]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *wb_comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580                 bnx2x_panic();
581         }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591                 int i;
592
593                 if (CHIP_IS_E1(bp))
594                         for (i = 0; i < len32; i++)
595                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596                 else
597                         for (i = 0; i < len32; i++)
598                                 data[i] = REG_RD(bp, src_addr + i*4);
599
600                 return;
601         }
602
603         /* set opcode and fixed command fields */
604         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606         /* fill in addresses and len */
607         dmae.src_addr_lo = src_addr >> 2;
608         dmae.src_addr_hi = 0;
609         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611         dmae.len = len32;
612
613         /* issue the command and wait for completion */
614         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615         if (rc) {
616                 BNX2X_ERR("DMAE returned failure %d\n", rc);
617                 bnx2x_panic();
618         }
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622                                       u32 addr, u32 len)
623 {
624         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625         int offset = 0;
626
627         while (len > dmae_wr_max) {
628                 bnx2x_write_dmae(bp, phys_addr + offset,
629                                  addr + offset, dmae_wr_max);
630                 offset += dmae_wr_max * 4;
631                 len -= dmae_wr_max;
632         }
633
634         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639         char last_idx;
640         int i, rc = 0;
641         u32 row0, row1, row2, row3;
642
643         /* XSTORM */
644         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
646         if (last_idx)
647                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649         /* print the asserts */
650         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653                               XSTORM_ASSERT_LIST_OFFSET(i));
654                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663                                   i, row3, row2, row1, row0);
664                         rc++;
665                 } else {
666                         break;
667                 }
668         }
669
670         /* TSTORM */
671         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
673         if (last_idx)
674                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676         /* print the asserts */
677         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680                               TSTORM_ASSERT_LIST_OFFSET(i));
681                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690                                   i, row3, row2, row1, row0);
691                         rc++;
692                 } else {
693                         break;
694                 }
695         }
696
697         /* CSTORM */
698         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
700         if (last_idx)
701                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703         /* print the asserts */
704         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707                               CSTORM_ASSERT_LIST_OFFSET(i));
708                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717                                   i, row3, row2, row1, row0);
718                         rc++;
719                 } else {
720                         break;
721                 }
722         }
723
724         /* USTORM */
725         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726                            USTORM_ASSERT_LIST_INDEX_OFFSET);
727         if (last_idx)
728                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730         /* print the asserts */
731         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734                               USTORM_ASSERT_LIST_OFFSET(i));
735                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
737                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
739                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744                                   i, row3, row2, row1, row0);
745                         rc++;
746                 } else {
747                         break;
748                 }
749         }
750
751         return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778         addr = trace_shmem_base - 0x800;
779
780         /* validate TRCB signature */
781         mark = REG_RD(bp, addr);
782         if (mark != MFW_TRACE_SIGNATURE) {
783                 BNX2X_ERR("Trace buffer signature is missing.");
784                 return ;
785         }
786
787         /* read cyclic buffer pointer */
788         addr += 4;
789         mark = REG_RD(bp, addr);
790         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791                         + ((mark + 0x3) & ~0x3) - 0x08000000;
792         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794         printk("%s", lvl);
795
796         /* dump buffer after the mark */
797         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798                 for (word = 0; word < 8; word++)
799                         data[word] = htonl(REG_RD(bp, offset + 4*word));
800                 data[8] = 0x0;
801                 pr_cont("%s", (char *)data);
802         }
803
804         /* dump buffer before the mark */
805         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806                 for (word = 0; word < 8; word++)
807                         data[word] = htonl(REG_RD(bp, offset + 4*word));
808                 data[8] = 0x0;
809                 pr_cont("%s", (char *)data);
810         }
811         printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816         bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821         int port = BP_PORT(bp);
822         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823         u32 val = REG_RD(bp, addr);
824
825         /* in E1 we must use only PCI configuration space to disable
826          * MSI/MSIX capability
827          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828          */
829         if (CHIP_IS_E1(bp)) {
830                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831                  * Use mask register to prevent from HC sending interrupts
832                  * after we exit the function
833                  */
834                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
838                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839         } else
840                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
843                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845         DP(NETIF_MSG_IFDOWN,
846            "write %x to HC %d (addr 0x%x)\n",
847            val, port, addr);
848
849         /* flush all outstanding writes */
850         mmiowb();
851
852         REG_WR(bp, addr, val);
853         if (REG_RD(bp, addr) != val)
854                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862                  IGU_PF_CONF_INT_LINE_EN |
863                  IGU_PF_CONF_ATTN_BIT_EN);
864
865         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877         if (bp->common.int_block == INT_BLOCK_HC)
878                 bnx2x_hc_int_disable(bp);
879         else
880                 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885         int i;
886         u16 j;
887         struct hc_sp_status_block_data sp_sb_data;
888         int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890         u16 start = 0, end = 0;
891         u8 cos;
892 #endif
893         if (disable_int)
894                 bnx2x_int_disable(bp);
895
896         bp->stats_state = STATS_STATE_DISABLED;
897         bp->eth_stats.unrecoverable_error++;
898         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900         BNX2X_ERR("begin crash dump -----------------\n");
901
902         /* Indices */
903         /* Common */
904         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905                   bp->def_idx, bp->def_att_idx, bp->attn_state,
906                   bp->spq_prod_idx, bp->stats_counter);
907         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908                   bp->def_status_blk->atten_status_block.attn_bits,
909                   bp->def_status_blk->atten_status_block.attn_bits_ack,
910                   bp->def_status_blk->atten_status_block.status_block_id,
911                   bp->def_status_blk->atten_status_block.attn_bits_index);
912         BNX2X_ERR("     def (");
913         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914                 pr_cont("0x%x%s",
915                         bp->def_status_blk->sp_sb.index_values[i],
916                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917
918         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921                         i*sizeof(u32));
922
923         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924                sp_sb_data.igu_sb_id,
925                sp_sb_data.igu_seg_id,
926                sp_sb_data.p_func.pf_id,
927                sp_sb_data.p_func.vnic_id,
928                sp_sb_data.p_func.vf_id,
929                sp_sb_data.p_func.vf_valid,
930                sp_sb_data.state);
931
932         for_each_eth_queue(bp, i) {
933                 struct bnx2x_fastpath *fp = &bp->fp[i];
934                 int loop;
935                 struct hc_status_block_data_e2 sb_data_e2;
936                 struct hc_status_block_data_e1x sb_data_e1x;
937                 struct hc_status_block_sm  *hc_sm_p =
938                         CHIP_IS_E1x(bp) ?
939                         sb_data_e1x.common.state_machine :
940                         sb_data_e2.common.state_machine;
941                 struct hc_index_data *hc_index_p =
942                         CHIP_IS_E1x(bp) ?
943                         sb_data_e1x.index_data :
944                         sb_data_e2.index_data;
945                 u8 data_size, cos;
946                 u32 *sb_data_p;
947                 struct bnx2x_fp_txdata txdata;
948
949                 /* Rx */
950                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951                           i, fp->rx_bd_prod, fp->rx_bd_cons,
952                           fp->rx_comp_prod,
953                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955                           fp->rx_sge_prod, fp->last_max_sge,
956                           le16_to_cpu(fp->fp_hc_idx));
957
958                 /* Tx */
959                 for_each_cos_in_tx_queue(fp, cos)
960                 {
961                         txdata = *fp->txdata_ptr[cos];
962                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963                                   i, txdata.tx_pkt_prod,
964                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
965                                   txdata.tx_bd_cons,
966                                   le16_to_cpu(*txdata.tx_cons_sb));
967                 }
968
969                 loop = CHIP_IS_E1x(bp) ?
970                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972                 /* host sb data */
973
974                 if (IS_FCOE_FP(fp))
975                         continue;
976
977                 BNX2X_ERR("     run indexes (");
978                 for (j = 0; j < HC_SB_MAX_SM; j++)
979                         pr_cont("0x%x%s",
980                                fp->sb_running_index[j],
981                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983                 BNX2X_ERR("     indexes (");
984                 for (j = 0; j < loop; j++)
985                         pr_cont("0x%x%s",
986                                fp->sb_index_values[j],
987                                (j == loop - 1) ? ")" : " ");
988                 /* fw sb data */
989                 data_size = CHIP_IS_E1x(bp) ?
990                         sizeof(struct hc_status_block_data_e1x) :
991                         sizeof(struct hc_status_block_data_e2);
992                 data_size /= sizeof(u32);
993                 sb_data_p = CHIP_IS_E1x(bp) ?
994                         (u32 *)&sb_data_e1x :
995                         (u32 *)&sb_data_e2;
996                 /* copy sb data in here */
997                 for (j = 0; j < data_size; j++)
998                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000                                 j * sizeof(u32));
1001
1002                 if (!CHIP_IS_E1x(bp)) {
1003                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004                                 sb_data_e2.common.p_func.pf_id,
1005                                 sb_data_e2.common.p_func.vf_id,
1006                                 sb_data_e2.common.p_func.vf_valid,
1007                                 sb_data_e2.common.p_func.vnic_id,
1008                                 sb_data_e2.common.same_igu_sb_1b,
1009                                 sb_data_e2.common.state);
1010                 } else {
1011                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012                                 sb_data_e1x.common.p_func.pf_id,
1013                                 sb_data_e1x.common.p_func.vf_id,
1014                                 sb_data_e1x.common.p_func.vf_valid,
1015                                 sb_data_e1x.common.p_func.vnic_id,
1016                                 sb_data_e1x.common.same_igu_sb_1b,
1017                                 sb_data_e1x.common.state);
1018                 }
1019
1020                 /* SB_SMs data */
1021                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023                                 j, hc_sm_p[j].__flags,
1024                                 hc_sm_p[j].igu_sb_id,
1025                                 hc_sm_p[j].igu_seg_id,
1026                                 hc_sm_p[j].time_to_expire,
1027                                 hc_sm_p[j].timer_value);
1028                 }
1029
1030                 /* Indices data */
1031                 for (j = 0; j < loop; j++) {
1032                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040         /* event queue */
1041         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042         for (i = 0; i < NUM_EQ_DESC; i++) {
1043                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046                           i, bp->eq_ring[i].message.opcode,
1047                           bp->eq_ring[i].message.error);
1048                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049         }
1050
1051         /* Rings */
1052         /* Rx */
1053         for_each_valid_rx_queue(bp, i) {
1054                 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058                 for (j = start; j != end; j = RX_BD(j + 1)) {
1059                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064                 }
1065
1066                 start = RX_SGE(fp->rx_sge_prod);
1067                 end = RX_SGE(fp->last_max_sge);
1068                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074                 }
1075
1076                 start = RCQ_BD(fp->rx_comp_cons - 10);
1077                 end = RCQ_BD(fp->rx_comp_cons + 503);
1078                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083                 }
1084         }
1085
1086         /* Tx */
1087         for_each_valid_tx_queue(bp, i) {
1088                 struct bnx2x_fastpath *fp = &bp->fp[i];
1089                 for_each_cos_in_tx_queue(fp, cos) {
1090                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094                         for (j = start; j != end; j = TX_BD(j + 1)) {
1095                                 struct sw_tx_bd *sw_bd =
1096                                         &txdata->tx_buf_ring[j];
1097
1098                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099                                           i, cos, j, sw_bd->skb,
1100                                           sw_bd->first_bd);
1101                         }
1102
1103                         start = TX_BD(txdata->tx_bd_cons - 10);
1104                         end = TX_BD(txdata->tx_bd_cons + 254);
1105                         for (j = start; j != end; j = TX_BD(j + 1)) {
1106                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109                                           i, cos, j, tx_bd[0], tx_bd[1],
1110                                           tx_bd[2], tx_bd[3]);
1111                         }
1112                 }
1113         }
1114 #endif
1115         bnx2x_fw_dump(bp);
1116         bnx2x_mc_assert(bp);
1117         BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL       50      /* usec */
1128 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131         int pN;
1132         u32 init_crd;
1133         u32 crd;
1134         u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138         int pN;
1139         u32 lines_occup;
1140         u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144                                      struct pbf_pN_buf_regs *regs,
1145                                      u32 poll_count)
1146 {
1147         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148         u32 cur_cnt = poll_count;
1149
1150         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151         crd = crd_start = REG_RD(bp, regs->crd);
1152         init_crd = REG_RD(bp, regs->init_crd);
1153
1154         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159                (init_crd - crd_start))) {
1160                 if (cur_cnt--) {
1161                         udelay(FLR_WAIT_INTERVAL);
1162                         crd = REG_RD(bp, regs->crd);
1163                         crd_freed = REG_RD(bp, regs->crd_freed);
1164                 } else {
1165                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166                            regs->pN);
1167                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168                            regs->pN, crd);
1169                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170                            regs->pN, crd_freed);
1171                         break;
1172                 }
1173         }
1174         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179                                      struct pbf_pN_cmd_regs *regs,
1180                                      u32 poll_count)
1181 {
1182         u32 occup, to_free, freed, freed_start;
1183         u32 cur_cnt = poll_count;
1184
1185         occup = to_free = REG_RD(bp, regs->lines_occup);
1186         freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192                 if (cur_cnt--) {
1193                         udelay(FLR_WAIT_INTERVAL);
1194                         occup = REG_RD(bp, regs->lines_occup);
1195                         freed = REG_RD(bp, regs->lines_freed);
1196                 } else {
1197                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198                            regs->pN);
1199                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200                            regs->pN, occup);
1201                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202                            regs->pN, freed);
1203                         break;
1204                 }
1205         }
1206         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211                                     u32 expected, u32 poll_count)
1212 {
1213         u32 cur_cnt = poll_count;
1214         u32 val;
1215
1216         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217                 udelay(FLR_WAIT_INTERVAL);
1218
1219         return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223                                     char *msg, u32 poll_cnt)
1224 {
1225         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226         if (val != 0) {
1227                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228                 return 1;
1229         }
1230         return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236         /* adjust polling timeout */
1237         if (CHIP_REV_IS_EMUL(bp))
1238                 return FLR_POLL_CNT * 2000;
1239
1240         if (CHIP_REV_IS_FPGA(bp))
1241                 return FLR_POLL_CNT * 120;
1242
1243         return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248         struct pbf_pN_cmd_regs cmd_regs[] = {
1249                 {0, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_Q0 :
1251                         PBF_REG_P0_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1255                 {1, (CHIP_IS_E3B0(bp)) ?
1256                         PBF_REG_TQ_OCCUPANCY_Q1 :
1257                         PBF_REG_P1_TQ_OCCUPANCY,
1258                     (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1261                 {4, (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1263                         PBF_REG_P4_TQ_OCCUPANCY,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1267         };
1268
1269         struct pbf_pN_buf_regs buf_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_INIT_CRD_Q0 :
1272                         PBF_REG_P0_INIT_CRD ,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_CREDIT_Q0 :
1275                         PBF_REG_P0_CREDIT,
1276                     (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279                 {1, (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_INIT_CRD_Q1 :
1281                         PBF_REG_P1_INIT_CRD,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_CREDIT_Q1 :
1284                         PBF_REG_P1_CREDIT,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288                 {4, (CHIP_IS_E3B0(bp)) ?
1289                         PBF_REG_INIT_CRD_LB_Q :
1290                         PBF_REG_P4_INIT_CRD,
1291                     (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_CREDIT_LB_Q :
1293                         PBF_REG_P4_CREDIT,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297         };
1298
1299         int i;
1300
1301         /* Verify the command queues are flushed P0, P1, P4 */
1302         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305         /* Verify the transmission buffers are flushed P0, P1, P4 */
1306         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321         u32 op_gen_command = 0;
1322         u32 comp_addr = BAR_CSTRORM_INTMEM +
1323                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324         int ret = 0;
1325
1326         if (REG_RD(bp, comp_addr)) {
1327                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328                 return 1;
1329         }
1330
1331         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340                 BNX2X_ERR("FW final cleanup did not succeed\n");
1341                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342                    (REG_RD(bp, comp_addr)));
1343                 bnx2x_panic();
1344                 return 1;
1345         }
1346         /* Zero completion for next FLR */
1347         REG_WR(bp, comp_addr, 0);
1348
1349         return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354         u16 status;
1355
1356         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357         return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1367                         "CFC PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         DORQ_REG_PF_USAGE_CNT,
1374                         "DQ PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381                         "QM PF usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384
1385         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388                         "Timers VNIC usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393                         "Timers NUM_SCANS usage counter timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         /* Wait DMAE PF usage counter to zero */
1398         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1400                         "DMAE command register timed out",
1401                         poll_cnt))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409         u32 val;
1410
1411         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434            val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443         /* Re-enable PF target read access */
1444         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446         /* Poll HW usage counters */
1447         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449                 return -EBUSY;
1450
1451         /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453         /* Send the FW cleanup command */
1454         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455                 return -EBUSY;
1456
1457         /* ATC cleanup */
1458
1459         /* Verify TX hw is flushed */
1460         bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462         /* Wait 100ms (not adjusted according to platform) */
1463         msleep(100);
1464
1465         /* Verify no pending pci transactions */
1466         if (bnx2x_is_pcie_pending(bp->pdev))
1467                 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469         /* Debug */
1470         bnx2x_hw_enable_status(bp);
1471
1472         /*
1473          * Master enable - Due to WB DMAE writes performed before this
1474          * register is re-initialized as part of the regular function init
1475          */
1476         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483         int port = BP_PORT(bp);
1484         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485         u32 val = REG_RD(bp, addr);
1486         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490         if (msix) {
1491                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1493                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495                 if (single_msix)
1496                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497         } else if (msi) {
1498                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502         } else {
1503                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508                 if (!CHIP_IS_E1(bp)) {
1509                         DP(NETIF_MSG_IFUP,
1510                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512                         REG_WR(bp, addr, val);
1513
1514                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515                 }
1516         }
1517
1518         if (CHIP_IS_E1(bp))
1519                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521         DP(NETIF_MSG_IFUP,
1522            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525         REG_WR(bp, addr, val);
1526         /*
1527          * Ensure that HC_CONFIG is written before leading/trailing edge config
1528          */
1529         mmiowb();
1530         barrier();
1531
1532         if (!CHIP_IS_E1(bp)) {
1533                 /* init leading/trailing edge */
1534                 if (IS_MF(bp)) {
1535                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536                         if (bp->port.pmf)
1537                                 /* enable nig and gpio3 attention */
1538                                 val |= 0x1100;
1539                 } else
1540                         val = 0xffff;
1541
1542                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544         }
1545
1546         /* Make sure that interrupts are indeed enabled from here on */
1547         mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552         u32 val;
1553         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559         if (msix) {
1560                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561                          IGU_PF_CONF_SINGLE_ISR_EN);
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN);
1564
1565                 if (single_msix)
1566                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567         } else if (msi) {
1568                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570                         IGU_PF_CONF_ATTN_BIT_EN |
1571                         IGU_PF_CONF_SINGLE_ISR_EN);
1572         } else {
1573                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574                 val |= (IGU_PF_CONF_INT_LINE_EN |
1575                         IGU_PF_CONF_ATTN_BIT_EN |
1576                         IGU_PF_CONF_SINGLE_ISR_EN);
1577         }
1578
1579         /* Clean previous status - need to configure igu prior to ack*/
1580         if ((!msix) || single_msix) {
1581                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582                 bnx2x_ack_int(bp);
1583         }
1584
1585         val |= IGU_PF_CONF_FUNC_EN;
1586
1587         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592         if (val & IGU_PF_CONF_INT_LINE_EN)
1593                 pci_intx(bp->pdev, true);
1594
1595         barrier();
1596
1597         /* init leading/trailing edge */
1598         if (IS_MF(bp)) {
1599                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                 if (bp->port.pmf)
1601                         /* enable nig and gpio3 attention */
1602                         val |= 0x1100;
1603         } else
1604                 val = 0xffff;
1605
1606         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609         /* Make sure that interrupts are indeed enabled from here on */
1610         mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615         if (bp->common.int_block == INT_BLOCK_HC)
1616                 bnx2x_hc_int_enable(bp);
1617         else
1618                 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624         int i, offset;
1625
1626         if (disable_hw)
1627                 /* prevent the HW from sending interrupts */
1628                 bnx2x_int_disable(bp);
1629
1630         /* make sure all ISRs are done */
1631         if (msix) {
1632                 synchronize_irq(bp->msix_table[0].vector);
1633                 offset = 1;
1634                 if (CNIC_SUPPORT(bp))
1635                         offset++;
1636                 for_each_eth_queue(bp, i)
1637                         synchronize_irq(bp->msix_table[offset++].vector);
1638         } else
1639                 synchronize_irq(bp->pdev->irq);
1640
1641         /* make sure sp_task is not running */
1642         cancel_delayed_work(&bp->sp_task);
1643         cancel_delayed_work(&bp->period_task);
1644         flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650  * General service functions
1651  */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656         u32 lock_status;
1657         u32 resource_bit = (1 << resource);
1658         int func = BP_FUNC(bp);
1659         u32 hw_lock_control_reg;
1660
1661         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662            "Trying to take a lock on resource %d\n", resource);
1663
1664         /* Validating that the resource is within range */
1665         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669                 return false;
1670         }
1671
1672         if (func <= 5)
1673                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674         else
1675                 hw_lock_control_reg =
1676                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678         /* Try to acquire the lock */
1679         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680         lock_status = REG_RD(bp, hw_lock_control_reg);
1681         if (lock_status & resource_bit)
1682                 return true;
1683
1684         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685            "Failed to get a lock on resource %d\n", resource);
1686         return false;
1687 }
1688
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp: driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699         if (BP_PATH(bp))
1700                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701         else
1702                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722         /* Set the interrupt occurred bit for the sp-task to recognize it
1723          * must ack the interrupt and transition according to the IGU
1724          * state machine.
1725          */
1726         atomic_set(&bp->interrupt_occurred, 1);
1727
1728         /* The sp_task must execute only after this bit
1729          * is set, otherwise we will get out of sync and miss all
1730          * further interrupts. Hence, the barrier.
1731          */
1732         smp_wmb();
1733
1734         /* schedule sp_task to workqueue */
1735         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740         struct bnx2x *bp = fp->bp;
1741         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746         DP(BNX2X_MSG_SP,
1747            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748            fp->index, cid, command, bp->state,
1749            rr_cqe->ramrod_cqe.ramrod_type);
1750
1751         /* If cid is within VF range, replace the slowpath object with the
1752          * one corresponding to this VF
1753          */
1754         if (cid >= BNX2X_FIRST_VF_CID  &&
1755             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758         switch (command) {
1759         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762                 break;
1763
1764         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766                 drv_cmd = BNX2X_Q_CMD_SETUP;
1767                 break;
1768
1769         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772                 break;
1773
1774         case (RAMROD_CMD_ID_ETH_HALT):
1775                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776                 drv_cmd = BNX2X_Q_CMD_HALT;
1777                 break;
1778
1779         case (RAMROD_CMD_ID_ETH_TERMINATE):
1780                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782                 break;
1783
1784         case (RAMROD_CMD_ID_ETH_EMPTY):
1785                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787                 break;
1788
1789         default:
1790                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791                           command, fp->index);
1792                 return;
1793         }
1794
1795         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797                 /* q_obj->complete_cmd() failure means that this was
1798                  * an unexpected completion.
1799                  *
1800                  * In this case we don't want to increase the bp->spq_left
1801                  * because apparently we haven't sent this command the first
1802                  * place.
1803                  */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805                 bnx2x_panic();
1806 #else
1807                 return;
1808 #endif
1809         /* SRIOV: reschedule any 'in_progress' operations */
1810         bnx2x_iov_sp_event(bp, cid, true);
1811
1812         smp_mb__before_atomic_inc();
1813         atomic_inc(&bp->cq_spq_left);
1814         /* push the change in bp->spq_left and towards the memory */
1815         smp_mb__after_atomic_inc();
1816
1817         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821                 /* if Q update ramrod is completed for last Q in AFEX vif set
1822                  * flow, then ACK MCP at the end
1823                  *
1824                  * mark pending ACK to MCP bit.
1825                  * prevent case that both bits are cleared.
1826                  * At the end of load/unload driver checks that
1827                  * sp_state is cleared, and this order prevents
1828                  * races
1829                  */
1830                 smp_mb__before_clear_bit();
1831                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832                 wmb();
1833                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834                 smp_mb__after_clear_bit();
1835
1836                 /* schedule the sp task as mcp ack is required */
1837                 bnx2x_schedule_sp_task(bp);
1838         }
1839
1840         return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845         struct bnx2x *bp = netdev_priv(dev_instance);
1846         u16 status = bnx2x_ack_int(bp);
1847         u16 mask;
1848         int i;
1849         u8 cos;
1850
1851         /* Return here if interrupt is shared and it's not for us */
1852         if (unlikely(status == 0)) {
1853                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854                 return IRQ_NONE;
1855         }
1856         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859         if (unlikely(bp->panic))
1860                 return IRQ_HANDLED;
1861 #endif
1862
1863         for_each_eth_queue(bp, i) {
1864                 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867                 if (status & mask) {
1868                         /* Handle Rx or Tx according to SB id */
1869                         for_each_cos_in_tx_queue(fp, cos)
1870                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1872                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873                         status &= ~mask;
1874                 }
1875         }
1876
1877         if (CNIC_SUPPORT(bp)) {
1878                 mask = 0x2;
1879                 if (status & (mask | 0x1)) {
1880                         struct cnic_ops *c_ops = NULL;
1881
1882                         rcu_read_lock();
1883                         c_ops = rcu_dereference(bp->cnic_ops);
1884                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1885                                       CNIC_DRV_STATE_HANDLES_IRQ))
1886                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1887                         rcu_read_unlock();
1888
1889                         status &= ~mask;
1890                 }
1891         }
1892
1893         if (unlikely(status & 0x1)) {
1894
1895                 /* schedule sp task to perform default status block work, ack
1896                  * attentions and enable interrupts.
