]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/lpc32xx_mlc.c
mtd: nand: atmel: Add ->setup_data_interface() hooks
[karo-tx-linux.git] / drivers / mtd / nand / lpc32xx_mlc.c
1 /*
2  * Driver for NAND MLC Controller in LPC32xx
3  *
4  * Author: Roland Stigge <stigge@antcom.de>
5  *
6  * Copyright © 2011 WORK Microwave GmbH
7  * Copyright © 2011, 2012 Roland Stigge
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  *
20  * NAND Flash Controller Operation:
21  * - Read: Auto Decode
22  * - Write: Auto Encode
23  * - Tested Page Sizes: 2048, 4096
24  */
25
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_mlc.h>
40 #include <linux/io.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mtd/nand_ecc.h>
45
46 #define DRV_NAME "lpc32xx_mlc"
47
48 /**********************************************************************
49 * MLC NAND controller register offsets
50 **********************************************************************/
51
52 #define MLC_BUFF(x)                     (x + 0x00000)
53 #define MLC_DATA(x)                     (x + 0x08000)
54 #define MLC_CMD(x)                      (x + 0x10000)
55 #define MLC_ADDR(x)                     (x + 0x10004)
56 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
57 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
58 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
59 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
60 #define MLC_RPR(x)                      (x + 0x10018)
61 #define MLC_WPR(x)                      (x + 0x1001C)
62 #define MLC_RUBP(x)                     (x + 0x10020)
63 #define MLC_ROBP(x)                     (x + 0x10024)
64 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
65 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
66 #define MLC_ICR(x)                      (x + 0x10030)
67 #define MLC_TIME_REG(x)                 (x + 0x10034)
68 #define MLC_IRQ_MR(x)                   (x + 0x10038)
69 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
70 #define MLC_LOCK_PR(x)                  (x + 0x10044)
71 #define MLC_ISR(x)                      (x + 0x10048)
72 #define MLC_CEH(x)                      (x + 0x1004C)
73
74 /**********************************************************************
75 * MLC_CMD bit definitions
76 **********************************************************************/
77 #define MLCCMD_RESET                    0xFF
78
79 /**********************************************************************
80 * MLC_ICR bit definitions
81 **********************************************************************/
82 #define MLCICR_WPROT                    (1 << 3)
83 #define MLCICR_LARGEBLOCK               (1 << 2)
84 #define MLCICR_LONGADDR                 (1 << 1)
85 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
86
87 /**********************************************************************
88 * MLC_TIME_REG bit definitions
89 **********************************************************************/
90 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
91 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
92 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
93 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
94 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
95 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
96 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
97
98 /**********************************************************************
99 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
100 **********************************************************************/
101 #define MLCIRQ_NAND_READY               (1 << 5)
102 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
103 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
104 #define MLCIRQ_DECODE_ERROR             (1 << 2)
105 #define MLCIRQ_ECC_READY                (1 << 1)
106 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
107
108 /**********************************************************************
109 * MLC_LOCK_PR bit definitions
110 **********************************************************************/
111 #define MLCLOCKPR_MAGIC                 0xA25E
112
113 /**********************************************************************
114 * MLC_ISR bit definitions
115 **********************************************************************/
116 #define MLCISR_DECODER_FAILURE          (1 << 6)
117 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
