]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/fsmc_nand.c
mtd: nand: atmel: Add ->setup_data_interface() hooks
[karo-tx-linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2  * drivers/mtd/nand/fsmc_nand.c
3  *
4  * ST Microelectronics
5  * Flexible Static Memory Controller (FSMC)
6  * Driver for NAND portions
7  *
8  * Copyright © 2010 ST Microelectronics
9  * Vipin Kumar <vipin.kumar@st.com>
10  * Ashish Priyadarshi
11  *
12  * Based on drivers/mtd/nand/nomadik_nand.c
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40
41 /* fsmc controller registers for NOR flash */
42 #define CTRL                    0x0
43         /* ctrl register definitions */
44         #define BANK_ENABLE             (1 << 0)
45         #define MUXED                   (1 << 1)
46         #define NOR_DEV                 (2 << 2)
47         #define WIDTH_8                 (0 << 4)
48         #define WIDTH_16                (1 << 4)
49         #define RSTPWRDWN               (1 << 6)
50         #define WPROT                   (1 << 7)
51         #define WRT_ENABLE              (1 << 12)
52         #define WAIT_ENB                (1 << 13)
53
54 #define CTRL_TIM                0x4
55         /* ctrl_tim register definitions */
56
57 #define FSMC_NOR_BANK_SZ        0x8
58 #define FSMC_NOR_REG_SIZE       0x40
59
60 #define FSMC_NOR_REG(base, bank, reg)           (base + \
61                                                 FSMC_NOR_BANK_SZ * (bank) + \
62                                                 reg)
63
64 /* fsmc controller registers for NAND flash */
65 #define PC                      0x00
66         /* pc register definitions */
67         #define FSMC_RESET              (1 << 0)
68         #define FSMC_WAITON             (1 << 1)
69         #define FSMC_ENABLE             (1 << 2)
70         #define FSMC_DEVTYPE_NAND       (1 << 3)
71         #define FSMC_DEVWID_8           (0 << 4)
72         #define FSMC_DEVWID_16          (1 << 4)
73         #define FSMC_ECCEN              (1 << 6)
74         #define FSMC_ECCPLEN_512        (0 << 7)
75         #define FSMC_ECCPLEN_256        (1 << 7)
76         #define FSMC_TCLR_1             (1)
77         #define FSMC_TCLR_SHIFT         (9)
78         #define FSMC_TCLR_MASK          (0xF)
79         #define FSMC_TAR_1              (1)
80         #define FSMC_TAR_SHIFT          (13)
81         #define FSMC_TAR_MASK           (0xF)
82 #define STS                     0x04
83         /* sts register definitions */
84         #define FSMC_CODE_RDY           (1 << 15)
85 #define COMM                    0x08
86         /* comm register definitions */
87         #define FSMC_TSET_0             0
88         #define FSMC_TSET_SHIFT         0
89         #define FSMC_TSET_MASK          0xFF
90         #define FSMC_TWAIT_6            6
91         #define FSMC_TWAIT_SHIFT        8
92         #define FSMC_TWAIT_MASK         0xFF
93         #define FSMC_THOLD_4            4
94         #define FSMC_THOLD_SHIFT        16
95         #define FSMC_THOLD_MASK         0xFF
96         #define FSMC_THIZ_1             1
97         #define FSMC_THIZ_SHIFT         24
98         #define FSMC_THIZ_MASK          0xFF
99 #define ATTRIB                  0x0C
100 #define IOATA                   0x10
101 #define ECC1                    0x14
102 #define ECC2                    0x18
103 #define ECC3                    0x1C
104 #define FSMC_NAND_BANK_SZ       0x20
105
106 #define FSMC_NAND_REG(base, bank, reg)          (base + FSMC_NOR_REG_SIZE + \
107                                                 (FSMC_NAND_BANK_SZ * (bank)) + \
108                                                 reg)
109
110 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
111
112 struct fsmc_nand_timings {
113         uint8_t tclr;
114         uint8_t tar;
115         uint8_t thiz;
116         uint8_t thold;
117         uint8_t twait;
118         uint8_t tset;
119 };
120
121 enum access_mode {
122         USE_DMA_ACCESS = 1,
123         USE_WORD_ACCESS,
124 };
125
126 /**
127  * struct fsmc_nand_data - structure for FSMC NAND device state
128  *
129  * @pid:                Part ID on the AMBA PrimeCell format
130  * @mtd:                MTD info for a NAND flash.
131  * @nand:               Chip related info for a NAND flash.
132  * @partitions:         Partition info for a NAND Flash.