1897                  */
1898                 bnx2x_schedule_sp_task(bp);
1899
1900                 status &= ~0x1;
1901                 if (!status)
1902                         return IRQ_HANDLED;
1903         }
1904
1905         if (unlikely(status))
1906                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907                    status);
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915  * General service functions
1916  */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920         u32 lock_status;
1921         u32 resource_bit = (1 << resource);
1922         int func = BP_FUNC(bp);
1923         u32 hw_lock_control_reg;
1924         int cnt;
1925
1926         /* Validating that the resource is within range */
1927         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930                 return -EINVAL;
1931         }
1932
1933         if (func <= 5) {
1934                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935         } else {
1936                 hw_lock_control_reg =
1937                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938         }
1939
1940         /* Validating that the resource is not already taken */
1941         lock_status = REG_RD(bp, hw_lock_control_reg);
1942         if (lock_status & resource_bit) {
1943                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944                    lock_status, resource_bit);
1945                 return -EEXIST;
1946         }
1947
1948         /* Try for 5 second every 5ms */
1949         for (cnt = 0; cnt < 1000; cnt++) {
1950                 /* Try to acquire the lock */
1951                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952                 lock_status = REG_RD(bp, hw_lock_control_reg);
1953                 if (lock_status & resource_bit)
1954                         return 0;
1955
1956                 usleep_range(5000, 10000);
1957         }
1958         BNX2X_ERR("Timeout\n");
1959         return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973
1974         /* Validating that the resource is within range */
1975         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978                 return -EINVAL;
1979         }
1980
1981         if (func <= 5) {
1982                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983         } else {
1984                 hw_lock_control_reg =
1985                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986         }
1987
1988         /* Validating that the resource is currently taken */
1989         lock_status = REG_RD(bp, hw_lock_control_reg);
1990         if (!(lock_status & resource_bit)) {
1991                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992                           lock_status, resource_bit);
1993                 return -EFAULT;
1994         }
1995
1996         REG_WR(bp, hw_lock_control_reg, resource_bit);
1997         return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002         /* The GPIO should be swapped if swap register is set and active */
2003         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005         int gpio_shift = gpio_num +
2006                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007         u32 gpio_mask = (1 << gpio_shift);
2008         u32 gpio_reg;
2009         int value;
2010
2011         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013                 return -EINVAL;
2014         }
2015
2016         /* read GPIO value */
2017         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019         /* get the requested pin value */
2020         if ((gpio_reg & gpio_mask) == gpio_mask)
2021                 value = 1;
2022         else
2023                 value = 0;
2024
2025         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026
2027         return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032         /* The GPIO should be swapped if swap register is set and active */
2033         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035         int gpio_shift = gpio_num +
2036                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037         u32 gpio_mask = (1 << gpio_shift);
2038         u32 gpio_reg;
2039
2040         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042                 return -EINVAL;
2043         }
2044
2045         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046         /* read GPIO and mask except the float bits */
2047         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049         switch (mode) {
2050         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051                 DP(NETIF_MSG_LINK,
2052                    "Set GPIO %d (shift %d) -> output low\n",
2053                    gpio_num, gpio_shift);
2054                 /* clear FLOAT and set CLR */
2055                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057                 break;
2058
2059         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060                 DP(NETIF_MSG_LINK,
2061                    "Set GPIO %d (shift %d) -> output high\n",
2062                    gpio_num, gpio_shift);
2063                 /* clear FLOAT and set SET */
2064                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066                 break;
2067
2068         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069                 DP(NETIF_MSG_LINK,
2070                    "Set GPIO %d (shift %d) -> input\n",
2071                    gpio_num, gpio_shift);
2072                 /* set FLOAT */
2073                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074                 break;
2075
2076         default:
2077                 break;
2078         }
2079
2080         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083         return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088         u32 gpio_reg = 0;
2089         int rc = 0;
2090
2091         /* Any port swapping should be handled by caller. */
2092
2093         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094         /* read GPIO and mask except the float bits */
2095         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100         switch (mode) {
2101         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103                 /* set CLR */
2104                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105                 break;
2106
2107         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109                 /* set SET */
2110                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111                 break;
2112
2113         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115                 /* set FLOAT */
2116                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                 break;
2118
2119         default:
2120                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121                 rc = -EINVAL;
2122                 break;
2123         }
2124
2125         if (rc == 0)
2126                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130         return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135         /* The GPIO should be swapped if swap register is set and active */
2136         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138         int gpio_shift = gpio_num +
2139                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140         u32 gpio_mask = (1 << gpio_shift);
2141         u32 gpio_reg;
2142
2143         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145                 return -EINVAL;
2146         }
2147
2148         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149         /* read GPIO int */
2150         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152         switch (mode) {
2153         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154                 DP(NETIF_MSG_LINK,
2155                    "Clear GPIO INT %d (shift %d) -> output low\n",
2156                    gpio_num, gpio_shift);
2157                 /* clear SET and set CLR */
2158                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163                 DP(NETIF_MSG_LINK,
2164                    "Set GPIO INT %d (shift %d) -> output high\n",
2165                    gpio_num, gpio_shift);
2166                 /* clear CLR and set SET */
2167                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169                 break;
2170
2171         default:
2172                 break;
2173         }
2174
2175         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178         return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183         u32 spio_reg;
2184
2185         /* Only 2 SPIOs are configurable */
2186         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188                 return -EINVAL;
2189         }
2190
2191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192         /* read SPIO and mask except the float bits */
2193         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195         switch (mode) {
2196         case MISC_SPIO_OUTPUT_LOW:
2197                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198                 /* clear FLOAT and set CLR */
2199                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201                 break;
2202
2203         case MISC_SPIO_OUTPUT_HIGH:
2204                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205                 /* clear FLOAT and set SET */
2206                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208                 break;
2209
2210         case MISC_SPIO_INPUT_HI_Z:
2211                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212                 /* set FLOAT */
2213                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214                 break;
2215
2216         default:
2217                 break;
2218         }
2219
2220         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223         return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229         switch (bp->link_vars.ieee_fc &
2230                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233                                                    ADVERTISED_Pause);
2234                 break;
2235
2236         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238                                                   ADVERTISED_Pause);
2239                 break;
2240
2241         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243                 break;
2244
2245         default:
2246                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247                                                    ADVERTISED_Pause);
2248                 break;
2249         }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254         /* Initialize link parameters structure variables
2255          * It is recommended to turn off RX FC for jumbo frames
2256          *  for better performance
2257          */
2258         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260         else
2261                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2265 {
2266         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2267         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2268
2269         if (!BP_NOMCP(bp)) {
2270                 bnx2x_set_requested_fc(bp);
2271                 bnx2x_acquire_phy_lock(bp);
2272
2273                 if (load_mode == LOAD_DIAG) {
2274                         struct link_params *lp = &bp->link_params;
2275                         lp->loopback_mode = LOOPBACK_XGXS;
2276                         /* do PHY loopback at 10G speed, if possible */
2277                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2278                                 if (lp->speed_cap_mask[cfx_idx] &
2279                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2280                                         lp->req_line_speed[cfx_idx] =
2281                                         SPEED_10000;
2282                                 else
2283                                         lp->req_line_speed[cfx_idx] =
2284                                         SPEED_1000;
2285                         }
2286                 }
2287
2288                 if (load_mode == LOAD_LOOPBACK_EXT) {
2289                         struct link_params *lp = &bp->link_params;
2290                         lp->loopback_mode = LOOPBACK_EXT;
2291                 }
2292
2293                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2294
2295                 bnx2x_release_phy_lock(bp);
2296
2297                 bnx2x_calc_fc_adv(bp);
2298
2299                 if (bp->link_vars.link_up) {
2300                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2301                         bnx2x_link_report(bp);
2302                 }
2303                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2304                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2305                 return rc;
2306         }
2307         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2308         return -EINVAL;
2309 }
2310
2311 void bnx2x_link_set(struct bnx2x *bp)
2312 {
2313         if (!BP_NOMCP(bp)) {
2314                 bnx2x_acquire_phy_lock(bp);
2315                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2316                 bnx2x_release_phy_lock(bp);
2317
2318                 bnx2x_calc_fc_adv(bp);
2319         } else
2320                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2321 }
2322
2323 static void bnx2x__link_reset(struct bnx2x *bp)
2324 {
2325         if (!BP_NOMCP(bp)) {
2326                 bnx2x_acquire_phy_lock(bp);
2327                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2328                 bnx2x_release_phy_lock(bp);
2329         } else
2330                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2331 }
2332
2333 void bnx2x_force_link_reset(struct bnx2x *bp)
2334 {
2335         bnx2x_acquire_phy_lock(bp);
2336         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2337         bnx2x_release_phy_lock(bp);
2338 }
2339
2340 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2341 {
2342         u8 rc = 0;
2343
2344         if (!BP_NOMCP(bp)) {
2345                 bnx2x_acquire_phy_lock(bp);
2346                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2347                                      is_serdes);
2348                 bnx2x_release_phy_lock(bp);
2349         } else
2350                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2351
2352         return rc;
2353 }
2354
2355 /* Calculates the sum of vn_min_rates.
2356    It's needed for further normalizing of the min_rates.
2357    Returns:
2358      sum of vn_min_rates.
2359        or
2360      0 - if all the min_rates are 0.
2361      In the later case fairness algorithm should be deactivated.
2362      If not all min_rates are zero then those that are zeroes will be set to 1.
2363  */
2364 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2365                                       struct cmng_init_input *input)
2366 {
2367         int all_zero = 1;
2368         int vn;
2369
2370         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2371                 u32 vn_cfg = bp->mf_config[vn];
2372                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2373                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2374
2375                 /* Skip hidden vns */
2376                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2377                         vn_min_rate = 0;
2378                 /* If min rate is zero - set it to 1 */
2379                 else if (!vn_min_rate)
2380                         vn_min_rate = DEF_MIN_RATE;
2381                 else
2382                         all_zero = 0;
2383
2384                 input->vnic_min_rate[vn] = vn_min_rate;
2385         }
2386
2387         /* if ETS or all min rates are zeros - disable fairness */
2388         if (BNX2X_IS_ETS_ENABLED(bp)) {
2389                 input->flags.cmng_enables &=
2390                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2392         } else if (all_zero) {
2393                 input->flags.cmng_enables &=
2394                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2395                 DP(NETIF_MSG_IFUP,
2396                    "All MIN values are zeroes fairness will be disabled\n");
2397         } else
2398                 input->flags.cmng_enables |=
2399                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2400 }
2401
2402 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2403                                     struct cmng_init_input *input)
2404 {
2405         u16 vn_max_rate;
2406         u32 vn_cfg = bp->mf_config[vn];
2407
2408         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2409                 vn_max_rate = 0;
2410         else {
2411                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2412
2413                 if (IS_MF_SI(bp)) {
2414                         /* maxCfg in percents of linkspeed */
2415                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2416                 } else /* SD modes */
2417                         /* maxCfg is absolute in 100Mb units */
2418                         vn_max_rate = maxCfg * 100;
2419         }
2420
2421         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2422
2423         input->vnic_max_rate[vn] = vn_max_rate;
2424 }
2425
2426 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2427 {
2428         if (CHIP_REV_IS_SLOW(bp))
2429                 return CMNG_FNS_NONE;
2430         if (IS_MF(bp))
2431                 return CMNG_FNS_MINMAX;
2432
2433         return CMNG_FNS_NONE;
2434 }
2435
2436 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2437 {
2438         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2439
2440         if (BP_NOMCP(bp))
2441                 return; /* what should be the default value in this case */
2442
2443         /* For 2 port configuration the absolute function number formula
2444          * is:
2445          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2446          *
2447          *      and there are 4 functions per port
2448          *
2449          * For 4 port configuration it is
2450          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2451          *
2452          *      and there are 2 functions per port
2453          */
2454         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2455                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2456
2457                 if (func >= E1H_FUNC_MAX)
2458                         break;
2459
2460                 bp->mf_config[vn] =
2461                         MF_CFG_RD(bp, func_mf_config[func].config);
2462         }
2463         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2464                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2465                 bp->flags |= MF_FUNC_DIS;
2466         } else {
2467                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2468                 bp->flags &= ~MF_FUNC_DIS;
2469         }
2470 }
2471
2472 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2473 {
2474         struct cmng_init_input input;
2475         memset(&input, 0, sizeof(struct cmng_init_input));
2476
2477         input.port_rate = bp->link_vars.line_speed;
2478
2479         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2480                 int vn;
2481
2482                 /* read mf conf from shmem */
2483                 if (read_cfg)
2484                         bnx2x_read_mf_cfg(bp);
2485
2486                 /* vn_weight_sum and enable fairness if not 0 */
2487                 bnx2x_calc_vn_min(bp, &input);
2488
2489                 /* calculate and set min-max rate for each vn */
2490                 if (bp->port.pmf)
2491                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2492                                 bnx2x_calc_vn_max(bp, vn, &input);
2493
2494                 /* always enable rate shaping and fairness */
2495                 input.flags.cmng_enables |=
2496                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2497
2498                 bnx2x_init_cmng(&input, &bp->cmng);
2499                 return;
2500         }
2501
2502         /* rate shaping and fairness are disabled */
2503         DP(NETIF_MSG_IFUP,
2504            "rate shaping and fairness are disabled\n");
2505 }
2506
2507 static void storm_memset_cmng(struct bnx2x *bp,
2508                               struct cmng_init *cmng,
2509                               u8 port)
2510 {
2511         int vn;
2512         size_t size = sizeof(struct cmng_struct_per_port);
2513
2514         u32 addr = BAR_XSTRORM_INTMEM +
2515                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2516
2517         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2518
2519         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2520                 int func = func_by_vn(bp, vn);
2521
2522                 addr = BAR_XSTRORM_INTMEM +
2523                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2524                 size = sizeof(struct rate_shaping_vars_per_vn);
2525                 __storm_memset_struct(bp, addr, size,
2526                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2527
2528                 addr = BAR_XSTRORM_INTMEM +
2529                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2530                 size = sizeof(struct fairness_vars_per_vn);
2531                 __storm_memset_struct(bp, addr, size,
2532                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2533         }
2534 }
2535
2536 /* init cmng mode in HW according to local configuration */
2537 void bnx2x_set_local_cmng(struct bnx2x *bp)
2538 {
2539         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2540
2541         if (cmng_fns != CMNG_FNS_NONE) {
2542                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2543                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2544         } else {
2545                 /* rate shaping and fairness are disabled */
2546                 DP(NETIF_MSG_IFUP,
2547                    "single function mode without fairness\n");
2548         }
2549 }
2550
2551 /* This function is called upon link interrupt */
2552 static void bnx2x_link_attn(struct bnx2x *bp)
2553 {
2554         /* Make sure that we are synced with the current statistics */
2555         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2556
2557         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2558
2559         if (bp->link_vars.link_up) {
2560
2561                 /* dropless flow control */
2562                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2563                         int port = BP_PORT(bp);
2564                         u32 pause_enabled = 0;
2565
2566                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2567                                 pause_enabled = 1;
2568
2569                         REG_WR(bp, BAR_USTRORM_INTMEM +
2570                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2571                                pause_enabled);
2572                 }
2573
2574                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2575                         struct host_port_stats *pstats;
2576
2577                         pstats = bnx2x_sp(bp, port_stats);
2578                         /* reset old mac stats */
2579                         memset(&(pstats->mac_stx[0]), 0,
2580                                sizeof(struct mac_stx));
2581                 }
2582                 if (bp->state == BNX2X_STATE_OPEN)
2583                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2584         }
2585
2586         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2587                 bnx2x_set_local_cmng(bp);
2588
2589         __bnx2x_link_report(bp);
2590
2591         if (IS_MF(bp))
2592                 bnx2x_link_sync_notify(bp);
2593 }
2594
2595 void bnx2x__link_status_update(struct bnx2x *bp)
2596 {
2597         if (bp->state != BNX2X_STATE_OPEN)
2598                 return;
2599
2600         /* read updated dcb configuration */
2601         if (IS_PF(bp)) {
2602                 bnx2x_dcbx_pmf_update(bp);
2603                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2604                 if (bp->link_vars.link_up)
2605                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2606                 else
2607                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2608                         /* indicate link status */
2609                 bnx2x_link_report(bp);
2610
2611         } else { /* VF */
2612                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2613                                           SUPPORTED_10baseT_Full |
2614                                           SUPPORTED_100baseT_Half |
2615                                           SUPPORTED_100baseT_Full |
2616                                           SUPPORTED_1000baseT_Full |
2617                                           SUPPORTED_2500baseX_Full |
2618                                           SUPPORTED_10000baseT_Full |
2619                                           SUPPORTED_TP |
2620                                           SUPPORTED_FIBRE |
2621                                           SUPPORTED_Autoneg |
2622                                           SUPPORTED_Pause |
2623                                           SUPPORTED_Asym_Pause);
2624                 bp->port.advertising[0] = bp->port.supported[0];
2625
2626                 bp->link_params.bp = bp;
2627                 bp->link_params.port = BP_PORT(bp);
2628                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2629                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2630                 bp->link_params.req_line_speed[0] = SPEED_10000;
2631                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2632                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2633                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2634                 bp->link_vars.line_speed = SPEED_10000;
2635                 bp->link_vars.link_status =
2636                         (LINK_STATUS_LINK_UP |
2637                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2638                 bp->link_vars.link_up = 1;
2639                 bp->link_vars.duplex = DUPLEX_FULL;
2640                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2641                 __bnx2x_link_report(bp);
2642                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643         }
2644 }
2645
2646 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2647                                   u16 vlan_val, u8 allowed_prio)
2648 {
2649         struct bnx2x_func_state_params func_params = {NULL};
2650         struct bnx2x_func_afex_update_params *f_update_params =
2651                 &func_params.params.afex_update;
2652
2653         func_params.f_obj = &bp->func_obj;
2654         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2655
2656         /* no need to wait for RAMROD completion, so don't
2657          * set RAMROD_COMP_WAIT flag
2658          */
2659
2660         f_update_params->vif_id = vifid;
2661         f_update_params->afex_default_vlan = vlan_val;
2662         f_update_params->allowed_priorities = allowed_prio;
2663
2664         /* if ramrod can not be sent, response to MCP immediately */
2665         if (bnx2x_func_state_change(bp, &func_params) < 0)
2666                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2667
2668         return 0;
2669 }
2670
2671 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2672                                           u16 vif_index, u8 func_bit_map)
2673 {
2674         struct bnx2x_func_state_params func_params = {NULL};
2675         struct bnx2x_func_afex_viflists_params *update_params =
2676                 &func_params.params.afex_viflists;
2677         int rc;
2678         u32 drv_msg_code;
2679
2680         /* validate only LIST_SET and LIST_GET are received from switch */
2681         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2682                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2683                           cmd_type);
2684
2685         func_params.f_obj = &bp->func_obj;
2686         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2687
2688         /* set parameters according to cmd_type */
2689         update_params->afex_vif_list_command = cmd_type;
2690         update_params->vif_list_index = vif_index;
2691         update_params->func_bit_map =
2692                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2693         update_params->func_to_clear = 0;
2694         drv_msg_code =
2695                 (cmd_type == VIF_LIST_RULE_GET) ?
2696                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2697                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2698
2699         /* if ramrod can not be sent, respond to MCP immediately for
2700          * SET and GET requests (other are not triggered from MCP)
2701          */
2702         rc = bnx2x_func_state_change(bp, &func_params);
2703         if (rc < 0)
2704                 bnx2x_fw_command(bp, drv_msg_code, 0);
2705
2706         return 0;
2707 }
2708
2709 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2710 {
2711         struct afex_stats afex_stats;
2712         u32 func = BP_ABS_FUNC(bp);
2713         u32 mf_config;
2714         u16 vlan_val;
2715         u32 vlan_prio;
2716         u16 vif_id;
2717         u8 allowed_prio;
2718         u8 vlan_mode;
2719         u32 addr_to_write, vifid, addrs, stats_type, i;
2720
2721         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2722                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2723                 DP(BNX2X_MSG_MCP,
2724                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2725                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2726         }
2727
2728         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2729                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2730                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2731                 DP(BNX2X_MSG_MCP,
2732                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2733                    vifid, addrs);
2734                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2735                                                addrs);
2736         }
2737
2738         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2739                 addr_to_write = SHMEM2_RD(bp,
2740                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2741                 stats_type = SHMEM2_RD(bp,
2742                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2743
2744                 DP(BNX2X_MSG_MCP,
2745                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2746                    addr_to_write);
2747
2748                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2749
2750                 /* write response to scratchpad, for MCP */
2751                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2752                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2753                                *(((u32 *)(&afex_stats))+i));
2754
2755                 /* send ack message to MCP */
2756                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2757         }
2758
2759         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2760                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2761                 bp->mf_config[BP_VN(bp)] = mf_config;
2762                 DP(BNX2X_MSG_MCP,
2763                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2764                    mf_config);
2765
2766                 /* if VIF_SET is "enabled" */
2767                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2768                         /* set rate limit directly to internal RAM */
2769                         struct cmng_init_input cmng_input;
2770                         struct rate_shaping_vars_per_vn m_rs_vn;
2771                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2772                         u32 addr = BAR_XSTRORM_INTMEM +
2773                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2774
2775                         bp->mf_config[BP_VN(bp)] = mf_config;
2776
2777                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2778                         m_rs_vn.vn_counter.rate =
2779                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2780                         m_rs_vn.vn_counter.quota =
2781                                 (m_rs_vn.vn_counter.rate *
2782                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2783
2784                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2785
2786                         /* read relevant values from mf_cfg struct in shmem */
2787                         vif_id =
2788                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2789                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2790                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2791                         vlan_val =
2792                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2793                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2794                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2795                         vlan_prio = (mf_config &
2796                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2797                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2798                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2799                         vlan_mode =
2800                                 (MF_CFG_RD(bp,
2801                                            func_mf_config[func].afex_config) &
2802                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2803                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2804                         allowed_prio =
2805                                 (MF_CFG_RD(bp,
2806                                            func_mf_config[func].afex_config) &
2807                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2808                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2809
2810                         /* send ramrod to FW, return in case of failure */
2811                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2812                                                    allowed_prio))
2813                                 return;
2814
2815                         bp->afex_def_vlan_tag = vlan_val;
2816                         bp->afex_vlan_mode = vlan_mode;
2817                 } else {
2818                         /* notify link down because BP->flags is disabled */
2819                         bnx2x_link_report(bp);
2820
2821                         /* send INVALID VIF ramrod to FW */
2822                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2823
2824                         /* Reset the default afex VLAN */
2825                         bp->afex_def_vlan_tag = -1;
2826                 }
2827         }
2828 }
2829
2830 static void bnx2x_pmf_update(struct bnx2x *bp)
2831 {
2832         int port = BP_PORT(bp);
2833         u32 val;
2834
2835         bp->port.pmf = 1;
2836         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2837
2838         /*
2839          * We need the mb() to ensure the ordering between the writing to
2840          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2841          */
2842         smp_mb();
2843
2844         /* queue a periodic task */
2845         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2846
2847         bnx2x_dcbx_pmf_update(bp);
2848
2849         /* enable nig attention */
2850         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2851         if (bp->common.int_block == INT_BLOCK_HC) {
2852                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2853                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2854         } else if (!CHIP_IS_E1x(bp)) {
2855                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2856                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2857         }
2858
2859         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2860 }
2861
2862 /* end of Link */
2863
2864 /* slow path */
2865
2866 /*
2867  * General service functions
2868  */
2869
2870 /* send the MCP a request, block until there is a reply */
2871 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2872 {
2873         int mb_idx = BP_FW_MB_IDX(bp);
2874         u32 seq;
2875         u32 rc = 0;
2876         u32 cnt = 1;
2877         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2878
2879         mutex_lock(&bp->fw_mb_mutex);
2880         seq = ++bp->fw_seq;
2881         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2882         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2883
2884         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2885                         (command | seq), param);
2886
2887         do {
2888                 /* let the FW do it's magic ... */
2889                 msleep(delay);
2890
2891                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2892
2893                 /* Give the FW up to 5 second (500*10ms) */
2894         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2895
2896         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2897            cnt*delay, rc, seq);
2898
2899         /* is this a reply to our command? */
2900         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2901                 rc &= FW_MSG_CODE_MASK;
2902         else {
2903                 /* FW BUG! */
2904                 BNX2X_ERR("FW failed to respond!\n");
2905                 bnx2x_fw_dump(bp);
2906                 rc = 0;
2907         }
2908         mutex_unlock(&bp->fw_mb_mutex);
2909
2910         return rc;
2911 }
2912
2913 static void storm_memset_func_cfg(struct bnx2x *bp,
2914                                  struct tstorm_eth_function_common_config *tcfg,
2915                                  u16 abs_fid)
2916 {
2917         size_t size = sizeof(struct tstorm_eth_function_common_config);
2918
2919         u32 addr = BAR_TSTRORM_INTMEM +
2920                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2921
2922         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2923 }
2924
2925 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2926 {
2927         if (CHIP_IS_E1x(bp)) {
2928                 struct tstorm_eth_function_common_config tcfg = {0};
2929
2930                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2931         }
2932
2933         /* Enable the function in the FW */
2934         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2935         storm_memset_func_en(bp, p->func_id, 1);
2936
2937         /* spq */
2938         if (p->func_flgs & FUNC_FLG_SPQ) {
2939                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2940                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2941                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2942         }
2943 }
2944
2945 /**
2946  * bnx2x_get_common_flags - Return common flags
2947  *
2948  * @bp          device handle
2949  * @fp          queue handle
2950  * @zero_stats  TRUE if statistics zeroing is needed
2951  *
2952  * Return the flags that are common for the Tx-only and not normal connections.
