]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/gpmi-nand/gpmi-nand.c
mtd: nand: gpmi: Kill gpmi_nand_exit()
[karo-tx-linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-nand.c
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include "gpmi-nand.h"
30 #include "bch-regs.h"
31
32 /* Resource names for the GPMI NAND driver. */
33 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
34 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
35 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
36
37 /* add our owner bbt descriptor */
38 static uint8_t scan_ff_pattern[] = { 0xff };
39 static struct nand_bbt_descr gpmi_bbt_descr = {
40         .options        = 0,
41         .offs           = 0,
42         .len            = 1,
43         .pattern        = scan_ff_pattern
44 };
45
46 /*
47  * We may change the layout if we can get the ECC info from the datasheet,
48  * else we will use all the (page + OOB).
49  */
50 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
51                               struct mtd_oob_region *oobregion)
52 {
53         struct nand_chip *chip = mtd_to_nand(mtd);
54         struct gpmi_nand_data *this = nand_get_controller_data(chip);
55         struct bch_geometry *geo = &this->bch_geometry;
56
57         if (section)
58                 return -ERANGE;
59
60         oobregion->offset = 0;
61         oobregion->length = geo->page_size - mtd->writesize;
62
63         return 0;
64 }
65
66 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
67                                struct mtd_oob_region *oobregion)
68 {
69         struct nand_chip *chip = mtd_to_nand(mtd);
70         struct gpmi_nand_data *this = nand_get_controller_data(chip);
71         struct bch_geometry *geo = &this->bch_geometry;
72
73         if (section)
74                 return -ERANGE;
75
76         /* The available oob size we have. */
77         if (geo->page_size < mtd->writesize + mtd->oobsize) {
78                 oobregion->offset = geo->page_size - mtd->writesize;
79                 oobregion->length = mtd->oobsize - oobregion->offset;
80         }
81
82         return 0;
83 }
84
85 static const char * const gpmi_clks_for_mx2x[] = {
86         "gpmi_io",
87 };
88
89 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
90         .ecc = gpmi_ooblayout_ecc,
91         .free = gpmi_ooblayout_free,
92 };
93
94 static const struct gpmi_devdata gpmi_devdata_imx23 = {
95         .type = IS_MX23,
96         .bch_max_ecc_strength = 20,
97         .max_chain_delay = 16,
98         .clks = gpmi_clks_for_mx2x,
99         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
100 };
101
102 static const struct gpmi_devdata gpmi_devdata_imx28 = {
103         .type = IS_MX28,
104         .bch_max_ecc_strength = 20,
105         .max_chain_delay = 16,
106         .clks = gpmi_clks_for_mx2x,
107         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
108 };
109
110 static const char * const gpmi_clks_for_mx6[] = {
111         "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
112 };
113
114 static const struct gpmi_devdata gpmi_devdata_imx6q = {
115         .type = IS_MX6Q,
116         .bch_max_ecc_strength = 40,
117         .max_chain_delay = 12,
118         .clks = gpmi_clks_for_mx6,
119         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
120 };
121
122 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
123         .type = IS_MX6SX,
124         .bch_max_ecc_strength = 62,
125         .max_chain_delay = 12,
126         .clks = gpmi_clks_for_mx6,
127         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
128 };
129
130 static const char * const gpmi_clks_for_mx7d[] = {
131         "gpmi_io", "gpmi_bch_apb",
132 };
133
134 static const struct gpmi_devdata gpmi_devdata_imx7d = {
135         .type = IS_MX7D,
136         .bch_max_ecc_strength = 62,
137         .max_chain_delay = 12,
138         .clks = gpmi_clks_for_mx7d,
139         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
140 };
141
142 static irqreturn_t bch_irq(int irq, void *cookie)
143 {
144         struct gpmi_nand_data *this = cookie;
145
146         gpmi_clear_bch(this);
147         complete(&this->bch_done);
148         return IRQ_HANDLED;
149 }
150
151 /*
152  *  Calculate the ECC strength by hand:
153  *      E : The ECC strength.
154  *      G : the length of Galois Field.
155  *      N : The chunk count of per page.
156  *      O : the oobsize of the NAND chip.
157  *      M : the metasize of per page.
158  *
159  *      The formula is :
160  *              E * G * N
161  *            ------------ <= (O - M)
162  *                  8
163  *
164  *      So, we get E by:
165  *                    (O - M) * 8
166  *              E <= -------------
167  *                       G * N
168  */
169 static inline int get_ecc_strength(struct gpmi_nand_data *this)
170 {
171         struct bch_geometry *geo = &this->bch_geometry;
172         struct mtd_info *mtd = nand_to_mtd(&this->nand);
173         int ecc_strength;
174
175         ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
176                         / (geo->gf_len * geo->ecc_chunk_count);
177
178         /* We need the minor even number. */
179         return round_down(ecc_strength, 2);
180 }
181
182 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
183 {
184         struct bch_geometry *geo = &this->bch_geometry;
185
186         /* Do the sanity check. */
187         if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
188                 /* The mx23/mx28 only support the GF13. */
189                 if (geo->gf_len == 14)
190                         return false;
191         }
192         return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
193 }
194
195 /*
196  * If we can get the ECC information from the nand chip, we do not
197  * need to calculate them ourselves.
198  *
199  * We may have available oob space in this case.
200  */
201 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this)
202 {
203         struct bch_geometry *geo = &this->bch_geometry;
204         struct nand_chip *chip = &this->nand;
205         struct mtd_info *mtd = nand_to_mtd(chip);
206         unsigned int block_mark_bit_offset;
207
208         if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
209                 return -EINVAL;
210
211         switch (chip->ecc_step_ds) {
212         case SZ_512:
213                 geo->gf_len = 13;
214                 break;
215         case SZ_1K:
216                 geo->gf_len = 14;
217                 break;
218         default:
219                 dev_err(this->dev,
220                         "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
221                         chip->ecc_strength_ds, chip->ecc_step_ds);
222                 return -EINVAL;
223         }
224         geo->ecc_chunk_size = chip->ecc_step_ds;
225         geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
226         if (!gpmi_check_ecc(this))
227                 return -EINVAL;
228
229         /* Keep the C >= O */
230         if (geo->ecc_chunk_size < mtd->oobsize) {
231                 dev_err(this->dev,
232                         "unsupported nand chip. ecc size: %d, oob size : %d\n",
233                         chip->ecc_step_ds, mtd->oobsize);
234                 return -EINVAL;
235         }
236
237         /* The default value, see comment in the legacy_set_geometry(). */
238         geo->metadata_size = 10;
239
240         geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
241
242         /*
243          * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
244          *
245          *    |                          P                            |
246          *    |<----------------------------------------------------->|
247          *    |                                                       |
248          *    |                                        (Block Mark)   |
249          *    |                      P'                      |      | |     |
250          *    |<-------------------------------------------->|  D   | |  O' |
251          *    |                                              |<---->| |<--->|
252          *    V                                              V      V V     V
253          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
254          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
255          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
256          *                                                   ^              ^
257          *                                                   |      O       |
258          *                                                   |<------------>|
259          *                                                   |              |
260          *
261          *      P : the page size for BCH module.
262          *      E : The ECC strength.
263          *      G : the length of Galois Field.
264          *      N : The chunk count of per page.
265          *      M : the metasize of per page.
266          *      C : the ecc chunk size, aka the "data" above.
267          *      P': the nand chip's page size.
268          *      O : the nand chip's oob size.
269          *      O': the free oob.
270          *
271          *      The formula for P is :
272          *
273          *                  E * G * N
274          *             P = ------------ + P' + M
275          *                      8
276          *
277          * The position of block mark moves forward in the ECC-based view
278          * of page, and the delta is:
279          *
280          *                   E * G * (N - 1)
281          *             D = (---------------- + M)
282          *                          8
283          *
284          * Please see the comment in legacy_set_geometry().
285          * With the condition C >= O , we still can get same result.
286          * So the bit position of the physical block mark within the ECC-based
287          * view of the page is :
288          *             (P' - D) * 8
289          */
290         geo->page_size = mtd->writesize + geo->metadata_size +
291                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
292
293         geo->payload_size = mtd->writesize;
294
295         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
296         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
297                                 + ALIGN(geo->ecc_chunk_count, 4);
298
299         if (!this->swap_block_mark)
300                 return 0;
301
302         /* For bit swap. */
303         block_mark_bit_offset = mtd->writesize * 8 -
304                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
305                                 + geo->metadata_size * 8);
306
307         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
308         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
309         return 0;
310 }
311
312 static int legacy_set_geometry(struct gpmi_nand_data *this)
313 {
314         struct bch_geometry *geo = &this->bch_geometry;
315         struct mtd_info *mtd = nand_to_mtd(&this->nand);
316         unsigned int metadata_size;
317         unsigned int status_size;
318         unsigned int block_mark_bit_offset;
319
320         /*
321          * The size of the metadata can be changed, though we set it to 10
322          * bytes now. But it can't be too large, because we have to save
323          * enough space for BCH.
