]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/agere/et131x.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE     60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST      128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT       (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER         0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS          0xA4
150 #define ET1310_PCI_EEPROM_STATUS        0xB2
151 #define ET1310_PCI_ACK_NACK             0xC0
152 #define ET1310_PCI_REPLAY               0xC2
153 #define ET1310_PCI_L0L1LATENCY          0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168
169 /* RX defines */
170 #define FBR_CHUNKS              32
171 #define MAX_DESC_PER_RING_RX    1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK      40
175 #define NIC_DEFAULT_NUM_RFD     1024
176 #define NUM_FBRS                2
177
178 #define MAX_PACKETS_HANDLED     256
179
180 #define ALCATEL_MULTICAST_PKT   0x01000000
181 #define ALCATEL_BROADCAST_PKT   0x02000000
182
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185         u32 addr_lo;
186         u32 addr_hi;
187         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
188 };
189
190 /* Packet Status Ring Descriptors
191  *
192  * Word 0:
193  *
194  * top 16 bits are from the Alcatel Status Word as enumerated in
195  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196  *
197  * 0: hp                        hash pass
198  * 1: ipa                       IP checksum assist
199  * 2: ipp                       IP checksum pass
200  * 3: tcpa                      TCP checksum assist
201  * 4: tcpp                      TCP checksum pass
202  * 5: wol                       WOL Event
203  * 6: rxmac_error               RXMAC Error Indicator
204  * 7: drop                      Drop packet
205  * 8: ft                        Frame Truncated
206  * 9: jp                        Jumbo Packet
207  * 10: vp                       VLAN Packet
208  * 11-15: unused
209  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
210  * 17: asw_RX_DV_event          short receive event detected
211  * 18: asw_false_carrier_event  bad carrier since last good packet
212  * 19: asw_code_err             one or more nibbles signalled as errors
213  * 20: asw_CRC_err              CRC error
214  * 21: asw_len_chk_err          frame length field incorrect
215  * 22: asw_too_long             frame length > 1518 bytes
216  * 23: asw_OK                   valid CRC + no code error
217  * 24: asw_multicast            has a multicast address
218  * 25: asw_broadcast            has a broadcast address
219  * 26: asw_dribble_nibble       spurious bits after EOP
220  * 27: asw_control_frame        is a control frame
221  * 28: asw_pause_frame          is a pause frame
222  * 29: asw_unsupported_op       unsupported OP code
223  * 30: asw_VLAN_tag             VLAN tag detected
224  * 31: asw_long_evt             Rx long event
225  *
226  * Word 1:
227  * 0-15: length                 length in bytes
228  * 16-25: bi                    Buffer Index
229  * 26-27: ri                    Ring Index
230  * 28-31: reserved
231  */
232 struct pkt_stat_desc {
233         u32 word0;
234         u32 word1;
235 };
236
237 /* Typedefs for the RX DMA status word */
238
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
241  * which contains the Free Buffer ring 0 and 1 available offset.
242  *
243  * bit 0-9 FBR1 offset
244  * bit 10 Wrap flag for FBR1
245  * bit 16-25 FBR0 offset
246  * bit 26 Wrap flag for FBR0
247  */
248
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
251  * which contains the Packet Status Ring available offset.
252  *
253  * bit 0-15 reserved
254  * bit 16-27 PSRoffset
255  * bit 28 PSRwrap
256  * bit 29-31 unused
257  */
258
259 /* struct rx_status_block is a structure representing the status of the Rx
260  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261  */
262 struct rx_status_block {
263         u32 word0;
264         u32 word1;
265 };
266
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268  * and state.
269  */
270 struct fbr_lookup {
271         void            *virt[MAX_DESC_PER_RING_RX];
272         u32              bus_high[MAX_DESC_PER_RING_RX];
273         u32              bus_low[MAX_DESC_PER_RING_RX];
274         void            *ring_virtaddr;
275         dma_addr_t       ring_physaddr;
276         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278         u32              local_full;
279         u32              num_entries;
280         dma_addr_t       buffsize;
281 };
282
283 /* struct rx_ring is the structure representing the adaptor's local
284  * reference(s) to the rings
285  */
286 struct rx_ring {
287         struct fbr_lookup *fbr[NUM_FBRS];
288         void *ps_ring_virtaddr;
289         dma_addr_t ps_ring_physaddr;
290         u32 local_psr_full;
291         u32 psr_entries;
292
293         struct rx_status_block *rx_status_block;
294         dma_addr_t rx_status_bus;
295
296         struct list_head recv_list;
297         u32 num_ready_recv;
298
299         u32 num_rfd;
300
301         bool unfinished_receives;
302 };
303
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306  *
307  * 0-15: length of packet
308  * 16-27: VLAN tag
309  * 28: VLAN CFI
310  * 29-31: VLAN priority
311  *
312  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313  *
314  * 0: last packet in the sequence
315  * 1: first packet in the sequence
316  * 2: interrupt the processor when this pkt sent
317  * 3: Control word - no packet data
318  * 4: Issue half-duplex backpressure : XON/XOFF
319  * 5: send pause frame
320  * 6: Tx frame has error
321  * 7: append CRC
322  * 8: MAC override
323  * 9: pad packet
324  * 10: Packet is a Huge packet
325  * 11: append VLAN tag
326  * 12: IP checksum assist
327  * 13: TCP checksum assist
328  * 14: UDP checksum assist
329  */
330 #define TXDESC_FLAG_LASTPKT             0x0001
331 #define TXDESC_FLAG_FIRSTPKT            0x0002
332 #define TXDESC_FLAG_INTPROC             0x0004
333
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336         u32 addr_hi;
337         u32 addr_lo;
338         u32 len_vlan;   /* control words how to xmit the */
339         u32 flags;      /* data (detailed above) */
340 };
341
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343  * by 0x101c / 0x1020. This is a DMA10 type
344  */
345
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348         struct tcb *next;       /* Next entry in ring */
349         u32 count;              /* Used to spot stuck/lost packets */
350         u32 stale;              /* Used to spot stuck/lost packets */
351         struct sk_buff *skb;    /* Network skb we are tied to */
352         u32 index;              /* Ring indexes */
353         u32 index_start;
354 };
355
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358         /* TCB (Transmit Control Block) memory and lists */
359         struct tcb *tcb_ring;
360
361         /* List of TCBs that are ready to be used */
362         struct tcb *tcb_qhead;
363         struct tcb *tcb_qtail;
364
365         /* list of TCBs that are currently being sent. */
366         struct tcb *send_head;
367         struct tcb *send_tail;
368         int used;
369
370         /* The actual descriptor ring */
371         struct tx_desc *tx_desc_ring;
372         dma_addr_t tx_desc_ring_pa;
373
374         /* send_idx indicates where we last wrote to in the descriptor ring. */
375         u32 send_idx;
376
377         /* The location of the write-back status block */
378         u32 *tx_status;
379         dma_addr_t tx_status_pa;
380
381         /* Packets since the last IRQ: used for interrupt coalescing */
382         int since_irq;
383 };
384
385 /* Do not change these values: if changed, then change also in respective
386  * TXdma and Rxdma engines
387  */
388 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
389 #define NUM_TCB                      64
390
391 /* These values are all superseded by registry entries to facilitate tuning.
392  * Once the desired performance has been achieved, the optimal registry values
393  * should be re-populated to these #defines:
394  */
395 #define TX_ERROR_PERIOD             1000
396
397 #define LO_MARK_PERCENT_FOR_PSR     15
398 #define LO_MARK_PERCENT_FOR_RX      15
399
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402         struct list_head list_node;
403         struct sk_buff *skb;
404         u32 len;        /* total size of receive frame */
405         u16 bufferindex;
406         u8 ringindex;
407 };
408
409 /* Flow Control */
410 #define FLOW_BOTH       0
411 #define FLOW_TXONLY     1
412 #define FLOW_RXONLY     2
413 #define FLOW_NONE       3
414
415 /* Struct to define some device statistics */
416 struct ce_stats {
417         u32             multicast_pkts_rcvd;
418         u32             rcvd_pkts_dropped;
419
420         u32             tx_underflows;
421         u32             tx_collisions;
422         u32             tx_excessive_collisions;
423         u32             tx_first_collisions;
424         u32             tx_late_collisions;
425         u32             tx_max_pkt_errs;
426         u32             tx_deferred;
427
428         u32             rx_overflows;
429         u32             rx_length_errs;
430         u32             rx_align_errs;
431         u32             rx_crc_errs;
432         u32             rx_code_violations;
433         u32             rx_other_errs;
434
435         u32             interrupt_status;
436 };
437
438 /* The private adapter structure */
439 struct et131x_adapter {
440         struct net_device *netdev;
441         struct pci_dev *pdev;
442         struct mii_bus *mii_bus;
443         struct phy_device *phydev;
444         struct napi_struct napi;
445
446         /* Flags that indicate current state of the adapter */
447         u32 flags;
448
449         /* local link state, to determine if a state change has occurred */
450         int link;
451
452         /* Configuration  */
453         u8 rom_addr[ETH_ALEN];
454         u8 addr[ETH_ALEN];
455         bool has_eeprom;
456         u8 eeprom_data[2];
457
458         spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
459         spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
460         spinlock_t rcv_lock; /* protects the rx_ring receive list */
461
462         /* Packet Filter and look ahead size */
463         u32 packet_filter;
464
465         /* multicast list */
466         u32 multicast_addr_count;
467         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
468
469         /* Pointer to the device's PCI register space */
470         struct address_map __iomem *regs;
471
472         /* Registry parameters */
473         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
474         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
475
476         /* Derived from the registry: */
477         u8 flow;                /* flow control validated by the far-end */
478
479         /* Minimize init-time */
480         struct timer_list error_timer;
481
482         /* variable putting the phy into coma mode when boot up with no cable
483          * plugged in after 5 seconds
484          */
485         u8 boot_coma;
486
487         /* Tx Memory Variables */
488         struct tx_ring tx_ring;
489
490         /* Rx Memory Variables */
491         struct rx_ring rx_ring;
492
493         struct ce_stats stats;
494 };
495
496 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
497 {
498         u32 reg;
499         int i;
500
501         /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
502          *    bits 7,1:0 both equal to 1, at least once after reset.
503          *    Subsequent operations need only to check that bits 1:0 are equal
504          *    to 1 prior to starting a single byte read/write
505          */
506         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
507                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
508                         return -EIO;
509
510                 /* I2C idle and Phy Queue Avail both true */
511                 if ((reg & 0x3000) == 0x3000) {
512                         if (status)
513                                 *status = reg;
514                         return reg & 0xFF;
515                 }
516         }
517         return -ETIMEDOUT;
518 }
519
520 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
521 {
522         struct pci_dev *pdev = adapter->pdev;
523         int index = 0;
524         int retries;
525         int err = 0;
526         int writeok = 0;
527         u32 status;
528         u32 val = 0;
529
530         /* For an EEPROM, an I2C single byte write is defined as a START
531          * condition followed by the device address, EEPROM address, one byte
532          * of data and a STOP condition.  The STOP condition will trigger the
533          * EEPROM's internally timed write cycle to the nonvolatile memory.
534          * All inputs are disabled during this write cycle and the EEPROM will
535          * not respond to any access until the internal write is complete.
536          */
537         err = eeprom_wait_ready(pdev, NULL);
538         if (err < 0)
539                 return err;
540
541          /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
542           *    and bits 1:0 both =0.  Bit 5 should be set according to the
543           *    type of EEPROM being accessed (1=two byte addressing, 0=one
544           *    byte addressing).
545           */
546         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
547                                   LBCIF_CONTROL_LBCIF_ENABLE |
548                                         LBCIF_CONTROL_I2C_WRITE))
549                 return -EIO;
550
551         /* Prepare EEPROM address for Step 3 */
552         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
553                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
554                         break;
555                 /* Write the data to the LBCIF Data Register (the I2C write
556                  * will begin).
557                  */
558                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
559                         break;
560                 /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
561                  * 1:0 are both equal to 1, the I2C write has completed and the
562                  * internal write cycle of the EEPROM is about to start.
563                  * (bits 1:0 = 01 is a legal state while waiting from both
564                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
565                  * something is broken).
566                  */
567                 err = eeprom_wait_ready(pdev, &status);
568                 if (err < 0)
569                         return 0;
570
571                 /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
572                  * an error has occurred.Don't break here if we are revision
573                  * 1, this is so we do a blind write for load bug.
574                  */
575                 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
576                     adapter->pdev->revision == 0)
577                         break;
578
579                 /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
580                  * ACK error has occurred on the address phase of the write.
581                  * This could be due to an actual hardware failure or the
582                  * EEPROM may still be in its internal write cycle from a
583                  * previous write. This write operation was ignored and must be
584                   *repeated later.
585                  */
586                 if (status & LBCIF_STATUS_ACK_ERROR) {
587                         /* This could be due to an actual hardware failure
588                          * or the EEPROM may still be in its internal write
589                          * cycle from a previous write. This write operation
590                          * was ignored and must be repeated later.
591                          */
592                         udelay(10);
593                         continue;
594                 }
595
596                 writeok = 1;
597                 break;
598         }
599
600         udelay(10);
601
602         while (1) {
603                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
604                                           LBCIF_CONTROL_LBCIF_ENABLE))
605                         writeok = 0;
606
607                 /* Do read until internal ACK_ERROR goes away meaning write
608                  * completed
609                  */
610                 do {
611                         pci_write_config_dword(pdev,
612                                                LBCIF_ADDRESS_REGISTER,
613                                                addr);
614                         do {
615                                 pci_read_config_dword(pdev,
616                                                       LBCIF_DATA_REGISTER,
617                                                       &val);
618                         } while ((val & 0x00010000) == 0);
619                 } while (val & 0x00040000);
620
621                 if ((val & 0xFF00) != 0xC000 || index == 10000)
622                         break;
623                 index++;
624         }
625         return writeok ? 0 : -EIO;
626 }
627
628 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
629 {
630         struct pci_dev *pdev = adapter->pdev;
631         int err;
632         u32 status;
633
634         /* A single byte read is similar to the single byte write, with the
635          * exception of the data flow:
636          */
637         err = eeprom_wait_ready(pdev, NULL);
638         if (err < 0)
639                 return err;
640         /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
641          * and bits 1:0 both =0.  Bit 5 should be set according to the type
642          * of EEPROM being accessed (1=two byte addressing, 0=one byte
643          * addressing).
644          */
645         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
646                                   LBCIF_CONTROL_LBCIF_ENABLE))
647                 return -EIO;
648         /* Write the address to the LBCIF Address Register (I2C read will
649          * begin).
650          */
651         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
652                 return -EIO;
653         /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
654          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
655          * has occurred).
656          */
657         err = eeprom_wait_ready(pdev, &status);
658         if (err < 0)
659                 return err;
660         /* Regardless of error status, read data byte from LBCIF Data
661          * Register.
662          */
663         *pdata = err;
664
665         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
666 }
667
668 static int et131x_init_eeprom(struct et131x_adapter *adapter)
669 {
670         struct pci_dev *pdev = adapter->pdev;
671         u8 eestatus;
672
673         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
674
675         /* THIS IS A WORKAROUND:
676          * I need to call this function twice to get my card in a
677          * LG M1 Express Dual running. I tried also a msleep before this
678          * function, because I thought there could be some time conditions
679          * but it didn't work. Call the whole function twice also work.
680          */
681         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
682                 dev_err(&pdev->dev,
683                         "Could not read PCI config space for EEPROM Status\n");
684                 return -EIO;
685         }
686
687         /* Determine if the error(s) we care about are present. If they are
688          * present we need to fail.