2953  */
2954 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2955                                             struct bnx2x_fastpath *fp,
2956                                             bool zero_stats)
2957 {
2958         unsigned long flags = 0;
2959
2960         /* PF driver will always initialize the Queue to an ACTIVE state */
2961         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2962
2963         /* tx only connections collect statistics (on the same index as the
2964          * parent connection). The statistics are zeroed when the parent
2965          * connection is initialized.
2966          */
2967
2968         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2969         if (zero_stats)
2970                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2971
2972         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2973         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2974
2975 #ifdef BNX2X_STOP_ON_ERROR
2976         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2977 #endif
2978
2979         return flags;
2980 }
2981
2982 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2983                                        struct bnx2x_fastpath *fp,
2984                                        bool leading)
2985 {
2986         unsigned long flags = 0;
2987
2988         /* calculate other queue flags */
2989         if (IS_MF_SD(bp))
2990                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2991
2992         if (IS_FCOE_FP(fp)) {
2993                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2994                 /* For FCoE - force usage of default priority (for afex) */
2995                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2996         }
2997
2998         if (!fp->disable_tpa) {
2999                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3000                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3001                 if (fp->mode == TPA_MODE_GRO)
3002                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3003         }
3004
3005         if (leading) {
3006                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3007                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3008         }
3009
3010         /* Always set HW VLAN stripping */
3011         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3012
3013         /* configure silent vlan removal */
3014         if (IS_MF_AFEX(bp))
3015                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3016
3017         return flags | bnx2x_get_common_flags(bp, fp, true);
3018 }
3019
3020 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3021         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3022         u8 cos)
3023 {
3024         gen_init->stat_id = bnx2x_stats_id(fp);
3025         gen_init->spcl_id = fp->cl_id;
3026
3027         /* Always use mini-jumbo MTU for FCoE L2 ring */
3028         if (IS_FCOE_FP(fp))
3029                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3030         else
3031                 gen_init->mtu = bp->dev->mtu;
3032
3033         gen_init->cos = cos;
3034 }
3035
3036 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3037         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3038         struct bnx2x_rxq_setup_params *rxq_init)
3039 {
3040         u8 max_sge = 0;
3041         u16 sge_sz = 0;
3042         u16 tpa_agg_size = 0;
3043
3044         if (!fp->disable_tpa) {
3045                 pause->sge_th_lo = SGE_TH_LO(bp);
3046                 pause->sge_th_hi = SGE_TH_HI(bp);
3047
3048                 /* validate SGE ring has enough to cross high threshold */
3049                 WARN_ON(bp->dropless_fc &&
3050                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3051                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3052
3053                 tpa_agg_size = TPA_AGG_SIZE;
3054                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3055                         SGE_PAGE_SHIFT;
3056                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3057                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3058                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3059         }
3060
3061         /* pause - not for e1 */
3062         if (!CHIP_IS_E1(bp)) {
3063                 pause->bd_th_lo = BD_TH_LO(bp);
3064                 pause->bd_th_hi = BD_TH_HI(bp);
3065
3066                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3067                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3068                 /*
3069                  * validate that rings have enough entries to cross
3070                  * high thresholds
3071                  */
3072                 WARN_ON(bp->dropless_fc &&
3073                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3074                                 bp->rx_ring_size);
3075                 WARN_ON(bp->dropless_fc &&
3076                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3077                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3078
3079                 pause->pri_map = 1;
3080         }
3081
3082         /* rxq setup */
3083         rxq_init->dscr_map = fp->rx_desc_mapping;
3084         rxq_init->sge_map = fp->rx_sge_mapping;
3085         rxq_init->rcq_map = fp->rx_comp_mapping;
3086         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3087
3088         /* This should be a maximum number of data bytes that may be
3089          * placed on the BD (not including paddings).
3090          */
3091         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3092                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3093
3094         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3095         rxq_init->tpa_agg_sz = tpa_agg_size;
3096         rxq_init->sge_buf_sz = sge_sz;
3097         rxq_init->max_sges_pkt = max_sge;
3098         rxq_init->rss_engine_id = BP_FUNC(bp);
3099         rxq_init->mcast_engine_id = BP_FUNC(bp);
3100
3101         /* Maximum number or simultaneous TPA aggregation for this Queue.
3102          *
3103          * For PF Clients it should be the maximum available number.
3104          * VF driver(s) may want to define it to a smaller value.
3105          */
3106         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3107
3108         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3109         rxq_init->fw_sb_id = fp->fw_sb_id;
3110
3111         if (IS_FCOE_FP(fp))
3112                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3113         else
3114                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3115         /* configure silent vlan removal
3116          * if multi function mode is afex, then mask default vlan
3117          */
3118         if (IS_MF_AFEX(bp)) {
3119                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3120                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3121         }
3122 }
3123
3124 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3125         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3126         u8 cos)
3127 {
3128         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3129         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3130         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3131         txq_init->fw_sb_id = fp->fw_sb_id;
3132
3133         /*
3134          * set the tss leading client id for TX classification ==
3135          * leading RSS client id
3136          */
3137         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3138
3139         if (IS_FCOE_FP(fp)) {
3140                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3141                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3142         }
3143 }
3144
3145 static void bnx2x_pf_init(struct bnx2x *bp)
3146 {
3147         struct bnx2x_func_init_params func_init = {0};
3148         struct event_ring_data eq_data = { {0} };
3149         u16 flags;
3150
3151         if (!CHIP_IS_E1x(bp)) {
3152                 /* reset IGU PF statistics: MSIX + ATTN */
3153                 /* PF */
3154                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3155                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3156                            (CHIP_MODE_IS_4_PORT(bp) ?
3157                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3158                 /* ATTN */
3159                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3160                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3161                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3162                            (CHIP_MODE_IS_4_PORT(bp) ?
3163                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3164         }
3165
3166         /* function setup flags */
3167         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3168
3169         /* This flag is relevant for E1x only.
3170          * E2 doesn't have a TPA configuration in a function level.
3171          */
3172         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3173
3174         func_init.func_flgs = flags;
3175         func_init.pf_id = BP_FUNC(bp);
3176         func_init.func_id = BP_FUNC(bp);
3177         func_init.spq_map = bp->spq_mapping;
3178         func_init.spq_prod = bp->spq_prod_idx;
3179
3180         bnx2x_func_init(bp, &func_init);
3181
3182         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3183
3184         /*
3185          * Congestion management values depend on the link rate
3186          * There is no active link so initial link rate is set to 10 Gbps.
3187          * When the link comes up The congestion management values are
3188          * re-calculated according to the actual link rate.
3189          */
3190         bp->link_vars.line_speed = SPEED_10000;
3191         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3192
3193         /* Only the PMF sets the HW */
3194         if (bp->port.pmf)
3195                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3196
3197         /* init Event Queue - PCI bus guarantees correct endianity*/
3198         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3199         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3200         eq_data.producer = bp->eq_prod;
3201         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3202         eq_data.sb_id = DEF_SB_ID;
3203         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3204 }
3205
3206 static void bnx2x_e1h_disable(struct bnx2x *bp)
3207 {
3208         int port = BP_PORT(bp);
3209
3210         bnx2x_tx_disable(bp);
3211
3212         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3213 }
3214
3215 static void bnx2x_e1h_enable(struct bnx2x *bp)
3216 {
3217         int port = BP_PORT(bp);
3218
3219         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3220
3221         /* Tx queue should be only re-enabled */
3222         netif_tx_wake_all_queues(bp->dev);
3223
3224         /*
3225          * Should not call netif_carrier_on since it will be called if the link
3226          * is up when checking for link state
3227          */
3228 }
3229
3230 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3231
3232 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3233 {
3234         struct eth_stats_info *ether_stat =
3235                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3236         struct bnx2x_vlan_mac_obj *mac_obj =
3237                 &bp->sp_objs->mac_obj;
3238         int i;
3239
3240         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3241                 ETH_STAT_INFO_VERSION_LEN);
3242
3243         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3244          * mac_local field in ether_stat struct. The base address is offset by 2
3245          * bytes to account for the field being 8 bytes but a mac address is
3246          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3247          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3248          * allocated by the ether_stat struct, so the macs will land in their
3249          * proper positions.
3250          */
3251         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3252                 memset(ether_stat->mac_local + i, 0,
3253                        sizeof(ether_stat->mac_local[0]));
3254         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3255                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3256                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3257                                 ETH_ALEN);
3258         ether_stat->mtu_size = bp->dev->mtu;
3259         if (bp->dev->features & NETIF_F_RXCSUM)
3260                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3261         if (bp->dev->features & NETIF_F_TSO)
3262                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3263         ether_stat->feature_flags |= bp->common.boot_mode;
3264
3265         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3266
3267         ether_stat->txq_size = bp->tx_ring_size;
3268         ether_stat->rxq_size = bp->rx_ring_size;
3269 }
3270
3271 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3272 {
3273         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3274         struct fcoe_stats_info *fcoe_stat =
3275                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3276
3277         if (!CNIC_LOADED(bp))
3278                 return;
3279
3280         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3281
3282         fcoe_stat->qos_priority =
3283                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3284
3285         /* insert FCoE stats from ramrod response */
3286         if (!NO_FCOE(bp)) {
3287                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3288                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3289                         tstorm_queue_statistics;
3290
3291                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3292                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3293                         xstorm_queue_statistics;
3294
3295                 struct fcoe_statistics_params *fw_fcoe_stat =
3296                         &bp->fw_stats_data->fcoe;
3297
3298                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3299                           fcoe_stat->rx_bytes_lo,
3300                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3301
3302                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3303                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3304                           fcoe_stat->rx_bytes_lo,
3305                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3306
3307                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3308                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3309                           fcoe_stat->rx_bytes_lo,
3310                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3311
3312                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3314                           fcoe_stat->rx_bytes_lo,
3315                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3316
3317                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3318                           fcoe_stat->rx_frames_lo,
3319                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3320
3321                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3322                           fcoe_stat->rx_frames_lo,
3323                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3324
3325                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3326                           fcoe_stat->rx_frames_lo,
3327                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3328
3329                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3330                           fcoe_stat->rx_frames_lo,
3331                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3332
3333                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3334                           fcoe_stat->tx_bytes_lo,
3335                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3336
3337                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3338                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3339                           fcoe_stat->tx_bytes_lo,
3340                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3341
3342                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3343                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3344                           fcoe_stat->tx_bytes_lo,
3345                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3346
3347                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3349                           fcoe_stat->tx_bytes_lo,
3350                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3351
3352                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3353                           fcoe_stat->tx_frames_lo,
3354                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3355
3356                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3357                           fcoe_stat->tx_frames_lo,
3358                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3359
3360                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3361                           fcoe_stat->tx_frames_lo,
3362                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3363
3364                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3365                           fcoe_stat->tx_frames_lo,
3366                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3367         }
3368
3369         /* ask L5 driver to add data to the struct */
3370         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3371 }
3372
3373 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3374 {
3375         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3376         struct iscsi_stats_info *iscsi_stat =
3377                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3378
3379         if (!CNIC_LOADED(bp))
3380                 return;
3381
3382         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3383                ETH_ALEN);
3384
3385         iscsi_stat->qos_priority =
3386                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3387
3388         /* ask L5 driver to add data to the struct */
3389         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3390 }
3391
3392 /* called due to MCP event (on pmf):
3393  *      reread new bandwidth configuration
3394  *      configure FW
3395  *      notify others function about the change
3396  */
3397 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3398 {
3399         if (bp->link_vars.link_up) {
3400                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3401                 bnx2x_link_sync_notify(bp);
3402         }
3403         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3404 }
3405
3406 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3407 {
3408         bnx2x_config_mf_bw(bp);
3409         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3410 }
3411
3412 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3413 {
3414         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3415         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3416 }
3417
3418 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3419 {
3420         enum drv_info_opcode op_code;
3421         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3422
3423         /* if drv_info version supported by MFW doesn't match - send NACK */
3424         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3425                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3426                 return;
3427         }
3428
3429         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3430                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3431
3432         memset(&bp->slowpath->drv_info_to_mcp, 0,
3433                sizeof(union drv_info_to_mcp));
3434
3435         switch (op_code) {
3436         case ETH_STATS_OPCODE:
3437                 bnx2x_drv_info_ether_stat(bp);
3438                 break;
3439         case FCOE_STATS_OPCODE:
3440                 bnx2x_drv_info_fcoe_stat(bp);
3441                 break;
3442         case ISCSI_STATS_OPCODE:
3443                 bnx2x_drv_info_iscsi_stat(bp);
3444                 break;
3445         default:
3446                 /* if op code isn't supported - send NACK */
3447                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3448                 return;
3449         }
3450
3451         /* if we got drv_info attn from MFW then these fields are defined in
3452          * shmem2 for sure
3453          */
3454         SHMEM2_WR(bp, drv_info_host_addr_lo,
3455                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3456         SHMEM2_WR(bp, drv_info_host_addr_hi,
3457                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3458
3459         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3460 }
3461
3462 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3463 {
3464         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3465
3466         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3467
3468                 /*
3469                  * This is the only place besides the function initialization
3470                  * where the bp->flags can change so it is done without any
3471                  * locks
3472                  */
3473                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3474                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3475                         bp->flags |= MF_FUNC_DIS;
3476
3477                         bnx2x_e1h_disable(bp);
3478                 } else {
3479                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3480                         bp->flags &= ~MF_FUNC_DIS;
3481
3482                         bnx2x_e1h_enable(bp);
3483                 }
3484                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3485         }
3486         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3487                 bnx2x_config_mf_bw(bp);
3488                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3489         }
3490
3491         /* Report results to MCP */
3492         if (dcc_event)
3493                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3494         else
3495                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3496 }
3497
3498 /* must be called under the spq lock */
3499 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3500 {
3501         struct eth_spe *next_spe = bp->spq_prod_bd;
3502
3503         if (bp->spq_prod_bd == bp->spq_last_bd) {
3504                 bp->spq_prod_bd = bp->spq;
3505                 bp->spq_prod_idx = 0;
3506                 DP(BNX2X_MSG_SP, "end of spq\n");
3507         } else {
3508                 bp->spq_prod_bd++;
3509                 bp->spq_prod_idx++;
3510         }
3511         return next_spe;
3512 }
3513
3514 /* must be called under the spq lock */
3515 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3516 {
3517         int func = BP_FUNC(bp);
3518
3519         /*
3520          * Make sure that BD data is updated before writing the producer:
3521          * BD data is written to the memory, the producer is read from the
3522          * memory, thus we need a full memory barrier to ensure the ordering.
3523          */
3524         mb();
3525
3526         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3527                  bp->spq_prod_idx);
3528         mmiowb();
3529 }
3530
3531 /**
3532  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3533  *
3534  * @cmd:        command to check
3535  * @cmd_type:   command type
3536  */
3537 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3538 {
3539         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3540             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3541             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3542             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3543             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3544             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3545             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3546                 return true;
3547         else
3548                 return false;
3549 }
3550
3551 /**
3552  * bnx2x_sp_post - place a single command on an SP ring
3553  *
3554  * @bp:         driver handle
3555  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3556  * @cid:        SW CID the command is related to
3557  * @data_hi:    command private data address (high 32 bits)
3558  * @data_lo:    command private data address (low 32 bits)
3559  * @cmd_type:   command type (e.g. NONE, ETH)
3560  *
3561  * SP data is handled as if it's always an address pair, thus data fields are
3562  * not swapped to little endian in upper functions. Instead this function swaps
3563  * data as if it's two u32 fields.
3564  */
3565 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3566                   u32 data_hi, u32 data_lo, int cmd_type)
3567 {
3568         struct eth_spe *spe;
3569         u16 type;
3570         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3571
3572 #ifdef BNX2X_STOP_ON_ERROR
3573         if (unlikely(bp->panic)) {
3574                 BNX2X_ERR("Can't post SP when there is panic\n");
3575                 return -EIO;
3576         }
3577 #endif
3578
3579         spin_lock_bh(&bp->spq_lock);
3580
3581         if (common) {
3582                 if (!atomic_read(&bp->eq_spq_left)) {
3583                         BNX2X_ERR("BUG! EQ ring full!\n");
3584                         spin_unlock_bh(&bp->spq_lock);
3585                         bnx2x_panic();
3586                         return -EBUSY;
3587                 }
3588         } else if (!atomic_read(&bp->cq_spq_left)) {
3589                         BNX2X_ERR("BUG! SPQ ring full!\n");
3590                         spin_unlock_bh(&bp->spq_lock);
3591                         bnx2x_panic();
3592                         return -EBUSY;
3593         }
3594
3595         spe = bnx2x_sp_get_next(bp);
3596
3597         /* CID needs port number to be encoded int it */
3598         spe->hdr.conn_and_cmd_data =
3599                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3600                                     HW_CID(bp, cid));
3601
3602         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3603
3604         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3605                  SPE_HDR_FUNCTION_ID);
3606
3607         spe->hdr.type = cpu_to_le16(type);
3608
3609         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3610         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3611
3612         /*
3613          * It's ok if the actual decrement is issued towards the memory
3614          * somewhere between the spin_lock and spin_unlock. Thus no
3615          * more explicit memory barrier is needed.
3616          */
3617         if (common)
3618                 atomic_dec(&bp->eq_spq_left);
3619         else
3620                 atomic_dec(&bp->cq_spq_left);
3621
3622         DP(BNX2X_MSG_SP,
3623            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3624            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3625            (u32)(U64_LO(bp->spq_mapping) +
3626            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3627            HW_CID(bp, cid), data_hi, data_lo, type,
3628            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3629
3630         bnx2x_sp_prod_update(bp);
3631         spin_unlock_bh(&bp->spq_lock);
3632         return 0;
3633 }
3634
3635 /* acquire split MCP access lock register */
3636 static int bnx2x_acquire_alr(struct bnx2x *bp)
3637 {
3638         u32 j, val;
3639         int rc = 0;
3640
3641         might_sleep();
3642         for (j = 0; j < 1000; j++) {
3643                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3644                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3645                 if (val & MCPR_ACCESS_LOCK_LOCK)
3646                         break;
3647
3648                 usleep_range(5000, 10000);
3649         }
3650         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3651                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3652                 rc = -EBUSY;
3653         }
3654
3655         return rc;
3656 }
3657
3658 /* release split MCP access lock register */
3659 static void bnx2x_release_alr(struct bnx2x *bp)
3660 {
3661         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3662 }
3663
3664 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3665 #define BNX2X_DEF_SB_IDX        0x0002
3666
3667 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3668 {
3669         struct host_sp_status_block *def_sb = bp->def_status_blk;
3670         u16 rc = 0;
3671
3672         barrier(); /* status block is written to by the chip */
3673         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3674                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3675                 rc |= BNX2X_DEF_SB_ATT_IDX;
3676         }
3677
3678         if (bp->def_idx != def_sb->sp_sb.running_index) {
3679                 bp->def_idx = def_sb->sp_sb.running_index;
3680                 rc |= BNX2X_DEF_SB_IDX;
3681         }
3682
3683         /* Do not reorder: indices reading should complete before handling */
3684         barrier();
3685         return rc;
3686 }
3687
3688 /*
3689  * slow path service functions
3690  */
3691
3692 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3693 {
3694         int port = BP_PORT(bp);
3695         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3696                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3697         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3698                                        NIG_REG_MASK_INTERRUPT_PORT0;
3699         u32 aeu_mask;
3700         u32 nig_mask = 0;
3701         u32 reg_addr;
3702
3703         if (bp->attn_state & asserted)
3704                 BNX2X_ERR("IGU ERROR\n");
3705
3706         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3707         aeu_mask = REG_RD(bp, aeu_addr);
3708
3709         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3710            aeu_mask, asserted);
3711         aeu_mask &= ~(asserted & 0x3ff);
3712         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3713
3714         REG_WR(bp, aeu_addr, aeu_mask);
3715         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3716
3717         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3718         bp->attn_state |= asserted;
3719         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3720
3721         if (asserted & ATTN_HARD_WIRED_MASK) {
3722                 if (asserted & ATTN_NIG_FOR_FUNC) {
3723
3724                         bnx2x_acquire_phy_lock(bp);
3725
3726                         /* save nig interrupt mask */
3727                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3728
3729                         /* If nig_mask is not set, no need to call the update
3730                          * function.
3731                          */
3732                         if (nig_mask) {
3733                                 REG_WR(bp, nig_int_mask_addr, 0);
3734
3735                                 bnx2x_link_attn(bp);
3736                         }
3737
3738                         /* handle unicore attn? */
3739                 }
3740                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3741                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3742
3743                 if (asserted & GPIO_2_FUNC)
3744                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3745
3746                 if (asserted & GPIO_3_FUNC)
3747                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3748
3749                 if (asserted & GPIO_4_FUNC)
3750                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3751
3752                 if (port == 0) {
3753                         if (asserted & ATTN_GENERAL_ATTN_1) {
3754                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3755                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3756                         }
3757                         if (asserted & ATTN_GENERAL_ATTN_2) {
3758                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3759                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3760                         }
3761                         if (asserted & ATTN_GENERAL_ATTN_3) {
3762                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3763                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3764                         }
3765                 } else {
3766                         if (asserted & ATTN_GENERAL_ATTN_4) {
3767                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3768                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3769                         }
3770                         if (asserted & ATTN_GENERAL_ATTN_5) {
3771                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3772                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3773                         }
3774                         if (asserted & ATTN_GENERAL_ATTN_6) {
3775                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3776                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3777                         }
3778                 }
3779
3780         } /* if hardwired */
3781
3782         if (bp->common.int_block == INT_BLOCK_HC)
3783                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3784                             COMMAND_REG_ATTN_BITS_SET);
3785         else
3786                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3787
3788         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3789            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3790         REG_WR(bp, reg_addr, asserted);
3791
3792         /* now set back the mask */
3793         if (asserted & ATTN_NIG_FOR_FUNC) {
3794                 /* Verify that IGU ack through BAR was written before restoring
3795                  * NIG mask. This loop should exit after 2-3 iterations max.
3796                  */
3797                 if (bp->common.int_block != INT_BLOCK_HC) {
3798                         u32 cnt = 0, igu_acked;
3799                         do {
3800                                 igu_acked = REG_RD(bp,
3801                                                    IGU_REG_ATTENTION_ACK_BITS);
3802                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3803                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3804                         if (!igu_acked)
3805                                 DP(NETIF_MSG_HW,
3806                                    "Failed to verify IGU ack on time\n");
3807                         barrier();
3808                 }
3809                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3810                 bnx2x_release_phy_lock(bp);
3811         }
3812 }
3813
3814 static void bnx2x_fan_failure(struct bnx2x *bp)
3815 {
3816         int port = BP_PORT(bp);
3817         u32 ext_phy_config;
3818         /* mark the failure */
3819         ext_phy_config =
3820                 SHMEM_RD(bp,
3821                          dev_info.port_hw_config[port].external_phy_config);
3822
3823         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3824         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3825         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3826                  ext_phy_config);
3827
3828         /* log the failure */
3829         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3830                             "Please contact OEM Support for assistance\n");
3831
3832         /* Schedule device reset (unload)
3833          * This is due to some boards consuming sufficient power when driver is
3834          * up to overheat if fan fails.
