535 {
3536         dm_thin_id dev_id;
3537         int r;
3538
3539         r = check_arg_count(argc, 2);
3540         if (r)
3541                 return r;
3542
3543         r = read_dev_id(argv[1], &dev_id, 1);
3544         if (r)
3545                 return r;
3546
3547         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3548         if (r)
3549                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3550
3551         return r;
3552 }
3553
3554 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3555 {
3556         dm_thin_id old_id, new_id;
3557         int r;
3558
3559         r = check_arg_count(argc, 3);
3560         if (r)
3561                 return r;
3562
3563         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3564                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3565                 return -EINVAL;
3566         }
3567
3568         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3569                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3570                 return -EINVAL;
3571         }
3572
3573         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3574         if (r) {
3575                 DMWARN("Failed to change transaction id from %s to %s.",
3576                        argv[1], argv[2]);
3577                 return r;
3578         }
3579
3580         return 0;
3581 }
3582
3583 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3584 {
3585         int r;
3586
3587         r = check_arg_count(argc, 1);
3588         if (r)
3589                 return r;
3590
3591         (void) commit(pool);
3592
3593         r = dm_pool_reserve_metadata_snap(pool->pmd);
3594         if (r)
3595                 DMWARN("reserve_metadata_snap message failed.");
3596
3597         return r;
3598 }
3599
3600 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3601 {
3602         int r;
3603
3604         r = check_arg_count(argc, 1);
3605         if (r)
3606                 return r;
3607
3608         r = dm_pool_release_metadata_snap(pool->pmd);
3609         if (r)
3610                 DMWARN("release_metadata_snap message failed.");
3611
3612         return r;
3613 }
3614
3615 /*
3616  * Messages supported:
3617  *   create_thin        <dev_id>
3618  *   create_snap        <dev_id> <origin_id>
3619  *   delete             <dev_id>
3620  *   set_transaction_id <current_trans_id> <new_trans_id>
3621  *   reserve_metadata_snap
3622  *   release_metadata_snap
3623  */
3624 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3625 {
3626         int r = -EINVAL;
3627         struct pool_c *pt = ti->private;
3628         struct pool *pool = pt->pool;
3629
3630         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3631                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3632                       dm_device_name(pool->pool_md));
3633                 return -EOPNOTSUPP;
3634         }
3635
3636         if (!strcasecmp(argv[0], "create_thin"))
3637                 r = process_create_thin_mesg(argc, argv, pool);
3638
3639         else if (!strcasecmp(argv[0], "create_snap"))
3640                 r = process_create_snap_mesg(argc, argv, pool);
3641
3642         else if (!strcasecmp(argv[0], "delete"))
3643                 r = process_delete_mesg(argc, argv, pool);
3644
3645         else if (!strcasecmp(argv[0], "set_transaction_id"))
3646                 r = process_set_transaction_id_mesg(argc, argv, pool);
3647
3648         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3649                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3650
3651         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3652                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3653
3654         else
3655                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3656
3657         if (!r)
3658                 (void) commit(pool);
3659
3660         return r;
3661 }
3662
3663 static void emit_flags(struct pool_features *pf, char *result,
3664                        unsigned sz, unsigned maxlen)
3665 {
3666         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3667                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3668                 pf->error_if_no_space;
3669         DMEMIT("%u ", count);
3670
3671         if (!pf->zero_new_blocks)
3672                 DMEMIT("skip_block_zeroing ");
3673
3674         if (!pf->discard_enabled)
3675                 DMEMIT("ignore_discard ");
3676
3677         if (!pf->discard_passdown)
3678                 DMEMIT("no_discard_passdown ");
3679
3680         if (pf->mode == PM_READ_ONLY)
3681                 DMEMIT("read_only ");
3682
3683         if (pf->error_if_no_space)
3684                 DMEMIT("error_if_no_space ");
3685 }
3686
3687 /*
3688  * Status line is:
3689  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3690  *    <used data sectors>/<total data sectors> <held metadata root>
3691  *    <pool mode> <discard config> <no space config> <needs_check>
3692  */
3693 static void pool_status(struct dm_target *ti, status_type_t type,
3694                         unsigned status_flags, char *result, unsigned maxlen)
3695 {
3696         int r;
3697         unsigned sz = 0;
3698         uint64_t transaction_id;
3699         dm_block_t nr_free_blocks_data;
3700         dm_block_t nr_free_blocks_metadata;
3701         dm_block_t nr_blocks_data;
3702         dm_block_t nr_blocks_metadata;
3703         dm_block_t held_root;
3704         char buf[BDEVNAME_SIZE];
3705         char buf2[BDEVNAME_SIZE];
3706         struct pool_c *pt = ti->private;
3707         struct pool *pool = pt->pool;
3708
3709         switch (type) {
3710         case STATUSTYPE_INFO:
3711                 if (get_pool_mode(pool) == PM_FAIL) {
3712                         DMEMIT("Fail");
3713                         break;
3714                 }
3715
3716                 /* Commit to ensure statistics aren't out-of-date */
3717                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3718                         (void) commit(pool);
3719
3720                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3721                 if (r) {
3722                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3723                               dm_device_name(pool->pool_md), r);
3724                         goto err;
3725                 }