689          */
690         if (eestatus & 0x4C) {
691                 int write_failed = 0;
692
693                 if (pdev->revision == 0x01) {
694                         int     i;
695                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
696
697                         /* Re-write the first 4 bytes if we have an eeprom
698                          * present and the revision id is 1, this fixes the
699                          * corruption seen with 1310 B Silicon
700                          */
701                         for (i = 0; i < 3; i++)
702                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
703                                         write_failed = 1;
704                 }
705                 if (pdev->revision  != 0x01 || write_failed) {
706                         dev_err(&pdev->dev,
707                                 "Fatal EEPROM Status Error - 0x%04x\n",
708                                 eestatus);
709
710                         /* This error could mean that there was an error
711                          * reading the eeprom or that the eeprom doesn't exist.
712                          * We will treat each case the same and not try to
713                          * gather additional information that normally would
714                          * come from the eeprom, like MAC Address
715                          */
716                         adapter->has_eeprom = 0;
717                         return -EIO;
718                 }
719         }
720         adapter->has_eeprom = 1;
721
722         /* Read the EEPROM for information regarding LED behavior. Refer to
723          * et131x_xcvr_init() for its use.
724          */
725         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
726         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
727
728         if (adapter->eeprom_data[0] != 0xcd)
729                 /* Disable all optional features */
730                 adapter->eeprom_data[1] = 0x00;
731
732         return 0;
733 }
734
735 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
736 {
737         /* Setup the receive dma configuration register for normal operation */
738         u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
739         struct rx_ring *rx_ring = &adapter->rx_ring;
740
741         if (rx_ring->fbr[1]->buffsize == 4096)
742                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
743         else if (rx_ring->fbr[1]->buffsize == 8192)
744                 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
745         else if (rx_ring->fbr[1]->buffsize == 16384)
746                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
747
748         csr |= ET_RXDMA_CSR_FBR0_ENABLE;
749         if (rx_ring->fbr[0]->buffsize == 256)
750                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
751         else if (rx_ring->fbr[0]->buffsize == 512)
752                 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
753         else if (rx_ring->fbr[0]->buffsize == 1024)
754                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
755         writel(csr, &adapter->regs->rxdma.csr);
756
757         csr = readl(&adapter->regs->rxdma.csr);
758         if (csr & ET_RXDMA_CSR_HALT_STATUS) {
759                 udelay(5);
760                 csr = readl(&adapter->regs->rxdma.csr);
761                 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
762                         dev_err(&adapter->pdev->dev,
763                                 "RX Dma failed to exit halt state. CSR 0x%08x\n",
764                                 csr);
765                 }
766         }
767 }
768
769 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
770 {
771         u32 csr;
772         /* Setup the receive dma configuration register */
773         writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
774                &adapter->regs->rxdma.csr);
775         csr = readl(&adapter->regs->rxdma.csr);
776         if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
777                 udelay(5);
778                 csr = readl(&adapter->regs->rxdma.csr);
779                 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
780                         dev_err(&adapter->pdev->dev,
781                                 "RX Dma failed to enter halt state. CSR 0x%08x\n",
782                                 csr);
783         }
784 }
785
786 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
787 {
788         /* Setup the transmit dma configuration register for normal
789          * operation
790          */
791         writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
792                &adapter->regs->txdma.csr);
793 }
794
795 static inline void add_10bit(u32 *v, int n)
796 {
797         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
798 }
799
800 static inline void add_12bit(u32 *v, int n)
801 {
802         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
803 }
804
805 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
806 {
807         struct mac_regs __iomem *macregs = &adapter->regs->mac;
808         u32 station1;
809         u32 station2;
810         u32 ipg;
811
812         /* First we need to reset everything.  Write to MAC configuration
813          * register 1 to perform reset.
814          */
815         writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
816                ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
817                ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
818                &macregs->cfg1);
819
820         /* Next lets configure the MAC Inter-packet gap register */
821         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
822         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
823         writel(ipg, &macregs->ipg);
824
825         /* Next lets configure the MAC Half Duplex register */
826         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
827         writel(0x00A1F037, &macregs->hfdp);
828
829         /* Next lets configure the MAC Interface Control register */
830         writel(0, &macregs->if_ctrl);
831
832         writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
833
834         /* Next lets configure the MAC Station Address register.  These
835          * values are read from the EEPROM during initialization and stored
836          * in the adapter structure.  We write what is stored in the adapter
837          * structure to the MAC Station Address registers high and low.  This
838          * station address is used for generating and checking pause control
839          * packets.
840          */
841         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
842                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
843         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
844                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
845                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
846                     adapter->addr[2];
847         writel(station1, &macregs->station_addr_1);
848         writel(station2, &macregs->station_addr_2);
849
850         /* Max ethernet packet in bytes that will be passed by the mac without
851          * being truncated.  Allow the MAC to pass 4 more than our max packet
852          * size.  This is 4 for the Ethernet CRC.
853          *
854          * Packets larger than (registry_jumbo_packet) that do not contain a
855          * VLAN ID will be dropped by the Rx function.
856          */
857         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
858
859         /* clear out MAC config reset */
860         writel(0, &macregs->cfg1);
861 }
862
863 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
864 {
865         int32_t delay = 0;
866         struct mac_regs __iomem *mac = &adapter->regs->mac;
867         struct phy_device *phydev = adapter->phydev;
868         u32 cfg1;
869         u32 cfg2;
870         u32 ifctrl;
871         u32 ctl;
872
873         ctl = readl(&adapter->regs->txmac.ctl);
874         cfg1 = readl(&mac->cfg1);
875         cfg2 = readl(&mac->cfg2);
876         ifctrl = readl(&mac->if_ctrl);
877
878         /* Set up the if mode bits */
879         cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
880         if (phydev->speed == SPEED_1000) {
881                 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
882                 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
883         } else {
884                 cfg2 |= ET_MAC_CFG2_IFMODE_100;
885                 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
886         }
887
888         cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
889                                                         ET_MAC_CFG1_TX_FLOW;
890
891         cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
892         if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
893                 cfg1 |= ET_MAC_CFG1_RX_FLOW;
894         writel(cfg1, &mac->cfg1);
895
896         /* Now we need to initialize the MAC Configuration 2 register */
897         /* preamble 7, check length, huge frame off, pad crc, crc enable
898          * full duplex off
899          */
900         cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
901         cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
902         cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
903         cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
904         cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
905         cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
906
907         if (phydev->duplex == DUPLEX_FULL)
908                 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
909
910         ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
911         if (phydev->duplex == DUPLEX_HALF)
912                 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
913
914         writel(ifctrl, &mac->if_ctrl);
915         writel(cfg2, &mac->cfg2);
916
917         do {
918                 udelay(10);
919                 delay++;
920                 cfg1 = readl(&mac->cfg1);
921         } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
922
923         if (delay == 100) {
924                 dev_warn(&adapter->pdev->dev,
925                          "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
926                          cfg1);
927         }
928
929         ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
930         writel(ctl, &adapter->regs->txmac.ctl);
931
932         if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
933                 et131x_rx_dma_enable(adapter);
934                 et131x_tx_dma_enable(adapter);
935         }
936 }
937
938 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
939 {
940         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
941
942         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
943 }
944
945 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
946 {
947         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
948         u32 hash1 = 0;
949         u32 hash2 = 0;
950         u32 hash3 = 0;
951         u32 hash4 = 0;
952         u32 pm_csr;
953
954         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
956          * specified) then we should pass NO multi-cast addresses to the
957          * driver.
958          */
959         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960                 int i;
961
962                 /* Loop through our multicast array and set up the device */
963                 for (i = 0; i < adapter->multicast_addr_count; i++) {
964                         u32 result;
965
966                         result = ether_crc(6, adapter->multicast_list[i]);
967
968                         result = (result & 0x3F800000) >> 23;
969
970                         if (result < 32) {
971                                 hash1 |= (1 << result);
972                         } else if ((31 < result) && (result < 64)) {
973                                 result -= 32;
974                                 hash2 |= (1 << result);
975                         } else if ((63 < result) && (result < 96)) {
976                                 result -= 64;
977                                 hash3 |= (1 << result);
978                         } else {
979                                 result -= 96;
980                                 hash4 |= (1 << result);
981                         }
982                 }
983         }
984
985         /* Write out the new hash to the device */
986         pm_csr = readl(&adapter->regs->global.pm_csr);
987         if (!et1310_in_phy_coma(adapter)) {
988                 writel(hash1, &rxmac->multi_hash1);
989                 writel(hash2, &rxmac->multi_hash2);
990                 writel(hash3, &rxmac->multi_hash3);
991                 writel(hash4, &rxmac->multi_hash4);
992         }
993 }
994
995 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
996 {
997         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
998         u32 uni_pf1;
999         u32 uni_pf2;
1000         u32 uni_pf3;
1001         u32 pm_csr;
1002
1003         /* Set up unicast packet filter reg 3 to be the first two octets of
1004          * the MAC address for both address
1005          *
1006          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1007          * MAC address for second address
1008          *
1009          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1010          * MAC address for first address
1011          */
1012         uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1013                   (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1014                   (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1015                    adapter->addr[1];
1016
1017         uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1018                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1019                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1020                    adapter->addr[5];
1021
1022         uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1023                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1024                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1025                    adapter->addr[5];
1026
1027         pm_csr = readl(&adapter->regs->global.pm_csr);
1028         if (!et1310_in_phy_coma(adapter)) {
1029                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1030                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1031                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1032         }
1033 }
1034
1035 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1036 {
1037         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1038         struct phy_device *phydev = adapter->phydev;
1039         u32 sa_lo;
1040         u32 sa_hi = 0;
1041         u32 pf_ctrl = 0;
1042         u32 __iomem *wolw;
1043
1044         /* Disable the MAC while it is being configured (also disable WOL) */
1045         writel(0x8, &rxmac->ctrl);
1046
1047         /* Initialize WOL to disabled. */
1048         writel(0, &rxmac->crc0);
1049         writel(0, &rxmac->crc12);
1050         writel(0, &rxmac->crc34);
1051
1052         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1053          * its default Values of 0x00000000 because there are not WOL masks
1054          * as of this time.
1055          */
1056         for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1057                 writel(0, wolw);
1058
1059         /* Lets setup the WOL Source Address */
1060         sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1061                 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1062                 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1063                  adapter->addr[5];
1064         writel(sa_lo, &rxmac->sa_lo);
1065
1066         sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1067                        adapter->addr[1];
1068         writel(sa_hi, &rxmac->sa_hi);
1069
1070         /* Disable all Packet Filtering */
1071         writel(0, &rxmac->pf_ctrl);
1072
1073         /* Let's initialize the Unicast Packet filtering address */
1074         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1075                 et1310_setup_device_for_unicast(adapter);
1076                 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1077         } else {
1078                 writel(0, &rxmac->uni_pf_addr1);
1079                 writel(0, &rxmac->uni_pf_addr2);
1080                 writel(0, &rxmac->uni_pf_addr3);
1081         }
1082
1083         /* Let's initialize the Multicast hash */
1084         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1085                 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1086                 et1310_setup_device_for_multicast(adapter);
1087         }
1088
1089         /* Runt packet filtering.  Didn't work in version A silicon. */
1090         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1091         pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1092
1093         if (adapter->registry_jumbo_packet > 8192)
1094                 /* In order to transmit jumbo packets greater than 8k, the
1095                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1096                  * to (16k - Jumbo packet size).  In order to implement this,
1097                  * we must use "cut through" mode in the RxMAC, which chops
1098                  * packets down into segments which are (max_size * 16).  In
1099                  * this case we selected 256 bytes, since this is the size of
1100                  * the PCI-Express TLP's that the 1310 uses.
1101                  *
1102                  * seg_en on, fc_en off, size 0x10
1103                  */
1104                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1105         else
1106                 writel(0, &rxmac->mcif_ctrl_max_seg);
1107
1108         writel(0, &rxmac->mcif_water_mark);
1109         writel(0, &rxmac->mif_ctrl);
1110         writel(0, &rxmac->space_avail);
1111
1112         /* Initialize the the mif_ctrl register
1113          * bit 3:  Receive code error. One or more nibbles were signaled as
1114          *         errors  during the reception of the packet.  Clear this
1115          *         bit in Gigabit, set it in 100Mbit.  This was derived
1116          *         experimentally at UNH.
1117          * bit 4:  Receive CRC error. The packet's CRC did not match the
1118          *         internally generated CRC.
1119          * bit 5:  Receive length check error. Indicates that frame length
1120          *         field value in the packet does not match the actual data
1121          *         byte length and is not a type field.
1122          * bit 16: Receive frame truncated.
1123          * bit 17: Drop packet enable
1124          */
1125         if (phydev && phydev->speed == SPEED_100)
1126                 writel(0x30038, &rxmac->mif_ctrl);
1127         else
1128                 writel(0x30030, &rxmac->mif_ctrl);
1129
1130         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1131          * filter is always enabled since it is where the runt packets are
1132          * supposed to be dropped.  For version A silicon, runt packet
1133          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1134          * but we still leave the packet filter on.
1135          */
1136         writel(pf_ctrl, &rxmac->pf_ctrl);
1137         writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1138 }
1139
1140 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1141 {
1142         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1143
1144         /* We need to update the Control Frame Parameters
1145          * cfpt - control frame pause timer set to 64 (0x40)
1146          * cfep - control frame extended pause timer set to 0x0
1147          */
1148         if (adapter->flow == FLOW_NONE)
1149                 writel(0, &txmac->cf_param);
1150         else
1151                 writel(0x40, &txmac->cf_param);
1152 }
1153
1154 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1155 {
1156         struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1157         u32 __iomem *reg;
1158
1159         /* initialize all the macstat registers to zero on the device  */
1160         for (reg = &macstat->txrx_0_64_byte_frames;
1161              reg <= &macstat->carry_reg2; reg++)
1162                 writel(0, reg);
1163
1164         /* Unmask any counters that we want to track the overflow of.
1165          * Initially this will be all counters.  It may become clear later
1166          * that we do not need to track all counters.
