]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130                       gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                         r1_bio->sectors,
390                         !test_bit(R1BIO_Degraded, &r1_bio->state),
391                         test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else {
658                         if ((sectors > best_good_sectors) && (best_disk >= 0))
659                                 best_disk = -1;
660                         best_good_sectors = sectors;
661                 }
662
663                 if (best_disk >= 0)
664                         /* At least two disks to choose from so failfast is OK */
665                         set_bit(R1BIO_FailFast, &r1_bio->state);
666
667                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668                 has_nonrot_disk |= nonrot;
669                 pending = atomic_read(&rdev->nr_pending);
670                 dist = abs(this_sector - conf->mirrors[disk].head_position);
671                 if (choose_first) {
672                         best_disk = disk;
673                         break;
674                 }
675                 /* Don't change to another disk for sequential reads */
676                 if (conf->mirrors[disk].next_seq_sect == this_sector
677                     || dist == 0) {
678                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679                         struct raid1_info *mirror = &conf->mirrors[disk];
680
681                         best_disk = disk;
682                         /*
683                          * If buffered sequential IO size exceeds optimal
684                          * iosize, check if there is idle disk. If yes, choose
685                          * the idle disk. read_balance could already choose an
686                          * idle disk before noticing it's a sequential IO in
687                          * this disk. This doesn't matter because this disk
688                          * will idle, next time it will be utilized after the
689                          * first disk has IO size exceeds optimal iosize. In
690                          * this way, iosize of the first disk will be optimal
691                          * iosize at least. iosize of the second disk might be
692                          * small, but not a big deal since when the second disk
693                          * starts IO, the first disk is likely still busy.
694                          */
695                         if (nonrot && opt_iosize > 0 &&
696                             mirror->seq_start != MaxSector &&
697                             mirror->next_seq_sect > opt_iosize &&
698                             mirror->next_seq_sect - opt_iosize >=
699                             mirror->seq_start) {
700                                 choose_next_idle = 1;
701                                 continue;
702                         }
703                         break;
704                 }
705
706                 if (choose_next_idle)
707                         continue;
708
709                 if (min_pending > pending) {
710                         min_pending = pending;
711                         best_pending_disk = disk;
712                 }
713
714                 if (dist < best_dist) {
715                         best_dist = dist;
716                         best_dist_disk = disk;
717                 }
718         }
719
720         /*
721          * If all disks are rotational, choose the closest disk. If any disk is
722          * non-rotational, choose the disk with less pending request even the
723          * disk is rotational, which might/might not be optimal for raids with
724          * mixed ratation/non-rotational disks depending on workload.
725          */
726         if (best_disk == -1) {
727                 if (has_nonrot_disk || min_pending == 0)
728                         best_disk = best_pending_disk;
729                 else
730                         best_disk = best_dist_disk;
731         }
732
733         if (best_disk >= 0) {
734                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735                 if (!rdev)
736                         goto retry;
737                 atomic_inc(&rdev->nr_pending);
738                 sectors = best_good_sectors;
739
740                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741                         conf->mirrors[best_disk].seq_start = this_sector;
742
743                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744         }
745         rcu_read_unlock();
746         *max_sectors = sectors;
747
748         return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753         struct r1conf *conf = mddev->private;
754         int i, ret = 0;
755
756         if ((bits & (1 << WB_async_congested)) &&
757             conf->pending_count >= max_queued_requests)
758                 return 1;
759
760         rcu_read_lock();
761         for (i = 0; i < conf->raid_disks * 2; i++) {
762                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764                         struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766                         BUG_ON(!q);
767
768                         /* Note the '|| 1' - when read_balance prefers
769                          * non-congested targets, it can be removed
770                          */
771                         if ((bits & (1 << WB_async_congested)) || 1)
772                                 ret |= bdi_congested(q->backing_dev_info, bits);
773                         else
774                                 ret &= bdi_congested(q->backing_dev_info, bits);
775                 }
776         }
777         rcu_read_unlock();
778         return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784         bitmap_unplug(conf->mddev->bitmap);
785         wake_up(&conf->wait_barrier);
786
787         while (bio) { /* submit pending writes */
788                 struct bio *next = bio->bi_next;
789                 struct md_rdev *rdev = (void*)bio->bi_bdev;
790                 bio->bi_next = NULL;
791                 bio->bi_bdev = rdev->bdev;
792                 if (test_bit(Faulty, &rdev->flags)) {
793                         bio_io_error(bio);
794                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796                         /* Just ignore it */
797                         bio_endio(bio);
798                 else
799                         generic_make_request(bio);
800                 bio = next;
801         }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806         /* Any writes that have been queued but are awaiting
807          * bitmap updates get flushed here.
808          */
809         spin_lock_irq(&conf->device_lock);
810
811         if (conf->pending_bio_list.head) {
812                 struct bio *bio;
813                 bio = bio_list_get(&conf->pending_bio_list);
814                 conf->pending_count = 0;
815                 spin_unlock_irq(&conf->device_lock);
816                 flush_bio_list(conf, bio);
817         } else
818                 spin_unlock_irq(&conf->device_lock);
819 }
820
821 /* Barriers....
822  * Sometimes we need to suspend IO while we do something else,
823  * either some resync/recovery, or reconfigure the array.
824  * To do this we raise a 'barrier'.
825  * The 'barrier' is a counter that can be raised multiple times
826  * to count how many activities are happening which preclude
827  * normal IO.
828  * We can only raise the barrier if there is no pending IO.
829  * i.e. if nr_pending == 0.
830  * We choose only to raise the barrier if no-one is waiting for the
831  * barrier to go down.  This means that as soon as an IO request
832  * is ready, no other operations which require a barrier will start
833  * until the IO request has had a chance.
834  *
835  * So: regular IO calls 'wait_barrier'.  When that returns there
836  *    is no backgroup IO happening,  It must arrange to call
837  *    allow_barrier when it has finished its IO.
838  * backgroup IO calls must call raise_barrier.  Once that returns
839  *    there is no normal IO happeing.  It must arrange to call
840  *    lower_barrier when the particular background IO completes.
841  */
842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
843 {
844         int idx = sector_to_idx(sector_nr);
845
846         spin_lock_irq(&conf->resync_lock);
847
848         /* Wait until no block IO is waiting */
849         wait_event_lock_irq(conf->wait_barrier,
850                             !atomic_read(&conf->nr_waiting[idx]),
851                             conf->resync_lock);
852
853         /* block any new IO from starting */
854         atomic_inc(&conf->barrier[idx]);
855         /*
856          * In raise_barrier() we firstly increase conf->barrier[idx] then
857          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858          * increase conf->nr_pending[idx] then check conf->barrier[idx].
859          * A memory barrier here to make sure conf->nr_pending[idx] won't
860          * be fetched before conf->barrier[idx] is increased. Otherwise
861          * there will be a race between raise_barrier() and _wait_barrier().
862          */
863         smp_mb__after_atomic();
864
865         /* For these conditions we must wait:
866          * A: while the array is in frozen state
867          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868          *    existing in corresponding I/O barrier bucket.
869          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870          *    max resync count which allowed on current I/O barrier bucket.
871          */
872         wait_event_lock_irq(conf->wait_barrier,
873                             !conf->array_frozen &&
874                              !atomic_read(&conf->nr_pending[idx]) &&
875                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
876                             conf->resync_lock);
877
878         atomic_inc(&conf->nr_sync_pending);
879         spin_unlock_irq(&conf->resync_lock);
880 }
881
882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
883 {
884         int idx = sector_to_idx(sector_nr);
885
886         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
887
888         atomic_dec(&conf->barrier[idx]);
889         atomic_dec(&conf->nr_sync_pending);
890         wake_up(&conf->wait_barrier);
891 }
892
893 static void _wait_barrier(struct r1conf *conf, int idx)
894 {
895         /*
896          * We need to increase conf->nr_pending[idx] very early here,
897          * then raise_barrier() can be blocked when it waits for
898          * conf->nr_pending[idx] to be 0. Then we can avoid holding
899          * conf->resync_lock when there is no barrier raised in same
900          * barrier unit bucket. Also if the array is frozen, I/O
901          * should be blocked until array is unfrozen.
902          */
903         atomic_inc(&conf->nr_pending[idx]);
904         /*
905          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906          * check conf->barrier[idx]. In raise_barrier() we firstly increase
907          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908          * barrier is necessary here to make sure conf->barrier[idx] won't be
909          * fetched before conf->nr_pending[idx] is increased. Otherwise there
910          * will be a race between _wait_barrier() and raise_barrier().
911          */
912         smp_mb__after_atomic();
913
914         /*
915          * Don't worry about checking two atomic_t variables at same time
916          * here. If during we check conf->barrier[idx], the array is
917          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918          * 0, it is safe to return and make the I/O continue. Because the
919          * array is frozen, all I/O returned here will eventually complete
920          * or be queued, no race will happen. See code comment in
921          * frozen_array().
922          */
923         if (!READ_ONCE(conf->array_frozen) &&
924             !atomic_read(&conf->barrier[idx]))
925                 return;
926
927         /*
928          * After holding conf->resync_lock, conf->nr_pending[idx]
929          * should be decreased before waiting for barrier to drop.
930          * Otherwise, we may encounter a race condition because
931          * raise_barrer() might be waiting for conf->nr_pending[idx]
932          * to be 0 at same time.
933          */
934         spin_lock_irq(&conf->resync_lock);
935         atomic_inc(&conf->nr_waiting[idx]);
936         atomic_dec(&conf->nr_pending[idx]);
937         /*
938          * In case freeze_array() is waiting for
939          * get_unqueued_pending() == extra
940          */
941         wake_up(&conf->wait_barrier);
942         /* Wait for the barrier in same barrier unit bucket to drop. */
943         wait_event_lock_irq(conf->wait_barrier,
944                             !conf->array_frozen &&
945                              !atomic_read(&conf->barrier[idx]),
946                             conf->resync_lock);
947         atomic_inc(&conf->nr_pending[idx]);
948         atomic_dec(&conf->nr_waiting[idx]);
949         spin_unlock_irq(&conf->resync_lock);
950 }
951
952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
953 {
954         int idx = sector_to_idx(sector_nr);
955
956         /*
957          * Very similar to _wait_barrier(). The difference is, for read
958          * I/O we don't need wait for sync I/O, but if the whole array
959          * is frozen, the read I/O still has to wait until the array is
960          * unfrozen. Since there is no ordering requirement with
961          * conf->barrier[idx] here, memory barrier is unnecessary as well.