3835          */
3836         smp_mb__before_clear_bit();
3837         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3838         smp_mb__after_clear_bit();
3839         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3840 }
3841
3842 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3843 {
3844         int port = BP_PORT(bp);
3845         int reg_offset;
3846         u32 val;
3847
3848         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3849                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3850
3851         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3852
3853                 val = REG_RD(bp, reg_offset);
3854                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3855                 REG_WR(bp, reg_offset, val);
3856
3857                 BNX2X_ERR("SPIO5 hw attention\n");
3858
3859                 /* Fan failure attention */
3860                 bnx2x_hw_reset_phy(&bp->link_params);
3861                 bnx2x_fan_failure(bp);
3862         }
3863
3864         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3865                 bnx2x_acquire_phy_lock(bp);
3866                 bnx2x_handle_module_detect_int(&bp->link_params);
3867                 bnx2x_release_phy_lock(bp);
3868         }
3869
3870         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3871
3872                 val = REG_RD(bp, reg_offset);
3873                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3874                 REG_WR(bp, reg_offset, val);
3875
3876                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3877                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3878                 bnx2x_panic();
3879         }
3880 }
3881
3882 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3883 {
3884         u32 val;
3885
3886         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3887
3888                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3889                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3890                 /* DORQ discard attention */
3891                 if (val & 0x2)
3892                         BNX2X_ERR("FATAL error from DORQ\n");
3893         }
3894
3895         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3896
3897                 int port = BP_PORT(bp);
3898                 int reg_offset;
3899
3900                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3901                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3902
3903                 val = REG_RD(bp, reg_offset);
3904                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3905                 REG_WR(bp, reg_offset, val);
3906
3907                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3908                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3909                 bnx2x_panic();
3910         }
3911 }
3912
3913 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3914 {
3915         u32 val;
3916
3917         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3918
3919                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3920                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3921                 /* CFC error attention */
3922                 if (val & 0x2)
3923                         BNX2X_ERR("FATAL error from CFC\n");
3924         }
3925
3926         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3927                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3928                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3929                 /* RQ_USDMDP_FIFO_OVERFLOW */
3930                 if (val & 0x18000)
3931                         BNX2X_ERR("FATAL error from PXP\n");
3932
3933                 if (!CHIP_IS_E1x(bp)) {
3934                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3935                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3936                 }
3937         }
3938
3939         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3940
3941                 int port = BP_PORT(bp);
3942                 int reg_offset;
3943
3944                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3945                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3946
3947                 val = REG_RD(bp, reg_offset);
3948                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3949                 REG_WR(bp, reg_offset, val);
3950
3951                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3952                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3953                 bnx2x_panic();
3954         }
3955 }
3956
3957 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3958 {
3959         u32 val;
3960
3961         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3962
3963                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3964                         int func = BP_FUNC(bp);
3965
3966                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3967                         bnx2x_read_mf_cfg(bp);
3968                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3969                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3970                         val = SHMEM_RD(bp,
3971                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3972                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3973                                 bnx2x_dcc_event(bp,
3974                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3975
3976                         if (val & DRV_STATUS_SET_MF_BW)
3977                                 bnx2x_set_mf_bw(bp);
3978
3979                         if (val & DRV_STATUS_DRV_INFO_REQ)
3980                                 bnx2x_handle_drv_info_req(bp);
3981
3982                         if (val & DRV_STATUS_VF_DISABLED)
3983                                 bnx2x_vf_handle_flr_event(bp);
3984
3985                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3986                                 bnx2x_pmf_update(bp);
3987
3988                         if (bp->port.pmf &&
3989                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3990                                 bp->dcbx_enabled > 0)
3991                                 /* start dcbx state machine */
3992                                 bnx2x_dcbx_set_params(bp,
3993                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3994                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3995                                 bnx2x_handle_afex_cmd(bp,
3996                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3997                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3998                                 bnx2x_handle_eee_event(bp);
3999                         if (bp->link_vars.periodic_flags &
4000                             PERIODIC_FLAGS_LINK_EVENT) {
4001                                 /*  sync with link */
4002                                 bnx2x_acquire_phy_lock(bp);
4003                                 bp->link_vars.periodic_flags &=
4004                                         ~PERIODIC_FLAGS_LINK_EVENT;
4005                                 bnx2x_release_phy_lock(bp);
4006                                 if (IS_MF(bp))
4007                                         bnx2x_link_sync_notify(bp);
4008                                 bnx2x_link_report(bp);
4009                         }
4010                         /* Always call it here: bnx2x_link_report() will
4011                          * prevent the link indication duplication.
4012                          */
4013                         bnx2x__link_status_update(bp);
4014                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4015
4016                         BNX2X_ERR("MC assert!\n");
4017                         bnx2x_mc_assert(bp);
4018                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4019                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4020                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4021                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4022                         bnx2x_panic();
4023
4024                 } else if (attn & BNX2X_MCP_ASSERT) {
4025
4026                         BNX2X_ERR("MCP assert!\n");
4027                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4028                         bnx2x_fw_dump(bp);
4029
4030                 } else
4031                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4032         }
4033
4034         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4035                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4036                 if (attn & BNX2X_GRC_TIMEOUT) {
4037                         val = CHIP_IS_E1(bp) ? 0 :
4038                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4039                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4040                 }
4041                 if (attn & BNX2X_GRC_RSV) {
4042                         val = CHIP_IS_E1(bp) ? 0 :
4043                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4044                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4045                 }
4046                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4047         }
4048 }
4049
4050 /*
4051  * Bits map:
4052  * 0-7   - Engine0 load counter.
4053  * 8-15  - Engine1 load counter.
4054  * 16    - Engine0 RESET_IN_PROGRESS bit.
4055  * 17    - Engine1 RESET_IN_PROGRESS bit.
4056  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4057  *         on the engine
4058  * 19    - Engine1 ONE_IS_LOADED.
4059  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4060  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4061  *         just the one belonging to its engine).
4062  *
4063  */
4064 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4065
4066 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4067 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4068 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4069 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4070 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4071 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4072 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4073
4074 /*
4075  * Set the GLOBAL_RESET bit.
4076  *
4077  * Should be run under rtnl lock
4078  */
4079 void bnx2x_set_reset_global(struct bnx2x *bp)
4080 {
4081         u32 val;
4082         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4083         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4084         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4085         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4086 }
4087
4088 /*
4089  * Clear the GLOBAL_RESET bit.
4090  *
4091  * Should be run under rtnl lock
4092  */
4093 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4094 {
4095         u32 val;
4096         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4097         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4098         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4099         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4100 }
4101
4102 /*
4103  * Checks the GLOBAL_RESET bit.
4104  *
4105  * should be run under rtnl lock
4106  */
4107 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4108 {
4109         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4110
4111         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4112         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4113 }
4114
4115 /*
4116  * Clear RESET_IN_PROGRESS bit for the current engine.
4117  *
4118  * Should be run under rtnl lock
4119  */
4120 static void bnx2x_set_reset_done(struct bnx2x *bp)
4121 {
4122         u32 val;
4123         u32 bit = BP_PATH(bp) ?
4124                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4125         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4126         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4127
4128         /* Clear the bit */
4129         val &= ~bit;
4130         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4131
4132         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4133 }
4134
4135 /*
4136  * Set RESET_IN_PROGRESS for the current engine.
4137  *
4138  * should be run under rtnl lock
4139  */
4140 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4141 {
4142         u32 val;
4143         u32 bit = BP_PATH(bp) ?
4144                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4145         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4147
4148         /* Set the bit */
4149         val |= bit;
4150         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4151         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4152 }
4153
4154 /*
4155  * Checks the RESET_IN_PROGRESS bit for the given engine.
4156  * should be run under rtnl lock
4157  */
4158 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4159 {
4160         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4161         u32 bit = engine ?
4162                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4163
4164         /* return false if bit is set */
4165         return (val & bit) ? false : true;
4166 }
4167
4168 /*
4169  * set pf load for the current pf.
4170  *
4171  * should be run under rtnl lock
4172  */
4173 void bnx2x_set_pf_load(struct bnx2x *bp)
4174 {
4175         u32 val1, val;
4176         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4177                              BNX2X_PATH0_LOAD_CNT_MASK;
4178         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4179                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4180
4181         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4182         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4183
4184         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4185
4186         /* get the current counter value */
4187         val1 = (val & mask) >> shift;
4188
4189         /* set bit of that PF */
4190         val1 |= (1 << bp->pf_num);
4191
4192         /* clear the old value */
4193         val &= ~mask;
4194
4195         /* set the new one */
4196         val |= ((val1 << shift) & mask);
4197
4198         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4199         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4200 }
4201
4202 /**
4203  * bnx2x_clear_pf_load - clear pf load mark
4204  *
4205  * @bp:         driver handle
4206  *
4207  * Should be run under rtnl lock.
4208  * Decrements the load counter for the current engine. Returns
4209  * whether other functions are still loaded
4210  */
4211 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4212 {
4213         u32 val1, val;
4214         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4215                              BNX2X_PATH0_LOAD_CNT_MASK;
4216         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4217                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4218
4219         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4220         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4221         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4222
4223         /* get the current counter value */
4224         val1 = (val & mask) >> shift;
4225
4226         /* clear bit of that PF */
4227         val1 &= ~(1 << bp->pf_num);
4228
4229         /* clear the old value */
4230         val &= ~mask;
4231
4232         /* set the new one */
4233         val |= ((val1 << shift) & mask);
4234
4235         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4236         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4237         return val1 != 0;
4238 }
4239
4240 /*
4241  * Read the load status for the current engine.
4242  *
4243  * should be run under rtnl lock
4244  */
4245 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4246 {
4247         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4248                              BNX2X_PATH0_LOAD_CNT_MASK);
4249         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4250                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4251         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252
4253         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4254
4255         val = (val & mask) >> shift;
4256
4257         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4258            engine, val);
4259
4260         return val != 0;
4261 }
4262
4263 static void _print_parity(struct bnx2x *bp, u32 reg)
4264 {
4265         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4266 }
4267
4268 static void _print_next_block(int idx, const char *blk)
4269 {
4270         pr_cont("%s%s", idx ? ", " : "", blk);
4271 }
4272
4273 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4274                                             int par_num, bool print)
4275 {
4276         int i = 0;
4277         u32 cur_bit = 0;
4278         for (i = 0; sig; i++) {
4279                 cur_bit = ((u32)0x1 << i);
4280                 if (sig & cur_bit) {
4281                         switch (cur_bit) {
4282                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4283                                 if (print) {
4284                                         _print_next_block(par_num++, "BRB");
4285                                         _print_parity(bp,
4286                                                       BRB1_REG_BRB1_PRTY_STS);
4287                                 }
4288                                 break;
4289                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4290                                 if (print) {
4291                                         _print_next_block(par_num++, "PARSER");
4292                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4293                                 }
4294                                 break;
4295                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4296                                 if (print) {
4297                                         _print_next_block(par_num++, "TSDM");
4298                                         _print_parity(bp,
4299                                                       TSDM_REG_TSDM_PRTY_STS);
4300                                 }
4301                                 break;
4302                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4303                                 if (print) {
4304                                         _print_next_block(par_num++,
4305                                                           "SEARCHER");
4306                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4307                                 }
4308                                 break;
4309                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4310                                 if (print) {
4311                                         _print_next_block(par_num++, "TCM");
4312                                         _print_parity(bp,
4313                                                       TCM_REG_TCM_PRTY_STS);
4314                                 }
4315                                 break;
4316                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4317                                 if (print) {
4318                                         _print_next_block(par_num++, "TSEMI");
4319                                         _print_parity(bp,
4320                                                       TSEM_REG_TSEM_PRTY_STS_0);
4321                                         _print_parity(bp,
4322                                                       TSEM_REG_TSEM_PRTY_STS_1);
4323                                 }
4324                                 break;
4325                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4326                                 if (print) {
4327                                         _print_next_block(par_num++, "XPB");
4328                                         _print_parity(bp, GRCBASE_XPB +
4329                                                           PB_REG_PB_PRTY_STS);
4330                                 }
4331                                 break;
4332                         }
4333
4334                         /* Clear the bit */
4335                         sig &= ~cur_bit;
4336                 }
4337         }
4338
4339         return par_num;
4340 }
4341
4342 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4343                                             int par_num, bool *global,
4344                                             bool print)
4345 {
4346         int i = 0;
4347         u32 cur_bit = 0;
4348         for (i = 0; sig; i++) {
4349                 cur_bit = ((u32)0x1 << i);
4350                 if (sig & cur_bit) {
4351                         switch (cur_bit) {
4352                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4353                                 if (print) {
4354                                         _print_next_block(par_num++, "PBF");
4355                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4356                                 }
4357                                 break;
4358                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4359                                 if (print) {
4360                                         _print_next_block(par_num++, "QM");
4361                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4362                                 }
4363                                 break;
4364                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4365                                 if (print) {
4366                                         _print_next_block(par_num++, "TM");
4367                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4368                                 }
4369                                 break;
4370                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4371                                 if (print) {
4372                                         _print_next_block(par_num++, "XSDM");
4373                                         _print_parity(bp,
4374                                                       XSDM_REG_XSDM_PRTY_STS);
4375                                 }
4376                                 break;
4377                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4378                                 if (print) {
4379                                         _print_next_block(par_num++, "XCM");
4380                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4381                                 }
4382                                 break;
4383                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4384                                 if (print) {
4385                                         _print_next_block(par_num++, "XSEMI");
4386                                         _print_parity(bp,
4387                                                       XSEM_REG_XSEM_PRTY_STS_0);
4388                                         _print_parity(bp,
4389                                                       XSEM_REG_XSEM_PRTY_STS_1);
4390                                 }
4391                                 break;
4392                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4393                                 if (print) {
4394                                         _print_next_block(par_num++,
4395                                                           "DOORBELLQ");
4396                                         _print_parity(bp,
4397                                                       DORQ_REG_DORQ_PRTY_STS);
4398                                 }
4399                                 break;
4400                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4401                                 if (print) {
4402                                         _print_next_block(par_num++, "NIG");
4403                                         if (CHIP_IS_E1x(bp)) {
4404                                                 _print_parity(bp,
4405                                                         NIG_REG_NIG_PRTY_STS);
4406                                         } else {
4407                                                 _print_parity(bp,
4408                                                         NIG_REG_NIG_PRTY_STS_0);
4409                                                 _print_parity(bp,
4410                                                         NIG_REG_NIG_PRTY_STS_1);
4411                                         }
4412                                 }
4413                                 break;
4414                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4415                                 if (print)
4416                                         _print_next_block(par_num++,
4417                                                           "VAUX PCI CORE");
4418                                 *global = true;
4419                                 break;
4420                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4421                                 if (print) {
4422                                         _print_next_block(par_num++, "DEBUG");
4423                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4424                                 }
4425                                 break;
4426                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4427                                 if (print) {
4428                                         _print_next_block(par_num++, "USDM");
4429                                         _print_parity(bp,
4430                                                       USDM_REG_USDM_PRTY_STS);
4431                                 }
4432                                 break;
4433                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4434                                 if (print) {
4435                                         _print_next_block(par_num++, "UCM");
4436                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4437                                 }
4438                                 break;
4439                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4440                                 if (print) {
4441                                         _print_next_block(par_num++, "USEMI");
4442                                         _print_parity(bp,
4443                                                       USEM_REG_USEM_PRTY_STS_0);
4444                                         _print_parity(bp,
4445                                                       USEM_REG_USEM_PRTY_STS_1);
4446                                 }
4447                                 break;
4448                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4449                                 if (print) {
4450                                         _print_next_block(par_num++, "UPB");
4451                                         _print_parity(bp, GRCBASE_UPB +
4452                                                           PB_REG_PB_PRTY_STS);
4453                                 }
4454                                 break;
4455                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4456                                 if (print) {
4457                                         _print_next_block(par_num++, "CSDM");
4458                                         _print_parity(bp,
4459                                                       CSDM_REG_CSDM_PRTY_STS);
4460                                 }
4461                                 break;
4462                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4463                                 if (print) {
4464                                         _print_next_block(par_num++, "CCM");
4465                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4466                                 }
4467                                 break;
4468                         }
4469
4470                         /* Clear the bit */
4471                         sig &= ~cur_bit;
4472                 }
4473         }
4474
4475         return par_num;
4476 }
4477
4478 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4479                                             int par_num, bool print)
4480 {
4481         int i = 0;
4482         u32 cur_bit = 0;
4483         for (i = 0; sig; i++) {
4484                 cur_bit = ((u32)0x1 << i);
4485                 if (sig & cur_bit) {
4486                         switch (cur_bit) {
4487                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4488                                 if (print) {
4489                                         _print_next_block(par_num++, "CSEMI");
4490                                         _print_parity(bp,
4491                                                       CSEM_REG_CSEM_PRTY_STS_0);
4492                                         _print_parity(bp,
4493                                                       CSEM_REG_CSEM_PRTY_STS_1);
4494                                 }
4495                                 break;
4496                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4497                                 if (print) {
4498                                         _print_next_block(par_num++, "PXP");
4499                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4500                                         _print_parity(bp,
4501                                                       PXP2_REG_PXP2_PRTY_STS_0);
4502                                         _print_parity(bp,
4503                                                       PXP2_REG_PXP2_PRTY_STS_1);
4504                                 }
4505                                 break;
4506                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4507                                 if (print)
4508                                         _print_next_block(par_num++,
4509                                         "PXPPCICLOCKCLIENT");
4510                                 break;
4511                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4512                                 if (print) {
4513                                         _print_next_block(par_num++, "CFC");
4514                                         _print_parity(bp,
4515                                                       CFC_REG_CFC_PRTY_STS);
4516                                 }
4517                                 break;
4518                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4519                                 if (print) {
4520                                         _print_next_block(par_num++, "CDU");
4521                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4522                                 }
4523                                 break;
4524                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4525                                 if (print) {
4526                                         _print_next_block(par_num++, "DMAE");
4527                                         _print_parity(bp,
4528                                                       DMAE_REG_DMAE_PRTY_STS);
4529                                 }
4530                                 break;
4531                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4532                                 if (print) {
4533                                         _print_next_block(par_num++, "IGU");
4534                                         if (CHIP_IS_E1x(bp))
4535                                                 _print_parity(bp,
4536                                                         HC_REG_HC_PRTY_STS);
4537                                         else
4538                                                 _print_parity(bp,
4539                                                         IGU_REG_IGU_PRTY_STS);
4540                                 }
4541                                 break;
4542                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4543                                 if (print) {
4544                                         _print_next_block(par_num++, "MISC");
4545                                         _print_parity(bp,
4546                                                       MISC_REG_MISC_PRTY_STS);
4547                                 }
4548                                 break;
4549                         }
4550
4551                         /* Clear the bit */
4552                         sig &= ~cur_bit;
4553                 }
4554         }
4555
4556         return par_num;
4557 }
4558
4559 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4560                                            bool *global, bool print)
4561 {
4562         int i = 0;
4563         u32 cur_bit = 0;
4564         for (i = 0; sig; i++) {
4565                 cur_bit = ((u32)0x1 << i);
4566                 if (sig & cur_bit) {
4567                         switch (cur_bit) {
4568                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4569                                 if (print)
4570                                         _print_next_block(par_num++, "MCP ROM");
4571                                 *global = true;
4572                                 break;
4573                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4574                                 if (print)
4575                                         _print_next_block(par_num++,
4576                                                           "MCP UMP RX");
4577                                 *global = true;
4578                                 break;
4579                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4580                                 if (print)
4581                                         _print_next_block(par_num++,
4582                                                           "MCP UMP TX");
4583                                 *global = true;
4584                                 break;
4585                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4586                                 if (print)
4587                                         _print_next_block(par_num++,
4588                                                           "MCP SCPAD");
4589                                 *global = true;
4590                                 break;
4591                         }
4592
4593                         /* Clear the bit */
4594                         sig &= ~cur_bit;
4595                 }
4596         }
4597
4598         return par_num;
4599 }
4600
4601 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4602                                             int par_num, bool print)
4603 {
4604         int i = 0;
4605         u32 cur_bit = 0;
4606         for (i = 0; sig; i++) {
4607                 cur_bit = ((u32)0x1 << i);
4608                 if (sig & cur_bit) {
4609                         switch (cur_bit) {
4610                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4611                                 if (print) {
4612                                         _print_next_block(par_num++, "PGLUE_B");
4613                                         _print_parity(bp,
4614                                                 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4615                                 }
4616                                 break;
4617                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4618                                 if (print) {
4619                                         _print_next_block(par_num++, "ATC");
4620                                         _print_parity(bp,
4621                                                       ATC_REG_ATC_PRTY_STS);
4622                                 }
4623                                 break;
4624                         }
4625
4626                         /* Clear the bit */
4627                         sig &= ~cur_bit;
4628                 }
4629         }
4630
4631         return par_num;
4632 }
4633
4634 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4635                               u32 *sig)
4636 {
4637         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4638             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4639             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4640             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4641             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4642                 int par_num = 0;
4643                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4644                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4645                           sig[0] & HW_PRTY_ASSERT_SET_0,
4646                           sig[1] & HW_PRTY_ASSERT_SET_1,
4647                           sig[2] & HW_PRTY_ASSERT_SET_2,
4648                           sig[3] & HW_PRTY_ASSERT_SET_3,
4649                           sig[4] & HW_PRTY_ASSERT_SET_4);
4650                 if (print)
4651                         netdev_err(bp->dev,
4652                                    "Parity errors detected in blocks: ");
4653                 par_num = bnx2x_check_blocks_with_parity0(bp,
4654                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4655                 par_num = bnx2x_check_blocks_with_parity1(bp,
4656                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4657                 par_num = bnx2x_check_blocks_with_parity2(bp,
4658                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4659                 par_num = bnx2x_check_blocks_with_parity3(
4660                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4661                 par_num = bnx2x_check_blocks_with_parity4(bp,
4662                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4663
4664                 if (print)
4665                         pr_cont("\n");
4666
4667                 return true;
4668         } else
4669                 return false;
4670 }
4671
4672 /**
4673  * bnx2x_chk_parity_attn - checks for parity attentions.
4674  *
4675  * @bp:         driver handle
4676  * @global:     true if there was a global attention
4677  * @print:      show parity attention in syslog
4678  */
4679 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4680 {
4681         struct attn_route attn = { {0} };
4682         int port = BP_PORT(bp);
4683
4684         attn.sig[0] = REG_RD(bp,
4685                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4686                              port*4);
4687         attn.sig[1] = REG_RD(bp,
4688                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4689                              port*4);
4690         attn.sig[2] = REG_RD(bp,
4691                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4692                              port*4);
4693         attn.sig[3] = REG_RD(bp,
4694                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4695                              port*4);
4696
4697         if (!CHIP_IS_E1x(bp))
4698                 attn.sig[4] = REG_RD(bp,
4699                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4700                                      port*4);
4701
4702         return bnx2x_parity_attn(bp, global, print, attn.sig);
4703 }
4704
4705 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4706 {
4707         u32 val;
4708         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4709
4710                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4711                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4712                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4713                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4714                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4715                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4716                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4717                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4718                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4719                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4720                 if (val &
4721                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4722                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4723                 if (val &
4724                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4725                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4726                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4727                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4728                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4729                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4730                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4731                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4732         }
4733         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4734                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4735                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4736                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4737                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4738                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4739                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4740                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4741                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4742                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4743                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4744                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4745                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4746                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4747                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4748         }
4749
4750         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4751                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4752                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4753                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4754                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4755         }
4756 }
4757
4758 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4759 {
4760         struct attn_route attn, *group_mask;
4761         int port = BP_PORT(bp);
4762         int index;
4763         u32 reg_addr;
4764         u32 val;
4765         u32 aeu_mask;
4766         bool global = false;
4767
4768         /* need to take HW lock because MCP or other port might also
4769            try to handle this event */
4770         bnx2x_acquire_alr(bp);
4771
4772         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4773 #ifndef BNX2X_STOP_ON_ERROR
4774                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4775                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4776                 /* Disable HW interrupts */
4777                 bnx2x_int_disable(bp);
4778                 /* In case of parity errors don't handle attentions so that
4779                  * other function would "see" parity errors.
4780                  */
4781 #else
4782                 bnx2x_panic();
4783 #endif
4784                 bnx2x_release_alr(bp);
4785                 return;
4786         }
4787
4788         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4789         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4790         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4791         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4792         if (!CHIP_IS_E1x(bp))
4793                 attn.sig[4] =
4794                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4795         else
4796                 attn.sig[4] = 0;
4797
4798         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4799            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4800
4801         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4802                 if (deasserted & (1 << index)) {
4803                         group_mask = &bp->attn_group[index];
4804
4805                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4806                            index,
4807                            group_mask->sig[0], group_mask->sig[1],
4808                            group_mask->sig[2], group_mask->sig[3],
4809                            group_mask->sig[4]);
4810
4811                         bnx2x_attn_int_deasserted4(bp,
4812                                         attn.sig[4] & group_mask->sig[4]);
4813                         bnx2x_attn_int_deasserted3(bp,
4814                                         attn.sig[3] & group_mask->sig[3]);
4815                         bnx2x_attn_int_deasserted1(bp,
4816                                         attn.sig[1] & group_mask->sig[1]);
4817                         bnx2x_attn_int_deasserted2(bp,
4818                                         attn.sig[2] & group_mask->sig[2]);
4819                         bnx2x_attn_int_deasserted0(bp,
4820                                         attn.sig[0] & group_mask->sig[0]);
4821                 }
4822         }
4823
4824         bnx2x_release_alr(bp);
4825
4826         if (bp->common.int_block == INT_BLOCK_HC)
4827                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4828                             COMMAND_REG_ATTN_BITS_CLR);
4829         else
4830                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4831
4832         val = ~deasserted;
4833         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4834            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4835         REG_WR(bp, reg_addr, val);
4836
4837         if (~bp->attn_state & deasserted)
4838                 BNX2X_ERR("IGU ERROR\n");
4839
4840         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4841                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4842
4843         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4844         aeu_mask = REG_RD(bp, reg_addr);
4845
4846         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4847            aeu_mask, deasserted);
4848         aeu_mask |= (deasserted & 0x3ff);
4849         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4850
4851         REG_WR(bp, reg_addr, aeu_mask);
4852         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4853
4854         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4855         bp->attn_state &= ~deasserted;
4856         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4857 }
4858
4859 static void bnx2x_attn_int(struct bnx2x *bp)
4860 {
4861         /* read local copy of bits */
4862         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4863                                                                 attn_bits);
4864         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4865                                                                 attn_bits_ack);
4866         u32 attn_state = bp->attn_state;
4867
4868         /* look for changed bits */
4869         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4870         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4871
4872         DP(NETIF_MSG_HW,
4873            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4874            attn_bits, attn_ack, asserted, deasserted);
4875
4876         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4877                 BNX2X_ERR("BAD attention state\n");
4878
4879         /* handle bits that were raised */
4880         if (asserted)
4881                 bnx2x_attn_int_asserted(bp, asserted);
4882
4883         if (deasserted)
4884                 bnx2x_attn_int_deasserted(bp, deasserted);
4885 }
4886
4887 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4888                       u16 index, u8 op, u8 update)
4889 {
4890         u32 igu_addr = bp->igu_base_addr;
4891         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4892         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4893                              igu_addr);
4894 }
4895
4896 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4897 {
4898         /* No memory barriers */
4899         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4900         mmiowb(); /* keep prod updates ordered */
4901 }
4902
4903 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4904                                       union event_ring_elem *elem)
4905 {
4906         u8 err = elem->message.error;
4907
4908         if (!bp->cnic_eth_dev.starting_cid  ||
4909             (cid < bp->cnic_eth_dev.starting_cid &&
4910             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4911                 return 1;
4912
4913         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4914
4915         if (unlikely(err)) {
4916
4917                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4918                           cid);
4919                 bnx2x_panic_dump(bp, false);
4920         }
4921         bnx2x_cnic_cfc_comp(bp, cid, err);
4922         return 0;
4923 }
4924
4925 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4926 {
4927         struct bnx2x_mcast_ramrod_params rparam;
4928         int rc;
4929
4930         memset(&rparam, 0, sizeof(rparam));
4931
4932         rparam.mcast_obj = &bp->mcast_obj;
4933
4934         netif_addr_lock_bh(bp->dev);
4935
4936         /* Clear pending state for the last command */
4937         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4938
4939         /* If there are pending mcast commands - send them */
4940         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4941                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4942                 if (rc < 0)
4943                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4944                                   rc);
4945         }
4946
4947         netif_addr_unlock_bh(bp->dev);
4948 }
4949
4950 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4951                                             union event_ring_elem *elem)
4952 {
4953         unsigned long ramrod_flags = 0;
4954         int rc = 0;
4955         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4956         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4957
4958         /* Always push next commands out, don't wait here */
4959         __set_bit(RAMROD_CONT, &ramrod_flags);
4960
4961         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4962                             >> BNX2X_SWCID_SHIFT) {
4963         case BNX2X_FILTER_MAC_PENDING:
4964                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4965                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4966                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4967                 else
4968                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4969
4970                 break;
4971         case BNX2X_FILTER_MCAST_PENDING:
4972                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4973                 /* This is only relevant for 57710 where multicast MACs are
4974                  * configured as unicast MACs using the same ramrod.