1167          */
1168         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1169         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1170 }
1171
1172 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1173                                u8 reg, u16 *value)
1174 {
1175         struct mac_regs __iomem *mac = &adapter->regs->mac;
1176         int status = 0;
1177         u32 delay = 0;
1178         u32 mii_addr;
1179         u32 mii_cmd;
1180         u32 mii_indicator;
1181
1182         /* Save a local copy of the registers we are dealing with so we can
1183          * set them back
1184          */
1185         mii_addr = readl(&mac->mii_mgmt_addr);
1186         mii_cmd = readl(&mac->mii_mgmt_cmd);
1187
1188         /* Stop the current operation */
1189         writel(0, &mac->mii_mgmt_cmd);
1190
1191         /* Set up the register we need to read from on the correct PHY */
1192         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1193
1194         writel(0x1, &mac->mii_mgmt_cmd);
1195
1196         do {
1197                 udelay(50);
1198                 delay++;
1199                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1200         } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1201
1202         /* If we hit the max delay, we could not read the register */
1203         if (delay == 50) {
1204                 dev_warn(&adapter->pdev->dev,
1205                          "reg 0x%08x could not be read\n", reg);
1206                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1207                          mii_indicator);
1208
1209                 status = -EIO;
1210                 goto out;
1211         }
1212
1213         /* If we hit here we were able to read the register and we need to
1214          * return the value to the caller
1215          */
1216         *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1217
1218 out:
1219         /* Stop the read operation */
1220         writel(0, &mac->mii_mgmt_cmd);
1221
1222         /* set the registers we touched back to the state at which we entered
1223          * this function
1224          */
1225         writel(mii_addr, &mac->mii_mgmt_addr);
1226         writel(mii_cmd, &mac->mii_mgmt_cmd);
1227
1228         return status;
1229 }
1230
1231 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1232 {
1233         struct phy_device *phydev = adapter->phydev;
1234
1235         if (!phydev)
1236                 return -EIO;
1237
1238         return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1239 }
1240
1241 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1242                             u16 value)
1243 {
1244         struct mac_regs __iomem *mac = &adapter->regs->mac;
1245         int status = 0;
1246         u32 delay = 0;
1247         u32 mii_addr;
1248         u32 mii_cmd;
1249         u32 mii_indicator;
1250
1251         /* Save a local copy of the registers we are dealing with so we can
1252          * set them back
1253          */
1254         mii_addr = readl(&mac->mii_mgmt_addr);
1255         mii_cmd = readl(&mac->mii_mgmt_cmd);
1256
1257         /* Stop the current operation */
1258         writel(0, &mac->mii_mgmt_cmd);
1259
1260         /* Set up the register we need to write to on the correct PHY */
1261         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1262
1263         /* Add the value to write to the registers to the mac */
1264         writel(value, &mac->mii_mgmt_ctrl);
1265
1266         do {
1267                 udelay(50);
1268                 delay++;
1269                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1270         } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1271
1272         /* If we hit the max delay, we could not write the register */
1273         if (delay == 100) {
1274                 u16 tmp;
1275
1276                 dev_warn(&adapter->pdev->dev,
1277                          "reg 0x%08x could not be written", reg);
1278                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1279                          mii_indicator);
1280                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1281                          readl(&mac->mii_mgmt_cmd));
1282
1283                 et131x_mii_read(adapter, reg, &tmp);
1284
1285                 status = -EIO;
1286         }
1287         /* Stop the write operation */
1288         writel(0, &mac->mii_mgmt_cmd);
1289
1290         /* set the registers we touched back to the state at which we entered
1291          * this function
1292          */
1293         writel(mii_addr, &mac->mii_mgmt_addr);
1294         writel(mii_cmd, &mac->mii_mgmt_cmd);
1295
1296         return status;
1297 }
1298
1299 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1300                                     u16 regnum,
1301                                     u16 bitnum,
1302                                     u8 *value)
1303 {
1304         u16 reg;
1305         u16 mask = 1 << bitnum;
1306
1307         et131x_mii_read(adapter, regnum, &reg);
1308
1309         *value = (reg & mask) >> bitnum;
1310 }
1311
1312 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1313 {
1314         struct phy_device *phydev = adapter->phydev;
1315
1316         if (phydev->duplex == DUPLEX_HALF) {
1317                 adapter->flow = FLOW_NONE;
1318         } else {
1319                 char remote_pause, remote_async_pause;
1320
1321                 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1322                 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1323
1324                 if (remote_pause && remote_async_pause) {
1325                         adapter->flow = adapter->wanted_flow;
1326                 } else if (remote_pause && !remote_async_pause) {
1327                         if (adapter->wanted_flow == FLOW_BOTH)
1328                                 adapter->flow = FLOW_BOTH;
1329                         else
1330                                 adapter->flow = FLOW_NONE;
1331                 } else if (!remote_pause && !remote_async_pause) {
1332                         adapter->flow = FLOW_NONE;
1333                 } else {
1334                         if (adapter->wanted_flow == FLOW_BOTH)
1335                                 adapter->flow = FLOW_RXONLY;
1336                         else
1337                                 adapter->flow = FLOW_NONE;
1338                 }
1339         }
1340 }
1341
1342 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1343 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1344 {
1345         struct ce_stats *stats = &adapter->stats;
1346         struct macstat_regs __iomem *macstat =
1347                 &adapter->regs->macstat;
1348
1349         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1350         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1351         stats->tx_deferred             += readl(&macstat->tx_deferred);
1352         stats->tx_excessive_collisions +=
1353                                 readl(&macstat->tx_multiple_collisions);
1354         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1355         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1356         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1357
1358         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1359         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1360         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1361         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1362         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1363         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1364         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1365 }
1366
1367 /* et1310_handle_macstat_interrupt
1368  *
1369  * One of the MACSTAT counters has wrapped.  Update the local copy of
1370  * the statistics held in the adapter structure, checking the "wrap"
1371  * bit for each counter.
1372  */
1373 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1374 {
1375         u32 carry_reg1;
1376         u32 carry_reg2;
1377
1378         /* Read the interrupt bits from the register(s).  These are Clear On
1379          * Write.
1380          */
1381         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1382         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1383
1384         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1385         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1386
1387         /* We need to do update the host copy of all the MAC_STAT counters.
1388          * For each counter, check it's overflow bit.  If the overflow bit is
1389          * set, then increment the host version of the count by one complete
1390          * revolution of the counter.  This routine is called when the counter
1391          * block indicates that one of the counters has wrapped.
1392          */
1393         if (carry_reg1 & (1 << 14))
1394                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1395         if (carry_reg1 & (1 << 8))
1396                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1397         if (carry_reg1 & (1 << 7))
1398                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1399         if (carry_reg1 & (1 << 2))
1400                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1401         if (carry_reg1 & (1 << 6))
1402                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1403         if (carry_reg1 & (1 << 3))
1404                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1405         if (carry_reg1 & (1 << 0))
1406                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1407         if (carry_reg2 & (1 << 16))
1408                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1409         if (carry_reg2 & (1 << 15))
1410                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1411         if (carry_reg2 & (1 << 6))
1412                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1413         if (carry_reg2 & (1 << 8))
1414                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1415         if (carry_reg2 & (1 << 5))
1416                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1417         if (carry_reg2 & (1 << 4))
1418                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1419         if (carry_reg2 & (1 << 2))
1420                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1421 }
1422
1423 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1424 {
1425         struct net_device *netdev = bus->priv;
1426         struct et131x_adapter *adapter = netdev_priv(netdev);
1427         u16 value;
1428         int ret;
1429
1430         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1431
1432         if (ret < 0)
1433                 return ret;
1434
1435         return value;
1436 }
1437
1438 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1439                              int reg, u16 value)
1440 {
1441         struct net_device *netdev = bus->priv;
1442         struct et131x_adapter *adapter = netdev_priv(netdev);
1443
1444         return et131x_mii_write(adapter, phy_addr, reg, value);
1445 }
1446
1447 /*      et1310_phy_power_switch -       PHY power control
1448  *      @adapter: device to control
1449  *      @down: true for off/false for back on
1450  *
1451  *      one hundred, ten, one thousand megs
1452  *      How would you like to have your LAN accessed
1453  *      Can't you see that this code processed
1454  *      Phy power, phy power..
1455  */
1456 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1457 {
1458         u16 data;
1459         struct  phy_device *phydev = adapter->phydev;
1460
1461         et131x_mii_read(adapter, MII_BMCR, &data);
1462         data &= ~BMCR_PDOWN;
1463         if (down)
1464                 data |= BMCR_PDOWN;
1465         et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1466 }
1467
1468 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1469 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1470 {
1471         u16 lcr2;
1472         struct  phy_device *phydev = adapter->phydev;
1473
1474         /* Set the LED behavior such that LED 1 indicates speed (off =
1475          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1476          * link and activity (on for link, blink off for activity).
1477          *
1478          * NOTE: Some customizations have been added here for specific
1479          * vendors; The LED behavior is now determined by vendor data in the
1480          * EEPROM. However, the above description is the default.
1481          */
1482         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1483                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1484
1485                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1486                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1487
1488                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1489                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1490                 else
1491                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1492
1493                 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1494         }
1495 }
1496
1497 /* et131x_configure_global_regs - configure JAGCore global regs */
1498 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1499 {
1500         struct global_regs __iomem *regs = &adapter->regs->global;
1501
1502         writel(0, &regs->rxq_start_addr);
1503         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1504
1505         if (adapter->registry_jumbo_packet < 2048) {
1506                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1507                  * block of RAM that the driver can split between Tx
1508                  * and Rx as it desires.  Our default is to split it
1509                  * 50/50:
1510                  */
1511                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1512                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1513         } else if (adapter->registry_jumbo_packet < 8192) {
1514                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1515                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1516                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1517         } else {
1518                 /* 9216 is the only packet size greater than 8k that
1519                  * is available. The Tx buffer has to be big enough
1520                  * for one whole packet on the Tx side. We'll make
1521                  * the Tx 9408, and give the rest to Rx
1522                  */
1523                 writel(0x01b3, &regs->rxq_end_addr);
1524                 writel(0x01b4, &regs->txq_start_addr);
1525         }
1526
1527         /* Initialize the loopback register. Disable all loopbacks. */
1528         writel(0, &regs->loopback);
1529
1530         writel(0, &regs->msi_config);
1531
1532         /* By default, disable the watchdog timer.  It will be enabled when
1533          * a packet is queued.
1534          */
1535         writel(0, &regs->watchdog_timer);
1536 }
1537
1538 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1539 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1540 {
1541         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1542         struct rx_ring *rx_local = &adapter->rx_ring;
1543         struct fbr_desc *fbr_entry;
1544         u32 entry;
1545         u32 psr_num_des;
1546         unsigned long flags;
1547         u8 id;
1548
1549         et131x_rx_dma_disable(adapter);
1550
1551         /* Load the completion writeback physical address */
1552         writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1553         writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1554
1555         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1556
1557         /* Set the address and parameters of the packet status ring */
1558         writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1559         writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1560         writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1561         writel(0, &rx_dma->psr_full_offset);
1562
1563         psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1564         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1565                &rx_dma->psr_min_des);
1566
1567         spin_lock_irqsave(&adapter->rcv_lock, flags);
1568
1569         /* These local variables track the PSR in the adapter structure */
1570         rx_local->local_psr_full = 0;
1571
1572         for (id = 0; id < NUM_FBRS; id++) {
1573                 u32 __iomem *num_des;
1574                 u32 __iomem *full_offset;
1575                 u32 __iomem *min_des;
1576                 u32 __iomem *base_hi;
1577                 u32 __iomem *base_lo;
1578                 struct fbr_lookup *fbr = rx_local->fbr[id];
1579
1580                 if (id == 0) {
1581                         num_des = &rx_dma->fbr0_num_des;
1582                         full_offset = &rx_dma->fbr0_full_offset;
1583                         min_des = &rx_dma->fbr0_min_des;
1584                         base_hi = &rx_dma->fbr0_base_hi;
1585                         base_lo = &rx_dma->fbr0_base_lo;
1586                 } else {
1587                         num_des = &rx_dma->fbr1_num_des;
1588                         full_offset = &rx_dma->fbr1_full_offset;
1589                         min_des = &rx_dma->fbr1_min_des;
1590                         base_hi = &rx_dma->fbr1_base_hi;
1591                         base_lo = &rx_dma->fbr1_base_lo;
1592                 }
1593
1594                 /* Now's the best time to initialize FBR contents */
1595                 fbr_entry = fbr->ring_virtaddr;
1596                 for (entry = 0; entry < fbr->num_entries; entry++) {
1597                         fbr_entry->addr_hi = fbr->bus_high[entry];
1598                         fbr_entry->addr_lo = fbr->bus_low[entry];
1599                         fbr_entry->word2 = entry;
1600                         fbr_entry++;
1601                 }
1602
1603                 /* Set the address and parameters of Free buffer ring 1 and 0 */
1604                 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1605                 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1606                 writel(fbr->num_entries - 1, num_des);
1607                 writel(ET_DMA10_WRAP, full_offset);
1608
1609                 /* This variable tracks the free buffer ring 1 full position,
1610                  * so it has to match the above.
1611                  */
1612                 fbr->local_full = ET_DMA10_WRAP;
1613                 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1614                        min_des);
1615         }
1616
1617         /* Program the number of packets we will receive before generating an
1618          * interrupt.
1619          * For version B silicon, this value gets updated once autoneg is
1620          *complete.
1621          */
1622         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1623
1624         /* The "time_done" is not working correctly to coalesce interrupts
1625          * after a given time period, but rather is giving us an interrupt
1626          * regardless of whether we have received packets.
1627          * This value gets updated once autoneg is complete.
1628          */
1629         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1630
1631         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1632 }
1633
1634 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1635  *
1636  * Configure the transmit engine with the ring buffers we have created
1637  * and prepare it for use.
1638  */
1639 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1640 {
1641         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1642         struct tx_ring *tx_ring = &adapter->tx_ring;
1643
1644         /* Load the hardware with the start of the transmit descriptor ring. */
1645         writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1646         writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1647
1648         /* Initialise the transmit DMA engine */
1649         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1650
1651         /* Load the completion writeback physical address */
1652         writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1653         writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1654
1655         *tx_ring->tx_status = 0;
1656
1657         writel(0, &txdma->service_request);
1658         tx_ring->send_idx = 0;
1659 }
1660
1661 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1662 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1663 {
1664         et131x_configure_global_regs(adapter);
1665         et1310_config_mac_regs1(adapter);
1666
1667         /* Configure the MMC registers */
1668         /* All we need to do is initialize the Memory Control Register */
1669         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1670
1671         et1310_config_rxmac_regs(adapter);
1672         et1310_config_txmac_regs(adapter);
1673
1674         et131x_config_rx_dma_regs(adapter);
1675         et131x_config_tx_dma_regs(adapter);
1676
1677         et1310_config_macstat_regs(adapter);
1678
1679         et1310_phy_power_switch(adapter, 0);
1680         et131x_xcvr_init(adapter);
1681 }
1682
1683 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1684 static void et131x_soft_reset(struct et131x_adapter *adapter)
1685 {
1686         u32 reg;
1687
1688         /* Disable MAC Core */
1689         reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1690               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1691               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1692         writel(reg, &adapter->regs->mac.cfg1);
1693
1694         reg = ET_RESET_ALL;
1695         writel(reg, &adapter->regs->global.sw_reset);
1696
1697         reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1698               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1699         writel(reg, &adapter->regs->mac.cfg1);
1700         writel(0, &adapter->regs->mac.cfg1);
1701 }
1702
1703 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1704 {
1705         u32 mask;
1706
1707         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1708                 mask = INT_MASK_ENABLE;
1709         else
1710                 mask = INT_MASK_ENABLE_NO_FLOW;
1711
1712         writel(mask, &adapter->regs->global.int_mask);
1713 }
1714
1715 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1716 {
1717         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1718 }
1719
1720 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1721 {
1722         /* Setup the transmit dma configuration register */
1723         writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1724                &adapter->regs->txdma.csr);
1725 }
1726
1727 static void et131x_enable_txrx(struct net_device *netdev)
1728 {
1729         struct et131x_adapter *adapter = netdev_priv(netdev);
1730
1731         et131x_rx_dma_enable(adapter);
1732         et131x_tx_dma_enable(adapter);
1733
1734         if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1735                 et131x_enable_interrupts(adapter);
1736
1737         netif_start_queue(netdev);
1738 }
1739
1740 static void et131x_disable_txrx(struct net_device *netdev)
1741 {
1742         struct et131x_adapter *adapter = netdev_priv(netdev);
1743
1744         netif_stop_queue(netdev);
1745
1746         et131x_rx_dma_disable(adapter);
1747         et131x_tx_dma_disable(adapter);
1748
1749         et131x_disable_interrupts(adapter);
1750 }
1751
1752 static void et131x_init_send(struct et131x_adapter *adapter)
1753 {
1754         int i;
1755         struct tx_ring *tx_ring = &adapter->tx_ring;
1756         struct tcb *tcb = tx_ring->tcb_ring;
1757
1758         tx_ring->tcb_qhead = tcb;
1759
1760         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1761
1762         for (i = 0; i < NUM_TCB; i++) {
1763                 tcb->next = tcb + 1;
1764                 tcb++;
1765         }
1766
1767         tcb--;
1768         tx_ring->tcb_qtail = tcb;
1769         tcb->next = NULL;
1770         /* Curr send queue should now be empty */
1771         tx_ring->send_head = NULL;
1772         tx_ring->send_tail = NULL;
1773 }
1774
1775 /* et1310_enable_phy_coma
1776  *
1777  * driver receive an phy status change interrupt while in D0 and check that
1778  * phy_status is down.
