]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/fsmc_nand.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2  * drivers/mtd/nand/fsmc_nand.c
3  *
4  * ST Microelectronics
5  * Flexible Static Memory Controller (FSMC)
6  * Driver for NAND portions
7  *
8  * Copyright © 2010 ST Microelectronics
9  * Vipin Kumar <vipin.kumar@st.com>
10  * Ashish Priyadarshi
11  *
12  * Based on drivers/mtd/nand/nomadik_nand.c
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40
41 /* fsmc controller registers for NOR flash */
42 #define CTRL                    0x0
43         /* ctrl register definitions */
44         #define BANK_ENABLE             (1 << 0)
45         #define MUXED                   (1 << 1)
46         #define NOR_DEV                 (2 << 2)
47         #define WIDTH_8                 (0 << 4)
48         #define WIDTH_16                (1 << 4)
49         #define RSTPWRDWN               (1 << 6)
50         #define WPROT                   (1 << 7)
51         #define WRT_ENABLE              (1 << 12)
52         #define WAIT_ENB                (1 << 13)
53
54 #define CTRL_TIM                0x4
55         /* ctrl_tim register definitions */
56
57 #define FSMC_NOR_BANK_SZ        0x8
58 #define FSMC_NOR_REG_SIZE       0x40
59
60 #define FSMC_NOR_REG(base, bank, reg)           (base + \
61                                                 FSMC_NOR_BANK_SZ * (bank) + \
62                                                 reg)
63
64 /* fsmc controller registers for NAND flash */
65 #define PC                      0x00
66         /* pc register definitions */
67         #define FSMC_RESET              (1 << 0)
68         #define FSMC_WAITON             (1 << 1)
69         #define FSMC_ENABLE             (1 << 2)
70         #define FSMC_DEVTYPE_NAND       (1 << 3)
71         #define FSMC_DEVWID_8           (0 << 4)
72         #define FSMC_DEVWID_16          (1 << 4)
73         #define FSMC_ECCEN              (1 << 6)
74         #define FSMC_ECCPLEN_512        (0 << 7)
75         #define FSMC_ECCPLEN_256        (1 << 7)
76         #define FSMC_TCLR_1             (1)
77         #define FSMC_TCLR_SHIFT         (9)
78         #define FSMC_TCLR_MASK          (0xF)
79         #define FSMC_TAR_1              (1)
80         #define FSMC_TAR_SHIFT          (13)
81         #define FSMC_TAR_MASK           (0xF)
82 #define STS                     0x04
83         /* sts register definitions */
84         #define FSMC_CODE_RDY           (1 << 15)
85 #define COMM                    0x08
86         /* comm register definitions */
87         #define FSMC_TSET_0             0
88         #define FSMC_TSET_SHIFT         0
89         #define FSMC_TSET_MASK          0xFF
90         #define FSMC_TWAIT_6            6
91         #define FSMC_TWAIT_SHIFT        8
92         #define FSMC_TWAIT_MASK         0xFF
93         #define FSMC_THOLD_4            4
94         #define FSMC_THOLD_SHIFT        16
95         #define FSMC_THOLD_MASK         0xFF
96         #define FSMC_THIZ_1             1
97         #define FSMC_THIZ_SHIFT         24
98         #define FSMC_THIZ_MASK          0xFF
99 #define ATTRIB                  0x0C
100 #define IOATA                   0x10
101 #define ECC1                    0x14
102 #define ECC2                    0x18
103 #define ECC3                    0x1C
104 #define FSMC_NAND_BANK_SZ       0x20
105
106 #define FSMC_NAND_REG(base, bank, reg)          (base + FSMC_NOR_REG_SIZE + \
107                                                 (FSMC_NAND_BANK_SZ * (bank)) + \
108                                                 reg)
109
110 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
111
112 struct fsmc_nand_timings {
113         uint8_t tclr;
114         uint8_t tar;
115         uint8_t thiz;
116         uint8_t thold;
117         uint8_t twait;
118         uint8_t tset;
119 };
120
121 enum access_mode {
122         USE_DMA_ACCESS = 1,
123         USE_WORD_ACCESS,
124 };
125
126 /**
127  * struct fsmc_nand_data - structure for FSMC NAND device state
128  *
129  * @pid:                Part ID on the AMBA PrimeCell format
130  * @mtd:                MTD info for a NAND flash.
