]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 /* amount of memory to reserve for resync requests */
140 #define RESYNC_WINDOW (1024*1024)
141 /* maximum number of concurrent requests, memory permitting */
142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
143
144 /*
145  * When performing a resync, we need to read and compare, so
146  * we need as many pages are there are copies.
147  * When performing a recovery, we need 2 bios, one for read,
148  * one for write (we recover only one drive per r10buf)
149  *
150  */
151 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
152 {
153         struct r10conf *conf = data;
154         struct r10bio *r10_bio;
155         struct bio *bio;
156         int j;
157         int nalloc, nalloc_rp;
158         struct resync_pages *rps;
159
160         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
161         if (!r10_bio)
162                 return NULL;
163
164         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
165             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
166                 nalloc = conf->copies; /* resync */
167         else
168                 nalloc = 2; /* recovery */
169
170         /* allocate once for all bios */
171         if (!conf->have_replacement)
172                 nalloc_rp = nalloc;
173         else
174                 nalloc_rp = nalloc * 2;
175         rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
176         if (!rps)
177                 goto out_free_r10bio;
178
179         /*
180          * Allocate bios.
181          */
182         for (j = nalloc ; j-- ; ) {
183                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
184                 if (!bio)
185                         goto out_free_bio;
186                 r10_bio->devs[j].bio = bio;
187                 if (!conf->have_replacement)
188                         continue;
189                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
190                 if (!bio)
191                         goto out_free_bio;
192                 r10_bio->devs[j].repl_bio = bio;
193         }
194         /*
195          * Allocate RESYNC_PAGES data pages and attach them
196          * where needed.
197          */
198         for (j = 0; j < nalloc; j++) {
199                 struct bio *rbio = r10_bio->devs[j].repl_bio;
200                 struct resync_pages *rp, *rp_repl;
201
202                 rp = &rps[j];
203                 if (rbio)
204                         rp_repl = &rps[nalloc + j];
205
206                 bio = r10_bio->devs[j].bio;
207
208                 if (!j || test_bit(MD_RECOVERY_SYNC,
209                                    &conf->mddev->recovery)) {
210                         if (resync_alloc_pages(rp, gfp_flags))
211                                 goto out_free_pages;
212                 } else {
213                         memcpy(rp, &rps[0], sizeof(*rp));
214                         resync_get_all_pages(rp);
215                 }
216
217                 rp->raid_bio = r10_bio;
218                 bio->bi_private = rp;
219                 if (rbio) {
220                         memcpy(rp_repl, rp, sizeof(*rp));
221                         rbio->bi_private = rp_repl;
222                 }
223         }
224
225         return r10_bio;
226
227 out_free_pages:
228         while (--j >= 0)
229                 resync_free_pages(&rps[j * 2]);
230
231         j = 0;
232 out_free_bio:
233         for ( ; j < nalloc; j++) {
234                 if (r10_bio->devs[j].bio)
235                         bio_put(r10_bio->devs[j].bio);
236                 if (r10_bio->devs[j].repl_bio)
237                         bio_put(r10_bio->devs[j].repl_bio);
238         }
239         kfree(rps);
240 out_free_r10bio:
241         r10bio_pool_free(r10_bio, conf);
242         return NULL;
243 }
244
245 static void r10buf_pool_free(void *__r10_bio, void *data)
246 {
247         struct r10conf *conf = data;
248         struct r10bio *r10bio = __r10_bio;
249         int j;
250         struct resync_pages *rp = NULL;
251
252         for (j = conf->copies; j--; ) {
253                 struct bio *bio = r10bio->devs[j].bio;
254
255                 rp = get_resync_pages(bio);
256                 resync_free_pages(rp);
257                 bio_put(bio);
258
259                 bio = r10bio->devs[j].repl_bio;
260                 if (bio)
261                         bio_put(bio);
262         }
263
264         /* resync pages array stored in the 1st bio's .bi_private */
265         kfree(rp);
266
267         r10bio_pool_free(r10bio, conf);
268 }
269
270 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
271 {
272         int i;
273
274         for (i = 0; i < conf->copies; i++) {
275                 struct bio **bio = & r10_bio->devs[i].bio;
276                 if (!BIO_SPECIAL(*bio))
277                         bio_put(*bio);
278                 *bio = NULL;
279                 bio = &r10_bio->devs[i].repl_bio;
280                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
281                         bio_put(*bio);
282                 *bio = NULL;
283         }
284 }
285
286 static void free_r10bio(struct r10bio *r10_bio)
287 {
288         struct r10conf *conf = r10_bio->mddev->private;
289
290         put_all_bios(conf, r10_bio);
291         mempool_free(r10_bio, conf->r10bio_pool);
292 }
293
294 static void put_buf(struct r10bio *r10_bio)
295 {
296         struct r10conf *conf = r10_bio->mddev->private;
297
298         mempool_free(r10_bio, conf->r10buf_pool);
299
300         lower_barrier(conf);
301 }
302
303 static void reschedule_retry(struct r10bio *r10_bio)
304 {
305         unsigned long flags;
306         struct mddev *mddev = r10_bio->mddev;
307         struct r10conf *conf = mddev->private;
308
309         spin_lock_irqsave(&conf->device_lock, flags);
310         list_add(&r10_bio->retry_list, &conf->retry_list);
311         conf->nr_queued ++;
312         spin_unlock_irqrestore(&conf->device_lock, flags);
313
314         /* wake up frozen array... */
315         wake_up(&conf->wait_barrier);
316
317         md_wakeup_thread(mddev->thread);
318 }
319
320 /*
321  * raid_end_bio_io() is called when we have finished servicing a mirrored
322  * operation and are ready to return a success/failure code to the buffer
323  * cache layer.
324  */
325 static void raid_end_bio_io(struct r10bio *r10_bio)
326 {
327         struct bio *bio = r10_bio->master_bio;
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
331                 bio->bi_status = BLK_STS_IOERR;
332
333         bio_endio(bio);
334         /*
335          * Wake up any possible resync thread that waits for the device
336          * to go idle.
337          */
338         allow_barrier(conf);
339
340         free_r10bio(r10_bio);
341 }
342
343 /*
344  * Update disk head position estimator based on IRQ completion info.
345  */
346 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
347 {
348         struct r10conf *conf = r10_bio->mddev->private;
349
350         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
351                 r10_bio->devs[slot].addr + (r10_bio->sectors);
352 }
353
354 /*
355  * Find the disk number which triggered given bio
356  */
357 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
358                          struct bio *bio, int *slotp, int *replp)
359 {
360         int slot;
361         int repl = 0;
362
363         for (slot = 0; slot < conf->copies; slot++) {
364                 if (r10_bio->devs[slot].bio == bio)
365                         break;
366                 if (r10_bio->devs[slot].repl_bio == bio) {
367                         repl = 1;
368                         break;
369                 }
370         }
371
372         BUG_ON(slot == conf->copies);
373         update_head_pos(slot, r10_bio);
374
375         if (slotp)
376                 *slotp = slot;
377         if (replp)
378                 *replp = repl;
379         return r10_bio->devs[slot].devnum;
380 }
381
382 static void raid10_end_read_request(struct bio *bio)
383 {
384         int uptodate = !bio->bi_status;
385         struct r10bio *r10_bio = bio->bi_private;
386         int slot, dev;
387         struct md_rdev *rdev;
388         struct r10conf *conf = r10_bio->mddev->private;
389
390         slot = r10_bio->read_slot;
391         dev = r10_bio->devs[slot].devnum;
392         rdev = r10_bio->devs[slot].rdev;
393         /*
394          * this branch is our 'one mirror IO has finished' event handler:
395          */
396         update_head_pos(slot, r10_bio);
397
398         if (uptodate) {
399                 /*
400                  * Set R10BIO_Uptodate in our master bio, so that
401                  * we will return a good error code to the higher
402                  * levels even if IO on some other mirrored buffer fails.
403                  *
404                  * The 'master' represents the composite IO operation to
405                  * user-side. So if something waits for IO, then it will
406                  * wait for the 'master' bio.
407                  */
408                 set_bit(R10BIO_Uptodate, &r10_bio->state);
409         } else {
410                 /* If all other devices that store this block have
411                  * failed, we want to return the error upwards rather
412                  * than fail the last device.  Here we redefine
413                  * "uptodate" to mean "Don't want to retry"
414                  */
415                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
416                              rdev->raid_disk))
417                         uptodate = 1;
418         }
419         if (uptodate) {
420                 raid_end_bio_io(r10_bio);
421                 rdev_dec_pending(rdev, conf->mddev);
422         } else {
423                 /*
424                  * oops, read error - keep the refcount on the rdev
425                  */
426                 char b[BDEVNAME_SIZE];
427                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
428                                    mdname(conf->mddev),
429                                    bdevname(rdev->bdev, b),
430                                    (unsigned long long)r10_bio->sector);
431                 set_bit(R10BIO_ReadError, &r10_bio->state);
432                 reschedule_retry(r10_bio);
433         }
434 }
435
436 static void close_write(struct r10bio *r10_bio)
437 {
438         /* clear the bitmap if all writes complete successfully */
439         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
440                         r10_bio->sectors,
441                         !test_bit(R10BIO_Degraded, &r10_bio->state),
442                         0);
443         md_write_end(r10_bio->mddev);
444 }
445
446 static void one_write_done(struct r10bio *r10_bio)
447 {
448         if (atomic_dec_and_test(&r10_bio->remaining)) {
449                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
450                         reschedule_retry(r10_bio);
451                 else {
452                         close_write(r10_bio);
453                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
454                                 reschedule_retry(r10_bio);
455                         else
456                                 raid_end_bio_io(r10_bio);
457                 }
458         }
459 }
460
461 static void raid10_end_write_request(struct bio *bio)
462 {
463         struct r10bio *r10_bio = bio->bi_private;
464         int dev;
465         int dec_rdev = 1;
466         struct r10conf *conf = r10_bio->mddev->private;
467         int slot, repl;
468         struct md_rdev *rdev = NULL;
469         struct bio *to_put = NULL;
470         bool discard_error;
471
472         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
473
474         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
475
476         if (repl)
477                 rdev = conf->mirrors[dev].replacement;
478         if (!rdev) {
479                 smp_rmb();
480                 repl = 0;
481                 rdev = conf->mirrors[dev].rdev;
482         }
483         /*
484          * this branch is our 'one mirror IO has finished' event handler:
485          */
486         if (bio->bi_status && !discard_error) {
487                 if (repl)
488                         /* Never record new bad blocks to replacement,
489                          * just fail it.
490                          */
491                         md_error(rdev->mddev, rdev);
492                 else {
493                         set_bit(WriteErrorSeen, &rdev->flags);
494                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
495                                 set_bit(MD_RECOVERY_NEEDED,
496                                         &rdev->mddev->recovery);
497
498                         dec_rdev = 0;
499                         if (test_bit(FailFast, &rdev->flags) &&
500                             (bio->bi_opf & MD_FAILFAST)) {
501                                 md_error(rdev->mddev, rdev);
502                                 if (!test_bit(Faulty, &rdev->flags))
503                                         /* This is the only remaining device,
504                                          * We need to retry the write without
505                                          * FailFast
506                                          */
507                                         set_bit(R10BIO_WriteError, &r10_bio->state);
508                                 else {
509                                         r10_bio->devs[slot].bio = NULL;
510                                         to_put = bio;
511                                         dec_rdev = 1;
512                                 }
513                         } else
514                                 set_bit(R10BIO_WriteError, &r10_bio->state);
515                 }
516         } else {
517                 /*
518                  * Set R10BIO_Uptodate in our master bio, so that
519                  * we will return a good error code for to the higher
520                  * levels even if IO on some other mirrored buffer fails.
521                  *
522                  * The 'master' represents the composite IO operation to
523                  * user-side. So if something waits for IO, then it will
524                  * wait for the 'master' bio.
525                  */
526                 sector_t first_bad;
527                 int bad_sectors;
528
529                 /*
530                  * Do not set R10BIO_Uptodate if the current device is
531                  * rebuilding or Faulty. This is because we cannot use
532                  * such device for properly reading the data back (we could
533                  * potentially use it, if the current write would have felt
534                  * before rdev->recovery_offset, but for simplicity we don't
535                  * check this here.
536                  */
537                 if (test_bit(In_sync, &rdev->flags) &&
538                     !test_bit(Faulty, &rdev->flags))
539                         set_bit(R10BIO_Uptodate, &r10_bio->state);
540
541                 /* Maybe we can clear some bad blocks. */
542                 if (is_badblock(rdev,
543                                 r10_bio->devs[slot].addr,
544                                 r10_bio->sectors,
545                                 &first_bad, &bad_sectors) && !discard_error) {
546                         bio_put(bio);
547                         if (repl)
548                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
549                         else
550                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
551                         dec_rdev = 0;
552                         set_bit(R10BIO_MadeGood, &r10_bio->state);
553                 }
554         }
555
556         /*
557          *
558          * Let's see if all mirrored write operations have finished
559          * already.
560          */
561         one_write_done(r10_bio);
562         if (dec_rdev)
563                 rdev_dec_pending(rdev, conf->mddev);
564         if (to_put)
565                 bio_put(to_put);
566 }
567
568 /*
569  * RAID10 layout manager
570  * As well as the chunksize and raid_disks count, there are two
571  * parameters: near_copies and far_copies.
572  * near_copies * far_copies must be <= raid_disks.
573  * Normally one of these will be 1.
574  * If both are 1, we get raid0.
575  * If near_copies == raid_disks, we get raid1.
576  *
577  * Chunks are laid out in raid0 style with near_copies copies of the
578  * first chunk, followed by near_copies copies of the next chunk and
579  * so on.
580  * If far_copies > 1, then after 1/far_copies of the array has been assigned
581  * as described above, we start again with a device offset of near_copies.
582  * So we effectively have another copy of the whole array further down all
583  * the drives, but with blocks on different drives.
584  * With this layout, and block is never stored twice on the one device.
585  *
586  * raid10_find_phys finds the sector offset of a given virtual sector
587  * on each device that it is on.
588  *
589  * raid10_find_virt does the reverse mapping, from a device and a
590  * sector offset to a virtual address
591  */
592
593 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
594 {
595         int n,f;
596         sector_t sector;
597         sector_t chunk;
598         sector_t stripe;
599         int dev;
600         int slot = 0;
601         int last_far_set_start, last_far_set_size;
602
603         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
604         last_far_set_start *= geo->far_set_size;
605
606         last_far_set_size = geo->far_set_size;
607         last_far_set_size += (geo->raid_disks % geo->far_set_size);
608
609         /* now calculate first sector/dev */
610         chunk = r10bio->sector >> geo->chunk_shift;
611         sector = r10bio->sector & geo->chunk_mask;
612
613         chunk *= geo->near_copies;
614         stripe = chunk;
615         dev = sector_div(stripe, geo->raid_disks);
616         if (geo->far_offset)
617                 stripe *= geo->far_copies;
618
619         sector += stripe << geo->chunk_shift;
620
621         /* and calculate all the others */
622         for (n = 0; n < geo->near_copies; n++) {
623                 int d = dev;
624                 int set;
625                 sector_t s = sector;
626                 r10bio->devs[slot].devnum = d;
627                 r10bio->devs[slot].addr = s;
628                 slot++;
629
630                 for (f = 1; f < geo->far_copies; f++) {
631                         set = d / geo->far_set_size;
632                         d += geo->near_copies;
633
634                         if ((geo->raid_disks % geo->far_set_size) &&
635                             (d > last_far_set_start)) {
636                                 d -= last_far_set_start;
637                                 d %= last_far_set_size;
638                                 d += last_far_set_start;
639                         } else {
640                                 d %= geo->far_set_size;
641                                 d += geo->far_set_size * set;
642                         }
643                         s += geo->stride;
644                         r10bio->devs[slot].devnum = d;
645                         r10bio->devs[slot].addr = s;
646                         slot++;
647                 }
648                 dev++;
649                 if (dev >= geo->raid_disks) {
650                         dev = 0;
651                         sector += (geo->chunk_mask + 1);
652                 }
653         }
654 }
655
656 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
657 {
658         struct geom *geo = &conf->geo;
659
660         if (conf->reshape_progress != MaxSector &&
661             ((r10bio->sector >= conf->reshape_progress) !=
662              conf->mddev->reshape_backwards)) {
663                 set_bit(R10BIO_Previous, &r10bio->state);
664                 geo = &conf->prev;
665         } else
666                 clear_bit(R10BIO_Previous, &r10bio->state);
667
668         __raid10_find_phys(geo, r10bio);
669 }
670
671 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
672 {
673         sector_t offset, chunk, vchunk;
674         /* Never use conf->prev as this is only called during resync
675          * or recovery, so reshape isn't happening
676          */
677         struct geom *geo = &conf->geo;
678         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
679         int far_set_size = geo->far_set_size;
680         int last_far_set_start;
681
682         if (geo->raid_disks % geo->far_set_size) {
683                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
684                 last_far_set_start *= geo->far_set_size;
685
686                 if (dev >= last_far_set_start) {
687                         far_set_size = geo->far_set_size;
688                         far_set_size += (geo->raid_disks % geo->far_set_size);
689                         far_set_start = last_far_set_start;
690                 }
691         }
692
693         offset = sector & geo->chunk_mask;
694         if (geo->far_offset) {
695                 int fc;
696                 chunk = sector >> geo->chunk_shift;
697                 fc = sector_div(chunk, geo->far_copies);
698                 dev -= fc * geo->near_copies;
699                 if (dev < far_set_start)
700                         dev += far_set_size;
701         } else {
702                 while (sector >= geo->stride) {
703                         sector -= geo->stride;
704                         if (dev < (geo->near_copies + far_set_start))
705                                 dev += far_set_size - geo->near_copies;
706                         else
707                                 dev -= geo->near_copies;
708                 }
709                 chunk = sector >> geo->chunk_shift;
710         }
711         vchunk = chunk * geo->raid_disks + dev;
712         sector_div(vchunk, geo->near_copies);
713         return (vchunk << geo->chunk_shift) + offset;
714 }
715
716 /*
717  * This routine returns the disk from which the requested read should
718  * be done. There is a per-array 'next expected sequential IO' sector
719  * number - if this matches on the next IO then we use the last disk.
720  * There is also a per-disk 'last know head position' sector that is
721  * maintained from IRQ contexts, both the normal and the resync IO
722  * completion handlers update this position correctly. If there is no
723  * perfect sequential match then we pick the disk whose head is closest.
724  *
725  * If there are 2 mirrors in the same 2 devices, performance degrades
726  * because position is mirror, not device based.
727  *
728  * The rdev for the device selected will have nr_pending incremented.
729  */
730
731 /*
732  * FIXME: possibly should rethink readbalancing and do it differently
733  * depending on near_copies / far_copies geometry.