133  * @nr_partitions:      Total number of partition of a NAND flash.
134  *
135  * @bank:               Bank number for probed device.
136  * @clk:                Clock structure for FSMC.
137  *
138  * @read_dma_chan:      DMA channel for read access
139  * @write_dma_chan:     DMA channel for write access to NAND
140  * @dma_access_complete: Completion structure
141  *
142  * @data_pa:            NAND Physical port for Data.
143  * @data_va:            NAND port for Data.
144  * @cmd_va:             NAND port for Command.
145  * @addr_va:            NAND port for Address.
146  * @regs_va:            FSMC regs base address.
147  */
148 struct fsmc_nand_data {
149         u32                     pid;
150         struct nand_chip        nand;
151
152         unsigned int            bank;
153         struct device           *dev;
154         enum access_mode        mode;
155         struct clk              *clk;
156
157         /* DMA related objects */
158         struct dma_chan         *read_dma_chan;
159         struct dma_chan         *write_dma_chan;
160         struct completion       dma_access_complete;
161
162         struct fsmc_nand_timings *dev_timings;
163
164         dma_addr_t              data_pa;
165         void __iomem            *data_va;
166         void __iomem            *cmd_va;
167         void __iomem            *addr_va;
168         void __iomem            *regs_va;
169 };
170
171 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
172                                    struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175
176         if (section >= chip->ecc.steps)
177                 return -ERANGE;
178
179         oobregion->offset = (section * 16) + 2;
180         oobregion->length = 3;
181
182         return 0;
183 }
184
185 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
186                                     struct mtd_oob_region *oobregion)
187 {
188         struct nand_chip *chip = mtd_to_nand(mtd);
189
190         if (section >= chip->ecc.steps)
191                 return -ERANGE;
192
193         oobregion->offset = (section * 16) + 8;
194
195         if (section < chip->ecc.steps - 1)
196                 oobregion->length = 8;
197         else
198                 oobregion->length = mtd->oobsize - oobregion->offset;
199
200         return 0;
201 }
202
203 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
204         .ecc = fsmc_ecc1_ooblayout_ecc,
205         .free = fsmc_ecc1_ooblayout_free,
206 };
207
208 /*
209  * ECC placement definitions in oobfree type format.
210  * There are 13 bytes of ecc for every 512 byte block and it has to be read
211  * consecutively and immediately after the 512 byte data block for hardware to
212  * generate the error bit offsets in 512 byte data.
213  */
214 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
215                                    struct mtd_oob_region *oobregion)
216 {
217         struct nand_chip *chip = mtd_to_nand(mtd);
218
219         if (section >= chip->ecc.steps)
220                 return -ERANGE;
221
222         oobregion->length = chip->ecc.bytes;
223
224         if (!section && mtd->writesize <= 512)
225                 oobregion->offset = 0;
226         else
227                 oobregion->offset = (section * 16) + 2;
228
229         return 0;
230 }
231
232 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
233                                     struct mtd_oob_region *oobregion)
234 {
235         struct nand_chip *chip = mtd_to_nand(mtd);
236
237         if (section >= chip->ecc.steps)
238                 return -ERANGE;
239
240         oobregion->offset = (section * 16) + 15;
241
242         if (section < chip->ecc.steps - 1)
243                 oobregion->length = 3;
244         else
245                 oobregion->length = mtd->oobsize - oobregion->offset;
246
247         return 0;
248 }
249
250 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
251         .ecc = fsmc_ecc4_ooblayout_ecc,
252         .free = fsmc_ecc4_ooblayout_free,
253 };
254
255 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
256 {
257         return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
258 }
259
260 /*
261  * fsmc_cmd_ctrl - For facilitaing Hardware access
262  * This routine allows hardware specific access to control-lines(ALE,CLE)
263  */
264 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
265 {
266         struct nand_chip *this = mtd_to_nand(mtd);
267         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
268         void __iomem *regs = host->regs_va;
269         unsigned int bank = host->bank;
270
271         if (ctrl & NAND_CTRL_CHANGE) {
272                 u32 pc;
273
274                 if (ctrl & NAND_CLE) {
275                         this->IO_ADDR_R = host->cmd_va;
276                         this->IO_ADDR_W = host->cmd_va;
277                 } else if (ctrl & NAND_ALE) {
278                         this->IO_ADDR_R = host->addr_va;
279                         this->IO_ADDR_W = host->addr_va;
280                 } else {
281                         this->IO_ADDR_R = host->data_va;
282                         this->IO_ADDR_W = host->data_va;
283                 }
284
285                 pc = readl(FSMC_NAND_REG(regs, bank, PC));
286                 if (ctrl & NAND_NCE)
287                         pc |= FSMC_ENABLE;
288                 else
289                         pc &= ~FSMC_ENABLE;
290                 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
291         }
292
293         mb();
294
295         if (cmd != NAND_CMD_NONE)
296                 writeb_relaxed(cmd, this->IO_ADDR_W);