118 #define MLCISR_ERRORS_DETECTED          (1 << 3)
119 #define MLCISR_ECC_READY                (1 << 2)
120 #define MLCISR_CONTROLLER_READY         (1 << 1)
121 #define MLCISR_NAND_READY               (1 << 0)
122
123 /**********************************************************************
124 * MLC_CEH bit definitions
125 **********************************************************************/
126 #define MLCCEH_NORMAL                   (1 << 0)
127
128 struct lpc32xx_nand_cfg_mlc {
129         uint32_t tcea_delay;
130         uint32_t busy_delay;
131         uint32_t nand_ta;
132         uint32_t rd_high;
133         uint32_t rd_low;
134         uint32_t wr_high;
135         uint32_t wr_low;
136         int wp_gpio;
137         struct mtd_partition *parts;
138         unsigned num_parts;
139 };
140
141 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
142                                  struct mtd_oob_region *oobregion)
143 {
144         struct nand_chip *nand_chip = mtd_to_nand(mtd);
145
146         if (section >= nand_chip->ecc.steps)
147                 return -ERANGE;
148
149         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
150         oobregion->length = nand_chip->ecc.bytes;
151
152         return 0;
153 }
154
155 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
156                                   struct mtd_oob_region *oobregion)
157 {
158         struct nand_chip *nand_chip = mtd_to_nand(mtd);
159
160         if (section >= nand_chip->ecc.steps)
161                 return -ERANGE;
162
163         oobregion->offset = 16 * section;
164         oobregion->length = 16 - nand_chip->ecc.bytes;
165
166         return 0;
167 }
168
169 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
170         .ecc = lpc32xx_ooblayout_ecc,
171         .free = lpc32xx_ooblayout_free,
172 };
173
174 static struct nand_bbt_descr lpc32xx_nand_bbt = {
175         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
176                    NAND_BBT_WRITE,
177         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
178 };
179
180 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
181         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
182                    NAND_BBT_WRITE,
183         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
184 };
185
186 struct lpc32xx_nand_host {
187         struct nand_chip        nand_chip;
188         struct lpc32xx_mlc_platform_data *pdata;
189         struct clk              *clk;
190         void __iomem            *io_base;
191         int                     irq;
192         struct lpc32xx_nand_cfg_mlc     *ncfg;
193         struct completion       comp_nand;
194         struct completion       comp_controller;
195         uint32_t llptr;
196         /*
197          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
198          */
199         dma_addr_t              oob_buf_phy;
200         /*
201          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
202          */
203         uint8_t                 *oob_buf;
204         /* Physical address of DMA base address */
205         dma_addr_t              io_base_phy;
206
207         struct completion       comp_dma;
208         struct dma_chan         *dma_chan;
209         struct dma_slave_config dma_slave_config;
210         struct scatterlist      sgl;
211         uint8_t                 *dma_buf;
212         uint8_t                 *dummy_buf;
213         int                     mlcsubpages; /* number of 512bytes-subpages */
214 };
215
216 /*
217  * Activate/Deactivate DMA Operation:
218  *
219  * Using the PL080 DMA Controller for transferring the 512 byte subpages
220  * instead of doing readl() / writel() in a loop slows it down significantly.
221  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
222  *
223  * - readl() of 128 x 32 bits in a loop: ~20us
224  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
225  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
226  *
227  * This applies to the transfer itself. In the DMA case: only the
228  * wait_for_completion() (DMA setup _not_ included).
229  *
230  * Note that the 512 bytes subpage transfer is done directly from/to a
231  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
232  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
233  * controller transferring data between its internal buffer to/from the NAND
234  * chip.)
235  *
236  * Therefore, using the PL080 DMA is disabled by default, for now.