131  * @nand:               Chip related info for a NAND flash.
132  * @partitions:         Partition info for a NAND Flash.
133  * @nr_partitions:      Total number of partition of a NAND flash.
134  *
135  * @bank:               Bank number for probed device.
136  * @clk:                Clock structure for FSMC.
137  *
138  * @read_dma_chan:      DMA channel for read access
139  * @write_dma_chan:     DMA channel for write access to NAND
140  * @dma_access_complete: Completion structure
141  *
142  * @data_pa:            NAND Physical port for Data.
143  * @data_va:            NAND port for Data.
144  * @cmd_va:             NAND port for Command.
145  * @addr_va:            NAND port for Address.
146  * @regs_va:            FSMC regs base address.
147  */
148 struct fsmc_nand_data {
149         u32                     pid;
150         struct nand_chip        nand;
151
152         unsigned int            bank;
153         struct device           *dev;
154         enum access_mode        mode;
155         struct clk              *clk;
156
157         /* DMA related objects */
158         struct dma_chan         *read_dma_chan;
159         struct dma_chan         *write_dma_chan;
160         struct completion       dma_access_complete;
161
162         struct fsmc_nand_timings *dev_timings;
163
164         dma_addr_t              data_pa;
165         void __iomem            *data_va;
166         void __iomem            *cmd_va;
167         void __iomem            *addr_va;
168         void __iomem            *regs_va;
169 };
170
171 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
172                                    struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175
176         if (section >= chip->ecc.steps)
177                 return -ERANGE;
178
179         oobregion->offset = (section * 16) + 2;
180         oobregion->length = 3;
181
182         return 0;
183 }
184
185 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
186                                     struct mtd_oob_region *oobregion)
187 {
188         struct nand_chip *chip = mtd_to_nand(mtd);
189
190         if (section >= chip->ecc.steps)
191                 return -ERANGE;
192
193         oobregion->offset = (section * 16) + 8;
194
195         if (section < chip->ecc.steps - 1)
196                 oobregion->length = 8;
197         else
198                 oobregion->length = mtd->oobsize - oobregion->offset;
199
200         return 0;
201 }
202
203 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
204         .ecc = fsmc_ecc1_ooblayout_ecc,
205         .free = fsmc_ecc1_ooblayout_free,
206 };
207
208 /*
209  * ECC placement definitions in oobfree type format.
210  * There are 13 bytes of ecc for every 512 byte block and it has to be read
211  * consecutively and immediately after the 512 byte data block for hardware to
212  * generate the error bit offsets in 512 byte data.
213  */
214 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
215                                    struct mtd_oob_region *oobregion)
216 {
217         struct nand_chip *chip = mtd_to_nand(mtd);
218
219         if (section >= chip->ecc.steps)
220                 return -ERANGE;
221
222         oobregion->length = chip->ecc.bytes;
223
224         if (!section && mtd->writesize <= 512)
225                 oobregion->offset = 0;
226         else
227                 oobregion->offset = (section * 16) + 2;
228
229         return 0;
230 }
231
232 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
233                                     struct mtd_oob_region *oobregion)
234 {
235         struct nand_chip *chip = mtd_to_nand(mtd);
236
237         if (section >= chip->ecc.steps)
238                 return -ERANGE;
239
240         oobregion->offset = (section * 16) + 15;
241
242         if (section < chip->ecc.steps - 1)
243                 oobregion->length = 3;
244         else
245                 oobregion->length = mtd->oobsize - oobregion->offset;
246
247         return 0;
248 }
249
250 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
251         .ecc = fsmc_ecc4_ooblayout_ecc,
252         .free = fsmc_ecc4_ooblayout_free,
253 };
254
255 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
256 {
257         return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
258 }
259
260 /*
261  * fsmc_cmd_ctrl - For facilitaing Hardware access
262  * This routine allows hardware specific access to control-lines(ALE,CLE)
263  */
264 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
265 {
266         struct nand_chip *this = mtd_to_nand(mtd);
267         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
268         void __iomem *regs = host->regs_va;
269         unsigned int bank = host->bank;
270
271         if (ctrl & NAND_CTRL_CHANGE) {
272                 u32 pc;
273
274                 if (ctrl & NAND_CLE) {
275                         this->IO_ADDR_R = host->cmd_va;
276                         this->IO_ADDR_W = host->cmd_va;