1779  *
1780  *          -- gate off JAGCore;
1781  *          -- set gigE PHY in Coma mode
1782  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1783  *             re-initialize jagcore and gigE PHY
1784  */
1785 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1786 {
1787         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1788
1789         /* Stop sending packets. */
1790         adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1791
1792         /* Wait for outstanding Receive packets */
1793         et131x_disable_txrx(adapter->netdev);
1794
1795         /* Gate off JAGCore 3 clock domains */
1796         pmcsr &= ~ET_PMCSR_INIT;
1797         writel(pmcsr, &adapter->regs->global.pm_csr);
1798
1799         /* Program gigE PHY in to Coma mode */
1800         pmcsr |= ET_PM_PHY_SW_COMA;
1801         writel(pmcsr, &adapter->regs->global.pm_csr);
1802 }
1803
1804 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1805 {
1806         u32 pmcsr;
1807
1808         pmcsr = readl(&adapter->regs->global.pm_csr);
1809
1810         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1811         pmcsr |= ET_PMCSR_INIT;
1812         pmcsr &= ~ET_PM_PHY_SW_COMA;
1813         writel(pmcsr, &adapter->regs->global.pm_csr);
1814
1815         /* Restore the GbE PHY speed and duplex modes;
1816          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1817          */
1818
1819         /* Re-initialize the send structures */
1820         et131x_init_send(adapter);
1821
1822         /* Bring the device back to the state it was during init prior to
1823          * autonegotiation being complete.  This way, when we get the auto-neg
1824          * complete interrupt, we can complete init by calling ConfigMacREGS2.
1825          */
1826         et131x_soft_reset(adapter);
1827
1828         et131x_adapter_setup(adapter);
1829
1830         /* Allow Tx to restart */
1831         adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1832
1833         et131x_enable_txrx(adapter->netdev);
1834 }
1835
1836 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1837 {
1838         u32 tmp_free_buff_ring = *free_buff_ring;
1839
1840         tmp_free_buff_ring++;
1841         /* This works for all cases where limit < 1024. The 1023 case
1842          * works because 1023++ is 1024 which means the if condition is not
1843          * taken but the carry of the bit into the wrap bit toggles the wrap
1844          * value correctly
1845          */
1846         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1847                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1848                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1849         }
1850         /* For the 1023 case */
1851         tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1852         *free_buff_ring = tmp_free_buff_ring;
1853         return tmp_free_buff_ring;
1854 }
1855
1856 /* et131x_rx_dma_memory_alloc
1857  *
1858  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1859  * and the Packet Status Ring.
1860  */
1861 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1862 {
1863         u8 id;
1864         u32 i, j;
1865         u32 bufsize;
1866         u32 psr_size;
1867         u32 fbr_chunksize;
1868         struct rx_ring *rx_ring = &adapter->rx_ring;
1869         struct fbr_lookup *fbr;
1870
1871         /* Alloc memory for the lookup table */
1872         rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873         if (rx_ring->fbr[0] == NULL)
1874                 return -ENOMEM;
1875         rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1876         if (rx_ring->fbr[1] == NULL)
1877                 return -ENOMEM;
1878
1879         /* The first thing we will do is configure the sizes of the buffer
1880          * rings. These will change based on jumbo packet support.  Larger
1881          * jumbo packets increases the size of each entry in FBR0, and the
1882          * number of entries in FBR0, while at the same time decreasing the
1883          * number of entries in FBR1.
1884          *
1885          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1886          * entries are huge in order to accommodate a "jumbo" frame, then it
1887          * will have less entries.  Conversely, FBR1 will now be relied upon
1888          * to carry more "normal" frames, thus it's entry size also increases
1889          * and the number of entries goes up too (since it now carries
1890          * "small" + "regular" packets.
1891          *
1892          * In this scheme, we try to maintain 512 entries between the two
1893          * rings. Also, FBR1 remains a constant size - when it's size doubles
1894          * the number of entries halves.  FBR0 increases in size, however.
1895          */
1896         if (adapter->registry_jumbo_packet < 2048) {
1897                 rx_ring->fbr[0]->buffsize = 256;
1898                 rx_ring->fbr[0]->num_entries = 512;
1899                 rx_ring->fbr[1]->buffsize = 2048;
1900                 rx_ring->fbr[1]->num_entries = 512;
1901         } else if (adapter->registry_jumbo_packet < 4096) {
1902                 rx_ring->fbr[0]->buffsize = 512;
1903                 rx_ring->fbr[0]->num_entries = 1024;
1904                 rx_ring->fbr[1]->buffsize = 4096;
1905                 rx_ring->fbr[1]->num_entries = 512;
1906         } else {
1907                 rx_ring->fbr[0]->buffsize = 1024;
1908                 rx_ring->fbr[0]->num_entries = 768;
1909                 rx_ring->fbr[1]->buffsize = 16384;
1910                 rx_ring->fbr[1]->num_entries = 128;
1911         }
1912
1913         rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1914                                rx_ring->fbr[1]->num_entries;
1915
1916         for (id = 0; id < NUM_FBRS; id++) {
1917                 fbr = rx_ring->fbr[id];
1918                 /* Allocate an area of memory for Free Buffer Ring */
1919                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1920                 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1921                                                         bufsize,
1922                                                         &fbr->ring_physaddr,
1923                                                         GFP_KERNEL);
1924                 if (!fbr->ring_virtaddr) {
1925                         dev_err(&adapter->pdev->dev,
1926                                 "Cannot alloc memory for Free Buffer Ring %d\n",
1927                                 id);
1928                         return -ENOMEM;
1929                 }
1930         }
1931
1932         for (id = 0; id < NUM_FBRS; id++) {
1933                 fbr = rx_ring->fbr[id];
1934                 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1935
1936                 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1937                         dma_addr_t fbr_physaddr;
1938
1939                         fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1940                                         &adapter->pdev->dev, fbr_chunksize,
1941                                         &fbr->mem_physaddrs[i],
1942                                         GFP_KERNEL);
1943
1944                         if (!fbr->mem_virtaddrs[i]) {
1945                                 dev_err(&adapter->pdev->dev,
1946                                         "Could not alloc memory\n");
1947                                 return -ENOMEM;
1948                         }
1949
1950                         /* See NOTE in "Save Physical Address" comment above */
1951                         fbr_physaddr = fbr->mem_physaddrs[i];
1952
1953                         for (j = 0; j < FBR_CHUNKS; j++) {
1954                                 u32 k = (i * FBR_CHUNKS) + j;
1955
1956                                 /* Save the Virtual address of this index for
1957                                  * quick access later
1958                                  */
1959                                 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1960                                                    (j * fbr->buffsize);
1961
1962                                 /* now store the physical address in the
1963                                  * descriptor so the device can access it
1964                                  */
1965                                 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1966                                 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1967                                 fbr_physaddr += fbr->buffsize;
1968                         }
1969                 }
1970         }
1971
1972         /* Allocate an area of memory for FIFO of Packet Status ring entries */
1973         psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1974
1975         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1976                                                   psr_size,
1977                                                   &rx_ring->ps_ring_physaddr,
1978                                                   GFP_KERNEL);
1979
1980         if (!rx_ring->ps_ring_virtaddr) {
1981                 dev_err(&adapter->pdev->dev,
1982                         "Cannot alloc memory for Packet Status Ring\n");
1983                 return -ENOMEM;
1984         }
1985
1986         /* Allocate an area of memory for writeback of status information */
1987         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1988                                             sizeof(struct rx_status_block),
1989                                             &rx_ring->rx_status_bus,
1990                                             GFP_KERNEL);
1991         if (!rx_ring->rx_status_block) {
1992                 dev_err(&adapter->pdev->dev,
1993                         "Cannot alloc memory for Status Block\n");
1994                 return -ENOMEM;
1995         }
1996         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1997
1998         /* The RFDs are going to be put on lists later on, so initialize the
1999          * lists now.
2000          */
2001         INIT_LIST_HEAD(&rx_ring->recv_list);
2002         return 0;
2003 }
2004
2005 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2006 {
2007         u8 id;
2008         u32 ii;
2009         u32 bufsize;
2010         u32 psr_size;
2011         struct rfd *rfd;
2012         struct rx_ring *rx_ring = &adapter->rx_ring;
2013         struct fbr_lookup *fbr;
2014
2015         /* Free RFDs and associated packet descriptors */
2016         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2017
2018         while (!list_empty(&rx_ring->recv_list)) {
2019                 rfd = list_entry(rx_ring->recv_list.next,
2020                                  struct rfd, list_node);
2021
2022                 list_del(&rfd->list_node);
2023                 rfd->skb = NULL;
2024                 kfree(rfd);
2025         }
2026
2027         /* Free Free Buffer Rings */
2028         for (id = 0; id < NUM_FBRS; id++) {
2029                 fbr = rx_ring->fbr[id];
2030
2031                 if (!fbr || !fbr->ring_virtaddr)
2032                         continue;
2033
2034                 /* First the packet memory */
2035                 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2036                         if (fbr->mem_virtaddrs[ii]) {
2037                                 bufsize = fbr->buffsize * FBR_CHUNKS;
2038
2039                                 dma_free_coherent(&adapter->pdev->dev,
2040                                                   bufsize,
2041                                                   fbr->mem_virtaddrs[ii],
2042                                                   fbr->mem_physaddrs[ii]);
2043
2044                                 fbr->mem_virtaddrs[ii] = NULL;
2045                         }
2046                 }
2047
2048                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2049
2050                 dma_free_coherent(&adapter->pdev->dev,
2051                                   bufsize,
2052                                   fbr->ring_virtaddr,
2053                                   fbr->ring_physaddr);
2054
2055                 fbr->ring_virtaddr = NULL;
2056         }
2057
2058         /* Free Packet Status Ring */
2059         if (rx_ring->ps_ring_virtaddr) {
2060                 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2061
2062                 dma_free_coherent(&adapter->pdev->dev, psr_size,
2063                                   rx_ring->ps_ring_virtaddr,
2064                                   rx_ring->ps_ring_physaddr);
2065
2066                 rx_ring->ps_ring_virtaddr = NULL;
2067         }
2068
2069         /* Free area of memory for the writeback of status information */
2070         if (rx_ring->rx_status_block) {
2071                 dma_free_coherent(&adapter->pdev->dev,
2072                                   sizeof(struct rx_status_block),
2073                                   rx_ring->rx_status_block,
2074                                   rx_ring->rx_status_bus);
2075                 rx_ring->rx_status_block = NULL;
2076         }
2077
2078         /* Free the FBR Lookup Table */
2079         kfree(rx_ring->fbr[0]);
2080         kfree(rx_ring->fbr[1]);
2081
2082         /* Reset Counters */
2083         rx_ring->num_ready_recv = 0;
2084 }
2085
2086 /* et131x_init_recv - Initialize receive data structures */
2087 static int et131x_init_recv(struct et131x_adapter *adapter)
2088 {
2089         struct rfd *rfd;
2090         u32 rfdct;
2091         struct rx_ring *rx_ring = &adapter->rx_ring;
2092
2093         /* Setup each RFD */
2094         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2095                 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2096                 if (!rfd)
2097                         return -ENOMEM;
2098
2099                 rfd->skb = NULL;
2100
2101                 /* Add this RFD to the recv_list */
2102                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2103
2104                 /* Increment the available RFD's */
2105                 rx_ring->num_ready_recv++;
2106         }
2107
2108         return 0;
2109 }
2110
2111 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2112 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2113 {
2114         struct phy_device *phydev = adapter->phydev;
2115
2116         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2117          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2118          */
2119         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2120                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2121                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2122         }
2123 }
2124
2125 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2126 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2127 {
2128         struct rx_ring *rx_local = &adapter->rx_ring;
2129         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2130         u16 buff_index = rfd->bufferindex;
2131         u8 ring_index = rfd->ringindex;
2132         unsigned long flags;
2133         struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2134
2135         /* We don't use any of the OOB data besides status. Otherwise, we
2136          * need to clean up OOB data
2137          */
2138         if (buff_index < fbr->num_entries) {
2139                 u32 free_buff_ring;
2140                 u32 __iomem *offset;
2141                 struct fbr_desc *next;
2142
2143                 if (ring_index == 0)
2144                         offset = &rx_dma->fbr0_full_offset;
2145                 else
2146                         offset = &rx_dma->fbr1_full_offset;
2147
2148                 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2149                        INDEX10(fbr->local_full);
2150
2151                 /* Handle the Free Buffer Ring advancement here. Write
2152                  * the PA / Buffer Index for the returned buffer into
2153                  * the oldest (next to be freed)FBR entry
2154                  */
2155                 next->addr_hi = fbr->bus_high[buff_index];
2156                 next->addr_lo = fbr->bus_low[buff_index];
2157                 next->word2 = buff_index;
2158
2159                 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2160                                                      fbr->num_entries - 1);
2161                 writel(free_buff_ring, offset);
2162         } else {
2163                 dev_err(&adapter->pdev->dev,
2164                         "%s illegal Buffer Index returned\n", __func__);
2165         }
2166
2167         /* The processing on this RFD is done, so put it back on the tail of
2168          * our list
2169          */
2170         spin_lock_irqsave(&adapter->rcv_lock, flags);
2171         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2172         rx_local->num_ready_recv++;
2173         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2174
2175         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2176 }
2177
2178 /* nic_rx_pkts - Checks the hardware for available packets
2179  *
2180  * Checks the hardware for available packets, using completion ring
2181  * If packets are available, it gets an RFD from the recv_list, attaches
2182  * the packet to it, puts the RFD in the RecvPendList, and also returns
2183  * the pointer to the RFD.
2184  */
2185 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2186 {
2187         struct rx_ring *rx_local = &adapter->rx_ring;
2188         struct rx_status_block *status;
2189         struct pkt_stat_desc *psr;
2190         struct rfd *rfd;
2191         unsigned long flags;
2192         struct list_head *element;
2193         u8 ring_index;
2194         u16 buff_index;
2195         u32 len;
2196         u32 word0;
2197         u32 word1;
2198         struct sk_buff *skb;
2199         struct fbr_lookup *fbr;
2200
2201         /* RX Status block is written by the DMA engine prior to every
2202          * interrupt. It contains the next to be used entry in the Packet
2203          * Status Ring, and also the two Free Buffer rings.