962          */
963         atomic_inc(&conf->nr_pending[idx]);
964
965         if (!READ_ONCE(conf->array_frozen))
966                 return;
967
968         spin_lock_irq(&conf->resync_lock);
969         atomic_inc(&conf->nr_waiting[idx]);
970         atomic_dec(&conf->nr_pending[idx]);
971         /*
972          * In case freeze_array() is waiting for
973          * get_unqueued_pending() == extra
974          */
975         wake_up(&conf->wait_barrier);
976         /* Wait for array to be unfrozen */
977         wait_event_lock_irq(conf->wait_barrier,
978                             !conf->array_frozen,
979                             conf->resync_lock);
980         atomic_inc(&conf->nr_pending[idx]);
981         atomic_dec(&conf->nr_waiting[idx]);
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
986 {
987         int idx = sector_to_idx(sector_nr);
988
989         _wait_barrier(conf, idx);
990 }
991
992 static void wait_all_barriers(struct r1conf *conf)
993 {
994         int idx;
995
996         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
997                 _wait_barrier(conf, idx);
998 }
999
1000 static void _allow_barrier(struct r1conf *conf, int idx)
1001 {
1002         atomic_dec(&conf->nr_pending[idx]);
1003         wake_up(&conf->wait_barrier);
1004 }
1005
1006 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007 {
1008         int idx = sector_to_idx(sector_nr);
1009
1010         _allow_barrier(conf, idx);
1011 }
1012
1013 static void allow_all_barriers(struct r1conf *conf)
1014 {
1015         int idx;
1016
1017         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018                 _allow_barrier(conf, idx);
1019 }
1020
1021 /* conf->resync_lock should be held */
1022 static int get_unqueued_pending(struct r1conf *conf)
1023 {
1024         int idx, ret;
1025
1026         ret = atomic_read(&conf->nr_sync_pending);
1027         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028                 ret += atomic_read(&conf->nr_pending[idx]) -
1029                         atomic_read(&conf->nr_queued[idx]);
1030
1031         return ret;
1032 }
1033
1034 static void freeze_array(struct r1conf *conf, int extra)
1035 {
1036         /* Stop sync I/O and normal I/O and wait for everything to
1037          * go quiet.
1038          * This is called in two situations:
1039          * 1) management command handlers (reshape, remove disk, quiesce).
1040          * 2) one normal I/O request failed.
1041
1042          * After array_frozen is set to 1, new sync IO will be blocked at
1043          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044          * or wait_read_barrier(). The flying I/Os will either complete or be
1045          * queued. When everything goes quite, there are only queued I/Os left.
1046
1047          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048          * barrier bucket index which this I/O request hits. When all sync and
1049          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051          * in handle_read_error(), we may call freeze_array() before trying to
1052          * fix the read error. In this case, the error read I/O is not queued,
1053          * so get_unqueued_pending() == 1.
1054          *
1055          * Therefore before this function returns, we need to wait until
1056          * get_unqueued_pendings(conf) gets equal to extra. For
1057          * normal I/O context, extra is 1, in rested situations extra is 0.
1058          */
1059         spin_lock_irq(&conf->resync_lock);
1060         conf->array_frozen = 1;
1061         raid1_log(conf->mddev, "wait freeze");
1062         wait_event_lock_irq_cmd(
1063                 conf->wait_barrier,
1064                 get_unqueued_pending(conf) == extra,
1065                 conf->resync_lock,
1066                 flush_pending_writes(conf));
1067         spin_unlock_irq(&conf->resync_lock);
1068 }
1069 static void unfreeze_array(struct r1conf *conf)
1070 {
1071         /* reverse the effect of the freeze */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->array_frozen = 0;
1074         spin_unlock_irq(&conf->resync_lock);
1075         wake_up(&conf->wait_barrier);
1076 }
1077
1078 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1079                                            struct bio *bio)
1080 {
1081         int size = bio->bi_iter.bi_size;
1082         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083         int i = 0;
1084         struct bio *behind_bio = NULL;
1085
1086         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087         if (!behind_bio)
1088                 return;
1089
1090         /* discard op, we don't support writezero/writesame yet */
1091         if (!bio_has_data(bio)) {
1092                 behind_bio->bi_iter.bi_size = size;
1093                 goto skip_copy;
1094         }
1095
1096         while (i < vcnt && size) {
1097                 struct page *page;
1098                 int len = min_t(int, PAGE_SIZE, size);
1099
1100                 page = alloc_page(GFP_NOIO);
1101                 if (unlikely(!page))
1102                         goto free_pages;
1103
1104                 bio_add_page(behind_bio, page, len, 0);
1105
1106                 size -= len;
1107                 i++;
1108         }
1109
1110         bio_copy_data(behind_bio, bio);
1111 skip_copy:
1112         r1_bio->behind_master_bio = behind_bio;;
1113         set_bit(R1BIO_BehindIO, &r1_bio->state);
1114
1115         return;
1116
1117 free_pages:
1118         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119                  bio->bi_iter.bi_size);
1120         bio_free_pages(behind_bio);
1121         bio_put(behind_bio);
1122 }
1123
1124 struct raid1_plug_cb {
1125         struct blk_plug_cb      cb;
1126         struct bio_list         pending;
1127         int                     pending_cnt;
1128 };
1129
1130 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131 {
1132         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133                                                   cb);
1134         struct mddev *mddev = plug->cb.data;
1135         struct r1conf *conf = mddev->private;
1136         struct bio *bio;
1137
1138         if (from_schedule || current->bio_list) {
1139                 spin_lock_irq(&conf->device_lock);
1140                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141                 conf->pending_count += plug->pending_cnt;
1142                 spin_unlock_irq(&conf->device_lock);
1143                 wake_up(&conf->wait_barrier);
1144                 md_wakeup_thread(mddev->thread);
1145                 kfree(plug);
1146                 return;
1147         }
1148
1149         /* we aren't scheduling, so we can do the write-out directly. */
1150         bio = bio_list_get(&plug->pending);
1151         flush_bio_list(conf, bio);
1152         kfree(plug);
1153 }
1154
1155 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156 {
1157         r1_bio->master_bio = bio;
1158         r1_bio->sectors = bio_sectors(bio);
1159         r1_bio->state = 0;
1160         r1_bio->mddev = mddev;
1161         r1_bio->sector = bio->bi_iter.bi_sector;
1162 }
1163
1164 static inline struct r1bio *
1165 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1166 {
1167         struct r1conf *conf = mddev->private;
1168         struct r1bio *r1_bio;
1169
1170         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1171         /* Ensure no bio records IO_BLOCKED */
1172         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173         init_r1bio(r1_bio, mddev, bio);
1174         return r1_bio;
1175 }
1176
1177 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1178                                int max_read_sectors, struct r1bio *r1_bio)
1179 {
1180         struct r1conf *conf = mddev->private;
1181         struct raid1_info *mirror;
1182         struct bio *read_bio;
1183         struct bitmap *bitmap = mddev->bitmap;
1184         const int op = bio_op(bio);
1185         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1186         int max_sectors;
1187         int rdisk;
1188         bool print_msg = !!r1_bio;
1189         char b[BDEVNAME_SIZE];
1190
1191         /*
1192          * If r1_bio is set, we are blocking the raid1d thread
1193          * so there is a tiny risk of deadlock.  So ask for
1194          * emergency memory if needed.
1195          */
1196         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1197
1198         if (print_msg) {
1199                 /* Need to get the block device name carefully */
1200                 struct md_rdev *rdev;
1201                 rcu_read_lock();
1202                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203                 if (rdev)
1204                         bdevname(rdev->bdev, b);
1205                 else
1206                         strcpy(b, "???");
1207                 rcu_read_unlock();
1208         }
1209
1210         /*
1211          * Still need barrier for READ in case that whole
1212          * array is frozen.
1213          */
1214         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215
1216         if (!r1_bio)
1217                 r1_bio = alloc_r1bio(mddev, bio);
1218         else
1219                 init_r1bio(r1_bio, mddev, bio);
1220         r1_bio->sectors = max_read_sectors;
1221
1222         /*
1223          * make_request() can abort the operation when read-ahead is being
1224          * used and no empty request is available.
1225          */
1226         rdisk = read_balance(conf, r1_bio, &max_sectors);
1227
1228         if (rdisk < 0) {
1229                 /* couldn't find anywhere to read from */
1230                 if (print_msg) {
1231                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232                                             mdname(mddev),
1233                                             b,
1234                                             (unsigned long long)r1_bio->sector);
1235                 }
1236                 raid_end_bio_io(r1_bio);
1237                 return;
1238         }
1239         mirror = conf->mirrors + rdisk;
1240
1241         if (print_msg)
1242                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243                                     mdname(mddev),
1244                                     (unsigned long long)r1_bio->sector,
1245                                     bdevname(mirror->rdev->bdev, b));
1246
1247         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248             bitmap) {
1249                 /*
1250                  * Reading from a write-mostly device must take care not to
1251                  * over-take any writes that are 'behind'
1252                  */
1253                 raid1_log(mddev, "wait behind writes");
1254                 wait_event(bitmap->behind_wait,
1255                            atomic_read(&bitmap->behind_writes) == 0);
1256         }
1257
1258         if (max_sectors < bio_sectors(bio)) {
1259                 struct bio *split = bio_split(bio, max_sectors,
1260                                               gfp, conf->bio_split);
1261                 bio_chain(split, bio);
1262                 generic_make_request(bio);
1263                 bio = split;
1264                 r1_bio->master_bio = bio;
1265                 r1_bio->sectors = max_sectors;
1266         }
1267
1268         r1_bio->read_disk = rdisk;
1269
1270         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1271
1272         r1_bio->bios[rdisk] = read_bio;
1273
1274         read_bio->bi_iter.bi_sector = r1_bio->sector +
1275                 mirror->rdev->data_offset;
1276         read_bio->bi_bdev = mirror->rdev->bdev;
1277         read_bio->bi_end_io = raid1_end_read_request;
1278         bio_set_op_attrs(read_bio, op, do_sync);
1279         if (test_bit(FailFast, &mirror->rdev->flags) &&
1280             test_bit(R1BIO_FailFast, &r1_bio->state))
1281                 read_bio->bi_opf |= MD_FAILFAST;
1282         read_bio->bi_private = r1_bio;
1283
1284         if (mddev->gendisk)
1285                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1286                                       read_bio, disk_devt(mddev->gendisk),
1287                                       r1_bio->sector);
1288
1289         generic_make_request(read_bio);
1290 }
1291
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293                                 int max_write_sectors)
1294 {
1295         struct r1conf *conf = mddev->private;
1296         struct r1bio *r1_bio;
1297         int i, disks;
1298         struct bitmap *bitmap = mddev->bitmap;
1299         unsigned long flags;
1300         struct md_rdev *blocked_rdev;
1301         struct blk_plug_cb *cb;
1302         struct raid1_plug_cb *plug = NULL;
1303         int first_clone;
1304         int max_sectors;
1305
1306         /*
1307          * Register the new request and wait if the reconstruction
1308          * thread has put up a bar for new requests.
1309          * Continue immediately if no resync is active currently.
1310          */
1311
1312
1313         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315             (mddev_is_clustered(mddev) &&
1316              md_cluster_ops->area_resyncing(mddev, WRITE,
1317                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318
1319                 /*
1320                  * As the suspend_* range is controlled by userspace, we want
1321                  * an interruptible wait.