734  */
735 static struct md_rdev *read_balance(struct r10conf *conf,
736                                     struct r10bio *r10_bio,
737                                     int *max_sectors)
738 {
739         const sector_t this_sector = r10_bio->sector;
740         int disk, slot;
741         int sectors = r10_bio->sectors;
742         int best_good_sectors;
743         sector_t new_distance, best_dist;
744         struct md_rdev *best_rdev, *rdev = NULL;
745         int do_balance;
746         int best_slot;
747         struct geom *geo = &conf->geo;
748
749         raid10_find_phys(conf, r10_bio);
750         rcu_read_lock();
751         sectors = r10_bio->sectors;
752         best_slot = -1;
753         best_rdev = NULL;
754         best_dist = MaxSector;
755         best_good_sectors = 0;
756         do_balance = 1;
757         clear_bit(R10BIO_FailFast, &r10_bio->state);
758         /*
759          * Check if we can balance. We can balance on the whole
760          * device if no resync is going on (recovery is ok), or below
761          * the resync window. We take the first readable disk when
762          * above the resync window.
763          */
764         if (conf->mddev->recovery_cp < MaxSector
765             && (this_sector + sectors >= conf->next_resync))
766                 do_balance = 0;
767
768         for (slot = 0; slot < conf->copies ; slot++) {
769                 sector_t first_bad;
770                 int bad_sectors;
771                 sector_t dev_sector;
772
773                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
774                         continue;
775                 disk = r10_bio->devs[slot].devnum;
776                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
777                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
778                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
779                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
780                 if (rdev == NULL ||
781                     test_bit(Faulty, &rdev->flags))
782                         continue;
783                 if (!test_bit(In_sync, &rdev->flags) &&
784                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785                         continue;
786
787                 dev_sector = r10_bio->devs[slot].addr;
788                 if (is_badblock(rdev, dev_sector, sectors,
789                                 &first_bad, &bad_sectors)) {
790                         if (best_dist < MaxSector)
791                                 /* Already have a better slot */
792                                 continue;
793                         if (first_bad <= dev_sector) {
794                                 /* Cannot read here.  If this is the
795                                  * 'primary' device, then we must not read
796                                  * beyond 'bad_sectors' from another device.
797                                  */
798                                 bad_sectors -= (dev_sector - first_bad);
799                                 if (!do_balance && sectors > bad_sectors)
800                                         sectors = bad_sectors;
801                                 if (best_good_sectors > sectors)
802                                         best_good_sectors = sectors;
803                         } else {
804                                 sector_t good_sectors =
805                                         first_bad - dev_sector;
806                                 if (good_sectors > best_good_sectors) {
807                                         best_good_sectors = good_sectors;
808                                         best_slot = slot;
809                                         best_rdev = rdev;
810                                 }
811                                 if (!do_balance)
812                                         /* Must read from here */
813                                         break;
814                         }
815                         continue;
816                 } else
817                         best_good_sectors = sectors;
818
819                 if (!do_balance)
820                         break;
821
822                 if (best_slot >= 0)
823                         /* At least 2 disks to choose from so failfast is OK */
824                         set_bit(R10BIO_FailFast, &r10_bio->state);
825                 /* This optimisation is debatable, and completely destroys
826                  * sequential read speed for 'far copies' arrays.  So only
827                  * keep it for 'near' arrays, and review those later.
828                  */
829                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
830                         new_distance = 0;
831
832                 /* for far > 1 always use the lowest address */
833                 else if (geo->far_copies > 1)
834                         new_distance = r10_bio->devs[slot].addr;
835                 else
836                         new_distance = abs(r10_bio->devs[slot].addr -
837                                            conf->mirrors[disk].head_position);
838                 if (new_distance < best_dist) {
839                         best_dist = new_distance;
840                         best_slot = slot;
841                         best_rdev = rdev;
842                 }
843         }
844         if (slot >= conf->copies) {
845                 slot = best_slot;
846                 rdev = best_rdev;
847         }
848
849         if (slot >= 0) {
850                 atomic_inc(&rdev->nr_pending);
851                 r10_bio->read_slot = slot;
852         } else
853                 rdev = NULL;
854         rcu_read_unlock();
855         *max_sectors = best_good_sectors;
856
857         return rdev;
858 }
859
860 static int raid10_congested(struct mddev *mddev, int bits)
861 {
862         struct r10conf *conf = mddev->private;
863         int i, ret = 0;
864
865         if ((bits & (1 << WB_async_congested)) &&
866             conf->pending_count >= max_queued_requests)
867                 return 1;
868
869         rcu_read_lock();
870         for (i = 0;
871              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872                      && ret == 0;
873              i++) {
874                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876                         struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878                         ret |= bdi_congested(q->backing_dev_info, bits);
879                 }
880         }
881         rcu_read_unlock();
882         return ret;
883 }
884
885 static void flush_pending_writes(struct r10conf *conf)
886 {
887         /* Any writes that have been queued but are awaiting
888          * bitmap updates get flushed here.
889          */
890         spin_lock_irq(&conf->device_lock);
891
892         if (conf->pending_bio_list.head) {
893                 struct bio *bio;
894                 bio = bio_list_get(&conf->pending_bio_list);
895                 conf->pending_count = 0;
896                 spin_unlock_irq(&conf->device_lock);
897                 /* flush any pending bitmap writes to disk
898                  * before proceeding w/ I/O */
899                 bitmap_unplug(conf->mddev->bitmap);
900                 wake_up(&conf->wait_barrier);
901
902                 while (bio) { /* submit pending writes */
903                         struct bio *next = bio->bi_next;
904                         struct md_rdev *rdev = (void*)bio->bi_bdev;
905                         bio->bi_next = NULL;
906                         bio->bi_bdev = rdev->bdev;
907                         if (test_bit(Faulty, &rdev->flags)) {
908                                 bio_io_error(bio);
909                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
910                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
911                                 /* Just ignore it */
912                                 bio_endio(bio);
913                         else
914                                 generic_make_request(bio);
915                         bio = next;
916                 }
917         } else
918                 spin_unlock_irq(&conf->device_lock);
919 }
920
921 /* Barriers....
922  * Sometimes we need to suspend IO while we do something else,
923  * either some resync/recovery, or reconfigure the array.
924  * To do this we raise a 'barrier'.
925  * The 'barrier' is a counter that can be raised multiple times
926  * to count how many activities are happening which preclude
927  * normal IO.
928  * We can only raise the barrier if there is no pending IO.
929  * i.e. if nr_pending == 0.
930  * We choose only to raise the barrier if no-one is waiting for the
931  * barrier to go down.  This means that as soon as an IO request
932  * is ready, no other operations which require a barrier will start
933  * until the IO request has had a chance.
934  *
935  * So: regular IO calls 'wait_barrier'.  When that returns there
936  *    is no backgroup IO happening,  It must arrange to call
937  *    allow_barrier when it has finished its IO.
938  * backgroup IO calls must call raise_barrier.  Once that returns
939  *    there is no normal IO happeing.  It must arrange to call
940  *    lower_barrier when the particular background IO completes.
941  */
942
943 static void raise_barrier(struct r10conf *conf, int force)
944 {
945         BUG_ON(force && !conf->barrier);
946         spin_lock_irq(&conf->resync_lock);
947
948         /* Wait until no block IO is waiting (unless 'force') */
949         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950                             conf->resync_lock);
951
952         /* block any new IO from starting */
953         conf->barrier++;
954
955         /* Now wait for all pending IO to complete */
956         wait_event_lock_irq(conf->wait_barrier,
957                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
958                             conf->resync_lock);
959
960         spin_unlock_irq(&conf->resync_lock);
961 }
962
963 static void lower_barrier(struct r10conf *conf)
964 {
965         unsigned long flags;
966         spin_lock_irqsave(&conf->resync_lock, flags);
967         conf->barrier--;
968         spin_unlock_irqrestore(&conf->resync_lock, flags);
969         wake_up(&conf->wait_barrier);
970 }
971
972 static void wait_barrier(struct r10conf *conf)
973 {
974         spin_lock_irq(&conf->resync_lock);
975         if (conf->barrier) {
976                 conf->nr_waiting++;
977                 /* Wait for the barrier to drop.
978                  * However if there are already pending
979                  * requests (preventing the barrier from
980                  * rising completely), and the
981                  * pre-process bio queue isn't empty,
982                  * then don't wait, as we need to empty
983                  * that queue to get the nr_pending
984                  * count down.
985                  */
986                 raid10_log(conf->mddev, "wait barrier");
987                 wait_event_lock_irq(conf->wait_barrier,
988                                     !conf->barrier ||
989                                     (atomic_read(&conf->nr_pending) &&
990                                      current->bio_list &&
991                                      (!bio_list_empty(&current->bio_list[0]) ||
992                                       !bio_list_empty(&current->bio_list[1]))),
993                                     conf->resync_lock);
994                 conf->nr_waiting--;
995                 if (!conf->nr_waiting)
996                         wake_up(&conf->wait_barrier);
997         }
998         atomic_inc(&conf->nr_pending);
999         spin_unlock_irq(&conf->resync_lock);
1000 }
1001
1002 static void allow_barrier(struct r10conf *conf)
1003 {
1004         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005                         (conf->array_freeze_pending))
1006                 wake_up(&conf->wait_barrier);
1007 }
1008
1009 static void freeze_array(struct r10conf *conf, int extra)
1010 {
1011         /* stop syncio and normal IO and wait for everything to
1012          * go quiet.
1013          * We increment barrier and nr_waiting, and then
1014          * wait until nr_pending match nr_queued+extra
1015          * This is called in the context of one normal IO request
1016          * that has failed. Thus any sync request that might be pending
1017          * will be blocked by nr_pending, and we need to wait for
1018          * pending IO requests to complete or be queued for re-try.
1019          * Thus the number queued (nr_queued) plus this request (extra)
1020          * must match the number of pending IOs (nr_pending) before
1021          * we continue.
1022          */
1023         spin_lock_irq(&conf->resync_lock);
1024         conf->array_freeze_pending++;
1025         conf->barrier++;
1026         conf->nr_waiting++;
1027         wait_event_lock_irq_cmd(conf->wait_barrier,
1028                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029                                 conf->resync_lock,
1030                                 flush_pending_writes(conf));
1031
1032         conf->array_freeze_pending--;
1033         spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static void unfreeze_array(struct r10conf *conf)
1037 {
1038         /* reverse the effect of the freeze */
1039         spin_lock_irq(&conf->resync_lock);
1040         conf->barrier--;
1041         conf->nr_waiting--;
1042         wake_up(&conf->wait_barrier);
1043         spin_unlock_irq(&conf->resync_lock);
1044 }
1045
1046 static sector_t choose_data_offset(struct r10bio *r10_bio,
1047                                    struct md_rdev *rdev)
1048 {
1049         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050             test_bit(R10BIO_Previous, &r10_bio->state))
1051                 return rdev->data_offset;
1052         else
1053                 return rdev->new_data_offset;
1054 }
1055
1056 struct raid10_plug_cb {
1057         struct blk_plug_cb      cb;
1058         struct bio_list         pending;
1059         int                     pending_cnt;
1060 };
1061
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1065                                                    cb);
1066         struct mddev *mddev = plug->cb.data;
1067         struct r10conf *conf = mddev->private;
1068         struct bio *bio;
1069
1070         if (from_schedule || current->bio_list) {
1071                 spin_lock_irq(&conf->device_lock);
1072                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073                 conf->pending_count += plug->pending_cnt;
1074                 spin_unlock_irq(&conf->device_lock);
1075                 wake_up(&conf->wait_barrier);
1076                 md_wakeup_thread(mddev->thread);
1077                 kfree(plug);
1078                 return;
1079         }
1080
1081         /* we aren't scheduling, so we can do the write-out directly. */
1082         bio = bio_list_get(&plug->pending);
1083         bitmap_unplug(mddev->bitmap);
1084         wake_up(&conf->wait_barrier);
1085
1086         while (bio) { /* submit pending writes */
1087                 struct bio *next = bio->bi_next;
1088                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1089                 bio->bi_next = NULL;
1090                 bio->bi_bdev = rdev->bdev;
1091                 if (test_bit(Faulty, &rdev->flags)) {
1092                         bio_io_error(bio);
1093                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1094                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1095                         /* Just ignore it */
1096                         bio_endio(bio);
1097                 else
1098                         generic_make_request(bio);
1099                 bio = next;
1100         }
1101         kfree(plug);
1102 }
1103
1104 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1105                                 struct r10bio *r10_bio)
1106 {
1107         struct r10conf *conf = mddev->private;
1108         struct bio *read_bio;
1109         const int op = bio_op(bio);
1110         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1111         int max_sectors;
1112         sector_t sectors;
1113         struct md_rdev *rdev;
1114         char b[BDEVNAME_SIZE];
1115         int slot = r10_bio->read_slot;
1116         struct md_rdev *err_rdev = NULL;
1117         gfp_t gfp = GFP_NOIO;
1118
1119         if (r10_bio->devs[slot].rdev) {
1120                 /*
1121                  * This is an error retry, but we cannot
1122                  * safely dereference the rdev in the r10_bio,
1123                  * we must use the one in conf.
1124                  * If it has already been disconnected (unlikely)
1125                  * we lose the device name in error messages.
1126                  */
1127                 int disk;
1128                 /*
1129                  * As we are blocking raid10, it is a little safer to
1130                  * use __GFP_HIGH.
1131                  */
1132                 gfp = GFP_NOIO | __GFP_HIGH;
1133
1134                 rcu_read_lock();
1135                 disk = r10_bio->devs[slot].devnum;
1136                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1137                 if (err_rdev)
1138                         bdevname(err_rdev->bdev, b);
1139                 else {
1140                         strcpy(b, "???");
1141                         /* This never gets dereferenced */
1142                         err_rdev = r10_bio->devs[slot].rdev;
1143                 }
1144                 rcu_read_unlock();
1145         }
1146         /*
1147          * Register the new request and wait if the reconstruction
1148          * thread has put up a bar for new requests.
1149          * Continue immediately if no resync is active currently.
1150          */
1151         wait_barrier(conf);
1152
1153         sectors = r10_bio->sectors;
1154         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155             bio->bi_iter.bi_sector < conf->reshape_progress &&
1156             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157                 /*
1158                  * IO spans the reshape position.  Need to wait for reshape to
1159                  * pass
1160                  */
1161                 raid10_log(conf->mddev, "wait reshape");
1162                 allow_barrier(conf);
1163                 wait_event(conf->wait_barrier,
1164                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1166                            sectors);
1167                 wait_barrier(conf);
1168         }
1169
1170         rdev = read_balance(conf, r10_bio, &max_sectors);
1171         if (!rdev) {
1172                 if (err_rdev) {
1173                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174                                             mdname(mddev), b,
1175                                             (unsigned long long)r10_bio->sector);
1176                 }
1177                 raid_end_bio_io(r10_bio);
1178                 return;
1179         }
1180         if (err_rdev)
1181                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182                                    mdname(mddev),
1183                                    bdevname(rdev->bdev, b),
1184                                    (unsigned long long)r10_bio->sector);
1185         if (max_sectors < bio_sectors(bio)) {
1186                 struct bio *split = bio_split(bio, max_sectors,
1187                                               gfp, conf->bio_split);
1188                 bio_chain(split, bio);
1189                 generic_make_request(bio);
1190                 bio = split;
1191                 r10_bio->master_bio = bio;
1192                 r10_bio->sectors = max_sectors;
1193         }
1194         slot = r10_bio->read_slot;
1195
1196         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1197
1198         r10_bio->devs[slot].bio = read_bio;
1199         r10_bio->devs[slot].rdev = rdev;
1200
1201         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1202                 choose_data_offset(r10_bio, rdev);
1203         read_bio->bi_bdev = rdev->bdev;
1204         read_bio->bi_end_io = raid10_end_read_request;
1205         bio_set_op_attrs(read_bio, op, do_sync);
1206         if (test_bit(FailFast, &rdev->flags) &&
1207             test_bit(R10BIO_FailFast, &r10_bio->state))
1208                 read_bio->bi_opf |= MD_FAILFAST;
1209         read_bio->bi_private = r10_bio;
1210
1211         if (mddev->gendisk)
1212                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1213                                       read_bio, disk_devt(mddev->gendisk),
1214                                       r10_bio->sector);
1215         generic_make_request(read_bio);
1216         return;
1217 }
1218
1219 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1220                                   struct bio *bio, bool replacement,
1221                                   int n_copy)
1222 {
1223         const int op = bio_op(bio);
1224         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1226         unsigned long flags;
1227         struct blk_plug_cb *cb;
1228         struct raid10_plug_cb *plug = NULL;
1229         struct r10conf *conf = mddev->private;
1230         struct md_rdev *rdev;
1231         int devnum = r10_bio->devs[n_copy].devnum;
1232         struct bio *mbio;
1233
1234         if (replacement) {
1235                 rdev = conf->mirrors[devnum].replacement;
1236                 if (rdev == NULL) {
1237                         /* Replacement just got moved to main 'rdev' */
1238                         smp_mb();
1239                         rdev = conf->mirrors[devnum].rdev;
1240                 }
1241         } else
1242                 rdev = conf->mirrors[devnum].rdev;
1243
1244         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1245         if (replacement)
1246                 r10_bio->devs[n_copy].repl_bio = mbio;
1247         else
1248                 r10_bio->devs[n_copy].bio = mbio;
1249
1250         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1251                                    choose_data_offset(r10_bio, rdev));
1252         mbio->bi_bdev = rdev->bdev;
1253         mbio->bi_end_io = raid10_end_write_request;
1254         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1255         if (!replacement && test_bit(FailFast,
1256                                      &conf->mirrors[devnum].rdev->flags)
1257                          && enough(conf, devnum))
1258                 mbio->bi_opf |= MD_FAILFAST;
1259         mbio->bi_private = r10_bio;
1260
1261         if (conf->mddev->gendisk)
1262                 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1263                                       mbio, disk_devt(conf->mddev->gendisk),
1264                                       r10_bio->sector);
1265         /* flush_pending_writes() needs access to the rdev so...*/
1266         mbio->bi_bdev = (void *)rdev;
1267
1268         atomic_inc(&r10_bio->remaining);
1269
1270         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1271         if (cb)
1272                 plug = container_of(cb, struct raid10_plug_cb, cb);
1273         else
1274                 plug = NULL;
1275         if (plug) {
1276                 bio_list_add(&plug->pending, mbio);
1277                 plug->pending_cnt++;
1278         } else {
1279                 spin_lock_irqsave(&conf->device_lock, flags);
1280                 bio_list_add(&conf->pending_bio_list, mbio);
1281                 conf->pending_count++;
1282                 spin_unlock_irqrestore(&conf->device_lock, flags);
1283                 md_wakeup_thread(mddev->thread);
1284         }
1285 }
1286
1287 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1288                                  struct r10bio *r10_bio)
1289 {
1290         struct r10conf *conf = mddev->private;
1291         int i;
1292         struct md_rdev *blocked_rdev;
1293         sector_t sectors;
1294         int max_sectors;
1295
1296         /*
1297          * Register the new request and wait if the reconstruction
1298          * thread has put up a bar for new requests.
1299          * Continue immediately if no resync is active currently.