2204          */
2205         status = rx_local->rx_status_block;
2206         word1 = status->word1 >> 16;
2207
2208         /* Check the PSR and wrap bits do not match */
2209         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2210                 return NULL; /* Looks like this ring is not updated yet */
2211
2212         /* The packet status ring indicates that data is available. */
2213         psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2214                         (rx_local->local_psr_full & 0xFFF);
2215
2216         /* Grab any information that is required once the PSR is advanced,
2217          * since we can no longer rely on the memory being accurate
2218          */
2219         len = psr->word1 & 0xFFFF;
2220         ring_index = (psr->word1 >> 26) & 0x03;
2221         fbr = rx_local->fbr[ring_index];
2222         buff_index = (psr->word1 >> 16) & 0x3FF;
2223         word0 = psr->word0;
2224
2225         /* Indicate that we have used this PSR entry. */
2226         /* FIXME wrap 12 */
2227         add_12bit(&rx_local->local_psr_full, 1);
2228         if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2229                 /* Clear psr full and toggle the wrap bit */
2230                 rx_local->local_psr_full &=  ~0xFFF;
2231                 rx_local->local_psr_full ^= 0x1000;
2232         }
2233
2234         writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2235
2236         if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2237                 /* Illegal buffer or ring index cannot be used by S/W*/
2238                 dev_err(&adapter->pdev->dev,
2239                         "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2240                         rx_local->local_psr_full & 0xFFF, len, buff_index);
2241                 return NULL;
2242         }
2243
2244         /* Get and fill the RFD. */
2245         spin_lock_irqsave(&adapter->rcv_lock, flags);
2246
2247         element = rx_local->recv_list.next;
2248         rfd = list_entry(element, struct rfd, list_node);
2249
2250         if (!rfd) {
2251                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2252                 return NULL;
2253         }
2254
2255         list_del(&rfd->list_node);
2256         rx_local->num_ready_recv--;
2257
2258         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2259
2260         rfd->bufferindex = buff_index;
2261         rfd->ringindex = ring_index;
2262
2263         /* In V1 silicon, there is a bug which screws up filtering of runt
2264          * packets. Therefore runt packet filtering is disabled in the MAC and
2265          * the packets are dropped here. They are also counted here.
2266          */
2267         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2268                 adapter->stats.rx_other_errs++;
2269                 rfd->len = 0;
2270                 goto out;
2271         }
2272
2273         if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2274                 adapter->stats.multicast_pkts_rcvd++;
2275
2276         rfd->len = len;
2277
2278         skb = dev_alloc_skb(rfd->len + 2);
2279         if (!skb)
2280                 return NULL;
2281
2282         adapter->netdev->stats.rx_bytes += rfd->len;
2283
2284         memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2285
2286         skb->protocol = eth_type_trans(skb, adapter->netdev);
2287         skb->ip_summed = CHECKSUM_NONE;
2288         netif_receive_skb(skb);
2289
2290 out:
2291         nic_return_rfd(adapter, rfd);
2292         return rfd;
2293 }
2294
2295 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2296 {
2297         struct rfd *rfd = NULL;
2298         int count = 0;
2299         int limit = budget;
2300         bool done = true;
2301         struct rx_ring *rx_ring = &adapter->rx_ring;
2302
2303         if (budget > MAX_PACKETS_HANDLED)
2304                 limit = MAX_PACKETS_HANDLED;
2305
2306         /* Process up to available RFD's */
2307         while (count < limit) {
2308                 if (list_empty(&rx_ring->recv_list)) {
2309                         WARN_ON(rx_ring->num_ready_recv != 0);
2310                         done = false;
2311                         break;
2312                 }
2313
2314                 rfd = nic_rx_pkts(adapter);
2315
2316                 if (rfd == NULL)
2317                         break;
2318
2319                 /* Do not receive any packets until a filter has been set.
2320                  * Do not receive any packets until we have link.
2321                  * If length is zero, return the RFD in order to advance the
2322                  * Free buffer ring.
2323                  */
2324                 if (!adapter->packet_filter ||
2325                     !netif_carrier_ok(adapter->netdev) ||
2326                     rfd->len == 0)
2327                         continue;
2328
2329                 adapter->netdev->stats.rx_packets++;
2330
2331                 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2332                         dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2333
2334                 count++;
2335         }
2336
2337         if (count == limit || !done) {
2338                 rx_ring->unfinished_receives = true;
2339                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2340                        &adapter->regs->global.watchdog_timer);
2341         } else {
2342                 /* Watchdog timer will disable itself if appropriate. */
2343                 rx_ring->unfinished_receives = false;
2344         }
2345
2346         return count;
2347 }
2348
2349 /* et131x_tx_dma_memory_alloc
2350  *
2351  * Allocates memory that will be visible both to the device and to the CPU.
2352  * The OS will pass us packets, pointers to which we will insert in the Tx
2353  * Descriptor queue. The device will read this queue to find the packets in
2354  * memory. The device will update the "status" in memory each time it xmits a
2355  * packet.
2356  */
2357 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2358 {
2359         int desc_size = 0;
2360         struct tx_ring *tx_ring = &adapter->tx_ring;
2361
2362         /* Allocate memory for the TCB's (Transmit Control Block) */
2363         tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2364                                     GFP_ATOMIC | GFP_DMA);
2365         if (!tx_ring->tcb_ring)
2366                 return -ENOMEM;
2367
2368         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2369         tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2370                                                    desc_size,
2371                                                    &tx_ring->tx_desc_ring_pa,
2372                                                    GFP_KERNEL);
2373         if (!tx_ring->tx_desc_ring) {
2374                 dev_err(&adapter->pdev->dev,
2375                         "Cannot alloc memory for Tx Ring\n");
2376                 return -ENOMEM;
2377         }
2378
2379         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2380                                                     sizeof(u32),
2381                                                     &tx_ring->tx_status_pa,
2382                                                     GFP_KERNEL);
2383         if (!tx_ring->tx_status) {
2384                 dev_err(&adapter->pdev->dev,
2385                         "Cannot alloc memory for Tx status block\n");
2386                 return -ENOMEM;
2387         }
2388         return 0;
2389 }
2390
2391 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2392 {
2393         int desc_size = 0;
2394         struct tx_ring *tx_ring = &adapter->tx_ring;
2395
2396         if (tx_ring->tx_desc_ring) {
2397                 /* Free memory relating to Tx rings here */
2398                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2399                 dma_free_coherent(&adapter->pdev->dev,
2400                                   desc_size,
2401                                   tx_ring->tx_desc_ring,
2402                                   tx_ring->tx_desc_ring_pa);
2403                 tx_ring->tx_desc_ring = NULL;
2404         }
2405
2406         /* Free memory for the Tx status block */
2407         if (tx_ring->tx_status) {
2408                 dma_free_coherent(&adapter->pdev->dev,
2409                                   sizeof(u32),
2410                                   tx_ring->tx_status,
2411                                   tx_ring->tx_status_pa);
2412
2413                 tx_ring->tx_status = NULL;
2414         }
2415         /* Free the memory for the tcb structures */
2416         kfree(tx_ring->tcb_ring);
2417 }
2418
2419 /* nic_send_packet - NIC specific send handler for version B silicon. */
2420 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2421 {
2422         u32 i;
2423         struct tx_desc desc[24];
2424         u32 frag = 0;
2425         u32 thiscopy, remainder;
2426         struct sk_buff *skb = tcb->skb;
2427         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2428         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2429         struct phy_device *phydev = adapter->phydev;
2430         dma_addr_t dma_addr;
2431         struct tx_ring *tx_ring = &adapter->tx_ring;
2432
2433         /* Part of the optimizations of this send routine restrict us to
2434          * sending 24 fragments at a pass.  In practice we should never see
2435          * more than 5 fragments.
2436          */
2437
2438         /* nr_frags should be no more than 18. */
2439         BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2440
2441         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2442
2443         for (i = 0; i < nr_frags; i++) {
2444                 /* If there is something in this element, lets get a
2445                  * descriptor from the ring and get the necessary data
2446                  */
2447                 if (i == 0) {
2448                         /* If the fragments are smaller than a standard MTU,
2449                          * then map them to a single descriptor in the Tx
2450                          * Desc ring. However, if they're larger, as is
2451                          * possible with support for jumbo packets, then
2452                          * split them each across 2 descriptors.
2453                          *
2454                          * This will work until we determine why the hardware
2455                          * doesn't seem to like large fragments.
2456                          */
2457                         if (skb_headlen(skb) <= 1514) {
2458                                 /* Low 16bits are length, high is vlan and
2459                                  * unused currently so zero
2460                                  */
2461                                 desc[frag].len_vlan = skb_headlen(skb);
2462                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2463                                                           skb->data,
2464                                                           skb_headlen(skb),
2465                                                           DMA_TO_DEVICE);
2466                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2467                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2468                                 frag++;
2469                         } else {
2470                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2471                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2472                                                           skb->data,
2473                                                           skb_headlen(skb) / 2,
2474                                                           DMA_TO_DEVICE);
2475                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2476                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2477                                 frag++;
2478
2479                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2480                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2481                                                           skb->data +
2482                                                           skb_headlen(skb) / 2,
2483                                                           skb_headlen(skb) / 2,
2484                                                           DMA_TO_DEVICE);
2485                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2486                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2487                                 frag++;
2488                         }
2489                 } else {
2490                         desc[frag].len_vlan = frags[i - 1].size;
2491                         dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2492                                                     &frags[i - 1],
2493                                                     0,
2494                                                     frags[i - 1].size,
2495                                                     DMA_TO_DEVICE);
2496                         desc[frag].addr_lo = lower_32_bits(dma_addr);
2497                         desc[frag].addr_hi = upper_32_bits(dma_addr);
2498                         frag++;
2499                 }
2500         }
2501
2502         if (phydev && phydev->speed == SPEED_1000) {
2503                 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2504                         /* Last element & Interrupt flag */
2505                         desc[frag - 1].flags =
2506                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2507                         tx_ring->since_irq = 0;
2508                 } else { /* Last element */
2509                         desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2510                 }
2511         } else {
2512                 desc[frag - 1].flags =
2513                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2514         }
2515
2516         desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2517
2518         tcb->index_start = tx_ring->send_idx;
2519         tcb->stale = 0;
2520
2521         thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2522
2523         if (thiscopy >= frag) {
2524                 remainder = 0;
2525                 thiscopy = frag;
2526         } else {
2527                 remainder = frag - thiscopy;
2528         }
2529
2530         memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2531                desc,
2532                sizeof(struct tx_desc) * thiscopy);
2533
2534         add_10bit(&tx_ring->send_idx, thiscopy);
2535
2536         if (INDEX10(tx_ring->send_idx) == 0 ||
2537             INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2538                 tx_ring->send_idx &= ~ET_DMA10_MASK;
2539                 tx_ring->send_idx ^= ET_DMA10_WRAP;
2540         }
2541
2542         if (remainder) {
2543                 memcpy(tx_ring->tx_desc_ring,
2544                        desc + thiscopy,
2545                        sizeof(struct tx_desc) * remainder);
2546
2547                 add_10bit(&tx_ring->send_idx, remainder);
2548         }
2549
2550         if (INDEX10(tx_ring->send_idx) == 0) {
2551                 if (tx_ring->send_idx)
2552                         tcb->index = NUM_DESC_PER_RING_TX - 1;
2553                 else
2554                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2555         } else {
2556                 tcb->index = tx_ring->send_idx - 1;
2557         }
2558
2559         spin_lock(&adapter->tcb_send_qlock);
2560
2561         if (tx_ring->send_tail)
2562                 tx_ring->send_tail->next = tcb;
2563         else
2564                 tx_ring->send_head = tcb;
2565
2566         tx_ring->send_tail = tcb;
2567
2568         WARN_ON(tcb->next != NULL);
2569
2570         tx_ring->used++;
2571
2572         spin_unlock(&adapter->tcb_send_qlock);
2573
2574         /* Write the new write pointer back to the device. */
2575         writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2576
2577         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2578          * timer to wake us up if this packet isn't followed by N more.
2579          */
2580         if (phydev && phydev->speed == SPEED_1000) {
2581                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2582                        &adapter->regs->global.watchdog_timer);
2583         }
2584         return 0;
2585 }
2586
2587 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2588 {
2589         int status;
2590         struct tcb *tcb;
2591         unsigned long flags;
2592         struct tx_ring *tx_ring = &adapter->tx_ring;
2593
2594         /* All packets must have at least a MAC address and a protocol type */
2595         if (skb->len < ETH_HLEN)
2596                 return -EIO;
2597
2598         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2599
2600         tcb = tx_ring->tcb_qhead;
2601
2602         if (tcb == NULL) {
2603                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2604                 return -ENOMEM;
2605         }
2606
2607         tx_ring->tcb_qhead = tcb->next;
2608
2609         if (tx_ring->tcb_qhead == NULL)
2610                 tx_ring->tcb_qtail = NULL;
2611
2612         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2613
2614         tcb->skb = skb;
2615         tcb->next = NULL;
2616
2617         status = nic_send_packet(adapter, tcb);
2618
2619         if (status != 0) {
2620                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2621
2622                 if (tx_ring->tcb_qtail)
2623                         tx_ring->tcb_qtail->next = tcb;
2624                 else
2625                         /* Apparently ready Q is empty. */
2626                         tx_ring->tcb_qhead = tcb;
2627
2628                 tx_ring->tcb_qtail = tcb;
2629                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2630                 return status;
2631         }
2632         WARN_ON(tx_ring->used > NUM_TCB);
2633         return 0;
2634 }
2635
2636 /* free_send_packet - Recycle a struct tcb */
2637 static inline void free_send_packet(struct et131x_adapter *adapter,
2638                                     struct tcb *tcb)
2639 {
2640         unsigned long flags;
2641         struct tx_desc *desc = NULL;
2642         struct net_device_stats *stats = &adapter->netdev->stats;
2643         struct tx_ring *tx_ring = &adapter->tx_ring;
2644         u64  dma_addr;
2645
2646         if (tcb->skb) {
2647                 stats->tx_bytes += tcb->skb->len;
2648
2649                 /* Iterate through the TX descriptors on the ring
2650                  * corresponding to this packet and umap the fragments
2651                  * they point to
2652                  */
2653                 do {
2654                         desc = tx_ring->tx_desc_ring +
2655                                INDEX10(tcb->index_start);
2656
2657                         dma_addr = desc->addr_lo;
2658                         dma_addr |= (u64)desc->addr_hi << 32;
2659
2660                         dma_unmap_single(&adapter->pdev->dev,
2661                                          dma_addr,
2662                                          desc->len_vlan, DMA_TO_DEVICE);
2663
2664                         add_10bit(&tcb->index_start, 1);
2665                         if (INDEX10(tcb->index_start) >=
2666                                                         NUM_DESC_PER_RING_TX) {
2667                                 tcb->index_start &= ~ET_DMA10_MASK;
2668                                 tcb->index_start ^= ET_DMA10_WRAP;
2669                         }
2670                 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2671
2672                 dev_kfree_skb_any(tcb->skb);
2673         }
2674
2675         memset(tcb, 0, sizeof(struct tcb));
2676
2677         /* Add the TCB to the Ready Q */
2678         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2679
2680         stats->tx_packets++;
2681
2682         if (tx_ring->tcb_qtail)
2683                 tx_ring->tcb_qtail->next = tcb;
2684         else /* Apparently ready Q is empty. */
2685                 tx_ring->tcb_qhead = tcb;
2686
2687         tx_ring->tcb_qtail = tcb;
2688
2689         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2690         WARN_ON(tx_ring->used < 0);
2691 }
2692
2693 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2694 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2695 {
2696         struct tcb *tcb;
2697         unsigned long flags;
2698         u32 freed = 0;
2699         struct tx_ring *tx_ring = &adapter->tx_ring;
2700
2701         /* Any packets being sent? Check the first TCB on the send list */
2702         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2703
2704         tcb = tx_ring->send_head;
2705
2706         while (tcb != NULL && freed < NUM_TCB) {
2707                 struct tcb *next = tcb->next;
2708
2709                 tx_ring->send_head = next;
2710
2711                 if (next == NULL)
2712                         tx_ring->send_tail = NULL;
2713
2714                 tx_ring->used--;
2715
2716                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2717
2718                 freed++;
2719                 free_send_packet(adapter, tcb);
2720
2721                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2722
2723                 tcb = tx_ring->send_head;
2724         }
2725
2726         WARN_ON(freed == NUM_TCB);
2727
2728         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2729
2730         tx_ring->used = 0;
2731 }
2732
2733 /* et131x_handle_send_pkts
2734  *
2735  * Re-claim the send resources, complete sends and get more to send from
2736  * the send wait queue.