1322                  */
1323                 DEFINE_WAIT(w);
1324                 for (;;) {
1325                         sigset_t full, old;
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_INTERRUPTIBLE);
1328                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330                             (mddev_is_clustered(mddev) &&
1331                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1332                                      bio->bi_iter.bi_sector,
1333                                      bio_end_sector(bio))))
1334                                 break;
1335                         sigfillset(&full);
1336                         sigprocmask(SIG_BLOCK, &full, &old);
1337                         schedule();
1338                         sigprocmask(SIG_SETMASK, &old, NULL);
1339                 }
1340                 finish_wait(&conf->wait_barrier, &w);
1341         }
1342         wait_barrier(conf, bio->bi_iter.bi_sector);
1343
1344         r1_bio = alloc_r1bio(mddev, bio);
1345         r1_bio->sectors = max_write_sectors;
1346
1347         if (conf->pending_count >= max_queued_requests) {
1348                 md_wakeup_thread(mddev->thread);
1349                 raid1_log(mddev, "wait queued");
1350                 wait_event(conf->wait_barrier,
1351                            conf->pending_count < max_queued_requests);
1352         }
1353         /* first select target devices under rcu_lock and
1354          * inc refcount on their rdev.  Record them by setting
1355          * bios[x] to bio
1356          * If there are known/acknowledged bad blocks on any device on
1357          * which we have seen a write error, we want to avoid writing those
1358          * blocks.
1359          * This potentially requires several writes to write around
1360          * the bad blocks.  Each set of writes gets it's own r1bio
1361          * with a set of bios attached.
1362          */
1363
1364         disks = conf->raid_disks * 2;
1365  retry_write:
1366         blocked_rdev = NULL;
1367         rcu_read_lock();
1368         max_sectors = r1_bio->sectors;
1369         for (i = 0;  i < disks; i++) {
1370                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                         atomic_inc(&rdev->nr_pending);
1373                         blocked_rdev = rdev;
1374                         break;
1375                 }
1376                 r1_bio->bios[i] = NULL;
1377                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378                         if (i < conf->raid_disks)
1379                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1380                         continue;
1381                 }
1382
1383                 atomic_inc(&rdev->nr_pending);
1384                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385                         sector_t first_bad;
1386                         int bad_sectors;
1387                         int is_bad;
1388
1389                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390                                              &first_bad, &bad_sectors);
1391                         if (is_bad < 0) {
1392                                 /* mustn't write here until the bad block is
1393                                  * acknowledged*/
1394                                 set_bit(BlockedBadBlocks, &rdev->flags);
1395                                 blocked_rdev = rdev;
1396                                 break;
1397                         }
1398                         if (is_bad && first_bad <= r1_bio->sector) {
1399                                 /* Cannot write here at all */
1400                                 bad_sectors -= (r1_bio->sector - first_bad);
1401                                 if (bad_sectors < max_sectors)
1402                                         /* mustn't write more than bad_sectors
1403                                          * to other devices yet
1404                                          */
1405                                         max_sectors = bad_sectors;
1406                                 rdev_dec_pending(rdev, mddev);
1407                                 /* We don't set R1BIO_Degraded as that
1408                                  * only applies if the disk is
1409                                  * missing, so it might be re-added,
1410                                  * and we want to know to recover this
1411                                  * chunk.
1412                                  * In this case the device is here,
1413                                  * and the fact that this chunk is not
1414                                  * in-sync is recorded in the bad
1415                                  * block log
1416                                  */
1417                                 continue;
1418                         }
1419                         if (is_bad) {
1420                                 int good_sectors = first_bad - r1_bio->sector;
1421                                 if (good_sectors < max_sectors)
1422                                         max_sectors = good_sectors;
1423                         }
1424                 }
1425                 r1_bio->bios[i] = bio;
1426         }
1427         rcu_read_unlock();
1428
1429         if (unlikely(blocked_rdev)) {
1430                 /* Wait for this device to become unblocked */
1431                 int j;
1432
1433                 for (j = 0; j < i; j++)
1434                         if (r1_bio->bios[j])
1435                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436                 r1_bio->state = 0;
1437                 allow_barrier(conf, bio->bi_iter.bi_sector);
1438                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440                 wait_barrier(conf, bio->bi_iter.bi_sector);
1441                 goto retry_write;
1442         }
1443
1444         if (max_sectors < bio_sectors(bio)) {
1445                 struct bio *split = bio_split(bio, max_sectors,
1446                                               GFP_NOIO, conf->bio_split);
1447                 bio_chain(split, bio);
1448                 generic_make_request(bio);
1449                 bio = split;
1450                 r1_bio->master_bio = bio;
1451                 r1_bio->sectors = max_sectors;
1452         }
1453
1454         atomic_set(&r1_bio->remaining, 1);
1455         atomic_set(&r1_bio->behind_remaining, 0);
1456
1457         first_clone = 1;
1458
1459         for (i = 0; i < disks; i++) {
1460                 struct bio *mbio = NULL;
1461                 if (!r1_bio->bios[i])
1462                         continue;
1463
1464
1465                 if (first_clone) {
1466                         /* do behind I/O ?
1467                          * Not if there are too many, or cannot
1468                          * allocate memory, or a reader on WriteMostly
1469                          * is waiting for behind writes to flush */
1470                         if (bitmap &&
1471                             (atomic_read(&bitmap->behind_writes)
1472                              < mddev->bitmap_info.max_write_behind) &&
1473                             !waitqueue_active(&bitmap->behind_wait)) {
1474                                 alloc_behind_master_bio(r1_bio, bio);
1475                         }
1476
1477                         bitmap_startwrite(bitmap, r1_bio->sector,
1478                                           r1_bio->sectors,
1479                                           test_bit(R1BIO_BehindIO,
1480                                                    &r1_bio->state));
1481                         first_clone = 0;
1482                 }
1483
1484                 if (r1_bio->behind_master_bio)
1485                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486                                               GFP_NOIO, mddev->bio_set);
1487                 else
1488                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489
1490                 if (r1_bio->behind_master_bio) {
1491                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492                                 atomic_inc(&r1_bio->behind_remaining);
1493                 }
1494
1495                 r1_bio->bios[i] = mbio;
1496
1497                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1498                                    conf->mirrors[i].rdev->data_offset);
1499                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1500                 mbio->bi_end_io = raid1_end_write_request;
1501                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504                     conf->raid_disks - mddev->degraded > 1)
1505                         mbio->bi_opf |= MD_FAILFAST;
1506                 mbio->bi_private = r1_bio;
1507
1508                 atomic_inc(&r1_bio->remaining);
1509
1510                 if (mddev->gendisk)
1511                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1512                                               mbio, disk_devt(mddev->gendisk),
1513                                               r1_bio->sector);
1514                 /* flush_pending_writes() needs access to the rdev so...*/
1515                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1516
1517                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518                 if (cb)
1519                         plug = container_of(cb, struct raid1_plug_cb, cb);
1520                 else
1521                         plug = NULL;
1522                 if (plug) {
1523                         bio_list_add(&plug->pending, mbio);
1524                         plug->pending_cnt++;
1525                 } else {
1526                         spin_lock_irqsave(&conf->device_lock, flags);
1527                         bio_list_add(&conf->pending_bio_list, mbio);
1528                         conf->pending_count++;
1529                         spin_unlock_irqrestore(&conf->device_lock, flags);
1530                         md_wakeup_thread(mddev->thread);
1531                 }
1532         }
1533
1534         r1_bio_write_done(r1_bio);
1535
1536         /* In case raid1d snuck in to freeze_array */
1537         wake_up(&conf->wait_barrier);
1538 }
1539
1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542         sector_t sectors;
1543
1544         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545                 md_flush_request(mddev, bio);
1546                 return true;
1547         }
1548
1549         /*
1550          * There is a limit to the maximum size, but
1551          * the read/write handler might find a lower limit
1552          * due to bad blocks.  To avoid multiple splits,
1553          * we pass the maximum number of sectors down
1554          * and let the lower level perform the split.
1555          */
1556         sectors = align_to_barrier_unit_end(
1557                 bio->bi_iter.bi_sector, bio_sectors(bio));
1558
1559         if (bio_data_dir(bio) == READ)
1560                 raid1_read_request(mddev, bio, sectors, NULL);
1561         else {
1562                 if (!md_write_start(mddev,bio))
1563                         return false;
1564                 raid1_write_request(mddev, bio, sectors);
1565         }
1566         return true;
1567 }
1568
1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1570 {
1571         struct r1conf *conf = mddev->private;
1572         int i;
1573
1574         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575                    conf->raid_disks - mddev->degraded);
1576         rcu_read_lock();
1577         for (i = 0; i < conf->raid_disks; i++) {
1578                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579                 seq_printf(seq, "%s",
1580                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581         }
1582         rcu_read_unlock();
1583         seq_printf(seq, "]");
1584 }
1585
1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1587 {
1588         char b[BDEVNAME_SIZE];
1589         struct r1conf *conf = mddev->private;
1590         unsigned long flags;
1591
1592         /*
1593          * If it is not operational, then we have already marked it as dead
1594          * else if it is the last working disks, ignore the error, let the
1595          * next level up know.
1596          * else mark the drive as failed
1597          */
1598         spin_lock_irqsave(&conf->device_lock, flags);
1599         if (test_bit(In_sync, &rdev->flags)
1600             && (conf->raid_disks - mddev->degraded) == 1) {
1601                 /*
1602                  * Don't fail the drive, act as though we were just a
1603                  * normal single drive.
1604                  * However don't try a recovery from this drive as
1605                  * it is very likely to fail.
1606                  */
1607                 conf->recovery_disabled = mddev->recovery_disabled;
1608                 spin_unlock_irqrestore(&conf->device_lock, flags);
1609                 return;
1610         }
1611         set_bit(Blocked, &rdev->flags);
1612         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613                 mddev->degraded++;
1614                 set_bit(Faulty, &rdev->flags);
1615         } else
1616                 set_bit(Faulty, &rdev->flags);
1617         spin_unlock_irqrestore(&conf->device_lock, flags);
1618         /*
1619          * if recovery is running, make sure it aborts.
1620          */
1621         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622         set_mask_bits(&mddev->sb_flags, 0,
1623                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625                 "md/raid1:%s: Operation continuing on %d devices.\n",
1626                 mdname(mddev), bdevname(rdev->bdev, b),
1627                 mdname(mddev), conf->raid_disks - mddev->degraded);
1628 }
1629
1630 static void print_conf(struct r1conf *conf)
1631 {
1632         int i;
1633
1634         pr_debug("RAID1 conf printout:\n");
1635         if (!conf) {
1636                 pr_debug("(!conf)\n");
1637                 return;
1638         }
1639         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640                  conf->raid_disks);
1641
1642         rcu_read_lock();
1643         for (i = 0; i < conf->raid_disks; i++) {
1644                 char b[BDEVNAME_SIZE];
1645                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646                 if (rdev)
1647                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648                                  i, !test_bit(In_sync, &rdev->flags),
1649                                  !test_bit(Faulty, &rdev->flags),
1650                                  bdevname(rdev->bdev,b));
1651         }
1652         rcu_read_unlock();
1653 }
1654
1655 static void close_sync(struct r1conf *conf)
1656 {
1657         wait_all_barriers(conf);
1658         allow_all_barriers(conf);
1659
1660         mempool_destroy(conf->r1buf_pool);
1661         conf->r1buf_pool = NULL;
1662 }
1663
1664 static int raid1_spare_active(struct mddev *mddev)
1665 {
1666         int i;
1667         struct r1conf *conf = mddev->private;
1668         int count = 0;
1669         unsigned long flags;
1670
1671         /*
1672          * Find all failed disks within the RAID1 configuration
1673          * and mark them readable.
