]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/fsmc_nand.c
mtd: nand: fsmc: move fsmc_nand_data definition
[karo-tx-linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2  * drivers/mtd/nand/fsmc_nand.c
3  *
4  * ST Microelectronics
5  * Flexible Static Memory Controller (FSMC)
6  * Driver for NAND portions
7  *
8  * Copyright © 2010 ST Microelectronics
9  * Vipin Kumar <vipin.kumar@st.com>
10  * Ashish Priyadarshi
11  *
12  * Based on drivers/mtd/nand/nomadik_nand.c
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40
41 #define FSMC_NAND_BW8           1
42 #define FSMC_NAND_BW16          2
43
44 #define FSMC_MAX_NOR_BANKS      4
45 #define FSMC_MAX_NAND_BANKS     4
46
47 #define FSMC_FLASH_WIDTH8       1
48 #define FSMC_FLASH_WIDTH16      2
49
50 /* fsmc controller registers for NOR flash */
51 #define CTRL                    0x0
52         /* ctrl register definitions */
53         #define BANK_ENABLE             (1 << 0)
54         #define MUXED                   (1 << 1)
55         #define NOR_DEV                 (2 << 2)
56         #define WIDTH_8                 (0 << 4)
57         #define WIDTH_16                (1 << 4)
58         #define RSTPWRDWN               (1 << 6)
59         #define WPROT                   (1 << 7)
60         #define WRT_ENABLE              (1 << 12)
61         #define WAIT_ENB                (1 << 13)
62
63 #define CTRL_TIM                0x4
64         /* ctrl_tim register definitions */
65
66 #define FSMC_NOR_BANK_SZ        0x8
67 #define FSMC_NOR_REG_SIZE       0x40
68
69 #define FSMC_NOR_REG(base, bank, reg)           (base + \
70                                                 FSMC_NOR_BANK_SZ * (bank) + \
71                                                 reg)
72
73 /* fsmc controller registers for NAND flash */
74 #define PC                      0x00
75         /* pc register definitions */
76         #define FSMC_RESET              (1 << 0)
77         #define FSMC_WAITON             (1 << 1)
78         #define FSMC_ENABLE             (1 << 2)
79         #define FSMC_DEVTYPE_NAND       (1 << 3)
80         #define FSMC_DEVWID_8           (0 << 4)
81         #define FSMC_DEVWID_16          (1 << 4)
82         #define FSMC_ECCEN              (1 << 6)
83         #define FSMC_ECCPLEN_512        (0 << 7)
84         #define FSMC_ECCPLEN_256        (1 << 7)
85         #define FSMC_TCLR_1             (1)
86         #define FSMC_TCLR_SHIFT         (9)
87         #define FSMC_TCLR_MASK          (0xF)
88         #define FSMC_TAR_1              (1)
89         #define FSMC_TAR_SHIFT          (13)
90         #define FSMC_TAR_MASK           (0xF)
91 #define STS                     0x04
92         /* sts register definitions */
93         #define FSMC_CODE_RDY           (1 << 15)
94 #define COMM                    0x08
95         /* comm register definitions */
96         #define FSMC_TSET_0             0
97         #define FSMC_TSET_SHIFT         0
98         #define FSMC_TSET_MASK          0xFF
99         #define FSMC_TWAIT_6            6
100         #define FSMC_TWAIT_SHIFT        8
101         #define FSMC_TWAIT_MASK         0xFF
102         #define FSMC_THOLD_4            4
103         #define FSMC_THOLD_SHIFT        16
104         #define FSMC_THOLD_MASK         0xFF
105         #define FSMC_THIZ_1             1
106         #define FSMC_THIZ_SHIFT         24
107         #define FSMC_THIZ_MASK          0xFF
108 #define ATTRIB                  0x0C
109 #define IOATA                   0x10
110 #define ECC1                    0x14
111 #define ECC2                    0x18
112 #define ECC3                    0x1C
113 #define FSMC_NAND_BANK_SZ       0x20
114
115 #define FSMC_NAND_REG(base, bank, reg)          (base + FSMC_NOR_REG_SIZE + \
116                                                 (FSMC_NAND_BANK_SZ * (bank)) + \
117                                                 reg)
118
119 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
120
121 struct fsmc_nand_timings {
122         uint8_t tclr;
123         uint8_t tar;
124         uint8_t thiz;
125         uint8_t thold;
126         uint8_t twait;
127         uint8_t tset;
128 };
129
130 enum access_mode {
131         USE_DMA_ACCESS = 1,
132         USE_WORD_ACCESS,
133 };
134
135 /**
136  * fsmc_nand_platform_data - platform specific NAND controller config
137  * @nand_timings: timing setup for the physical NAND interface
138  * @partitions: partition table for the platform, use a default fallback
139  * if this is NULL
140  * @nr_partitions: the number of partitions in the previous entry
141  * @options: different options for the driver
142  * @width: bus width
143  * @bank: default bank
144  * @select_bank: callback to select a certain bank, this is
145  * platform-specific. If the controller only supports one bank
146  * this may be set to NULL
147  */
148 struct fsmc_nand_platform_data {
149         struct fsmc_nand_timings *nand_timings;
150         struct mtd_partition    *partitions;
151         unsigned int            nr_partitions;
152         unsigned int            options;
153         unsigned int            bank;
154
155         enum access_mode        mode;
156
157         void                    (*select_bank)(uint32_t bank, uint32_t busw);
158
159         /* priv structures for dma accesses */
160         void                    *read_dma_priv;
161         void                    *write_dma_priv;
162 };
163
164 /**
165  * struct fsmc_nand_data - structure for FSMC NAND device state
166  *
167  * @pid:                Part ID on the AMBA PrimeCell format
168  * @mtd:                MTD info for a NAND flash.