4975                  */
4976                 bnx2x_handle_mcast_eqe(bp);
4977                 return;
4978         default:
4979                 BNX2X_ERR("Unsupported classification command: %d\n",
4980                           elem->message.data.eth_event.echo);
4981                 return;
4982         }
4983
4984         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4985
4986         if (rc < 0)
4987                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4988         else if (rc > 0)
4989                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4990 }
4991
4992 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4993
4994 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4995 {
4996         netif_addr_lock_bh(bp->dev);
4997
4998         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4999
5000         /* Send rx_mode command again if was requested */
5001         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5002                 bnx2x_set_storm_rx_mode(bp);
5003         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5004                                     &bp->sp_state))
5005                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5006         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5007                                     &bp->sp_state))
5008                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5009
5010         netif_addr_unlock_bh(bp->dev);
5011 }
5012
5013 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5014                                               union event_ring_elem *elem)
5015 {
5016         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5017                 DP(BNX2X_MSG_SP,
5018                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5019                    elem->message.data.vif_list_event.func_bit_map);
5020                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5021                         elem->message.data.vif_list_event.func_bit_map);
5022         } else if (elem->message.data.vif_list_event.echo ==
5023                    VIF_LIST_RULE_SET) {
5024                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5025                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5026         }
5027 }
5028
5029 /* called with rtnl_lock */
5030 static void bnx2x_after_function_update(struct bnx2x *bp)
5031 {
5032         int q, rc;
5033         struct bnx2x_fastpath *fp;
5034         struct bnx2x_queue_state_params queue_params = {NULL};
5035         struct bnx2x_queue_update_params *q_update_params =
5036                 &queue_params.params.update;
5037
5038         /* Send Q update command with afex vlan removal values for all Qs */
5039         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5040
5041         /* set silent vlan removal values according to vlan mode */
5042         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5043                   &q_update_params->update_flags);
5044         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5045                   &q_update_params->update_flags);
5046         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5047
5048         /* in access mode mark mask and value are 0 to strip all vlans */
5049         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5050                 q_update_params->silent_removal_value = 0;
5051                 q_update_params->silent_removal_mask = 0;
5052         } else {
5053                 q_update_params->silent_removal_value =
5054                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5055                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5056         }
5057
5058         for_each_eth_queue(bp, q) {
5059                 /* Set the appropriate Queue object */
5060                 fp = &bp->fp[q];
5061                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5062
5063                 /* send the ramrod */
5064                 rc = bnx2x_queue_state_change(bp, &queue_params);
5065                 if (rc < 0)
5066                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5067                                   q);
5068         }
5069
5070         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5071                 fp = &bp->fp[FCOE_IDX(bp)];
5072                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5073
5074                 /* clear pending completion bit */
5075                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5076
5077                 /* mark latest Q bit */
5078                 smp_mb__before_clear_bit();
5079                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5080                 smp_mb__after_clear_bit();
5081
5082                 /* send Q update ramrod for FCoE Q */
5083                 rc = bnx2x_queue_state_change(bp, &queue_params);
5084                 if (rc < 0)
5085                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5086                                   q);
5087         } else {
5088                 /* If no FCoE ring - ACK MCP now */
5089                 bnx2x_link_report(bp);
5090                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5091         }
5092 }
5093
5094 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5095         struct bnx2x *bp, u32 cid)
5096 {
5097         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5098
5099         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5100                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5101         else
5102                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5103 }
5104
5105 static void bnx2x_eq_int(struct bnx2x *bp)
5106 {
5107         u16 hw_cons, sw_cons, sw_prod;
5108         union event_ring_elem *elem;
5109         u8 echo;
5110         u32 cid;
5111         u8 opcode;
5112         int rc, spqe_cnt = 0;
5113         struct bnx2x_queue_sp_obj *q_obj;
5114         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5115         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5116
5117         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5118
5119         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5120          * when we get the next-page we need to adjust so the loop
5121          * condition below will be met. The next element is the size of a
5122          * regular element and hence incrementing by 1
5123          */
5124         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5125                 hw_cons++;
5126
5127         /* This function may never run in parallel with itself for a
5128          * specific bp, thus there is no need in "paired" read memory
5129          * barrier here.
5130          */
5131         sw_cons = bp->eq_cons;
5132         sw_prod = bp->eq_prod;
5133
5134         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5135                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5136
5137         for (; sw_cons != hw_cons;
5138               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5139
5140                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5141
5142                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5143                 if (!rc) {
5144                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5145                            rc);
5146                         goto next_spqe;
5147                 }
5148
5149                 /* elem CID originates from FW; actually LE */
5150                 cid = SW_CID((__force __le32)
5151                              elem->message.data.cfc_del_event.cid);
5152                 opcode = elem->message.opcode;
5153
5154                 /* handle eq element */
5155                 switch (opcode) {
5156                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5157                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5158                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5159                         continue;
5160
5161                 case EVENT_RING_OPCODE_STAT_QUERY:
5162                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5163                            "got statistics comp event %d\n",
5164                            bp->stats_comp++);
5165                         /* nothing to do with stats comp */
5166                         goto next_spqe;
5167
5168                 case EVENT_RING_OPCODE_CFC_DEL:
5169                         /* handle according to cid range */
5170                         /*
5171                          * we may want to verify here that the bp state is
5172                          * HALTING
5173                          */
5174                         DP(BNX2X_MSG_SP,
5175                            "got delete ramrod for MULTI[%d]\n", cid);
5176
5177                         if (CNIC_LOADED(bp) &&
5178                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5179                                 goto next_spqe;
5180
5181                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5182
5183                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5184                                 break;
5185
5186                         goto next_spqe;
5187
5188                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5189                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5190                         if (f_obj->complete_cmd(bp, f_obj,
5191                                                 BNX2X_F_CMD_TX_STOP))
5192                                 break;
5193                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5194                         goto next_spqe;
5195
5196                 case EVENT_RING_OPCODE_START_TRAFFIC:
5197                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5198                         if (f_obj->complete_cmd(bp, f_obj,
5199                                                 BNX2X_F_CMD_TX_START))
5200                                 break;
5201                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5202                         goto next_spqe;
5203
5204                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5205                         echo = elem->message.data.function_update_event.echo;
5206                         if (echo == SWITCH_UPDATE) {
5207                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5208                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5209                                 if (f_obj->complete_cmd(
5210                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5211                                         break;
5212
5213                         } else {
5214                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5215                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5216                                 f_obj->complete_cmd(bp, f_obj,
5217                                                     BNX2X_F_CMD_AFEX_UPDATE);
5218
5219                                 /* We will perform the Queues update from
5220                                  * sp_rtnl task as all Queue SP operations
5221                                  * should run under rtnl_lock.
5222                                  */
5223                                 smp_mb__before_clear_bit();
5224                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5225                                         &bp->sp_rtnl_state);
5226                                 smp_mb__after_clear_bit();
5227
5228                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5229                         }
5230
5231                         goto next_spqe;
5232
5233                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5234                         f_obj->complete_cmd(bp, f_obj,
5235                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5236                         bnx2x_after_afex_vif_lists(bp, elem);
5237                         goto next_spqe;
5238                 case EVENT_RING_OPCODE_FUNCTION_START:
5239                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5240                            "got FUNC_START ramrod\n");
5241                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5242                                 break;
5243
5244                         goto next_spqe;
5245
5246                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5247                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5248                            "got FUNC_STOP ramrod\n");
5249                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5250                                 break;
5251
5252                         goto next_spqe;
5253                 }
5254
5255                 switch (opcode | bp->state) {
5256                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5257                       BNX2X_STATE_OPEN):
5258                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5259                       BNX2X_STATE_OPENING_WAIT4_PORT):
5260                         cid = elem->message.data.eth_event.echo &
5261                                 BNX2X_SWCID_MASK;
5262                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5263                            cid);
5264                         rss_raw->clear_pending(rss_raw);
5265                         break;
5266
5267                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5268                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5269                 case (EVENT_RING_OPCODE_SET_MAC |
5270                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5271                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5272                       BNX2X_STATE_OPEN):
5273                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5274                       BNX2X_STATE_DIAG):
5275                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5276                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5277                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5278                         bnx2x_handle_classification_eqe(bp, elem);
5279                         break;
5280
5281                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5282                       BNX2X_STATE_OPEN):
5283                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5284                       BNX2X_STATE_DIAG):
5285                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5286                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5287                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5288                         bnx2x_handle_mcast_eqe(bp);
5289                         break;
5290
5291                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5292                       BNX2X_STATE_OPEN):
5293                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5294                       BNX2X_STATE_DIAG):
5295                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5296                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5297                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5298                         bnx2x_handle_rx_mode_eqe(bp);
5299                         break;
5300                 default:
5301                         /* unknown event log error and continue */
5302                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5303                                   elem->message.opcode, bp->state);
5304                 }
5305 next_spqe:
5306                 spqe_cnt++;
5307         } /* for */
5308
5309         smp_mb__before_atomic_inc();
5310         atomic_add(spqe_cnt, &bp->eq_spq_left);
5311
5312         bp->eq_cons = sw_cons;
5313         bp->eq_prod = sw_prod;
5314         /* Make sure that above mem writes were issued towards the memory */
5315         smp_wmb();
5316
5317         /* update producer */
5318         bnx2x_update_eq_prod(bp, bp->eq_prod);
5319 }
5320
5321 static void bnx2x_sp_task(struct work_struct *work)
5322 {
5323         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5324
5325         DP(BNX2X_MSG_SP, "sp task invoked\n");
5326
5327         /* make sure the atomic interrupt_occurred has been written */
5328         smp_rmb();
5329         if (atomic_read(&bp->interrupt_occurred)) {
5330
5331                 /* what work needs to be performed? */
5332                 u16 status = bnx2x_update_dsb_idx(bp);
5333
5334                 DP(BNX2X_MSG_SP, "status %x\n", status);
5335                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5336                 atomic_set(&bp->interrupt_occurred, 0);
5337
5338                 /* HW attentions */
5339                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5340                         bnx2x_attn_int(bp);
5341                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5342                 }
5343
5344                 /* SP events: STAT_QUERY and others */
5345                 if (status & BNX2X_DEF_SB_IDX) {
5346                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5347
5348                 if (FCOE_INIT(bp) &&
5349                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5350                                 /* Prevent local bottom-halves from running as
5351                                  * we are going to change the local NAPI list.
5352                                  */
5353                                 local_bh_disable();
5354                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5355                                 local_bh_enable();
5356                         }
5357
5358                         /* Handle EQ completions */
5359                         bnx2x_eq_int(bp);
5360                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5361                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5362
5363                         status &= ~BNX2X_DEF_SB_IDX;
5364                 }
5365
5366                 /* if status is non zero then perhaps something went wrong */
5367                 if (unlikely(status))
5368                         DP(BNX2X_MSG_SP,
5369                            "got an unknown interrupt! (status 0x%x)\n", status);
5370
5371                 /* ack status block only if something was actually handled */
5372                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5373                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5374         }
5375
5376         /* must be called after the EQ processing (since eq leads to sriov
5377          * ramrod completion flows).
5378          * This flow may have been scheduled by the arrival of a ramrod
5379          * completion, or by the sriov code rescheduling itself.
5380          */
5381         bnx2x_iov_sp_task(bp);
5382
5383         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5384         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5385                                &bp->sp_state)) {
5386                 bnx2x_link_report(bp);
5387                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5388         }
5389 }
5390
5391 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5392 {
5393         struct net_device *dev = dev_instance;
5394         struct bnx2x *bp = netdev_priv(dev);
5395
5396         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5397                      IGU_INT_DISABLE, 0);
5398
5399 #ifdef BNX2X_STOP_ON_ERROR
5400         if (unlikely(bp->panic))
5401                 return IRQ_HANDLED;
5402 #endif
5403
5404         if (CNIC_LOADED(bp)) {
5405                 struct cnic_ops *c_ops;
5406
5407                 rcu_read_lock();
5408                 c_ops = rcu_dereference(bp->cnic_ops);
5409                 if (c_ops)
5410                         c_ops->cnic_handler(bp->cnic_data, NULL);
5411                 rcu_read_unlock();
5412         }
5413
5414         /* schedule sp task to perform default status block work, ack
5415          * attentions and enable interrupts.
5416          */
5417         bnx2x_schedule_sp_task(bp);
5418
5419         return IRQ_HANDLED;
5420 }
5421
5422 /* end of slow path */
5423
5424 void bnx2x_drv_pulse(struct bnx2x *bp)
5425 {
5426         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5427                  bp->fw_drv_pulse_wr_seq);
5428 }
5429
5430 static void bnx2x_timer(unsigned long data)
5431 {
5432         struct bnx2x *bp = (struct bnx2x *) data;
5433
5434         if (!netif_running(bp->dev))
5435                 return;
5436
5437         if (IS_PF(bp) &&
5438             !BP_NOMCP(bp)) {
5439                 int mb_idx = BP_FW_MB_IDX(bp);
5440                 u32 drv_pulse;
5441                 u32 mcp_pulse;
5442
5443                 ++bp->fw_drv_pulse_wr_seq;
5444                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5445                 /* TBD - add SYSTEM_TIME */
5446                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5447                 bnx2x_drv_pulse(bp);
5448
5449                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5450                              MCP_PULSE_SEQ_MASK);
5451                 /* The delta between driver pulse and mcp response
5452                  * should be 1 (before mcp response) or 0 (after mcp response)
5453                  */
5454                 if ((drv_pulse != mcp_pulse) &&
5455                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5456                         /* someone lost a heartbeat... */
5457                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5458                                   drv_pulse, mcp_pulse);
5459                 }
5460         }
5461
5462         if (bp->state == BNX2X_STATE_OPEN)
5463                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5464
5465         /* sample pf vf bulletin board for new posts from pf */
5466         if (IS_VF(bp))
5467                 bnx2x_timer_sriov(bp);
5468
5469         mod_timer(&bp->timer, jiffies + bp->current_interval);
5470 }
5471
5472 /* end of Statistics */
5473
5474 /* nic init */
5475
5476 /*
5477  * nic init service functions
5478  */
5479
5480 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5481 {
5482         u32 i;
5483         if (!(len%4) && !(addr%4))
5484                 for (i = 0; i < len; i += 4)
5485                         REG_WR(bp, addr + i, fill);
5486         else
5487                 for (i = 0; i < len; i++)
5488                         REG_WR8(bp, addr + i, fill);
5489 }
5490
5491 /* helper: writes FP SP data to FW - data_size in dwords */
5492 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5493                                 int fw_sb_id,
5494                                 u32 *sb_data_p,
5495                                 u32 data_size)
5496 {
5497         int index;
5498         for (index = 0; index < data_size; index++)
5499                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5500                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5501                         sizeof(u32)*index,
5502                         *(sb_data_p + index));
5503 }
5504
5505 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5506 {
5507         u32 *sb_data_p;
5508         u32 data_size = 0;
5509         struct hc_status_block_data_e2 sb_data_e2;
5510         struct hc_status_block_data_e1x sb_data_e1x;
5511
5512         /* disable the function first */
5513         if (!CHIP_IS_E1x(bp)) {
5514                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5515                 sb_data_e2.common.state = SB_DISABLED;
5516                 sb_data_e2.common.p_func.vf_valid = false;
5517                 sb_data_p = (u32 *)&sb_data_e2;
5518                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5519         } else {
5520                 memset(&sb_data_e1x, 0,
5521                        sizeof(struct hc_status_block_data_e1x));
5522                 sb_data_e1x.common.state = SB_DISABLED;
5523                 sb_data_e1x.common.p_func.vf_valid = false;
5524                 sb_data_p = (u32 *)&sb_data_e1x;
5525                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5526         }
5527         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5528
5529         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5530                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5531                         CSTORM_STATUS_BLOCK_SIZE);
5532         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5533                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5534                         CSTORM_SYNC_BLOCK_SIZE);
5535 }
5536
5537 /* helper:  writes SP SB data to FW */
5538 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5539                 struct hc_sp_status_block_data *sp_sb_data)
5540 {
5541         int func = BP_FUNC(bp);
5542         int i;
5543         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5544                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5545                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5546                         i*sizeof(u32),
5547                         *((u32 *)sp_sb_data + i));
5548 }
5549
5550 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5551 {
5552         int func = BP_FUNC(bp);
5553         struct hc_sp_status_block_data sp_sb_data;
5554         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5555
5556         sp_sb_data.state = SB_DISABLED;
5557         sp_sb_data.p_func.vf_valid = false;
5558
5559         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5560
5561         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5562                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5563                         CSTORM_SP_STATUS_BLOCK_SIZE);
5564         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5565                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5566                         CSTORM_SP_SYNC_BLOCK_SIZE);
5567 }
5568
5569 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5570                                            int igu_sb_id, int igu_seg_id)
5571 {
5572         hc_sm->igu_sb_id = igu_sb_id;
5573         hc_sm->igu_seg_id = igu_seg_id;
5574         hc_sm->timer_value = 0xFF;
5575         hc_sm->time_to_expire = 0xFFFFFFFF;
5576 }
5577
5578 /* allocates state machine ids. */
5579 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5580 {
5581         /* zero out state machine indices */
5582         /* rx indices */
5583         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5584
5585         /* tx indices */
5586         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5587         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5588         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5589         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5590
5591         /* map indices */
5592         /* rx indices */
5593         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5594                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5595
5596         /* tx indices */
5597         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5598                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5599         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5600                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5601         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5602                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5603         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5604                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605 }
5606
5607 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5608                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5609 {
5610         int igu_seg_id;
5611
5612         struct hc_status_block_data_e2 sb_data_e2;
5613         struct hc_status_block_data_e1x sb_data_e1x;
5614         struct hc_status_block_sm  *hc_sm_p;
5615         int data_size;
5616         u32 *sb_data_p;
5617
5618         if (CHIP_INT_MODE_IS_BC(bp))
5619                 igu_seg_id = HC_SEG_ACCESS_NORM;
5620         else
5621                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5622
5623         bnx2x_zero_fp_sb(bp, fw_sb_id);
5624
5625         if (!CHIP_IS_E1x(bp)) {
5626                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5627                 sb_data_e2.common.state = SB_ENABLED;
5628                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5629                 sb_data_e2.common.p_func.vf_id = vfid;
5630                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5631                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5632                 sb_data_e2.common.same_igu_sb_1b = true;
5633                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5634                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5635                 hc_sm_p = sb_data_e2.common.state_machine;
5636                 sb_data_p = (u32 *)&sb_data_e2;
5637                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5638                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5639         } else {
5640                 memset(&sb_data_e1x, 0,
5641                        sizeof(struct hc_status_block_data_e1x));
5642                 sb_data_e1x.common.state = SB_ENABLED;
5643                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5644                 sb_data_e1x.common.p_func.vf_id = 0xff;
5645                 sb_data_e1x.common.p_func.vf_valid = false;
5646                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5647                 sb_data_e1x.common.same_igu_sb_1b = true;
5648                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5649                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5650                 hc_sm_p = sb_data_e1x.common.state_machine;
5651                 sb_data_p = (u32 *)&sb_data_e1x;
5652                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5653                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5654         }
5655
5656         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5657                                        igu_sb_id, igu_seg_id);
5658         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5659                                        igu_sb_id, igu_seg_id);
5660
5661         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5662
5663         /* write indices to HW - PCI guarantees endianity of regpairs */
5664         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5665 }
5666
5667 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5668                                      u16 tx_usec, u16 rx_usec)
5669 {
5670         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5671                                     false, rx_usec);
5672         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5673                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5674                                        tx_usec);
5675         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5676                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5677                                        tx_usec);
5678         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5679                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5680                                        tx_usec);
5681 }
5682
5683 static void bnx2x_init_def_sb(struct bnx2x *bp)
5684 {
5685         struct host_sp_status_block *def_sb = bp->def_status_blk;
5686         dma_addr_t mapping = bp->def_status_blk_mapping;
5687         int igu_sp_sb_index;
5688         int igu_seg_id;
5689         int port = BP_PORT(bp);
5690         int func = BP_FUNC(bp);
5691         int reg_offset, reg_offset_en5;
5692         u64 section;
5693         int index;
5694         struct hc_sp_status_block_data sp_sb_data;
5695         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5696
5697         if (CHIP_INT_MODE_IS_BC(bp)) {
5698                 igu_sp_sb_index = DEF_SB_IGU_ID;
5699                 igu_seg_id = HC_SEG_ACCESS_DEF;
5700         } else {
5701                 igu_sp_sb_index = bp->igu_dsb_id;
5702                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5703         }
5704
5705         /* ATTN */
5706         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5707                                             atten_status_block);
5708         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5709
5710         bp->attn_state = 0;
5711
5712         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5713                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5714         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5715                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5716         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5717                 int sindex;
5718                 /* take care of sig[0]..sig[4] */
5719                 for (sindex = 0; sindex < 4; sindex++)
5720                         bp->attn_group[index].sig[sindex] =
5721                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5722
5723                 if (!CHIP_IS_E1x(bp))
5724                         /*
5725                          * enable5 is separate from the rest of the registers,
5726                          * and therefore the address skip is 4
5727                          * and not 16 between the different groups
5728                          */
5729                         bp->attn_group[index].sig[4] = REG_RD(bp,
5730                                         reg_offset_en5 + 0x4*index);
5731                 else
5732                         bp->attn_group[index].sig[4] = 0;
5733         }
5734
5735         if (bp->common.int_block == INT_BLOCK_HC) {
5736                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5737                                      HC_REG_ATTN_MSG0_ADDR_L);
5738
5739                 REG_WR(bp, reg_offset, U64_LO(section));
5740                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5741         } else if (!CHIP_IS_E1x(bp)) {
5742                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5743                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5744         }
5745
5746         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5747                                             sp_sb);
5748
5749         bnx2x_zero_sp_sb(bp);
5750
5751         /* PCI guarantees endianity of regpairs */
5752         sp_sb_data.state                = SB_ENABLED;
5753         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5754         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5755         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5756         sp_sb_data.igu_seg_id           = igu_seg_id;
5757         sp_sb_data.p_func.pf_id         = func;
5758         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5759         sp_sb_data.p_func.vf_id         = 0xff;
5760
5761         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5762
5763         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5764 }
5765
5766 void bnx2x_update_coalesce(struct bnx2x *bp)
5767 {
5768         int i;
5769
5770         for_each_eth_queue(bp, i)
5771                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5772                                          bp->tx_ticks, bp->rx_ticks);
5773 }
5774
5775 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5776 {
5777         spin_lock_init(&bp->spq_lock);
5778         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5779
5780         bp->spq_prod_idx = 0;
5781         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5782         bp->spq_prod_bd = bp->spq;
5783         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5784 }
5785
5786 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5787 {
5788         int i;
5789         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5790                 union event_ring_elem *elem =
5791                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5792
5793                 elem->next_page.addr.hi =
5794                         cpu_to_le32(U64_HI(bp->eq_mapping +
5795                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5796                 elem->next_page.addr.lo =
5797                         cpu_to_le32(U64_LO(bp->eq_mapping +
5798                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5799         }
5800         bp->eq_cons = 0;
5801         bp->eq_prod = NUM_EQ_DESC;
5802         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5803         /* we want a warning message before it gets wrought... */
5804         atomic_set(&bp->eq_spq_left,
5805                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5806 }
5807
5808 /* called with netif_addr_lock_bh() */
5809 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5810                         unsigned long rx_mode_flags,
5811                         unsigned long rx_accept_flags,
5812                         unsigned long tx_accept_flags,
5813                         unsigned long ramrod_flags)
5814 {
5815         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5816         int rc;
5817
5818         memset(&ramrod_param, 0, sizeof(ramrod_param));
5819
5820         /* Prepare ramrod parameters */
5821         ramrod_param.cid = 0;
5822         ramrod_param.cl_id = cl_id;
5823         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5824         ramrod_param.func_id = BP_FUNC(bp);
5825
5826         ramrod_param.pstate = &bp->sp_state;
5827         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5828
5829         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5830         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5831
5832         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5833
5834         ramrod_param.ramrod_flags = ramrod_flags;
5835         ramrod_param.rx_mode_flags = rx_mode_flags;
5836
5837         ramrod_param.rx_accept_flags = rx_accept_flags;
5838         ramrod_param.tx_accept_flags = tx_accept_flags;
5839
5840         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5841         if (rc < 0) {
5842                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5843                 return rc;
5844         }
5845
5846         return 0;
5847 }
5848
5849 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5850                                    unsigned long *rx_accept_flags,
5851                                    unsigned long *tx_accept_flags)
5852 {
5853         /* Clear the flags first */
5854         *rx_accept_flags = 0;
5855         *tx_accept_flags = 0;
5856
5857         switch (rx_mode) {
5858         case BNX2X_RX_MODE_NONE:
5859                 /*
5860                  * 'drop all' supersedes any accept flags that may have been
5861                  * passed to the function.