237  *
238  */
239 static int use_dma;
240
241 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
242 {
243         uint32_t clkrate, tmp;
244
245         /* Reset MLC controller */
246         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
247         udelay(1000);
248
249         /* Get base clock for MLC block */
250         clkrate = clk_get_rate(host->clk);
251         if (clkrate == 0)
252                 clkrate = 104000000;
253
254         /* Unlock MLC_ICR
255          * (among others, will be locked again automatically) */
256         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
257
258         /* Configure MLC Controller: Large Block, 5 Byte Address */
259         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
260         writel(tmp, MLC_ICR(host->io_base));
261
262         /* Unlock MLC_TIME_REG
263          * (among others, will be locked again automatically) */
264         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
265
266         /* Compute clock setup values, see LPC and NAND manual */
267         tmp = 0;
268         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
269         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
270         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
271         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
272         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
273         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
274         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
275         writel(tmp, MLC_TIME_REG(host->io_base));
276
277         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
278         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
279                         MLC_IRQ_MR(host->io_base));
280
281         /* Normal nCE operation: nCE controlled by controller */
282         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
283 }
284
285 /*
286  * Hardware specific access to control lines
287  */
288 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
289                                   unsigned int ctrl)
290 {
291         struct nand_chip *nand_chip = mtd_to_nand(mtd);
292         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
293
294         if (cmd != NAND_CMD_NONE) {
295                 if (ctrl & NAND_CLE)
296                         writel(cmd, MLC_CMD(host->io_base));
297                 else
298                         writel(cmd, MLC_ADDR(host->io_base));
299         }
300 }
301
302 /*
303  * Read Device Ready (NAND device _and_ controller ready)
304  */
305 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
306 {
307         struct nand_chip *nand_chip = mtd_to_nand(mtd);
308         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
309
310         if ((readb(MLC_ISR(host->io_base)) &
311              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
312             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
313                 return  1;
314
315         return 0;
316 }
317
318 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
319 {
320         uint8_t sr;
321
322         /* Clear interrupt flag by reading status */
323         sr = readb(MLC_IRQ_SR(host->io_base));
324         if (sr & MLCIRQ_NAND_READY)
325                 complete(&host->comp_nand);
326         if (sr & MLCIRQ_CONTROLLER_READY)
327                 complete(&host->comp_controller);
328
329         return IRQ_HANDLED;
330 }
331
332 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
333 {
334         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
335
336         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
337                 goto exit;
338
339         wait_for_completion(&host->comp_nand);
340
341         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
342                 /* Seems to be delayed sometimes by controller */
343                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
344                 cpu_relax();
345         }
346
347 exit:
348         return NAND_STATUS_READY;
349 }
350
351 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
352                                        struct nand_chip *chip)
353 {
354         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
355
356         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
357                 goto exit;
358
359         wait_for_completion(&host->comp_controller);
360
361         while (!(readb(MLC_ISR(host->io_base)) &
362                  MLCISR_CONTROLLER_READY)) {
363                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
364                 cpu_relax();
365         }
366
367 exit:
368         return NAND_STATUS_READY;
369 }
370
371 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
372 {
373         lpc32xx_waitfunc_nand(mtd, chip);
374         lpc32xx_waitfunc_controller(mtd, chip);
375
376         return NAND_STATUS_READY;
377 }
378
379 /*
380  * Enable NAND write protect
381  */
382 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
383 {
384         if (gpio_is_valid(host->ncfg->wp_gpio))
385                 gpio_set_value(host->ncfg->wp_gpio, 0);
386 }
387
388 /*
389  * Disable NAND write protect
390  */
391 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
392 {
393         if (gpio_is_valid(host->ncfg->wp_gpio))
394                 gpio_set_value(host->ncfg->wp_gpio, 1);
395 }
396
397 static void lpc32xx_dma_complete_func(void *completion)
398 {
399         complete(completion);
400 }
401
402 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
403                             enum dma_transfer_direction dir)
404 {
405         struct nand_chip *chip = mtd_to_nand(mtd);
406         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
407         struct dma_async_tx_descriptor *desc;
408         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
409         int res;
410
411         sg_init_one(&host->sgl, mem, len);
412
413         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
414                          DMA_BIDIRECTIONAL);
415         if (res != 1) {
416                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
417                 return -ENXIO;
418         }
419         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
420                                        flags);
421         if (!desc) {
422                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
423                 goto out1;
424         }
425
426         init_completion(&host->comp_dma);
427         desc->callback = lpc32xx_dma_complete_func;
428         desc->callback_param = &host->comp_dma;
429
430         dmaengine_submit(desc);