324          */
325         geo->metadata_size = 10;
326
327         /* The default for the length of Galois Field. */
328         geo->gf_len = 13;
329
330         /* The default for chunk size. */
331         geo->ecc_chunk_size = 512;
332         while (geo->ecc_chunk_size < mtd->oobsize) {
333                 geo->ecc_chunk_size *= 2; /* keep C >= O */
334                 geo->gf_len = 14;
335         }
336
337         geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
338
339         /* We use the same ECC strength for all chunks. */
340         geo->ecc_strength = get_ecc_strength(this);
341         if (!gpmi_check_ecc(this)) {
342                 dev_err(this->dev,
343                         "ecc strength: %d cannot be supported by the controller (%d)\n"
344                         "try to use minimum ecc strength that NAND chip required\n",
345                         geo->ecc_strength,
346                         this->devdata->bch_max_ecc_strength);
347                 return -EINVAL;
348         }
349
350         geo->page_size = mtd->writesize + geo->metadata_size +
351                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
352         geo->payload_size = mtd->writesize;
353
354         /*
355          * The auxiliary buffer contains the metadata and the ECC status. The
356          * metadata is padded to the nearest 32-bit boundary. The ECC status
357          * contains one byte for every ECC chunk, and is also padded to the
358          * nearest 32-bit boundary.
359          */
360         metadata_size = ALIGN(geo->metadata_size, 4);
361         status_size   = ALIGN(geo->ecc_chunk_count, 4);
362
363         geo->auxiliary_size = metadata_size + status_size;
364         geo->auxiliary_status_offset = metadata_size;
365
366         if (!this->swap_block_mark)
367                 return 0;
368
369         /*
370          * We need to compute the byte and bit offsets of
371          * the physical block mark within the ECC-based view of the page.
372          *
373          * NAND chip with 2K page shows below:
374          *                                             (Block Mark)
375          *                                                   |      |
376          *                                                   |  D   |
377          *                                                   |<---->|
378          *                                                   V      V
379          *    +---+----------+-+----------+-+----------+-+----------+-+
380          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
381          *    +---+----------+-+----------+-+----------+-+----------+-+
382          *
383          * The position of block mark moves forward in the ECC-based view
384          * of page, and the delta is:
385          *
386          *                   E * G * (N - 1)
387          *             D = (---------------- + M)
388          *                          8
389          *
390          * With the formula to compute the ECC strength, and the condition
391          *       : C >= O         (C is the ecc chunk size)
392          *
393          * It's easy to deduce to the following result:
394          *
395          *         E * G       (O - M)      C - M         C - M
396          *      ----------- <= ------- <=  --------  <  ---------
397          *           8            N           N          (N - 1)
398          *
399          *  So, we get:
400          *
401          *                   E * G * (N - 1)
402          *             D = (---------------- + M) < C
403          *                          8
404          *
405          *  The above inequality means the position of block mark
406          *  within the ECC-based view of the page is still in the data chunk,
407          *  and it's NOT in the ECC bits of the chunk.
408          *
409          *  Use the following to compute the bit position of the
410          *  physical block mark within the ECC-based view of the page:
411          *          (page_size - D) * 8
412          *
413          *  --Huang Shijie
414          */
415         block_mark_bit_offset = mtd->writesize * 8 -
416                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
417                                 + geo->metadata_size * 8);
418
419         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
420         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
421         return 0;
422 }
423
424 int common_nfc_set_geometry(struct gpmi_nand_data *this)
425 {
426         if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
427                                 || legacy_set_geometry(this))
428                 return set_geometry_by_ecc_info(this);
429
430         return 0;
431 }
432
433 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
434 {
435         /* We use the DMA channel 0 to access all the nand chips. */
436         return this->dma_chans[0];
437 }
438
439 /* Can we use the upper's buffer directly for DMA? */
440 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
441 {
442         struct scatterlist *sgl = &this->data_sgl;
443         int ret;
444
445         /* first try to map the upper buffer directly */
446         if (virt_addr_valid(this->upper_buf) &&
447                 !object_is_on_stack(this->upper_buf)) {
448                 sg_init_one(sgl, this->upper_buf, this->upper_len);
449                 ret = dma_map_sg(this->dev, sgl, 1, dr);
450                 if (ret == 0)
451                         goto map_fail;
452
453                 this->direct_dma_map_ok = true;
454                 return;
455         }
456
457 map_fail:
458         /* We have to use our own DMA buffer. */
459         sg_init_one(sgl, this->data_buffer_dma, this->upper_len);
460
461         if (dr == DMA_TO_DEVICE)
462                 memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);
463
464         dma_map_sg(this->dev, sgl, 1, dr);
465
466         this->direct_dma_map_ok = false;
467 }
468
469 /* This will be called after the DMA operation is finished. */
470 static void dma_irq_callback(void *param)
471 {
472         struct gpmi_nand_data *this = param;
473         struct completion *dma_c = &this->dma_done;
474
475         switch (this->dma_type) {
476         case DMA_FOR_COMMAND:
477                 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
478                 break;
479
480         case DMA_FOR_READ_DATA:
481                 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
482                 if (this->direct_dma_map_ok == false)
483                         memcpy(this->upper_buf, this->data_buffer_dma,
484                                 this->upper_len);
485                 break;
486
487         case DMA_FOR_WRITE_DATA:
488                 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
489                 break;
490
491         case DMA_FOR_READ_ECC_PAGE:
492         case DMA_FOR_WRITE_ECC_PAGE:
493                 /* We have to wait the BCH interrupt to finish. */
494                 break;
495
496         default:
497                 dev_err(this->dev, "in wrong DMA operation.\n");
498         }
499
500         complete(dma_c);
501 }
502
503 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
504                                 struct dma_async_tx_descriptor *desc)
505 {
506         struct completion *dma_c = &this->dma_done;
507         unsigned long timeout;
508
509         init_completion(dma_c);
510
511         desc->callback          = dma_irq_callback;
512         desc->callback_param    = this;
513         dmaengine_submit(desc);
514         dma_async_issue_pending(get_dma_chan(this));
515
516         /* Wait for the interrupt from the DMA block. */
517         timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
518         if (!timeout) {
519                 dev_err(this->dev, "DMA timeout, last DMA :%d\n",
520                         this->last_dma_type);
521                 gpmi_dump_info(this);
522                 return -ETIMEDOUT;
523         }
524         return 0;
525 }
526
527 /*
528  * This function is used in BCH reading or BCH writing pages.
529  * It will wait for the BCH interrupt as long as ONE second.
530  * Actually, we must wait for two interrupts :
531  *      [1] firstly the DMA interrupt and
532  *      [2] secondly the BCH interrupt.
533  */
534 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
535                         struct dma_async_tx_descriptor *desc)
536 {
537         struct completion *bch_c = &this->bch_done;
538         unsigned long timeout;
539
540         /* Prepare to receive an interrupt from the BCH block. */
541         init_completion(bch_c);
542
543         /* start the DMA */
544         start_dma_without_bch_irq(this, desc);
545
546         /* Wait for the interrupt from the BCH block. */
547         timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
548         if (!timeout) {
549                 dev_err(this->dev, "BCH timeout, last DMA :%d\n",
550                         this->last_dma_type);
551                 gpmi_dump_info(this);
552                 return -ETIMEDOUT;
553         }
554         return 0;
555 }
556
557 static int acquire_register_block(struct gpmi_nand_data *this,
558                                   const char *res_name)
559 {
560         struct platform_device *pdev = this->pdev;
561         struct resources *res = &this->resources;
562         struct resource *r;
563         void __iomem *p;
564
565         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
566         p = devm_ioremap_resource(&pdev->dev, r);
567         if (IS_ERR(p))
568                 return PTR_ERR(p);
569
570         if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
571                 res->gpmi_regs = p;
572         else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
573                 res->bch_regs = p;
574         else
575                 dev_err(this->dev, "unknown resource name : %s\n", res_name);
576
577         return 0;
578 }
579
580 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
581 {
582         struct platform_device *pdev = this->pdev;
583         const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
584         struct resource *r;
585         int err;
586
587         r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
588         if (!r) {
589                 dev_err(this->dev, "Can't get resource for %s\n", res_name);
590                 return -ENODEV;
591         }
592
593         err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
594         if (err)
595                 dev_err(this->dev, "error requesting BCH IRQ\n");
596
597         return err;
598 }
599
600 static void release_dma_channels(struct gpmi_nand_data *this)
601 {
602         unsigned int i;
603         for (i = 0; i < DMA_CHANS; i++)
604                 if (this->dma_chans[i]) {
605                         dma_release_channel(this->dma_chans[i]);
606                         this->dma_chans[i] = NULL;
607                 }
608 }
609
610 static int acquire_dma_channels(struct gpmi_nand_data *this)
611 {
612         struct platform_device *pdev = this->pdev;
613         struct dma_chan *dma_chan;
614
615         /* request dma channel */
616         dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
617         if (!dma_chan) {
618                 dev_err(this->dev, "Failed to request DMA channel.\n");
619                 goto acquire_err;
620         }
621
622         this->dma_chans[0] = dma_chan;
623         return 0;
624
625 acquire_err:
626         release_dma_channels(this);
627         return -EINVAL;
628 }
629
630 static int gpmi_get_clks(struct gpmi_nand_data *this)
631 {
632         struct resources *r = &this->resources;
633         struct clk *clk;
634         int err, i;
635
636         for (i = 0; i < this->devdata->clks_count; i++) {
637                 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
638                 if (IS_ERR(clk)) {
639                         err = PTR_ERR(clk);
640                         goto err_clock;
641                 }
642
643                 r->clock[i] = clk;
644         }
645
646         if (GPMI_IS_MX6(this))
647                 /*
648                  * Set the default value for the gpmi clock.