297 }
298
299 /*
300  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
301  *
302  * This routine initializes timing parameters related to NAND memory access in
303  * FSMC registers
304  */
305 static void fsmc_nand_setup(struct fsmc_nand_data *host,
306                             struct fsmc_nand_timings *tims)
307 {
308         uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
309         uint32_t tclr, tar, thiz, thold, twait, tset;
310         unsigned int bank = host->bank;
311         void __iomem *regs = host->regs_va;
312
313         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
314         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
315         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
316         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
317         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
318         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
319
320         if (host->nand.options & NAND_BUSWIDTH_16)
321                 writel_relaxed(value | FSMC_DEVWID_16,
322                                 FSMC_NAND_REG(regs, bank, PC));
323         else
324                 writel_relaxed(value | FSMC_DEVWID_8,
325                                 FSMC_NAND_REG(regs, bank, PC));
326
327         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
328                         FSMC_NAND_REG(regs, bank, PC));
329         writel_relaxed(thiz | thold | twait | tset,
330                         FSMC_NAND_REG(regs, bank, COMM));
331         writel_relaxed(thiz | thold | twait | tset,
332                         FSMC_NAND_REG(regs, bank, ATTRIB));
333 }
334
335 static int fsmc_calc_timings(struct fsmc_nand_data *host,
336                              const struct nand_sdr_timings *sdrt,
337                              struct fsmc_nand_timings *tims)
338 {
339         unsigned long hclk = clk_get_rate(host->clk);
340         unsigned long hclkn = NSEC_PER_SEC / hclk;
341         uint32_t thiz, thold, twait, tset;
342
343         if (sdrt->tRC_min < 30000)
344                 return -EOPNOTSUPP;
345
346         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
347         if (tims->tar > FSMC_TAR_MASK)
348                 tims->tar = FSMC_TAR_MASK;
349         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
350         if (tims->tclr > FSMC_TCLR_MASK)
351                 tims->tclr = FSMC_TCLR_MASK;
352
353         thiz = sdrt->tCS_min - sdrt->tWP_min;
354         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
355
356         thold = sdrt->tDH_min;
357         if (thold < sdrt->tCH_min)
358                 thold = sdrt->tCH_min;
359         if (thold < sdrt->tCLH_min)
360                 thold = sdrt->tCLH_min;
361         if (thold < sdrt->tWH_min)
362                 thold = sdrt->tWH_min;
363         if (thold < sdrt->tALH_min)
364                 thold = sdrt->tALH_min;
365         if (thold < sdrt->tREH_min)
366                 thold = sdrt->tREH_min;
367         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
368         if (tims->thold == 0)
369                 tims->thold = 1;
370         else if (tims->thold > FSMC_THOLD_MASK)
371                 tims->thold = FSMC_THOLD_MASK;
372
373         twait = max(sdrt->tRP_min, sdrt->tWP_min);
374         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
375         if (tims->twait == 0)
376                 tims->twait = 1;
377         else if (tims->twait > FSMC_TWAIT_MASK)
378                 tims->twait = FSMC_TWAIT_MASK;
379
380         tset = max(sdrt->tCS_min - sdrt->tWP_min,
381                    sdrt->tCEA_max - sdrt->tREA_max);
382         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
383         if (tims->tset == 0)
384                 tims->tset = 1;
385         else if (tims->tset > FSMC_TSET_MASK)
386                 tims->tset = FSMC_TSET_MASK;
387
388         return 0;
389 }
390
391 static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
392                                      const struct nand_data_interface *conf)
393 {
394         struct nand_chip *nand = mtd_to_nand(mtd);
395         struct fsmc_nand_data *host = nand_get_controller_data(nand);
396         struct fsmc_nand_timings tims;
397         const struct nand_sdr_timings *sdrt;
398         int ret;
399
400         sdrt = nand_get_sdr_timings(conf);
401         if (IS_ERR(sdrt))
402                 return PTR_ERR(sdrt);
403
404         ret = fsmc_calc_timings(host, sdrt, &tims);
405         if (ret)
406                 return ret;
407
408         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
409                 return 0;
410
411         fsmc_nand_setup(host, &tims);
412
413         return 0;
414 }
415
416 /*
417  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
418  */
419 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
420 {
421         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
422         void __iomem *regs = host->regs_va;
423         uint32_t bank = host->bank;
424
425         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
426                         FSMC_NAND_REG(regs, bank, PC));
427         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
428                         FSMC_NAND_REG(regs, bank, PC));
429         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
430                         FSMC_NAND_REG(regs, bank, PC));
431 }
432
433 /*
434  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
435  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
436  * max of 8-bits)
437  */
438 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