169  * @nand:               Chip related info for a NAND flash.
170  * @partitions:         Partition info for a NAND Flash.
171  * @nr_partitions:      Total number of partition of a NAND flash.
172  *
173  * @bank:               Bank number for probed device.
174  * @clk:                Clock structure for FSMC.
175  *
176  * @read_dma_chan:      DMA channel for read access
177  * @write_dma_chan:     DMA channel for write access to NAND
178  * @dma_access_complete: Completion structure
179  *
180  * @data_pa:            NAND Physical port for Data.
181  * @data_va:            NAND port for Data.
182  * @cmd_va:             NAND port for Command.
183  * @addr_va:            NAND port for Address.
184  * @regs_va:            FSMC regs base address.
185  */
186 struct fsmc_nand_data {
187         u32                     pid;
188         struct nand_chip        nand;
189         struct mtd_partition    *partitions;
190         unsigned int            nr_partitions;
191
192         unsigned int            bank;
193         struct device           *dev;
194         enum access_mode        mode;
195         struct clk              *clk;
196
197         /* DMA related objects */
198         struct dma_chan         *read_dma_chan;
199         struct dma_chan         *write_dma_chan;
200         struct completion       dma_access_complete;
201
202         struct fsmc_nand_timings *dev_timings;
203
204         dma_addr_t              data_pa;
205         void __iomem            *data_va;
206         void __iomem            *cmd_va;
207         void __iomem            *addr_va;
208         void __iomem            *regs_va;
209
210         void                    (*select_chip)(uint32_t bank, uint32_t busw);
211 };
212
213 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
214                                    struct mtd_oob_region *oobregion)
215 {
216         struct nand_chip *chip = mtd_to_nand(mtd);
217
218         if (section >= chip->ecc.steps)
219                 return -ERANGE;
220
221         oobregion->offset = (section * 16) + 2;
222         oobregion->length = 3;
223
224         return 0;
225 }
226
227 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
228                                     struct mtd_oob_region *oobregion)
229 {
230         struct nand_chip *chip = mtd_to_nand(mtd);
231
232         if (section >= chip->ecc.steps)
233                 return -ERANGE;
234
235         oobregion->offset = (section * 16) + 8;
236
237         if (section < chip->ecc.steps - 1)
238                 oobregion->length = 8;
239         else
240                 oobregion->length = mtd->oobsize - oobregion->offset;
241
242         return 0;
243 }
244
245 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
246         .ecc = fsmc_ecc1_ooblayout_ecc,
247         .free = fsmc_ecc1_ooblayout_free,
248 };
249
250 /*
251  * ECC placement definitions in oobfree type format.
252  * There are 13 bytes of ecc for every 512 byte block and it has to be read
253  * consecutively and immediately after the 512 byte data block for hardware to
254  * generate the error bit offsets in 512 byte data.