5862                  */
5863                 break;
5864         case BNX2X_RX_MODE_NORMAL:
5865                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5866                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5867                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5868
5869                 /* internal switching mode */
5870                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5871                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5872                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5873
5874                 break;
5875         case BNX2X_RX_MODE_ALLMULTI:
5876                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5877                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5878                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5879
5880                 /* internal switching mode */
5881                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5882                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5883                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5884
5885                 break;
5886         case BNX2X_RX_MODE_PROMISC:
5887                 /* According to definition of SI mode, iface in promisc mode
5888                  * should receive matched and unmatched (in resolution of port)
5889                  * unicast packets.
5890                  */
5891                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5892                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5893                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5894                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5895
5896                 /* internal switching mode */
5897                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5898                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5899
5900                 if (IS_MF_SI(bp))
5901                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5902                 else
5903                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5904
5905                 break;
5906         default:
5907                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5908                 return -EINVAL;
5909         }
5910
5911         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5912         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5913                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5914                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5915         }
5916
5917         return 0;
5918 }
5919
5920 /* called with netif_addr_lock_bh() */
5921 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5922 {
5923         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5924         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5925         int rc;
5926
5927         if (!NO_FCOE(bp))
5928                 /* Configure rx_mode of FCoE Queue */
5929                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5930
5931         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5932                                      &tx_accept_flags);
5933         if (rc)
5934                 return rc;
5935
5936         __set_bit(RAMROD_RX, &ramrod_flags);
5937         __set_bit(RAMROD_TX, &ramrod_flags);
5938
5939         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5940                                    rx_accept_flags, tx_accept_flags,
5941                                    ramrod_flags);
5942 }
5943
5944 static void bnx2x_init_internal_common(struct bnx2x *bp)
5945 {
5946         int i;
5947
5948         if (IS_MF_SI(bp))
5949                 /*
5950                  * In switch independent mode, the TSTORM needs to accept
5951                  * packets that failed classification, since approximate match
5952                  * mac addresses aren't written to NIG LLH
5953                  */
5954                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5955                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5956         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5957                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5958                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5959
5960         /* Zero this manually as its initialization is
5961            currently missing in the initTool */
5962         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5963                 REG_WR(bp, BAR_USTRORM_INTMEM +
5964                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5965         if (!CHIP_IS_E1x(bp)) {
5966                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5967                         CHIP_INT_MODE_IS_BC(bp) ?
5968                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5969         }
5970 }
5971
5972 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5973 {
5974         switch (load_code) {
5975         case FW_MSG_CODE_DRV_LOAD_COMMON:
5976         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5977                 bnx2x_init_internal_common(bp);
5978                 /* no break */
5979
5980         case FW_MSG_CODE_DRV_LOAD_PORT:
5981                 /* nothing to do */
5982                 /* no break */
5983
5984         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5985                 /* internal memory per function is
5986                    initialized inside bnx2x_pf_init */
5987                 break;
5988
5989         default:
5990                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5991                 break;
5992         }
5993 }
5994
5995 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5996 {
5997         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5998 }
5999
6000 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6001 {
6002         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6003 }
6004
6005 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6006 {
6007         if (CHIP_IS_E1x(fp->bp))
6008                 return BP_L_ID(fp->bp) + fp->index;
6009         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6010                 return bnx2x_fp_igu_sb_id(fp);
6011 }
6012
6013 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6014 {
6015         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6016         u8 cos;
6017         unsigned long q_type = 0;
6018         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6019         fp->rx_queue = fp_idx;
6020         fp->cid = fp_idx;
6021         fp->cl_id = bnx2x_fp_cl_id(fp);
6022         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6023         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6024         /* qZone id equals to FW (per path) client id */
6025         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6026
6027         /* init shortcut */
6028         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6029
6030         /* Setup SB indices */
6031         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6032
6033         /* Configure Queue State object */
6034         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6035         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6036
6037         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6038
6039         /* init tx data */
6040         for_each_cos_in_tx_queue(fp, cos) {
6041                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6042                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6043                                   FP_COS_TO_TXQ(fp, cos, bp),
6044                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6045                 cids[cos] = fp->txdata_ptr[cos]->cid;
6046         }
6047
6048         /* nothing more for vf to do here */
6049         if (IS_VF(bp))
6050                 return;
6051
6052         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6053                       fp->fw_sb_id, fp->igu_sb_id);
6054         bnx2x_update_fpsb_idx(fp);
6055         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6056                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6057                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6058
6059         /**
6060          * Configure classification DBs: Always enable Tx switching
6061          */
6062         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6063
6064         DP(NETIF_MSG_IFUP,
6065            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6066            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6067            fp->igu_sb_id);
6068 }
6069
6070 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6071 {
6072         int i;
6073
6074         for (i = 1; i <= NUM_TX_RINGS; i++) {
6075                 struct eth_tx_next_bd *tx_next_bd =
6076                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6077
6078                 tx_next_bd->addr_hi =
6079                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6080                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6081                 tx_next_bd->addr_lo =
6082                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6083                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6084         }
6085
6086         *txdata->tx_cons_sb = cpu_to_le16(0);
6087
6088         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6089         txdata->tx_db.data.zero_fill1 = 0;
6090         txdata->tx_db.data.prod = 0;
6091
6092         txdata->tx_pkt_prod = 0;
6093         txdata->tx_pkt_cons = 0;
6094         txdata->tx_bd_prod = 0;
6095         txdata->tx_bd_cons = 0;
6096         txdata->tx_pkt = 0;
6097 }
6098
6099 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6100 {
6101         int i;
6102
6103         for_each_tx_queue_cnic(bp, i)
6104                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6105 }
6106
6107 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6108 {
6109         int i;
6110         u8 cos;
6111
6112         for_each_eth_queue(bp, i)
6113                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6114                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6115 }
6116
6117 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6118 {
6119         if (!NO_FCOE(bp))
6120                 bnx2x_init_fcoe_fp(bp);
6121
6122         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6123                       BNX2X_VF_ID_INVALID, false,
6124                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6125
6126         /* ensure status block indices were read */
6127         rmb();
6128         bnx2x_init_rx_rings_cnic(bp);
6129         bnx2x_init_tx_rings_cnic(bp);
6130
6131         /* flush all */
6132         mb();
6133         mmiowb();
6134 }
6135
6136 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6137 {
6138         int i;
6139
6140         /* Setup NIC internals and enable interrupts */
6141         for_each_eth_queue(bp, i)
6142                 bnx2x_init_eth_fp(bp, i);
6143
6144         /* ensure status block indices were read */
6145         rmb();
6146         bnx2x_init_rx_rings(bp);
6147         bnx2x_init_tx_rings(bp);
6148
6149         if (IS_PF(bp)) {
6150                 /* Initialize MOD_ABS interrupts */
6151                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6152                                        bp->common.shmem_base,
6153                                        bp->common.shmem2_base, BP_PORT(bp));
6154
6155                 /* initialize the default status block and sp ring */
6156                 bnx2x_init_def_sb(bp);
6157                 bnx2x_update_dsb_idx(bp);
6158                 bnx2x_init_sp_ring(bp);
6159         } else {
6160                 bnx2x_memset_stats(bp);
6161         }
6162 }
6163
6164 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6165 {
6166         bnx2x_init_eq_ring(bp);
6167         bnx2x_init_internal(bp, load_code);
6168         bnx2x_pf_init(bp);
6169         bnx2x_stats_init(bp);
6170
6171         /* flush all before enabling interrupts */
6172         mb();
6173         mmiowb();
6174
6175         bnx2x_int_enable(bp);
6176
6177         /* Check for SPIO5 */
6178         bnx2x_attn_int_deasserted0(bp,
6179                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6180                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6181 }
6182
6183 /* gzip service functions */
6184 static int bnx2x_gunzip_init(struct bnx2x *bp)
6185 {
6186         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6187                                             &bp->gunzip_mapping, GFP_KERNEL);
6188         if (bp->gunzip_buf  == NULL)
6189                 goto gunzip_nomem1;
6190
6191         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6192         if (bp->strm  == NULL)
6193                 goto gunzip_nomem2;
6194
6195         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6196         if (bp->strm->workspace == NULL)
6197                 goto gunzip_nomem3;
6198
6199         return 0;
6200
6201 gunzip_nomem3:
6202         kfree(bp->strm);
6203         bp->strm = NULL;
6204
6205 gunzip_nomem2:
6206         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6207                           bp->gunzip_mapping);
6208         bp->gunzip_buf = NULL;
6209
6210 gunzip_nomem1:
6211         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6212         return -ENOMEM;
6213 }
6214
6215 static void bnx2x_gunzip_end(struct bnx2x *bp)
6216 {
6217         if (bp->strm) {
6218                 vfree(bp->strm->workspace);
6219                 kfree(bp->strm);
6220                 bp->strm = NULL;
6221         }
6222
6223         if (bp->gunzip_buf) {
6224                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6225                                   bp->gunzip_mapping);
6226                 bp->gunzip_buf = NULL;
6227         }
6228 }
6229
6230 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6231 {
6232         int n, rc;
6233
6234         /* check gzip header */
6235         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6236                 BNX2X_ERR("Bad gzip header\n");
6237                 return -EINVAL;
6238         }
6239
6240         n = 10;
6241
6242 #define FNAME                           0x8
6243
6244         if (zbuf[3] & FNAME)
6245                 while ((zbuf[n++] != 0) && (n < len));
6246
6247         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6248         bp->strm->avail_in = len - n;
6249         bp->strm->next_out = bp->gunzip_buf;
6250         bp->strm->avail_out = FW_BUF_SIZE;
6251
6252         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6253         if (rc != Z_OK)
6254                 return rc;
6255
6256         rc = zlib_inflate(bp->strm, Z_FINISH);
6257         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6258                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6259                            bp->strm->msg);
6260
6261         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6262         if (bp->gunzip_outlen & 0x3)
6263                 netdev_err(bp->dev,
6264                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6265                                 bp->gunzip_outlen);
6266         bp->gunzip_outlen >>= 2;
6267
6268         zlib_inflateEnd(bp->strm);
6269
6270         if (rc == Z_STREAM_END)
6271                 return 0;
6272
6273         return rc;
6274 }
6275
6276 /* nic load/unload */
6277
6278 /*
6279  * General service functions
6280  */
6281
6282 /* send a NIG loopback debug packet */
6283 static void bnx2x_lb_pckt(struct bnx2x *bp)
6284 {
6285         u32 wb_write[3];
6286
6287         /* Ethernet source and destination addresses */
6288         wb_write[0] = 0x55555555;
6289         wb_write[1] = 0x55555555;
6290         wb_write[2] = 0x20;             /* SOP */
6291         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6292
6293         /* NON-IP protocol */
6294         wb_write[0] = 0x09000000;
6295         wb_write[1] = 0x55555555;
6296         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6297         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6298 }
6299
6300 /* some of the internal memories
6301  * are not directly readable from the driver
6302  * to test them we send debug packets
6303  */
6304 static int bnx2x_int_mem_test(struct bnx2x *bp)
6305 {
6306         int factor;
6307         int count, i;
6308         u32 val = 0;
6309
6310         if (CHIP_REV_IS_FPGA(bp))
6311                 factor = 120;
6312         else if (CHIP_REV_IS_EMUL(bp))
6313                 factor = 200;
6314         else
6315                 factor = 1;
6316
6317         /* Disable inputs of parser neighbor blocks */
6318         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6319         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6320         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6321         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6322
6323         /*  Write 0 to parser credits for CFC search request */
6324         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6325
6326         /* send Ethernet packet */
6327         bnx2x_lb_pckt(bp);
6328
6329         /* TODO do i reset NIG statistic? */
6330         /* Wait until NIG register shows 1 packet of size 0x10 */
6331         count = 1000 * factor;
6332         while (count) {
6333
6334                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6335                 val = *bnx2x_sp(bp, wb_data[0]);
6336                 if (val == 0x10)
6337                         break;
6338
6339                 usleep_range(10000, 20000);
6340                 count--;
6341         }
6342         if (val != 0x10) {
6343                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6344                 return -1;
6345         }
6346
6347         /* Wait until PRS register shows 1 packet */
6348         count = 1000 * factor;
6349         while (count) {
6350                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6351                 if (val == 1)
6352                         break;
6353
6354                 usleep_range(10000, 20000);
6355                 count--;
6356         }
6357         if (val != 0x1) {
6358                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6359                 return -2;
6360         }
6361
6362         /* Reset and init BRB, PRS */
6363         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6364         msleep(50);
6365         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6366         msleep(50);
6367         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6368         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6369
6370         DP(NETIF_MSG_HW, "part2\n");
6371
6372         /* Disable inputs of parser neighbor blocks */
6373         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6374         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6375         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6376         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6377
6378         /* Write 0 to parser credits for CFC search request */
6379         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6380
6381         /* send 10 Ethernet packets */
6382         for (i = 0; i < 10; i++)
6383                 bnx2x_lb_pckt(bp);
6384
6385         /* Wait until NIG register shows 10 + 1
6386            packets of size 11*0x10 = 0xb0 */
6387         count = 1000 * factor;
6388         while (count) {
6389
6390                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6391                 val = *bnx2x_sp(bp, wb_data[0]);
6392                 if (val == 0xb0)
6393                         break;
6394
6395                 usleep_range(10000, 20000);
6396                 count--;
6397         }
6398         if (val != 0xb0) {
6399                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6400                 return -3;
6401         }
6402
6403         /* Wait until PRS register shows 2 packets */
6404         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6405         if (val != 2)
6406                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6407
6408         /* Write 1 to parser credits for CFC search request */
6409         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6410
6411         /* Wait until PRS register shows 3 packets */
6412         msleep(10 * factor);
6413         /* Wait until NIG register shows 1 packet of size 0x10 */
6414         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415         if (val != 3)
6416                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417
6418         /* clear NIG EOP FIFO */
6419         for (i = 0; i < 11; i++)
6420                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6421         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6422         if (val != 1) {
6423                 BNX2X_ERR("clear of NIG failed\n");
6424                 return -4;
6425         }
6426
6427         /* Reset and init BRB, PRS, NIG */
6428         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6429         msleep(50);
6430         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6431         msleep(50);
6432         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6433         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6434         if (!CNIC_SUPPORT(bp))
6435                 /* set NIC mode */
6436                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6437
6438         /* Enable inputs of parser neighbor blocks */
6439         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6440         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6441         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6442         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6443
6444         DP(NETIF_MSG_HW, "done\n");
6445
6446         return 0; /* OK */
6447 }
6448
6449 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6450 {
6451         u32 val;
6452
6453         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6454         if (!CHIP_IS_E1x(bp))
6455                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6456         else
6457                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6458         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6459         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6460         /*
6461          * mask read length error interrupts in brb for parser
6462          * (parsing unit and 'checksum and crc' unit)
6463          * these errors are legal (PU reads fixed length and CAC can cause
6464          * read length error on truncated packets)
6465          */
6466         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6467         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6468         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6469         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6470         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6471         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6472 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6473 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6474         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6475         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6476         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6477 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6478 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6479         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6480         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6481         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6482         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6483 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6484 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6485
6486         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6487                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6488                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6489         if (!CHIP_IS_E1x(bp))
6490                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6491                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6492         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6493
6494         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6495         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6496         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6497 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6498
6499         if (!CHIP_IS_E1x(bp))
6500                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6501                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6502
6503         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6504         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6505 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6506         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6507 }
6508
6509 static void bnx2x_reset_common(struct bnx2x *bp)
6510 {
6511         u32 val = 0x1400;
6512
6513         /* reset_common */
6514         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6515                0xd3ffff7f);
6516
6517         if (CHIP_IS_E3(bp)) {
6518                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6519                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6520         }
6521
6522         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6523 }
6524
6525 static void bnx2x_setup_dmae(struct bnx2x *bp)
6526 {
6527         bp->dmae_ready = 0;
6528         spin_lock_init(&bp->dmae_lock);
6529 }
6530
6531 static void bnx2x_init_pxp(struct bnx2x *bp)
6532 {
6533         u16 devctl;
6534         int r_order, w_order;
6535
6536         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6537         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6538         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6539         if (bp->mrrs == -1)
6540                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6541         else {
6542                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6543                 r_order = bp->mrrs;
6544         }
6545
6546         bnx2x_init_pxp_arb(bp, r_order, w_order);
6547 }
6548
6549 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6550 {
6551         int is_required;
6552         u32 val;
6553         int port;
6554
6555         if (BP_NOMCP(bp))
6556                 return;
6557
6558         is_required = 0;
6559         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6560               SHARED_HW_CFG_FAN_FAILURE_MASK;
6561
6562         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6563                 is_required = 1;
6564
6565         /*
6566          * The fan failure mechanism is usually related to the PHY type since
6567          * the power consumption of the board is affected by the PHY. Currently,
6568          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6569          */
6570         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6571                 for (port = PORT_0; port < PORT_MAX; port++) {
6572                         is_required |=
6573                                 bnx2x_fan_failure_det_req(
6574                                         bp,
6575                                         bp->common.shmem_base,
6576                                         bp->common.shmem2_base,
6577                                         port);
6578                 }
6579
6580         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6581
6582         if (is_required == 0)
6583                 return;
6584
6585         /* Fan failure is indicated by SPIO 5 */
6586         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6587
6588         /* set to active low mode */
6589         val = REG_RD(bp, MISC_REG_SPIO_INT);
6590         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6591         REG_WR(bp, MISC_REG_SPIO_INT, val);
6592
6593         /* enable interrupt to signal the IGU */
6594         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6595         val |= MISC_SPIO_SPIO5;
6596         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6597 }
6598
6599 void bnx2x_pf_disable(struct bnx2x *bp)
6600 {
6601         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6602         val &= ~IGU_PF_CONF_FUNC_EN;
6603
6604         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6605         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6606         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6607 }
6608
6609 static void bnx2x__common_init_phy(struct bnx2x *bp)
6610 {
6611         u32 shmem_base[2], shmem2_base[2];
6612         /* Avoid common init in case MFW supports LFA */
6613         if (SHMEM2_RD(bp, size) >
6614             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6615                 return;
6616         shmem_base[0] =  bp->common.shmem_base;
6617         shmem2_base[0] = bp->common.shmem2_base;
6618         if (!CHIP_IS_E1x(bp)) {
6619                 shmem_base[1] =
6620                         SHMEM2_RD(bp, other_shmem_base_addr);
6621                 shmem2_base[1] =
6622                         SHMEM2_RD(bp, other_shmem2_base_addr);
6623         }
6624         bnx2x_acquire_phy_lock(bp);
6625         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6626                               bp->common.chip_id);
6627         bnx2x_release_phy_lock(bp);
6628 }
6629
6630 /**
6631  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6632  *
6633  * @bp:         driver handle
6634  */
6635 static int bnx2x_init_hw_common(struct bnx2x *bp)
6636 {
6637         u32 val;
6638
6639         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6640
6641         /*
6642          * take the RESET lock to protect undi_unload flow from accessing
6643          * registers while we're resetting the chip
6644          */
6645         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6646
6647         bnx2x_reset_common(bp);
6648         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6649
6650         val = 0xfffc;
6651         if (CHIP_IS_E3(bp)) {
6652                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6653                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6654         }
6655         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6656
6657         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6658
6659         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6660
6661         if (!CHIP_IS_E1x(bp)) {
6662                 u8 abs_func_id;
6663
6664                 /**
6665                  * 4-port mode or 2-port mode we need to turn of master-enable
6666                  * for everyone, after that, turn it back on for self.
6667                  * so, we disregard multi-function or not, and always disable
6668                  * for all functions on the given path, this means 0,2,4,6 for
6669                  * path 0 and 1,3,5,7 for path 1
6670                  */
6671                 for (abs_func_id = BP_PATH(bp);
6672                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6673                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6674                                 REG_WR(bp,
6675                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6676                                     1);
6677                                 continue;
6678                         }
6679
6680                         bnx2x_pretend_func(bp, abs_func_id);
6681                         /* clear pf enable */
6682                         bnx2x_pf_disable(bp);
6683                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6684                 }
6685         }
6686
6687         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6688         if (CHIP_IS_E1(bp)) {
6689                 /* enable HW interrupt from PXP on USDM overflow
6690                    bit 16 on INT_MASK_0 */
6691                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6692         }
6693
6694         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6695         bnx2x_init_pxp(bp);
6696
6697 #ifdef __BIG_ENDIAN
6698         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6699         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6700         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6701         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6702         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6703         /* make sure this value is 0 */
6704         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6705
6706 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6707         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6708         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6709         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6710         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6711 #endif
6712
6713         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6714
6715         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6716                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6717
6718         /* let the HW do it's magic ... */
6719         msleep(100);
6720         /* finish PXP init */
6721         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6722         if (val != 1) {
6723                 BNX2X_ERR("PXP2 CFG failed\n");
6724                 return -EBUSY;
6725         }
6726         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6727         if (val != 1) {
6728                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6729                 return -EBUSY;
6730         }
6731
6732         /* Timers bug workaround E2 only. We need to set the entire ILT to
6733          * have entries with value "0" and valid bit on.
6734          * This needs to be done by the first PF that is loaded in a path
6735          * (i.e. common phase)
6736          */
6737         if (!CHIP_IS_E1x(bp)) {
6738 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6739  * (i.e. vnic3) to start even if it is marked as "scan-off".
6740  * This occurs when a different function (func2,3) is being marked
6741  * as "scan-off". Real-life scenario for example: if a driver is being
6742  * load-unloaded while func6,7 are down. This will cause the timer to access
6743  * the ilt, translate to a logical address and send a request to read/write.
6744  * Since the ilt for the function that is down is not valid, this will cause
6745  * a translation error which is unrecoverable.
6746  * The Workaround is intended to make sure that when this happens nothing fatal
6747  * will occur. The workaround:
6748  *      1.  First PF driver which loads on a path will:
6749  *              a.  After taking the chip out of reset, by using pretend,
6750  *                  it will write "0" to the following registers of
6751  *                  the other vnics.
6752  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6753  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6754  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6755  *                  And for itself it will write '1' to
6756  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6757  *                  dmae-operations (writing to pram for example.)
6758  *                  note: can be done for only function 6,7 but cleaner this
6759  *                        way.
6760  *              b.  Write zero+valid to the entire ILT.
6761  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6762  *                  VNIC3 (of that port). The range allocated will be the
6763  *                  entire ILT. This is needed to prevent  ILT range error.
6764  *      2.  Any PF driver load flow:
6765  *              a.  ILT update with the physical addresses of the allocated
6766  *                  logical pages.
6767  *              b.  Wait 20msec. - note that this timeout is needed to make
6768  *                  sure there are no requests in one of the PXP internal
6769  *                  queues with "old" ILT addresses.
6770  *              c.  PF enable in the PGLC.
6771  *              d.  Clear the was_error of the PF in the PGLC. (could have
6772  *                  occurred while driver was down)
6773  *              e.  PF enable in the CFC (WEAK + STRONG)
6774  *              f.  Timers scan enable
6775  *      3.  PF driver unload flow:
6776  *              a.  Clear the Timers scan_en.
6777  *              b.  Polling for scan_on=0 for that PF.
6778  *              c.  Clear the PF enable bit in the PXP.
6779  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6780  *              e.  Write zero+valid to all ILT entries (The valid bit must
6781  *                  stay set)
6782  *              f.  If this is VNIC 3 of a port then also init
6783  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6784  *                  to the last entry in the ILT.
6785  *
6786  *      Notes:
6787  *      Currently the PF error in the PGLC is non recoverable.
6788  *      In the future the there will be a recovery routine for this error.
6789  *      Currently attention is masked.
6790  *      Having an MCP lock on the load/unload process does not guarantee that
6791  *      there is no Timer disable during Func6/7 enable. This is because the
6792  *      Timers scan is currently being cleared by the MCP on FLR.
6793  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6794  *      there is error before clearing it. But the flow above is simpler and
6795  *      more general.
6796  *      All ILT entries are written by zero+valid and not just PF6/7
6797  *      ILT entries since in the future the ILT entries allocation for
6798  *      PF-s might be dynamic.