439                                 uint8_t *ecc)
440 {
441         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
442         void __iomem *regs = host->regs_va;
443         uint32_t bank = host->bank;
444         uint32_t ecc_tmp;
445         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
446
447         do {
448                 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
449                         break;
450                 else
451                         cond_resched();
452         } while (!time_after_eq(jiffies, deadline));
453
454         if (time_after_eq(jiffies, deadline)) {
455                 dev_err(host->dev, "calculate ecc timed out\n");
456                 return -ETIMEDOUT;
457         }
458
459         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
460         ecc[0] = (uint8_t) (ecc_tmp >> 0);
461         ecc[1] = (uint8_t) (ecc_tmp >> 8);
462         ecc[2] = (uint8_t) (ecc_tmp >> 16);
463         ecc[3] = (uint8_t) (ecc_tmp >> 24);
464
465         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
466         ecc[4] = (uint8_t) (ecc_tmp >> 0);
467         ecc[5] = (uint8_t) (ecc_tmp >> 8);
468         ecc[6] = (uint8_t) (ecc_tmp >> 16);
469         ecc[7] = (uint8_t) (ecc_tmp >> 24);
470
471         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
472         ecc[8] = (uint8_t) (ecc_tmp >> 0);
473         ecc[9] = (uint8_t) (ecc_tmp >> 8);
474         ecc[10] = (uint8_t) (ecc_tmp >> 16);
475         ecc[11] = (uint8_t) (ecc_tmp >> 24);
476
477         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
478         ecc[12] = (uint8_t) (ecc_tmp >> 16);
479
480         return 0;
481 }
482
483 /*
484  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
485  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
486  * max of 1-bit)
487  */
488 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
489                                 uint8_t *ecc)
490 {
491         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
492         void __iomem *regs = host->regs_va;
493         uint32_t bank = host->bank;
494         uint32_t ecc_tmp;
495
496         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
497         ecc[0] = (uint8_t) (ecc_tmp >> 0);
498         ecc[1] = (uint8_t) (ecc_tmp >> 8);
499         ecc[2] = (uint8_t) (ecc_tmp >> 16);
500
501         return 0;
502 }
503
504 /* Count the number of 0's in buff upto a max of max_bits */
505 static int count_written_bits(uint8_t *buff, int size, int max_bits)
506 {
507         int k, written_bits = 0;
508
509         for (k = 0; k < size; k++) {
510                 written_bits += hweight8(~buff[k]);
511                 if (written_bits > max_bits)
512                         break;
513         }
514
515         return written_bits;
516 }
517
518 static void dma_complete(void *param)
519 {
520         struct fsmc_nand_data *host = param;
521
522         complete(&host->dma_access_complete);
523 }
524
525 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
526                 enum dma_data_direction direction)
527 {
528         struct dma_chan *chan;
529         struct dma_device *dma_dev;
530         struct dma_async_tx_descriptor *tx;
531         dma_addr_t dma_dst, dma_src, dma_addr;
532         dma_cookie_t cookie;
533         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
534         int ret;
535         unsigned long time_left;
536
537         if (direction == DMA_TO_DEVICE)
538                 chan = host->write_dma_chan;
539         else if (direction == DMA_FROM_DEVICE)
540                 chan = host->read_dma_chan;
541         else
542                 return -EINVAL;
543
544         dma_dev = chan->device;
545         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
546
547         if (direction == DMA_TO_DEVICE) {
548                 dma_src = dma_addr;
549                 dma_dst = host->data_pa;
550         } else {
551                 dma_src = host->data_pa;
552                 dma_dst = dma_addr;
553         }
554
555         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
556                         len, flags);
557         if (!tx) {
558                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
559                 ret = -EIO;
560                 goto unmap_dma;
561         }
562
563         tx->callback = dma_complete;
564         tx->callback_param = host;
565         cookie = tx->tx_submit(tx);
566
567         ret = dma_submit_error(cookie);
568         if (ret) {
569                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
570                 goto unmap_dma;
571         }
572
573         dma_async_issue_pending(chan);
574
575         time_left =
576         wait_for_completion_timeout(&host->dma_access_complete,
577                                 msecs_to_jiffies(3000));
578         if (time_left == 0) {
579                 dmaengine_terminate_all(chan);
580                 dev_err(host->dev, "wait_for_completion_timeout\n");
581                 ret = -ETIMEDOUT;
582                 goto unmap_dma;
583         }
584
585         ret = 0;
586
587 unmap_dma:
588         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
589
590         return ret;
591 }
592
593 /*
594  * fsmc_write_buf - write buffer to chip
595  * @mtd:        MTD device structure
596  * @buf:        data buffer
597  * @len:        number of bytes to write
598  */
599 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
600 {
601         int i;
602         struct nand_chip *chip = mtd_to_nand(mtd);
603
604         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