3726
3727                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3728                 if (r) {
3729                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3730                               dm_device_name(pool->pool_md), r);
3731                         goto err;
3732                 }
3733
3734                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3735                 if (r) {
3736                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3737                               dm_device_name(pool->pool_md), r);
3738                         goto err;
3739                 }
3740
3741                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3742                 if (r) {
3743                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3744                               dm_device_name(pool->pool_md), r);
3745                         goto err;
3746                 }
3747
3748                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3749                 if (r) {
3750                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3751                               dm_device_name(pool->pool_md), r);
3752                         goto err;
3753                 }
3754
3755                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3756                 if (r) {
3757                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3758                               dm_device_name(pool->pool_md), r);
3759                         goto err;
3760                 }
3761
3762                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3763                        (unsigned long long)transaction_id,
3764                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3765                        (unsigned long long)nr_blocks_metadata,
3766                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3767                        (unsigned long long)nr_blocks_data);
3768
3769                 if (held_root)
3770                         DMEMIT("%llu ", held_root);
3771                 else
3772                         DMEMIT("- ");
3773
3774                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3775                         DMEMIT("out_of_data_space ");
3776                 else if (pool->pf.mode == PM_READ_ONLY)
3777                         DMEMIT("ro ");
3778                 else
3779                         DMEMIT("rw ");
3780
3781                 if (!pool->pf.discard_enabled)
3782                         DMEMIT("ignore_discard ");
3783                 else if (pool->pf.discard_passdown)
3784                         DMEMIT("discard_passdown ");
3785                 else
3786                         DMEMIT("no_discard_passdown ");
3787
3788                 if (pool->pf.error_if_no_space)
3789                         DMEMIT("error_if_no_space ");
3790                 else
3791                         DMEMIT("queue_if_no_space ");
3792
3793                 if (dm_pool_metadata_needs_check(pool->pmd))
3794                         DMEMIT("needs_check ");
3795                 else
3796                         DMEMIT("- ");
3797
3798                 break;
3799
3800         case STATUSTYPE_TABLE:
3801                 DMEMIT("%s %s %lu %llu ",
3802                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3803                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3804                        (unsigned long)pool->sectors_per_block,
3805                        (unsigned long long)pt->low_water_blocks);
3806                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3807                 break;
3808         }
3809         return;
3810
3811 err:
3812         DMEMIT("Error");
3813 }
3814
3815 static int pool_iterate_devices(struct dm_target *ti,
3816                                 iterate_devices_callout_fn fn, void *data)
3817 {
3818         struct pool_c *pt = ti->private;
3819
3820         return fn(ti, pt->data_dev, 0, ti->len, data);
3821 }
3822
3823 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3824 {
3825         struct pool_c *pt = ti->private;
3826         struct pool *pool = pt->pool;
3827         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3828
3829         /*
3830          * If max_sectors is smaller than pool->sectors_per_block adjust it
3831          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3832          * This is especially beneficial when the pool's data device is a RAID
3833          * device that has a full stripe width that matches pool->sectors_per_block
3834          * -- because even though partial RAID stripe-sized IOs will be issued to a
3835          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3836          *    boundary.. which avoids additional partial RAID stripe writes cascading
3837          */
3838         if (limits->max_sectors < pool->sectors_per_block) {
3839                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3840                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3841                                 limits->max_sectors--;
3842                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3843                 }
3844         }
3845
3846         /*
3847          * If the system-determined stacked limits are compatible with the
3848          * pool's blocksize (io_opt is a factor) do not override them.
3849          */
3850         if (io_opt_sectors < pool->sectors_per_block ||
3851             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3852                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3853                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3854                 else
3855                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3856                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3857         }
3858
3859         /*
3860          * pt->adjusted_pf is a staging area for the actual features to use.
3861          * They get transferred to the live pool in bind_control_target()
3862          * called from pool_preresume().
3863          */
3864         if (!pt->adjusted_pf.discard_enabled) {
3865                 /*
3866                  * Must explicitly disallow stacking discard limits otherwise the
3867                  * block layer will stack them if pool's data device has support.