649                  *
650                  * If you want to use the ONFI nand which is in the
651                  * Synchronous Mode, you should change the clock as you need.
652                  */
653                 clk_set_rate(r->clock[0], 22000000);
654
655         return 0;
656
657 err_clock:
658         dev_dbg(this->dev, "failed in finding the clocks.\n");
659         return err;
660 }
661
662 static int acquire_resources(struct gpmi_nand_data *this)
663 {
664         int ret;
665
666         ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
667         if (ret)
668                 goto exit_regs;
669
670         ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
671         if (ret)
672                 goto exit_regs;
673
674         ret = acquire_bch_irq(this, bch_irq);
675         if (ret)
676                 goto exit_regs;
677
678         ret = acquire_dma_channels(this);
679         if (ret)
680                 goto exit_regs;
681
682         ret = gpmi_get_clks(this);
683         if (ret)
684                 goto exit_clock;
685         return 0;
686
687 exit_clock:
688         release_dma_channels(this);
689 exit_regs:
690         return ret;
691 }
692
693 static void release_resources(struct gpmi_nand_data *this)
694 {
695         release_dma_channels(this);
696 }
697
698 static int init_hardware(struct gpmi_nand_data *this)
699 {
700         int ret;
701
702         /*
703          * This structure contains the "safe" GPMI timing that should succeed
704          * with any NAND Flash device
705          * (although, with less-than-optimal performance).
706          */
707         struct nand_timing  safe_timing = {
708                 .data_setup_in_ns        = 80,
709                 .data_hold_in_ns         = 60,
710                 .address_setup_in_ns     = 25,
711                 .gpmi_sample_delay_in_ns =  6,
712                 .tREA_in_ns              = -1,
713                 .tRLOH_in_ns             = -1,
714                 .tRHOH_in_ns             = -1,
715         };
716
717         /* Initialize the hardwares. */
718         ret = gpmi_init(this);
719         if (ret)
720                 return ret;
721
722         this->timing = safe_timing;
723         return 0;
724 }
725
726 static int read_page_prepare(struct gpmi_nand_data *this,
727                         void *destination, unsigned length,
728                         void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
729                         void **use_virt, dma_addr_t *use_phys)
730 {
731         struct device *dev = this->dev;
732
733         if (virt_addr_valid(destination)) {
734                 dma_addr_t dest_phys;
735
736                 dest_phys = dma_map_single(dev, destination,
737                                                 length, DMA_FROM_DEVICE);
738                 if (dma_mapping_error(dev, dest_phys)) {
739                         if (alt_size < length) {
740                                 dev_err(dev, "Alternate buffer is too small\n");
741                                 return -ENOMEM;
742                         }
743                         goto map_failed;
744                 }
745                 *use_virt = destination;
746                 *use_phys = dest_phys;
747                 this->direct_dma_map_ok = true;
748                 return 0;
749         }
750
751 map_failed:
752         *use_virt = alt_virt;
753         *use_phys = alt_phys;
754         this->direct_dma_map_ok = false;
755         return 0;
756 }
757
758 static inline void read_page_end(struct gpmi_nand_data *this,
759                         void *destination, unsigned length,
760                         void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
761                         void *used_virt, dma_addr_t used_phys)
762 {
763         if (this->direct_dma_map_ok)
764                 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
765 }
766
767 static inline void read_page_swap_end(struct gpmi_nand_data *this,
768                         void *destination, unsigned length,
769                         void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
770                         void *used_virt, dma_addr_t used_phys)
771 {
772         if (!this->direct_dma_map_ok)
773                 memcpy(destination, alt_virt, length);
774 }
775
776 static int send_page_prepare(struct gpmi_nand_data *this,
777                         const void *source, unsigned length,
778                         void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
779                         const void **use_virt, dma_addr_t *use_phys)
780 {
781         struct device *dev = this->dev;
782
783         if (virt_addr_valid(source)) {
784                 dma_addr_t source_phys;
785
786                 source_phys = dma_map_single(dev, (void *)source, length,
787                                                 DMA_TO_DEVICE);
788                 if (dma_mapping_error(dev, source_phys)) {
789                         if (alt_size < length) {
790                                 dev_err(dev, "Alternate buffer is too small\n");
791                                 return -ENOMEM;
792                         }
793                         goto map_failed;
794                 }
795                 *use_virt = source;
796                 *use_phys = source_phys;
797                 return 0;
798         }
799 map_failed:
800         /*
801          * Copy the content of the source buffer into the alternate
802          * buffer and set up the return values accordingly.
803          */
804         memcpy(alt_virt, source, length);
805
806         *use_virt = alt_virt;
807         *use_phys = alt_phys;
808         return 0;
809 }
810
811 static void send_page_end(struct gpmi_nand_data *this,
812                         const void *source, unsigned length,
813                         void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
814                         const void *used_virt, dma_addr_t used_phys)
815 {
816         struct device *dev = this->dev;
817         if (used_virt == source)
818                 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
819 }
820
821 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
822 {
823         struct device *dev = this->dev;
824
825         if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
826                 dma_free_coherent(dev, this->page_buffer_size,
827                                         this->page_buffer_virt,
828                                         this->page_buffer_phys);
829         kfree(this->cmd_buffer);
830         kfree(this->data_buffer_dma);
831         kfree(this->raw_buffer);
832
833         this->cmd_buffer        = NULL;
834         this->data_buffer_dma   = NULL;
835         this->raw_buffer        = NULL;
836         this->page_buffer_virt  = NULL;
837         this->page_buffer_size  =  0;
838 }
839
840 /* Allocate the DMA buffers */
841 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
842 {
843         struct bch_geometry *geo = &this->bch_geometry;
844         struct device *dev = this->dev;
845         struct mtd_info *mtd = nand_to_mtd(&this->nand);
846
847         /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
848         this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
849         if (this->cmd_buffer == NULL)
850                 goto error_alloc;
851
852         /*
853          * [2] Allocate a read/write data buffer.
854          *     The gpmi_alloc_dma_buffer can be called twice.
855          *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
856          *     is called before the nand_scan_ident; and we allocate a buffer
857          *     of the real NAND page size when the gpmi_alloc_dma_buffer is
858          *     called after the nand_scan_ident.
859          */
860         this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
861                                         GFP_DMA | GFP_KERNEL);
862         if (this->data_buffer_dma == NULL)
863                 goto error_alloc;
864
865         /*
866          * [3] Allocate the page buffer.
867          *
868          * Both the payload buffer and the auxiliary buffer must appear on
869          * 32-bit boundaries. We presume the size of the payload buffer is a
870          * power of two and is much larger than four, which guarantees the
871          * auxiliary buffer will appear on a 32-bit boundary.
872          */
873         this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
874         this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
875                                         &this->page_buffer_phys, GFP_DMA);
876         if (!this->page_buffer_virt)
877                 goto error_alloc;
878
879         this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
880         if (!this->raw_buffer)
881                 goto error_alloc;
882
883         /* Slice up the page buffer. */
884         this->payload_virt = this->page_buffer_virt;
885         this->payload_phys = this->page_buffer_phys;
886         this->auxiliary_virt = this->payload_virt + geo->payload_size;
887         this->auxiliary_phys = this->payload_phys + geo->payload_size;
888         return 0;
889
890 error_alloc:
891         gpmi_free_dma_buffer(this);
892         return -ENOMEM;
893 }
894
895 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
896 {
897         struct nand_chip *chip = mtd_to_nand(mtd);
898         struct gpmi_nand_data *this = nand_get_controller_data(chip);
899         int ret;
900
901         /*
902          * Every operation begins with a command byte and a series of zero or
903          * more address bytes. These are distinguished by either the Address
904          * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
905          * asserted. When MTD is ready to execute the command, it will deassert
906          * both latch enables.