605                         IS_ALIGNED(len, sizeof(uint32_t))) {
606                 uint32_t *p = (uint32_t *)buf;
607                 len = len >> 2;
608                 for (i = 0; i < len; i++)
609                         writel_relaxed(p[i], chip->IO_ADDR_W);
610         } else {
611                 for (i = 0; i < len; i++)
612                         writeb_relaxed(buf[i], chip->IO_ADDR_W);
613         }
614 }
615
616 /*
617  * fsmc_read_buf - read chip data into buffer
618  * @mtd:        MTD device structure
619  * @buf:        buffer to store date
620  * @len:        number of bytes to read
621  */
622 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
623 {
624         int i;
625         struct nand_chip *chip = mtd_to_nand(mtd);
626
627         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
628                         IS_ALIGNED(len, sizeof(uint32_t))) {
629                 uint32_t *p = (uint32_t *)buf;
630                 len = len >> 2;
631                 for (i = 0; i < len; i++)
632                         p[i] = readl_relaxed(chip->IO_ADDR_R);
633         } else {
634                 for (i = 0; i < len; i++)
635                         buf[i] = readb_relaxed(chip->IO_ADDR_R);
636         }
637 }
638
639 /*
640  * fsmc_read_buf_dma - read chip data into buffer
641  * @mtd:        MTD device structure
642  * @buf:        buffer to store date
643  * @len:        number of bytes to read
644  */
645 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
646 {
647         struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
648
649         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
650 }
651
652 /*
653  * fsmc_write_buf_dma - write buffer to chip
654  * @mtd:        MTD device structure
655  * @buf:        data buffer
656  * @len:        number of bytes to write
657  */
658 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
659                 int len)
660 {
661         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
662
663         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
664 }
665
666 /*
667  * fsmc_read_page_hwecc
668  * @mtd:        mtd info structure
669  * @chip:       nand chip info structure
670  * @buf:        buffer to store read data
671  * @oob_required:       caller expects OOB data read to chip->oob_poi
672  * @page:       page number to read
673  *
674  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
675  * performed in a strict sequence as follows:
676  * data(512 byte) -> ecc(13 byte)
677  * After this read, fsmc hardware generates and reports error data bits(up to a
678  * max of 8 bits)
679  */
680 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
681                                  uint8_t *buf, int oob_required, int page)
682 {
683         int i, j, s, stat, eccsize = chip->ecc.size;
684         int eccbytes = chip->ecc.bytes;
685         int eccsteps = chip->ecc.steps;
686         uint8_t *p = buf;
687         uint8_t *ecc_calc = chip->buffers->ecccalc;
688         uint8_t *ecc_code = chip->buffers->ecccode;
689         int off, len, group = 0;
690         /*
691          * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
692          * end up reading 14 bytes (7 words) from oob. The local array is
693          * to maintain word alignment
694          */
695         uint16_t ecc_oob[7];
696         uint8_t *oob = (uint8_t *)&ecc_oob[0];
697         unsigned int max_bitflips = 0;
698
699         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
700                 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
701                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
702                 chip->read_buf(mtd, p, eccsize);
703
704                 for (j = 0; j < eccbytes;) {
705                         struct mtd_oob_region oobregion;
706                         int ret;
707
708                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
709                         if (ret)
710                                 return ret;
711
712                         off = oobregion.offset;
713                         len = oobregion.length;
714
715                         /*
716                          * length is intentionally kept a higher multiple of 2
717                          * to read at least 13 bytes even in case of 16 bit NAND
718                          * devices
719                          */
720                         if (chip->options & NAND_BUSWIDTH_16)
721                                 len = roundup(len, 2);
722
723                         chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
724                         chip->read_buf(mtd, oob + j, len);
725                         j += len;
726                 }
727
728                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
729                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
730
731                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
732                 if (stat < 0) {
733                         mtd->ecc_stats.failed++;
734                 } else {
735                         mtd->ecc_stats.corrected += stat;
736                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
737                 }
738         }
739
740         return max_bitflips;
741 }
742
743 /*
744  * fsmc_bch8_correct_data
745  * @mtd:        mtd info structure
746  * @dat:        buffer of read data
747  * @read_ecc:   ecc read from device spare area
748  * @calc_ecc:   ecc calculated from read data
749  *
750  * calc_ecc is a 104 bit information containing maximum of 8 error
751  * offset informations of 13 bits each in 512 bytes of read data.