3868                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3869                  * user to see that, so make sure to set all discard limits to 0.
3870                  */
3871                 limits->discard_granularity = 0;
3872                 return;
3873         }
3874
3875         disable_passdown_if_not_supported(pt);
3876
3877         /*
3878          * The pool uses the same discard limits as the underlying data
3879          * device.  DM core has already set this up.
3880          */
3881 }
3882
3883 static struct target_type pool_target = {
3884         .name = "thin-pool",
3885         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3886                     DM_TARGET_IMMUTABLE,
3887         .version = {1, 19, 0},
3888         .module = THIS_MODULE,
3889         .ctr = pool_ctr,
3890         .dtr = pool_dtr,
3891         .map = pool_map,
3892         .presuspend = pool_presuspend,
3893         .presuspend_undo = pool_presuspend_undo,
3894         .postsuspend = pool_postsuspend,
3895         .preresume = pool_preresume,
3896         .resume = pool_resume,
3897         .message = pool_message,
3898         .status = pool_status,
3899         .iterate_devices = pool_iterate_devices,
3900         .io_hints = pool_io_hints,
3901 };
3902
3903 /*----------------------------------------------------------------
3904  * Thin target methods
3905  *--------------------------------------------------------------*/
3906 static void thin_get(struct thin_c *tc)
3907 {
3908         atomic_inc(&tc->refcount);
3909 }
3910
3911 static void thin_put(struct thin_c *tc)
3912 {
3913         if (atomic_dec_and_test(&tc->refcount))
3914                 complete(&tc->can_destroy);
3915 }
3916
3917 static void thin_dtr(struct dm_target *ti)
3918 {
3919         struct thin_c *tc = ti->private;
3920         unsigned long flags;
3921
3922         spin_lock_irqsave(&tc->pool->lock, flags);
3923         list_del_rcu(&tc->list);
3924         spin_unlock_irqrestore(&tc->pool->lock, flags);
3925         synchronize_rcu();
3926
3927         thin_put(tc);
3928         wait_for_completion(&tc->can_destroy);
3929
3930         mutex_lock(&dm_thin_pool_table.mutex);
3931
3932         __pool_dec(tc->pool);
3933         dm_pool_close_thin_device(tc->td);
3934         dm_put_device(ti, tc->pool_dev);
3935         if (tc->origin_dev)
3936                 dm_put_device(ti, tc->origin_dev);
3937         kfree(tc);
3938
3939         mutex_unlock(&dm_thin_pool_table.mutex);
3940 }
3941
3942 /*
3943  * Thin target parameters:
3944  *
3945  * <pool_dev> <dev_id> [origin_dev]
3946  *
3947  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3948  * dev_id: the internal device identifier
3949  * origin_dev: a device external to the pool that should act as the origin
3950  *
3951  * If the pool device has discards disabled, they get disabled for the thin
3952  * device as well.
3953  */
3954 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3955 {
3956         int r;
3957         struct thin_c *tc;
3958         struct dm_dev *pool_dev, *origin_dev;
3959         struct mapped_device *pool_md;
3960         unsigned long flags;
3961
3962         mutex_lock(&dm_thin_pool_table.mutex);
3963
3964         if (argc != 2 && argc != 3) {
3965                 ti->error = "Invalid argument count";
3966                 r = -EINVAL;
3967                 goto out_unlock;
3968         }
3969
3970         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3971         if (!tc) {
3972                 ti->error = "Out of memory";
3973                 r = -ENOMEM;
3974                 goto out_unlock;
3975         }
3976         tc->thin_md = dm_table_get_md(ti->table);
3977         spin_lock_init(&tc->lock);
3978         INIT_LIST_HEAD(&tc->deferred_cells);
3979         bio_list_init(&tc->deferred_bio_list);
3980         bio_list_init(&tc->retry_on_resume_list);
3981         tc->sort_bio_list = RB_ROOT;
3982
3983         if (argc == 3) {
3984                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3985                 if (r) {
3986                         ti->error = "Error opening origin device";
3987                         goto bad_origin_dev;
3988                 }
3989                 tc->origin_dev = origin_dev;
3990         }
3991
3992         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3993         if (r) {
3994                 ti->error = "Error opening pool device";
3995                 goto bad_pool_dev;
3996         }
3997         tc->pool_dev = pool_dev;
3998
3999         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4000                 ti->error = "Invalid device id";
4001                 r = -EINVAL;
4002                 goto bad_common;
4003         }
4004
4005         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4006         if (!pool_md) {
4007                 ti->error = "Couldn't get pool mapped device";
4008                 r = -EINVAL;
4009                 goto bad_common;
4010         }
4011
4012         tc->pool = __pool_table_lookup(pool_md);
4013         if (!tc->pool) {