277                 } else if (ctrl & NAND_ALE) {
278                         this->IO_ADDR_R = host->addr_va;
279                         this->IO_ADDR_W = host->addr_va;
280                 } else {
281                         this->IO_ADDR_R = host->data_va;
282                         this->IO_ADDR_W = host->data_va;
283                 }
284
285                 pc = readl(FSMC_NAND_REG(regs, bank, PC));
286                 if (ctrl & NAND_NCE)
287                         pc |= FSMC_ENABLE;
288                 else
289                         pc &= ~FSMC_ENABLE;
290                 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
291         }
292
293         mb();
294
295         if (cmd != NAND_CMD_NONE)
296                 writeb_relaxed(cmd, this->IO_ADDR_W);
297 }
298
299 /*
300  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
301  *
302  * This routine initializes timing parameters related to NAND memory access in
303  * FSMC registers
304  */
305 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
306                            uint32_t busw, struct fsmc_nand_timings *timings)
307 {
308         uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
309         uint32_t tclr, tar, thiz, thold, twait, tset;
310         struct fsmc_nand_timings *tims;
311         struct fsmc_nand_timings default_timings = {
312                 .tclr   = FSMC_TCLR_1,
313                 .tar    = FSMC_TAR_1,
314                 .thiz   = FSMC_THIZ_1,
315                 .thold  = FSMC_THOLD_4,
316                 .twait  = FSMC_TWAIT_6,
317                 .tset   = FSMC_TSET_0,
318         };
319
320         if (timings)
321                 tims = timings;
322         else
323                 tims = &default_timings;
324
325         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
326         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
327         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
328         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
329         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
330         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
331
332         if (busw)
333                 writel_relaxed(value | FSMC_DEVWID_16,
334                                 FSMC_NAND_REG(regs, bank, PC));
335         else
336                 writel_relaxed(value | FSMC_DEVWID_8,
337                                 FSMC_NAND_REG(regs, bank, PC));
338
339         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
340                         FSMC_NAND_REG(regs, bank, PC));
341         writel_relaxed(thiz | thold | twait | tset,
342                         FSMC_NAND_REG(regs, bank, COMM));
343         writel_relaxed(thiz | thold | twait | tset,
344                         FSMC_NAND_REG(regs, bank, ATTRIB));
345 }
346
347 /*
348  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
349  */
350 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
351 {
352         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
353         void __iomem *regs = host->regs_va;
354         uint32_t bank = host->bank;
355
356         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
357                         FSMC_NAND_REG(regs, bank, PC));
358         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
359                         FSMC_NAND_REG(regs, bank, PC));
360         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
361                         FSMC_NAND_REG(regs, bank, PC));
362 }
363
364 /*
365  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
366  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
367  * max of 8-bits)
368  */
369 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
370                                 uint8_t *ecc)
371 {
372         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
373         void __iomem *regs = host->regs_va;
374         uint32_t bank = host->bank;
375         uint32_t ecc_tmp;
376         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
377
378         do {
379                 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
380                         break;
381                 else
382                         cond_resched();
383         } while (!time_after_eq(jiffies, deadline));
384
385         if (time_after_eq(jiffies, deadline)) {
386                 dev_err(host->dev, "calculate ecc timed out\n");
387                 return -ETIMEDOUT;
388         }
389
390         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
391         ecc[0] = (uint8_t) (ecc_tmp >> 0);
392         ecc[1] = (uint8_t) (ecc_tmp >> 8);
393         ecc[2] = (uint8_t) (ecc_tmp >> 16);
394         ecc[3] = (uint8_t) (ecc_tmp >> 24);
395
396         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
397         ecc[4] = (uint8_t) (ecc_tmp >> 0);
398         ecc[5] = (uint8_t) (ecc_tmp >> 8);
399         ecc[6] = (uint8_t) (ecc_tmp >> 16);
400         ecc[7] = (uint8_t) (ecc_tmp >> 24);
401