6799  */
6800                 struct ilt_client_info ilt_cli;
6801                 struct bnx2x_ilt ilt;
6802                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6803                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6804
6805                 /* initialize dummy TM client */
6806                 ilt_cli.start = 0;
6807                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6808                 ilt_cli.client_num = ILT_CLIENT_TM;
6809
6810                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6811                  * Step 2: set the timers first/last ilt entry to point
6812                  * to the entire range to prevent ILT range error for 3rd/4th
6813                  * vnic (this code assumes existence of the vnic)
6814                  *
6815                  * both steps performed by call to bnx2x_ilt_client_init_op()
6816                  * with dummy TM client
6817                  *
6818                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6819                  * and his brother are split registers
6820                  */
6821                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6822                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6823                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6824
6825                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6826                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6827                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6828         }
6829
6830         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6831         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6832
6833         if (!CHIP_IS_E1x(bp)) {
6834                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6835                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6836                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6837
6838                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6839
6840                 /* let the HW do it's magic ... */
6841                 do {
6842                         msleep(200);
6843                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6844                 } while (factor-- && (val != 1));
6845
6846                 if (val != 1) {
6847                         BNX2X_ERR("ATC_INIT failed\n");
6848                         return -EBUSY;
6849                 }
6850         }
6851
6852         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6853
6854         bnx2x_iov_init_dmae(bp);
6855
6856         /* clean the DMAE memory */
6857         bp->dmae_ready = 1;
6858         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6859
6860         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6861
6862         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6863
6864         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6865
6866         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6867
6868         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6869         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6870         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6871         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6872
6873         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6874
6875         /* QM queues pointers table */
6876         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6877
6878         /* soft reset pulse */
6879         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6880         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6881
6882         if (CNIC_SUPPORT(bp))
6883                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6884
6885         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6886         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6887         if (!CHIP_REV_IS_SLOW(bp))
6888                 /* enable hw interrupt from doorbell Q */
6889                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6890
6891         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6892
6893         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6894         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6895
6896         if (!CHIP_IS_E1(bp))
6897                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6898
6899         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6900                 if (IS_MF_AFEX(bp)) {
6901                         /* configure that VNTag and VLAN headers must be
6902                          * received in afex mode
6903                          */
6904                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6905                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6906                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6907                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6908                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6909                 } else {
6910                         /* Bit-map indicating which L2 hdrs may appear
6911                          * after the basic Ethernet header
6912                          */
6913                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6914                                bp->path_has_ovlan ? 7 : 6);
6915                 }
6916         }
6917
6918         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6919         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6920         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6921         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6922
6923         if (!CHIP_IS_E1x(bp)) {
6924                 /* reset VFC memories */
6925                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6926                            VFC_MEMORIES_RST_REG_CAM_RST |
6927                            VFC_MEMORIES_RST_REG_RAM_RST);
6928                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6929                            VFC_MEMORIES_RST_REG_CAM_RST |
6930                            VFC_MEMORIES_RST_REG_RAM_RST);
6931
6932                 msleep(20);
6933         }
6934
6935         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6936         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6937         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6938         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6939
6940         /* sync semi rtc */
6941         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6942                0x80000000);
6943         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6944                0x80000000);
6945
6946         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6947         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6948         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6949
6950         if (!CHIP_IS_E1x(bp)) {
6951                 if (IS_MF_AFEX(bp)) {
6952                         /* configure that VNTag and VLAN headers must be
6953                          * sent in afex mode
6954                          */
6955                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6956                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6957                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6958                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6959                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6960                 } else {
6961                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6962                                bp->path_has_ovlan ? 7 : 6);
6963                 }
6964         }
6965
6966         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6967
6968         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6969
6970         if (CNIC_SUPPORT(bp)) {
6971                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6972                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6973                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6974                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6975                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6976                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6977                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6978                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6979                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6980                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6981         }
6982         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6983
6984         if (sizeof(union cdu_context) != 1024)
6985                 /* we currently assume that a context is 1024 bytes */
6986                 dev_alert(&bp->pdev->dev,
6987                           "please adjust the size of cdu_context(%ld)\n",
6988                           (long)sizeof(union cdu_context));
6989
6990         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6991         val = (4 << 24) + (0 << 12) + 1024;
6992         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6993
6994         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6995         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6996         /* enable context validation interrupt from CFC */
6997         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6998
6999         /* set the thresholds to prevent CFC/CDU race */
7000         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7001
7002         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7003
7004         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7005                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7006
7007         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7008         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7009
7010         /* Reset PCIE errors for debug */
7011         REG_WR(bp, 0x2814, 0xffffffff);
7012         REG_WR(bp, 0x3820, 0xffffffff);
7013
7014         if (!CHIP_IS_E1x(bp)) {
7015                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7016                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7017                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7018                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7019                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7020                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7021                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7022                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7023                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7024                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7025                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7026         }
7027
7028         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7029         if (!CHIP_IS_E1(bp)) {
7030                 /* in E3 this done in per-port section */
7031                 if (!CHIP_IS_E3(bp))
7032                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7033         }
7034         if (CHIP_IS_E1H(bp))
7035                 /* not applicable for E2 (and above ...) */
7036                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7037
7038         if (CHIP_REV_IS_SLOW(bp))
7039                 msleep(200);
7040
7041         /* finish CFC init */
7042         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7043         if (val != 1) {
7044                 BNX2X_ERR("CFC LL_INIT failed\n");
7045                 return -EBUSY;
7046         }
7047         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7048         if (val != 1) {
7049                 BNX2X_ERR("CFC AC_INIT failed\n");
7050                 return -EBUSY;
7051         }
7052         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7053         if (val != 1) {
7054                 BNX2X_ERR("CFC CAM_INIT failed\n");
7055                 return -EBUSY;
7056         }
7057         REG_WR(bp, CFC_REG_DEBUG0, 0);
7058
7059         if (CHIP_IS_E1(bp)) {
7060                 /* read NIG statistic
7061                    to see if this is our first up since powerup */
7062                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7063                 val = *bnx2x_sp(bp, wb_data[0]);
7064
7065                 /* do internal memory self test */
7066                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7067                         BNX2X_ERR("internal mem self test failed\n");
7068                         return -EBUSY;
7069                 }
7070         }
7071
7072         bnx2x_setup_fan_failure_detection(bp);
7073
7074         /* clear PXP2 attentions */
7075         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7076
7077         bnx2x_enable_blocks_attention(bp);
7078         bnx2x_enable_blocks_parity(bp);
7079
7080         if (!BP_NOMCP(bp)) {
7081                 if (CHIP_IS_E1x(bp))
7082                         bnx2x__common_init_phy(bp);
7083         } else
7084                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7085
7086         return 0;
7087 }
7088
7089 /**
7090  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7091  *
7092  * @bp:         driver handle
7093  */
7094 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7095 {
7096         int rc = bnx2x_init_hw_common(bp);
7097
7098         if (rc)
7099                 return rc;
7100
7101         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7102         if (!BP_NOMCP(bp))
7103                 bnx2x__common_init_phy(bp);
7104
7105         return 0;
7106 }
7107
7108 static int bnx2x_init_hw_port(struct bnx2x *bp)
7109 {
7110         int port = BP_PORT(bp);
7111         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7112         u32 low, high;
7113         u32 val;
7114
7115         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7116
7117         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7118
7119         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7120         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7121         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7122
7123         /* Timers bug workaround: disables the pf_master bit in pglue at
7124          * common phase, we need to enable it here before any dmae access are
7125          * attempted. Therefore we manually added the enable-master to the
7126          * port phase (it also happens in the function phase)
7127          */
7128         if (!CHIP_IS_E1x(bp))
7129                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7130
7131         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7132         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7133         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7134         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7135
7136         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7137         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7138         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7139         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7140
7141         /* QM cid (connection) count */
7142         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7143
7144         if (CNIC_SUPPORT(bp)) {
7145                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7146                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7147                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7148         }
7149
7150         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7151
7152         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7153
7154         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7155
7156                 if (IS_MF(bp))
7157                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7158                 else if (bp->dev->mtu > 4096) {
7159                         if (bp->flags & ONE_PORT_FLAG)
7160                                 low = 160;
7161                         else {
7162                                 val = bp->dev->mtu;
7163                                 /* (24*1024 + val*4)/256 */
7164                                 low = 96 + (val/64) +
7165                                                 ((val % 64) ? 1 : 0);
7166                         }
7167                 } else
7168                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7169                 high = low + 56;        /* 14*1024/256 */
7170                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7171                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7172         }
7173
7174         if (CHIP_MODE_IS_4_PORT(bp))
7175                 REG_WR(bp, (BP_PORT(bp) ?
7176                             BRB1_REG_MAC_GUARANTIED_1 :
7177                             BRB1_REG_MAC_GUARANTIED_0), 40);
7178
7179         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7180         if (CHIP_IS_E3B0(bp)) {
7181                 if (IS_MF_AFEX(bp)) {
7182                         /* configure headers for AFEX mode */
7183                         REG_WR(bp, BP_PORT(bp) ?
7184                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7185                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7186                         REG_WR(bp, BP_PORT(bp) ?
7187                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7188                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7189                         REG_WR(bp, BP_PORT(bp) ?
7190                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7191                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7192                 } else {
7193                         /* Ovlan exists only if we are in multi-function +
7194                          * switch-dependent mode, in switch-independent there
7195                          * is no ovlan headers
7196                          */
7197                         REG_WR(bp, BP_PORT(bp) ?
7198                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7199                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7200                                (bp->path_has_ovlan ? 7 : 6));
7201                 }
7202         }
7203
7204         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7205         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7206         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7207         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7208
7209         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7210         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7211         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7212         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7213
7214         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7215         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7216
7217         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7218
7219         if (CHIP_IS_E1x(bp)) {
7220                 /* configure PBF to work without PAUSE mtu 9000 */
7221                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7222
7223                 /* update threshold */
7224                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7225                 /* update init credit */
7226                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7227
7228                 /* probe changes */
7229                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7230                 udelay(50);
7231                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7232         }
7233
7234         if (CNIC_SUPPORT(bp))
7235                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7236
7237         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7238         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7239
7240         if (CHIP_IS_E1(bp)) {
7241                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7242                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7243         }
7244         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7245
7246         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7247
7248         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7249         /* init aeu_mask_attn_func_0/1:
7250          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7251          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7252          *             bits 4-7 are used for "per vn group attention" */
7253         val = IS_MF(bp) ? 0xF7 : 0x7;
7254         /* Enable DCBX attention for all but E1 */
7255         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7256         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7257
7258         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7259
7260         if (!CHIP_IS_E1x(bp)) {
7261                 /* Bit-map indicating which L2 hdrs may appear after the
7262                  * basic Ethernet header
7263                  */
7264                 if (IS_MF_AFEX(bp))
7265                         REG_WR(bp, BP_PORT(bp) ?
7266                                NIG_REG_P1_HDRS_AFTER_BASIC :
7267                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7268                 else
7269                         REG_WR(bp, BP_PORT(bp) ?
7270                                NIG_REG_P1_HDRS_AFTER_BASIC :
7271                                NIG_REG_P0_HDRS_AFTER_BASIC,
7272                                IS_MF_SD(bp) ? 7 : 6);
7273
7274                 if (CHIP_IS_E3(bp))
7275                         REG_WR(bp, BP_PORT(bp) ?
7276                                    NIG_REG_LLH1_MF_MODE :
7277                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7278         }
7279         if (!CHIP_IS_E3(bp))
7280                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7281
7282         if (!CHIP_IS_E1(bp)) {
7283                 /* 0x2 disable mf_ov, 0x1 enable */
7284                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7285                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7286
7287                 if (!CHIP_IS_E1x(bp)) {
7288                         val = 0;
7289                         switch (bp->mf_mode) {
7290                         case MULTI_FUNCTION_SD:
7291                                 val = 1;
7292                                 break;
7293                         case MULTI_FUNCTION_SI:
7294                         case MULTI_FUNCTION_AFEX:
7295                                 val = 2;
7296                                 break;
7297                         }
7298
7299                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7300                                                   NIG_REG_LLH0_CLS_TYPE), val);
7301                 }
7302                 {
7303                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7304                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7305                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7306                 }
7307         }
7308
7309         /* If SPIO5 is set to generate interrupts, enable it for this port */
7310         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7311         if (val & MISC_SPIO_SPIO5) {
7312                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7313                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7314                 val = REG_RD(bp, reg_addr);
7315                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7316                 REG_WR(bp, reg_addr, val);
7317         }
7318
7319         return 0;
7320 }
7321
7322 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7323 {
7324         int reg;
7325         u32 wb_write[2];
7326
7327         if (CHIP_IS_E1(bp))
7328                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7329         else
7330                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7331
7332         wb_write[0] = ONCHIP_ADDR1(addr);
7333         wb_write[1] = ONCHIP_ADDR2(addr);
7334         REG_WR_DMAE(bp, reg, wb_write, 2);
7335 }
7336
7337 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7338 {
7339         u32 data, ctl, cnt = 100;
7340         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7341         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7342         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7343         u32 sb_bit =  1 << (idu_sb_id%32);
7344         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7345         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7346
7347         /* Not supported in BC mode */
7348         if (CHIP_INT_MODE_IS_BC(bp))
7349                 return;
7350
7351         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7352                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7353                 IGU_REGULAR_CLEANUP_SET                         |
7354                 IGU_REGULAR_BCLEANUP;
7355
7356         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7357               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7358               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7359
7360         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7361                          data, igu_addr_data);
7362         REG_WR(bp, igu_addr_data, data);
7363         mmiowb();
7364         barrier();
7365         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7366                           ctl, igu_addr_ctl);
7367         REG_WR(bp, igu_addr_ctl, ctl);
7368         mmiowb();
7369         barrier();
7370
7371         /* wait for clean up to finish */
7372         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7373                 msleep(20);
7374
7375         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7376                 DP(NETIF_MSG_HW,
7377                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7378                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7379         }
7380 }
7381
7382 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7383 {
7384         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7385 }
7386
7387 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7388 {
7389         u32 i, base = FUNC_ILT_BASE(func);
7390         for (i = base; i < base + ILT_PER_FUNC; i++)
7391                 bnx2x_ilt_wr(bp, i, 0);
7392 }
7393
7394 static void bnx2x_init_searcher(struct bnx2x *bp)
7395 {
7396         int port = BP_PORT(bp);
7397         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7398         /* T1 hash bits value determines the T1 number of entries */
7399         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7400 }
7401
7402 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7403 {
7404         int rc;
7405         struct bnx2x_func_state_params func_params = {NULL};
7406         struct bnx2x_func_switch_update_params *switch_update_params =
7407                 &func_params.params.switch_update;
7408
7409         /* Prepare parameters for function state transitions */
7410         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7411         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7412
7413         func_params.f_obj = &bp->func_obj;
7414         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7415
7416         /* Function parameters */
7417         switch_update_params->suspend = suspend;
7418
7419         rc = bnx2x_func_state_change(bp, &func_params);
7420
7421         return rc;
7422 }
7423
7424 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7425 {
7426         int rc, i, port = BP_PORT(bp);
7427         int vlan_en = 0, mac_en[NUM_MACS];
7428
7429         /* Close input from network */
7430         if (bp->mf_mode == SINGLE_FUNCTION) {
7431                 bnx2x_set_rx_filter(&bp->link_params, 0);
7432         } else {
7433                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7434                                    NIG_REG_LLH0_FUNC_EN);
7435                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7436                           NIG_REG_LLH0_FUNC_EN, 0);
7437                 for (i = 0; i < NUM_MACS; i++) {
7438                         mac_en[i] = REG_RD(bp, port ?
7439                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7440                                               4 * i) :
7441                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7442                                               4 * i));
7443                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7444                                               4 * i) :
7445                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7446                 }
7447         }
7448
7449         /* Close BMC to host */
7450         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7451                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7452
7453         /* Suspend Tx switching to the PF. Completion of this ramrod
7454          * further guarantees that all the packets of that PF / child
7455          * VFs in BRB were processed by the Parser, so it is safe to
7456          * change the NIC_MODE register.
7457          */
7458         rc = bnx2x_func_switch_update(bp, 1);
7459         if (rc) {
7460                 BNX2X_ERR("Can't suspend tx-switching!\n");
7461                 return rc;
7462         }
7463
7464         /* Change NIC_MODE register */
7465         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7466
7467         /* Open input from network */
7468         if (bp->mf_mode == SINGLE_FUNCTION) {
7469                 bnx2x_set_rx_filter(&bp->link_params, 1);
7470         } else {
7471                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7472                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7473                 for (i = 0; i < NUM_MACS; i++) {
7474                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7475                                               4 * i) :
7476                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7477                                   mac_en[i]);
7478                 }
7479         }
7480
7481         /* Enable BMC to host */
7482         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7483                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7484
7485         /* Resume Tx switching to the PF */
7486         rc = bnx2x_func_switch_update(bp, 0);
7487         if (rc) {
7488                 BNX2X_ERR("Can't resume tx-switching!\n");
7489                 return rc;
7490         }
7491
7492         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7493         return 0;
7494 }
7495
7496 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7497 {
7498         int rc;
7499
7500         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7501
7502         if (CONFIGURE_NIC_MODE(bp)) {
7503                 /* Configure searcher as part of function hw init */
7504                 bnx2x_init_searcher(bp);
7505
7506                 /* Reset NIC mode */
7507                 rc = bnx2x_reset_nic_mode(bp);
7508                 if (rc)
7509                         BNX2X_ERR("Can't change NIC mode!\n");
7510                 return rc;
7511         }
7512
7513         return 0;
7514 }
7515
7516 static int bnx2x_init_hw_func(struct bnx2x *bp)
7517 {
7518         int port = BP_PORT(bp);
7519         int func = BP_FUNC(bp);
7520         int init_phase = PHASE_PF0 + func;
7521         struct bnx2x_ilt *ilt = BP_ILT(bp);
7522         u16 cdu_ilt_start;
7523         u32 addr, val;
7524         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7525         int i, main_mem_width, rc;
7526
7527         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7528
7529         /* FLR cleanup - hmmm */
7530         if (!CHIP_IS_E1x(bp)) {
7531                 rc = bnx2x_pf_flr_clnup(bp);
7532                 if (rc) {
7533                         bnx2x_fw_dump(bp);
7534                         return rc;
7535                 }
7536         }
7537
7538         /* set MSI reconfigure capability */
7539         if (bp->common.int_block == INT_BLOCK_HC) {
7540                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7541                 val = REG_RD(bp, addr);
7542                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7543                 REG_WR(bp, addr, val);
7544         }
7545
7546         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7547         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7548
7549         ilt = BP_ILT(bp);
7550         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7551
7552         if (IS_SRIOV(bp))
7553                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7554         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7555
7556         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7557          * those of the VFs, so start line should be reset
7558          */
7559         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7560         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7561                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7562                 ilt->lines[cdu_ilt_start + i].page_mapping =
7563                         bp->context[i].cxt_mapping;
7564                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7565         }
7566
7567         bnx2x_ilt_init_op(bp, INITOP_SET);
7568
7569         if (!CONFIGURE_NIC_MODE(bp)) {
7570                 bnx2x_init_searcher(bp);
7571                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7572                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7573         } else {
7574                 /* Set NIC mode */
7575                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7576                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7577         }
7578
7579         if (!CHIP_IS_E1x(bp)) {
7580                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7581
7582                 /* Turn on a single ISR mode in IGU if driver is going to use
7583                  * INT#x or MSI
7584                  */
7585                 if (!(bp->flags & USING_MSIX_FLAG))
7586                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7587                 /*
7588                  * Timers workaround bug: function init part.
7589                  * Need to wait 20msec after initializing ILT,
7590                  * needed to make sure there are no requests in
7591                  * one of the PXP internal queues with "old" ILT addresses
7592                  */
7593                 msleep(20);
7594                 /*
7595                  * Master enable - Due to WB DMAE writes performed before this
7596                  * register is re-initialized as part of the regular function
7597                  * init
7598                  */
7599                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7600                 /* Enable the function in IGU */
7601                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7602         }
7603
7604         bp->dmae_ready = 1;
7605
7606         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7607
7608         if (!CHIP_IS_E1x(bp))
7609                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7610
7611         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7612         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7613         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7614         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7615         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7616         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7617         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7618         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7619         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7620         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7621         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7622         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7623         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7624
7625         if (!CHIP_IS_E1x(bp))
7626                 REG_WR(bp, QM_REG_PF_EN, 1);
7627
7628         if (!CHIP_IS_E1x(bp)) {
7629                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7630                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7631                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7632                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7633         }
7634         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7635
7636         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7637         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7638
7639         bnx2x_iov_init_dq(bp);
7640
7641         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7642         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7643         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7644         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7645         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7646         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7647         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7648         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7649         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7650         if (!CHIP_IS_E1x(bp))
7651                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7652
7653         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7654
7655         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7656
7657         if (!CHIP_IS_E1x(bp))
7658                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7659
7660         if (IS_MF(bp)) {
7661                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7662                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7663         }
7664
7665         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7666
7667         /* HC init per function */
7668         if (bp->common.int_block == INT_BLOCK_HC) {
7669                 if (CHIP_IS_E1H(bp)) {
7670                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7671
7672                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7673                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7674                 }
7675                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7676
7677         } else {
7678                 int num_segs, sb_idx, prod_offset;
7679
7680                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7681
7682                 if (!CHIP_IS_E1x(bp)) {
7683                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7684                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7685                 }
7686
7687                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7688
7689                 if (!CHIP_IS_E1x(bp)) {
7690                         int dsb_idx = 0;
7691                         /**
7692                          * Producer memory:
7693                          * E2 mode: address 0-135 match to the mapping memory;
7694                          * 136 - PF0 default prod; 137 - PF1 default prod;
7695                          * 138 - PF2 default prod; 139 - PF3 default prod;
7696                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7697                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7698                          * 144-147 reserved.
7699                          *
7700                          * E1.5 mode - In backward compatible mode;
7701                          * for non default SB; each even line in the memory
7702                          * holds the U producer and each odd line hold
7703                          * the C producer. The first 128 producers are for
7704                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7705                          * producers are for the DSB for each PF.
7706                          * Each PF has five segments: (the order inside each
7707                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7708                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7709                          * 144-147 attn prods;
7710                          */
7711                         /* non-default-status-blocks */
7712                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7713                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7714                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7715                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7716                                         num_segs;
7717
7718                                 for (i = 0; i < num_segs; i++) {
7719                                         addr = IGU_REG_PROD_CONS_MEMORY +
7720                                                         (prod_offset + i) * 4;
7721                                         REG_WR(bp, addr, 0);
7722                                 }
7723                                 /* send consumer update with value 0 */
7724                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7725                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7726                                 bnx2x_igu_clear_sb(bp,
7727                                                    bp->igu_base_sb + sb_idx);
7728                         }
7729
7730                         /* default-status-blocks */
7731                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7732                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7733
7734                         if (CHIP_MODE_IS_4_PORT(bp))
7735                                 dsb_idx = BP_FUNC(bp);
7736                         else
7737                                 dsb_idx = BP_VN(bp);
7738
7739                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7740                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7741                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7742
7743                         /*
7744                          * igu prods come in chunks of E1HVN_MAX (4) -
7745                          * does not matters what is the current chip mode
7746                          */
7747                         for (i = 0; i < (num_segs * E1HVN_MAX);
7748                              i += E1HVN_MAX) {
7749                                 addr = IGU_REG_PROD_CONS_MEMORY +
7750                                                         (prod_offset + i)*4;
7751                                 REG_WR(bp, addr, 0);
7752                         }
7753                         /* send consumer update with 0 */
7754                         if (CHIP_INT_MODE_IS_BC(bp)) {
7755                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7756                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7757                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7758                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7759                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7760                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7761                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7763                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7765                         } else {
7766                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7767                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7768                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7769                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7770                         }
7771                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7772
7773                         /* !!! These should become driver const once
7774                            rf-tool supports split-68 const */
7775                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7776                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7777                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7778                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7779                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7780                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7781                 }
7782         }
7783
7784         /* Reset PCIE errors for debug */
7785         REG_WR(bp, 0x2114, 0xffffffff);
7786         REG_WR(bp, 0x2120, 0xffffffff);
7787
7788         if (CHIP_IS_E1x(bp)) {
7789                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7790                 main_mem_base = HC_REG_MAIN_MEMORY +
7791                                 BP_PORT(bp) * (main_mem_size * 4);
7792                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7793                 main_mem_width = 8;
7794
7795                 val = REG_RD(bp, main_mem_prty_clr);
7796                 if (val)
7797                         DP(NETIF_MSG_HW,
7798                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7799                            val);
7800
7801                 /* Clear "false" parity errors in MSI-X table */
7802                 for (i = main_mem_base;
7803                      i < main_mem_base + main_mem_size * 4;
7804                      i += main_mem_width) {
7805                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7806                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7807                                          i, main_mem_width / 4);
7808                 }
7809                 /* Clear HC parity attention */
7810                 REG_RD(bp, main_mem_prty_clr);
7811         }
7812
7813 #ifdef BNX2X_STOP_ON_ERROR
7814         /* Enable STORMs SP logging */
7815         REG_WR8(bp, BAR_USTRORM_INTMEM +
7816                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7817         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7818                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7819         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7820                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7821         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7822                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7823 #endif
7824
7825         bnx2x_phy_probe(&bp->link_params);
7826
7827         return 0;
7828 }
7829
7830 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7831 {
7832         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7833
7834         if (!CHIP_IS_E1x(bp))
7835                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7836                                sizeof(struct host_hc_status_block_e2));
7837         else
7838                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7839                                sizeof(struct host_hc_status_block_e1x));
7840
7841         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7842 }
7843
7844 void bnx2x_free_mem(struct bnx2x *bp)
7845 {
7846         int i;
7847
7848         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7849                        sizeof(struct host_sp_status_block));
7850
7851         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7852                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7853
7854         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7855                        sizeof(struct bnx2x_slowpath));
7856
7857         for (i = 0; i < L2_ILT_LINES(bp); i++)
7858                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7859                                bp->context[i].size);
7860         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7861
7862         BNX2X_FREE(bp->ilt->lines);
7863
7864         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7865
7866         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7867                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7868
7869         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7870
7871         bnx2x_iov_free_mem(bp);
7872 }
7873
7874 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7875 {
7876         if (!CHIP_IS_E1x(bp))
7877                 /* size = the status block + ramrod buffers */
7878                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7879                                 sizeof(struct host_hc_status_block_e2));
7880         else
7881                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7882                                 &bp->cnic_sb_mapping,
7883                                 sizeof(struct
7884                                        host_hc_status_block_e1x));
7885
7886         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7887                 /* allocate searcher T2 table, as it wasn't allocated before */
7888                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7889
7890         /* write address to which L5 should insert its values */
7891         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7892                 &bp->slowpath->drv_info_to_mcp;
7893
7894         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7895                 goto alloc_mem_err;
7896
7897         return 0;
7898
7899 alloc_mem_err:
7900         bnx2x_free_mem_cnic(bp);
7901         BNX2X_ERR("Can't allocate memory\n");
7902         return -ENOMEM;
7903 }
7904
7905 int bnx2x_alloc_mem(struct bnx2x *bp)
7906 {
7907         int i, allocated, context_size;
7908
7909         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7910                 /* allocate searcher T2 table */
7911                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7912
7913         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7914                         sizeof(struct host_sp_status_block));
7915
7916         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7917                         sizeof(struct bnx2x_slowpath));
7918
7919         /* Allocate memory for CDU context:
7920          * This memory is allocated separately and not in the generic ILT
7921          * functions because CDU differs in few aspects:
7922          * 1. There are multiple entities allocating memory for context -
7923          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7924          * its own ILT lines.