255  */
256 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
257                                    struct mtd_oob_region *oobregion)
258 {
259         struct nand_chip *chip = mtd_to_nand(mtd);
260
261         if (section >= chip->ecc.steps)
262                 return -ERANGE;
263
264         oobregion->length = chip->ecc.bytes;
265
266         if (!section && mtd->writesize <= 512)
267                 oobregion->offset = 0;
268         else
269                 oobregion->offset = (section * 16) + 2;
270
271         return 0;
272 }
273
274 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
275                                     struct mtd_oob_region *oobregion)
276 {
277         struct nand_chip *chip = mtd_to_nand(mtd);
278
279         if (section >= chip->ecc.steps)
280                 return -ERANGE;
281
282         oobregion->offset = (section * 16) + 15;
283
284         if (section < chip->ecc.steps - 1)
285                 oobregion->length = 3;
286         else
287                 oobregion->length = mtd->oobsize - oobregion->offset;
288
289         return 0;
290 }
291
292 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
293         .ecc = fsmc_ecc4_ooblayout_ecc,
294         .free = fsmc_ecc4_ooblayout_free,
295 };
296
297 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
298 {
299         return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
300 }
301
302 /* Assert CS signal based on chipnr */
303 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
304 {
305         struct nand_chip *chip = mtd_to_nand(mtd);
306         struct fsmc_nand_data *host;
307
308         host = mtd_to_fsmc(mtd);
309
310         switch (chipnr) {
311         case -1:
312                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
313                 break;
314         case 0:
315         case 1:
316         case 2:
317         case 3:
318                 if (host->select_chip)
319                         host->select_chip(chipnr,
320                                         chip->options & NAND_BUSWIDTH_16);
321                 break;
322
323         default:
324                 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
325         }
326 }
327
328 /*
329  * fsmc_cmd_ctrl - For facilitaing Hardware access
330  * This routine allows hardware specific access to control-lines(ALE,CLE)
331  */
332 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
333 {
334         struct nand_chip *this = mtd_to_nand(mtd);
335         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
336         void __iomem *regs = host->regs_va;
337         unsigned int bank = host->bank;
338
339         if (ctrl & NAND_CTRL_CHANGE) {
340                 u32 pc;
341
342                 if (ctrl & NAND_CLE) {
343                         this->IO_ADDR_R = host->cmd_va;
344                         this->IO_ADDR_W = host->cmd_va;
345                 } else if (ctrl & NAND_ALE) {
346                         this->IO_ADDR_R = host->addr_va;
347                         this->IO_ADDR_W = host->addr_va;
348                 } else {
349                         this->IO_ADDR_R = host->data_va;
350                         this->IO_ADDR_W = host->data_va;
351                 }
352
353                 pc = readl(FSMC_NAND_REG(regs, bank, PC));
354                 if (ctrl & NAND_NCE)
355                         pc |= FSMC_ENABLE;
356                 else
357                         pc &= ~FSMC_ENABLE;
358                 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
359         }
360
361         mb();
362
363         if (cmd != NAND_CMD_NONE)
364                 writeb_relaxed(cmd, this->IO_ADDR_W);
365 }
366
367 /*
368  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
369  *
370  * This routine initializes timing parameters related to NAND memory access in
371  * FSMC registers
372  */
373 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
374                            uint32_t busw, struct fsmc_nand_timings *timings)
375 {
376         uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
377         uint32_t tclr, tar, thiz, thold, twait, tset;
378         struct fsmc_nand_timings *tims;
379         struct fsmc_nand_timings default_timings = {
380                 .tclr   = FSMC_TCLR_1,
381                 .tar    = FSMC_TAR_1,
382                 .thiz   = FSMC_THIZ_1,
383                 .thold  = FSMC_THOLD_4,
384                 .twait  = FSMC_TWAIT_6,
385                 .tset   = FSMC_TSET_0,
386         };
387
388         if (timings)
389                 tims = timings;
390         else
391                 tims = &default_timings;
392
393         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
394         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
395         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
396         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
397         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
398         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
399
400         if (busw)
401                 writel_relaxed(value | FSMC_DEVWID_16,
402                                 FSMC_NAND_REG(regs, bank, PC));
403         else
404                 writel_relaxed(value | FSMC_DEVWID_8,
405                                 FSMC_NAND_REG(regs, bank, PC));
406
407         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
408                         FSMC_NAND_REG(regs, bank, PC));
409         writel_relaxed(thiz | thold | twait | tset,
410                         FSMC_NAND_REG(regs, bank, COMM));
411         writel_relaxed(thiz | thold | twait | tset,
412                         FSMC_NAND_REG(regs, bank, ATTRIB));
413 }
414
415 /*
416  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
417  */
418 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
419 {
420         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
421         void __iomem *regs = host->regs_va;