752  */
753 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
754                              uint8_t *read_ecc, uint8_t *calc_ecc)
755 {
756         struct nand_chip *chip = mtd_to_nand(mtd);
757         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
758         void __iomem *regs = host->regs_va;
759         unsigned int bank = host->bank;
760         uint32_t err_idx[8];
761         uint32_t num_err, i;
762         uint32_t ecc1, ecc2, ecc3, ecc4;
763
764         num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
765
766         /* no bit flipping */
767         if (likely(num_err == 0))
768                 return 0;
769
770         /* too many errors */
771         if (unlikely(num_err > 8)) {
772                 /*
773                  * This is a temporary erase check. A newly erased page read
774                  * would result in an ecc error because the oob data is also
775                  * erased to FF and the calculated ecc for an FF data is not
776                  * FF..FF.
777                  * This is a workaround to skip performing correction in case
778                  * data is FF..FF
779                  *
780                  * Logic:
781                  * For every page, each bit written as 0 is counted until these
782                  * number of bits are greater than 8 (the maximum correction
783                  * capability of FSMC for each 512 + 13 bytes)
784                  */
785
786                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
787                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
788
789                 if ((bits_ecc + bits_data) <= 8) {
790                         if (bits_data)
791                                 memset(dat, 0xff, chip->ecc.size);
792                         return bits_data;
793                 }
794
795                 return -EBADMSG;
796         }
797
798         /*
799          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
800          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
801          *
802          * calc_ecc is a 104 bit information containing maximum of 8 error
803          * offset informations of 13 bits each. calc_ecc is copied into a
804          * uint64_t array and error offset indexes are populated in err_idx
805          * array
806          */
807         ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
808         ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
809         ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
810         ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
811
812         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
813         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
814         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
815         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
816         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
817         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
818         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
819         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
820
821         i = 0;
822         while (num_err--) {
823                 change_bit(0, (unsigned long *)&err_idx[i]);
824                 change_bit(1, (unsigned long *)&err_idx[i]);
825
826                 if (err_idx[i] < chip->ecc.size * 8) {
827                         change_bit(err_idx[i], (unsigned long *)dat);
828                         i++;
829                 }
830         }
831         return i;
832 }
833
834 static bool filter(struct dma_chan *chan, void *slave)
835 {
836         chan->private = slave;
837         return true;
838 }
839
840 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
841                                      struct fsmc_nand_data *host,
842                                      struct nand_chip *nand)
843 {
844         struct device_node *np = pdev->dev.of_node;
845         u32 val;
846         int ret;
847
848         nand->options = 0;
849
850         if (!of_property_read_u32(np, "bank-width", &val)) {
851                 if (val == 2) {
852                         nand->options |= NAND_BUSWIDTH_16;
853                 } else if (val != 1) {
854                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
855                         return -EINVAL;
856                 }
857         }
858
859         if (of_get_property(np, "nand-skip-bbtscan", NULL))
860                 nand->options |= NAND_SKIP_BBTSCAN;
861
862         host->dev_timings = devm_kzalloc(&pdev->dev,
863                                 sizeof(*host->dev_timings), GFP_KERNEL);
864         if (!host->dev_timings)
865                 return -ENOMEM;
866         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
867                                                 sizeof(*host->dev_timings));
868         if (ret)
869                 host->dev_timings = NULL;
870
871         /* Set default NAND bank to 0 */
872         host->bank = 0;
873         if (!of_property_read_u32(np, "bank", &val)) {
874                 if (val > 3) {
875                         dev_err(&pdev->dev, "invalid bank %u\n", val);
876                         return -EINVAL;
877                 }
878                 host->bank = val;
879         }
880         return 0;
881 }
882
883 /*
884  * fsmc_nand_probe - Probe function
885  * @pdev:       platform device structure
886  */
887 static int __init fsmc_nand_probe(struct platform_device *pdev)
888 {
889         struct fsmc_nand_data *host;
890         struct mtd_info *mtd;
891         struct nand_chip *nand;
892         struct resource *res;
893         dma_cap_mask_t mask;
894         int ret = 0;
895         u32 pid;
896         int i;
897
898         /* Allocate memory for the device structure (and zero it) */
899         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
900         if (!host)
901                 return -ENOMEM;
902
903         nand = &host->nand;
904
905         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
906         if (ret)
907                 return ret;
908
909         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
910         host->data_va = devm_ioremap_resource(&pdev->dev, res);
911         if (IS_ERR(host->data_va))
912                 return PTR_ERR(host->data_va);