2737  */
2738 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2739 {
2740         unsigned long flags;
2741         u32 serviced;
2742         struct tcb *tcb;
2743         u32 index;
2744         struct tx_ring *tx_ring = &adapter->tx_ring;
2745
2746         serviced = readl(&adapter->regs->txdma.new_service_complete);
2747         index = INDEX10(serviced);
2748
2749         /* Has the ring wrapped?  Process any descriptors that do not have
2750          * the same "wrap" indicator as the current completion indicator
2751          */
2752         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2753
2754         tcb = tx_ring->send_head;
2755
2756         while (tcb &&
2757                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2758                index < INDEX10(tcb->index)) {
2759                 tx_ring->used--;
2760                 tx_ring->send_head = tcb->next;
2761                 if (tcb->next == NULL)
2762                         tx_ring->send_tail = NULL;
2763
2764                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2765                 free_send_packet(adapter, tcb);
2766                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2767
2768                 /* Goto the next packet */
2769                 tcb = tx_ring->send_head;
2770         }
2771         while (tcb &&
2772                !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2773                index > (tcb->index & ET_DMA10_MASK)) {
2774                 tx_ring->used--;
2775                 tx_ring->send_head = tcb->next;
2776                 if (tcb->next == NULL)
2777                         tx_ring->send_tail = NULL;
2778
2779                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2780                 free_send_packet(adapter, tcb);
2781                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2782
2783                 /* Goto the next packet */
2784                 tcb = tx_ring->send_head;
2785         }
2786
2787         /* Wake up the queue when we hit a low-water mark */
2788         if (tx_ring->used <= NUM_TCB / 3)
2789                 netif_wake_queue(adapter->netdev);
2790
2791         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2792 }
2793
2794 static int et131x_get_settings(struct net_device *netdev,
2795                                struct ethtool_cmd *cmd)
2796 {
2797         struct et131x_adapter *adapter = netdev_priv(netdev);
2798
2799         return phy_ethtool_gset(adapter->phydev, cmd);
2800 }
2801
2802 static int et131x_set_settings(struct net_device *netdev,
2803                                struct ethtool_cmd *cmd)
2804 {
2805         struct et131x_adapter *adapter = netdev_priv(netdev);
2806
2807         return phy_ethtool_sset(adapter->phydev, cmd);
2808 }
2809
2810 static int et131x_get_regs_len(struct net_device *netdev)
2811 {
2812 #define ET131X_REGS_LEN 256
2813         return ET131X_REGS_LEN * sizeof(u32);
2814 }
2815
2816 static void et131x_get_regs(struct net_device *netdev,
2817                             struct ethtool_regs *regs, void *regs_data)
2818 {
2819         struct et131x_adapter *adapter = netdev_priv(netdev);
2820         struct address_map __iomem *aregs = adapter->regs;
2821         u32 *regs_buff = regs_data;
2822         u32 num = 0;
2823         u16 tmp;
2824
2825         memset(regs_data, 0, et131x_get_regs_len(netdev));
2826
2827         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2828                         adapter->pdev->device;
2829
2830         /* PHY regs */
2831         et131x_mii_read(adapter, MII_BMCR, &tmp);
2832         regs_buff[num++] = tmp;
2833         et131x_mii_read(adapter, MII_BMSR, &tmp);
2834         regs_buff[num++] = tmp;
2835         et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2836         regs_buff[num++] = tmp;
2837         et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2838         regs_buff[num++] = tmp;
2839         et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2840         regs_buff[num++] = tmp;
2841         et131x_mii_read(adapter, MII_LPA, &tmp);
2842         regs_buff[num++] = tmp;
2843         et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2844         regs_buff[num++] = tmp;
2845         /* Autoneg next page transmit reg */
2846         et131x_mii_read(adapter, 0x07, &tmp);
2847         regs_buff[num++] = tmp;
2848         /* Link partner next page reg */
2849         et131x_mii_read(adapter, 0x08, &tmp);
2850         regs_buff[num++] = tmp;
2851         et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2852         regs_buff[num++] = tmp;
2853         et131x_mii_read(adapter, MII_STAT1000, &tmp);
2854         regs_buff[num++] = tmp;
2855         et131x_mii_read(adapter, 0x0b, &tmp);
2856         regs_buff[num++] = tmp;
2857         et131x_mii_read(adapter, 0x0c, &tmp);
2858         regs_buff[num++] = tmp;
2859         et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2860         regs_buff[num++] = tmp;
2861         et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2862         regs_buff[num++] = tmp;
2863         et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2864         regs_buff[num++] = tmp;
2865
2866         et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2867         regs_buff[num++] = tmp;
2868         et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2869         regs_buff[num++] = tmp;
2870         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2871         regs_buff[num++] = tmp;
2872         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2873         regs_buff[num++] = tmp;
2874         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2875         regs_buff[num++] = tmp;
2876
2877         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2878         regs_buff[num++] = tmp;
2879         et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2880         regs_buff[num++] = tmp;
2881         et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2882         regs_buff[num++] = tmp;
2883         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2884         regs_buff[num++] = tmp;
2885         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2886         regs_buff[num++] = tmp;
2887         et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2888         regs_buff[num++] = tmp;
2889         et131x_mii_read(adapter, PHY_LED_1, &tmp);
2890         regs_buff[num++] = tmp;
2891         et131x_mii_read(adapter, PHY_LED_2, &tmp);
2892         regs_buff[num++] = tmp;
2893
2894         /* Global regs */
2895         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2896         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2897         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2898         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2899         regs_buff[num++] = readl(&aregs->global.pm_csr);
2900         regs_buff[num++] = adapter->stats.interrupt_status;
2901         regs_buff[num++] = readl(&aregs->global.int_mask);
2902         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2903         regs_buff[num++] = readl(&aregs->global.int_status_alias);
2904         regs_buff[num++] = readl(&aregs->global.sw_reset);
2905         regs_buff[num++] = readl(&aregs->global.slv_timer);
2906         regs_buff[num++] = readl(&aregs->global.msi_config);
2907         regs_buff[num++] = readl(&aregs->global.loopback);
2908         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2909
2910         /* TXDMA regs */
2911         regs_buff[num++] = readl(&aregs->txdma.csr);
2912         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2913         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2914         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2915         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2916         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2917         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2918         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2919         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2920         regs_buff[num++] = readl(&aregs->txdma.service_request);
2921         regs_buff[num++] = readl(&aregs->txdma.service_complete);
2922         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2923         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2924         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2925         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2926         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2927         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2928         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2929         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2930         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2931         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2932         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2933         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2934         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2935         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2936         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2937
2938         /* RXDMA regs */
2939         regs_buff[num++] = readl(&aregs->rxdma.csr);
2940         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2941         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2942         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2943         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2944         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2945         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2946         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2947         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2948         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2949         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2950         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2951         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2952         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2953         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2954         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2955         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2956         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2957         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2958         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2959         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2960         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2961         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2962         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2963         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2964         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2965         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2966         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2967         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2968 }
2969
2970 static void et131x_get_drvinfo(struct net_device *netdev,
2971                                struct ethtool_drvinfo *info)
2972 {
2973         struct et131x_adapter *adapter = netdev_priv(netdev);
2974
2975         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2976         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2977         strlcpy(info->bus_info, pci_name(adapter->pdev),
2978                 sizeof(info->bus_info));
2979 }
2980
2981 static struct ethtool_ops et131x_ethtool_ops = {
2982         .get_settings   = et131x_get_settings,
2983         .set_settings   = et131x_set_settings,
2984         .get_drvinfo    = et131x_get_drvinfo,
2985         .get_regs_len   = et131x_get_regs_len,
2986         .get_regs       = et131x_get_regs,
2987         .get_link       = ethtool_op_get_link,
2988 };
2989
2990 /* et131x_hwaddr_init - set up the MAC Address */
2991 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2992 {
2993         /* If have our default mac from init and no mac address from
2994          * EEPROM then we need to generate the last octet and set it on the
2995          * device
2996          */
2997         if (is_zero_ether_addr(adapter->rom_addr)) {
2998                 /* We need to randomly generate the last octet so we
2999                  * decrease our chances of setting the mac address to
3000                  * same as another one of our cards in the system
3001                  */
3002                 get_random_bytes(&adapter->addr[5], 1);
3003                 /* We have the default value in the register we are
3004                  * working with so we need to copy the current
3005                  * address into the permanent address
3006                  */
3007                 ether_addr_copy(adapter->rom_addr, adapter->addr);
3008         } else {
3009                 /* We do not have an override address, so set the
3010                  * current address to the permanent address and add
3011                  * it to the device
3012                  */
3013                 ether_addr_copy(adapter->addr, adapter->rom_addr);
3014         }
3015 }
3016
3017 static int et131x_pci_init(struct et131x_adapter *adapter,
3018                            struct pci_dev *pdev)
3019 {
3020         u16 max_payload;
3021         int i, rc;
3022
3023         rc = et131x_init_eeprom(adapter);
3024         if (rc < 0)
3025                 goto out;
3026
3027         if (!pci_is_pcie(pdev)) {
3028                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3029                 goto err_out;
3030         }
3031
3032         /* Program the Ack/Nak latency and replay timers */
3033         max_payload = pdev->pcie_mpss;
3034
3035         if (max_payload < 2) {
3036                 static const u16 acknak[2] = { 0x76, 0xD0 };
3037                 static const u16 replay[2] = { 0x1E0, 0x2ED };
3038
3039                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3040                                           acknak[max_payload])) {
3041                         dev_err(&pdev->dev,
3042                                 "Could not write PCI config space for ACK/NAK\n");
3043                         goto err_out;
3044                 }
3045                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3046                                           replay[max_payload])) {
3047                         dev_err(&pdev->dev,
3048                                 "Could not write PCI config space for Replay Timer\n");
3049                         goto err_out;
3050                 }
3051         }
3052
3053         /* l0s and l1 latency timers.  We are using default values.
3054          * Representing 001 for L0s and 010 for L1
3055          */
3056         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3057                 dev_err(&pdev->dev,
3058                         "Could not write PCI config space for Latency Timers\n");
3059                 goto err_out;
3060         }
3061
3062         /* Change the max read size to 2k */
3063         if (pcie_set_readrq(pdev, 2048)) {
3064                 dev_err(&pdev->dev,
3065                         "Couldn't change PCI config space for Max read size\n");
3066                 goto err_out;
3067         }
3068
3069         /* Get MAC address from config space if an eeprom exists, otherwise
3070          * the MAC address there will not be valid
3071          */
3072         if (!adapter->has_eeprom) {
3073                 et131x_hwaddr_init(adapter);
3074                 return 0;
3075         }
3076
3077         for (i = 0; i < ETH_ALEN; i++) {
3078                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3079                                          adapter->rom_addr + i)) {
3080                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3081                         goto err_out;
3082                 }
3083         }
3084         ether_addr_copy(adapter->addr, adapter->rom_addr);
3085 out:
3086         return rc;
3087 err_out:
3088         rc = -EIO;
3089         goto out;
3090 }
3091
3092 /* et131x_error_timer_handler
3093  * @data: timer-specific variable; here a pointer to our adapter structure
3094  *
3095  * The routine called when the error timer expires, to track the number of
3096  * recurring errors.
3097  */
3098 static void et131x_error_timer_handler(unsigned long data)
3099 {
3100         struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3101         struct phy_device *phydev = adapter->phydev;
3102
3103         if (et1310_in_phy_coma(adapter)) {
3104                 /* Bring the device immediately out of coma, to
3105                  * prevent it from sleeping indefinitely, this
3106                  * mechanism could be improved!
3107                  */
3108                 et1310_disable_phy_coma(adapter);
3109                 adapter->boot_coma = 20;
3110         } else {
3111                 et1310_update_macstat_host_counters(adapter);
3112         }
3113
3114         if (!phydev->link && adapter->boot_coma < 11)
3115                 adapter->boot_coma++;
3116
3117         if (adapter->boot_coma == 10) {
3118                 if (!phydev->link) {
3119                         if (!et1310_in_phy_coma(adapter)) {
3120                                 /* NOTE - This was originally a 'sync with
3121                                  *  interrupt'. How to do that under Linux?
3122                                  */
3123                                 et131x_enable_interrupts(adapter);
3124                                 et1310_enable_phy_coma(adapter);
3125                         }
3126                 }
3127         }
3128
3129         /* This is a periodic timer, so reschedule */
3130         mod_timer(&adapter->error_timer, jiffies +
3131                   msecs_to_jiffies(TX_ERROR_PERIOD));
3132 }
3133
3134 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3135 {
3136         et131x_tx_dma_memory_free(adapter);
3137         et131x_rx_dma_memory_free(adapter);
3138 }
3139
3140 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3141 {
3142         int status;
3143
3144         status = et131x_tx_dma_memory_alloc(adapter);
3145         if (status) {
3146                 dev_err(&adapter->pdev->dev,
3147                         "et131x_tx_dma_memory_alloc FAILED\n");
3148                 et131x_tx_dma_memory_free(adapter);
3149                 return status;
3150         }
3151
3152         status = et131x_rx_dma_memory_alloc(adapter);
3153         if (status) {
3154                 dev_err(&adapter->pdev->dev,
3155                         "et131x_rx_dma_memory_alloc FAILED\n");
3156                 et131x_adapter_memory_free(adapter);
3157                 return status;
3158         }
3159
3160         status = et131x_init_recv(adapter);
3161         if (status) {
3162                 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3163                 et131x_adapter_memory_free(adapter);
3164         }
3165         return status;
3166 }
3167
3168 static void et131x_adjust_link(struct net_device *netdev)
3169 {
3170         struct et131x_adapter *adapter = netdev_priv(netdev);
3171         struct  phy_device *phydev = adapter->phydev;
3172
3173         if (!phydev)
3174                 return;
3175         if (phydev->link == adapter->link)
3176                 return;
3177
3178         /* Check to see if we are in coma mode and if
3179          * so, disable it because we will not be able
3180          * to read PHY values until we are out.