422         uint32_t bank = host->bank;
423
424         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
425                         FSMC_NAND_REG(regs, bank, PC));
426         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
427                         FSMC_NAND_REG(regs, bank, PC));
428         writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
429                         FSMC_NAND_REG(regs, bank, PC));
430 }
431
432 /*
433  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
434  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
435  * max of 8-bits)
436  */
437 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
438                                 uint8_t *ecc)
439 {
440         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
441         void __iomem *regs = host->regs_va;
442         uint32_t bank = host->bank;
443         uint32_t ecc_tmp;
444         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
445
446         do {
447                 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
448                         break;
449                 else
450                         cond_resched();
451         } while (!time_after_eq(jiffies, deadline));
452
453         if (time_after_eq(jiffies, deadline)) {
454                 dev_err(host->dev, "calculate ecc timed out\n");
455                 return -ETIMEDOUT;
456         }
457
458         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
459         ecc[0] = (uint8_t) (ecc_tmp >> 0);
460         ecc[1] = (uint8_t) (ecc_tmp >> 8);
461         ecc[2] = (uint8_t) (ecc_tmp >> 16);
462         ecc[3] = (uint8_t) (ecc_tmp >> 24);
463
464         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
465         ecc[4] = (uint8_t) (ecc_tmp >> 0);
466         ecc[5] = (uint8_t) (ecc_tmp >> 8);
467         ecc[6] = (uint8_t) (ecc_tmp >> 16);
468         ecc[7] = (uint8_t) (ecc_tmp >> 24);
469
470         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
471         ecc[8] = (uint8_t) (ecc_tmp >> 0);
472         ecc[9] = (uint8_t) (ecc_tmp >> 8);
473         ecc[10] = (uint8_t) (ecc_tmp >> 16);
474         ecc[11] = (uint8_t) (ecc_tmp >> 24);
475
476         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
477         ecc[12] = (uint8_t) (ecc_tmp >> 16);
478
479         return 0;
480 }
481
482 /*
483  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
484  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
485  * max of 1-bit)
486  */
487 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
488                                 uint8_t *ecc)
489 {
490         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
491         void __iomem *regs = host->regs_va;
492         uint32_t bank = host->bank;
493         uint32_t ecc_tmp;
494
495         ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
496         ecc[0] = (uint8_t) (ecc_tmp >> 0);
497         ecc[1] = (uint8_t) (ecc_tmp >> 8);
498         ecc[2] = (uint8_t) (ecc_tmp >> 16);
499
500         return 0;
501 }
502
503 /* Count the number of 0's in buff upto a max of max_bits */
504 static int count_written_bits(uint8_t *buff, int size, int max_bits)
505 {
506         int k, written_bits = 0;
507
508         for (k = 0; k < size; k++) {
509                 written_bits += hweight8(~buff[k]);
510                 if (written_bits > max_bits)
511                         break;
512         }
513
514         return written_bits;
515 }
516
517 static void dma_complete(void *param)
518 {
519         struct fsmc_nand_data *host = param;
520
521         complete(&host->dma_access_complete);
522 }
523
524 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
525                 enum dma_data_direction direction)
526 {
527         struct dma_chan *chan;
528         struct dma_device *dma_dev;
529         struct dma_async_tx_descriptor *tx;
530         dma_addr_t dma_dst, dma_src, dma_addr;
531         dma_cookie_t cookie;
532         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
533         int ret;
534         unsigned long time_left;
535
536         if (direction == DMA_TO_DEVICE)
537                 chan = host->write_dma_chan;
538         else if (direction == DMA_FROM_DEVICE)
539                 chan = host->read_dma_chan;
540         else
541                 return -EINVAL;
542
543         dma_dev = chan->device;
544         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
545
546         if (direction == DMA_TO_DEVICE) {
547                 dma_src = dma_addr;
548                 dma_dst = host->data_pa;
549         } else {
550                 dma_src = host->data_pa;
551                 dma_dst = dma_addr;
552         }
553
554         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
555                         len, flags);
556         if (!tx) {
557                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
558                 ret = -EIO;
559                 goto unmap_dma;
560         }
561
562         tx->callback = dma_complete;
563         tx->callback_param = host;
564         cookie = tx->tx_submit(tx);
565
566         ret = dma_submit_error(cookie);
567         if (ret) {
568                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
569                 goto unmap_dma;
570         }
571
572         dma_async_issue_pending(chan);
573
574         time_left =
575         wait_for_completion_timeout(&host->dma_access_complete,
576                                 msecs_to_jiffies(3000));
577         if (time_left == 0) {
578                 dmaengine_terminate_all(chan);
579                 dev_err(host->dev, "wait_for_completion_timeout\n");
580                 ret = -ETIMEDOUT;
581                 goto unmap_dma;
582         }
583
584         ret = 0;
585
586 unmap_dma:
587         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
588
589         return ret;
590 }
591
592 /*
593  * fsmc_write_buf - write buffer to chip
594  * @mtd:        MTD device structure