1300          */
1301         wait_barrier(conf);
1302
1303         sectors = r10_bio->sectors;
1304         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305             bio->bi_iter.bi_sector < conf->reshape_progress &&
1306             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1307                 /*
1308                  * IO spans the reshape position.  Need to wait for reshape to
1309                  * pass
1310                  */
1311                 raid10_log(conf->mddev, "wait reshape");
1312                 allow_barrier(conf);
1313                 wait_event(conf->wait_barrier,
1314                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1315                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1316                            sectors);
1317                 wait_barrier(conf);
1318         }
1319
1320         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1321             (mddev->reshape_backwards
1322              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1323                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1324              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1325                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1326                 /* Need to update reshape_position in metadata */
1327                 mddev->reshape_position = conf->reshape_progress;
1328                 set_mask_bits(&mddev->sb_flags, 0,
1329                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1330                 md_wakeup_thread(mddev->thread);
1331                 raid10_log(conf->mddev, "wait reshape metadata");
1332                 wait_event(mddev->sb_wait,
1333                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1334
1335                 conf->reshape_safe = mddev->reshape_position;
1336         }
1337
1338         if (conf->pending_count >= max_queued_requests) {
1339                 md_wakeup_thread(mddev->thread);
1340                 raid10_log(mddev, "wait queued");
1341                 wait_event(conf->wait_barrier,
1342                            conf->pending_count < max_queued_requests);
1343         }
1344         /* first select target devices under rcu_lock and
1345          * inc refcount on their rdev.  Record them by setting
1346          * bios[x] to bio
1347          * If there are known/acknowledged bad blocks on any device
1348          * on which we have seen a write error, we want to avoid
1349          * writing to those blocks.  This potentially requires several
1350          * writes to write around the bad blocks.  Each set of writes
1351          * gets its own r10_bio with a set of bios attached.
1352          */
1353
1354         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1355         raid10_find_phys(conf, r10_bio);
1356 retry_write:
1357         blocked_rdev = NULL;
1358         rcu_read_lock();
1359         max_sectors = r10_bio->sectors;
1360
1361         for (i = 0;  i < conf->copies; i++) {
1362                 int d = r10_bio->devs[i].devnum;
1363                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1364                 struct md_rdev *rrdev = rcu_dereference(
1365                         conf->mirrors[d].replacement);
1366                 if (rdev == rrdev)
1367                         rrdev = NULL;
1368                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1369                         atomic_inc(&rdev->nr_pending);
1370                         blocked_rdev = rdev;
1371                         break;
1372                 }
1373                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1374                         atomic_inc(&rrdev->nr_pending);
1375                         blocked_rdev = rrdev;
1376                         break;
1377                 }
1378                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1379                         rdev = NULL;
1380                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1381                         rrdev = NULL;
1382
1383                 r10_bio->devs[i].bio = NULL;
1384                 r10_bio->devs[i].repl_bio = NULL;
1385
1386                 if (!rdev && !rrdev) {
1387                         set_bit(R10BIO_Degraded, &r10_bio->state);
1388                         continue;
1389                 }
1390                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1391                         sector_t first_bad;
1392                         sector_t dev_sector = r10_bio->devs[i].addr;
1393                         int bad_sectors;
1394                         int is_bad;
1395
1396                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1397                                              &first_bad, &bad_sectors);
1398                         if (is_bad < 0) {
1399                                 /* Mustn't write here until the bad block
1400                                  * is acknowledged
1401                                  */
1402                                 atomic_inc(&rdev->nr_pending);
1403                                 set_bit(BlockedBadBlocks, &rdev->flags);
1404                                 blocked_rdev = rdev;
1405                                 break;
1406                         }
1407                         if (is_bad && first_bad <= dev_sector) {
1408                                 /* Cannot write here at all */
1409                                 bad_sectors -= (dev_sector - first_bad);
1410                                 if (bad_sectors < max_sectors)
1411                                         /* Mustn't write more than bad_sectors
1412                                          * to other devices yet
1413                                          */
1414                                         max_sectors = bad_sectors;
1415                                 /* We don't set R10BIO_Degraded as that
1416                                  * only applies if the disk is missing,
1417                                  * so it might be re-added, and we want to
1418                                  * know to recover this chunk.
1419                                  * In this case the device is here, and the
1420                                  * fact that this chunk is not in-sync is
1421                                  * recorded in the bad block log.
1422                                  */
1423                                 continue;
1424                         }
1425                         if (is_bad) {
1426                                 int good_sectors = first_bad - dev_sector;
1427                                 if (good_sectors < max_sectors)
1428                                         max_sectors = good_sectors;
1429                         }
1430                 }
1431                 if (rdev) {
1432                         r10_bio->devs[i].bio = bio;
1433                         atomic_inc(&rdev->nr_pending);
1434                 }
1435                 if (rrdev) {
1436                         r10_bio->devs[i].repl_bio = bio;
1437                         atomic_inc(&rrdev->nr_pending);
1438                 }
1439         }
1440         rcu_read_unlock();
1441
1442         if (unlikely(blocked_rdev)) {
1443                 /* Have to wait for this device to get unblocked, then retry */
1444                 int j;
1445                 int d;
1446
1447                 for (j = 0; j < i; j++) {
1448                         if (r10_bio->devs[j].bio) {
1449                                 d = r10_bio->devs[j].devnum;
1450                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1451                         }
1452                         if (r10_bio->devs[j].repl_bio) {
1453                                 struct md_rdev *rdev;
1454                                 d = r10_bio->devs[j].devnum;
1455                                 rdev = conf->mirrors[d].replacement;
1456                                 if (!rdev) {
1457                                         /* Race with remove_disk */
1458                                         smp_mb();
1459                                         rdev = conf->mirrors[d].rdev;
1460                                 }
1461                                 rdev_dec_pending(rdev, mddev);
1462                         }
1463                 }
1464                 allow_barrier(conf);
1465                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1466                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1467                 wait_barrier(conf);
1468                 goto retry_write;
1469         }
1470
1471         if (max_sectors < r10_bio->sectors)
1472                 r10_bio->sectors = max_sectors;
1473
1474         if (r10_bio->sectors < bio_sectors(bio)) {
1475                 struct bio *split = bio_split(bio, r10_bio->sectors,
1476                                               GFP_NOIO, conf->bio_split);
1477                 bio_chain(split, bio);
1478                 generic_make_request(bio);
1479                 bio = split;
1480                 r10_bio->master_bio = bio;
1481         }
1482
1483         atomic_set(&r10_bio->remaining, 1);
1484         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1485
1486         for (i = 0; i < conf->copies; i++) {
1487                 if (r10_bio->devs[i].bio)
1488                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1489                 if (r10_bio->devs[i].repl_bio)
1490                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1491         }
1492         one_write_done(r10_bio);
1493 }
1494
1495 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1496 {
1497         struct r10conf *conf = mddev->private;
1498         struct r10bio *r10_bio;
1499
1500         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1501
1502         r10_bio->master_bio = bio;
1503         r10_bio->sectors = sectors;
1504
1505         r10_bio->mddev = mddev;
1506         r10_bio->sector = bio->bi_iter.bi_sector;
1507         r10_bio->state = 0;
1508         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1509
1510         if (bio_data_dir(bio) == READ)
1511                 raid10_read_request(mddev, bio, r10_bio);
1512         else
1513                 raid10_write_request(mddev, bio, r10_bio);
1514 }
1515
1516 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1517 {
1518         struct r10conf *conf = mddev->private;
1519         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1520         int chunk_sects = chunk_mask + 1;
1521         int sectors = bio_sectors(bio);
1522
1523         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1524                 md_flush_request(mddev, bio);
1525                 return true;
1526         }
1527
1528         if (!md_write_start(mddev, bio))
1529                 return false;
1530
1531         /*
1532          * If this request crosses a chunk boundary, we need to split
1533          * it.
1534          */
1535         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1536                      sectors > chunk_sects
1537                      && (conf->geo.near_copies < conf->geo.raid_disks
1538                          || conf->prev.near_copies <
1539                          conf->prev.raid_disks)))
1540                 sectors = chunk_sects -
1541                         (bio->bi_iter.bi_sector &
1542                          (chunk_sects - 1));
1543         __make_request(mddev, bio, sectors);
1544
1545         /* In case raid10d snuck in to freeze_array */
1546         wake_up(&conf->wait_barrier);
1547         return true;
1548 }
1549
1550 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1551 {
1552         struct r10conf *conf = mddev->private;
1553         int i;
1554
1555         if (conf->geo.near_copies < conf->geo.raid_disks)
1556                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1557         if (conf->geo.near_copies > 1)
1558                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1559         if (conf->geo.far_copies > 1) {
1560                 if (conf->geo.far_offset)
1561                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1562                 else
1563                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1564                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1565                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1566         }
1567         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1568                                         conf->geo.raid_disks - mddev->degraded);
1569         rcu_read_lock();
1570         for (i = 0; i < conf->geo.raid_disks; i++) {
1571                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1573         }
1574         rcu_read_unlock();
1575         seq_printf(seq, "]");
1576 }
1577
1578 /* check if there are enough drives for
1579  * every block to appear on atleast one.
1580  * Don't consider the device numbered 'ignore'
1581  * as we might be about to remove it.
1582  */
1583 static int _enough(struct r10conf *conf, int previous, int ignore)
1584 {
1585         int first = 0;
1586         int has_enough = 0;
1587         int disks, ncopies;
1588         if (previous) {
1589                 disks = conf->prev.raid_disks;
1590                 ncopies = conf->prev.near_copies;
1591         } else {
1592                 disks = conf->geo.raid_disks;
1593                 ncopies = conf->geo.near_copies;
1594         }
1595
1596         rcu_read_lock();
1597         do {
1598                 int n = conf->copies;
1599                 int cnt = 0;
1600                 int this = first;
1601                 while (n--) {
1602                         struct md_rdev *rdev;
1603                         if (this != ignore &&
1604                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1605                             test_bit(In_sync, &rdev->flags))
1606                                 cnt++;
1607                         this = (this+1) % disks;
1608                 }
1609                 if (cnt == 0)
1610                         goto out;
1611                 first = (first + ncopies) % disks;
1612         } while (first != 0);
1613         has_enough = 1;
1614 out:
1615         rcu_read_unlock();
1616         return has_enough;
1617 }
1618
1619 static int enough(struct r10conf *conf, int ignore)
1620 {
1621         /* when calling 'enough', both 'prev' and 'geo' must
1622          * be stable.
1623          * This is ensured if ->reconfig_mutex or ->device_lock
1624          * is held.
1625          */
1626         return _enough(conf, 0, ignore) &&
1627                 _enough(conf, 1, ignore);
1628 }
1629
1630 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632         char b[BDEVNAME_SIZE];
1633         struct r10conf *conf = mddev->private;
1634         unsigned long flags;
1635
1636         /*
1637          * If it is not operational, then we have already marked it as dead
1638          * else if it is the last working disks, ignore the error, let the
1639          * next level up know.
1640          * else mark the drive as failed
1641          */
1642         spin_lock_irqsave(&conf->device_lock, flags);
1643         if (test_bit(In_sync, &rdev->flags)
1644             && !enough(conf, rdev->raid_disk)) {
1645                 /*
1646                  * Don't fail the drive, just return an IO error.
1647                  */
1648                 spin_unlock_irqrestore(&conf->device_lock, flags);
1649                 return;
1650         }
1651         if (test_and_clear_bit(In_sync, &rdev->flags))
1652                 mddev->degraded++;
1653         /*
1654          * If recovery is running, make sure it aborts.
1655          */
1656         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657         set_bit(Blocked, &rdev->flags);
1658         set_bit(Faulty, &rdev->flags);
1659         set_mask_bits(&mddev->sb_flags, 0,
1660                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661         spin_unlock_irqrestore(&conf->device_lock, flags);
1662         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1663                 "md/raid10:%s: Operation continuing on %d devices.\n",
1664                 mdname(mddev), bdevname(rdev->bdev, b),
1665                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1666 }
1667
1668 static void print_conf(struct r10conf *conf)
1669 {
1670         int i;
1671         struct md_rdev *rdev;
1672
1673         pr_debug("RAID10 conf printout:\n");
1674         if (!conf) {
1675                 pr_debug("(!conf)\n");
1676                 return;
1677         }
1678         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1679                  conf->geo.raid_disks);
1680
1681         /* This is only called with ->reconfix_mutex held, so
1682          * rcu protection of rdev is not needed */
1683         for (i = 0; i < conf->geo.raid_disks; i++) {
1684                 char b[BDEVNAME_SIZE];
1685                 rdev = conf->mirrors[i].rdev;
1686                 if (rdev)
1687                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1688                                  i, !test_bit(In_sync, &rdev->flags),
1689                                  !test_bit(Faulty, &rdev->flags),
1690                                  bdevname(rdev->bdev,b));
1691         }
1692 }
1693
1694 static void close_sync(struct r10conf *conf)
1695 {
1696         wait_barrier(conf);
1697         allow_barrier(conf);
1698
1699         mempool_destroy(conf->r10buf_pool);
1700         conf->r10buf_pool = NULL;
1701 }
1702
1703 static int raid10_spare_active(struct mddev *mddev)
1704 {
1705         int i;
1706         struct r10conf *conf = mddev->private;
1707         struct raid10_info *tmp;
1708         int count = 0;
1709         unsigned long flags;
1710
1711         /*
1712          * Find all non-in_sync disks within the RAID10 configuration
1713          * and mark them in_sync
1714          */
1715         for (i = 0; i < conf->geo.raid_disks; i++) {
1716                 tmp = conf->mirrors + i;
1717                 if (tmp->replacement
1718                     && tmp->replacement->recovery_offset == MaxSector
1719                     && !test_bit(Faulty, &tmp->replacement->flags)
1720                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1721                         /* Replacement has just become active */
1722                         if (!tmp->rdev
1723                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1724                                 count++;
1725                         if (tmp->rdev) {
1726                                 /* Replaced device not technically faulty,
1727                                  * but we need to be sure it gets removed
1728                                  * and never re-added.
1729                                  */
1730                                 set_bit(Faulty, &tmp->rdev->flags);
1731                                 sysfs_notify_dirent_safe(
1732                                         tmp->rdev->sysfs_state);
1733                         }
1734                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1735                 } else if (tmp->rdev
1736                            && tmp->rdev->recovery_offset == MaxSector
1737                            && !test_bit(Faulty, &tmp->rdev->flags)
1738                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1739                         count++;
1740                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1741                 }
1742         }
1743         spin_lock_irqsave(&conf->device_lock, flags);
1744         mddev->degraded -= count;
1745         spin_unlock_irqrestore(&conf->device_lock, flags);
1746
1747         print_conf(conf);
1748         return count;
1749 }
1750
1751 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753         struct r10conf *conf = mddev->private;
1754         int err = -EEXIST;
1755         int mirror;
1756         int first = 0;
1757         int last = conf->geo.raid_disks - 1;
1758
1759         if (mddev->recovery_cp < MaxSector)
1760                 /* only hot-add to in-sync arrays, as recovery is
1761                  * very different from resync
1762                  */
1763                 return -EBUSY;
1764         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1765                 return -EINVAL;
1766
1767         if (md_integrity_add_rdev(rdev, mddev))
1768                 return -ENXIO;
1769
1770         if (rdev->raid_disk >= 0)
1771                 first = last = rdev->raid_disk;
1772
1773         if (rdev->saved_raid_disk >= first &&
1774             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1775                 mirror = rdev->saved_raid_disk;
1776         else
1777                 mirror = first;
1778         for ( ; mirror <= last ; mirror++) {
1779                 struct raid10_info *p = &conf->mirrors[mirror];
1780                 if (p->recovery_disabled == mddev->recovery_disabled)
1781                         continue;
1782                 if (p->rdev) {
1783                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1784                             p->replacement != NULL)
1785                                 continue;
1786                         clear_bit(In_sync, &rdev->flags);
1787                         set_bit(Replacement, &rdev->flags);
1788                         rdev->raid_disk = mirror;
1789                         err = 0;
1790                         if (mddev->gendisk)
1791                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1792                                                   rdev->data_offset << 9);
1793                         conf->fullsync = 1;
1794                         rcu_assign_pointer(p->replacement, rdev);
1795                         break;
1796                 }
1797
1798                 if (mddev->gendisk)
1799                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1800                                           rdev->data_offset << 9);
1801
1802                 p->head_position = 0;
1803                 p->recovery_disabled = mddev->recovery_disabled - 1;
1804                 rdev->raid_disk = mirror;
1805                 err = 0;
1806                 if (rdev->saved_raid_disk != mirror)
1807                         conf->fullsync = 1;
1808                 rcu_assign_pointer(p->rdev, rdev);
1809                 break;
1810         }
1811         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813
1814         print_conf(conf);
1815         return err;
1816 }
1817
1818 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820         struct r10conf *conf = mddev->private;
1821         int err = 0;
1822         int number = rdev->raid_disk;
1823         struct md_rdev **rdevp;
1824         struct raid10_info *p = conf->mirrors + number;
1825
1826         print_conf(conf);
1827         if (rdev == p->rdev)
1828                 rdevp = &p->rdev;
1829         else if (rdev == p->replacement)
1830                 rdevp = &p->replacement;
1831         else
1832                 return 0;
1833
1834         if (test_bit(In_sync, &rdev->flags) ||
1835             atomic_read(&rdev->nr_pending)) {
1836                 err = -EBUSY;
1837                 goto abort;
1838         }
1839         /* Only remove non-faulty devices if recovery
1840          * is not possible.
1841          */
1842         if (!test_bit(Faulty, &rdev->flags) &&
1843             mddev->recovery_disabled != p->recovery_disabled &&
1844             (!p->replacement || p->replacement == rdev) &&
1845             number < conf->geo.raid_disks &&
1846             enough(conf, -1)) {
1847                 err = -EBUSY;
1848                 goto abort;
1849         }
1850         *rdevp = NULL;
1851         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1852                 synchronize_rcu();
1853                 if (atomic_read(&rdev->nr_pending)) {
1854                         /* lost the race, try later */
1855                         err = -EBUSY;
1856                         *rdevp = rdev;
1857                         goto abort;
1858                 }
1859         }
1860         if (p->replacement) {
1861                 /* We must have just cleared 'rdev' */
1862                 p->rdev = p->replacement;
1863                 clear_bit(Replacement, &p->replacement->flags);
1864                 smp_mb(); /* Make sure other CPUs may see both as identical
1865                            * but will never see neither -- if they are careful.
1866                            */
1867                 p->replacement = NULL;
1868         }
1869
1870         clear_bit(WantReplacement, &rdev->flags);
1871         err = md_integrity_register(mddev);
1872
1873 abort:
1874
1875         print_conf(conf);
1876         return err;
1877 }
1878
1879 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1880 {
1881         struct r10conf *conf = r10_bio->mddev->private;
1882
1883         if (!bio->bi_status)
1884                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1885         else
1886                 /* The write handler will notice the lack of
1887                  * R10BIO_Uptodate and record any errors etc
1888                  */
1889                 atomic_add(r10_bio->sectors,
1890                            &conf->mirrors[d].rdev->corrected_errors);
1891
1892         /* for reconstruct, we always reschedule after a read.