3181          */
3182         if (et1310_in_phy_coma(adapter))
3183                 et1310_disable_phy_coma(adapter);
3184
3185         adapter->link = phydev->link;
3186         phy_print_status(phydev);
3187
3188         if (phydev->link) {
3189                 adapter->boot_coma = 20;
3190                 if (phydev->speed == SPEED_10) {
3191                         u16 register18;
3192
3193                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3194                                         &register18);
3195                         et131x_mii_write(adapter, phydev->mdio.addr,
3196                                          PHY_MPHY_CONTROL_REG,
3197                                          register18 | 0x4);
3198                         et131x_mii_write(adapter, phydev->mdio.addr,
3199                                          PHY_INDEX_REG, register18 | 0x8402);
3200                         et131x_mii_write(adapter, phydev->mdio.addr,
3201                                          PHY_DATA_REG, register18 | 511);
3202                         et131x_mii_write(adapter, phydev->mdio.addr,
3203                                          PHY_MPHY_CONTROL_REG, register18);
3204                 }
3205
3206                 et1310_config_flow_control(adapter);
3207
3208                 if (phydev->speed == SPEED_1000 &&
3209                     adapter->registry_jumbo_packet > 2048) {
3210                         u16 reg;
3211
3212                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
3213                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3214                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3215                         et131x_mii_write(adapter, phydev->mdio.addr,
3216                                          PHY_CONFIG, reg);
3217                 }
3218
3219                 et131x_set_rx_dma_timer(adapter);
3220                 et1310_config_mac_regs2(adapter);
3221         } else {
3222                 adapter->boot_coma = 0;
3223
3224                 if (phydev->speed == SPEED_10) {
3225                         u16 register18;
3226
3227                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3228                                         &register18);
3229                         et131x_mii_write(adapter, phydev->mdio.addr,
3230                                          PHY_MPHY_CONTROL_REG,
3231                                          register18 | 0x4);
3232                         et131x_mii_write(adapter, phydev->mdio.addr,
3233                                          PHY_INDEX_REG, register18 | 0x8402);
3234                         et131x_mii_write(adapter, phydev->mdio.addr,
3235                                          PHY_DATA_REG, register18 | 511);
3236                         et131x_mii_write(adapter, phydev->mdio.addr,
3237                                          PHY_MPHY_CONTROL_REG, register18);
3238                 }
3239
3240                 et131x_free_busy_send_packets(adapter);
3241                 et131x_init_send(adapter);
3242
3243                 /* Bring the device back to the state it was during
3244                  * init prior to autonegotiation being complete. This
3245                  * way, when we get the auto-neg complete interrupt,
3246                  * we can complete init by calling config_mac_regs2.
3247                  */
3248                 et131x_soft_reset(adapter);
3249
3250                 et131x_adapter_setup(adapter);
3251
3252                 et131x_disable_txrx(netdev);
3253                 et131x_enable_txrx(netdev);
3254         }
3255 }
3256
3257 static int et131x_mii_probe(struct net_device *netdev)
3258 {
3259         struct et131x_adapter *adapter = netdev_priv(netdev);
3260         struct  phy_device *phydev = NULL;
3261
3262         phydev = phy_find_first(adapter->mii_bus);
3263         if (!phydev) {
3264                 dev_err(&adapter->pdev->dev, "no PHY found\n");
3265                 return -ENODEV;
3266         }
3267
3268         phydev = phy_connect(netdev, phydev_name(phydev),
3269                              &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3270
3271         if (IS_ERR(phydev)) {
3272                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3273                 return PTR_ERR(phydev);
3274         }
3275
3276         phydev->supported &= (SUPPORTED_10baseT_Half |
3277                               SUPPORTED_10baseT_Full |
3278                               SUPPORTED_100baseT_Half |
3279                               SUPPORTED_100baseT_Full |
3280                               SUPPORTED_Autoneg |
3281                               SUPPORTED_MII |
3282                               SUPPORTED_TP);
3283
3284         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3285                 phydev->supported |= SUPPORTED_1000baseT_Half |
3286                                      SUPPORTED_1000baseT_Full;
3287
3288         phydev->advertising = phydev->supported;
3289         phydev->autoneg = AUTONEG_ENABLE;
3290         adapter->phydev = phydev;
3291
3292         phy_attached_info(phydev);
3293
3294         return 0;
3295 }
3296
3297 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3298                                                   struct pci_dev *pdev)
3299 {
3300         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3301
3302         struct et131x_adapter *adapter;
3303
3304         adapter = netdev_priv(netdev);
3305         adapter->pdev = pci_dev_get(pdev);
3306         adapter->netdev = netdev;
3307
3308         spin_lock_init(&adapter->tcb_send_qlock);
3309         spin_lock_init(&adapter->tcb_ready_qlock);
3310         spin_lock_init(&adapter->rcv_lock);
3311
3312         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3313
3314         ether_addr_copy(adapter->addr, default_mac);
3315
3316         return adapter;
3317 }
3318
3319 static void et131x_pci_remove(struct pci_dev *pdev)
3320 {
3321         struct net_device *netdev = pci_get_drvdata(pdev);
3322         struct et131x_adapter *adapter = netdev_priv(netdev);
3323
3324         unregister_netdev(netdev);
3325         netif_napi_del(&adapter->napi);
3326         phy_disconnect(adapter->phydev);
3327         mdiobus_unregister(adapter->mii_bus);
3328         mdiobus_free(adapter->mii_bus);
3329
3330         et131x_adapter_memory_free(adapter);
3331         iounmap(adapter->regs);
3332         pci_dev_put(pdev);
3333
3334         free_netdev(netdev);
3335         pci_release_regions(pdev);
3336         pci_disable_device(pdev);
3337 }
3338
3339 static void et131x_up(struct net_device *netdev)
3340 {
3341         struct et131x_adapter *adapter = netdev_priv(netdev);
3342
3343         et131x_enable_txrx(netdev);
3344         phy_start(adapter->phydev);
3345 }
3346
3347 static void et131x_down(struct net_device *netdev)
3348 {
3349         struct et131x_adapter *adapter = netdev_priv(netdev);
3350
3351         /* Save the timestamp for the TX watchdog, prevent a timeout */
3352         netif_trans_update(netdev);
3353
3354         phy_stop(adapter->phydev);
3355         et131x_disable_txrx(netdev);
3356 }
3357
3358 #ifdef CONFIG_PM_SLEEP
3359 static int et131x_suspend(struct device *dev)
3360 {
3361         struct pci_dev *pdev = to_pci_dev(dev);
3362         struct net_device *netdev = pci_get_drvdata(pdev);
3363
3364         if (netif_running(netdev)) {
3365                 netif_device_detach(netdev);
3366                 et131x_down(netdev);
3367                 pci_save_state(pdev);
3368         }
3369
3370         return 0;
3371 }
3372
3373 static int et131x_resume(struct device *dev)
3374 {
3375         struct pci_dev *pdev = to_pci_dev(dev);
3376         struct net_device *netdev = pci_get_drvdata(pdev);
3377
3378         if (netif_running(netdev)) {
3379                 pci_restore_state(pdev);
3380                 et131x_up(netdev);
3381                 netif_device_attach(netdev);
3382         }
3383
3384         return 0;
3385 }
3386 #endif
3387
3388 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3389
3390 static irqreturn_t et131x_isr(int irq, void *dev_id)
3391 {
3392         bool handled = true;
3393         bool enable_interrupts = true;
3394         struct net_device *netdev = dev_id;
3395         struct et131x_adapter *adapter = netdev_priv(netdev);
3396         struct address_map __iomem *iomem = adapter->regs;
3397         struct rx_ring *rx_ring = &adapter->rx_ring;
3398         struct tx_ring *tx_ring = &adapter->tx_ring;
3399         u32 status;
3400
3401         if (!netif_device_present(netdev)) {
3402                 handled = false;
3403                 enable_interrupts = false;
3404                 goto out;
3405         }
3406
3407         et131x_disable_interrupts(adapter);
3408
3409         status = readl(&adapter->regs->global.int_status);
3410
3411         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3412                 status &= ~INT_MASK_ENABLE;
3413         else
3414                 status &= ~INT_MASK_ENABLE_NO_FLOW;
3415
3416         /* Make sure this is our interrupt */
3417         if (!status) {
3418                 handled = false;
3419                 et131x_enable_interrupts(adapter);
3420                 goto out;
3421         }
3422
3423         /* This is our interrupt, so process accordingly */
3424         if (status & ET_INTR_WATCHDOG) {
3425                 struct tcb *tcb = tx_ring->send_head;
3426
3427                 if (tcb)
3428                         if (++tcb->stale > 1)
3429                                 status |= ET_INTR_TXDMA_ISR;
3430
3431                 if (rx_ring->unfinished_receives)
3432                         status |= ET_INTR_RXDMA_XFR_DONE;
3433                 else if (tcb == NULL)
3434                         writel(0, &adapter->regs->global.watchdog_timer);
3435
3436                 status &= ~ET_INTR_WATCHDOG;
3437         }
3438
3439         if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3440                 enable_interrupts = false;
3441                 napi_schedule(&adapter->napi);
3442         }
3443
3444         status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3445
3446         if (!status)
3447                 goto out;
3448
3449         if (status & ET_INTR_TXDMA_ERR) {
3450                 /* Following read also clears the register (COR) */
3451                 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3452
3453                 dev_warn(&adapter->pdev->dev,
3454                          "TXDMA_ERR interrupt, error = %d\n",
3455                          txdma_err);
3456         }
3457
3458         if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3459                 /* This indicates the number of unused buffers in RXDMA free
3460                  * buffer ring 0 is <= the limit you programmed. Free buffer
3461                  * resources need to be returned.  Free buffers are consumed as
3462                  * packets are passed from the network to the host. The host
3463                  * becomes aware of the packets from the contents of the packet
3464                  * status ring. This ring is queried when the packet done
3465                  * interrupt occurs. Packets are then passed to the OS. When
3466                  * the OS is done with the packets the resources can be
3467                  * returned to the ET1310 for re-use. This interrupt is one
3468                  * method of returning resources.
3469                  */
3470
3471                 /*  If the user has flow control on, then we will
3472                  * send a pause packet, otherwise just exit
3473                  */
3474                 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3475                         u32 pm_csr;
3476
3477                         /* Tell the device to send a pause packet via the back
3478                          * pressure register (bp req and bp xon/xoff)
3479                          */
3480                         pm_csr = readl(&iomem->global.pm_csr);
3481                         if (!et1310_in_phy_coma(adapter))
3482                                 writel(3, &iomem->txmac.bp_ctrl);
3483                 }
3484         }
3485
3486         /* Handle Packet Status Ring Low Interrupt */
3487         if (status & ET_INTR_RXDMA_STAT_LOW) {
3488                 /* Same idea as with the two Free Buffer Rings. Packets going
3489                  * from the network to the host each consume a free buffer
3490                  * resource and a packet status resource. These resources are
3491                  * passed to the OS. When the OS is done with the resources,
3492                  * they need to be returned to the ET1310. This is one method
3493                  * of returning the resources.
3494                  */
3495         }
3496
3497         if (status & ET_INTR_RXDMA_ERR) {
3498                 /* The rxdma_error interrupt is sent when a time-out on a
3499                  * request issued by the JAGCore has occurred or a completion is
3500                  * returned with an un-successful status. In both cases the
3501                  * request is considered complete. The JAGCore will
3502                  * automatically re-try the request in question. Normally
3503                  * information on events like these are sent to the host using
3504                  * the "Advanced Error Reporting" capability. This interrupt is
3505                  * another way of getting similar information. The only thing
3506                  * required is to clear the interrupt by reading the ISR in the
3507                  * global resources. The JAGCore will do a re-try on the
3508                  * request. Normally you should never see this interrupt. If
3509                  * you start to see this interrupt occurring frequently then
3510                  * something bad has occurred. A reset might be the thing to do.
3511                  */
3512                 /* TRAP();*/
3513
3514                 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3515                          readl(&iomem->txmac.tx_test));
3516         }
3517
3518         /* Handle the Wake on LAN Event */
3519         if (status & ET_INTR_WOL) {
3520                 /* This is a secondary interrupt for wake on LAN. The driver
3521                  * should never see this, if it does, something serious is
3522                  * wrong.
3523                  */
3524                 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3525         }
3526
3527         if (status & ET_INTR_TXMAC) {
3528                 u32 err = readl(&iomem->txmac.err);
3529
3530                 /* When any of the errors occur and TXMAC generates an
3531                  * interrupt to report these errors, it usually means that
3532                  * TXMAC has detected an error in the data stream retrieved
3533                  * from the on-chip Tx Q. All of these errors are catastrophic
3534                  * and TXMAC won't be able to recover data when these errors
3535                  * occur. In a nutshell, the whole Tx path will have to be reset
3536                  * and re-configured afterwards.
3537                  */
3538                 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3539                          err);
3540
3541                 /* If we are debugging, we want to see this error, otherwise we
3542                  * just want the device to be reset and continue
3543                  */
3544         }
3545
3546         if (status & ET_INTR_RXMAC) {
3547                 /* These interrupts are catastrophic to the device, what we need
3548                  * to do is disable the interrupts and set the flag to cause us
3549                  * to reset so we can solve this issue.
3550                  */
3551                 dev_warn(&adapter->pdev->dev,
3552                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3553                          readl(&iomem->rxmac.err_reg));
3554
3555                 dev_warn(&adapter->pdev->dev,
3556                          "Enable 0x%08x, Diag 0x%08x\n",
3557                          readl(&iomem->rxmac.ctrl),
3558                          readl(&iomem->rxmac.rxq_diag));
3559
3560                 /* If we are debugging, we want to see this error, otherwise we
3561                  * just want the device to be reset and continue
3562                  */
3563         }
3564
3565         if (status & ET_INTR_MAC_STAT) {
3566                 /* This means at least one of the un-masked counters in the
3567                  * MAC_STAT block has rolled over. Use this to maintain the top,
3568                  * software managed bits of the counter(s).
3569                  */
3570                 et1310_handle_macstat_interrupt(adapter);
3571         }
3572
3573         if (status & ET_INTR_SLV_TIMEOUT) {
3574                 /* This means a timeout has occurred on a read or write request
3575                  * to one of the JAGCore registers. The Global Resources block
3576                  * has terminated the request and on a read request, returned a
3577                  * "fake" value. The most likely reasons are: Bad Address or the
3578                  * addressed module is in a power-down state and can't respond.