595  * @buf:        data buffer
596  * @len:        number of bytes to write
597  */
598 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
599 {
600         int i;
601         struct nand_chip *chip = mtd_to_nand(mtd);
602
603         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
604                         IS_ALIGNED(len, sizeof(uint32_t))) {
605                 uint32_t *p = (uint32_t *)buf;
606                 len = len >> 2;
607                 for (i = 0; i < len; i++)
608                         writel_relaxed(p[i], chip->IO_ADDR_W);
609         } else {
610                 for (i = 0; i < len; i++)
611                         writeb_relaxed(buf[i], chip->IO_ADDR_W);
612         }
613 }
614
615 /*
616  * fsmc_read_buf - read chip data into buffer
617  * @mtd:        MTD device structure
618  * @buf:        buffer to store date
619  * @len:        number of bytes to read
620  */
621 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
622 {
623         int i;
624         struct nand_chip *chip = mtd_to_nand(mtd);
625
626         if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
627                         IS_ALIGNED(len, sizeof(uint32_t))) {
628                 uint32_t *p = (uint32_t *)buf;
629                 len = len >> 2;
630                 for (i = 0; i < len; i++)
631                         p[i] = readl_relaxed(chip->IO_ADDR_R);
632         } else {
633                 for (i = 0; i < len; i++)
634                         buf[i] = readb_relaxed(chip->IO_ADDR_R);
635         }
636 }
637
638 /*
639  * fsmc_read_buf_dma - read chip data into buffer
640  * @mtd:        MTD device structure
641  * @buf:        buffer to store date
642  * @len:        number of bytes to read
643  */
644 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
645 {
646         struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
647
648         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
649 }
650
651 /*
652  * fsmc_write_buf_dma - write buffer to chip
653  * @mtd:        MTD device structure
654  * @buf:        data buffer
655  * @len:        number of bytes to write
656  */
657 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
658                 int len)
659 {
660         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
661
662         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
663 }
664
665 /*
666  * fsmc_read_page_hwecc
667  * @mtd:        mtd info structure
668  * @chip:       nand chip info structure
669  * @buf:        buffer to store read data
670  * @oob_required:       caller expects OOB data read to chip->oob_poi
671  * @page:       page number to read
672  *
673  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
674  * performed in a strict sequence as follows:
675  * data(512 byte) -> ecc(13 byte)
676  * After this read, fsmc hardware generates and reports error data bits(up to a
677  * max of 8 bits)
678  */
679 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
680                                  uint8_t *buf, int oob_required, int page)
681 {
682         int i, j, s, stat, eccsize = chip->ecc.size;
683         int eccbytes = chip->ecc.bytes;
684         int eccsteps = chip->ecc.steps;
685         uint8_t *p = buf;
686         uint8_t *ecc_calc = chip->buffers->ecccalc;
687         uint8_t *ecc_code = chip->buffers->ecccode;
688         int off, len, group = 0;
689         /*
690          * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
691          * end up reading 14 bytes (7 words) from oob. The local array is
692          * to maintain word alignment
693          */
694         uint16_t ecc_oob[7];
695         uint8_t *oob = (uint8_t *)&ecc_oob[0];
696         unsigned int max_bitflips = 0;
697
698         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
699                 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
700                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
701                 chip->read_buf(mtd, p, eccsize);
702
703                 for (j = 0; j < eccbytes;) {
704                         struct mtd_oob_region oobregion;
705                         int ret;
706
707                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
708                         if (ret)
709                                 return ret;
710
711                         off = oobregion.offset;
712                         len = oobregion.length;
713
714                         /*
715                          * length is intentionally kept a higher multiple of 2
716                          * to read at least 13 bytes even in case of 16 bit NAND
717                          * devices
718                          */
719                         if (chip->options & NAND_BUSWIDTH_16)
720                                 len = roundup(len, 2);
721
722                         chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
723                         chip->read_buf(mtd, oob + j, len);
724                         j += len;
725                 }
726
727                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
728                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
729
730                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
731                 if (stat < 0) {
732                         mtd->ecc_stats.failed++;
733                 } else {
734                         mtd->ecc_stats.corrected += stat;
735                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
736                 }
737         }
738
739         return max_bitflips;
740 }
741
742 /*
743  * fsmc_bch8_correct_data
744  * @mtd:        mtd info structure
745  * @dat:        buffer of read data
746  * @read_ecc:   ecc read from device spare area
747  * @calc_ecc:   ecc calculated from read data
748  *
749  * calc_ecc is a 104 bit information containing maximum of 8 error
750  * offset informations of 13 bits each in 512 bytes of read data.