1893          * for resync, only after all reads
1894          */
1895         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1896         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1897             atomic_dec_and_test(&r10_bio->remaining)) {
1898                 /* we have read all the blocks,
1899                  * do the comparison in process context in raid10d
1900                  */
1901                 reschedule_retry(r10_bio);
1902         }
1903 }
1904
1905 static void end_sync_read(struct bio *bio)
1906 {
1907         struct r10bio *r10_bio = get_resync_r10bio(bio);
1908         struct r10conf *conf = r10_bio->mddev->private;
1909         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1910
1911         __end_sync_read(r10_bio, bio, d);
1912 }
1913
1914 static void end_reshape_read(struct bio *bio)
1915 {
1916         /* reshape read bio isn't allocated from r10buf_pool */
1917         struct r10bio *r10_bio = bio->bi_private;
1918
1919         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1920 }
1921
1922 static void end_sync_request(struct r10bio *r10_bio)
1923 {
1924         struct mddev *mddev = r10_bio->mddev;
1925
1926         while (atomic_dec_and_test(&r10_bio->remaining)) {
1927                 if (r10_bio->master_bio == NULL) {
1928                         /* the primary of several recovery bios */
1929                         sector_t s = r10_bio->sectors;
1930                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931                             test_bit(R10BIO_WriteError, &r10_bio->state))
1932                                 reschedule_retry(r10_bio);
1933                         else
1934                                 put_buf(r10_bio);
1935                         md_done_sync(mddev, s, 1);
1936                         break;
1937                 } else {
1938                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1939                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940                             test_bit(R10BIO_WriteError, &r10_bio->state))
1941                                 reschedule_retry(r10_bio);
1942                         else
1943                                 put_buf(r10_bio);
1944                         r10_bio = r10_bio2;
1945                 }
1946         }
1947 }
1948
1949 static void end_sync_write(struct bio *bio)
1950 {
1951         struct r10bio *r10_bio = get_resync_r10bio(bio);
1952         struct mddev *mddev = r10_bio->mddev;
1953         struct r10conf *conf = mddev->private;
1954         int d;
1955         sector_t first_bad;
1956         int bad_sectors;
1957         int slot;
1958         int repl;
1959         struct md_rdev *rdev = NULL;
1960
1961         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1962         if (repl)
1963                 rdev = conf->mirrors[d].replacement;
1964         else
1965                 rdev = conf->mirrors[d].rdev;
1966
1967         if (bio->bi_status) {
1968                 if (repl)
1969                         md_error(mddev, rdev);
1970                 else {
1971                         set_bit(WriteErrorSeen, &rdev->flags);
1972                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1973                                 set_bit(MD_RECOVERY_NEEDED,
1974                                         &rdev->mddev->recovery);
1975                         set_bit(R10BIO_WriteError, &r10_bio->state);
1976                 }
1977         } else if (is_badblock(rdev,
1978                              r10_bio->devs[slot].addr,
1979                              r10_bio->sectors,
1980                              &first_bad, &bad_sectors))
1981                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1982
1983         rdev_dec_pending(rdev, mddev);
1984
1985         end_sync_request(r10_bio);
1986 }
1987
1988 /*
1989  * Note: sync and recover and handled very differently for raid10
1990  * This code is for resync.
1991  * For resync, we read through virtual addresses and read all blocks.
1992  * If there is any error, we schedule a write.  The lowest numbered
1993  * drive is authoritative.
1994  * However requests come for physical address, so we need to map.
1995  * For every physical address there are raid_disks/copies virtual addresses,
1996  * which is always are least one, but is not necessarly an integer.
1997  * This means that a physical address can span multiple chunks, so we may
1998  * have to submit multiple io requests for a single sync request.
1999  */
2000 /*
2001  * We check if all blocks are in-sync and only write to blocks that
2002  * aren't in sync
2003  */
2004 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2005 {
2006         struct r10conf *conf = mddev->private;
2007         int i, first;
2008         struct bio *tbio, *fbio;
2009         int vcnt;
2010         struct page **tpages, **fpages;
2011
2012         atomic_set(&r10_bio->remaining, 1);
2013
2014         /* find the first device with a block */
2015         for (i=0; i<conf->copies; i++)
2016                 if (!r10_bio->devs[i].bio->bi_status)
2017                         break;
2018
2019         if (i == conf->copies)
2020                 goto done;
2021
2022         first = i;
2023         fbio = r10_bio->devs[i].bio;
2024         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2025         fbio->bi_iter.bi_idx = 0;
2026         fpages = get_resync_pages(fbio)->pages;
2027
2028         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2029         /* now find blocks with errors */
2030         for (i=0 ; i < conf->copies ; i++) {
2031                 int  j, d;
2032                 struct md_rdev *rdev;
2033                 struct resync_pages *rp;
2034
2035                 tbio = r10_bio->devs[i].bio;
2036
2037                 if (tbio->bi_end_io != end_sync_read)
2038                         continue;
2039                 if (i == first)
2040                         continue;
2041
2042                 tpages = get_resync_pages(tbio)->pages;
2043                 d = r10_bio->devs[i].devnum;
2044                 rdev = conf->mirrors[d].rdev;
2045                 if (!r10_bio->devs[i].bio->bi_status) {
2046                         /* We know that the bi_io_vec layout is the same for
2047                          * both 'first' and 'i', so we just compare them.
2048                          * All vec entries are PAGE_SIZE;
2049                          */
2050                         int sectors = r10_bio->sectors;
2051                         for (j = 0; j < vcnt; j++) {
2052                                 int len = PAGE_SIZE;
2053                                 if (sectors < (len / 512))
2054                                         len = sectors * 512;
2055                                 if (memcmp(page_address(fpages[j]),
2056                                            page_address(tpages[j]),
2057                                            len))
2058                                         break;
2059                                 sectors -= len/512;
2060                         }
2061                         if (j == vcnt)
2062                                 continue;
2063                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2064                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2065                                 /* Don't fix anything. */
2066                                 continue;
2067                 } else if (test_bit(FailFast, &rdev->flags)) {
2068                         /* Just give up on this device */
2069                         md_error(rdev->mddev, rdev);
2070                         continue;
2071                 }
2072                 /* Ok, we need to write this bio, either to correct an
2073                  * inconsistency or to correct an unreadable block.
2074                  * First we need to fixup bv_offset, bv_len and
2075                  * bi_vecs, as the read request might have corrupted these
2076                  */
2077                 rp = get_resync_pages(tbio);
2078                 bio_reset(tbio);
2079
2080                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2081
2082                 rp->raid_bio = r10_bio;
2083                 tbio->bi_private = rp;
2084                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2085                 tbio->bi_end_io = end_sync_write;
2086                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2087
2088                 bio_copy_data(tbio, fbio);
2089
2090                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2091                 atomic_inc(&r10_bio->remaining);
2092                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2093
2094                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2095                         tbio->bi_opf |= MD_FAILFAST;
2096                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2097                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2098                 generic_make_request(tbio);
2099         }
2100
2101         /* Now write out to any replacement devices
2102          * that are active
2103          */
2104         for (i = 0; i < conf->copies; i++) {
2105                 int d;
2106
2107                 tbio = r10_bio->devs[i].repl_bio;
2108                 if (!tbio || !tbio->bi_end_io)
2109                         continue;
2110                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2111                     && r10_bio->devs[i].bio != fbio)
2112                         bio_copy_data(tbio, fbio);
2113                 d = r10_bio->devs[i].devnum;
2114                 atomic_inc(&r10_bio->remaining);
2115                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2116                              bio_sectors(tbio));
2117                 generic_make_request(tbio);
2118         }
2119
2120 done:
2121         if (atomic_dec_and_test(&r10_bio->remaining)) {
2122                 md_done_sync(mddev, r10_bio->sectors, 1);
2123                 put_buf(r10_bio);
2124         }
2125 }
2126
2127 /*
2128  * Now for the recovery code.
2129  * Recovery happens across physical sectors.
2130  * We recover all non-is_sync drives by finding the virtual address of
2131  * each, and then choose a working drive that also has that virt address.
2132  * There is a separate r10_bio for each non-in_sync drive.
2133  * Only the first two slots are in use. The first for reading,
2134  * The second for writing.
2135  *
2136  */
2137 static void fix_recovery_read_error(struct r10bio *r10_bio)
2138 {
2139         /* We got a read error during recovery.
2140          * We repeat the read in smaller page-sized sections.
2141          * If a read succeeds, write it to the new device or record
2142          * a bad block if we cannot.
2143          * If a read fails, record a bad block on both old and
2144          * new devices.
2145          */
2146         struct mddev *mddev = r10_bio->mddev;
2147         struct r10conf *conf = mddev->private;
2148         struct bio *bio = r10_bio->devs[0].bio;
2149         sector_t sect = 0;
2150         int sectors = r10_bio->sectors;
2151         int idx = 0;
2152         int dr = r10_bio->devs[0].devnum;
2153         int dw = r10_bio->devs[1].devnum;
2154         struct page **pages = get_resync_pages(bio)->pages;
2155
2156         while (sectors) {
2157                 int s = sectors;
2158                 struct md_rdev *rdev;
2159                 sector_t addr;
2160                 int ok;
2161
2162                 if (s > (PAGE_SIZE>>9))
2163                         s = PAGE_SIZE >> 9;
2164
2165                 rdev = conf->mirrors[dr].rdev;
2166                 addr = r10_bio->devs[0].addr + sect,
2167                 ok = sync_page_io(rdev,
2168                                   addr,
2169                                   s << 9,
2170                                   pages[idx],
2171                                   REQ_OP_READ, 0, false);
2172                 if (ok) {
2173                         rdev = conf->mirrors[dw].rdev;
2174                         addr = r10_bio->devs[1].addr + sect;
2175                         ok = sync_page_io(rdev,
2176                                           addr,
2177                                           s << 9,
2178                                           pages[idx],
2179                                           REQ_OP_WRITE, 0, false);
2180                         if (!ok) {
2181                                 set_bit(WriteErrorSeen, &rdev->flags);
2182                                 if (!test_and_set_bit(WantReplacement,
2183                                                       &rdev->flags))
2184                                         set_bit(MD_RECOVERY_NEEDED,
2185                                                 &rdev->mddev->recovery);
2186                         }
2187                 }
2188                 if (!ok) {
2189                         /* We don't worry if we cannot set a bad block -
2190                          * it really is bad so there is no loss in not
2191                          * recording it yet
2192                          */
2193                         rdev_set_badblocks(rdev, addr, s, 0);
2194
2195                         if (rdev != conf->mirrors[dw].rdev) {
2196                                 /* need bad block on destination too */
2197                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2198                                 addr = r10_bio->devs[1].addr + sect;
2199                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2200                                 if (!ok) {
2201                                         /* just abort the recovery */
2202                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2203                                                   mdname(mddev));
2204
2205                                         conf->mirrors[dw].recovery_disabled
2206                                                 = mddev->recovery_disabled;
2207                                         set_bit(MD_RECOVERY_INTR,
2208                                                 &mddev->recovery);
2209                                         break;
2210                                 }
2211                         }
2212                 }
2213
2214                 sectors -= s;
2215                 sect += s;
2216                 idx++;
2217         }
2218 }
2219
2220 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2221 {
2222         struct r10conf *conf = mddev->private;
2223         int d;
2224         struct bio *wbio, *wbio2;
2225
2226         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2227                 fix_recovery_read_error(r10_bio);
2228                 end_sync_request(r10_bio);
2229                 return;
2230         }
2231
2232         /*
2233          * share the pages with the first bio
2234          * and submit the write request
2235          */
2236         d = r10_bio->devs[1].devnum;
2237         wbio = r10_bio->devs[1].bio;
2238         wbio2 = r10_bio->devs[1].repl_bio;
2239         /* Need to test wbio2->bi_end_io before we call
2240          * generic_make_request as if the former is NULL,
2241          * the latter is free to free wbio2.
2242          */
2243         if (wbio2 && !wbio2->bi_end_io)
2244                 wbio2 = NULL;
2245         if (wbio->bi_end_io) {
2246                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2247                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2248                 generic_make_request(wbio);
2249         }
2250         if (wbio2) {
2251                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2252                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2253                              bio_sectors(wbio2));
2254                 generic_make_request(wbio2);
2255         }
2256 }
2257
2258 /*
2259  * Used by fix_read_error() to decay the per rdev read_errors.
2260  * We halve the read error count for every hour that has elapsed
2261  * since the last recorded read error.
2262  *
2263  */
2264 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2265 {
2266         long cur_time_mon;
2267         unsigned long hours_since_last;
2268         unsigned int read_errors = atomic_read(&rdev->read_errors);
2269
2270         cur_time_mon = ktime_get_seconds();
2271
2272         if (rdev->last_read_error == 0) {
2273                 /* first time we've seen a read error */
2274                 rdev->last_read_error = cur_time_mon;
2275                 return;
2276         }
2277
2278         hours_since_last = (long)(cur_time_mon -
2279                             rdev->last_read_error) / 3600;
2280
2281         rdev->last_read_error = cur_time_mon;
2282
2283         /*
2284          * if hours_since_last is > the number of bits in read_errors
2285          * just set read errors to 0. We do this to avoid
2286          * overflowing the shift of read_errors by hours_since_last.
2287          */
2288         if (hours_since_last >= 8 * sizeof(read_errors))
2289                 atomic_set(&rdev->read_errors, 0);
2290         else
2291                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2292 }
2293
2294 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2295                             int sectors, struct page *page, int rw)
2296 {
2297         sector_t first_bad;
2298         int bad_sectors;
2299
2300         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2301             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2302                 return -1;
2303         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2304                 /* success */
2305                 return 1;
2306         if (rw == WRITE) {
2307                 set_bit(WriteErrorSeen, &rdev->flags);
2308                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309                         set_bit(MD_RECOVERY_NEEDED,
2310                                 &rdev->mddev->recovery);
2311         }
2312         /* need to record an error - either for the block or the device */
2313         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2314                 md_error(rdev->mddev, rdev);
2315         return 0;
2316 }
2317
2318 /*
2319  * This is a kernel thread which:
2320  *
2321  *      1.      Retries failed read operations on working mirrors.
2322  *      2.      Updates the raid superblock when problems encounter.
2323  *      3.      Performs writes following reads for array synchronising.
2324  */
2325
2326 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2327 {
2328         int sect = 0; /* Offset from r10_bio->sector */
2329         int sectors = r10_bio->sectors;
2330         struct md_rdev*rdev;
2331         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2332         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2333
2334         /* still own a reference to this rdev, so it cannot
2335          * have been cleared recently.
2336          */
2337         rdev = conf->mirrors[d].rdev;
2338
2339         if (test_bit(Faulty, &rdev->flags))
2340                 /* drive has already been failed, just ignore any
2341                    more fix_read_error() attempts */
2342                 return;
2343
2344         check_decay_read_errors(mddev, rdev);
2345         atomic_inc(&rdev->read_errors);
2346         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2347                 char b[BDEVNAME_SIZE];
2348                 bdevname(rdev->bdev, b);
2349
2350                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2351                           mdname(mddev), b,
2352                           atomic_read(&rdev->read_errors), max_read_errors);
2353                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2354                           mdname(mddev), b);
2355                 md_error(mddev, rdev);
2356                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2357                 return;
2358         }
2359
2360         while(sectors) {
2361                 int s = sectors;
2362                 int sl = r10_bio->read_slot;
2363                 int success = 0;
2364                 int start;
2365
2366                 if (s > (PAGE_SIZE>>9))
2367                         s = PAGE_SIZE >> 9;
2368
2369                 rcu_read_lock();
2370                 do {
2371                         sector_t first_bad;
2372                         int bad_sectors;
2373
2374                         d = r10_bio->devs[sl].devnum;
2375                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2376                         if (rdev &&
2377                             test_bit(In_sync, &rdev->flags) &&
2378                             !test_bit(Faulty, &rdev->flags) &&
2379                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2380                                         &first_bad, &bad_sectors) == 0) {
2381                                 atomic_inc(&rdev->nr_pending);
2382                                 rcu_read_unlock();
2383                                 success = sync_page_io(rdev,
2384                                                        r10_bio->devs[sl].addr +
2385                                                        sect,
2386                                                        s<<9,
2387                                                        conf->tmppage,
2388                                                        REQ_OP_READ, 0, false);
2389                                 rdev_dec_pending(rdev, mddev);
2390                                 rcu_read_lock();
2391                                 if (success)
2392                                         break;
2393                         }
2394                         sl++;
2395                         if (sl == conf->copies)
2396                                 sl = 0;
2397                 } while (!success && sl != r10_bio->read_slot);
2398                 rcu_read_unlock();
2399
2400                 if (!success) {
2401                         /* Cannot read from anywhere, just mark the block
2402                          * as bad on the first device to discourage future
2403                          * reads.
2404                          */
2405                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2406                         rdev = conf->mirrors[dn].rdev;
2407
2408                         if (!rdev_set_badblocks(
2409                                     rdev,
2410                                     r10_bio->devs[r10_bio->read_slot].addr
2411                                     + sect,
2412                                     s, 0)) {
2413                                 md_error(mddev, rdev);
2414                                 r10_bio->devs[r10_bio->read_slot].bio
2415                                         = IO_BLOCKED;
2416                         }
2417                         break;
2418                 }
2419
2420                 start = sl;
2421                 /* write it back and re-read */
2422                 rcu_read_lock();
2423                 while (sl != r10_bio->read_slot) {
2424                         char b[BDEVNAME_SIZE];
2425
2426                         if (sl==0)
2427                                 sl = conf->copies;
2428                         sl--;
2429                         d = r10_bio->devs[sl].devnum;
2430                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2431                         if (!rdev ||
2432                             test_bit(Faulty, &rdev->flags) ||
2433                             !test_bit(In_sync, &rdev->flags))
2434                                 continue;
2435
2436                         atomic_inc(&rdev->nr_pending);
2437                         rcu_read_unlock();
2438                         if (r10_sync_page_io(rdev,
2439                                              r10_bio->devs[sl].addr +
2440                                              sect,
2441                                              s, conf->tmppage, WRITE)
2442                             == 0) {
2443                                 /* Well, this device is dead */
2444                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2445                                           mdname(mddev), s,
2446                                           (unsigned long long)(
2447                                                   sect +
2448                                                   choose_data_offset(r10_bio,
2449                                                                      rdev)),
2450                                           bdevname(rdev->bdev, b));
2451                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2452                                           mdname(mddev),
2453                                           bdevname(rdev->bdev, b));
2454                         }
2455                         rdev_dec_pending(rdev, mddev);
2456                         rcu_read_lock();
2457                 }
2458                 sl = start;
2459                 while (sl != r10_bio->read_slot) {
2460                         char b[BDEVNAME_SIZE];
2461
2462                         if (sl==0)
2463                                 sl = conf->copies;
2464                         sl--;
2465                         d = r10_bio->devs[sl].devnum;
2466                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2467                         if (!rdev ||
2468                             test_bit(Faulty, &rdev->flags) ||
2469                             !test_bit(In_sync, &rdev->flags))
2470                                 continue;
2471
2472                         atomic_inc(&rdev->nr_pending);
2473                         rcu_read_unlock();
2474                         switch (r10_sync_page_io(rdev,
2475                                              r10_bio->devs[sl].addr +
2476                                              sect,
2477                                              s, conf->tmppage,
2478                                                  READ)) {
2479                         case 0:
2480                                 /* Well, this device is dead */
2481                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2482                                        mdname(mddev), s,
2483                                        (unsigned long long)(
2484                                                sect +
2485                                                choose_data_offset(r10_bio, rdev)),
2486                                        bdevname(rdev->bdev, b));
2487                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2488                                        mdname(mddev),
2489                                        bdevname(rdev->bdev, b));
2490                                 break;
2491                         case 1:
2492                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2493                                        mdname(mddev), s,
2494                                        (unsigned long long)(
2495                                                sect +
2496                                                choose_data_offset(r10_bio, rdev)),
2497                                        bdevname(rdev->bdev, b));
2498                                 atomic_add(s, &rdev->corrected_errors);
2499                         }
2500
2501                         rdev_dec_pending(rdev, mddev);
2502                         rcu_read_lock();
2503                 }
2504                 rcu_read_unlock();
2505
2506                 sectors -= s;
2507                 sect += s;
2508         }
2509 }
2510
2511 static int narrow_write_error(struct r10bio *r10_bio, int i)
2512 {
2513         struct bio *bio = r10_bio->master_bio;
2514         struct mddev *mddev = r10_bio->mddev;
2515         struct r10conf *conf = mddev->private;
2516         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2517         /* bio has the data to be written to slot 'i' where
2518          * we just recently had a write error.