431         dma_async_issue_pending(host->dma_chan);
432
433         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
434
435         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
436                      DMA_BIDIRECTIONAL);
437         return 0;
438 out1:
439         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
440                      DMA_BIDIRECTIONAL);
441         return -ENXIO;
442 }
443
444 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
445                              uint8_t *buf, int oob_required, int page)
446 {
447         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
448         int i, j;
449         uint8_t *oobbuf = chip->oob_poi;
450         uint32_t mlc_isr;
451         int res;
452         uint8_t *dma_buf;
453         bool dma_mapped;
454
455         if ((void *)buf <= high_memory) {
456                 dma_buf = buf;
457                 dma_mapped = true;
458         } else {
459                 dma_buf = host->dma_buf;
460                 dma_mapped = false;
461         }
462
463         /* Writing Command and Address */
464         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
465
466         /* For all sub-pages */
467         for (i = 0; i < host->mlcsubpages; i++) {
468                 /* Start Auto Decode Command */
469                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
470
471                 /* Wait for Controller Ready */
472                 lpc32xx_waitfunc_controller(mtd, chip);
473
474                 /* Check ECC Error status */
475                 mlc_isr = readl(MLC_ISR(host->io_base));
476                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
477                         mtd->ecc_stats.failed++;
478                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
479                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
480                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
481                 }
482
483                 /* Read 512 + 16 Bytes */
484                 if (use_dma) {
485                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
486                                                DMA_DEV_TO_MEM);
487                         if (res)
488                                 return res;
489                 } else {
490                         for (j = 0; j < (512 >> 2); j++) {
491                                 *((uint32_t *)(buf)) =
492                                         readl(MLC_BUFF(host->io_base));
493                                 buf += 4;
494                         }
495                 }
496                 for (j = 0; j < (16 >> 2); j++) {
497                         *((uint32_t *)(oobbuf)) =
498                                 readl(MLC_BUFF(host->io_base));
499                         oobbuf += 4;
500                 }
501         }
502
503         if (use_dma && !dma_mapped)
504                 memcpy(buf, dma_buf, mtd->writesize);
505
506         return 0;
507 }
508
509 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
510                                        struct nand_chip *chip,
511                                        const uint8_t *buf, int oob_required,
512                                        int page)
513 {
514         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
515         const uint8_t *oobbuf = chip->oob_poi;
516         uint8_t *dma_buf = (uint8_t *)buf;
517         int res;
518         int i, j;
519
520         if (use_dma && (void *)buf >= high_memory) {
521                 dma_buf = host->dma_buf;
522                 memcpy(dma_buf, buf, mtd->writesize);
523         }
524
525         for (i = 0; i < host->mlcsubpages; i++) {
526                 /* Start Encode */
527                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
528
529                 /* Write 512 + 6 Bytes to Buffer */
530                 if (use_dma) {
531                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
532                                                DMA_MEM_TO_DEV);
533                         if (res)
534                                 return res;
535                 } else {
536                         for (j = 0; j < (512 >> 2); j++) {
537                                 writel(*((uint32_t *)(buf)),
538                                        MLC_BUFF(host->io_base));
539                                 buf += 4;
540                         }
541                 }
542                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
543                 oobbuf += 4;
544                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
545                 oobbuf += 12;
546
547                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
548                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
549
550                 /* Wait for Controller Ready */
551                 lpc32xx_waitfunc_controller(mtd, chip);
552         }
553         return 0;
554 }
555
556 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
557                             int page)
558 {
559         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
560
561         /* Read whole page - necessary with MLC controller! */
562         lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
563
564         return 0;
565 }
566
567 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
568                               int page)
569 {
570         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
571         return 0;
572 }
573
574 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
575 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
576 {
577         /* Always enabled! */
578 }
579
580 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
581 {
582         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
583         dma_cap_mask_t mask;
584
585         if (!host->pdata || !host->pdata->dma_filter) {
586                 dev_err(mtd->dev.parent, "no DMA platform data\n");
587                 return -ENOENT;
588         }
589
590         dma_cap_zero(mask);
591         dma_cap_set(DMA_SLAVE, mask);
592         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
593                                              "nand-mlc");
594         if (!host->dma_chan) {
595                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
596                 return -EBUSY;
597         }
598
599         /*
600          * Set direction to a sensible value even if the dmaengine driver
601          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
602          * driver criticizes it as "alien transfer direction".