907          *
908          * Rather than run a separate DMA operation for every single byte, we
909          * queue them up and run a single DMA operation for the entire series
910          * of command and data bytes. NAND_CMD_NONE means the END of the queue.
911          */
912         if ((ctrl & (NAND_ALE | NAND_CLE))) {
913                 if (data != NAND_CMD_NONE)
914                         this->cmd_buffer[this->command_length++] = data;
915                 return;
916         }
917
918         if (!this->command_length)
919                 return;
920
921         ret = gpmi_send_command(this);
922         if (ret)
923                 dev_err(this->dev, "Chip: %u, Error %d\n",
924                         this->current_chip, ret);
925
926         this->command_length = 0;
927 }
928
929 static int gpmi_dev_ready(struct mtd_info *mtd)
930 {
931         struct nand_chip *chip = mtd_to_nand(mtd);
932         struct gpmi_nand_data *this = nand_get_controller_data(chip);
933
934         return gpmi_is_ready(this, this->current_chip);
935 }
936
937 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
938 {
939         struct nand_chip *chip = mtd_to_nand(mtd);
940         struct gpmi_nand_data *this = nand_get_controller_data(chip);
941
942         if ((this->current_chip < 0) && (chipnr >= 0))
943                 gpmi_begin(this);
944         else if ((this->current_chip >= 0) && (chipnr < 0))
945                 gpmi_end(this);
946
947         this->current_chip = chipnr;
948 }
949
950 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
951 {
952         struct nand_chip *chip = mtd_to_nand(mtd);
953         struct gpmi_nand_data *this = nand_get_controller_data(chip);
954
955         dev_dbg(this->dev, "len is %d\n", len);
956         this->upper_buf = buf;
957         this->upper_len = len;
958
959         gpmi_read_data(this);
960 }
961
962 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
963 {
964         struct nand_chip *chip = mtd_to_nand(mtd);
965         struct gpmi_nand_data *this = nand_get_controller_data(chip);
966
967         dev_dbg(this->dev, "len is %d\n", len);
968         this->upper_buf = (uint8_t *)buf;
969         this->upper_len = len;
970
971         gpmi_send_data(this);
972 }
973
974 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
975 {
976         struct nand_chip *chip = mtd_to_nand(mtd);
977         struct gpmi_nand_data *this = nand_get_controller_data(chip);
978         uint8_t *buf = this->data_buffer_dma;
979
980         gpmi_read_buf(mtd, buf, 1);
981         return buf[0];
982 }
983
984 /*
985  * Handles block mark swapping.
986  * It can be called in swapping the block mark, or swapping it back,
987  * because the the operations are the same.
988  */
989 static void block_mark_swapping(struct gpmi_nand_data *this,
990                                 void *payload, void *auxiliary)
991 {
992         struct bch_geometry *nfc_geo = &this->bch_geometry;
993         unsigned char *p;
994         unsigned char *a;
995         unsigned int  bit;
996         unsigned char mask;
997         unsigned char from_data;
998         unsigned char from_oob;
999
1000         if (!this->swap_block_mark)
1001                 return;
1002
1003         /*
1004          * If control arrives here, we're swapping. Make some convenience
1005          * variables.
1006          */
1007         bit = nfc_geo->block_mark_bit_offset;
1008         p   = payload + nfc_geo->block_mark_byte_offset;
1009         a   = auxiliary;
1010
1011         /*
1012          * Get the byte from the data area that overlays the block mark. Since
1013          * the ECC engine applies its own view to the bits in the page, the
1014          * physical block mark won't (in general) appear on a byte boundary in
1015          * the data.
1016          */
1017         from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1018
1019         /* Get the byte from the OOB. */
1020         from_oob = a[0];
1021
1022         /* Swap them. */
1023         a[0] = from_data;
1024
1025         mask = (0x1 << bit) - 1;
1026         p[0] = (p[0] & mask) | (from_oob << bit);
1027
1028         mask = ~0 << bit;
1029         p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1030 }
1031
1032 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1033                                 uint8_t *buf, int oob_required, int page)
1034 {
1035         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1036         struct bch_geometry *nfc_geo = &this->bch_geometry;
1037         void          *payload_virt;
1038         dma_addr_t    payload_phys;
1039         void          *auxiliary_virt;
1040         dma_addr_t    auxiliary_phys;
1041         unsigned int  i;
1042         unsigned char *status;
1043         unsigned int  max_bitflips = 0;
1044         int           ret;
1045
1046         dev_dbg(this->dev, "page number is : %d\n", page);
1047         ret = read_page_prepare(this, buf, nfc_geo->payload_size,
1048                                         this->payload_virt, this->payload_phys,
1049                                         nfc_geo->payload_size,
1050                                         &payload_virt, &payload_phys);
1051         if (ret) {
1052                 dev_err(this->dev, "Inadequate DMA buffer\n");
1053                 ret = -ENOMEM;
1054                 return ret;
1055         }
1056         auxiliary_virt = this->auxiliary_virt;
1057         auxiliary_phys = this->auxiliary_phys;
1058
1059         /* go! */
1060         ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1061         read_page_end(this, buf, nfc_geo->payload_size,
1062                         this->payload_virt, this->payload_phys,
1063                         nfc_geo->payload_size,
1064                         payload_virt, payload_phys);
1065         if (ret) {
1066                 dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
1067                 return ret;
1068         }
1069
1070         /* handle the block mark swapping */
1071         block_mark_swapping(this, payload_virt, auxiliary_virt);
1072
1073         /* Loop over status bytes, accumulating ECC status. */
1074         status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1075
1076         read_page_swap_end(this, buf, nfc_geo->payload_size,
1077                            this->payload_virt, this->payload_phys,
1078                            nfc_geo->payload_size,
1079                            payload_virt, payload_phys);
1080
1081         for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1082                 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1083                         continue;
1084
1085                 if (*status == STATUS_UNCORRECTABLE) {
1086                         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1087                         u8 *eccbuf = this->raw_buffer;
1088                         int offset, bitoffset;
1089                         int eccbytes;
1090                         int flips;
1091
1092                         /* Read ECC bytes into our internal raw_buffer */
1093                         offset = nfc_geo->metadata_size * 8;
1094                         offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1095                         offset -= eccbits;
1096                         bitoffset = offset % 8;
1097                         eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1098                         offset /= 8;
1099                         eccbytes -= offset;
1100                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
1101                         chip->read_buf(mtd, eccbuf, eccbytes);
1102
1103                         /*
1104                          * ECC data are not byte aligned and we may have
1105                          * in-band data in the first and last byte of
1106                          * eccbuf. Set non-eccbits to one so that
1107                          * nand_check_erased_ecc_chunk() does not count them
1108                          * as bitflips.
1109                          */
1110                         if (bitoffset)
1111                                 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1112
1113                         bitoffset = (bitoffset + eccbits) % 8;
1114                         if (bitoffset)
1115                                 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1116
1117                         /*
1118                          * The ECC hardware has an uncorrectable ECC status
1119                          * code in case we have bitflips in an erased page. As
1120                          * nothing was written into this subpage the ECC is
1121                          * obviously wrong and we can not trust it. We assume
1122                          * at this point that we are reading an erased page and
1123                          * try to correct the bitflips in buffer up to
1124                          * ecc_strength bitflips. If this is a page with random
1125                          * data, we exceed this number of bitflips and have a
1126                          * ECC failure. Otherwise we use the corrected buffer.
1127                          */
1128                         if (i == 0) {
1129                                 /* The first block includes metadata */
1130                                 flips = nand_check_erased_ecc_chunk(
1131                                                 buf + i * nfc_geo->ecc_chunk_size,
1132                                                 nfc_geo->ecc_chunk_size,
1133                                                 eccbuf, eccbytes,
1134                                                 auxiliary_virt,
1135                                                 nfc_geo->metadata_size,
1136                                                 nfc_geo->ecc_strength);
1137                         } else {
1138                                 flips = nand_check_erased_ecc_chunk(
1139                                                 buf + i * nfc_geo->ecc_chunk_size,
1140                                                 nfc_geo->ecc_chunk_size,
1141                                                 eccbuf, eccbytes,
1142                                                 NULL, 0,
1143                                                 nfc_geo->ecc_strength);
1144                         }
1145
1146                         if (flips > 0) {
1147                                 max_bitflips = max_t(unsigned int, max_bitflips,
1148                                                      flips);
1149                                 mtd->ecc_stats.corrected += flips;
1150                                 continue;
1151                         }
1152
1153                         mtd->ecc_stats.failed++;
1154                         continue;
1155                 }
1156
1157                 mtd->ecc_stats.corrected += *status;
1158                 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1159         }
1160
1161         if (oob_required) {
1162                 /*
1163                  * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1164                  * for details about our policy for delivering the OOB.