2519          * We repeatedly clone the bio and trim down to one block,
2520          * then try the write.  Where the write fails we record
2521          * a bad block.
2522          * It is conceivable that the bio doesn't exactly align with
2523          * blocks.  We must handle this.
2524          *
2525          * We currently own a reference to the rdev.
2526          */
2527
2528         int block_sectors;
2529         sector_t sector;
2530         int sectors;
2531         int sect_to_write = r10_bio->sectors;
2532         int ok = 1;
2533
2534         if (rdev->badblocks.shift < 0)
2535                 return 0;
2536
2537         block_sectors = roundup(1 << rdev->badblocks.shift,
2538                                 bdev_logical_block_size(rdev->bdev) >> 9);
2539         sector = r10_bio->sector;
2540         sectors = ((r10_bio->sector + block_sectors)
2541                    & ~(sector_t)(block_sectors - 1))
2542                 - sector;
2543
2544         while (sect_to_write) {
2545                 struct bio *wbio;
2546                 sector_t wsector;
2547                 if (sectors > sect_to_write)
2548                         sectors = sect_to_write;
2549                 /* Write at 'sector' for 'sectors' */
2550                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2551                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2552                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2553                 wbio->bi_iter.bi_sector = wsector +
2554                                    choose_data_offset(r10_bio, rdev);
2555                 wbio->bi_bdev = rdev->bdev;
2556                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2557
2558                 if (submit_bio_wait(wbio) < 0)
2559                         /* Failure! */
2560                         ok = rdev_set_badblocks(rdev, wsector,
2561                                                 sectors, 0)
2562                                 && ok;
2563
2564                 bio_put(wbio);
2565                 sect_to_write -= sectors;
2566                 sector += sectors;
2567                 sectors = block_sectors;
2568         }
2569         return ok;
2570 }
2571
2572 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2573 {
2574         int slot = r10_bio->read_slot;
2575         struct bio *bio;
2576         struct r10conf *conf = mddev->private;
2577         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2578         dev_t bio_dev;
2579         sector_t bio_last_sector;
2580
2581         /* we got a read error. Maybe the drive is bad.  Maybe just
2582          * the block and we can fix it.
2583          * We freeze all other IO, and try reading the block from
2584          * other devices.  When we find one, we re-write
2585          * and check it that fixes the read error.
2586          * This is all done synchronously while the array is
2587          * frozen.
2588          */
2589         bio = r10_bio->devs[slot].bio;
2590         bio_dev = bio->bi_bdev->bd_dev;
2591         bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2592         bio_put(bio);
2593         r10_bio->devs[slot].bio = NULL;
2594
2595         if (mddev->ro)
2596                 r10_bio->devs[slot].bio = IO_BLOCKED;
2597         else if (!test_bit(FailFast, &rdev->flags)) {
2598                 freeze_array(conf, 1);
2599                 fix_read_error(conf, mddev, r10_bio);
2600                 unfreeze_array(conf);
2601         } else
2602                 md_error(mddev, rdev);
2603
2604         rdev_dec_pending(rdev, mddev);
2605         allow_barrier(conf);
2606         r10_bio->state = 0;
2607         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2608 }
2609
2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2611 {
2612         /* Some sort of write request has finished and it
2613          * succeeded in writing where we thought there was a
2614          * bad block.  So forget the bad block.
2615          * Or possibly if failed and we need to record
2616          * a bad block.
2617          */
2618         int m;
2619         struct md_rdev *rdev;
2620
2621         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2622             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2623                 for (m = 0; m < conf->copies; m++) {
2624                         int dev = r10_bio->devs[m].devnum;
2625                         rdev = conf->mirrors[dev].rdev;
2626                         if (r10_bio->devs[m].bio == NULL)
2627                                 continue;
2628                         if (!r10_bio->devs[m].bio->bi_status) {
2629                                 rdev_clear_badblocks(
2630                                         rdev,
2631                                         r10_bio->devs[m].addr,
2632                                         r10_bio->sectors, 0);
2633                         } else {
2634                                 if (!rdev_set_badblocks(
2635                                             rdev,
2636                                             r10_bio->devs[m].addr,
2637                                             r10_bio->sectors, 0))
2638                                         md_error(conf->mddev, rdev);
2639                         }
2640                         rdev = conf->mirrors[dev].replacement;
2641                         if (r10_bio->devs[m].repl_bio == NULL)
2642                                 continue;
2643
2644                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2645                                 rdev_clear_badblocks(
2646                                         rdev,
2647                                         r10_bio->devs[m].addr,
2648                                         r10_bio->sectors, 0);
2649                         } else {
2650                                 if (!rdev_set_badblocks(
2651                                             rdev,
2652                                             r10_bio->devs[m].addr,
2653                                             r10_bio->sectors, 0))
2654                                         md_error(conf->mddev, rdev);
2655                         }
2656                 }
2657                 put_buf(r10_bio);
2658         } else {
2659                 bool fail = false;
2660                 for (m = 0; m < conf->copies; m++) {
2661                         int dev = r10_bio->devs[m].devnum;
2662                         struct bio *bio = r10_bio->devs[m].bio;
2663                         rdev = conf->mirrors[dev].rdev;
2664                         if (bio == IO_MADE_GOOD) {
2665                                 rdev_clear_badblocks(
2666                                         rdev,
2667                                         r10_bio->devs[m].addr,
2668                                         r10_bio->sectors, 0);
2669                                 rdev_dec_pending(rdev, conf->mddev);
2670                         } else if (bio != NULL && bio->bi_status) {
2671                                 fail = true;
2672                                 if (!narrow_write_error(r10_bio, m)) {
2673                                         md_error(conf->mddev, rdev);
2674                                         set_bit(R10BIO_Degraded,
2675                                                 &r10_bio->state);
2676                                 }
2677                                 rdev_dec_pending(rdev, conf->mddev);
2678                         }
2679                         bio = r10_bio->devs[m].repl_bio;
2680                         rdev = conf->mirrors[dev].replacement;
2681                         if (rdev && bio == IO_MADE_GOOD) {
2682                                 rdev_clear_badblocks(
2683                                         rdev,
2684                                         r10_bio->devs[m].addr,
2685                                         r10_bio->sectors, 0);
2686                                 rdev_dec_pending(rdev, conf->mddev);
2687                         }
2688                 }
2689                 if (fail) {
2690                         spin_lock_irq(&conf->device_lock);
2691                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2692                         conf->nr_queued++;
2693                         spin_unlock_irq(&conf->device_lock);
2694                         /*
2695                          * In case freeze_array() is waiting for condition
2696                          * nr_pending == nr_queued + extra to be true.
2697                          */
2698                         wake_up(&conf->wait_barrier);
2699                         md_wakeup_thread(conf->mddev->thread);
2700                 } else {
2701                         if (test_bit(R10BIO_WriteError,
2702                                      &r10_bio->state))
2703                                 close_write(r10_bio);
2704                         raid_end_bio_io(r10_bio);
2705                 }
2706         }
2707 }
2708
2709 static void raid10d(struct md_thread *thread)
2710 {
2711         struct mddev *mddev = thread->mddev;
2712         struct r10bio *r10_bio;
2713         unsigned long flags;
2714         struct r10conf *conf = mddev->private;
2715         struct list_head *head = &conf->retry_list;
2716         struct blk_plug plug;
2717
2718         md_check_recovery(mddev);
2719
2720         if (!list_empty_careful(&conf->bio_end_io_list) &&
2721             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2722                 LIST_HEAD(tmp);
2723                 spin_lock_irqsave(&conf->device_lock, flags);
2724                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725                         while (!list_empty(&conf->bio_end_io_list)) {
2726                                 list_move(conf->bio_end_io_list.prev, &tmp);
2727                                 conf->nr_queued--;
2728                         }
2729                 }
2730                 spin_unlock_irqrestore(&conf->device_lock, flags);
2731                 while (!list_empty(&tmp)) {
2732                         r10_bio = list_first_entry(&tmp, struct r10bio,
2733                                                    retry_list);
2734                         list_del(&r10_bio->retry_list);
2735                         if (mddev->degraded)
2736                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2737
2738                         if (test_bit(R10BIO_WriteError,
2739                                      &r10_bio->state))
2740                                 close_write(r10_bio);
2741                         raid_end_bio_io(r10_bio);
2742                 }
2743         }
2744
2745         blk_start_plug(&plug);
2746         for (;;) {
2747
2748                 flush_pending_writes(conf);
2749
2750                 spin_lock_irqsave(&conf->device_lock, flags);
2751                 if (list_empty(head)) {
2752                         spin_unlock_irqrestore(&conf->device_lock, flags);
2753                         break;
2754                 }
2755                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2756                 list_del(head->prev);
2757                 conf->nr_queued--;
2758                 spin_unlock_irqrestore(&conf->device_lock, flags);
2759
2760                 mddev = r10_bio->mddev;
2761                 conf = mddev->private;
2762                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2763                     test_bit(R10BIO_WriteError, &r10_bio->state))
2764                         handle_write_completed(conf, r10_bio);
2765                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2766                         reshape_request_write(mddev, r10_bio);
2767                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2768                         sync_request_write(mddev, r10_bio);
2769                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2770                         recovery_request_write(mddev, r10_bio);
2771                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2772                         handle_read_error(mddev, r10_bio);
2773                 else
2774                         WARN_ON_ONCE(1);
2775
2776                 cond_resched();
2777                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2778                         md_check_recovery(mddev);
2779         }
2780         blk_finish_plug(&plug);
2781 }
2782
2783 static int init_resync(struct r10conf *conf)
2784 {
2785         int buffs;
2786         int i;
2787
2788         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789         BUG_ON(conf->r10buf_pool);
2790         conf->have_replacement = 0;
2791         for (i = 0; i < conf->geo.raid_disks; i++)
2792                 if (conf->mirrors[i].replacement)
2793                         conf->have_replacement = 1;
2794         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2795         if (!conf->r10buf_pool)
2796                 return -ENOMEM;
2797         conf->next_resync = 0;
2798         return 0;
2799 }
2800
2801 /*
2802  * perform a "sync" on one "block"
2803  *
2804  * We need to make sure that no normal I/O request - particularly write
2805  * requests - conflict with active sync requests.
2806  *
2807  * This is achieved by tracking pending requests and a 'barrier' concept
2808  * that can be installed to exclude normal IO requests.
2809  *
2810  * Resync and recovery are handled very differently.
2811  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2812  *
2813  * For resync, we iterate over virtual addresses, read all copies,
2814  * and update if there are differences.  If only one copy is live,
2815  * skip it.
2816  * For recovery, we iterate over physical addresses, read a good
2817  * value for each non-in_sync drive, and over-write.
2818  *
2819  * So, for recovery we may have several outstanding complex requests for a
2820  * given address, one for each out-of-sync device.  We model this by allocating
2821  * a number of r10_bio structures, one for each out-of-sync device.
2822  * As we setup these structures, we collect all bio's together into a list
2823  * which we then process collectively to add pages, and then process again
2824  * to pass to generic_make_request.
2825  *
2826  * The r10_bio structures are linked using a borrowed master_bio pointer.
2827  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2828  * has its remaining count decremented to 0, the whole complex operation
2829  * is complete.
2830  *
2831  */
2832
2833 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2834                              int *skipped)
2835 {
2836         struct r10conf *conf = mddev->private;
2837         struct r10bio *r10_bio;
2838         struct bio *biolist = NULL, *bio;
2839         sector_t max_sector, nr_sectors;
2840         int i;
2841         int max_sync;
2842         sector_t sync_blocks;
2843         sector_t sectors_skipped = 0;
2844         int chunks_skipped = 0;
2845         sector_t chunk_mask = conf->geo.chunk_mask;
2846         int page_idx = 0;
2847
2848         if (!conf->r10buf_pool)
2849                 if (init_resync(conf))
2850                         return 0;
2851
2852         /*
2853          * Allow skipping a full rebuild for incremental assembly
2854          * of a clean array, like RAID1 does.
2855          */
2856         if (mddev->bitmap == NULL &&
2857             mddev->recovery_cp == MaxSector &&
2858             mddev->reshape_position == MaxSector &&
2859             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2860             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2861             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2862             conf->fullsync == 0) {
2863                 *skipped = 1;
2864                 return mddev->dev_sectors - sector_nr;
2865         }
2866
2867  skipped:
2868         max_sector = mddev->dev_sectors;
2869         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2870             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2871                 max_sector = mddev->resync_max_sectors;
2872         if (sector_nr >= max_sector) {
2873                 /* If we aborted, we need to abort the
2874                  * sync on the 'current' bitmap chucks (there can
2875                  * be several when recovering multiple devices).
2876                  * as we may have started syncing it but not finished.
2877                  * We can find the current address in
2878                  * mddev->curr_resync, but for recovery,
2879                  * we need to convert that to several
2880                  * virtual addresses.
2881                  */
2882                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2883                         end_reshape(conf);
2884                         close_sync(conf);
2885                         return 0;
2886                 }
2887
2888                 if (mddev->curr_resync < max_sector) { /* aborted */
2889                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2890                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2891                                                 &sync_blocks, 1);
2892                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2893                                 sector_t sect =
2894                                         raid10_find_virt(conf, mddev->curr_resync, i);
2895                                 bitmap_end_sync(mddev->bitmap, sect,
2896                                                 &sync_blocks, 1);
2897                         }
2898                 } else {
2899                         /* completed sync */
2900                         if ((!mddev->bitmap || conf->fullsync)
2901                             && conf->have_replacement
2902                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2903                                 /* Completed a full sync so the replacements
2904                                  * are now fully recovered.
2905                                  */
2906                                 rcu_read_lock();
2907                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2908                                         struct md_rdev *rdev =
2909                                                 rcu_dereference(conf->mirrors[i].replacement);
2910                                         if (rdev)
2911                                                 rdev->recovery_offset = MaxSector;
2912                                 }
2913                                 rcu_read_unlock();
2914                         }
2915                         conf->fullsync = 0;
2916                 }
2917                 bitmap_close_sync(mddev->bitmap);
2918                 close_sync(conf);
2919                 *skipped = 1;
2920                 return sectors_skipped;
2921         }
2922
2923         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2924                 return reshape_request(mddev, sector_nr, skipped);
2925
2926         if (chunks_skipped >= conf->geo.raid_disks) {
2927                 /* if there has been nothing to do on any drive,
2928                  * then there is nothing to do at all..
2929                  */
2930                 *skipped = 1;
2931                 return (max_sector - sector_nr) + sectors_skipped;
2932         }
2933
2934         if (max_sector > mddev->resync_max)
2935                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2936
2937         /* make sure whole request will fit in a chunk - if chunks
2938          * are meaningful
2939          */
2940         if (conf->geo.near_copies < conf->geo.raid_disks &&
2941             max_sector > (sector_nr | chunk_mask))
2942                 max_sector = (sector_nr | chunk_mask) + 1;
2943
2944         /*
2945          * If there is non-resync activity waiting for a turn, then let it
2946          * though before starting on this new sync request.
2947          */
2948         if (conf->nr_waiting)
2949                 schedule_timeout_uninterruptible(1);
2950
2951         /* Again, very different code for resync and recovery.
2952          * Both must result in an r10bio with a list of bios that
2953          * have bi_end_io, bi_sector, bi_bdev set,
2954          * and bi_private set to the r10bio.
2955          * For recovery, we may actually create several r10bios
2956          * with 2 bios in each, that correspond to the bios in the main one.
2957          * In this case, the subordinate r10bios link back through a
2958          * borrowed master_bio pointer, and the counter in the master
2959          * includes a ref from each subordinate.
2960          */
2961         /* First, we decide what to do and set ->bi_end_io
2962          * To end_sync_read if we want to read, and
2963          * end_sync_write if we will want to write.
2964          */
2965
2966         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2967         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2968                 /* recovery... the complicated one */
2969                 int j;
2970                 r10_bio = NULL;
2971
2972                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2973                         int still_degraded;
2974                         struct r10bio *rb2;
2975                         sector_t sect;
2976                         int must_sync;
2977                         int any_working;
2978                         struct raid10_info *mirror = &conf->mirrors[i];
2979                         struct md_rdev *mrdev, *mreplace;
2980
2981                         rcu_read_lock();
2982                         mrdev = rcu_dereference(mirror->rdev);
2983                         mreplace = rcu_dereference(mirror->replacement);
2984
2985                         if ((mrdev == NULL ||
2986                              test_bit(Faulty, &mrdev->flags) ||
2987                              test_bit(In_sync, &mrdev->flags)) &&
2988                             (mreplace == NULL ||
2989                              test_bit(Faulty, &mreplace->flags))) {
2990                                 rcu_read_unlock();
2991                                 continue;
2992                         }
2993
2994                         still_degraded = 0;
2995                         /* want to reconstruct this device */
2996                         rb2 = r10_bio;
2997                         sect = raid10_find_virt(conf, sector_nr, i);
2998                         if (sect >= mddev->resync_max_sectors) {
2999                                 /* last stripe is not complete - don't
3000                                  * try to recover this sector.