751  */
752 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
753                              uint8_t *read_ecc, uint8_t *calc_ecc)
754 {
755         struct nand_chip *chip = mtd_to_nand(mtd);
756         struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
757         void __iomem *regs = host->regs_va;
758         unsigned int bank = host->bank;
759         uint32_t err_idx[8];
760         uint32_t num_err, i;
761         uint32_t ecc1, ecc2, ecc3, ecc4;
762
763         num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
764
765         /* no bit flipping */
766         if (likely(num_err == 0))
767                 return 0;
768
769         /* too many errors */
770         if (unlikely(num_err > 8)) {
771                 /*
772                  * This is a temporary erase check. A newly erased page read
773                  * would result in an ecc error because the oob data is also
774                  * erased to FF and the calculated ecc for an FF data is not
775                  * FF..FF.
776                  * This is a workaround to skip performing correction in case
777                  * data is FF..FF
778                  *
779                  * Logic:
780                  * For every page, each bit written as 0 is counted until these
781                  * number of bits are greater than 8 (the maximum correction
782                  * capability of FSMC for each 512 + 13 bytes)
783                  */
784
785                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
786                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
787
788                 if ((bits_ecc + bits_data) <= 8) {
789                         if (bits_data)
790                                 memset(dat, 0xff, chip->ecc.size);
791                         return bits_data;
792                 }
793
794                 return -EBADMSG;
795         }
796
797         /*
798          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
799          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
800          *
801          * calc_ecc is a 104 bit information containing maximum of 8 error
802          * offset informations of 13 bits each. calc_ecc is copied into a
803          * uint64_t array and error offset indexes are populated in err_idx
804          * array
805          */
806         ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
807         ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
808         ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
809         ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
810
811         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
812         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
813         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
814         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
815         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
816         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
817         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
818         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
819
820         i = 0;
821         while (num_err--) {
822                 change_bit(0, (unsigned long *)&err_idx[i]);
823                 change_bit(1, (unsigned long *)&err_idx[i]);
824
825                 if (err_idx[i] < chip->ecc.size * 8) {
826                         change_bit(err_idx[i], (unsigned long *)dat);
827                         i++;
828                 }
829         }
830         return i;
831 }
832
833 static bool filter(struct dma_chan *chan, void *slave)
834 {
835         chan->private = slave;
836         return true;
837 }
838
839 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
840                                      struct device_node *np)
841 {
842         struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
843         u32 val;
844         int ret;
845
846         pdata->options = 0;
847
848         if (!of_property_read_u32(np, "bank-width", &val)) {
849                 if (val == 2) {
850                         pdata->options |= NAND_BUSWIDTH_16;
851                 } else if (val != 1) {
852                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
853                         return -EINVAL;
854                 }
855         }
856
857         if (of_get_property(np, "nand-skip-bbtscan", NULL))
858                 pdata->options |= NAND_SKIP_BBTSCAN;
859
860         pdata->nand_timings = devm_kzalloc(&pdev->dev,
861                                 sizeof(*pdata->nand_timings), GFP_KERNEL);
862         if (!pdata->nand_timings)
863                 return -ENOMEM;
864         ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
865                                                 sizeof(*pdata->nand_timings));
866         if (ret) {
867                 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
868                 pdata->nand_timings = NULL;
869         }
870
871         /* Set default NAND bank to 0 */
872         pdata->bank = 0;
873         if (!of_property_read_u32(np, "bank", &val)) {
874                 if (val > 3) {
875                         dev_err(&pdev->dev, "invalid bank %u\n", val);
876                         return -EINVAL;
877                 }
878                 pdata->bank = val;
879         }
880         return 0;
881 }
882
883 /*
884  * fsmc_nand_probe - Probe function
885  * @pdev:       platform device structure
886  */
887 static int __init fsmc_nand_probe(struct platform_device *pdev)
888 {
889         struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
890         struct device_node __maybe_unused *np = pdev->dev.of_node;
891         struct fsmc_nand_data *host;
892         struct mtd_info *mtd;
893         struct nand_chip *nand;
894         struct resource *res;
895         dma_cap_mask_t mask;
896         int ret = 0;
897         u32 pid;
898         int i;
899
900         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
901         if (!pdata)
902                 return -ENOMEM;
903
904         pdev->dev.platform_data = pdata;
905         ret = fsmc_nand_probe_config_dt(pdev, np);
906         if (ret) {
907                 dev_err(&pdev->dev, "no platform data\n");
908                 return -ENODEV;
909         }
910
911         /* Allocate memory for the device structure (and zero it) */
912         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
913         if (!host)
914                 return -ENOMEM;
915
916         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
917         host->data_va = devm_ioremap_resource(&pdev->dev, res);
918         if (IS_ERR(host->data_va))
919                 return PTR_ERR(host->data_va);
920
921         host->data_pa = (dma_addr_t)res->start;
922
923         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
924         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
925         if (IS_ERR(host->addr_va))
926                 return PTR_ERR(host->addr_va);
927
928         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
929         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
930         if (IS_ERR(host->cmd_va))
931                 return PTR_ERR(host->cmd_va);
932
933         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
934         host->regs_va = devm_ioremap_resource(&pdev->dev, res);
935         if (IS_ERR(host->regs_va))
936                 return PTR_ERR(host->regs_va);
937
938         host->clk = clk_get(&pdev->dev, NULL);
939         if (IS_ERR(host->clk)) {
940                 dev_err(&pdev->dev, "failed to fetch block clock\n");
941                 return PTR_ERR(host->clk);
942         }
943
944         ret = clk_prepare_enable(host->clk);
945         if (ret)
946                 goto err_clk_prepare_enable;
947
948         /*
949          * This device ID is actually a common AMBA ID as used on the
950          * AMBA PrimeCell bus. However it is not a PrimeCell.