603          */
604         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
605         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
607         host->dma_slave_config.src_maxburst = 128;
608         host->dma_slave_config.dst_maxburst = 128;
609         /* DMA controller does flow control: */
610         host->dma_slave_config.device_fc = false;
611         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
612         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
613         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
614                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
615                 goto out1;
616         }
617
618         return 0;
619 out1:
620         dma_release_channel(host->dma_chan);
621         return -ENXIO;
622 }
623
624 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
625 {
626         struct lpc32xx_nand_cfg_mlc *ncfg;
627         struct device_node *np = dev->of_node;
628
629         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
630         if (!ncfg)
631                 return NULL;
632
633         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
634         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
635         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
636         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
637         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
638         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
639         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
640
641         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
642             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
643             !ncfg->wr_low) {
644                 dev_err(dev, "chip parameters not specified correctly\n");
645                 return NULL;
646         }
647
648         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
649
650         return ncfg;
651 }
652
653 /*
654  * Probe for NAND controller
655  */
656 static int lpc32xx_nand_probe(struct platform_device *pdev)
657 {
658         struct lpc32xx_nand_host *host;
659         struct mtd_info *mtd;
660         struct nand_chip *nand_chip;
661         struct resource *rc;
662         int res;
663
664         /* Allocate memory for the device structure (and zero it) */
665         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
666         if (!host)
667                 return -ENOMEM;
668
669         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
670         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
671         if (IS_ERR(host->io_base))
672                 return PTR_ERR(host->io_base);
673         
674         host->io_base_phy = rc->start;
675
676         nand_chip = &host->nand_chip;
677         mtd = nand_to_mtd(nand_chip);
678         if (pdev->dev.of_node)
679                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
680         if (!host->ncfg) {
681                 dev_err(&pdev->dev,
682                         "Missing or bad NAND config from device tree\n");
683                 return -ENOENT;
684         }
685         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
686                 return -EPROBE_DEFER;
687         if (gpio_is_valid(host->ncfg->wp_gpio) &&
688                         gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
689                 dev_err(&pdev->dev, "GPIO not available\n");
690                 return -EBUSY;
691         }
692         lpc32xx_wp_disable(host);
693
694         host->pdata = dev_get_platdata(&pdev->dev);
695
696         /* link the private data structures */
697         nand_set_controller_data(nand_chip, host);
698         nand_set_flash_node(nand_chip, pdev->dev.of_node);
699         mtd->dev.parent = &pdev->dev;
700
701         /* Get NAND clock */
702         host->clk = clk_get(&pdev->dev, NULL);
703         if (IS_ERR(host->clk)) {
704                 dev_err(&pdev->dev, "Clock initialization failure\n");
705                 res = -ENOENT;
706                 goto err_exit1;
707         }
708         clk_prepare_enable(host->clk);
709
710         nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
711         nand_chip->dev_ready = lpc32xx_nand_device_ready;
712         nand_chip->chip_delay = 25; /* us */
713         nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
714         nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
715
716         /* Init NAND controller */
717         lpc32xx_nand_setup(host);
718
719         platform_set_drvdata(pdev, host);
720
721         /* Initialize function pointers */
722         nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
723         nand_chip->ecc.read_page_raw = lpc32xx_read_page;
724         nand_chip->ecc.read_page = lpc32xx_read_page;
725         nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
726         nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
727         nand_chip->ecc.write_oob = lpc32xx_write_oob;
728         nand_chip->ecc.read_oob = lpc32xx_read_oob;
729         nand_chip->ecc.strength = 4;
730         nand_chip->ecc.bytes = 10;
731         nand_chip->waitfunc = lpc32xx_waitfunc;
732
733         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
734         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
735         nand_chip->bbt_td = &lpc32xx_nand_bbt;
736         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
737
738         if (use_dma) {
739                 res = lpc32xx_dma_setup(host);
740                 if (res) {
741                         res = -EIO;
742                         goto err_exit2;
743                 }
744         }
745
746         /*
747          * Scan to find existance of the device and
748          * Get the type of NAND device SMALL block or LARGE block
749          */
750         res = nand_scan_ident(mtd, 1, NULL);
751         if (res)
752                 goto err_exit3;
753
754         host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
755         if (!host->dma_buf) {
756                 res = -ENOMEM;
757                 goto err_exit3;
758         }
759
760         host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
761         if (!host->dummy_buf) {
762                 res = -ENOMEM;
763                 goto err_exit3;
764         }
765
766         nand_chip->ecc.mode = NAND_ECC_HW;
767         nand_chip->ecc.size = 512;
768         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
769         host->mlcsubpages = mtd->writesize / 512;
770
771         /* initially clear interrupt status */
772         readb(MLC_IRQ_SR(host->io_base));
773
774         init_completion(&host->comp_nand);
775         init_completion(&host->comp_controller);
776
777         host->irq = platform_get_irq(pdev, 0);
778         if (host->irq < 0) {
779                 dev_err(&pdev->dev, "failed to get platform irq\n");
780                 res = -EINVAL;
781                 goto err_exit3;
782         }
783
784         if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
785                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
786                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787                 res = -ENXIO;
788                 goto err_exit3;
789         }
790
791         /*
792          * Fills out all the uninitialized function pointers with the defaults
793          * And scans for a bad block table if appropriate.