3001                                  */
3002                                 rcu_read_unlock();
3003                                 continue;
3004                         }
3005                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3006                                 mreplace = NULL;
3007                         /* Unless we are doing a full sync, or a replacement
3008                          * we only need to recover the block if it is set in
3009                          * the bitmap
3010                          */
3011                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3012                                                       &sync_blocks, 1);
3013                         if (sync_blocks < max_sync)
3014                                 max_sync = sync_blocks;
3015                         if (!must_sync &&
3016                             mreplace == NULL &&
3017                             !conf->fullsync) {
3018                                 /* yep, skip the sync_blocks here, but don't assume
3019                                  * that there will never be anything to do here
3020                                  */
3021                                 chunks_skipped = -1;
3022                                 rcu_read_unlock();
3023                                 continue;
3024                         }
3025                         atomic_inc(&mrdev->nr_pending);
3026                         if (mreplace)
3027                                 atomic_inc(&mreplace->nr_pending);
3028                         rcu_read_unlock();
3029
3030                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3031                         r10_bio->state = 0;
3032                         raise_barrier(conf, rb2 != NULL);
3033                         atomic_set(&r10_bio->remaining, 0);
3034
3035                         r10_bio->master_bio = (struct bio*)rb2;
3036                         if (rb2)
3037                                 atomic_inc(&rb2->remaining);
3038                         r10_bio->mddev = mddev;
3039                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3040                         r10_bio->sector = sect;
3041
3042                         raid10_find_phys(conf, r10_bio);
3043
3044                         /* Need to check if the array will still be
3045                          * degraded
3046                          */
3047                         rcu_read_lock();
3048                         for (j = 0; j < conf->geo.raid_disks; j++) {
3049                                 struct md_rdev *rdev = rcu_dereference(
3050                                         conf->mirrors[j].rdev);
3051                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3052                                         still_degraded = 1;
3053                                         break;
3054                                 }
3055                         }
3056
3057                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3058                                                       &sync_blocks, still_degraded);
3059
3060                         any_working = 0;
3061                         for (j=0; j<conf->copies;j++) {
3062                                 int k;
3063                                 int d = r10_bio->devs[j].devnum;
3064                                 sector_t from_addr, to_addr;
3065                                 struct md_rdev *rdev =
3066                                         rcu_dereference(conf->mirrors[d].rdev);
3067                                 sector_t sector, first_bad;
3068                                 int bad_sectors;
3069                                 if (!rdev ||
3070                                     !test_bit(In_sync, &rdev->flags))
3071                                         continue;
3072                                 /* This is where we read from */
3073                                 any_working = 1;
3074                                 sector = r10_bio->devs[j].addr;
3075
3076                                 if (is_badblock(rdev, sector, max_sync,
3077                                                 &first_bad, &bad_sectors)) {
3078                                         if (first_bad > sector)
3079                                                 max_sync = first_bad - sector;
3080                                         else {
3081                                                 bad_sectors -= (sector
3082                                                                 - first_bad);
3083                                                 if (max_sync > bad_sectors)
3084                                                         max_sync = bad_sectors;
3085                                                 continue;
3086                                         }
3087                                 }
3088                                 bio = r10_bio->devs[0].bio;
3089                                 bio->bi_next = biolist;
3090                                 biolist = bio;
3091                                 bio->bi_end_io = end_sync_read;
3092                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3093                                 if (test_bit(FailFast, &rdev->flags))
3094                                         bio->bi_opf |= MD_FAILFAST;
3095                                 from_addr = r10_bio->devs[j].addr;
3096                                 bio->bi_iter.bi_sector = from_addr +
3097                                         rdev->data_offset;
3098                                 bio->bi_bdev = rdev->bdev;
3099                                 atomic_inc(&rdev->nr_pending);
3100                                 /* and we write to 'i' (if not in_sync) */
3101
3102                                 for (k=0; k<conf->copies; k++)
3103                                         if (r10_bio->devs[k].devnum == i)
3104                                                 break;
3105                                 BUG_ON(k == conf->copies);
3106                                 to_addr = r10_bio->devs[k].addr;
3107                                 r10_bio->devs[0].devnum = d;
3108                                 r10_bio->devs[0].addr = from_addr;
3109                                 r10_bio->devs[1].devnum = i;
3110                                 r10_bio->devs[1].addr = to_addr;
3111
3112                                 if (!test_bit(In_sync, &mrdev->flags)) {
3113                                         bio = r10_bio->devs[1].bio;
3114                                         bio->bi_next = biolist;
3115                                         biolist = bio;
3116                                         bio->bi_end_io = end_sync_write;
3117                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3118                                         bio->bi_iter.bi_sector = to_addr
3119                                                 + mrdev->data_offset;
3120                                         bio->bi_bdev = mrdev->bdev;
3121                                         atomic_inc(&r10_bio->remaining);
3122                                 } else
3123                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3124
3125                                 /* and maybe write to replacement */
3126                                 bio = r10_bio->devs[1].repl_bio;
3127                                 if (bio)
3128                                         bio->bi_end_io = NULL;
3129                                 /* Note: if mreplace != NULL, then bio
3130                                  * cannot be NULL as r10buf_pool_alloc will
3131                                  * have allocated it.
3132                                  * So the second test here is pointless.
3133                                  * But it keeps semantic-checkers happy, and
3134                                  * this comment keeps human reviewers
3135                                  * happy.
3136                                  */
3137                                 if (mreplace == NULL || bio == NULL ||
3138                                     test_bit(Faulty, &mreplace->flags))
3139                                         break;
3140                                 bio->bi_next = biolist;
3141                                 biolist = bio;
3142                                 bio->bi_end_io = end_sync_write;
3143                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3144                                 bio->bi_iter.bi_sector = to_addr +
3145                                         mreplace->data_offset;
3146                                 bio->bi_bdev = mreplace->bdev;
3147                                 atomic_inc(&r10_bio->remaining);
3148                                 break;
3149                         }
3150                         rcu_read_unlock();
3151                         if (j == conf->copies) {
3152                                 /* Cannot recover, so abort the recovery or
3153                                  * record a bad block */
3154                                 if (any_working) {
3155                                         /* problem is that there are bad blocks
3156                                          * on other device(s)
3157                                          */
3158                                         int k;
3159                                         for (k = 0; k < conf->copies; k++)
3160                                                 if (r10_bio->devs[k].devnum == i)
3161                                                         break;
3162                                         if (!test_bit(In_sync,
3163                                                       &mrdev->flags)
3164                                             && !rdev_set_badblocks(
3165                                                     mrdev,
3166                                                     r10_bio->devs[k].addr,
3167                                                     max_sync, 0))
3168                                                 any_working = 0;
3169                                         if (mreplace &&
3170                                             !rdev_set_badblocks(
3171                                                     mreplace,
3172                                                     r10_bio->devs[k].addr,
3173                                                     max_sync, 0))
3174                                                 any_working = 0;
3175                                 }
3176                                 if (!any_working)  {
3177                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3178                                                               &mddev->recovery))
3179                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3180                                                        mdname(mddev));
3181                                         mirror->recovery_disabled
3182                                                 = mddev->recovery_disabled;
3183                                 }
3184                                 put_buf(r10_bio);
3185                                 if (rb2)
3186                                         atomic_dec(&rb2->remaining);
3187                                 r10_bio = rb2;
3188                                 rdev_dec_pending(mrdev, mddev);
3189                                 if (mreplace)
3190                                         rdev_dec_pending(mreplace, mddev);
3191                                 break;
3192                         }
3193                         rdev_dec_pending(mrdev, mddev);
3194                         if (mreplace)
3195                                 rdev_dec_pending(mreplace, mddev);
3196                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3197                                 /* Only want this if there is elsewhere to
3198                                  * read from. 'j' is currently the first
3199                                  * readable copy.
3200                                  */
3201                                 int targets = 1;
3202                                 for (; j < conf->copies; j++) {
3203                                         int d = r10_bio->devs[j].devnum;
3204                                         if (conf->mirrors[d].rdev &&
3205                                             test_bit(In_sync,
3206                                                       &conf->mirrors[d].rdev->flags))
3207                                                 targets++;
3208                                 }
3209                                 if (targets == 1)
3210                                         r10_bio->devs[0].bio->bi_opf
3211                                                 &= ~MD_FAILFAST;
3212                         }
3213                 }
3214                 if (biolist == NULL) {
3215                         while (r10_bio) {
3216                                 struct r10bio *rb2 = r10_bio;
3217                                 r10_bio = (struct r10bio*) rb2->master_bio;
3218                                 rb2->master_bio = NULL;
3219                                 put_buf(rb2);
3220                         }
3221                         goto giveup;
3222                 }
3223         } else {
3224                 /* resync. Schedule a read for every block at this virt offset */
3225                 int count = 0;
3226
3227                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3228
3229                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3230                                        &sync_blocks, mddev->degraded) &&
3231                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3232                                                  &mddev->recovery)) {
3233                         /* We can skip this block */
3234                         *skipped = 1;
3235                         return sync_blocks + sectors_skipped;
3236                 }
3237                 if (sync_blocks < max_sync)
3238                         max_sync = sync_blocks;
3239                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3240                 r10_bio->state = 0;
3241
3242                 r10_bio->mddev = mddev;
3243                 atomic_set(&r10_bio->remaining, 0);
3244                 raise_barrier(conf, 0);
3245                 conf->next_resync = sector_nr;
3246
3247                 r10_bio->master_bio = NULL;
3248                 r10_bio->sector = sector_nr;
3249                 set_bit(R10BIO_IsSync, &r10_bio->state);
3250                 raid10_find_phys(conf, r10_bio);
3251                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3252
3253                 for (i = 0; i < conf->copies; i++) {
3254                         int d = r10_bio->devs[i].devnum;
3255                         sector_t first_bad, sector;
3256                         int bad_sectors;
3257                         struct md_rdev *rdev;
3258
3259                         if (r10_bio->devs[i].repl_bio)
3260                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3261
3262                         bio = r10_bio->devs[i].bio;
3263                         bio->bi_status = BLK_STS_IOERR;
3264                         rcu_read_lock();
3265                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3266                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3267                                 rcu_read_unlock();
3268                                 continue;
3269                         }
3270                         sector = r10_bio->devs[i].addr;
3271                         if (is_badblock(rdev, sector, max_sync,
3272                                         &first_bad, &bad_sectors)) {
3273                                 if (first_bad > sector)
3274                                         max_sync = first_bad - sector;
3275                                 else {
3276                                         bad_sectors -= (sector - first_bad);
3277                                         if (max_sync > bad_sectors)
3278                                                 max_sync = bad_sectors;
3279                                         rcu_read_unlock();
3280                                         continue;
3281                                 }
3282                         }
3283                         atomic_inc(&rdev->nr_pending);
3284                         atomic_inc(&r10_bio->remaining);
3285                         bio->bi_next = biolist;
3286                         biolist = bio;
3287                         bio->bi_end_io = end_sync_read;
3288                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3289                         if (test_bit(FailFast, &rdev->flags))
3290                                 bio->bi_opf |= MD_FAILFAST;
3291                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3292                         bio->bi_bdev = rdev->bdev;
3293                         count++;
3294
3295                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3296                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3297                                 rcu_read_unlock();
3298                                 continue;
3299                         }
3300                         atomic_inc(&rdev->nr_pending);
3301
3302                         /* Need to set up for writing to the replacement */
3303                         bio = r10_bio->devs[i].repl_bio;
3304                         bio->bi_status = BLK_STS_IOERR;
3305
3306                         sector = r10_bio->devs[i].addr;
3307                         bio->bi_next = biolist;
3308                         biolist = bio;
3309                         bio->bi_end_io = end_sync_write;
3310                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3311                         if (test_bit(FailFast, &rdev->flags))
3312                                 bio->bi_opf |= MD_FAILFAST;
3313                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3314                         bio->bi_bdev = rdev->bdev;
3315                         count++;
3316                         rcu_read_unlock();
3317                 }
3318
3319                 if (count < 2) {
3320                         for (i=0; i<conf->copies; i++) {
3321                                 int d = r10_bio->devs[i].devnum;
3322                                 if (r10_bio->devs[i].bio->bi_end_io)
3323                                         rdev_dec_pending(conf->mirrors[d].rdev,
3324                                                          mddev);
3325                                 if (r10_bio->devs[i].repl_bio &&
3326                                     r10_bio->devs[i].repl_bio->bi_end_io)
3327                                         rdev_dec_pending(
3328                                                 conf->mirrors[d].replacement,
3329                                                 mddev);
3330                         }
3331                         put_buf(r10_bio);
3332                         biolist = NULL;
3333                         goto giveup;
3334                 }
3335         }
3336
3337         nr_sectors = 0;
3338         if (sector_nr + max_sync < max_sector)
3339                 max_sector = sector_nr + max_sync;
3340         do {
3341                 struct page *page;
3342                 int len = PAGE_SIZE;
3343                 if (sector_nr + (len>>9) > max_sector)
3344                         len = (max_sector - sector_nr) << 9;
3345                 if (len == 0)
3346                         break;
3347                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3348                         struct resync_pages *rp = get_resync_pages(bio);
3349                         page = resync_fetch_page(rp, page_idx);
3350                         /*
3351                          * won't fail because the vec table is big enough
3352                          * to hold all these pages
3353                          */
3354                         bio_add_page(bio, page, len, 0);
3355                 }
3356                 nr_sectors += len>>9;
3357                 sector_nr += len>>9;
3358         } while (++page_idx < RESYNC_PAGES);
3359         r10_bio->sectors = nr_sectors;
3360
3361         while (biolist) {
3362                 bio = biolist;
3363                 biolist = biolist->bi_next;
3364
3365                 bio->bi_next = NULL;
3366                 r10_bio = get_resync_r10bio(bio);
3367                 r10_bio->sectors = nr_sectors;
3368
3369                 if (bio->bi_end_io == end_sync_read) {
3370                         md_sync_acct(bio->bi_bdev, nr_sectors);
3371                         bio->bi_status = 0;
3372                         generic_make_request(bio);
3373                 }
3374         }
3375
3376         if (sectors_skipped)
3377                 /* pretend they weren't skipped, it makes
3378                  * no important difference in this case
3379                  */
3380                 md_done_sync(mddev, sectors_skipped, 1);
3381
3382         return sectors_skipped + nr_sectors;
3383  giveup:
3384         /* There is nowhere to write, so all non-sync
3385          * drives must be failed or in resync, all drives
3386          * have a bad block, so try the next chunk...
3387          */
3388         if (sector_nr + max_sync < max_sector)
3389                 max_sector = sector_nr + max_sync;
3390
3391         sectors_skipped += (max_sector - sector_nr);
3392         chunks_skipped ++;
3393         sector_nr = max_sector;
3394         goto skipped;
3395 }
3396
3397 static sector_t
3398 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3399 {
3400         sector_t size;
3401         struct r10conf *conf = mddev->private;
3402
3403         if (!raid_disks)
3404                 raid_disks = min(conf->geo.raid_disks,
3405                                  conf->prev.raid_disks);
3406         if (!sectors)
3407                 sectors = conf->dev_sectors;
3408
3409         size = sectors >> conf->geo.chunk_shift;
3410         sector_div(size, conf->geo.far_copies);
3411         size = size * raid_disks;
3412         sector_div(size, conf->geo.near_copies);
3413
3414         return size << conf->geo.chunk_shift;
3415 }
3416
3417 static void calc_sectors(struct r10conf *conf, sector_t size)
3418 {
3419         /* Calculate the number of sectors-per-device that will
3420          * actually be used, and set conf->dev_sectors and
3421          * conf->stride
3422          */
3423
3424         size = size >> conf->geo.chunk_shift;
3425         sector_div(size, conf->geo.far_copies);
3426         size = size * conf->geo.raid_disks;
3427         sector_div(size, conf->geo.near_copies);
3428         /* 'size' is now the number of chunks in the array */
3429         /* calculate "used chunks per device" */
3430         size = size * conf->copies;
3431
3432         /* We need to round up when dividing by raid_disks to
3433          * get the stride size.