951          */
952         for (pid = 0, i = 0; i < 4; i++)
953                 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
954         host->pid = pid;
955         dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
956                  "revision %02x, config %02x\n",
957                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
958                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
959
960         host->bank = pdata->bank;
961         host->select_chip = pdata->select_bank;
962         host->partitions = pdata->partitions;
963         host->nr_partitions = pdata->nr_partitions;
964         host->dev = &pdev->dev;
965         host->dev_timings = pdata->nand_timings;
966         host->mode = pdata->mode;
967
968         if (host->mode == USE_DMA_ACCESS)
969                 init_completion(&host->dma_access_complete);
970
971         /* Link all private pointers */
972         mtd = nand_to_mtd(&host->nand);
973         nand = &host->nand;
974         nand_set_controller_data(nand, host);
975         nand_set_flash_node(nand, np);
976
977         mtd->dev.parent = &pdev->dev;
978         nand->IO_ADDR_R = host->data_va;
979         nand->IO_ADDR_W = host->data_va;
980         nand->cmd_ctrl = fsmc_cmd_ctrl;
981         nand->chip_delay = 30;
982
983         /*
984          * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
985          * can overwrite this value if the DT provides a different value.
986          */
987         nand->ecc.mode = NAND_ECC_HW;
988         nand->ecc.hwctl = fsmc_enable_hwecc;
989         nand->ecc.size = 512;
990         nand->options = pdata->options;
991         nand->select_chip = fsmc_select_chip;
992         nand->badblockbits = 7;
993         nand_set_flash_node(nand, np);
994
995         switch (host->mode) {
996         case USE_DMA_ACCESS:
997                 dma_cap_zero(mask);
998                 dma_cap_set(DMA_MEMCPY, mask);
999                 host->read_dma_chan = dma_request_channel(mask, filter,
1000                                 pdata->read_dma_priv);
1001                 if (!host->read_dma_chan) {
1002                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1003                         goto err_req_read_chnl;
1004                 }
1005                 host->write_dma_chan = dma_request_channel(mask, filter,
1006                                 pdata->write_dma_priv);
1007                 if (!host->write_dma_chan) {
1008                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1009                         goto err_req_write_chnl;
1010                 }
1011                 nand->read_buf = fsmc_read_buf_dma;
1012                 nand->write_buf = fsmc_write_buf_dma;
1013                 break;
1014
1015         default:
1016         case USE_WORD_ACCESS:
1017                 nand->read_buf = fsmc_read_buf;
1018                 nand->write_buf = fsmc_write_buf;
1019                 break;
1020         }
1021
1022         fsmc_nand_setup(host->regs_va, host->bank,
1023                         nand->options & NAND_BUSWIDTH_16,
1024                         host->dev_timings);
1025
1026         if (AMBA_REV_BITS(host->pid) >= 8) {
1027                 nand->ecc.read_page = fsmc_read_page_hwecc;
1028                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1029                 nand->ecc.correct = fsmc_bch8_correct_data;
1030                 nand->ecc.bytes = 13;
1031                 nand->ecc.strength = 8;
1032         }
1033
1034         /*
1035          * Scan to find existence of the device
1036          */
1037         ret = nand_scan_ident(mtd, 1, NULL);
1038         if (ret) {
1039                 dev_err(&pdev->dev, "No NAND Device found!\n");
1040                 goto err_scan_ident;
1041         }
1042
1043         if (AMBA_REV_BITS(host->pid) >= 8) {
1044                 switch (mtd->oobsize) {
1045                 case 16:
1046                 case 64:
1047                 case 128:
1048                 case 224:
1049                 case 256:
1050                         break;
1051                 default:
1052                         dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1053                                  mtd->oobsize);
1054                         ret = -EINVAL;
1055                         goto err_probe;
1056                 }
1057
1058                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
1059         } else {
1060                 switch (nand->ecc.mode) {
1061                 case NAND_ECC_HW:
1062                         dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1063                         nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1064                         nand->ecc.correct = nand_correct_data;
1065                         nand->ecc.bytes = 3;
1066                         nand->ecc.strength = 1;
1067                         break;
1068
1069                 case NAND_ECC_SOFT:
1070                         if (nand->ecc.algo == NAND_ECC_BCH) {
1071                                 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1072                                 break;
1073                         }
1074
1075                 default:
1076                         dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1077                         goto err_probe;
1078                 }
1079
1080                 /*
1081                  * Don't set layout for BCH4 SW ECC. This will be
1082                  * generated later in nand_bch_init() later.