402         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
403         ecc[8] = (uint8_t) (ecc_tmp >> 0);
404         ecc[9] = (uint8_t) (ecc_tmp >> 8);
405         ecc[10] = (uint8_t) (ecc_tmp >> 16);
406         ecc[11] = (uint8_t) (ecc_tmp >> 24);
407
408         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
409         ecc[12] = (uint8_t) (ecc_tmp >> 16);
410
411         return 0;
412 }
413
414 /*
415  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
416  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
417  * max of 1-bit)
418  */
419 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
420                                 uint8_t *ecc)
421 {
422         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
423         void __iomem *regs = host->regs_va;
424         uint32_t bank = host->bank;
425         uint32_t ecc_tmp;
426
427         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
428         ecc[0] = (uint8_t) (ecc_tmp >> 0);
429         ecc[1] = (uint8_t) (ecc_tmp >> 8);
430         ecc[2] = (uint8_t) (ecc_tmp >> 16);
431
432         return 0;
433 }
434
435 /* Count the number of 0's in buff upto a max of max_bits */
436 static int count_written_bits(uint8_t *buff, int size, int max_bits)
437 {
438         int k, written_bits = 0;
439
440         for (k = 0; k < size; k++) {
441                 written_bits += hweight8(~buff[k]);
442                 if (written_bits > max_bits)
443                         break;
444         }
445
446         return written_bits;
447 }
448
449 static void dma_complete(void *param)
450 {
451         struct fsmc_nand_data *host = param;
452
453         complete(&host->dma_access_complete);
454 }
455
456 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
457                 enum dma_data_direction direction)
458 {
459         struct dma_chan *chan;
460         struct dma_device *dma_dev;
461         struct dma_async_tx_descriptor *tx;
462         dma_addr_t dma_dst, dma_src, dma_addr;
463         dma_cookie_t cookie;
464         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
465         int ret;
466         unsigned long time_left;
467
468         if (direction == DMA_TO_DEVICE)
469                 chan = host->write_dma_chan;
470         else if (direction == DMA_FROM_DEVICE)
471                 chan = host->read_dma_chan;
472         else
473                 return -EINVAL;
474
475         dma_dev = chan->device;
476         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
477
478         if (direction == DMA_TO_DEVICE) {
479                 dma_src = dma_addr;
480                 dma_dst = host->data_pa;
481         } else {
482                 dma_src = host->data_pa;
483                 dma_dst = dma_addr;
484         }
485
486         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
487                         len, flags);
488         if (!tx) {
489                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
490                 ret = -EIO;
491                 goto unmap_dma;
492         }
493
494         tx->callback = dma_complete;
495         tx->callback_param = host;
496         cookie = tx->tx_submit(tx);
497
498         ret = dma_submit_error(cookie);
499         if (ret) {
500                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
501                 goto unmap_dma;
502         }
503
504         dma_async_issue_pending(chan);
505
506         time_left =
507         wait_for_completion_timeout(&host->dma_access_complete,
508                                 msecs_to_jiffies(3000));
509         if (time_left == 0) {
510                 dmaengine_terminate_all(chan);
511                 dev_err(host->dev, "wait_for_completion_timeout\n");
512                 ret = -ETIMEDOUT;
513                 goto unmap_dma;
514         }
515
516         ret = 0;
517
518 unmap_dma:
519         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
520
521         return ret;
522 }
523
524 /*
525  * fsmc_write_buf - write buffer to chip
526  * @mtd:        MTD device structure
527  * @buf:        data buffer
528  * @len:        number of bytes to write
529  */
530 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
531 {
532         int i;
533         struct nand_chip *chip = mtd_to_nand(mtd);
534
535         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
536                         IS_ALIGNED(len, sizeof(uint32_t))) {
537                 uint32_t *p = (uint32_t *)buf;
538                 len = len >> 2;
539                 for (i = 0; i < len; i++)
540                         writel_relaxed(p[i], chip->IO_ADDR_W);
541         } else {
542                 for (i = 0; i < len; i++)
543                         writeb_relaxed(buf[i], chip->IO_ADDR_W);
544         }
545 }
546
547 /*
548  * fsmc_read_buf - read chip data into buffer
549  * @mtd:        MTD device structure
550  * @buf:        buffer to store date
551  * @len:        number of bytes to read
552  */
553 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