1674          * Called under mddev lock, so rcu protection not needed.
1675          * device_lock used to avoid races with raid1_end_read_request
1676          * which expects 'In_sync' flags and ->degraded to be consistent.
1677          */
1678         spin_lock_irqsave(&conf->device_lock, flags);
1679         for (i = 0; i < conf->raid_disks; i++) {
1680                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1681                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682                 if (repl
1683                     && !test_bit(Candidate, &repl->flags)
1684                     && repl->recovery_offset == MaxSector
1685                     && !test_bit(Faulty, &repl->flags)
1686                     && !test_and_set_bit(In_sync, &repl->flags)) {
1687                         /* replacement has just become active */
1688                         if (!rdev ||
1689                             !test_and_clear_bit(In_sync, &rdev->flags))
1690                                 count++;
1691                         if (rdev) {
1692                                 /* Replaced device not technically
1693                                  * faulty, but we need to be sure
1694                                  * it gets removed and never re-added
1695                                  */
1696                                 set_bit(Faulty, &rdev->flags);
1697                                 sysfs_notify_dirent_safe(
1698                                         rdev->sysfs_state);
1699                         }
1700                 }
1701                 if (rdev
1702                     && rdev->recovery_offset == MaxSector
1703                     && !test_bit(Faulty, &rdev->flags)
1704                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1705                         count++;
1706                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1707                 }
1708         }
1709         mddev->degraded -= count;
1710         spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712         print_conf(conf);
1713         return count;
1714 }
1715
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717 {
1718         struct r1conf *conf = mddev->private;
1719         int err = -EEXIST;
1720         int mirror = 0;
1721         struct raid1_info *p;
1722         int first = 0;
1723         int last = conf->raid_disks - 1;
1724
1725         if (mddev->recovery_disabled == conf->recovery_disabled)
1726                 return -EBUSY;
1727
1728         if (md_integrity_add_rdev(rdev, mddev))
1729                 return -ENXIO;
1730
1731         if (rdev->raid_disk >= 0)
1732                 first = last = rdev->raid_disk;
1733
1734         /*
1735          * find the disk ... but prefer rdev->saved_raid_disk
1736          * if possible.
1737          */
1738         if (rdev->saved_raid_disk >= 0 &&
1739             rdev->saved_raid_disk >= first &&
1740             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741                 first = last = rdev->saved_raid_disk;
1742
1743         for (mirror = first; mirror <= last; mirror++) {
1744                 p = conf->mirrors+mirror;
1745                 if (!p->rdev) {
1746
1747                         if (mddev->gendisk)
1748                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1749                                                   rdev->data_offset << 9);
1750
1751                         p->head_position = 0;
1752                         rdev->raid_disk = mirror;
1753                         err = 0;
1754                         /* As all devices are equivalent, we don't need a full recovery
1755                          * if this was recently any drive of the array
1756                          */
1757                         if (rdev->saved_raid_disk < 0)
1758                                 conf->fullsync = 1;
1759                         rcu_assign_pointer(p->rdev, rdev);
1760                         break;
1761                 }
1762                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1763                     p[conf->raid_disks].rdev == NULL) {
1764                         /* Add this device as a replacement */
1765                         clear_bit(In_sync, &rdev->flags);
1766                         set_bit(Replacement, &rdev->flags);
1767                         rdev->raid_disk = mirror;
1768                         err = 0;
1769                         conf->fullsync = 1;
1770                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771                         break;
1772                 }
1773         }
1774         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776         print_conf(conf);
1777         return err;
1778 }
1779
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782         struct r1conf *conf = mddev->private;
1783         int err = 0;
1784         int number = rdev->raid_disk;
1785         struct raid1_info *p = conf->mirrors + number;
1786
1787         if (rdev != p->rdev)
1788                 p = conf->mirrors + conf->raid_disks + number;
1789
1790         print_conf(conf);
1791         if (rdev == p->rdev) {
1792                 if (test_bit(In_sync, &rdev->flags) ||
1793                     atomic_read(&rdev->nr_pending)) {
1794                         err = -EBUSY;
1795                         goto abort;
1796                 }
1797                 /* Only remove non-faulty devices if recovery
1798                  * is not possible.
1799                  */
1800                 if (!test_bit(Faulty, &rdev->flags) &&
1801                     mddev->recovery_disabled != conf->recovery_disabled &&
1802                     mddev->degraded < conf->raid_disks) {
1803                         err = -EBUSY;
1804                         goto abort;
1805                 }
1806                 p->rdev = NULL;
1807                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808                         synchronize_rcu();
1809                         if (atomic_read(&rdev->nr_pending)) {
1810                                 /* lost the race, try later */
1811                                 err = -EBUSY;
1812                                 p->rdev = rdev;
1813                                 goto abort;
1814                         }
1815                 }
1816                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1817                         /* We just removed a device that is being replaced.
1818                          * Move down the replacement.  We drain all IO before
1819                          * doing this to avoid confusion.
1820                          */
1821                         struct md_rdev *repl =
1822                                 conf->mirrors[conf->raid_disks + number].rdev;
1823                         freeze_array(conf, 0);
1824                         clear_bit(Replacement, &repl->flags);
1825                         p->rdev = repl;
1826                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827                         unfreeze_array(conf);
1828                 }
1829
1830                 clear_bit(WantReplacement, &rdev->flags);
1831                 err = md_integrity_register(mddev);
1832         }
1833 abort:
1834
1835         print_conf(conf);
1836         return err;
1837 }
1838
1839 static void end_sync_read(struct bio *bio)
1840 {
1841         struct r1bio *r1_bio = get_resync_r1bio(bio);
1842
1843         update_head_pos(r1_bio->read_disk, r1_bio);
1844
1845         /*
1846          * we have read a block, now it needs to be re-written,
1847          * or re-read if the read failed.
1848          * We don't do much here, just schedule handling by raid1d
1849          */
1850         if (!bio->bi_status)
1851                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1852
1853         if (atomic_dec_and_test(&r1_bio->remaining))
1854                 reschedule_retry(r1_bio);
1855 }
1856
1857 static void end_sync_write(struct bio *bio)
1858 {
1859         int uptodate = !bio->bi_status;
1860         struct r1bio *r1_bio = get_resync_r1bio(bio);
1861         struct mddev *mddev = r1_bio->mddev;
1862         struct r1conf *conf = mddev->private;
1863         sector_t first_bad;
1864         int bad_sectors;
1865         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1866
1867         if (!uptodate) {
1868                 sector_t sync_blocks = 0;
1869                 sector_t s = r1_bio->sector;
1870                 long sectors_to_go = r1_bio->sectors;
1871                 /* make sure these bits doesn't get cleared. */
1872                 do {
1873                         bitmap_end_sync(mddev->bitmap, s,
1874                                         &sync_blocks, 1);
1875                         s += sync_blocks;
1876                         sectors_to_go -= sync_blocks;
1877                 } while (sectors_to_go > 0);
1878                 set_bit(WriteErrorSeen, &rdev->flags);
1879                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880                         set_bit(MD_RECOVERY_NEEDED, &
1881                                 mddev->recovery);
1882                 set_bit(R1BIO_WriteError, &r1_bio->state);
1883         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884                                &first_bad, &bad_sectors) &&
1885                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886                                 r1_bio->sector,
1887                                 r1_bio->sectors,
1888                                 &first_bad, &bad_sectors)
1889                 )
1890                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1891
1892         if (atomic_dec_and_test(&r1_bio->remaining)) {
1893                 int s = r1_bio->sectors;
1894                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895                     test_bit(R1BIO_WriteError, &r1_bio->state))
1896                         reschedule_retry(r1_bio);
1897                 else {
1898                         put_buf(r1_bio);
1899                         md_done_sync(mddev, s, uptodate);
1900                 }
1901         }
1902 }
1903
1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905                             int sectors, struct page *page, int rw)
1906 {
1907         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908                 /* success */
1909                 return 1;
1910         if (rw == WRITE) {
1911                 set_bit(WriteErrorSeen, &rdev->flags);
1912                 if (!test_and_set_bit(WantReplacement,
1913                                       &rdev->flags))
1914                         set_bit(MD_RECOVERY_NEEDED, &
1915                                 rdev->mddev->recovery);
1916         }
1917         /* need to record an error - either for the block or the device */
1918         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919                 md_error(rdev->mddev, rdev);
1920         return 0;
1921 }
1922
1923 static int fix_sync_read_error(struct r1bio *r1_bio)
1924 {
1925         /* Try some synchronous reads of other devices to get
1926          * good data, much like with normal read errors.  Only
1927          * read into the pages we already have so we don't
1928          * need to re-issue the read request.
1929          * We don't need to freeze the array, because being in an
1930          * active sync request, there is no normal IO, and
1931          * no overlapping syncs.
1932          * We don't need to check is_badblock() again as we
1933          * made sure that anything with a bad block in range
1934          * will have bi_end_io clear.
1935          */
1936         struct mddev *mddev = r1_bio->mddev;
1937         struct r1conf *conf = mddev->private;
1938         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939         struct page **pages = get_resync_pages(bio)->pages;
1940         sector_t sect = r1_bio->sector;
1941         int sectors = r1_bio->sectors;
1942         int idx = 0;
1943         struct md_rdev *rdev;
1944
1945         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946         if (test_bit(FailFast, &rdev->flags)) {
1947                 /* Don't try recovering from here - just fail it
1948                  * ... unless it is the last working device of course */
1949                 md_error(mddev, rdev);
1950                 if (test_bit(Faulty, &rdev->flags))
1951                         /* Don't try to read from here, but make sure
1952                          * put_buf does it's thing
1953                          */
1954                         bio->bi_end_io = end_sync_write;
1955         }
1956
1957         while(sectors) {
1958                 int s = sectors;
1959                 int d = r1_bio->read_disk;
1960                 int success = 0;
1961                 int start;
1962
1963                 if (s > (PAGE_SIZE>>9))
1964                         s = PAGE_SIZE >> 9;
1965                 do {
1966                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967                                 /* No rcu protection needed here devices
1968                                  * can only be removed when no resync is
1969                                  * active, and resync is currently active
1970                                  */
1971                                 rdev = conf->mirrors[d].rdev;
1972                                 if (sync_page_io(rdev, sect, s<<9,
1973                                                  pages[idx],
1974                                                  REQ_OP_READ, 0, false)) {
1975                                         success = 1;
1976                                         break;
1977                                 }
1978                         }
1979                         d++;
1980                         if (d == conf->raid_disks * 2)
1981                                 d = 0;
1982                 } while (!success && d != r1_bio->read_disk);
1983
1984                 if (!success) {
1985                         char b[BDEVNAME_SIZE];
1986                         int abort = 0;
1987                         /* Cannot read from anywhere, this block is lost.
1988                          * Record a bad block on each device.  If that doesn't
1989                          * work just disable and interrupt the recovery.
1990                          * Don't fail devices as that won't really help.