1083                  */
1084                 if (nand->ecc.mode == NAND_ECC_HW) {
1085                         switch (mtd->oobsize) {
1086                         case 16:
1087                         case 64:
1088                         case 128:
1089                                 mtd_set_ooblayout(mtd,
1090                                                   &fsmc_ecc1_ooblayout_ops);
1091                                 break;
1092                         default:
1093                                 dev_warn(&pdev->dev,
1094                                          "No oob scheme defined for oobsize %d\n",
1095                                          mtd->oobsize);
1096                                 ret = -EINVAL;
1097                                 goto err_probe;
1098                         }
1099                 }
1100         }
1101
1102         /* Second stage of scan to fill MTD data-structures */
1103         ret = nand_scan_tail(mtd);
1104         if (ret)
1105                 goto err_probe;
1106
1107         /*
1108          * The partition information can is accessed by (in the same precedence)
1109          *
1110          * command line through Bootloader,
1111          * platform data,
1112          * default partition information present in driver.
1113          */
1114         /*
1115          * Check for partition info passed
1116          */
1117         mtd->name = "nand";
1118         ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
1119         if (ret)
1120                 goto err_probe;
1121
1122         platform_set_drvdata(pdev, host);
1123         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1124         return 0;
1125
1126 err_probe:
1127 err_scan_ident:
1128         if (host->mode == USE_DMA_ACCESS)
1129                 dma_release_channel(host->write_dma_chan);
1130 err_req_write_chnl:
1131         if (host->mode == USE_DMA_ACCESS)
1132                 dma_release_channel(host->read_dma_chan);
1133 err_req_read_chnl:
1134         clk_disable_unprepare(host->clk);
1135 err_clk_prepare_enable:
1136         clk_put(host->clk);
1137         return ret;
1138 }
1139
1140 /*
1141  * Clean up routine
1142  */
1143 static int fsmc_nand_remove(struct platform_device *pdev)
1144 {
1145         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1146
1147         if (host) {
1148                 nand_release(nand_to_mtd(&host->nand));
1149
1150                 if (host->mode == USE_DMA_ACCESS) {
1151                         dma_release_channel(host->write_dma_chan);
1152                         dma_release_channel(host->read_dma_chan);
1153                 }
1154                 clk_disable_unprepare(host->clk);
1155                 clk_put(host->clk);
1156         }
1157
1158         return 0;
1159 }
1160
1161 #ifdef CONFIG_PM_SLEEP
1162 static int fsmc_nand_suspend(struct device *dev)
1163 {
1164         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1165         if (host)
1166                 clk_disable_unprepare(host->clk);
1167         return 0;
1168 }
1169
1170 static int fsmc_nand_resume(struct device *dev)
1171 {
1172         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1173         if (host) {
1174                 clk_prepare_enable(host->clk);
1175                 fsmc_nand_setup(host->regs_va, host->bank,
1176                                 host->nand.options & NAND_BUSWIDTH_16,
1177                                 host->dev_timings);
1178         }
1179         return 0;
1180 }
1181 #endif
1182
1183 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1184
1185 #ifdef CONFIG_OF
1186 static const struct of_device_id fsmc_nand_id_table[] = {
1187         { .compatible = "st,spear600-fsmc-nand" },
1188         { .compatible = "stericsson,fsmc-nand" },
1189         {}
1190 };
1191 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1192 #endif
1193
1194 static struct platform_driver fsmc_nand_driver = {
1195         .remove = fsmc_nand_remove,
1196         .driver = {
1197                 .name = "fsmc-nand",
1198                 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1199                 .pm = &fsmc_nand_pm_ops,
1200         },
1201 };
1202
1203 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1204
1205 MODULE_LICENSE("GPL");
1206 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1207 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");