4014                 ti->error = "Couldn't find pool object";
4015                 r = -EINVAL;
4016                 goto bad_pool_lookup;
4017         }
4018         __pool_inc(tc->pool);
4019
4020         if (get_pool_mode(tc->pool) == PM_FAIL) {
4021                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4022                 r = -EINVAL;
4023                 goto bad_pool;
4024         }
4025
4026         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4027         if (r) {
4028                 ti->error = "Couldn't open thin internal device";
4029                 goto bad_pool;
4030         }
4031
4032         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4033         if (r)
4034                 goto bad;
4035
4036         ti->num_flush_bios = 1;
4037         ti->flush_supported = true;
4038         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4039
4040         /* In case the pool supports discards, pass them on. */
4041         ti->discard_zeroes_data_unsupported = true;
4042         if (tc->pool->pf.discard_enabled) {
4043                 ti->discards_supported = true;
4044                 ti->num_discard_bios = 1;
4045                 ti->split_discard_bios = false;
4046         }
4047
4048         mutex_unlock(&dm_thin_pool_table.mutex);
4049
4050         spin_lock_irqsave(&tc->pool->lock, flags);
4051         if (tc->pool->suspended) {
4052                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4053                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4054                 ti->error = "Unable to activate thin device while pool is suspended";
4055                 r = -EINVAL;
4056                 goto bad;
4057         }
4058         atomic_set(&tc->refcount, 1);
4059         init_completion(&tc->can_destroy);
4060         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4061         spin_unlock_irqrestore(&tc->pool->lock, flags);
4062         /*
4063          * This synchronize_rcu() call is needed here otherwise we risk a
4064          * wake_worker() call finding no bios to process (because the newly
4065          * added tc isn't yet visible).  So this reduces latency since we
4066          * aren't then dependent on the periodic commit to wake_worker().
4067          */
4068         synchronize_rcu();
4069
4070         dm_put(pool_md);
4071
4072         return 0;
4073
4074 bad:
4075         dm_pool_close_thin_device(tc->td);
4076 bad_pool:
4077         __pool_dec(tc->pool);
4078 bad_pool_lookup:
4079         dm_put(pool_md);
4080 bad_common:
4081         dm_put_device(ti, tc->pool_dev);
4082 bad_pool_dev:
4083         if (tc->origin_dev)
4084                 dm_put_device(ti, tc->origin_dev);
4085 bad_origin_dev:
4086         kfree(tc);
4087 out_unlock:
4088         mutex_unlock(&dm_thin_pool_table.mutex);
4089
4090         return r;
4091 }
4092
4093 static int thin_map(struct dm_target *ti, struct bio *bio)
4094 {
4095         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4096
4097         return thin_bio_map(ti, bio);
4098 }
4099
4100 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4101 {
4102         unsigned long flags;
4103         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4104         struct list_head work;
4105         struct dm_thin_new_mapping *m, *tmp;
4106         struct pool *pool = h->tc->pool;
4107
4108         if (h->shared_read_entry) {
4109                 INIT_LIST_HEAD(&work);
4110                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4111
4112                 spin_lock_irqsave(&pool->lock, flags);
4113                 list_for_each_entry_safe(m, tmp, &work, list) {
4114                         list_del(&m->list);
4115                         __complete_mapping_preparation(m);
4116                 }
4117                 spin_unlock_irqrestore(&pool->lock, flags);
4118         }
4119
4120         if (h->all_io_entry) {
4121                 INIT_LIST_HEAD(&work);
4122                 dm_deferred_entry_dec(h->all_io_entry, &work);
4123                 if (!list_empty(&work)) {
4124                         spin_lock_irqsave(&pool->lock, flags);
4125                         list_for_each_entry_safe(m, tmp, &work, list)
4126                                 list_add_tail(&m->list, &pool->prepared_discards);
4127                         spin_unlock_irqrestore(&pool->lock, flags);
4128                         wake_worker(pool);
4129                 }
4130         }
4131
4132         if (h->cell)
4133                 cell_defer_no_holder(h->tc, h->cell);
4134
4135         return 0;
4136 }
4137
4138 static void thin_presuspend(struct dm_target *ti)
4139 {
4140         struct thin_c *tc = ti->private;
4141
4142         if (dm_noflush_suspending(ti))
4143                 noflush_work(tc, do_noflush_start);
4144 }
4145
4146 static void thin_postsuspend(struct dm_target *ti)
4147 {
4148         struct thin_c *tc = ti->private;
4149
4150         /*
4151          * The dm_noflush_suspending flag has been cleared by now, so
4152          * unfortunately we must always run this.