1991                          */
1992                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993                                             mdname(mddev),
1994                                             bdevname(bio->bi_bdev, b),
1995                                             (unsigned long long)r1_bio->sector);
1996                         for (d = 0; d < conf->raid_disks * 2; d++) {
1997                                 rdev = conf->mirrors[d].rdev;
1998                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1999                                         continue;
2000                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2001                                         abort = 1;
2002                         }
2003                         if (abort) {
2004                                 conf->recovery_disabled =
2005                                         mddev->recovery_disabled;
2006                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2007                                 md_done_sync(mddev, r1_bio->sectors, 0);
2008                                 put_buf(r1_bio);
2009                                 return 0;
2010                         }
2011                         /* Try next page */
2012                         sectors -= s;
2013                         sect += s;
2014                         idx++;
2015                         continue;
2016                 }
2017
2018                 start = d;
2019                 /* write it back and re-read */
2020                 while (d != r1_bio->read_disk) {
2021                         if (d == 0)
2022                                 d = conf->raid_disks * 2;
2023                         d--;
2024                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2025                                 continue;
2026                         rdev = conf->mirrors[d].rdev;
2027                         if (r1_sync_page_io(rdev, sect, s,
2028                                             pages[idx],
2029                                             WRITE) == 0) {
2030                                 r1_bio->bios[d]->bi_end_io = NULL;
2031                                 rdev_dec_pending(rdev, mddev);
2032                         }
2033                 }
2034                 d = start;
2035                 while (d != r1_bio->read_disk) {
2036                         if (d == 0)
2037                                 d = conf->raid_disks * 2;
2038                         d--;
2039                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040                                 continue;
2041                         rdev = conf->mirrors[d].rdev;
2042                         if (r1_sync_page_io(rdev, sect, s,
2043                                             pages[idx],
2044                                             READ) != 0)
2045                                 atomic_add(s, &rdev->corrected_errors);
2046                 }
2047                 sectors -= s;
2048                 sect += s;
2049                 idx ++;
2050         }
2051         set_bit(R1BIO_Uptodate, &r1_bio->state);
2052         bio->bi_status = 0;
2053         return 1;
2054 }
2055
2056 static void process_checks(struct r1bio *r1_bio)
2057 {
2058         /* We have read all readable devices.  If we haven't
2059          * got the block, then there is no hope left.
2060          * If we have, then we want to do a comparison
2061          * and skip the write if everything is the same.
2062          * If any blocks failed to read, then we need to
2063          * attempt an over-write
2064          */
2065         struct mddev *mddev = r1_bio->mddev;
2066         struct r1conf *conf = mddev->private;
2067         int primary;
2068         int i;
2069         int vcnt;
2070
2071         /* Fix variable parts of all bios */
2072         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2073         for (i = 0; i < conf->raid_disks * 2; i++) {
2074                 blk_status_t status;
2075                 struct bio *b = r1_bio->bios[i];
2076                 struct resync_pages *rp = get_resync_pages(b);
2077                 if (b->bi_end_io != end_sync_read)
2078                         continue;
2079                 /* fixup the bio for reuse, but preserve errno */
2080                 status = b->bi_status;
2081                 bio_reset(b);
2082                 b->bi_status = status;
2083                 b->bi_iter.bi_sector = r1_bio->sector +
2084                         conf->mirrors[i].rdev->data_offset;
2085                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2086                 b->bi_end_io = end_sync_read;
2087                 rp->raid_bio = r1_bio;
2088                 b->bi_private = rp;
2089
2090                 /* initialize bvec table again */
2091                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2092         }
2093         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2094                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2095                     !r1_bio->bios[primary]->bi_status) {
2096                         r1_bio->bios[primary]->bi_end_io = NULL;
2097                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2098                         break;
2099                 }
2100         r1_bio->read_disk = primary;
2101         for (i = 0; i < conf->raid_disks * 2; i++) {
2102                 int j;
2103                 struct bio *pbio = r1_bio->bios[primary];
2104                 struct bio *sbio = r1_bio->bios[i];
2105                 blk_status_t status = sbio->bi_status;
2106                 struct page **ppages = get_resync_pages(pbio)->pages;
2107                 struct page **spages = get_resync_pages(sbio)->pages;
2108                 struct bio_vec *bi;
2109                 int page_len[RESYNC_PAGES] = { 0 };
2110
2111                 if (sbio->bi_end_io != end_sync_read)
2112                         continue;
2113                 /* Now we can 'fixup' the error value */
2114                 sbio->bi_status = 0;
2115
2116                 bio_for_each_segment_all(bi, sbio, j)
2117                         page_len[j] = bi->bv_len;
2118
2119                 if (!status) {
2120                         for (j = vcnt; j-- ; ) {
2121                                 if (memcmp(page_address(ppages[j]),
2122                                            page_address(spages[j]),
2123                                            page_len[j]))
2124                                         break;
2125                         }
2126                 } else
2127                         j = 0;
2128                 if (j >= 0)
2129                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2130                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2131                               && !status)) {
2132                         /* No need to write to this device. */
2133                         sbio->bi_end_io = NULL;
2134                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2135                         continue;
2136                 }
2137
2138                 bio_copy_data(sbio, pbio);
2139         }
2140 }
2141
2142 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2143 {
2144         struct r1conf *conf = mddev->private;
2145         int i;
2146         int disks = conf->raid_disks * 2;
2147         struct bio *wbio;
2148
2149         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2150                 /* ouch - failed to read all of that. */
2151                 if (!fix_sync_read_error(r1_bio))
2152                         return;
2153
2154         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2155                 process_checks(r1_bio);
2156
2157         /*
2158          * schedule writes
2159          */
2160         atomic_set(&r1_bio->remaining, 1);
2161         for (i = 0; i < disks ; i++) {
2162                 wbio = r1_bio->bios[i];
2163                 if (wbio->bi_end_io == NULL ||
2164                     (wbio->bi_end_io == end_sync_read &&
2165                      (i == r1_bio->read_disk ||
2166                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2167                         continue;
2168                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2169                         continue;
2170
2171                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2172                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2173                         wbio->bi_opf |= MD_FAILFAST;
2174
2175                 wbio->bi_end_io = end_sync_write;
2176                 atomic_inc(&r1_bio->remaining);
2177                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2178
2179                 generic_make_request(wbio);
2180         }
2181
2182         if (atomic_dec_and_test(&r1_bio->remaining)) {
2183                 /* if we're here, all write(s) have completed, so clean up */
2184                 int s = r1_bio->sectors;
2185                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2186                     test_bit(R1BIO_WriteError, &r1_bio->state))
2187                         reschedule_retry(r1_bio);
2188                 else {
2189                         put_buf(r1_bio);
2190                         md_done_sync(mddev, s, 1);
2191                 }
2192         }
2193 }
2194
2195 /*
2196  * This is a kernel thread which:
2197  *
2198  *      1.      Retries failed read operations on working mirrors.
2199  *      2.      Updates the raid superblock when problems encounter.
2200  *      3.      Performs writes following reads for array synchronising.
2201  */
2202
2203 static void fix_read_error(struct r1conf *conf, int read_disk,
2204                            sector_t sect, int sectors)
2205 {
2206         struct mddev *mddev = conf->mddev;
2207         while(sectors) {
2208                 int s = sectors;
2209                 int d = read_disk;
2210                 int success = 0;
2211                 int start;
2212                 struct md_rdev *rdev;
2213
2214                 if (s > (PAGE_SIZE>>9))
2215                         s = PAGE_SIZE >> 9;
2216
2217                 do {
2218                         sector_t first_bad;
2219                         int bad_sectors;
2220
2221                         rcu_read_lock();
2222                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2223                         if (rdev &&
2224                             (test_bit(In_sync, &rdev->flags) ||
2225                              (!test_bit(Faulty, &rdev->flags) &&
2226                               rdev->recovery_offset >= sect + s)) &&
2227                             is_badblock(rdev, sect, s,
2228                                         &first_bad, &bad_sectors) == 0) {
2229                                 atomic_inc(&rdev->nr_pending);
2230                                 rcu_read_unlock();
2231                                 if (sync_page_io(rdev, sect, s<<9,
2232                                          conf->tmppage, REQ_OP_READ, 0, false))
2233                                         success = 1;
2234                                 rdev_dec_pending(rdev, mddev);
2235                                 if (success)
2236                                         break;
2237                         } else
2238                                 rcu_read_unlock();
2239                         d++;
2240                         if (d == conf->raid_disks * 2)
2241                                 d = 0;
2242                 } while (!success && d != read_disk);
2243
2244                 if (!success) {
2245                         /* Cannot read from anywhere - mark it bad */
2246                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2247                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2248                                 md_error(mddev, rdev);
2249                         break;
2250                 }
2251                 /* write it back and re-read */
2252                 start = d;
2253                 while (d != read_disk) {
2254                         if (d==0)
2255                                 d = conf->raid_disks * 2;
2256                         d--;
2257                         rcu_read_lock();
2258                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2259                         if (rdev &&
2260                             !test_bit(Faulty, &rdev->flags)) {
2261                                 atomic_inc(&rdev->nr_pending);
2262                                 rcu_read_unlock();
2263                                 r1_sync_page_io(rdev, sect, s,
2264                                                 conf->tmppage, WRITE);
2265                                 rdev_dec_pending(rdev, mddev);
2266                         } else
2267                                 rcu_read_unlock();
2268                 }
2269                 d = start;
2270                 while (d != read_disk) {
2271                         char b[BDEVNAME_SIZE];
2272                         if (d==0)
2273                                 d = conf->raid_disks * 2;
2274                         d--;
2275                         rcu_read_lock();
2276                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2277                         if (rdev &&
2278                             !test_bit(Faulty, &rdev->flags)) {
2279                                 atomic_inc(&rdev->nr_pending);
2280                                 rcu_read_unlock();
2281                                 if (r1_sync_page_io(rdev, sect, s,
2282                                                     conf->tmppage, READ)) {
2283                                         atomic_add(s, &rdev->corrected_errors);
2284                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2285                                                 mdname(mddev), s,
2286                                                 (unsigned long long)(sect +
2287                                                                      rdev->data_offset),
2288                                                 bdevname(rdev->bdev, b));
2289                                 }
2290                                 rdev_dec_pending(rdev, mddev);
2291                         } else
2292                                 rcu_read_unlock();
2293                 }
2294                 sectors -= s;
2295                 sect += s;
2296         }
2297 }
2298
2299 static int narrow_write_error(struct r1bio *r1_bio, int i)
2300 {
2301         struct mddev *mddev = r1_bio->mddev;
2302         struct r1conf *conf = mddev->private;
2303         struct md_rdev *rdev = conf->mirrors[i].rdev;
2304
2305         /* bio has the data to be written to device 'i' where
2306          * we just recently had a write error.
2307          * We repeatedly clone the bio and trim down to one block,
2308          * then try the write.  Where the write fails we record
2309          * a bad block.
2310          * It is conceivable that the bio doesn't exactly align with
2311          * blocks.  We must handle this somehow.
2312          *
2313          * We currently own a reference on the rdev.