3434          */
3435         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3436
3437         conf->dev_sectors = size << conf->geo.chunk_shift;
3438
3439         if (conf->geo.far_offset)
3440                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3441         else {
3442                 sector_div(size, conf->geo.far_copies);
3443                 conf->geo.stride = size << conf->geo.chunk_shift;
3444         }
3445 }
3446
3447 enum geo_type {geo_new, geo_old, geo_start};
3448 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3449 {
3450         int nc, fc, fo;
3451         int layout, chunk, disks;
3452         switch (new) {
3453         case geo_old:
3454                 layout = mddev->layout;
3455                 chunk = mddev->chunk_sectors;
3456                 disks = mddev->raid_disks - mddev->delta_disks;
3457                 break;
3458         case geo_new:
3459                 layout = mddev->new_layout;
3460                 chunk = mddev->new_chunk_sectors;
3461                 disks = mddev->raid_disks;
3462                 break;
3463         default: /* avoid 'may be unused' warnings */
3464         case geo_start: /* new when starting reshape - raid_disks not
3465                          * updated yet. */
3466                 layout = mddev->new_layout;
3467                 chunk = mddev->new_chunk_sectors;
3468                 disks = mddev->raid_disks + mddev->delta_disks;
3469                 break;
3470         }
3471         if (layout >> 19)
3472                 return -1;
3473         if (chunk < (PAGE_SIZE >> 9) ||
3474             !is_power_of_2(chunk))
3475                 return -2;
3476         nc = layout & 255;
3477         fc = (layout >> 8) & 255;
3478         fo = layout & (1<<16);
3479         geo->raid_disks = disks;
3480         geo->near_copies = nc;
3481         geo->far_copies = fc;
3482         geo->far_offset = fo;
3483         switch (layout >> 17) {
3484         case 0: /* original layout.  simple but not always optimal */
3485                 geo->far_set_size = disks;
3486                 break;
3487         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3488                  * actually using this, but leave code here just in case.*/
3489                 geo->far_set_size = disks/fc;
3490                 WARN(geo->far_set_size < fc,
3491                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3492                 break;
3493         case 2: /* "improved" layout fixed to match documentation */
3494                 geo->far_set_size = fc * nc;
3495                 break;
3496         default: /* Not a valid layout */
3497                 return -1;
3498         }
3499         geo->chunk_mask = chunk - 1;
3500         geo->chunk_shift = ffz(~chunk);
3501         return nc*fc;
3502 }
3503
3504 static struct r10conf *setup_conf(struct mddev *mddev)
3505 {
3506         struct r10conf *conf = NULL;
3507         int err = -EINVAL;
3508         struct geom geo;
3509         int copies;
3510
3511         copies = setup_geo(&geo, mddev, geo_new);
3512
3513         if (copies == -2) {
3514                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3515                         mdname(mddev), PAGE_SIZE);
3516                 goto out;
3517         }
3518
3519         if (copies < 2 || copies > mddev->raid_disks) {
3520                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3521                         mdname(mddev), mddev->new_layout);
3522                 goto out;
3523         }
3524
3525         err = -ENOMEM;
3526         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3527         if (!conf)
3528                 goto out;
3529
3530         /* FIXME calc properly */
3531         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3532                                                             max(0,-mddev->delta_disks)),
3533                                 GFP_KERNEL);
3534         if (!conf->mirrors)
3535                 goto out;
3536
3537         conf->tmppage = alloc_page(GFP_KERNEL);
3538         if (!conf->tmppage)
3539                 goto out;
3540
3541         conf->geo = geo;
3542         conf->copies = copies;
3543         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3544                                            r10bio_pool_free, conf);
3545         if (!conf->r10bio_pool)
3546                 goto out;
3547
3548         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3549         if (!conf->bio_split)
3550                 goto out;
3551
3552         calc_sectors(conf, mddev->dev_sectors);
3553         if (mddev->reshape_position == MaxSector) {
3554                 conf->prev = conf->geo;
3555                 conf->reshape_progress = MaxSector;
3556         } else {
3557                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3558                         err = -EINVAL;
3559                         goto out;
3560                 }
3561                 conf->reshape_progress = mddev->reshape_position;
3562                 if (conf->prev.far_offset)
3563                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3564                 else
3565                         /* far_copies must be 1 */
3566                         conf->prev.stride = conf->dev_sectors;
3567         }
3568         conf->reshape_safe = conf->reshape_progress;
3569         spin_lock_init(&conf->device_lock);
3570         INIT_LIST_HEAD(&conf->retry_list);
3571         INIT_LIST_HEAD(&conf->bio_end_io_list);
3572
3573         spin_lock_init(&conf->resync_lock);
3574         init_waitqueue_head(&conf->wait_barrier);
3575         atomic_set(&conf->nr_pending, 0);
3576
3577         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3578         if (!conf->thread)
3579                 goto out;
3580
3581         conf->mddev = mddev;
3582         return conf;
3583
3584  out:
3585         if (conf) {
3586                 mempool_destroy(conf->r10bio_pool);
3587                 kfree(conf->mirrors);
3588                 safe_put_page(conf->tmppage);
3589                 if (conf->bio_split)
3590                         bioset_free(conf->bio_split);
3591                 kfree(conf);
3592         }
3593         return ERR_PTR(err);
3594 }
3595
3596 static int raid10_run(struct mddev *mddev)
3597 {
3598         struct r10conf *conf;
3599         int i, disk_idx, chunk_size;
3600         struct raid10_info *disk;
3601         struct md_rdev *rdev;
3602         sector_t size;
3603         sector_t min_offset_diff = 0;
3604         int first = 1;
3605         bool discard_supported = false;
3606
3607         if (mddev_init_writes_pending(mddev) < 0)
3608                 return -ENOMEM;
3609
3610         if (mddev->private == NULL) {
3611                 conf = setup_conf(mddev);
3612                 if (IS_ERR(conf))
3613                         return PTR_ERR(conf);
3614                 mddev->private = conf;
3615         }
3616         conf = mddev->private;
3617         if (!conf)
3618                 goto out;
3619
3620         mddev->thread = conf->thread;
3621         conf->thread = NULL;
3622
3623         chunk_size = mddev->chunk_sectors << 9;
3624         if (mddev->queue) {
3625                 blk_queue_max_discard_sectors(mddev->queue,
3626                                               mddev->chunk_sectors);
3627                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3628                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3629                 blk_queue_io_min(mddev->queue, chunk_size);
3630                 if (conf->geo.raid_disks % conf->geo.near_copies)
3631                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3632                 else
3633                         blk_queue_io_opt(mddev->queue, chunk_size *
3634                                          (conf->geo.raid_disks / conf->geo.near_copies));
3635         }
3636
3637         rdev_for_each(rdev, mddev) {
3638                 long long diff;
3639
3640                 disk_idx = rdev->raid_disk;
3641                 if (disk_idx < 0)
3642                         continue;
3643                 if (disk_idx >= conf->geo.raid_disks &&
3644                     disk_idx >= conf->prev.raid_disks)
3645                         continue;
3646                 disk = conf->mirrors + disk_idx;
3647
3648                 if (test_bit(Replacement, &rdev->flags)) {
3649                         if (disk->replacement)
3650                                 goto out_free_conf;
3651                         disk->replacement = rdev;
3652                 } else {
3653                         if (disk->rdev)
3654                                 goto out_free_conf;
3655                         disk->rdev = rdev;
3656                 }
3657                 diff = (rdev->new_data_offset - rdev->data_offset);
3658                 if (!mddev->reshape_backwards)
3659                         diff = -diff;
3660                 if (diff < 0)
3661                         diff = 0;
3662                 if (first || diff < min_offset_diff)
3663                         min_offset_diff = diff;
3664
3665                 if (mddev->gendisk)
3666                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3667                                           rdev->data_offset << 9);
3668
3669                 disk->head_position = 0;
3670
3671                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672                         discard_supported = true;
3673                 first = 0;
3674         }
3675
3676         if (mddev->queue) {
3677                 if (discard_supported)
3678                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3679                                                 mddev->queue);
3680                 else
3681                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3682                                                   mddev->queue);
3683         }
3684         /* need to check that every block has at least one working mirror */
3685         if (!enough(conf, -1)) {
3686                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3687                        mdname(mddev));
3688                 goto out_free_conf;
3689         }
3690
3691         if (conf->reshape_progress != MaxSector) {
3692                 /* must ensure that shape change is supported */
3693                 if (conf->geo.far_copies != 1 &&
3694                     conf->geo.far_offset == 0)
3695                         goto out_free_conf;
3696                 if (conf->prev.far_copies != 1 &&
3697                     conf->prev.far_offset == 0)
3698                         goto out_free_conf;
3699         }
3700
3701         mddev->degraded = 0;
3702         for (i = 0;
3703              i < conf->geo.raid_disks
3704                      || i < conf->prev.raid_disks;
3705              i++) {
3706
3707                 disk = conf->mirrors + i;
3708
3709                 if (!disk->rdev && disk->replacement) {
3710                         /* The replacement is all we have - use it */
3711                         disk->rdev = disk->replacement;
3712                         disk->replacement = NULL;
3713                         clear_bit(Replacement, &disk->rdev->flags);
3714                 }
3715
3716                 if (!disk->rdev ||
3717                     !test_bit(In_sync, &disk->rdev->flags)) {
3718                         disk->head_position = 0;
3719                         mddev->degraded++;
3720                         if (disk->rdev &&
3721                             disk->rdev->saved_raid_disk < 0)
3722                                 conf->fullsync = 1;
3723                 }
3724                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3725         }
3726
3727         if (mddev->recovery_cp != MaxSector)
3728                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3729                           mdname(mddev));
3730         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3731                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732                 conf->geo.raid_disks);
3733         /*
3734          * Ok, everything is just fine now
3735          */
3736         mddev->dev_sectors = conf->dev_sectors;
3737         size = raid10_size(mddev, 0, 0);
3738         md_set_array_sectors(mddev, size);
3739         mddev->resync_max_sectors = size;
3740         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3741
3742         if (mddev->queue) {
3743                 int stripe = conf->geo.raid_disks *
3744                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3745
3746                 /* Calculate max read-ahead size.
3747                  * We need to readahead at least twice a whole stripe....
3748                  * maybe...
3749                  */
3750                 stripe /= conf->geo.near_copies;
3751                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3752                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3753         }
3754
3755         if (md_integrity_register(mddev))
3756                 goto out_free_conf;
3757
3758         if (conf->reshape_progress != MaxSector) {
3759                 unsigned long before_length, after_length;
3760
3761                 before_length = ((1 << conf->prev.chunk_shift) *
3762                                  conf->prev.far_copies);
3763                 after_length = ((1 << conf->geo.chunk_shift) *
3764                                 conf->geo.far_copies);
3765
3766                 if (max(before_length, after_length) > min_offset_diff) {
3767                         /* This cannot work */
3768                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3769                         goto out_free_conf;
3770                 }
3771                 conf->offset_diff = min_offset_diff;
3772
3773                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3774                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3775                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3776                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3777                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3778                                                         "reshape");
3779         }
3780
3781         return 0;
3782
3783 out_free_conf:
3784         md_unregister_thread(&mddev->thread);
3785         mempool_destroy(conf->r10bio_pool);
3786         safe_put_page(conf->tmppage);
3787         kfree(conf->mirrors);
3788         kfree(conf);
3789         mddev->private = NULL;
3790 out:
3791         return -EIO;
3792 }
3793
3794 static void raid10_free(struct mddev *mddev, void *priv)
3795 {
3796         struct r10conf *conf = priv;
3797
3798         mempool_destroy(conf->r10bio_pool);
3799         safe_put_page(conf->tmppage);
3800         kfree(conf->mirrors);
3801         kfree(conf->mirrors_old);
3802         kfree(conf->mirrors_new);
3803         if (conf->bio_split)
3804                 bioset_free(conf->bio_split);
3805         kfree(conf);
3806 }
3807
3808 static void raid10_quiesce(struct mddev *mddev, int state)
3809 {
3810         struct r10conf *conf = mddev->private;
3811
3812         switch(state) {
3813         case 1:
3814                 raise_barrier(conf, 0);
3815                 break;
3816         case 0:
3817                 lower_barrier(conf);
3818                 break;
3819         }
3820 }
3821
3822 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3823 {
3824         /* Resize of 'far' arrays is not supported.
3825          * For 'near' and 'offset' arrays we can set the
3826          * number of sectors used to be an appropriate multiple
3827          * of the chunk size.
3828          * For 'offset', this is far_copies*chunksize.
3829          * For 'near' the multiplier is the LCM of
3830          * near_copies and raid_disks.
3831          * So if far_copies > 1 && !far_offset, fail.
3832          * Else find LCM(raid_disks, near_copy)*far_copies and
3833          * multiply by chunk_size.  Then round to this number.
3834          * This is mostly done by raid10_size()
3835          */
3836         struct r10conf *conf = mddev->private;
3837         sector_t oldsize, size;
3838
3839         if (mddev->reshape_position != MaxSector)
3840                 return -EBUSY;
3841
3842         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3843                 return -EINVAL;
3844
3845         oldsize = raid10_size(mddev, 0, 0);
3846         size = raid10_size(mddev, sectors, 0);
3847         if (mddev->external_size &&
3848             mddev->array_sectors > size)
3849                 return -EINVAL;
3850         if (mddev->bitmap) {
3851                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3852                 if (ret)
3853                         return ret;
3854         }
3855         md_set_array_sectors(mddev, size);
3856         if (sectors > mddev->dev_sectors &&
3857             mddev->recovery_cp > oldsize) {
3858                 mddev->recovery_cp = oldsize;
3859                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3860         }
3861         calc_sectors(conf, sectors);
3862         mddev->dev_sectors = conf->dev_sectors;
3863         mddev->resync_max_sectors = size;
3864         return 0;
3865 }
3866
3867 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3868 {
3869         struct md_rdev *rdev;
3870         struct r10conf *conf;
3871
3872         if (mddev->degraded > 0) {
3873                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3874                         mdname(mddev));
3875                 return ERR_PTR(-EINVAL);
3876         }
3877         sector_div(size, devs);
3878
3879         /* Set new parameters */
3880         mddev->new_level = 10;
3881         /* new layout: far_copies = 1, near_copies = 2 */
3882         mddev->new_layout = (1<<8) + 2;
3883         mddev->new_chunk_sectors = mddev->chunk_sectors;
3884         mddev->delta_disks = mddev->raid_disks;
3885         mddev->raid_disks *= 2;
3886         /* make sure it will be not marked as dirty */
3887         mddev->recovery_cp = MaxSector;
3888         mddev->dev_sectors = size;
3889
3890         conf = setup_conf(mddev);
3891         if (!IS_ERR(conf)) {
3892                 rdev_for_each(rdev, mddev)
3893                         if (rdev->raid_disk >= 0) {
3894                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3895                                 rdev->sectors = size;
3896                         }
3897                 conf->barrier = 1;
3898         }
3899
3900         return conf;
3901 }
3902
3903 static void *raid10_takeover(struct mddev *mddev)
3904 {
3905         struct r0conf *raid0_conf;
3906
3907         /* raid10 can take over:
3908          *  raid0 - providing it has only two drives
3909          */
3910         if (mddev->level == 0) {
3911                 /* for raid0 takeover only one zone is supported */
3912                 raid0_conf = mddev->private;
3913                 if (raid0_conf->nr_strip_zones > 1) {
3914                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3915                                 mdname(mddev));
3916                         return ERR_PTR(-EINVAL);
3917                 }
3918                 return raid10_takeover_raid0(mddev,
3919                         raid0_conf->strip_zone->zone_end,
3920                         raid0_conf->strip_zone->nb_dev);
3921         }
3922         return ERR_PTR(-EINVAL);
3923 }
3924
3925 static int raid10_check_reshape(struct mddev *mddev)
3926 {
3927         /* Called when there is a request to change
3928          * - layout (to ->new_layout)
3929          * - chunk size (to ->new_chunk_sectors)
3930          * - raid_disks (by delta_disks)
3931          * or when trying to restart a reshape that was ongoing.
3932          *
3933          * We need to validate the request and possibly allocate
3934          * space if that might be an issue later.
3935          *
3936          * Currently we reject any reshape of a 'far' mode array,
3937          * allow chunk size to change if new is generally acceptable,
3938          * allow raid_disks to increase, and allow
3939          * a switch between 'near' mode and 'offset' mode.
3940          */
3941         struct r10conf *conf = mddev->private;
3942         struct geom geo;
3943
3944         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3945                 return -EINVAL;
3946
3947         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3948                 /* mustn't change number of copies */
3949                 return -EINVAL;
3950         if (geo.far_copies > 1 && !geo.far_offset)
3951                 /* Cannot switch to 'far' mode */
3952                 return -EINVAL;
3953
3954         if (mddev->array_sectors & geo.chunk_mask)
3955                         /* not factor of array size */
3956                         return -EINVAL;
3957
3958         if (!enough(conf, -1))
3959                 return -EINVAL;
3960
3961         kfree(conf->mirrors_new);
3962         conf->mirrors_new = NULL;
3963         if (mddev->delta_disks > 0) {
3964                 /* allocate new 'mirrors' list */
3965                 conf->mirrors_new = kzalloc(
3966                         sizeof(struct raid10_info)
3967                         *(mddev->raid_disks +
3968                           mddev->delta_disks),
3969                         GFP_KERNEL);
3970                 if (!conf->mirrors_new)
3971                         return -ENOMEM;
3972         }
3973         return 0;
3974 }
3975
3976 /*
3977  * Need to check if array has failed when deciding whether to:
3978  *  - start an array
3979  *  - remove non-faulty devices
3980  *  - add a spare
3981  *  - allow a reshape
3982  * This determination is simple when no reshape is happening.
3983  * However if there is a reshape, we need to carefully check
3984  * both the before and after sections.
3985  * This is because some failed devices may only affect one
3986  * of the two sections, and some non-in_sync devices may
3987  * be insync in the section most affected by failed devices.
3988  */
3989 static int calc_degraded(struct r10conf *conf)
3990 {
3991         int degraded, degraded2;
3992         int i;
3993
3994         rcu_read_lock();
3995         degraded = 0;
3996         /* 'prev' section first */
3997         for (i = 0; i < conf->prev.raid_disks; i++) {
3998                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3999                 if (!rdev || test_bit(Faulty, &rdev->flags))
4000                         degraded++;
4001                 else if (!test_bit(In_sync, &rdev->flags))
4002                         /* When we can reduce the number of devices in
4003                          * an array, this might not contribute to
4004                          * 'degraded'.  It does now.
4005                          */
4006                         degraded++;
4007         }
4008         rcu_read_unlock();
4009         if (conf->geo.raid_disks == conf->prev.raid_disks)
4010                 return degraded;
4011         rcu_read_lock();
4012         degraded2 = 0;
4013         for (i = 0; i < conf->geo.raid_disks; i++) {
4014                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4015                 if (!rdev || test_bit(Faulty, &rdev->flags))
4016                         degraded2++;
4017                 else if (!test_bit(In_sync, &rdev->flags)) {
4018                         /* If reshape is increasing the number of devices,
4019                          * this section has already been recovered, so
4020                          * it doesn't contribute to degraded.
4021                          * else it does.
4022                          */
4023                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4024                                 degraded2++;
4025                 }
4026         }
4027         rcu_read_unlock();
4028         if (degraded2 > degraded)
4029                 return degraded2;
4030         return degraded;
4031 }
4032
4033 static int raid10_start_reshape(struct mddev *mddev)
4034 {
4035         /* A 'reshape' has been requested. This commits
4036          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4037          * This also checks if there are enough spares and adds them
4038          * to the array.
4039          * We currently require enough spares to make the final
4040          * array non-degraded.  We also require that the difference
4041          * between old and new data_offset - on each device - is
4042          * enough that we never risk over-writing.
4043          */
4044
4045         unsigned long before_length, after_length;
4046         sector_t min_offset_diff = 0;
4047         int first = 1;
4048         struct geom new;
4049         struct r10conf *conf = mddev->private;
4050         struct md_rdev *rdev;
4051         int spares = 0;
4052         int ret;
4053
4054         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4055                 return -EBUSY;
4056
4057         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4058                 return -EINVAL;
4059
4060         before_length = ((1 << conf->prev.chunk_shift) *
4061                          conf->prev.far_copies);
4062         after_length = ((1 << conf->geo.chunk_shift) *
4063                         conf->geo.far_copies);
4064
4065         rdev_for_each(rdev, mddev) {
4066                 if (!test_bit(In_sync, &rdev->flags)
4067                     && !test_bit(Faulty, &rdev->flags))
4068                         spares++;
4069                 if (rdev->raid_disk >= 0) {
4070                         long long diff = (rdev->new_data_offset
4071                                           - rdev->data_offset);
4072                         if (!mddev->reshape_backwards)
4073                                 diff = -diff;
4074                         if (diff < 0)
4075                                 diff = 0;
4076                         if (first || diff < min_offset_diff)
4077                                 min_offset_diff = diff;
4078                         first = 0;
4079                 }
4080         }
4081
4082         if (max(before_length, after_length) > min_offset_diff)
4083                 return -EINVAL;
4084
4085         if (spares < mddev->delta_disks)
4086                 return -EINVAL;
4087
4088         conf->offset_diff = min_offset_diff;
4089         spin_lock_irq(&conf->device_lock);
4090         if (conf->mirrors_new) {
4091                 memcpy(conf->mirrors_new, conf->mirrors,
4092                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4093                 smp_mb();
4094                 kfree(conf->mirrors_old);
4095                 conf->mirrors_old = conf->mirrors;
4096                 conf->mirrors = conf->mirrors_new;
4097                 conf->mirrors_new = NULL;
4098         }
4099         setup_geo(&conf->geo, mddev, geo_start);
4100         smp_mb();
4101         if (mddev->reshape_backwards) {
4102                 sector_t size = raid10_size(mddev, 0, 0);
4103                 if (size < mddev->array_sectors) {
4104                         spin_unlock_irq(&conf->device_lock);
4105                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4106                                 mdname(mddev));
4107                         return -EINVAL;
4108                 }
4109                 mddev->resync_max_sectors = size;
4110                 conf->reshape_progress = size;
4111         } else
4112                 conf->reshape_progress = 0;
4113         conf->reshape_safe = conf->reshape_progress;
4114         spin_unlock_irq(&conf->device_lock);
4115
4116         if (mddev->delta_disks && mddev->bitmap) {
4117                 ret = bitmap_resize(mddev->bitmap,
4118                                     raid10_size(mddev, 0,
4119                                                 conf->geo.raid_disks),
4120                                     0, 0);
4121                 if (ret)
4122                         goto abort;
4123         }
4124         if (mddev->delta_disks > 0) {
4125                 rdev_for_each(rdev, mddev)
4126                         if (rdev->raid_disk < 0 &&
4127                             !test_bit(Faulty, &rdev->flags)) {
4128                                 if (raid10_add_disk(mddev, rdev) == 0) {
4129                                         if (rdev->raid_disk >=
4130                                             conf->prev.raid_disks)
4131                                                 set_bit(In_sync, &rdev->flags);
4132                                         else
4133                                                 rdev->recovery_offset = 0;
4134
4135                                         if (sysfs_link_rdev(mddev, rdev))
4136                                                 /* Failure here  is OK */;
4137                                 }
4138                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4139                                    && !test_bit(Faulty, &rdev->flags)) {
4140                                 /* This is a spare that was manually added */
4141                                 set_bit(In_sync, &rdev->flags);
4142                         }
4143         }
4144         /* When a reshape changes the number of devices,
4145          * ->degraded is measured against the larger of the
4146          * pre and  post numbers.