554 {
555         int i;
556         struct nand_chip *chip = mtd_to_nand(mtd);
557
558         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
559                         IS_ALIGNED(len, sizeof(uint32_t))) {
560                 uint32_t *p = (uint32_t *)buf;
561                 len = len >> 2;
562                 for (i = 0; i < len; i++)
563                         p[i] = readl_relaxed(chip->IO_ADDR_R);
564         } else {
565                 for (i = 0; i < len; i++)
566                         buf[i] = readb_relaxed(chip->IO_ADDR_R);
567         }
568 }
569
570 /*
571  * fsmc_read_buf_dma - read chip data into buffer
572  * @mtd:        MTD device structure
573  * @buf:        buffer to store date
574  * @len:        number of bytes to read
575  */
576 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
577 {
578         struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
579
580         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
581 }
582
583 /*
584  * fsmc_write_buf_dma - write buffer to chip
585  * @mtd:        MTD device structure
586  * @buf:        data buffer
587  * @len:        number of bytes to write
588  */
589 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
590                 int len)
591 {
592         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
593
594         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
595 }
596
597 /*
598  * fsmc_read_page_hwecc
599  * @mtd:        mtd info structure
600  * @chip:       nand chip info structure
601  * @buf:        buffer to store read data
602  * @oob_required:       caller expects OOB data read to chip->oob_poi
603  * @page:       page number to read
604  *
605  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
606  * performed in a strict sequence as follows:
607  * data(512 byte) -> ecc(13 byte)
608  * After this read, fsmc hardware generates and reports error data bits(up to a
609  * max of 8 bits)
610  */
611 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
612                                  uint8_t *buf, int oob_required, int page)
613 {
614         int i, j, s, stat, eccsize = chip->ecc.size;
615         int eccbytes = chip->ecc.bytes;
616         int eccsteps = chip->ecc.steps;
617         uint8_t *p = buf;
618         uint8_t *ecc_calc = chip->buffers->ecccalc;
619         uint8_t *ecc_code = chip->buffers->ecccode;
620         int off, len, group = 0;
621         /*
622          * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
623          * end up reading 14 bytes (7 words) from oob. The local array is
624          * to maintain word alignment
625          */
626         uint16_t ecc_oob[7];
627         uint8_t *oob = (uint8_t *)&ecc_oob[0];
628         unsigned int max_bitflips = 0;
629
630         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
631                 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
632                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
633                 chip->read_buf(mtd, p, eccsize);
634
635                 for (j = 0; j < eccbytes;) {
636                         struct mtd_oob_region oobregion;
637                         int ret;
638
639                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
640                         if (ret)
641                                 return ret;
642
643                         off = oobregion.offset;
644                         len = oobregion.length;
645
646                         /*
647                          * length is intentionally kept a higher multiple of 2
648                          * to read at least 13 bytes even in case of 16 bit NAND
649                          * devices
650                          */
651                         if (chip->options & NAND_BUSWIDTH_16)
652                                 len = roundup(len, 2);
653
654                         chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
655                         chip->read_buf(mtd, oob + j, len);
656                         j += len;
657                 }
658
659                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
660                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
661
662                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
663                 if (stat < 0) {
664                         mtd->ecc_stats.failed++;
665                 } else {
666                         mtd->ecc_stats.corrected += stat;
667                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
668                 }
669         }
670
671         return max_bitflips;
672 }
673
674 /*
675  * fsmc_bch8_correct_data
676  * @mtd:        mtd info structure
677  * @dat:        buffer of read data
678  * @read_ecc:   ecc read from device spare area
679  * @calc_ecc:   ecc calculated from read data
680  *
681  * calc_ecc is a 104 bit information containing maximum of 8 error
682  * offset informations of 13 bits each in 512 bytes of read data.