3579                  */
3580         }
3581
3582 out:
3583         if (enable_interrupts)
3584                 et131x_enable_interrupts(adapter);
3585
3586         return IRQ_RETVAL(handled);
3587 }
3588
3589 static int et131x_poll(struct napi_struct *napi, int budget)
3590 {
3591         struct et131x_adapter *adapter =
3592                 container_of(napi, struct et131x_adapter, napi);
3593         int work_done = et131x_handle_recv_pkts(adapter, budget);
3594
3595         et131x_handle_send_pkts(adapter);
3596
3597         if (work_done < budget) {
3598                 napi_complete(&adapter->napi);
3599                 et131x_enable_interrupts(adapter);
3600         }
3601
3602         return work_done;
3603 }
3604
3605 /* et131x_stats - Return the current device statistics  */
3606 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3607 {
3608         struct et131x_adapter *adapter = netdev_priv(netdev);
3609         struct net_device_stats *stats = &adapter->netdev->stats;
3610         struct ce_stats *devstat = &adapter->stats;
3611
3612         stats->rx_errors = devstat->rx_length_errs +
3613                            devstat->rx_align_errs +
3614                            devstat->rx_crc_errs +
3615                            devstat->rx_code_violations +
3616                            devstat->rx_other_errs;
3617         stats->tx_errors = devstat->tx_max_pkt_errs;
3618         stats->multicast = devstat->multicast_pkts_rcvd;
3619         stats->collisions = devstat->tx_collisions;
3620
3621         stats->rx_length_errors = devstat->rx_length_errs;
3622         stats->rx_over_errors = devstat->rx_overflows;
3623         stats->rx_crc_errors = devstat->rx_crc_errs;
3624         stats->rx_dropped = devstat->rcvd_pkts_dropped;
3625
3626         /* NOTE: Not used, can't find analogous statistics */
3627         /* stats->rx_frame_errors     = devstat->; */
3628         /* stats->rx_fifo_errors      = devstat->; */
3629         /* stats->rx_missed_errors    = devstat->; */
3630
3631         /* stats->tx_aborted_errors   = devstat->; */
3632         /* stats->tx_carrier_errors   = devstat->; */
3633         /* stats->tx_fifo_errors      = devstat->; */
3634         /* stats->tx_heartbeat_errors = devstat->; */
3635         /* stats->tx_window_errors    = devstat->; */
3636         return stats;
3637 }
3638
3639 static int et131x_open(struct net_device *netdev)
3640 {
3641         struct et131x_adapter *adapter = netdev_priv(netdev);
3642         struct pci_dev *pdev = adapter->pdev;
3643         unsigned int irq = pdev->irq;
3644         int result;
3645
3646         /* Start the timer to track NIC errors */
3647         init_timer(&adapter->error_timer);
3648         adapter->error_timer.expires = jiffies +
3649                 msecs_to_jiffies(TX_ERROR_PERIOD);
3650         adapter->error_timer.function = et131x_error_timer_handler;
3651         adapter->error_timer.data = (unsigned long)adapter;
3652         add_timer(&adapter->error_timer);
3653
3654         result = request_irq(irq, et131x_isr,
3655                              IRQF_SHARED, netdev->name, netdev);
3656         if (result) {
3657                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3658                 return result;
3659         }
3660
3661         adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3662
3663         napi_enable(&adapter->napi);
3664
3665         et131x_up(netdev);
3666
3667         return result;
3668 }
3669
3670 static int et131x_close(struct net_device *netdev)
3671 {
3672         struct et131x_adapter *adapter = netdev_priv(netdev);
3673
3674         et131x_down(netdev);
3675         napi_disable(&adapter->napi);
3676
3677         adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3678         free_irq(adapter->pdev->irq, netdev);
3679
3680         /* Stop the error timer */
3681         return del_timer_sync(&adapter->error_timer);
3682 }
3683
3684 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3685                         int cmd)
3686 {
3687         struct et131x_adapter *adapter = netdev_priv(netdev);
3688
3689         if (!adapter->phydev)
3690                 return -EINVAL;
3691
3692         return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
3693 }
3694
3695 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3696 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3697 {
3698         int filter = adapter->packet_filter;
3699         u32 ctrl;
3700         u32 pf_ctrl;
3701
3702         ctrl = readl(&adapter->regs->rxmac.ctrl);
3703         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3704
3705         /* Default to disabled packet filtering */
3706         ctrl |= 0x04;
3707
3708         /* Set us to be in promiscuous mode so we receive everything, this
3709          * is also true when we get a packet filter of 0
3710          */
3711         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3712                 pf_ctrl &= ~7;  /* Clear filter bits */
3713         else {
3714                 /* Set us up with Multicast packet filtering.  Three cases are
3715                  * possible - (1) we have a multi-cast list, (2) we receive ALL
3716                  * multicast entries or (3) we receive none.
3717                  */
3718                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3719                         pf_ctrl &= ~2;  /* Multicast filter bit */
3720                 else {
3721                         et1310_setup_device_for_multicast(adapter);
3722                         pf_ctrl |= 2;
3723                         ctrl &= ~0x04;
3724                 }
3725
3726                 /* Set us up with Unicast packet filtering */
3727                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3728                         et1310_setup_device_for_unicast(adapter);
3729                         pf_ctrl |= 4;
3730                         ctrl &= ~0x04;
3731                 }
3732
3733                 /* Set us up with Broadcast packet filtering */
3734                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3735                         pf_ctrl |= 1;   /* Broadcast filter bit */
3736                         ctrl &= ~0x04;
3737                 } else {
3738                         pf_ctrl &= ~1;
3739                 }
3740
3741                 /* Setup the receive mac configuration registers - Packet
3742                  * Filter control + the enable / disable for packet filter
3743                  * in the control reg.
3744                  */
3745                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3746                 writel(ctrl, &adapter->regs->rxmac.ctrl);
3747         }
3748         return 0;
3749 }
3750
3751 static void et131x_multicast(struct net_device *netdev)
3752 {
3753         struct et131x_adapter *adapter = netdev_priv(netdev);
3754         int packet_filter;
3755         struct netdev_hw_addr *ha;
3756         int i;
3757
3758         /* Before we modify the platform-independent filter flags, store them
3759          * locally. This allows us to determine if anything's changed and if
3760          * we even need to bother the hardware
3761          */
3762         packet_filter = adapter->packet_filter;
3763
3764         /* Clear the 'multicast' flag locally; because we only have a single
3765          * flag to check multicast, and multiple multicast addresses can be
3766          * set, this is the easiest way to determine if more than one
3767          * multicast address is being set.
3768          */
3769         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3770
3771         /* Check the net_device flags and set the device independent flags
3772          * accordingly
3773          */
3774         if (netdev->flags & IFF_PROMISC)
3775                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3776         else
3777                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3778
3779         if ((netdev->flags & IFF_ALLMULTI) ||
3780             (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3781                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3782
3783         if (netdev_mc_count(netdev) < 1) {
3784                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3785                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3786         } else {
3787                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3788         }
3789
3790         /* Set values in the private adapter struct */
3791         i = 0;
3792         netdev_for_each_mc_addr(ha, netdev) {
3793                 if (i == NIC_MAX_MCAST_LIST)
3794                         break;
3795                 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3796         }
3797         adapter->multicast_addr_count = i;
3798
3799         /* Are the new flags different from the previous ones? If not, then no
3800          * action is required
3801          *
3802          * NOTE - This block will always update the multicast_list with the
3803          *        hardware, even if the addresses aren't the same.
3804          */
3805         if (packet_filter != adapter->packet_filter)
3806                 et131x_set_packet_filter(adapter);
3807 }
3808
3809 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3810 {
3811         struct et131x_adapter *adapter = netdev_priv(netdev);
3812         struct tx_ring *tx_ring = &adapter->tx_ring;
3813
3814         /* stop the queue if it's getting full */
3815         if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3816                 netif_stop_queue(netdev);
3817
3818         /* Save the timestamp for the TX timeout watchdog */
3819         netif_trans_update(netdev);
3820
3821         /* TCB is not available */
3822         if (tx_ring->used >= NUM_TCB)
3823                 goto drop_err;
3824
3825         if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3826             !netif_carrier_ok(netdev))
3827                 goto drop_err;
3828
3829         if (send_packet(skb, adapter))
3830                 goto drop_err;
3831
3832         return NETDEV_TX_OK;
3833
3834 drop_err:
3835         dev_kfree_skb_any(skb);
3836         adapter->netdev->stats.tx_dropped++;
3837         return NETDEV_TX_OK;
3838 }
3839
3840 /* et131x_tx_timeout - Timeout handler
3841  *
3842  * The handler called when a Tx request times out. The timeout period is
3843  * specified by the 'tx_timeo" element in the net_device structure (see
3844  * et131x_alloc_device() to see how this value is set).
3845  */
3846 static void et131x_tx_timeout(struct net_device *netdev)
3847 {
3848         struct et131x_adapter *adapter = netdev_priv(netdev);
3849         struct tx_ring *tx_ring = &adapter->tx_ring;
3850         struct tcb *tcb;
3851         unsigned long flags;
3852
3853         /* If the device is closed, ignore the timeout */
3854         if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3855                 return;
3856
3857         /* Any nonrecoverable hardware error?
3858          * Checks adapter->flags for any failure in phy reading
3859          */
3860         if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3861                 return;
3862
3863         /* Hardware failure? */
3864         if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3865                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3866                 return;
3867         }
3868
3869         /* Is send stuck? */
3870         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3871         tcb = tx_ring->send_head;
3872         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3873
3874         if (tcb) {
3875                 tcb->count++;
3876
3877                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3878                         dev_warn(&adapter->pdev->dev,
3879                                  "Send stuck - reset. tcb->WrIndex %x\n",
3880                                  tcb->index);
3881
3882                         adapter->netdev->stats.tx_errors++;
3883
3884                         /* perform reset of tx/rx */
3885                         et131x_disable_txrx(netdev);
3886                         et131x_enable_txrx(netdev);
3887                 }
3888         }
3889 }
3890
3891 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3892 {
3893         int result = 0;
3894         struct et131x_adapter *adapter = netdev_priv(netdev);
3895
3896         if (new_mtu < 64 || new_mtu > 9216)
3897                 return -EINVAL;
3898
3899         et131x_disable_txrx(netdev);
3900
3901         netdev->mtu = new_mtu;
3902
3903         et131x_adapter_memory_free(adapter);
3904
3905         /* Set the config parameter for Jumbo Packet support */
3906         adapter->registry_jumbo_packet = new_mtu + 14;
3907         et131x_soft_reset(adapter);
3908
3909         result = et131x_adapter_memory_alloc(adapter);
3910         if (result != 0) {
3911                 dev_warn(&adapter->pdev->dev,
3912                          "Change MTU failed; couldn't re-alloc DMA memory\n");
3913                 return result;
3914         }
3915
3916         et131x_init_send(adapter);
3917         et131x_hwaddr_init(adapter);
3918         ether_addr_copy(netdev->dev_addr, adapter->addr);
3919
3920         /* Init the device with the new settings */
3921         et131x_adapter_setup(adapter);
3922         et131x_enable_txrx(netdev);
3923
3924         return result;
3925 }
3926
3927 static const struct net_device_ops et131x_netdev_ops = {
3928         .ndo_open               = et131x_open,
3929         .ndo_stop               = et131x_close,
3930         .ndo_start_xmit         = et131x_tx,
3931         .ndo_set_rx_mode        = et131x_multicast,
3932         .ndo_tx_timeout         = et131x_tx_timeout,
3933         .ndo_change_mtu         = et131x_change_mtu,
3934         .ndo_set_mac_address    = eth_mac_addr,
3935         .ndo_validate_addr      = eth_validate_addr,
3936         .ndo_get_stats          = et131x_stats,
3937         .ndo_do_ioctl           = et131x_ioctl,
3938 };
3939
3940 static int et131x_pci_setup(struct pci_dev *pdev,
3941                             const struct pci_device_id *ent)
3942 {
3943         struct net_device *netdev;
3944         struct et131x_adapter *adapter;
3945         int rc;
3946
3947         rc = pci_enable_device(pdev);
3948         if (rc < 0) {
3949                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3950                 goto out;
3951         }
3952
3953         /* Perform some basic PCI checks */
3954         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3955                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3956                 rc = -ENODEV;
3957                 goto err_disable;
3958         }
3959
3960         rc = pci_request_regions(pdev, DRIVER_NAME);
3961         if (rc < 0) {
3962                 dev_err(&pdev->dev, "Can't get PCI resources\n");
3963                 goto err_disable;
3964         }
3965
3966         pci_set_master(pdev);
3967
3968         /* Check the DMA addressing support of this device */
3969         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3970             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3971                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3972                 rc = -EIO;
3973                 goto err_release_res;
3974         }
3975
3976         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3977         if (!netdev) {
3978                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3979                 rc = -ENOMEM;
3980                 goto err_release_res;
3981         }
3982
3983         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3984         netdev->netdev_ops     = &et131x_netdev_ops;
3985
3986         SET_NETDEV_DEV(netdev, &pdev->dev);
3987         netdev->ethtool_ops = &et131x_ethtool_ops;
3988
3989         adapter = et131x_adapter_init(netdev, pdev);
3990
3991         rc = et131x_pci_init(adapter, pdev);
3992         if (rc < 0)
3993                 goto err_free_dev;
3994
3995         /* Map the bus-relative registers to system virtual memory */
3996         adapter->regs = pci_ioremap_bar(pdev, 0);
3997         if (!adapter->regs) {
3998                 dev_err(&pdev->dev, "Cannot map device registers\n");
3999                 rc = -ENOMEM;
4000                 goto err_free_dev;
4001         }
4002
4003         /* If Phy COMA mode was enabled when we went down, disable it here. */
4004         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
4005
4006         et131x_soft_reset(adapter);
4007         et131x_disable_interrupts(adapter);
4008
4009         rc = et131x_adapter_memory_alloc(adapter);
4010         if (rc < 0) {
4011                 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
4012                 goto err_iounmap;
4013         }
4014
4015         et131x_init_send(adapter);
4016
4017         netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
4018
4019         ether_addr_copy(netdev->dev_addr, adapter->addr);
4020
4021         rc = -ENOMEM;
4022
4023         adapter->mii_bus = mdiobus_alloc();
4024         if (!adapter->mii_bus) {
4025                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4026                 goto err_mem_free;
4027         }
4028
4029         adapter->mii_bus->name = "et131x_eth_mii";
4030         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4031                  (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4032         adapter->mii_bus->priv = netdev;
4033         adapter->mii_bus->read = et131x_mdio_read;
4034         adapter->mii_bus->write = et131x_mdio_write;
4035
4036         rc = mdiobus_register(adapter->mii_bus);
4037         if (rc < 0) {
4038                 dev_err(&pdev->dev, "failed to register MII bus\n");
4039                 goto err_mdio_free;
4040         }
4041
4042         rc = et131x_mii_probe(netdev);
4043         if (rc < 0) {
4044                 dev_err(&pdev->dev, "failed to probe MII bus\n");
4045                 goto err_mdio_unregister;
4046         }
4047
4048         et131x_adapter_setup(adapter);
4049
4050         /* Init variable for counting how long we do not have link status */
4051         adapter->boot_coma = 0;
4052         et1310_disable_phy_coma(adapter);
4053
4054         /* We can enable interrupts now
4055          *
4056          *  NOTE - Because registration of interrupt handler is done in the
4057          *         device's open(), defer enabling device interrupts to that
4058          *         point
4059          */
4060
4061         rc = register_netdev(netdev);
4062         if (rc < 0) {
4063                 dev_err(&pdev->dev, "register_netdev() failed\n");
4064                 goto err_phy_disconnect;
4065         }
4066
4067         /* Register the net_device struct with the PCI subsystem. Save a copy
4068          * of the PCI config space for this device now that the device has
4069          * been initialized, just in case it needs to be quickly restored.
4070          */
4071         pci_set_drvdata(pdev, netdev);
4072 out:
4073         return rc;
4074
4075 err_phy_disconnect:
4076         phy_disconnect(adapter->phydev);
4077 err_mdio_unregister:
4078         mdiobus_unregister(adapter->mii_bus);
4079 err_mdio_free:
4080         mdiobus_free(adapter->mii_bus);
4081 err_mem_free:
4082         et131x_adapter_memory_free(adapter);
4083 err_iounmap:
4084         iounmap(adapter->regs);
4085 err_free_dev:
4086         pci_dev_put(pdev);
4087         free_netdev(netdev);
4088 err_release_res:
4089         pci_release_regions(pdev);
4090 err_disable:
4091         pci_disable_device(pdev);
4092         goto out;
4093 }
4094
4095 static const struct pci_device_id et131x_pci_table[] = {
4096         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4097         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4098         { 0,}
4099 };
4100 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4101
4102 static struct pci_driver et131x_driver = {
4103         .name           = DRIVER_NAME,
4104         .id_table       = et131x_pci_table,
4105         .probe          = et131x_pci_setup,
4106         .remove         = et131x_pci_remove,
4107         .driver.pm      = &et131x_pm_ops,
4108 };
4109
4110 module_pci_driver(et131x_driver);