4147          */
4148         spin_lock_irq(&conf->device_lock);
4149         mddev->degraded = calc_degraded(conf);
4150         spin_unlock_irq(&conf->device_lock);
4151         mddev->raid_disks = conf->geo.raid_disks;
4152         mddev->reshape_position = conf->reshape_progress;
4153         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4154
4155         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4156         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4157         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4158         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4159         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4160
4161         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4162                                                 "reshape");
4163         if (!mddev->sync_thread) {
4164                 ret = -EAGAIN;
4165                 goto abort;
4166         }
4167         conf->reshape_checkpoint = jiffies;
4168         md_wakeup_thread(mddev->sync_thread);
4169         md_new_event(mddev);
4170         return 0;
4171
4172 abort:
4173         mddev->recovery = 0;
4174         spin_lock_irq(&conf->device_lock);
4175         conf->geo = conf->prev;
4176         mddev->raid_disks = conf->geo.raid_disks;
4177         rdev_for_each(rdev, mddev)
4178                 rdev->new_data_offset = rdev->data_offset;
4179         smp_wmb();
4180         conf->reshape_progress = MaxSector;
4181         conf->reshape_safe = MaxSector;
4182         mddev->reshape_position = MaxSector;
4183         spin_unlock_irq(&conf->device_lock);
4184         return ret;
4185 }
4186
4187 /* Calculate the last device-address that could contain
4188  * any block from the chunk that includes the array-address 's'
4189  * and report the next address.
4190  * i.e. the address returned will be chunk-aligned and after
4191  * any data that is in the chunk containing 's'.
4192  */
4193 static sector_t last_dev_address(sector_t s, struct geom *geo)
4194 {
4195         s = (s | geo->chunk_mask) + 1;
4196         s >>= geo->chunk_shift;
4197         s *= geo->near_copies;
4198         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4199         s *= geo->far_copies;
4200         s <<= geo->chunk_shift;
4201         return s;
4202 }
4203
4204 /* Calculate the first device-address that could contain
4205  * any block from the chunk that includes the array-address 's'.
4206  * This too will be the start of a chunk
4207  */
4208 static sector_t first_dev_address(sector_t s, struct geom *geo)
4209 {
4210         s >>= geo->chunk_shift;
4211         s *= geo->near_copies;
4212         sector_div(s, geo->raid_disks);
4213         s *= geo->far_copies;
4214         s <<= geo->chunk_shift;
4215         return s;
4216 }
4217
4218 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4219                                 int *skipped)
4220 {
4221         /* We simply copy at most one chunk (smallest of old and new)
4222          * at a time, possibly less if that exceeds RESYNC_PAGES,
4223          * or we hit a bad block or something.
4224          * This might mean we pause for normal IO in the middle of
4225          * a chunk, but that is not a problem as mddev->reshape_position
4226          * can record any location.
4227          *
4228          * If we will want to write to a location that isn't
4229          * yet recorded as 'safe' (i.e. in metadata on disk) then
4230          * we need to flush all reshape requests and update the metadata.
4231          *
4232          * When reshaping forwards (e.g. to more devices), we interpret
4233          * 'safe' as the earliest block which might not have been copied
4234          * down yet.  We divide this by previous stripe size and multiply
4235          * by previous stripe length to get lowest device offset that we
4236          * cannot write to yet.
4237          * We interpret 'sector_nr' as an address that we want to write to.
4238          * From this we use last_device_address() to find where we might
4239          * write to, and first_device_address on the  'safe' position.
4240          * If this 'next' write position is after the 'safe' position,
4241          * we must update the metadata to increase the 'safe' position.
4242          *
4243          * When reshaping backwards, we round in the opposite direction
4244          * and perform the reverse test:  next write position must not be
4245          * less than current safe position.
4246          *
4247          * In all this the minimum difference in data offsets
4248          * (conf->offset_diff - always positive) allows a bit of slack,
4249          * so next can be after 'safe', but not by more than offset_diff
4250          *
4251          * We need to prepare all the bios here before we start any IO
4252          * to ensure the size we choose is acceptable to all devices.
4253          * The means one for each copy for write-out and an extra one for
4254          * read-in.
4255          * We store the read-in bio in ->master_bio and the others in
4256          * ->devs[x].bio and ->devs[x].repl_bio.
4257          */
4258         struct r10conf *conf = mddev->private;
4259         struct r10bio *r10_bio;
4260         sector_t next, safe, last;
4261         int max_sectors;
4262         int nr_sectors;
4263         int s;
4264         struct md_rdev *rdev;
4265         int need_flush = 0;
4266         struct bio *blist;
4267         struct bio *bio, *read_bio;
4268         int sectors_done = 0;
4269         struct page **pages;
4270
4271         if (sector_nr == 0) {
4272                 /* If restarting in the middle, skip the initial sectors */
4273                 if (mddev->reshape_backwards &&
4274                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4275                         sector_nr = (raid10_size(mddev, 0, 0)
4276                                      - conf->reshape_progress);
4277                 } else if (!mddev->reshape_backwards &&
4278                            conf->reshape_progress > 0)
4279                         sector_nr = conf->reshape_progress;
4280                 if (sector_nr) {
4281                         mddev->curr_resync_completed = sector_nr;
4282                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4283                         *skipped = 1;
4284                         return sector_nr;
4285                 }
4286         }
4287
4288         /* We don't use sector_nr to track where we are up to
4289          * as that doesn't work well for ->reshape_backwards.
4290          * So just use ->reshape_progress.
4291          */
4292         if (mddev->reshape_backwards) {
4293                 /* 'next' is the earliest device address that we might
4294                  * write to for this chunk in the new layout
4295                  */
4296                 next = first_dev_address(conf->reshape_progress - 1,
4297                                          &conf->geo);
4298
4299                 /* 'safe' is the last device address that we might read from
4300                  * in the old layout after a restart
4301                  */
4302                 safe = last_dev_address(conf->reshape_safe - 1,
4303                                         &conf->prev);
4304
4305                 if (next + conf->offset_diff < safe)
4306                         need_flush = 1;
4307
4308                 last = conf->reshape_progress - 1;
4309                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4310                                                & conf->prev.chunk_mask);
4311                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4312                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4313         } else {
4314                 /* 'next' is after the last device address that we
4315                  * might write to for this chunk in the new layout
4316                  */
4317                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4318
4319                 /* 'safe' is the earliest device address that we might
4320                  * read from in the old layout after a restart
4321                  */
4322                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4323
4324                 /* Need to update metadata if 'next' might be beyond 'safe'
4325                  * as that would possibly corrupt data
4326                  */
4327                 if (next > safe + conf->offset_diff)
4328                         need_flush = 1;
4329
4330                 sector_nr = conf->reshape_progress;
4331                 last  = sector_nr | (conf->geo.chunk_mask
4332                                      & conf->prev.chunk_mask);
4333
4334                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4335                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4336         }
4337
4338         if (need_flush ||
4339             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4340                 /* Need to update reshape_position in metadata */
4341                 wait_barrier(conf);
4342                 mddev->reshape_position = conf->reshape_progress;
4343                 if (mddev->reshape_backwards)
4344                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4345                                 - conf->reshape_progress;
4346                 else
4347                         mddev->curr_resync_completed = conf->reshape_progress;
4348                 conf->reshape_checkpoint = jiffies;
4349                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4350                 md_wakeup_thread(mddev->thread);
4351                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4352                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4353                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4354                         allow_barrier(conf);
4355                         return sectors_done;
4356                 }
4357                 conf->reshape_safe = mddev->reshape_position;
4358                 allow_barrier(conf);
4359         }
4360
4361 read_more:
4362         /* Now schedule reads for blocks from sector_nr to last */
4363         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4364         r10_bio->state = 0;
4365         raise_barrier(conf, sectors_done != 0);
4366         atomic_set(&r10_bio->remaining, 0);
4367         r10_bio->mddev = mddev;
4368         r10_bio->sector = sector_nr;
4369         set_bit(R10BIO_IsReshape, &r10_bio->state);
4370         r10_bio->sectors = last - sector_nr + 1;
4371         rdev = read_balance(conf, r10_bio, &max_sectors);
4372         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4373
4374         if (!rdev) {
4375                 /* Cannot read from here, so need to record bad blocks
4376                  * on all the target devices.
4377                  */
4378                 // FIXME
4379                 mempool_free(r10_bio, conf->r10buf_pool);
4380                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4381                 return sectors_done;
4382         }
4383
4384         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4385
4386         read_bio->bi_bdev = rdev->bdev;
4387         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4388                                + rdev->data_offset);
4389         read_bio->bi_private = r10_bio;
4390         read_bio->bi_end_io = end_reshape_read;
4391         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4392         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4393         read_bio->bi_status = 0;
4394         read_bio->bi_vcnt = 0;
4395         read_bio->bi_iter.bi_size = 0;
4396         r10_bio->master_bio = read_bio;
4397         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4398
4399         /* Now find the locations in the new layout */
4400         __raid10_find_phys(&conf->geo, r10_bio);
4401
4402         blist = read_bio;
4403         read_bio->bi_next = NULL;
4404
4405         rcu_read_lock();
4406         for (s = 0; s < conf->copies*2; s++) {
4407                 struct bio *b;
4408                 int d = r10_bio->devs[s/2].devnum;
4409                 struct md_rdev *rdev2;
4410                 if (s&1) {
4411                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4412                         b = r10_bio->devs[s/2].repl_bio;
4413                 } else {
4414                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4415                         b = r10_bio->devs[s/2].bio;
4416                 }
4417                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4418                         continue;
4419
4420                 b->bi_bdev = rdev2->bdev;
4421                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4422                         rdev2->new_data_offset;
4423                 b->bi_end_io = end_reshape_write;
4424                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4425                 b->bi_next = blist;
4426                 blist = b;
4427         }
4428
4429         /* Now add as many pages as possible to all of these bios. */
4430
4431         nr_sectors = 0;
4432         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4433         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4434                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4435                 int len = (max_sectors - s) << 9;
4436                 if (len > PAGE_SIZE)
4437                         len = PAGE_SIZE;
4438                 for (bio = blist; bio ; bio = bio->bi_next) {
4439                         /*
4440                          * won't fail because the vec table is big enough
4441                          * to hold all these pages
4442                          */
4443                         bio_add_page(bio, page, len, 0);
4444                 }
4445                 sector_nr += len >> 9;
4446                 nr_sectors += len >> 9;
4447         }
4448         rcu_read_unlock();
4449         r10_bio->sectors = nr_sectors;
4450
4451         /* Now submit the read */
4452         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4453         atomic_inc(&r10_bio->remaining);
4454         read_bio->bi_next = NULL;
4455         generic_make_request(read_bio);
4456         sector_nr += nr_sectors;
4457         sectors_done += nr_sectors;
4458         if (sector_nr <= last)
4459                 goto read_more;
4460
4461         /* Now that we have done the whole section we can
4462          * update reshape_progress
4463          */
4464         if (mddev->reshape_backwards)
4465                 conf->reshape_progress -= sectors_done;
4466         else
4467                 conf->reshape_progress += sectors_done;
4468
4469         return sectors_done;
4470 }
4471
4472 static void end_reshape_request(struct r10bio *r10_bio);
4473 static int handle_reshape_read_error(struct mddev *mddev,
4474                                      struct r10bio *r10_bio);
4475 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4476 {
4477         /* Reshape read completed.  Hopefully we have a block
4478          * to write out.
4479          * If we got a read error then we do sync 1-page reads from
4480          * elsewhere until we find the data - or give up.
4481          */
4482         struct r10conf *conf = mddev->private;
4483         int s;
4484
4485         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4486                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4487                         /* Reshape has been aborted */
4488                         md_done_sync(mddev, r10_bio->sectors, 0);
4489                         return;
4490                 }
4491
4492         /* We definitely have the data in the pages, schedule the
4493          * writes.
4494          */
4495         atomic_set(&r10_bio->remaining, 1);
4496         for (s = 0; s < conf->copies*2; s++) {
4497                 struct bio *b;
4498                 int d = r10_bio->devs[s/2].devnum;
4499                 struct md_rdev *rdev;
4500                 rcu_read_lock();
4501                 if (s&1) {
4502                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4503                         b = r10_bio->devs[s/2].repl_bio;
4504                 } else {
4505                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4506                         b = r10_bio->devs[s/2].bio;
4507                 }
4508                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4509                         rcu_read_unlock();
4510                         continue;
4511                 }
4512                 atomic_inc(&rdev->nr_pending);
4513                 rcu_read_unlock();
4514                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4515                 atomic_inc(&r10_bio->remaining);
4516                 b->bi_next = NULL;
4517                 generic_make_request(b);
4518         }
4519         end_reshape_request(r10_bio);
4520 }
4521
4522 static void end_reshape(struct r10conf *conf)
4523 {
4524         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4525                 return;
4526
4527         spin_lock_irq(&conf->device_lock);
4528         conf->prev = conf->geo;
4529         md_finish_reshape(conf->mddev);
4530         smp_wmb();
4531         conf->reshape_progress = MaxSector;
4532         conf->reshape_safe = MaxSector;
4533         spin_unlock_irq(&conf->device_lock);
4534
4535         /* read-ahead size must cover two whole stripes, which is
4536          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4537          */
4538         if (conf->mddev->queue) {
4539                 int stripe = conf->geo.raid_disks *
4540                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4541                 stripe /= conf->geo.near_copies;
4542                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4543                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4544         }
4545         conf->fullsync = 0;
4546 }
4547
4548 static int handle_reshape_read_error(struct mddev *mddev,
4549                                      struct r10bio *r10_bio)
4550 {
4551         /* Use sync reads to get the blocks from somewhere else */
4552         int sectors = r10_bio->sectors;
4553         struct r10conf *conf = mddev->private;
4554         struct {
4555                 struct r10bio r10_bio;
4556                 struct r10dev devs[conf->copies];
4557         } on_stack;
4558         struct r10bio *r10b = &on_stack.r10_bio;
4559         int slot = 0;
4560         int idx = 0;
4561         struct page **pages;
4562
4563         /* reshape IOs share pages from .devs[0].bio */
4564         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4565
4566         r10b->sector = r10_bio->sector;
4567         __raid10_find_phys(&conf->prev, r10b);
4568
4569         while (sectors) {
4570                 int s = sectors;
4571                 int success = 0;
4572                 int first_slot = slot;
4573
4574                 if (s > (PAGE_SIZE >> 9))
4575                         s = PAGE_SIZE >> 9;
4576
4577                 rcu_read_lock();
4578                 while (!success) {
4579                         int d = r10b->devs[slot].devnum;
4580                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4581                         sector_t addr;
4582                         if (rdev == NULL ||
4583                             test_bit(Faulty, &rdev->flags) ||
4584                             !test_bit(In_sync, &rdev->flags))
4585                                 goto failed;
4586
4587                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4588                         atomic_inc(&rdev->nr_pending);
4589                         rcu_read_unlock();
4590                         success = sync_page_io(rdev,
4591                                                addr,
4592                                                s << 9,
4593                                                pages[idx],
4594                                                REQ_OP_READ, 0, false);
4595                         rdev_dec_pending(rdev, mddev);
4596                         rcu_read_lock();
4597                         if (success)
4598                                 break;
4599                 failed:
4600                         slot++;
4601                         if (slot >= conf->copies)
4602                                 slot = 0;
4603                         if (slot == first_slot)
4604                                 break;
4605                 }
4606                 rcu_read_unlock();
4607                 if (!success) {
4608                         /* couldn't read this block, must give up */
4609                         set_bit(MD_RECOVERY_INTR,
4610                                 &mddev->recovery);
4611                         return -EIO;
4612                 }
4613                 sectors -= s;
4614                 idx++;
4615         }
4616         return 0;
4617 }
4618
4619 static void end_reshape_write(struct bio *bio)
4620 {
4621         struct r10bio *r10_bio = get_resync_r10bio(bio);
4622         struct mddev *mddev = r10_bio->mddev;
4623         struct r10conf *conf = mddev->private;
4624         int d;
4625         int slot;
4626         int repl;
4627         struct md_rdev *rdev = NULL;
4628
4629         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4630         if (repl)
4631                 rdev = conf->mirrors[d].replacement;
4632         if (!rdev) {
4633                 smp_mb();
4634                 rdev = conf->mirrors[d].rdev;
4635         }
4636
4637         if (bio->bi_status) {
4638                 /* FIXME should record badblock */
4639                 md_error(mddev, rdev);
4640         }
4641
4642         rdev_dec_pending(rdev, mddev);
4643         end_reshape_request(r10_bio);
4644 }
4645
4646 static void end_reshape_request(struct r10bio *r10_bio)
4647 {
4648         if (!atomic_dec_and_test(&r10_bio->remaining))
4649                 return;
4650         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4651         bio_put(r10_bio->master_bio);
4652         put_buf(r10_bio);
4653 }
4654
4655 static void raid10_finish_reshape(struct mddev *mddev)
4656 {
4657         struct r10conf *conf = mddev->private;
4658
4659         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4660                 return;
4661
4662         if (mddev->delta_disks > 0) {
4663                 sector_t size = raid10_size(mddev, 0, 0);
4664                 md_set_array_sectors(mddev, size);
4665                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4666                         mddev->recovery_cp = mddev->resync_max_sectors;
4667                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4668                 }
4669                 mddev->resync_max_sectors = size;
4670                 if (mddev->queue) {
4671                         set_capacity(mddev->gendisk, mddev->array_sectors);
4672                         revalidate_disk(mddev->gendisk);
4673                 }
4674         } else {
4675                 int d;
4676                 rcu_read_lock();
4677                 for (d = conf->geo.raid_disks ;
4678                      d < conf->geo.raid_disks - mddev->delta_disks;
4679                      d++) {
4680                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4681                         if (rdev)
4682                                 clear_bit(In_sync, &rdev->flags);
4683                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4684                         if (rdev)
4685                                 clear_bit(In_sync, &rdev->flags);
4686                 }
4687                 rcu_read_unlock();
4688         }
4689         mddev->layout = mddev->new_layout;
4690         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4691         mddev->reshape_position = MaxSector;
4692         mddev->delta_disks = 0;
4693         mddev->reshape_backwards = 0;
4694 }
4695
4696 static struct md_personality raid10_personality =
4697 {
4698         .name           = "raid10",
4699         .level          = 10,
4700         .owner          = THIS_MODULE,
4701         .make_request   = raid10_make_request,
4702         .run            = raid10_run,
4703         .free           = raid10_free,
4704         .status         = raid10_status,
4705         .error_handler  = raid10_error,
4706         .hot_add_disk   = raid10_add_disk,
4707         .hot_remove_disk= raid10_remove_disk,
4708         .spare_active   = raid10_spare_active,
4709         .sync_request   = raid10_sync_request,
4710         .quiesce        = raid10_quiesce,
4711         .size           = raid10_size,
4712         .resize         = raid10_resize,
4713         .takeover       = raid10_takeover,
4714         .check_reshape  = raid10_check_reshape,
4715         .start_reshape  = raid10_start_reshape,
4716         .finish_reshape = raid10_finish_reshape,
4717         .congested      = raid10_congested,
4718 };
4719
4720 static int __init raid_init(void)
4721 {
4722         return register_md_personality(&raid10_personality);
4723 }
4724
4725 static void raid_exit(void)
4726 {
4727         unregister_md_personality(&raid10_personality);
4728 }
4729
4730 module_init(raid_init);
4731 module_exit(raid_exit);
4732 MODULE_LICENSE("GPL");
4733 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4734 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4735 MODULE_ALIAS("md-raid10");
4736 MODULE_ALIAS("md-level-10");
4737
4738 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);