2314          */
2315
2316         int block_sectors;
2317         sector_t sector;
2318         int sectors;
2319         int sect_to_write = r1_bio->sectors;
2320         int ok = 1;
2321
2322         if (rdev->badblocks.shift < 0)
2323                 return 0;
2324
2325         block_sectors = roundup(1 << rdev->badblocks.shift,
2326                                 bdev_logical_block_size(rdev->bdev) >> 9);
2327         sector = r1_bio->sector;
2328         sectors = ((sector + block_sectors)
2329                    & ~(sector_t)(block_sectors - 1))
2330                 - sector;
2331
2332         while (sect_to_write) {
2333                 struct bio *wbio;
2334                 if (sectors > sect_to_write)
2335                         sectors = sect_to_write;
2336                 /* Write at 'sector' for 'sectors'*/
2337
2338                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2339                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2340                                               GFP_NOIO,
2341                                               mddev->bio_set);
2342                 } else {
2343                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2344                                               mddev->bio_set);
2345                 }
2346
2347                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2348                 wbio->bi_iter.bi_sector = r1_bio->sector;
2349                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2350
2351                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2352                 wbio->bi_iter.bi_sector += rdev->data_offset;
2353                 wbio->bi_bdev = rdev->bdev;
2354
2355                 if (submit_bio_wait(wbio) < 0)
2356                         /* failure! */
2357                         ok = rdev_set_badblocks(rdev, sector,
2358                                                 sectors, 0)
2359                                 && ok;
2360
2361                 bio_put(wbio);
2362                 sect_to_write -= sectors;
2363                 sector += sectors;
2364                 sectors = block_sectors;
2365         }
2366         return ok;
2367 }
2368
2369 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2370 {
2371         int m;
2372         int s = r1_bio->sectors;
2373         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2374                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2375                 struct bio *bio = r1_bio->bios[m];
2376                 if (bio->bi_end_io == NULL)
2377                         continue;
2378                 if (!bio->bi_status &&
2379                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2380                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2381                 }
2382                 if (bio->bi_status &&
2383                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2384                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2385                                 md_error(conf->mddev, rdev);
2386                 }
2387         }
2388         put_buf(r1_bio);
2389         md_done_sync(conf->mddev, s, 1);
2390 }
2391
2392 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394         int m, idx;
2395         bool fail = false;
2396
2397         for (m = 0; m < conf->raid_disks * 2 ; m++)
2398                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2399                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2400                         rdev_clear_badblocks(rdev,
2401                                              r1_bio->sector,
2402                                              r1_bio->sectors, 0);
2403                         rdev_dec_pending(rdev, conf->mddev);
2404                 } else if (r1_bio->bios[m] != NULL) {
2405                         /* This drive got a write error.  We need to
2406                          * narrow down and record precise write
2407                          * errors.
2408                          */
2409                         fail = true;
2410                         if (!narrow_write_error(r1_bio, m)) {
2411                                 md_error(conf->mddev,
2412                                          conf->mirrors[m].rdev);
2413                                 /* an I/O failed, we can't clear the bitmap */
2414                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2415                         }
2416                         rdev_dec_pending(conf->mirrors[m].rdev,
2417                                          conf->mddev);
2418                 }
2419         if (fail) {
2420                 spin_lock_irq(&conf->device_lock);
2421                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2422                 idx = sector_to_idx(r1_bio->sector);
2423                 atomic_inc(&conf->nr_queued[idx]);
2424                 spin_unlock_irq(&conf->device_lock);
2425                 /*
2426                  * In case freeze_array() is waiting for condition
2427                  * get_unqueued_pending() == extra to be true.
2428                  */
2429                 wake_up(&conf->wait_barrier);
2430                 md_wakeup_thread(conf->mddev->thread);
2431         } else {
2432                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2433                         close_write(r1_bio);
2434                 raid_end_bio_io(r1_bio);
2435         }
2436 }
2437
2438 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2439 {
2440         struct mddev *mddev = conf->mddev;
2441         struct bio *bio;
2442         struct md_rdev *rdev;
2443         dev_t bio_dev;
2444         sector_t bio_sector;
2445
2446         clear_bit(R1BIO_ReadError, &r1_bio->state);
2447         /* we got a read error. Maybe the drive is bad.  Maybe just
2448          * the block and we can fix it.
2449          * We freeze all other IO, and try reading the block from
2450          * other devices.  When we find one, we re-write
2451          * and check it that fixes the read error.
2452          * This is all done synchronously while the array is
2453          * frozen
2454          */
2455
2456         bio = r1_bio->bios[r1_bio->read_disk];
2457         bio_dev = bio->bi_bdev->bd_dev;
2458         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2459         bio_put(bio);
2460         r1_bio->bios[r1_bio->read_disk] = NULL;
2461
2462         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2463         if (mddev->ro == 0
2464             && !test_bit(FailFast, &rdev->flags)) {
2465                 freeze_array(conf, 1);
2466                 fix_read_error(conf, r1_bio->read_disk,
2467                                r1_bio->sector, r1_bio->sectors);
2468                 unfreeze_array(conf);
2469         } else {
2470                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2471         }
2472
2473         rdev_dec_pending(rdev, conf->mddev);
2474         allow_barrier(conf, r1_bio->sector);
2475         bio = r1_bio->master_bio;
2476
2477         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2478         r1_bio->state = 0;
2479         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2480 }
2481
2482 static void raid1d(struct md_thread *thread)
2483 {
2484         struct mddev *mddev = thread->mddev;
2485         struct r1bio *r1_bio;
2486         unsigned long flags;
2487         struct r1conf *conf = mddev->private;
2488         struct list_head *head = &conf->retry_list;
2489         struct blk_plug plug;
2490         int idx;
2491
2492         md_check_recovery(mddev);
2493
2494         if (!list_empty_careful(&conf->bio_end_io_list) &&
2495             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2496                 LIST_HEAD(tmp);
2497                 spin_lock_irqsave(&conf->device_lock, flags);
2498                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2499                         list_splice_init(&conf->bio_end_io_list, &tmp);
2500                 spin_unlock_irqrestore(&conf->device_lock, flags);
2501                 while (!list_empty(&tmp)) {
2502                         r1_bio = list_first_entry(&tmp, struct r1bio,
2503                                                   retry_list);
2504                         list_del(&r1_bio->retry_list);
2505                         idx = sector_to_idx(r1_bio->sector);
2506                         atomic_dec(&conf->nr_queued[idx]);
2507                         if (mddev->degraded)
2508                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2509                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2510                                 close_write(r1_bio);
2511                         raid_end_bio_io(r1_bio);
2512                 }
2513         }
2514
2515         blk_start_plug(&plug);
2516         for (;;) {
2517
2518                 flush_pending_writes(conf);
2519
2520                 spin_lock_irqsave(&conf->device_lock, flags);
2521                 if (list_empty(head)) {
2522                         spin_unlock_irqrestore(&conf->device_lock, flags);
2523                         break;
2524                 }
2525                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2526                 list_del(head->prev);
2527                 idx = sector_to_idx(r1_bio->sector);
2528                 atomic_dec(&conf->nr_queued[idx]);
2529                 spin_unlock_irqrestore(&conf->device_lock, flags);
2530
2531                 mddev = r1_bio->mddev;
2532                 conf = mddev->private;
2533                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2534                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2535                             test_bit(R1BIO_WriteError, &r1_bio->state))
2536                                 handle_sync_write_finished(conf, r1_bio);
2537                         else
2538                                 sync_request_write(mddev, r1_bio);
2539                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2540                            test_bit(R1BIO_WriteError, &r1_bio->state))
2541                         handle_write_finished(conf, r1_bio);
2542                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2543                         handle_read_error(conf, r1_bio);
2544                 else
2545                         WARN_ON_ONCE(1);
2546
2547                 cond_resched();
2548                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2549                         md_check_recovery(mddev);
2550         }
2551         blk_finish_plug(&plug);
2552 }
2553
2554 static int init_resync(struct r1conf *conf)
2555 {
2556         int buffs;
2557
2558         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2559         BUG_ON(conf->r1buf_pool);
2560         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2561                                           conf->poolinfo);
2562         if (!conf->r1buf_pool)
2563                 return -ENOMEM;
2564         return 0;
2565 }
2566
2567 /*
2568  * perform a "sync" on one "block"
2569  *
2570  * We need to make sure that no normal I/O request - particularly write
2571  * requests - conflict with active sync requests.
2572  *
2573  * This is achieved by tracking pending requests and a 'barrier' concept
2574  * that can be installed to exclude normal IO requests.
2575  */
2576
2577 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2578                                    int *skipped)
2579 {
2580         struct r1conf *conf = mddev->private;
2581         struct r1bio *r1_bio;
2582         struct bio *bio;
2583         sector_t max_sector, nr_sectors;
2584         int disk = -1;
2585         int i;
2586         int wonly = -1;
2587         int write_targets = 0, read_targets = 0;
2588         sector_t sync_blocks;
2589         int still_degraded = 0;
2590         int good_sectors = RESYNC_SECTORS;
2591         int min_bad = 0; /* number of sectors that are bad in all devices */
2592         int idx = sector_to_idx(sector_nr);
2593         int page_idx = 0;
2594
2595         if (!conf->r1buf_pool)
2596                 if (init_resync(conf))
2597                         return 0;
2598
2599         max_sector = mddev->dev_sectors;
2600         if (sector_nr >= max_sector) {
2601                 /* If we aborted, we need to abort the
2602                  * sync on the 'current' bitmap chunk (there will
2603                  * only be one in raid1 resync.
2604                  * We can find the current addess in mddev->curr_resync
2605                  */
2606                 if (mddev->curr_resync < max_sector) /* aborted */
2607                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2608                                                 &sync_blocks, 1);
2609                 else /* completed sync */
2610                         conf->fullsync = 0;
2611
2612                 bitmap_close_sync(mddev->bitmap);
2613                 close_sync(conf);
2614
2615                 if (mddev_is_clustered(mddev)) {
2616                         conf->cluster_sync_low = 0;
2617                         conf->cluster_sync_high = 0;
2618                 }
2619                 return 0;
2620         }
2621
2622         if (mddev->bitmap == NULL &&
2623             mddev->recovery_cp == MaxSector &&
2624             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2625             conf->fullsync == 0) {
2626                 *skipped = 1;
2627                 return max_sector - sector_nr;
2628         }
2629         /* before building a request, check if we can skip these blocks..
2630          * This call the bitmap_start_sync doesn't actually record anything
2631          */
2632         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2633             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2634                 /* We can skip this block, and probably several more */
2635                 *skipped = 1;
2636                 return sync_blocks;
2637         }
2638
2639         /*
2640          * If there is non-resync activity waiting for a turn, then let it
2641          * though before starting on this new sync request.
2642          */
2643         if (atomic_read(&conf->nr_waiting[idx]))
2644                 schedule_timeout_uninterruptible(1);
2645
2646         /* we are incrementing sector_nr below. To be safe, we check against
2647          * sector_nr + two times RESYNC_SECTORS
2648          */
2649
2650         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2651                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2652         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2653
2654         raise_barrier(conf, sector_nr);
2655
2656         rcu_read_lock();
2657         /*
2658          * If we get a correctably read error during resync or recovery,
2659          * we might want to read from a different device.  So we
2660          * flag all drives that could conceivably be read from for READ,
2661          * and any others (which will be non-In_sync devices) for WRITE.