913
914         host->data_pa = (dma_addr_t)res->start;
915
916         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
917         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
918         if (IS_ERR(host->addr_va))
919                 return PTR_ERR(host->addr_va);
920
921         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
922         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
923         if (IS_ERR(host->cmd_va))
924                 return PTR_ERR(host->cmd_va);
925
926         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
927         host->regs_va = devm_ioremap_resource(&pdev->dev, res);
928         if (IS_ERR(host->regs_va))
929                 return PTR_ERR(host->regs_va);
930
931         host->clk = devm_clk_get(&pdev->dev, NULL);
932         if (IS_ERR(host->clk)) {
933                 dev_err(&pdev->dev, "failed to fetch block clock\n");
934                 return PTR_ERR(host->clk);
935         }
936
937         ret = clk_prepare_enable(host->clk);
938         if (ret)
939                 return ret;
940
941         /*
942          * This device ID is actually a common AMBA ID as used on the
943          * AMBA PrimeCell bus. However it is not a PrimeCell.
944          */
945         for (pid = 0, i = 0; i < 4; i++)
946                 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
947         host->pid = pid;
948         dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
949                  "revision %02x, config %02x\n",
950                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
951                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
952
953         host->dev = &pdev->dev;
954
955         if (host->mode == USE_DMA_ACCESS)
956                 init_completion(&host->dma_access_complete);
957
958         /* Link all private pointers */
959         mtd = nand_to_mtd(&host->nand);
960         nand_set_controller_data(nand, host);
961         nand_set_flash_node(nand, pdev->dev.of_node);
962
963         mtd->dev.parent = &pdev->dev;
964         nand->IO_ADDR_R = host->data_va;
965         nand->IO_ADDR_W = host->data_va;
966         nand->cmd_ctrl = fsmc_cmd_ctrl;
967         nand->chip_delay = 30;
968
969         /*
970          * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
971          * can overwrite this value if the DT provides a different value.
972          */
973         nand->ecc.mode = NAND_ECC_HW;
974         nand->ecc.hwctl = fsmc_enable_hwecc;
975         nand->ecc.size = 512;
976         nand->badblockbits = 7;
977
978         switch (host->mode) {
979         case USE_DMA_ACCESS:
980                 dma_cap_zero(mask);
981                 dma_cap_set(DMA_MEMCPY, mask);
982                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
983                 if (!host->read_dma_chan) {
984                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
985                         goto err_req_read_chnl;
986                 }
987                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
988                 if (!host->write_dma_chan) {
989                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
990                         goto err_req_write_chnl;
991                 }
992                 nand->read_buf = fsmc_read_buf_dma;
993                 nand->write_buf = fsmc_write_buf_dma;
994                 break;
995
996         default:
997         case USE_WORD_ACCESS:
998                 nand->read_buf = fsmc_read_buf;
999                 nand->write_buf = fsmc_write_buf;
1000                 break;
1001         }
1002
1003         if (host->dev_timings)
1004                 fsmc_nand_setup(host, host->dev_timings);
1005         else
1006                 nand->setup_data_interface = fsmc_setup_data_interface;
1007
1008         if (AMBA_REV_BITS(host->pid) >= 8) {
1009                 nand->ecc.read_page = fsmc_read_page_hwecc;
1010                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1011                 nand->ecc.correct = fsmc_bch8_correct_data;
1012                 nand->ecc.bytes = 13;
1013                 nand->ecc.strength = 8;
1014         }
1015
1016         /*
1017          * Scan to find existence of the device
1018          */
1019         ret = nand_scan_ident(mtd, 1, NULL);
1020         if (ret) {
1021                 dev_err(&pdev->dev, "No NAND Device found!\n");
1022                 goto err_scan_ident;
1023         }
1024
1025         if (AMBA_REV_BITS(host->pid) >= 8) {
1026                 switch (mtd->oobsize) {
1027                 case 16:
1028                 case 64:
1029                 case 128:
1030                 case 224:
1031                 case 256:
1032                         break;
1033                 default:
1034                         dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1035                                  mtd->oobsize);
1036                         ret = -EINVAL;
1037                         goto err_probe;
1038                 }
1039
1040                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
1041         } else {
1042                 switch (nand->ecc.mode) {
1043                 case NAND_ECC_HW:
1044                         dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1045                         nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1046                         nand->ecc.correct = nand_correct_data;
1047                         nand->ecc.bytes = 3;
1048                         nand->ecc.strength = 1;
1049                         break;
1050
1051                 case NAND_ECC_SOFT:
1052                         if (nand->ecc.algo == NAND_ECC_BCH) {
1053                                 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1054                                 break;
1055                         }
1056
1057                 case NAND_ECC_ON_DIE:
1058                         break;
1059
1060                 default:
1061                         dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1062                         goto err_probe;
1063                 }
1064
1065                 /*
1066                  * Don't set layout for BCH4 SW ECC. This will be
1067                  * generated later in nand_bch_init() later.