1165                  *
1166                  * We fill the caller's buffer with set bits, and then copy the
1167                  * block mark to th caller's buffer. Note that, if block mark
1168                  * swapping was necessary, it has already been done, so we can
1169                  * rely on the first byte of the auxiliary buffer to contain
1170                  * the block mark.
1171                  */
1172                 memset(chip->oob_poi, ~0, mtd->oobsize);
1173                 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
1174         }
1175
1176         return max_bitflips;
1177 }
1178
1179 /* Fake a virtual small page for the subpage read */
1180 static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1181                         uint32_t offs, uint32_t len, uint8_t *buf, int page)
1182 {
1183         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1184         void __iomem *bch_regs = this->resources.bch_regs;
1185         struct bch_geometry old_geo = this->bch_geometry;
1186         struct bch_geometry *geo = &this->bch_geometry;
1187         int size = chip->ecc.size; /* ECC chunk size */
1188         int meta, n, page_size;
1189         u32 r1_old, r2_old, r1_new, r2_new;
1190         unsigned int max_bitflips;
1191         int first, last, marker_pos;
1192         int ecc_parity_size;
1193         int col = 0;
1194         int old_swap_block_mark = this->swap_block_mark;
1195
1196         /* The size of ECC parity */
1197         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1198
1199         /* Align it with the chunk size */
1200         first = offs / size;
1201         last = (offs + len - 1) / size;
1202
1203         if (this->swap_block_mark) {
1204                 /*
1205                  * Find the chunk which contains the Block Marker.
1206                  * If this chunk is in the range of [first, last],
1207                  * we have to read out the whole page.
1208                  * Why? since we had swapped the data at the position of Block
1209                  * Marker to the metadata which is bound with the chunk 0.
1210                  */
1211                 marker_pos = geo->block_mark_byte_offset / size;
1212                 if (last >= marker_pos && first <= marker_pos) {
1213                         dev_dbg(this->dev,
1214                                 "page:%d, first:%d, last:%d, marker at:%d\n",
1215                                 page, first, last, marker_pos);
1216                         return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1217                 }
1218         }
1219
1220         meta = geo->metadata_size;
1221         if (first) {
1222                 col = meta + (size + ecc_parity_size) * first;
1223                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
1224
1225                 meta = 0;
1226                 buf = buf + first * size;
1227         }
1228
1229         /* Save the old environment */
1230         r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1231         r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1232
1233         /* change the BCH registers and bch_geometry{} */
1234         n = last - first + 1;
1235         page_size = meta + (size + ecc_parity_size) * n;
1236
1237         r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1238                         BM_BCH_FLASH0LAYOUT0_META_SIZE);
1239         r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1240                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1241         writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1242
1243         r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1244         r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1245         writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1246
1247         geo->ecc_chunk_count = n;
1248         geo->payload_size = n * size;
1249         geo->page_size = page_size;
1250         geo->auxiliary_status_offset = ALIGN(meta, 4);
1251
1252         dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1253                 page, offs, len, col, first, n, page_size);
1254
1255         /* Read the subpage now */
1256         this->swap_block_mark = false;
1257         max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1258
1259         /* Restore */
1260         writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1261         writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1262         this->bch_geometry = old_geo;
1263         this->swap_block_mark = old_swap_block_mark;
1264
1265         return max_bitflips;
1266 }
1267
1268 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1269                                 const uint8_t *buf, int oob_required, int page)
1270 {
1271         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1272         struct bch_geometry *nfc_geo = &this->bch_geometry;
1273         const void *payload_virt;
1274         dma_addr_t payload_phys;
1275         const void *auxiliary_virt;
1276         dma_addr_t auxiliary_phys;
1277         int        ret;
1278
1279         dev_dbg(this->dev, "ecc write page.\n");
1280         if (this->swap_block_mark) {
1281                 /*
1282                  * If control arrives here, we're doing block mark swapping.
1283                  * Since we can't modify the caller's buffers, we must copy them
1284                  * into our own.
1285                  */
1286                 memcpy(this->payload_virt, buf, mtd->writesize);
1287                 payload_virt = this->payload_virt;
1288                 payload_phys = this->payload_phys;
1289
1290                 memcpy(this->auxiliary_virt, chip->oob_poi,
1291                                 nfc_geo->auxiliary_size);
1292                 auxiliary_virt = this->auxiliary_virt;
1293                 auxiliary_phys = this->auxiliary_phys;
1294
1295                 /* Handle block mark swapping. */
1296                 block_mark_swapping(this,
1297                                 (void *)payload_virt, (void *)auxiliary_virt);
1298         } else {
1299                 /*
1300                  * If control arrives here, we're not doing block mark swapping,
1301                  * so we can to try and use the caller's buffers.
1302                  */
1303                 ret = send_page_prepare(this,
1304                                 buf, mtd->writesize,
1305                                 this->payload_virt, this->payload_phys,
1306                                 nfc_geo->payload_size,
1307                                 &payload_virt, &payload_phys);
1308                 if (ret) {
1309                         dev_err(this->dev, "Inadequate payload DMA buffer\n");
1310                         return 0;
1311                 }
1312
1313                 ret = send_page_prepare(this,
1314                                 chip->oob_poi, mtd->oobsize,
1315                                 this->auxiliary_virt, this->auxiliary_phys,
1316                                 nfc_geo->auxiliary_size,
1317                                 &auxiliary_virt, &auxiliary_phys);
1318                 if (ret) {
1319                         dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1320                         goto exit_auxiliary;
1321                 }
1322         }
1323
1324         /* Ask the NFC. */
1325         ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1326         if (ret)
1327                 dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1328
1329         if (!this->swap_block_mark) {
1330                 send_page_end(this, chip->oob_poi, mtd->oobsize,
1331                                 this->auxiliary_virt, this->auxiliary_phys,
1332                                 nfc_geo->auxiliary_size,
1333                                 auxiliary_virt, auxiliary_phys);
1334 exit_auxiliary:
1335                 send_page_end(this, buf, mtd->writesize,
1336                                 this->payload_virt, this->payload_phys,
1337                                 nfc_geo->payload_size,
1338                                 payload_virt, payload_phys);
1339         }
1340
1341         return 0;
1342 }
1343
1344 /*
1345  * There are several places in this driver where we have to handle the OOB and
1346  * block marks. This is the function where things are the most complicated, so
1347  * this is where we try to explain it all. All the other places refer back to
1348  * here.
1349  *
1350  * These are the rules, in order of decreasing importance:
1351  *
1352  * 1) Nothing the caller does can be allowed to imperil the block mark.
1353  *
1354  * 2) In read operations, the first byte of the OOB we return must reflect the
1355  *    true state of the block mark, no matter where that block mark appears in
1356  *    the physical page.
1357  *
1358  * 3) ECC-based read operations return an OOB full of set bits (since we never
1359  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1360  *    return).
1361  *
1362  * 4) "Raw" read operations return a direct view of the physical bytes in the
1363  *    page, using the conventional definition of which bytes are data and which
1364  *    are OOB. This gives the caller a way to see the actual, physical bytes
1365  *    in the page, without the distortions applied by our ECC engine.
1366  *
1367  *
1368  * What we do for this specific read operation depends on two questions:
1369  *
1370  * 1) Are we doing a "raw" read, or an ECC-based read?
1371  *
1372  * 2) Are we using block mark swapping or transcription?
1373  *
1374  * There are four cases, illustrated by the following Karnaugh map:
1375  *
1376  *                    |           Raw           |         ECC-based       |
1377  *       -------------+-------------------------+-------------------------+
1378  *                    | Read the conventional   |                         |
1379  *                    | OOB at the end of the   |                         |
1380  *       Swapping     | page and return it. It  |                         |
1381  *                    | contains exactly what   |                         |
1382  *                    | we want.                | Read the block mark and |
1383  *       -------------+-------------------------+ return it in a buffer   |
1384  *                    | Read the conventional   | full of set bits.       |
1385  *                    | OOB at the end of the   |                         |
1386  *                    | page and also the block |                         |
1387  *       Transcribing | mark in the metadata.   |                         |
1388  *                    | Copy the block mark     |                         |
1389  *                    | into the first byte of  |                         |
1390  *                    | the OOB.                |                         |
1391  *       -------------+-------------------------+-------------------------+
1392  *
1393  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1394  * giving an accurate view of the actual, physical bytes in the page (we're
1395  * overwriting the block mark). That's OK because it's more important to follow
1396  * rule #2.