683  */
684 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
685                              uint8_t *read_ecc, uint8_t *calc_ecc)
686 {
687         struct nand_chip *chip = mtd_to_nand(mtd);
688         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
689         void __iomem *regs = host->regs_va;
690         unsigned int bank = host->bank;
691         uint32_t err_idx[8];
692         uint32_t num_err, i;
693         uint32_t ecc1, ecc2, ecc3, ecc4;
694
695         num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
696
697         /* no bit flipping */
698         if (likely(num_err == 0))
699                 return 0;
700
701         /* too many errors */
702         if (unlikely(num_err > 8)) {
703                 /*
704                  * This is a temporary erase check. A newly erased page read
705                  * would result in an ecc error because the oob data is also
706                  * erased to FF and the calculated ecc for an FF data is not
707                  * FF..FF.
708                  * This is a workaround to skip performing correction in case
709                  * data is FF..FF
710                  *
711                  * Logic:
712                  * For every page, each bit written as 0 is counted until these
713                  * number of bits are greater than 8 (the maximum correction
714                  * capability of FSMC for each 512 + 13 bytes)
715                  */
716
717                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
718                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
719
720                 if ((bits_ecc + bits_data) <= 8) {
721                         if (bits_data)
722                                 memset(dat, 0xff, chip->ecc.size);
723                         return bits_data;
724                 }
725
726                 return -EBADMSG;
727         }
728
729         /*
730          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
731          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
732          *
733          * calc_ecc is a 104 bit information containing maximum of 8 error
734          * offset informations of 13 bits each. calc_ecc is copied into a
735          * uint64_t array and error offset indexes are populated in err_idx
736          * array
737          */
738         ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
739         ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
740         ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
741         ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
742
743         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
744         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
745         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
746         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
747         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
748         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
749         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
750         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
751
752         i = 0;
753         while (num_err--) {
754                 change_bit(0, (unsigned long *)&err_idx[i]);
755                 change_bit(1, (unsigned long *)&err_idx[i]);
756
757                 if (err_idx[i] < chip->ecc.size * 8) {
758                         change_bit(err_idx[i], (unsigned long *)dat);
759                         i++;
760                 }
761         }
762         return i;
763 }
764
765 static bool filter(struct dma_chan *chan, void *slave)
766 {
767         chan->private = slave;
768         return true;
769 }
770
771 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
772                                      struct fsmc_nand_data *host,
773                                      struct nand_chip *nand)
774 {
775         struct device_node *np = pdev->dev.of_node;
776         u32 val;
777         int ret;
778
779         nand->options = 0;
780
781         if (!of_property_read_u32(np, "bank-width", &val)) {
782                 if (val == 2) {
783                         nand->options |= NAND_BUSWIDTH_16;
784                 } else if (val != 1) {
785                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
786                         return -EINVAL;
787                 }
788         }
789
790         if (of_get_property(np, "nand-skip-bbtscan", NULL))
791                 nand->options |= NAND_SKIP_BBTSCAN;
792
793         host->dev_timings = devm_kzalloc(&pdev->dev,
794                                 sizeof(*host->dev_timings), GFP_KERNEL);
795         if (!host->dev_timings)
796                 return -ENOMEM;
797         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
798                                                 sizeof(*host->dev_timings));
799         if (ret) {
800                 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
801                 host->dev_timings = NULL;
802         }
803
804         /* Set default NAND bank to 0 */
805         host->bank = 0;
806         if (!of_property_read_u32(np, "bank", &val)) {
807                 if (val > 3) {
808                         dev_err(&pdev->dev, "invalid bank %u\n", val);
809                         return -EINVAL;
810                 }
811                 host->bank = val;
812         }
813         return 0;
814 }
815
816 /*
817  * fsmc_nand_probe - Probe function
818  * @pdev:       platform device structure
819  */
820 static int __init fsmc_nand_probe(struct platform_device *pdev)
821 {
822         struct fsmc_nand_data *host;
823         struct mtd_info *mtd;
824         struct nand_chip *nand;
825         struct resource *res;
826         dma_cap_mask_t mask;
827         int ret = 0;
828         u32 pid;
829         int i;
830
831         /* Allocate memory for the device structure (and zero it) */
832         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
833         if (!host)
834                 return -ENOMEM;
835
836         nand = &host->nand;
837
838         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
839         if (ret)
840                 return ret;
841
842         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
843         host->data_va = devm_ioremap_resource(&pdev->dev, res);
844         if (IS_ERR(host->data_va))
845                 return PTR_ERR(host->data_va);
846
847         host->data_pa = (dma_addr_t)res->start;
848
849         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
850         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
851         if (IS_ERR(host->addr_va))
852                 return PTR_ERR(host->addr_va);
853
854         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
855         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
856         if (IS_ERR(host->cmd_va))
857                 return PTR_ERR(host->cmd_va);
858
859         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
860         host->regs_va = devm_ioremap_resource(&pdev->dev, res);
861         if (IS_ERR(host->regs_va))
862                 return PTR_ERR(host->regs_va);
863
864         host->clk = devm_clk_get(&pdev->dev, NULL);
865         if (IS_ERR(host->clk)) {
866                 dev_err(&pdev->dev, "failed to fetch block clock\n");
867                 return PTR_ERR(host->clk);
868         }
869
870         ret = clk_prepare_enable(host->clk);
871         if (ret)
872                 return ret;
873
874         /*
875          * This device ID is actually a common AMBA ID as used on the
876          * AMBA PrimeCell bus. However it is not a PrimeCell.