2662          * If a read fails, we try reading from something else for which READ
2663          * is OK.
2664          */
2665
2666         r1_bio->mddev = mddev;
2667         r1_bio->sector = sector_nr;
2668         r1_bio->state = 0;
2669         set_bit(R1BIO_IsSync, &r1_bio->state);
2670         /* make sure good_sectors won't go across barrier unit boundary */
2671         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2672
2673         for (i = 0; i < conf->raid_disks * 2; i++) {
2674                 struct md_rdev *rdev;
2675                 bio = r1_bio->bios[i];
2676
2677                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2678                 if (rdev == NULL ||
2679                     test_bit(Faulty, &rdev->flags)) {
2680                         if (i < conf->raid_disks)
2681                                 still_degraded = 1;
2682                 } else if (!test_bit(In_sync, &rdev->flags)) {
2683                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2684                         bio->bi_end_io = end_sync_write;
2685                         write_targets ++;
2686                 } else {
2687                         /* may need to read from here */
2688                         sector_t first_bad = MaxSector;
2689                         int bad_sectors;
2690
2691                         if (is_badblock(rdev, sector_nr, good_sectors,
2692                                         &first_bad, &bad_sectors)) {
2693                                 if (first_bad > sector_nr)
2694                                         good_sectors = first_bad - sector_nr;
2695                                 else {
2696                                         bad_sectors -= (sector_nr - first_bad);
2697                                         if (min_bad == 0 ||
2698                                             min_bad > bad_sectors)
2699                                                 min_bad = bad_sectors;
2700                                 }
2701                         }
2702                         if (sector_nr < first_bad) {
2703                                 if (test_bit(WriteMostly, &rdev->flags)) {
2704                                         if (wonly < 0)
2705                                                 wonly = i;
2706                                 } else {
2707                                         if (disk < 0)
2708                                                 disk = i;
2709                                 }
2710                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2711                                 bio->bi_end_io = end_sync_read;
2712                                 read_targets++;
2713                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2714                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2715                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2716                                 /*
2717                                  * The device is suitable for reading (InSync),
2718                                  * but has bad block(s) here. Let's try to correct them,
2719                                  * if we are doing resync or repair. Otherwise, leave
2720                                  * this device alone for this sync request.
2721                                  */
2722                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2723                                 bio->bi_end_io = end_sync_write;
2724                                 write_targets++;
2725                         }
2726                 }
2727                 if (bio->bi_end_io) {
2728                         atomic_inc(&rdev->nr_pending);
2729                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2730                         bio->bi_bdev = rdev->bdev;
2731                         if (test_bit(FailFast, &rdev->flags))
2732                                 bio->bi_opf |= MD_FAILFAST;
2733                 }
2734         }
2735         rcu_read_unlock();
2736         if (disk < 0)
2737                 disk = wonly;
2738         r1_bio->read_disk = disk;
2739
2740         if (read_targets == 0 && min_bad > 0) {
2741                 /* These sectors are bad on all InSync devices, so we
2742                  * need to mark them bad on all write targets
2743                  */
2744                 int ok = 1;
2745                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2746                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2747                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2748                                 ok = rdev_set_badblocks(rdev, sector_nr,
2749                                                         min_bad, 0
2750                                         ) && ok;
2751                         }
2752                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2753                 *skipped = 1;
2754                 put_buf(r1_bio);
2755
2756                 if (!ok) {
2757                         /* Cannot record the badblocks, so need to
2758                          * abort the resync.
2759                          * If there are multiple read targets, could just
2760                          * fail the really bad ones ???
2761                          */
2762                         conf->recovery_disabled = mddev->recovery_disabled;
2763                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2764                         return 0;
2765                 } else
2766                         return min_bad;
2767
2768         }
2769         if (min_bad > 0 && min_bad < good_sectors) {
2770                 /* only resync enough to reach the next bad->good
2771                  * transition */
2772                 good_sectors = min_bad;
2773         }
2774
2775         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2776                 /* extra read targets are also write targets */
2777                 write_targets += read_targets-1;
2778
2779         if (write_targets == 0 || read_targets == 0) {
2780                 /* There is nowhere to write, so all non-sync
2781                  * drives must be failed - so we are finished
2782                  */
2783                 sector_t rv;
2784                 if (min_bad > 0)
2785                         max_sector = sector_nr + min_bad;
2786                 rv = max_sector - sector_nr;
2787                 *skipped = 1;
2788                 put_buf(r1_bio);
2789                 return rv;
2790         }
2791
2792         if (max_sector > mddev->resync_max)
2793                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2794         if (max_sector > sector_nr + good_sectors)
2795                 max_sector = sector_nr + good_sectors;
2796         nr_sectors = 0;
2797         sync_blocks = 0;
2798         do {
2799                 struct page *page;
2800                 int len = PAGE_SIZE;
2801                 if (sector_nr + (len>>9) > max_sector)
2802                         len = (max_sector - sector_nr) << 9;
2803                 if (len == 0)
2804                         break;
2805                 if (sync_blocks == 0) {
2806                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2807                                                &sync_blocks, still_degraded) &&
2808                             !conf->fullsync &&
2809                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2810                                 break;
2811                         if ((len >> 9) > sync_blocks)
2812                                 len = sync_blocks<<9;
2813                 }
2814
2815                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2816                         struct resync_pages *rp;
2817
2818                         bio = r1_bio->bios[i];
2819                         rp = get_resync_pages(bio);
2820                         if (bio->bi_end_io) {
2821                                 page = resync_fetch_page(rp, page_idx);
2822
2823                                 /*
2824                                  * won't fail because the vec table is big
2825                                  * enough to hold all these pages
2826                                  */
2827                                 bio_add_page(bio, page, len, 0);
2828                         }
2829                 }
2830                 nr_sectors += len>>9;
2831                 sector_nr += len>>9;
2832                 sync_blocks -= (len>>9);
2833         } while (++page_idx < RESYNC_PAGES);
2834
2835         r1_bio->sectors = nr_sectors;
2836
2837         if (mddev_is_clustered(mddev) &&
2838                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2839                 conf->cluster_sync_low = mddev->curr_resync_completed;
2840                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2841                 /* Send resync message */
2842                 md_cluster_ops->resync_info_update(mddev,
2843                                 conf->cluster_sync_low,
2844                                 conf->cluster_sync_high);
2845         }
2846
2847         /* For a user-requested sync, we read all readable devices and do a
2848          * compare
2849          */
2850         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2851                 atomic_set(&r1_bio->remaining, read_targets);
2852                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2853                         bio = r1_bio->bios[i];
2854                         if (bio->bi_end_io == end_sync_read) {
2855                                 read_targets--;
2856                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2857                                 if (read_targets == 1)
2858                                         bio->bi_opf &= ~MD_FAILFAST;
2859                                 generic_make_request(bio);
2860                         }
2861                 }
2862         } else {
2863                 atomic_set(&r1_bio->remaining, 1);
2864                 bio = r1_bio->bios[r1_bio->read_disk];
2865                 md_sync_acct(bio->bi_bdev, nr_sectors);
2866                 if (read_targets == 1)
2867                         bio->bi_opf &= ~MD_FAILFAST;
2868                 generic_make_request(bio);
2869
2870         }
2871         return nr_sectors;
2872 }
2873
2874 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2875 {
2876         if (sectors)
2877                 return sectors;
2878
2879         return mddev->dev_sectors;
2880 }
2881
2882 static struct r1conf *setup_conf(struct mddev *mddev)
2883 {
2884         struct r1conf *conf;
2885         int i;
2886         struct raid1_info *disk;
2887         struct md_rdev *rdev;
2888         int err = -ENOMEM;
2889
2890         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2891         if (!conf)
2892                 goto abort;
2893
2894         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2895                                    sizeof(atomic_t), GFP_KERNEL);
2896         if (!conf->nr_pending)
2897                 goto abort;
2898
2899         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2900                                    sizeof(atomic_t), GFP_KERNEL);
2901         if (!conf->nr_waiting)
2902                 goto abort;
2903
2904         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2905                                   sizeof(atomic_t), GFP_KERNEL);
2906         if (!conf->nr_queued)
2907                 goto abort;
2908
2909         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2910                                 sizeof(atomic_t), GFP_KERNEL);
2911         if (!conf->barrier)
2912                 goto abort;
2913
2914         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2915                                 * mddev->raid_disks * 2,
2916                                  GFP_KERNEL);
2917         if (!conf->mirrors)
2918                 goto abort;
2919
2920         conf->tmppage = alloc_page(GFP_KERNEL);
2921         if (!conf->tmppage)
2922                 goto abort;
2923
2924         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2925         if (!conf->poolinfo)
2926                 goto abort;
2927         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2928         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2929                                           r1bio_pool_free,
2930                                           conf->poolinfo);
2931         if (!conf->r1bio_pool)
2932                 goto abort;
2933
2934         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2935         if (!conf->bio_split)
2936                 goto abort;
2937
2938         conf->poolinfo->mddev = mddev;
2939
2940         err = -EINVAL;
2941         spin_lock_init(&conf->device_lock);
2942         rdev_for_each(rdev, mddev) {
2943                 int disk_idx = rdev->raid_disk;
2944                 if (disk_idx >= mddev->raid_disks
2945                     || disk_idx < 0)
2946                         continue;
2947                 if (test_bit(Replacement, &rdev->flags))
2948                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2949                 else
2950                         disk = conf->mirrors + disk_idx;
2951
2952                 if (disk->rdev)
2953                         goto abort;
2954                 disk->rdev = rdev;
2955                 disk->head_position = 0;
2956                 disk->seq_start = MaxSector;
2957         }
2958         conf->raid_disks = mddev->raid_disks;
2959         conf->mddev = mddev;
2960         INIT_LIST_HEAD(&conf->retry_list);
2961         INIT_LIST_HEAD(&conf->bio_end_io_list);
2962
2963         spin_lock_init(&conf->resync_lock);
2964         init_waitqueue_head(&conf->wait_barrier);
2965
2966         bio_list_init(&conf->pending_bio_list);
2967         conf->pending_count = 0;
2968         conf->recovery_disabled = mddev->recovery_disabled - 1;
2969
2970         err = -EIO;
2971         for (i = 0; i < conf->raid_disks * 2; i++) {
2972
2973                 disk = conf->mirrors + i;
2974
2975                 if (i < conf->raid_disks &&
2976                     disk[conf->raid_disks].rdev) {
2977                         /* This slot has a replacement. */