1397  *
1398  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1399  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1400  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1401  * ECC-based or raw view of the page is implicit in which function it calls
1402  * (there is a similar pair of ECC-based/raw functions for writing).
1403  */
1404 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1405                                 int page)
1406 {
1407         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1408
1409         dev_dbg(this->dev, "page number is %d\n", page);
1410         /* clear the OOB buffer */
1411         memset(chip->oob_poi, ~0, mtd->oobsize);
1412
1413         /* Read out the conventional OOB. */
1414         chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1415         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1416
1417         /*
1418          * Now, we want to make sure the block mark is correct. In the
1419          * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1420          * Otherwise, we need to explicitly read it.
1421          */
1422         if (GPMI_IS_MX23(this)) {
1423                 /* Read the block mark into the first byte of the OOB buffer. */
1424                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1425                 chip->oob_poi[0] = chip->read_byte(mtd);
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int
1432 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1433 {
1434         struct mtd_oob_region of = { };
1435         int status = 0;
1436
1437         /* Do we have available oob area? */
1438         mtd_ooblayout_free(mtd, 0, &of);
1439         if (!of.length)
1440                 return -EPERM;
1441
1442         if (!nand_is_slc(chip))
1443                 return -EPERM;
1444
1445         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of.offset, page);
1446         chip->write_buf(mtd, chip->oob_poi + of.offset, of.length);
1447         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1448
1449         status = chip->waitfunc(mtd, chip);
1450         return status & NAND_STATUS_FAIL ? -EIO : 0;
1451 }
1452
1453 /*
1454  * This function reads a NAND page without involving the ECC engine (no HW
1455  * ECC correction).
1456  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1457  * inline (interleaved with payload DATA), and do not align data chunk on
1458  * byte boundaries.
1459  * We thus need to take care moving the payload data and ECC bits stored in the
1460  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1461  *
1462  * See set_geometry_by_ecc_info inline comments to have a full description
1463  * of the layout used by the GPMI controller.
1464  */
1465 static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
1466                                   struct nand_chip *chip, uint8_t *buf,
1467                                   int oob_required, int page)
1468 {
1469         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1470         struct bch_geometry *nfc_geo = &this->bch_geometry;
1471         int eccsize = nfc_geo->ecc_chunk_size;
1472         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1473         u8 *tmp_buf = this->raw_buffer;
1474         size_t src_bit_off;
1475         size_t oob_bit_off;
1476         size_t oob_byte_off;
1477         uint8_t *oob = chip->oob_poi;
1478         int step;
1479
1480         chip->read_buf(mtd, tmp_buf,
1481                        mtd->writesize + mtd->oobsize);
1482
1483         /*
1484          * If required, swap the bad block marker and the data stored in the
1485          * metadata section, so that we don't wrongly consider a block as bad.
1486          *
1487          * See the layout description for a detailed explanation on why this
1488          * is needed.
1489          */
1490         if (this->swap_block_mark) {
1491                 u8 swap = tmp_buf[0];
1492
1493                 tmp_buf[0] = tmp_buf[mtd->writesize];
1494                 tmp_buf[mtd->writesize] = swap;
1495         }
1496
1497         /*
1498          * Copy the metadata section into the oob buffer (this section is
1499          * guaranteed to be aligned on a byte boundary).
1500          */
1501         if (oob_required)
1502                 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1503
1504         oob_bit_off = nfc_geo->metadata_size * 8;
1505         src_bit_off = oob_bit_off;
1506
1507         /* Extract interleaved payload data and ECC bits */
1508         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1509                 if (buf)
1510                         gpmi_copy_bits(buf, step * eccsize * 8,
1511                                        tmp_buf, src_bit_off,
1512                                        eccsize * 8);
1513                 src_bit_off += eccsize * 8;
1514
1515                 /* Align last ECC block to align a byte boundary */
1516                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1517                     (oob_bit_off + eccbits) % 8)
1518                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1519
1520                 if (oob_required)
1521                         gpmi_copy_bits(oob, oob_bit_off,
1522                                        tmp_buf, src_bit_off,
1523                                        eccbits);
1524
1525                 src_bit_off += eccbits;
1526                 oob_bit_off += eccbits;
1527         }
1528
1529         if (oob_required) {
1530                 oob_byte_off = oob_bit_off / 8;
1531
1532                 if (oob_byte_off < mtd->oobsize)
1533                         memcpy(oob + oob_byte_off,
1534                                tmp_buf + mtd->writesize + oob_byte_off,
1535                                mtd->oobsize - oob_byte_off);
1536         }
1537
1538         return 0;
1539 }
1540
1541 /*
1542  * This function writes a NAND page without involving the ECC engine (no HW
1543  * ECC generation).
1544  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1545  * inline (interleaved with payload DATA), and do not align data chunk on
1546  * byte boundaries.
1547  * We thus need to take care moving the OOB area at the right place in the
1548  * final page, which is why we're using gpmi_copy_bits.
1549  *
1550  * See set_geometry_by_ecc_info inline comments to have a full description
1551  * of the layout used by the GPMI controller.
1552  */
1553 static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
1554                                    struct nand_chip *chip,
1555                                    const uint8_t *buf,
1556                                    int oob_required, int page)
1557 {
1558         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1559         struct bch_geometry *nfc_geo = &this->bch_geometry;
1560         int eccsize = nfc_geo->ecc_chunk_size;
1561         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1562         u8 *tmp_buf = this->raw_buffer;
1563         uint8_t *oob = chip->oob_poi;
1564         size_t dst_bit_off;
1565         size_t oob_bit_off;
1566         size_t oob_byte_off;
1567         int step;
1568
1569         /*
1570          * Initialize all bits to 1 in case we don't have a buffer for the
1571          * payload or oob data in order to leave unspecified bits of data
1572          * to their initial state.
1573          */
1574         if (!buf || !oob_required)
1575                 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1576
1577         /*
1578          * First copy the metadata section (stored in oob buffer) at the
1579          * beginning of the page, as imposed by the GPMI layout.
1580          */
1581         memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1582         oob_bit_off = nfc_geo->metadata_size * 8;
1583         dst_bit_off = oob_bit_off;
1584
1585         /* Interleave payload data and ECC bits */
1586         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1587                 if (buf)
1588                         gpmi_copy_bits(tmp_buf, dst_bit_off,
1589                                        buf, step * eccsize * 8, eccsize * 8);
1590                 dst_bit_off += eccsize * 8;
1591
1592                 /* Align last ECC block to align a byte boundary */
1593                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1594                     (oob_bit_off + eccbits) % 8)
1595                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1596
1597                 if (oob_required)
1598                         gpmi_copy_bits(tmp_buf, dst_bit_off,
1599                                        oob, oob_bit_off, eccbits);
1600
1601                 dst_bit_off += eccbits;
1602                 oob_bit_off += eccbits;
1603         }
1604
1605         oob_byte_off = oob_bit_off / 8;
1606
1607         if (oob_required && oob_byte_off < mtd->oobsize)
1608                 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1609                        oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1610
1611         /*
1612          * If required, swap the bad block marker and the first byte of the
1613          * metadata section, so that we don't modify the bad block marker.
1614          *
1615          * See the layout description for a detailed explanation on why this
1616          * is needed.
1617          */
1618         if (this->swap_block_mark) {
1619                 u8 swap = tmp_buf[0];
1620
1621                 tmp_buf[0] = tmp_buf[mtd->writesize];
1622                 tmp_buf[mtd->writesize] = swap;
1623         }
1624
1625         chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize);
1626
1627         return 0;
1628 }
1629
1630 static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1631                                  int page)
1632 {
1633         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1634
1635         return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
1636 }
1637
1638 static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1639                                  int page)
1640 {
1641         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
1642
1643         return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
1644 }
1645
1646 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1647 {
1648         struct nand_chip *chip = mtd_to_nand(mtd);
1649         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1650         int ret = 0;
1651         uint8_t *block_mark;
1652         int column, page, status, chipnr;
1653
1654         chipnr = (int)(ofs >> chip->chip_shift);
1655         chip->select_chip(mtd, chipnr);
1656
1657         column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1658
1659         /* Write the block mark. */
1660         block_mark = this->data_buffer_dma;
1661         block_mark[0] = 0; /* bad block marker */
1662
1663         /* Shift to get page */
1664         page = (int)(ofs >> chip->page_shift);
1665
1666         chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1667         chip->write_buf(mtd, block_mark, 1);
1668         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1669
1670         status = chip->waitfunc(mtd, chip);
1671         if (status & NAND_STATUS_FAIL)
1672                 ret = -EIO;
1673
1674         chip->select_chip(mtd, -1);
1675
1676         return ret;
1677 }
1678
1679 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1680 {
1681         struct boot_rom_geometry *geometry = &this->rom_geometry;
1682
1683         /*
1684          * Set the boot block stride size.