877          */
878         for (pid = 0, i = 0; i < 4; i++)
879                 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
880         host->pid = pid;
881         dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
882                  "revision %02x, config %02x\n",
883                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
884                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
885
886         host->dev = &pdev->dev;
887
888         if (host->mode == USE_DMA_ACCESS)
889                 init_completion(&host->dma_access_complete);
890
891         /* Link all private pointers */
892         mtd = nand_to_mtd(&host->nand);
893         nand_set_controller_data(nand, host);
894         nand_set_flash_node(nand, pdev->dev.of_node);
895
896         mtd->dev.parent = &pdev->dev;
897         nand->IO_ADDR_R = host->data_va;
898         nand->IO_ADDR_W = host->data_va;
899         nand->cmd_ctrl = fsmc_cmd_ctrl;
900         nand->chip_delay = 30;
901
902         /*
903          * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
904          * can overwrite this value if the DT provides a different value.
905          */
906         nand->ecc.mode = NAND_ECC_HW;
907         nand->ecc.hwctl = fsmc_enable_hwecc;
908         nand->ecc.size = 512;
909         nand->badblockbits = 7;
910
911         switch (host->mode) {
912         case USE_DMA_ACCESS:
913                 dma_cap_zero(mask);
914                 dma_cap_set(DMA_MEMCPY, mask);
915                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
916                 if (!host->read_dma_chan) {
917                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
918                         goto err_req_read_chnl;
919                 }
920                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
921                 if (!host->write_dma_chan) {
922                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
923                         goto err_req_write_chnl;
924                 }
925                 nand->read_buf = fsmc_read_buf_dma;
926                 nand->write_buf = fsmc_write_buf_dma;
927                 break;
928
929         default:
930         case USE_WORD_ACCESS:
931                 nand->read_buf = fsmc_read_buf;
932                 nand->write_buf = fsmc_write_buf;
933                 break;
934         }
935
936         fsmc_nand_setup(host->regs_va, host->bank,
937                         nand->options & NAND_BUSWIDTH_16,
938                         host->dev_timings);
939
940         if (AMBA_REV_BITS(host->pid) >= 8) {
941                 nand->ecc.read_page = fsmc_read_page_hwecc;
942                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
943                 nand->ecc.correct = fsmc_bch8_correct_data;
944                 nand->ecc.bytes = 13;
945                 nand->ecc.strength = 8;
946         }
947
948         /*
949          * Scan to find existence of the device
950          */
951         ret = nand_scan_ident(mtd, 1, NULL);
952         if (ret) {
953                 dev_err(&pdev->dev, "No NAND Device found!\n");
954                 goto err_scan_ident;
955         }
956
957         if (AMBA_REV_BITS(host->pid) >= 8) {
958                 switch (mtd->oobsize) {
959                 case 16:
960                 case 64:
961                 case 128:
962                 case 224:
963                 case 256:
964                         break;
965                 default:
966                         dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
967                                  mtd->oobsize);
968                         ret = -EINVAL;
969                         goto err_probe;
970                 }
971
972                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
973         } else {
974                 switch (nand->ecc.mode) {
975                 case NAND_ECC_HW:
976                         dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
977                         nand->ecc.calculate = fsmc_read_hwecc_ecc1;
978                         nand->ecc.correct = nand_correct_data;
979                         nand->ecc.bytes = 3;
980                         nand->ecc.strength = 1;
981                         break;
982
983                 case NAND_ECC_SOFT:
984                         if (nand->ecc.algo == NAND_ECC_BCH) {
985                                 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
986                                 break;
987                         }
988
989                 default:
990                         dev_err(&pdev->dev, "Unsupported ECC mode!\n");
991                         goto err_probe;
992                 }
993
994                 /*
995                  * Don't set layout for BCH4 SW ECC. This will be
996                  * generated later in nand_bch_init() later.