2978                         if (!disk->rdev) {
2979                                 /* No original, just make the replacement
2980                                  * a recovering spare
2981                                  */
2982                                 disk->rdev =
2983                                         disk[conf->raid_disks].rdev;
2984                                 disk[conf->raid_disks].rdev = NULL;
2985                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2986                                 /* Original is not in_sync - bad */
2987                                 goto abort;
2988                 }
2989
2990                 if (!disk->rdev ||
2991                     !test_bit(In_sync, &disk->rdev->flags)) {
2992                         disk->head_position = 0;
2993                         if (disk->rdev &&
2994                             (disk->rdev->saved_raid_disk < 0))
2995                                 conf->fullsync = 1;
2996                 }
2997         }
2998
2999         err = -ENOMEM;
3000         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3001         if (!conf->thread)
3002                 goto abort;
3003
3004         return conf;
3005
3006  abort:
3007         if (conf) {
3008                 mempool_destroy(conf->r1bio_pool);
3009                 kfree(conf->mirrors);
3010                 safe_put_page(conf->tmppage);
3011                 kfree(conf->poolinfo);
3012                 kfree(conf->nr_pending);
3013                 kfree(conf->nr_waiting);
3014                 kfree(conf->nr_queued);
3015                 kfree(conf->barrier);
3016                 if (conf->bio_split)
3017                         bioset_free(conf->bio_split);
3018                 kfree(conf);
3019         }
3020         return ERR_PTR(err);
3021 }
3022
3023 static void raid1_free(struct mddev *mddev, void *priv);
3024 static int raid1_run(struct mddev *mddev)
3025 {
3026         struct r1conf *conf;
3027         int i;
3028         struct md_rdev *rdev;
3029         int ret;
3030         bool discard_supported = false;
3031
3032         if (mddev->level != 1) {
3033                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3034                         mdname(mddev), mddev->level);
3035                 return -EIO;
3036         }
3037         if (mddev->reshape_position != MaxSector) {
3038                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3039                         mdname(mddev));
3040                 return -EIO;
3041         }
3042         if (mddev_init_writes_pending(mddev) < 0)
3043                 return -ENOMEM;
3044         /*
3045          * copy the already verified devices into our private RAID1
3046          * bookkeeping area. [whatever we allocate in run(),
3047          * should be freed in raid1_free()]
3048          */
3049         if (mddev->private == NULL)
3050                 conf = setup_conf(mddev);
3051         else
3052                 conf = mddev->private;
3053
3054         if (IS_ERR(conf))
3055                 return PTR_ERR(conf);
3056
3057         if (mddev->queue) {
3058                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3059                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3060         }
3061
3062         rdev_for_each(rdev, mddev) {
3063                 if (!mddev->gendisk)
3064                         continue;
3065                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3066                                   rdev->data_offset << 9);
3067                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3068                         discard_supported = true;
3069         }
3070
3071         mddev->degraded = 0;
3072         for (i=0; i < conf->raid_disks; i++)
3073                 if (conf->mirrors[i].rdev == NULL ||
3074                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3075                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3076                         mddev->degraded++;
3077
3078         if (conf->raid_disks - mddev->degraded == 1)
3079                 mddev->recovery_cp = MaxSector;
3080
3081         if (mddev->recovery_cp != MaxSector)
3082                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3083                         mdname(mddev));
3084         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3085                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3086                 mddev->raid_disks);
3087
3088         /*
3089          * Ok, everything is just fine now
3090          */
3091         mddev->thread = conf->thread;
3092         conf->thread = NULL;
3093         mddev->private = conf;
3094         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3095
3096         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3097
3098         if (mddev->queue) {
3099                 if (discard_supported)
3100                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3101                                                 mddev->queue);
3102                 else
3103                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3104                                                   mddev->queue);
3105         }
3106
3107         ret =  md_integrity_register(mddev);
3108         if (ret) {
3109                 md_unregister_thread(&mddev->thread);
3110                 raid1_free(mddev, conf);
3111         }
3112         return ret;
3113 }
3114
3115 static void raid1_free(struct mddev *mddev, void *priv)
3116 {
3117         struct r1conf *conf = priv;
3118
3119         mempool_destroy(conf->r1bio_pool);
3120         kfree(conf->mirrors);
3121         safe_put_page(conf->tmppage);
3122         kfree(conf->poolinfo);
3123         kfree(conf->nr_pending);
3124         kfree(conf->nr_waiting);
3125         kfree(conf->nr_queued);
3126         kfree(conf->barrier);
3127         if (conf->bio_split)
3128                 bioset_free(conf->bio_split);
3129         kfree(conf);
3130 }
3131
3132 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3133 {
3134         /* no resync is happening, and there is enough space
3135          * on all devices, so we can resize.
3136          * We need to make sure resync covers any new space.
3137          * If the array is shrinking we should possibly wait until
3138          * any io in the removed space completes, but it hardly seems
3139          * worth it.
3140          */
3141         sector_t newsize = raid1_size(mddev, sectors, 0);
3142         if (mddev->external_size &&
3143             mddev->array_sectors > newsize)
3144                 return -EINVAL;
3145         if (mddev->bitmap) {
3146                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3147                 if (ret)
3148                         return ret;
3149         }
3150         md_set_array_sectors(mddev, newsize);
3151         if (sectors > mddev->dev_sectors &&
3152             mddev->recovery_cp > mddev->dev_sectors) {
3153                 mddev->recovery_cp = mddev->dev_sectors;
3154                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3155         }
3156         mddev->dev_sectors = sectors;
3157         mddev->resync_max_sectors = sectors;
3158         return 0;
3159 }
3160
3161 static int raid1_reshape(struct mddev *mddev)
3162 {
3163         /* We need to:
3164          * 1/ resize the r1bio_pool
3165          * 2/ resize conf->mirrors
3166          *
3167          * We allocate a new r1bio_pool if we can.
3168          * Then raise a device barrier and wait until all IO stops.
3169          * Then resize conf->mirrors and swap in the new r1bio pool.
3170          *
3171          * At the same time, we "pack" the devices so that all the missing
3172          * devices have the higher raid_disk numbers.
3173          */
3174         mempool_t *newpool, *oldpool;
3175         struct pool_info *newpoolinfo;
3176         struct raid1_info *newmirrors;
3177         struct r1conf *conf = mddev->private;
3178         int cnt, raid_disks;
3179         unsigned long flags;
3180         int d, d2;
3181
3182         /* Cannot change chunk_size, layout, or level */
3183         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3184             mddev->layout != mddev->new_layout ||
3185             mddev->level != mddev->new_level) {
3186                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3187                 mddev->new_layout = mddev->layout;
3188                 mddev->new_level = mddev->level;
3189                 return -EINVAL;
3190         }
3191
3192         if (!mddev_is_clustered(mddev))
3193                 md_allow_write(mddev);
3194
3195         raid_disks = mddev->raid_disks + mddev->delta_disks;
3196
3197         if (raid_disks < conf->raid_disks) {
3198                 cnt=0;
3199                 for (d= 0; d < conf->raid_disks; d++)
3200                         if (conf->mirrors[d].rdev)
3201                                 cnt++;
3202                 if (cnt > raid_disks)
3203                         return -EBUSY;
3204         }
3205
3206         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3207         if (!newpoolinfo)
3208                 return -ENOMEM;
3209         newpoolinfo->mddev = mddev;
3210         newpoolinfo->raid_disks = raid_disks * 2;
3211
3212         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3213                                  r1bio_pool_free, newpoolinfo);
3214         if (!newpool) {
3215                 kfree(newpoolinfo);
3216                 return -ENOMEM;
3217         }
3218         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3219                              GFP_KERNEL);
3220         if (!newmirrors) {
3221                 kfree(newpoolinfo);
3222                 mempool_destroy(newpool);
3223                 return -ENOMEM;
3224         }
3225
3226         freeze_array(conf, 0);
3227
3228         /* ok, everything is stopped */
3229         oldpool = conf->r1bio_pool;
3230         conf->r1bio_pool = newpool;
3231
3232         for (d = d2 = 0; d < conf->raid_disks; d++) {
3233                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3234                 if (rdev && rdev->raid_disk != d2) {
3235                         sysfs_unlink_rdev(mddev, rdev);
3236                         rdev->raid_disk = d2;
3237                         sysfs_unlink_rdev(mddev, rdev);
3238                         if (sysfs_link_rdev(mddev, rdev))
3239                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3240                                         mdname(mddev), rdev->raid_disk);
3241                 }
3242                 if (rdev)
3243                         newmirrors[d2++].rdev = rdev;
3244         }
3245         kfree(conf->mirrors);
3246         conf->mirrors = newmirrors;
3247         kfree(conf->poolinfo);
3248         conf->poolinfo = newpoolinfo;
3249
3250         spin_lock_irqsave(&conf->device_lock, flags);
3251         mddev->degraded += (raid_disks - conf->raid_disks);
3252         spin_unlock_irqrestore(&conf->device_lock, flags);
3253         conf->raid_disks = mddev->raid_disks = raid_disks;
3254         mddev->delta_disks = 0;
3255
3256         unfreeze_array(conf);
3257
3258         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3259         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3260         md_wakeup_thread(mddev->thread);
3261
3262         mempool_destroy(oldpool);
3263         return 0;
3264 }
3265
3266 static void raid1_quiesce(struct mddev *mddev, int state)
3267 {
3268         struct r1conf *conf = mddev->private;
3269
3270         switch(state) {
3271         case 2: /* wake for suspend */
3272                 wake_up(&conf->wait_barrier);
3273                 break;
3274         case 1:
3275                 freeze_array(conf, 0);
3276                 break;
3277         case 0:
3278                 unfreeze_array(conf);
3279                 break;
3280         }
3281 }
3282
3283 static void *raid1_takeover(struct mddev *mddev)
3284 {
3285         /* raid1 can take over:
3286          *  raid5 with 2 devices, any layout or chunk size
3287          */
3288         if (mddev->level == 5 && mddev->raid_disks == 2) {
3289                 struct r1conf *conf;
3290                 mddev->new_level = 1;
3291                 mddev->new_layout = 0;
3292                 mddev->new_chunk_sectors = 0;
3293                 conf = setup_conf(mddev);
3294                 if (!IS_ERR(conf)) {
3295                         /* Array must appear to be quiesced */
3296                         conf->array_frozen = 1;
3297                         mddev_clear_unsupported_flags(mddev,
3298                                 UNSUPPORTED_MDDEV_FLAGS);
3299                 }
3300                 return conf;
3301         }
3302         return ERR_PTR(-EINVAL);
3303 }
3304
3305 static struct md_personality raid1_personality =
3306 {
3307         .name           = "raid1",
3308         .level          = 1,
3309         .owner          = THIS_MODULE,
3310         .make_request   = raid1_make_request,
3311         .run            = raid1_run,
3312         .free           = raid1_free,
3313         .status         = raid1_status,
3314         .error_handler  = raid1_error,
3315         .hot_add_disk   = raid1_add_disk,
3316         .hot_remove_disk= raid1_remove_disk,
3317         .spare_active   = raid1_spare_active,
3318         .sync_request   = raid1_sync_request,
3319         .resize         = raid1_resize,
3320         .size           = raid1_size,
3321         .check_reshape  = raid1_reshape,
3322         .quiesce        = raid1_quiesce,
3323         .takeover       = raid1_takeover,
3324         .congested      = raid1_congested,
3325 };
3326
3327 static int __init raid_init(void)
3328 {
3329         return register_md_personality(&raid1_personality);
3330 }
3331
3332 static void raid_exit(void)
3333 {
3334         unregister_md_personality(&raid1_personality);
3335 }
3336
3337 module_init(raid_init);
3338 module_exit(raid_exit);
3339 MODULE_LICENSE("GPL");
3340 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3341 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3342 MODULE_ALIAS("md-raid1");
3343 MODULE_ALIAS("md-level-1");
3344
3345 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);