1685          *
1686          * In principle, we should be reading this from the OTP bits, since
1687          * that's where the ROM is going to get it. In fact, we don't have any
1688          * way to read the OTP bits, so we go with the default and hope for the
1689          * best.
1690          */
1691         geometry->stride_size_in_pages = 64;
1692
1693         /*
1694          * Set the search area stride exponent.
1695          *
1696          * In principle, we should be reading this from the OTP bits, since
1697          * that's where the ROM is going to get it. In fact, we don't have any
1698          * way to read the OTP bits, so we go with the default and hope for the
1699          * best.
1700          */
1701         geometry->search_area_stride_exponent = 2;
1702         return 0;
1703 }
1704
1705 static const char  *fingerprint = "STMP";
1706 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1707 {
1708         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1709         struct device *dev = this->dev;
1710         struct nand_chip *chip = &this->nand;
1711         struct mtd_info *mtd = nand_to_mtd(chip);
1712         unsigned int search_area_size_in_strides;
1713         unsigned int stride;
1714         unsigned int page;
1715         uint8_t *buffer = chip->buffers->databuf;
1716         int saved_chip_number;
1717         int found_an_ncb_fingerprint = false;
1718
1719         /* Compute the number of strides in a search area. */
1720         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1721
1722         saved_chip_number = this->current_chip;
1723         chip->select_chip(mtd, 0);
1724
1725         /*
1726          * Loop through the first search area, looking for the NCB fingerprint.
1727          */
1728         dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1729
1730         for (stride = 0; stride < search_area_size_in_strides; stride++) {
1731                 /* Compute the page addresses. */
1732                 page = stride * rom_geo->stride_size_in_pages;
1733
1734                 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1735
1736                 /*
1737                  * Read the NCB fingerprint. The fingerprint is four bytes long
1738                  * and starts in the 12th byte of the page.
1739                  */
1740                 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1741                 chip->read_buf(mtd, buffer, strlen(fingerprint));
1742
1743                 /* Look for the fingerprint. */
1744                 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1745                         found_an_ncb_fingerprint = true;
1746                         break;
1747                 }
1748
1749         }
1750
1751         chip->select_chip(mtd, saved_chip_number);
1752
1753         if (found_an_ncb_fingerprint)
1754                 dev_dbg(dev, "\tFound a fingerprint\n");
1755         else
1756                 dev_dbg(dev, "\tNo fingerprint found\n");
1757         return found_an_ncb_fingerprint;
1758 }
1759
1760 /* Writes a transcription stamp. */
1761 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1762 {
1763         struct device *dev = this->dev;
1764         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1765         struct nand_chip *chip = &this->nand;
1766         struct mtd_info *mtd = nand_to_mtd(chip);
1767         unsigned int block_size_in_pages;
1768         unsigned int search_area_size_in_strides;
1769         unsigned int search_area_size_in_pages;
1770         unsigned int search_area_size_in_blocks;
1771         unsigned int block;
1772         unsigned int stride;
1773         unsigned int page;
1774         uint8_t      *buffer = chip->buffers->databuf;
1775         int saved_chip_number;
1776         int status;
1777
1778         /* Compute the search area geometry. */
1779         block_size_in_pages = mtd->erasesize / mtd->writesize;
1780         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1781         search_area_size_in_pages = search_area_size_in_strides *
1782                                         rom_geo->stride_size_in_pages;
1783         search_area_size_in_blocks =
1784                   (search_area_size_in_pages + (block_size_in_pages - 1)) /
1785                                     block_size_in_pages;
1786
1787         dev_dbg(dev, "Search Area Geometry :\n");
1788         dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1789         dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1790         dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1791
1792         /* Select chip 0. */
1793         saved_chip_number = this->current_chip;
1794         chip->select_chip(mtd, 0);
1795
1796         /* Loop over blocks in the first search area, erasing them. */
1797         dev_dbg(dev, "Erasing the search area...\n");
1798
1799         for (block = 0; block < search_area_size_in_blocks; block++) {
1800                 /* Compute the page address. */
1801                 page = block * block_size_in_pages;
1802
1803                 /* Erase this block. */
1804                 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1805                 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1806                 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1807
1808                 /* Wait for the erase to finish. */
1809                 status = chip->waitfunc(mtd, chip);
1810                 if (status & NAND_STATUS_FAIL)
1811                         dev_err(dev, "[%s] Erase failed.\n", __func__);
1812         }
1813
1814         /* Write the NCB fingerprint into the page buffer. */
1815         memset(buffer, ~0, mtd->writesize);
1816         memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1817
1818         /* Loop through the first search area, writing NCB fingerprints. */
1819         dev_dbg(dev, "Writing NCB fingerprints...\n");
1820         for (stride = 0; stride < search_area_size_in_strides; stride++) {
1821                 /* Compute the page addresses. */
1822                 page = stride * rom_geo->stride_size_in_pages;
1823
1824                 /* Write the first page of the current stride. */
1825                 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1826                 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1827                 chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
1828                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1829
1830                 /* Wait for the write to finish. */
1831                 status = chip->waitfunc(mtd, chip);
1832                 if (status & NAND_STATUS_FAIL)
1833                         dev_err(dev, "[%s] Write failed.\n", __func__);
1834         }
1835
1836         /* Deselect chip 0. */
1837         chip->select_chip(mtd, saved_chip_number);
1838         return 0;
1839 }
1840
1841 static int mx23_boot_init(struct gpmi_nand_data  *this)
1842 {
1843         struct device *dev = this->dev;
1844         struct nand_chip *chip = &this->nand;
1845         struct mtd_info *mtd = nand_to_mtd(chip);
1846         unsigned int block_count;
1847         unsigned int block;
1848         int     chipnr;
1849         int     page;
1850         loff_t  byte;
1851         uint8_t block_mark;
1852         int     ret = 0;
1853
1854         /*
1855          * If control arrives here, we can't use block mark swapping, which
1856          * means we're forced to use transcription. First, scan for the
1857          * transcription stamp. If we find it, then we don't have to do
1858          * anything -- the block marks are already transcribed.
1859          */
1860         if (mx23_check_transcription_stamp(this))
1861                 return 0;
1862
1863         /*
1864          * If control arrives here, we couldn't find a transcription stamp, so
1865          * so we presume the block marks are in the conventional location.
1866          */
1867         dev_dbg(dev, "Transcribing bad block marks...\n");
1868
1869         /* Compute the number of blocks in the entire medium. */
1870         block_count = chip->chipsize >> chip->phys_erase_shift;
1871
1872         /*
1873          * Loop over all the blocks in the medium, transcribing block marks as
1874          * we go.
1875          */
1876         for (block = 0; block < block_count; block++) {
1877                 /*
1878                  * Compute the chip, page and byte addresses for this block's
1879                  * conventional mark.
1880                  */
1881                 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1882                 page = block << (chip->phys_erase_shift - chip->page_shift);
1883                 byte = block <<  chip->phys_erase_shift;
1884
1885                 /* Send the command to read the conventional block mark. */
1886                 chip->select_chip(mtd, chipnr);
1887                 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1888                 block_mark = chip->read_byte(mtd);
1889                 chip->select_chip(mtd, -1);
1890
1891                 /*
1892                  * Check if the block is marked bad. If so, we need to mark it
1893                  * again, but this time the result will be a mark in the
1894                  * location where we transcribe block marks.