794          */
795         res = nand_scan_tail(mtd);
796         if (res)
797                 goto err_exit4;
798
799         mtd->name = DRV_NAME;
800
801         res = mtd_device_register(mtd, host->ncfg->parts,
802                                   host->ncfg->num_parts);
803         if (!res)
804                 return res;
805
806         nand_release(mtd);
807
808 err_exit4:
809         free_irq(host->irq, host);
810 err_exit3:
811         if (use_dma)
812                 dma_release_channel(host->dma_chan);
813 err_exit2:
814         clk_disable_unprepare(host->clk);
815         clk_put(host->clk);
816 err_exit1:
817         lpc32xx_wp_enable(host);
818         gpio_free(host->ncfg->wp_gpio);
819
820         return res;
821 }
822
823 /*
824  * Remove NAND device
825  */
826 static int lpc32xx_nand_remove(struct platform_device *pdev)
827 {
828         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
829         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
830
831         nand_release(mtd);
832         free_irq(host->irq, host);
833         if (use_dma)
834                 dma_release_channel(host->dma_chan);
835
836         clk_disable_unprepare(host->clk);
837         clk_put(host->clk);
838
839         lpc32xx_wp_enable(host);
840         gpio_free(host->ncfg->wp_gpio);
841
842         return 0;
843 }
844
845 #ifdef CONFIG_PM
846 static int lpc32xx_nand_resume(struct platform_device *pdev)
847 {
848         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
849
850         /* Re-enable NAND clock */
851         clk_prepare_enable(host->clk);
852
853         /* Fresh init of NAND controller */
854         lpc32xx_nand_setup(host);
855
856         /* Disable write protect */
857         lpc32xx_wp_disable(host);
858
859         return 0;
860 }
861
862 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
863 {
864         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
865
866         /* Enable write protect for safety */
867         lpc32xx_wp_enable(host);
868
869         /* Disable clock */
870         clk_disable_unprepare(host->clk);
871         return 0;
872 }
873
874 #else
875 #define lpc32xx_nand_resume NULL
876 #define lpc32xx_nand_suspend NULL
877 #endif
878
879 static const struct of_device_id lpc32xx_nand_match[] = {
880         { .compatible = "nxp,lpc3220-mlc" },
881         { /* sentinel */ },
882 };
883 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
884
885 static struct platform_driver lpc32xx_nand_driver = {
886         .probe          = lpc32xx_nand_probe,
887         .remove         = lpc32xx_nand_remove,
888         .resume         = lpc32xx_nand_resume,
889         .suspend        = lpc32xx_nand_suspend,
890         .driver         = {
891                 .name   = DRV_NAME,
892                 .of_match_table = lpc32xx_nand_match,
893         },
894 };
895
896 module_platform_driver(lpc32xx_nand_driver);
897
898 MODULE_LICENSE("GPL");
899 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
900 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");