4153          */
4154         noflush_work(tc, do_noflush_stop);
4155 }
4156
4157 static int thin_preresume(struct dm_target *ti)
4158 {
4159         struct thin_c *tc = ti->private;
4160
4161         if (tc->origin_dev)
4162                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4163
4164         return 0;
4165 }
4166
4167 /*
4168  * <nr mapped sectors> <highest mapped sector>
4169  */
4170 static void thin_status(struct dm_target *ti, status_type_t type,
4171                         unsigned status_flags, char *result, unsigned maxlen)
4172 {
4173         int r;
4174         ssize_t sz = 0;
4175         dm_block_t mapped, highest;
4176         char buf[BDEVNAME_SIZE];
4177         struct thin_c *tc = ti->private;
4178
4179         if (get_pool_mode(tc->pool) == PM_FAIL) {
4180                 DMEMIT("Fail");
4181                 return;
4182         }
4183
4184         if (!tc->td)
4185                 DMEMIT("-");
4186         else {
4187                 switch (type) {
4188                 case STATUSTYPE_INFO:
4189                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4190                         if (r) {
4191                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4192                                 goto err;
4193                         }
4194
4195                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4196                         if (r < 0) {
4197                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4198                                 goto err;
4199                         }
4200
4201                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4202                         if (r)
4203                                 DMEMIT("%llu", ((highest + 1) *
4204                                                 tc->pool->sectors_per_block) - 1);
4205                         else
4206                                 DMEMIT("-");
4207                         break;
4208
4209                 case STATUSTYPE_TABLE:
4210                         DMEMIT("%s %lu",
4211                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4212                                (unsigned long) tc->dev_id);
4213                         if (tc->origin_dev)
4214                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4215                         break;
4216                 }
4217         }
4218
4219         return;
4220
4221 err:
4222         DMEMIT("Error");
4223 }
4224
4225 static int thin_iterate_devices(struct dm_target *ti,
4226                                 iterate_devices_callout_fn fn, void *data)
4227 {
4228         sector_t blocks;
4229         struct thin_c *tc = ti->private;
4230         struct pool *pool = tc->pool;
4231
4232         /*
4233          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4234          * we follow a more convoluted path through to the pool's target.
4235          */
4236         if (!pool->ti)
4237                 return 0;       /* nothing is bound */
4238
4239         blocks = pool->ti->len;
4240         (void) sector_div(blocks, pool->sectors_per_block);
4241         if (blocks)
4242                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4243
4244         return 0;
4245 }
4246
4247 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4248 {
4249         struct thin_c *tc = ti->private;
4250         struct pool *pool = tc->pool;
4251
4252         if (!pool->pf.discard_enabled)
4253                 return;
4254
4255         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4256         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4257 }
4258
4259 static struct target_type thin_target = {
4260         .name = "thin",
4261         .version = {1, 19, 0},
4262         .module = THIS_MODULE,
4263         .ctr = thin_ctr,
4264         .dtr = thin_dtr,
4265         .map = thin_map,
4266         .end_io = thin_endio,
4267         .preresume = thin_preresume,
4268         .presuspend = thin_presuspend,
4269         .postsuspend = thin_postsuspend,
4270         .status = thin_status,
4271         .iterate_devices = thin_iterate_devices,
4272         .io_hints = thin_io_hints,
4273 };
4274
4275 /*----------------------------------------------------------------*/
4276
4277 static int __init dm_thin_init(void)
4278 {
4279         int r;
4280
4281         pool_table_init();
4282
4283         r = dm_register_target(&thin_target);
4284         if (r)
4285                 return r;
4286
4287         r = dm_register_target(&pool_target);
4288         if (r)
4289                 goto bad_pool_target;
4290
4291         r = -ENOMEM;
4292
4293         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4294         if (!_new_mapping_cache)
4295                 goto bad_new_mapping_cache;
4296
4297         return 0;
4298
4299 bad_new_mapping_cache:
4300         dm_unregister_target(&pool_target);
4301 bad_pool_target:
4302         dm_unregister_target(&thin_target);
4303
4304         return r;
4305 }
4306
4307 static void dm_thin_exit(void)
4308 {
4309         dm_unregister_target(&thin_target);
4310         dm_unregister_target(&pool_target);
4311
4312         kmem_cache_destroy(_new_mapping_cache);
4313 }
4314
4315 module_init(dm_thin_init);
4316 module_exit(dm_thin_exit);
4317
4318 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4319 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4320
4321 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4322 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4323 MODULE_LICENSE("GPL");