1895                  */
1896                 if (block_mark != 0xff) {
1897                         dev_dbg(dev, "Transcribing mark in block %u\n", block);
1898                         ret = chip->block_markbad(mtd, byte);
1899                         if (ret)
1900                                 dev_err(dev,
1901                                         "Failed to mark block bad with ret %d\n",
1902                                         ret);
1903                 }
1904         }
1905
1906         /* Write the stamp that indicates we've transcribed the block marks. */
1907         mx23_write_transcription_stamp(this);
1908         return 0;
1909 }
1910
1911 static int nand_boot_init(struct gpmi_nand_data  *this)
1912 {
1913         nand_boot_set_geometry(this);
1914
1915         /* This is ROM arch-specific initilization before the BBT scanning. */
1916         if (GPMI_IS_MX23(this))
1917                 return mx23_boot_init(this);
1918         return 0;
1919 }
1920
1921 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1922 {
1923         int ret;
1924
1925         /* Free the temporary DMA memory for reading ID. */
1926         gpmi_free_dma_buffer(this);
1927
1928         /* Set up the NFC geometry which is used by BCH. */
1929         ret = bch_set_geometry(this);
1930         if (ret) {
1931                 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1932                 return ret;
1933         }
1934
1935         /* Alloc the new DMA buffers according to the pagesize and oobsize */
1936         return gpmi_alloc_dma_buffer(this);
1937 }
1938
1939 static int gpmi_init_last(struct gpmi_nand_data *this)
1940 {
1941         struct nand_chip *chip = &this->nand;
1942         struct mtd_info *mtd = nand_to_mtd(chip);
1943         struct nand_ecc_ctrl *ecc = &chip->ecc;
1944         struct bch_geometry *bch_geo = &this->bch_geometry;
1945         int ret;
1946
1947         /* Set up the medium geometry */
1948         ret = gpmi_set_geometry(this);
1949         if (ret)
1950                 return ret;
1951
1952         /* Init the nand_ecc_ctrl{} */
1953         ecc->read_page  = gpmi_ecc_read_page;
1954         ecc->write_page = gpmi_ecc_write_page;
1955         ecc->read_oob   = gpmi_ecc_read_oob;
1956         ecc->write_oob  = gpmi_ecc_write_oob;
1957         ecc->read_page_raw = gpmi_ecc_read_page_raw;
1958         ecc->write_page_raw = gpmi_ecc_write_page_raw;
1959         ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1960         ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
1961         ecc->mode       = NAND_ECC_HW;
1962         ecc->size       = bch_geo->ecc_chunk_size;
1963         ecc->strength   = bch_geo->ecc_strength;
1964         mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
1965
1966         /*
1967          * We only enable the subpage read when:
1968          *  (1) the chip is imx6, and
1969          *  (2) the size of the ECC parity is byte aligned.
1970          */
1971         if (GPMI_IS_MX6(this) &&
1972                 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1973                 ecc->read_subpage = gpmi_ecc_read_subpage;
1974                 chip->options |= NAND_SUBPAGE_READ;
1975         }
1976
1977         /*
1978          * Can we enable the extra features? such as EDO or Sync mode.
1979          *
1980          * We do not check the return value now. That's means if we fail in
1981          * enable the extra features, we still can run in the normal way.
1982          */
1983         gpmi_extra_init(this);
1984
1985         return 0;
1986 }
1987
1988 static int gpmi_nand_init(struct gpmi_nand_data *this)
1989 {
1990         struct nand_chip *chip = &this->nand;
1991         struct mtd_info  *mtd = nand_to_mtd(chip);
1992         int ret;
1993
1994         /* init current chip */
1995         this->current_chip      = -1;
1996
1997         /* init the MTD data structures */
1998         mtd->name               = "gpmi-nand";
1999         mtd->dev.parent         = this->dev;
2000
2001         /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2002         nand_set_controller_data(chip, this);
2003         nand_set_flash_node(chip, this->pdev->dev.of_node);
2004         chip->select_chip       = gpmi_select_chip;
2005         chip->cmd_ctrl          = gpmi_cmd_ctrl;
2006         chip->dev_ready         = gpmi_dev_ready;
2007         chip->read_byte         = gpmi_read_byte;
2008         chip->read_buf          = gpmi_read_buf;
2009         chip->write_buf         = gpmi_write_buf;
2010         chip->badblock_pattern  = &gpmi_bbt_descr;
2011         chip->block_markbad     = gpmi_block_markbad;
2012         chip->options           |= NAND_NO_SUBPAGE_WRITE;
2013
2014         /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2015         this->swap_block_mark = !GPMI_IS_MX23(this);
2016
2017         /*
2018          * Allocate a temporary DMA buffer for reading ID in the
2019          * nand_scan_ident().
2020          */
2021         this->bch_geometry.payload_size = 1024;
2022         this->bch_geometry.auxiliary_size = 128;
2023         ret = gpmi_alloc_dma_buffer(this);
2024         if (ret)
2025                 goto err_out;
2026
2027         ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
2028         if (ret)
2029                 goto err_out;
2030
2031         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2032                 chip->bbt_options |= NAND_BBT_NO_OOB;
2033
2034                 if (of_property_read_bool(this->dev->of_node,
2035                                                 "fsl,no-blockmark-swap"))
2036                         this->swap_block_mark = false;
2037         }
2038         dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2039                 this->swap_block_mark ? "en" : "dis");
2040
2041         ret = gpmi_init_last(this);
2042         if (ret)
2043                 goto err_out;
2044
2045         chip->options |= NAND_SKIP_BBTSCAN;
2046         ret = nand_scan_tail(mtd);
2047         if (ret)
2048                 goto err_out;
2049
2050         ret = nand_boot_init(this);
2051         if (ret)
2052                 goto err_nand_cleanup;
2053         ret = chip->scan_bbt(mtd);
2054         if (ret)
2055                 goto err_nand_cleanup;
2056
2057         ret = mtd_device_register(mtd, NULL, 0);
2058         if (ret)
2059                 goto err_nand_cleanup;
2060         return 0;
2061
2062 err_nand_cleanup:
2063         nand_cleanup(chip);
2064 err_out:
2065         gpmi_free_dma_buffer(this);
2066         return ret;
2067 }
2068
2069 static const struct of_device_id gpmi_nand_id_table[] = {
2070         {
2071                 .compatible = "fsl,imx23-gpmi-nand",
2072                 .data = &gpmi_devdata_imx23,
2073         }, {
2074                 .compatible = "fsl,imx28-gpmi-nand",
2075                 .data = &gpmi_devdata_imx28,
2076         }, {
2077                 .compatible = "fsl,imx6q-gpmi-nand",
2078                 .data = &gpmi_devdata_imx6q,
2079         }, {
2080                 .compatible = "fsl,imx6sx-gpmi-nand",
2081                 .data = &gpmi_devdata_imx6sx,
2082         }, {
2083                 .compatible = "fsl,imx7d-gpmi-nand",
2084                 .data = &gpmi_devdata_imx7d,
2085         }, {}
2086 };
2087 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2088
2089 static int gpmi_nand_probe(struct platform_device *pdev)
2090 {
2091         struct gpmi_nand_data *this;
2092         const struct of_device_id *of_id;
2093         int ret;
2094
2095         this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2096         if (!this)
2097                 return -ENOMEM;
2098
2099         of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2100         if (of_id) {
2101                 this->devdata = of_id->data;
2102         } else {
2103                 dev_err(&pdev->dev, "Failed to find the right device id.\n");
2104                 return -ENODEV;
2105         }
2106
2107         platform_set_drvdata(pdev, this);
2108         this->pdev  = pdev;
2109         this->dev   = &pdev->dev;
2110
2111         ret = acquire_resources(this);
2112         if (ret)
2113                 goto exit_acquire_resources;
2114
2115         ret = init_hardware(this);
2116         if (ret)
2117                 goto exit_nfc_init;
2118
2119         ret = gpmi_nand_init(this);
2120         if (ret)
2121                 goto exit_nfc_init;
2122
2123         dev_info(this->dev, "driver registered.\n");
2124
2125         return 0;
2126
2127 exit_nfc_init:
2128         release_resources(this);
2129 exit_acquire_resources:
2130
2131         return ret;
2132 }
2133
2134 static int gpmi_nand_remove(struct platform_device *pdev)
2135 {
2136         struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2137
2138         nand_release(nand_to_mtd(&this->nand));
2139         gpmi_free_dma_buffer(this);
2140         release_resources(this);
2141         return 0;
2142 }
2143
2144 #ifdef CONFIG_PM_SLEEP
2145 static int gpmi_pm_suspend(struct device *dev)
2146 {
2147         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2148
2149         release_dma_channels(this);
2150         return 0;
2151 }
2152
2153 static int gpmi_pm_resume(struct device *dev)
2154 {
2155         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2156         int ret;
2157
2158         ret = acquire_dma_channels(this);
2159         if (ret < 0)
2160                 return ret;
2161
2162         /* re-init the GPMI registers */
2163         this->flags &= ~GPMI_TIMING_INIT_OK;
2164         ret = gpmi_init(this);
2165         if (ret) {
2166                 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2167                 return ret;
2168         }
2169
2170         /* re-init the BCH registers */
2171         ret = bch_set_geometry(this);
2172         if (ret) {
2173                 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2174                 return ret;
2175         }
2176
2177         /* re-init others */
2178         gpmi_extra_init(this);
2179
2180         return 0;
2181 }
2182 #endif /* CONFIG_PM_SLEEP */
2183
2184 static const struct dev_pm_ops gpmi_pm_ops = {
2185         SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2186 };
2187
2188 static struct platform_driver gpmi_nand_driver = {
2189         .driver = {
2190                 .name = "gpmi-nand",
2191                 .pm = &gpmi_pm_ops,
2192                 .of_match_table = gpmi_nand_id_table,
2193         },
2194         .probe   = gpmi_nand_probe,
2195         .remove  = gpmi_nand_remove,
2196 };
2197 module_platform_driver(gpmi_nand_driver);
2198
2199 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2200 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2201 MODULE_LICENSE("GPL");