1068                  */
1069                 if (nand->ecc.mode == NAND_ECC_HW) {
1070                         switch (mtd->oobsize) {
1071                         case 16:
1072                         case 64:
1073                         case 128:
1074                                 mtd_set_ooblayout(mtd,
1075                                                   &fsmc_ecc1_ooblayout_ops);
1076                                 break;
1077                         default:
1078                                 dev_warn(&pdev->dev,
1079                                          "No oob scheme defined for oobsize %d\n",
1080                                          mtd->oobsize);
1081                                 ret = -EINVAL;
1082                                 goto err_probe;
1083                         }
1084                 }
1085         }
1086
1087         /* Second stage of scan to fill MTD data-structures */
1088         ret = nand_scan_tail(mtd);
1089         if (ret)
1090                 goto err_probe;
1091
1092         mtd->name = "nand";
1093         ret = mtd_device_register(mtd, NULL, 0);
1094         if (ret)
1095                 goto err_probe;
1096
1097         platform_set_drvdata(pdev, host);
1098         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1099         return 0;
1100
1101 err_probe:
1102 err_scan_ident:
1103         if (host->mode == USE_DMA_ACCESS)
1104                 dma_release_channel(host->write_dma_chan);
1105 err_req_write_chnl:
1106         if (host->mode == USE_DMA_ACCESS)
1107                 dma_release_channel(host->read_dma_chan);
1108 err_req_read_chnl:
1109         clk_disable_unprepare(host->clk);
1110         return ret;
1111 }
1112
1113 /*
1114  * Clean up routine
1115  */
1116 static int fsmc_nand_remove(struct platform_device *pdev)
1117 {
1118         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1119
1120         if (host) {
1121                 nand_release(nand_to_mtd(&host->nand));
1122
1123                 if (host->mode == USE_DMA_ACCESS) {
1124                         dma_release_channel(host->write_dma_chan);
1125                         dma_release_channel(host->read_dma_chan);
1126                 }
1127                 clk_disable_unprepare(host->clk);
1128         }
1129
1130         return 0;
1131 }
1132
1133 #ifdef CONFIG_PM_SLEEP
1134 static int fsmc_nand_suspend(struct device *dev)
1135 {
1136         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1137         if (host)
1138                 clk_disable_unprepare(host->clk);
1139         return 0;
1140 }
1141
1142 static int fsmc_nand_resume(struct device *dev)
1143 {
1144         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1145         if (host) {
1146                 clk_prepare_enable(host->clk);
1147                 if (host->dev_timings)
1148                         fsmc_nand_setup(host, host->dev_timings);
1149         }
1150         return 0;
1151 }
1152 #endif
1153
1154 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1155
1156 static const struct of_device_id fsmc_nand_id_table[] = {
1157         { .compatible = "st,spear600-fsmc-nand" },
1158         { .compatible = "stericsson,fsmc-nand" },
1159         {}
1160 };
1161 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1162
1163 static struct platform_driver fsmc_nand_driver = {
1164         .remove = fsmc_nand_remove,
1165         .driver = {
1166                 .name = "fsmc-nand",
1167                 .of_match_table = fsmc_nand_id_table,
1168                 .pm = &fsmc_nand_pm_ops,
1169         },
1170 };
1171
1172 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1173
1174 MODULE_LICENSE("GPL");
1175 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1176 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");