997                  */
998                 if (nand->ecc.mode == NAND_ECC_HW) {
999                         switch (mtd->oobsize) {
1000                         case 16:
1001                         case 64:
1002                         case 128:
1003                                 mtd_set_ooblayout(mtd,
1004                                                   &fsmc_ecc1_ooblayout_ops);
1005                                 break;
1006                         default:
1007                                 dev_warn(&pdev->dev,
1008                                          "No oob scheme defined for oobsize %d\n",
1009                                          mtd->oobsize);
1010                                 ret = -EINVAL;
1011                                 goto err_probe;
1012                         }
1013                 }
1014         }
1015
1016         /* Second stage of scan to fill MTD data-structures */
1017         ret = nand_scan_tail(mtd);
1018         if (ret)
1019                 goto err_probe;
1020
1021         mtd->name = "nand";
1022         ret = mtd_device_register(mtd, NULL, 0);
1023         if (ret)
1024                 goto err_probe;
1025
1026         platform_set_drvdata(pdev, host);
1027         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1028         return 0;
1029
1030 err_probe:
1031 err_scan_ident:
1032         if (host->mode == USE_DMA_ACCESS)
1033                 dma_release_channel(host->write_dma_chan);
1034 err_req_write_chnl:
1035         if (host->mode == USE_DMA_ACCESS)
1036                 dma_release_channel(host->read_dma_chan);
1037 err_req_read_chnl:
1038         clk_disable_unprepare(host->clk);
1039         return ret;
1040 }
1041
1042 /*
1043  * Clean up routine
1044  */
1045 static int fsmc_nand_remove(struct platform_device *pdev)
1046 {
1047         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1048
1049         if (host) {
1050                 nand_release(nand_to_mtd(&host->nand));
1051
1052                 if (host->mode == USE_DMA_ACCESS) {
1053                         dma_release_channel(host->write_dma_chan);
1054                         dma_release_channel(host->read_dma_chan);
1055                 }
1056                 clk_disable_unprepare(host->clk);
1057         }
1058
1059         return 0;
1060 }
1061
1062 #ifdef CONFIG_PM_SLEEP
1063 static int fsmc_nand_suspend(struct device *dev)
1064 {
1065         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1066         if (host)
1067                 clk_disable_unprepare(host->clk);
1068         return 0;
1069 }
1070
1071 static int fsmc_nand_resume(struct device *dev)
1072 {
1073         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1074         if (host) {
1075                 clk_prepare_enable(host->clk);
1076                 fsmc_nand_setup(host->regs_va, host->bank,
1077                                 host->nand.options & NAND_BUSWIDTH_16,
1078                                 host->dev_timings);
1079         }
1080         return 0;
1081 }
1082 #endif
1083
1084 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1085
1086 static const struct of_device_id fsmc_nand_id_table[] = {
1087         { .compatible = "st,spear600-fsmc-nand" },
1088         { .compatible = "stericsson,fsmc-nand" },
1089         {}
1090 };
1091 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1092
1093 static struct platform_driver fsmc_nand_driver = {
1094         .remove = fsmc_nand_remove,
1095         .driver = {
1096                 .name = "fsmc-nand",
1097                 .of_match_table = fsmc_nand_id_table,
1098                 .pm = &fsmc_nand_pm_ops,
1099         },
1100 };
1101
1102 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1103
1104 MODULE_LICENSE("GPL");
1105 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1106 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");