7925          * 2. Since CDU page-size is not a single 4KB page (which is the case
7926          * for the other ILT clients), to be efficient we want to support
7927          * allocation of sub-page-size in the last entry.
7928          * 3. Context pointers are used by the driver to pass to FW / update
7929          * the context (for the other ILT clients the pointers are used just to
7930          * free the memory during unload).
7931          */
7932         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7933
7934         for (i = 0, allocated = 0; allocated < context_size; i++) {
7935                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7936                                           (context_size - allocated));
7937                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7938                                 &bp->context[i].cxt_mapping,
7939                                 bp->context[i].size);
7940                 allocated += bp->context[i].size;
7941         }
7942         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7943
7944         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7945                 goto alloc_mem_err;
7946
7947         if (bnx2x_iov_alloc_mem(bp))
7948                 goto alloc_mem_err;
7949
7950         /* Slow path ring */
7951         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7952
7953         /* EQ */
7954         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7955                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7956
7957         return 0;
7958
7959 alloc_mem_err:
7960         bnx2x_free_mem(bp);
7961         BNX2X_ERR("Can't allocate memory\n");
7962         return -ENOMEM;
7963 }
7964
7965 /*
7966  * Init service functions
7967  */
7968
7969 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7970                       struct bnx2x_vlan_mac_obj *obj, bool set,
7971                       int mac_type, unsigned long *ramrod_flags)
7972 {
7973         int rc;
7974         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7975
7976         memset(&ramrod_param, 0, sizeof(ramrod_param));
7977
7978         /* Fill general parameters */
7979         ramrod_param.vlan_mac_obj = obj;
7980         ramrod_param.ramrod_flags = *ramrod_flags;
7981
7982         /* Fill a user request section if needed */
7983         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7984                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7985
7986                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7987
7988                 /* Set the command: ADD or DEL */
7989                 if (set)
7990                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7991                 else
7992                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7993         }
7994
7995         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7996
7997         if (rc == -EEXIST) {
7998                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7999                 /* do not treat adding same MAC as error */
8000                 rc = 0;
8001         } else if (rc < 0)
8002                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8003
8004         return rc;
8005 }
8006
8007 int bnx2x_del_all_macs(struct bnx2x *bp,
8008                        struct bnx2x_vlan_mac_obj *mac_obj,
8009                        int mac_type, bool wait_for_comp)
8010 {
8011         int rc;
8012         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8013
8014         /* Wait for completion of requested */
8015         if (wait_for_comp)
8016                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8017
8018         /* Set the mac type of addresses we want to clear */
8019         __set_bit(mac_type, &vlan_mac_flags);
8020
8021         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8022         if (rc < 0)
8023                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8024
8025         return rc;
8026 }
8027
8028 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8029 {
8030         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8031             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8032                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8033                    "Ignoring Zero MAC for STORAGE SD mode\n");
8034                 return 0;
8035         }
8036
8037         if (IS_PF(bp)) {
8038                 unsigned long ramrod_flags = 0;
8039
8040                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8041                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8042                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8043                                          &bp->sp_objs->mac_obj, set,
8044                                          BNX2X_ETH_MAC, &ramrod_flags);
8045         } else { /* vf */
8046                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8047                                              bp->fp->index, true);
8048         }
8049 }
8050
8051 int bnx2x_setup_leading(struct bnx2x *bp)
8052 {
8053         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8054 }
8055
8056 /**
8057  * bnx2x_set_int_mode - configure interrupt mode
8058  *
8059  * @bp:         driver handle
8060  *
8061  * In case of MSI-X it will also try to enable MSI-X.
8062  */
8063 int bnx2x_set_int_mode(struct bnx2x *bp)
8064 {
8065         int rc = 0;
8066
8067         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8068                 return -EINVAL;
8069
8070         switch (int_mode) {
8071         case BNX2X_INT_MODE_MSIX:
8072                 /* attempt to enable msix */
8073                 rc = bnx2x_enable_msix(bp);
8074
8075                 /* msix attained */
8076                 if (!rc)
8077                         return 0;
8078
8079                 /* vfs use only msix */
8080                 if (rc && IS_VF(bp))
8081                         return rc;
8082
8083                 /* failed to enable multiple MSI-X */
8084                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8085                                bp->num_queues,
8086                                1 + bp->num_cnic_queues);
8087
8088                 /* falling through... */
8089         case BNX2X_INT_MODE_MSI:
8090                 bnx2x_enable_msi(bp);
8091
8092                 /* falling through... */
8093         case BNX2X_INT_MODE_INTX:
8094                 bp->num_ethernet_queues = 1;
8095                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8096                 BNX2X_DEV_INFO("set number of queues to 1\n");
8097                 break;
8098         default:
8099                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8100                 return -EINVAL;
8101         }
8102         return 0;
8103 }
8104
8105 /* must be called prior to any HW initializations */
8106 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8107 {
8108         if (IS_SRIOV(bp))
8109                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8110         return L2_ILT_LINES(bp);
8111 }
8112
8113 void bnx2x_ilt_set_info(struct bnx2x *bp)
8114 {
8115         struct ilt_client_info *ilt_client;
8116         struct bnx2x_ilt *ilt = BP_ILT(bp);
8117         u16 line = 0;
8118
8119         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8120         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8121
8122         /* CDU */
8123         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8124         ilt_client->client_num = ILT_CLIENT_CDU;
8125         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8126         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8127         ilt_client->start = line;
8128         line += bnx2x_cid_ilt_lines(bp);
8129
8130         if (CNIC_SUPPORT(bp))
8131                 line += CNIC_ILT_LINES;
8132         ilt_client->end = line - 1;
8133
8134         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8135            ilt_client->start,
8136            ilt_client->end,
8137            ilt_client->page_size,
8138            ilt_client->flags,
8139            ilog2(ilt_client->page_size >> 12));
8140
8141         /* QM */
8142         if (QM_INIT(bp->qm_cid_count)) {
8143                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8144                 ilt_client->client_num = ILT_CLIENT_QM;
8145                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8146                 ilt_client->flags = 0;
8147                 ilt_client->start = line;
8148
8149                 /* 4 bytes for each cid */
8150                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8151                                                          QM_ILT_PAGE_SZ);
8152
8153                 ilt_client->end = line - 1;
8154
8155                 DP(NETIF_MSG_IFUP,
8156                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8157                    ilt_client->start,
8158                    ilt_client->end,
8159                    ilt_client->page_size,
8160                    ilt_client->flags,
8161                    ilog2(ilt_client->page_size >> 12));
8162         }
8163
8164         if (CNIC_SUPPORT(bp)) {
8165                 /* SRC */
8166                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8167                 ilt_client->client_num = ILT_CLIENT_SRC;
8168                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8169                 ilt_client->flags = 0;
8170                 ilt_client->start = line;
8171                 line += SRC_ILT_LINES;
8172                 ilt_client->end = line - 1;
8173
8174                 DP(NETIF_MSG_IFUP,
8175                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8176                    ilt_client->start,
8177                    ilt_client->end,
8178                    ilt_client->page_size,
8179                    ilt_client->flags,
8180                    ilog2(ilt_client->page_size >> 12));
8181
8182                 /* TM */
8183                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8184                 ilt_client->client_num = ILT_CLIENT_TM;
8185                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8186                 ilt_client->flags = 0;
8187                 ilt_client->start = line;
8188                 line += TM_ILT_LINES;
8189                 ilt_client->end = line - 1;
8190
8191                 DP(NETIF_MSG_IFUP,
8192                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8193                    ilt_client->start,
8194                    ilt_client->end,
8195                    ilt_client->page_size,
8196                    ilt_client->flags,
8197                    ilog2(ilt_client->page_size >> 12));
8198         }
8199
8200         BUG_ON(line > ILT_MAX_LINES);
8201 }
8202
8203 /**
8204  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8205  *
8206  * @bp:                 driver handle
8207  * @fp:                 pointer to fastpath
8208  * @init_params:        pointer to parameters structure
8209  *
8210  * parameters configured:
8211  *      - HC configuration
8212  *      - Queue's CDU context
8213  */
8214 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8215         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8216 {
8217         u8 cos;
8218         int cxt_index, cxt_offset;
8219
8220         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8221         if (!IS_FCOE_FP(fp)) {
8222                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8223                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8224
8225                 /* If HC is supported, enable host coalescing in the transition
8226                  * to INIT state.
8227                  */
8228                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8229                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8230
8231                 /* HC rate */
8232                 init_params->rx.hc_rate = bp->rx_ticks ?
8233                         (1000000 / bp->rx_ticks) : 0;
8234                 init_params->tx.hc_rate = bp->tx_ticks ?
8235                         (1000000 / bp->tx_ticks) : 0;
8236
8237                 /* FW SB ID */
8238                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8239                         fp->fw_sb_id;
8240
8241                 /*
8242                  * CQ index among the SB indices: FCoE clients uses the default
8243                  * SB, therefore it's different.
8244                  */
8245                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8246                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8247         }
8248
8249         /* set maximum number of COSs supported by this queue */
8250         init_params->max_cos = fp->max_cos;
8251
8252         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8253             fp->index, init_params->max_cos);
8254
8255         /* set the context pointers queue object */
8256         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8257                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8258                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8259                                 ILT_PAGE_CIDS);
8260                 init_params->cxts[cos] =
8261                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8262         }
8263 }
8264
8265 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8266                         struct bnx2x_queue_state_params *q_params,
8267                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8268                         int tx_index, bool leading)
8269 {
8270         memset(tx_only_params, 0, sizeof(*tx_only_params));
8271
8272         /* Set the command */
8273         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8274
8275         /* Set tx-only QUEUE flags: don't zero statistics */
8276         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8277
8278         /* choose the index of the cid to send the slow path on */
8279         tx_only_params->cid_index = tx_index;
8280
8281         /* Set general TX_ONLY_SETUP parameters */
8282         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8283
8284         /* Set Tx TX_ONLY_SETUP parameters */
8285         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8286
8287         DP(NETIF_MSG_IFUP,
8288            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8289            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8290            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8291            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8292
8293         /* send the ramrod */
8294         return bnx2x_queue_state_change(bp, q_params);
8295 }
8296
8297 /**
8298  * bnx2x_setup_queue - setup queue
8299  *
8300  * @bp:         driver handle
8301  * @fp:         pointer to fastpath
8302  * @leading:    is leading
8303  *
8304  * This function performs 2 steps in a Queue state machine
8305  *      actually: 1) RESET->INIT 2) INIT->SETUP
8306  */
8307
8308 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8309                        bool leading)
8310 {
8311         struct bnx2x_queue_state_params q_params = {NULL};
8312         struct bnx2x_queue_setup_params *setup_params =
8313                                                 &q_params.params.setup;
8314         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8315                                                 &q_params.params.tx_only;
8316         int rc;
8317         u8 tx_index;
8318
8319         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8320
8321         /* reset IGU state skip FCoE L2 queue */
8322         if (!IS_FCOE_FP(fp))
8323                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8324                              IGU_INT_ENABLE, 0);
8325
8326         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8327         /* We want to wait for completion in this context */
8328         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8329
8330         /* Prepare the INIT parameters */
8331         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8332
8333         /* Set the command */
8334         q_params.cmd = BNX2X_Q_CMD_INIT;
8335
8336         /* Change the state to INIT */
8337         rc = bnx2x_queue_state_change(bp, &q_params);
8338         if (rc) {
8339                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8340                 return rc;
8341         }
8342
8343         DP(NETIF_MSG_IFUP, "init complete\n");
8344
8345         /* Now move the Queue to the SETUP state... */
8346         memset(setup_params, 0, sizeof(*setup_params));
8347
8348         /* Set QUEUE flags */
8349         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8350
8351         /* Set general SETUP parameters */
8352         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8353                                 FIRST_TX_COS_INDEX);
8354
8355         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8356                             &setup_params->rxq_params);
8357
8358         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8359                            FIRST_TX_COS_INDEX);
8360
8361         /* Set the command */
8362         q_params.cmd = BNX2X_Q_CMD_SETUP;
8363
8364         if (IS_FCOE_FP(fp))
8365                 bp->fcoe_init = true;
8366
8367         /* Change the state to SETUP */
8368         rc = bnx2x_queue_state_change(bp, &q_params);
8369         if (rc) {
8370                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8371                 return rc;
8372         }
8373
8374         /* loop through the relevant tx-only indices */
8375         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8376               tx_index < fp->max_cos;
8377               tx_index++) {
8378
8379                 /* prepare and send tx-only ramrod*/
8380                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8381                                           tx_only_params, tx_index, leading);
8382                 if (rc) {
8383                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8384                                   fp->index, tx_index);
8385                         return rc;
8386                 }
8387         }
8388
8389         return rc;
8390 }
8391
8392 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8393 {
8394         struct bnx2x_fastpath *fp = &bp->fp[index];
8395         struct bnx2x_fp_txdata *txdata;
8396         struct bnx2x_queue_state_params q_params = {NULL};
8397         int rc, tx_index;
8398
8399         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8400
8401         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8402         /* We want to wait for completion in this context */
8403         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8404
8405         /* close tx-only connections */
8406         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8407              tx_index < fp->max_cos;
8408              tx_index++){
8409
8410                 /* ascertain this is a normal queue*/
8411                 txdata = fp->txdata_ptr[tx_index];
8412
8413                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8414                                                         txdata->txq_index);
8415
8416                 /* send halt terminate on tx-only connection */
8417                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8418                 memset(&q_params.params.terminate, 0,
8419                        sizeof(q_params.params.terminate));
8420                 q_params.params.terminate.cid_index = tx_index;
8421
8422                 rc = bnx2x_queue_state_change(bp, &q_params);
8423                 if (rc)
8424                         return rc;
8425
8426                 /* send halt terminate on tx-only connection */
8427                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8428                 memset(&q_params.params.cfc_del, 0,
8429                        sizeof(q_params.params.cfc_del));
8430                 q_params.params.cfc_del.cid_index = tx_index;
8431                 rc = bnx2x_queue_state_change(bp, &q_params);
8432                 if (rc)
8433                         return rc;
8434         }
8435         /* Stop the primary connection: */
8436         /* ...halt the connection */
8437         q_params.cmd = BNX2X_Q_CMD_HALT;
8438         rc = bnx2x_queue_state_change(bp, &q_params);
8439         if (rc)
8440                 return rc;
8441
8442         /* ...terminate the connection */
8443         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8444         memset(&q_params.params.terminate, 0,
8445                sizeof(q_params.params.terminate));
8446         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8447         rc = bnx2x_queue_state_change(bp, &q_params);
8448         if (rc)
8449                 return rc;
8450         /* ...delete cfc entry */
8451         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8452         memset(&q_params.params.cfc_del, 0,
8453                sizeof(q_params.params.cfc_del));
8454         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8455         return bnx2x_queue_state_change(bp, &q_params);
8456 }
8457
8458 static void bnx2x_reset_func(struct bnx2x *bp)
8459 {
8460         int port = BP_PORT(bp);
8461         int func = BP_FUNC(bp);
8462         int i;
8463
8464         /* Disable the function in the FW */
8465         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8466         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8467         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8468         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8469
8470         /* FP SBs */
8471         for_each_eth_queue(bp, i) {
8472                 struct bnx2x_fastpath *fp = &bp->fp[i];
8473                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8474                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8475                            SB_DISABLED);
8476         }
8477
8478         if (CNIC_LOADED(bp))
8479                 /* CNIC SB */
8480                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8481                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8482                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8483
8484         /* SP SB */
8485         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8486                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8487                 SB_DISABLED);
8488
8489         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8490                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8491                        0);
8492
8493         /* Configure IGU */
8494         if (bp->common.int_block == INT_BLOCK_HC) {
8495                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8496                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8497         } else {
8498                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8499                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8500         }
8501
8502         if (CNIC_LOADED(bp)) {
8503                 /* Disable Timer scan */
8504                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8505                 /*
8506                  * Wait for at least 10ms and up to 2 second for the timers
8507                  * scan to complete
8508                  */
8509                 for (i = 0; i < 200; i++) {
8510                         usleep_range(10000, 20000);
8511                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8512                                 break;
8513                 }
8514         }
8515         /* Clear ILT */
8516         bnx2x_clear_func_ilt(bp, func);
8517
8518         /* Timers workaround bug for E2: if this is vnic-3,
8519          * we need to set the entire ilt range for this timers.
8520          */
8521         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8522                 struct ilt_client_info ilt_cli;
8523                 /* use dummy TM client */
8524                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8525                 ilt_cli.start = 0;
8526                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8527                 ilt_cli.client_num = ILT_CLIENT_TM;
8528
8529                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8530         }
8531
8532         /* this assumes that reset_port() called before reset_func()*/
8533         if (!CHIP_IS_E1x(bp))
8534                 bnx2x_pf_disable(bp);
8535
8536         bp->dmae_ready = 0;
8537 }
8538
8539 static void bnx2x_reset_port(struct bnx2x *bp)
8540 {
8541         int port = BP_PORT(bp);
8542         u32 val;
8543
8544         /* Reset physical Link */
8545         bnx2x__link_reset(bp);
8546
8547         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8548
8549         /* Do not rcv packets to BRB */
8550         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8551         /* Do not direct rcv packets that are not for MCP to the BRB */
8552         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8553                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8554
8555         /* Configure AEU */
8556         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8557
8558         msleep(100);
8559         /* Check for BRB port occupancy */
8560         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8561         if (val)
8562                 DP(NETIF_MSG_IFDOWN,
8563                    "BRB1 is not empty  %d blocks are occupied\n", val);
8564
8565         /* TODO: Close Doorbell port? */
8566 }
8567
8568 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8569 {
8570         struct bnx2x_func_state_params func_params = {NULL};
8571
8572         /* Prepare parameters for function state transitions */
8573         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8574
8575         func_params.f_obj = &bp->func_obj;
8576         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8577
8578         func_params.params.hw_init.load_phase = load_code;
8579
8580         return bnx2x_func_state_change(bp, &func_params);
8581 }
8582
8583 static int bnx2x_func_stop(struct bnx2x *bp)
8584 {
8585         struct bnx2x_func_state_params func_params = {NULL};
8586         int rc;
8587
8588         /* Prepare parameters for function state transitions */
8589         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8590         func_params.f_obj = &bp->func_obj;
8591         func_params.cmd = BNX2X_F_CMD_STOP;
8592
8593         /*
8594          * Try to stop the function the 'good way'. If fails (in case
8595          * of a parity error during bnx2x_chip_cleanup()) and we are
8596          * not in a debug mode, perform a state transaction in order to
8597          * enable further HW_RESET transaction.
8598          */
8599         rc = bnx2x_func_state_change(bp, &func_params);
8600         if (rc) {
8601 #ifdef BNX2X_STOP_ON_ERROR
8602                 return rc;
8603 #else
8604                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8605                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8606                 return bnx2x_func_state_change(bp, &func_params);
8607 #endif
8608         }
8609
8610         return 0;
8611 }
8612
8613 /**
8614  * bnx2x_send_unload_req - request unload mode from the MCP.
8615  *
8616  * @bp:                 driver handle
8617  * @unload_mode:        requested function's unload mode
8618  *
8619  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8620  */
8621 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8622 {
8623         u32 reset_code = 0;
8624         int port = BP_PORT(bp);
8625
8626         /* Select the UNLOAD request mode */
8627         if (unload_mode == UNLOAD_NORMAL)
8628                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8629
8630         else if (bp->flags & NO_WOL_FLAG)
8631                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8632
8633         else if (bp->wol) {
8634                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8635                 u8 *mac_addr = bp->dev->dev_addr;
8636                 u32 val;
8637                 u16 pmc;
8638
8639                 /* The mac address is written to entries 1-4 to
8640                  * preserve entry 0 which is used by the PMF
8641                  */
8642                 u8 entry = (BP_VN(bp) + 1)*8;
8643
8644                 val = (mac_addr[0] << 8) | mac_addr[1];
8645                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8646
8647                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8648                       (mac_addr[4] << 8) | mac_addr[5];
8649                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8650
8651                 /* Enable the PME and clear the status */
8652                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8653                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8654                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8655
8656                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8657
8658         } else
8659                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8660
8661         /* Send the request to the MCP */
8662         if (!BP_NOMCP(bp))
8663                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8664         else {
8665                 int path = BP_PATH(bp);
8666
8667                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8668                    path, load_count[path][0], load_count[path][1],
8669                    load_count[path][2]);
8670                 load_count[path][0]--;
8671                 load_count[path][1 + port]--;
8672                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8673                    path, load_count[path][0], load_count[path][1],
8674                    load_count[path][2]);
8675                 if (load_count[path][0] == 0)
8676                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8677                 else if (load_count[path][1 + port] == 0)
8678                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8679                 else
8680                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8681         }
8682
8683         return reset_code;
8684 }
8685
8686 /**
8687  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8688  *
8689  * @bp:         driver handle
8690  * @keep_link:          true iff link should be kept up
8691  */
8692 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8693 {
8694         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8695
8696         /* Report UNLOAD_DONE to MCP */
8697         if (!BP_NOMCP(bp))
8698                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8699 }
8700
8701 static int bnx2x_func_wait_started(struct bnx2x *bp)
8702 {
8703         int tout = 50;
8704         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8705
8706         if (!bp->port.pmf)
8707                 return 0;
8708
8709         /*
8710          * (assumption: No Attention from MCP at this stage)
8711          * PMF probably in the middle of TX disable/enable transaction
8712          * 1. Sync IRS for default SB
8713          * 2. Sync SP queue - this guarantees us that attention handling started
8714          * 3. Wait, that TX disable/enable transaction completes
8715          *
8716          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8717          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8718          * received completion for the transaction the state is TX_STOPPED.
8719          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8720          * transaction.
8721          */
8722
8723         /* make sure default SB ISR is done */
8724         if (msix)
8725                 synchronize_irq(bp->msix_table[0].vector);
8726         else
8727                 synchronize_irq(bp->pdev->irq);
8728
8729         flush_workqueue(bnx2x_wq);
8730
8731         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8732                                 BNX2X_F_STATE_STARTED && tout--)
8733                 msleep(20);
8734
8735         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8736                                                 BNX2X_F_STATE_STARTED) {
8737 #ifdef BNX2X_STOP_ON_ERROR
8738                 BNX2X_ERR("Wrong function state\n");
8739                 return -EBUSY;
8740 #else
8741                 /*
8742                  * Failed to complete the transaction in a "good way"
8743                  * Force both transactions with CLR bit
8744                  */
8745                 struct bnx2x_func_state_params func_params = {NULL};
8746
8747                 DP(NETIF_MSG_IFDOWN,
8748                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8749
8750                 func_params.f_obj = &bp->func_obj;
8751                 __set_bit(RAMROD_DRV_CLR_ONLY,
8752                                         &func_params.ramrod_flags);
8753
8754                 /* STARTED-->TX_ST0PPED */
8755                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8756                 bnx2x_func_state_change(bp, &func_params);
8757
8758                 /* TX_ST0PPED-->STARTED */
8759                 func_params.cmd = BNX2X_F_CMD_TX_START;
8760                 return bnx2x_func_state_change(bp, &func_params);
8761 #endif
8762         }
8763
8764         return 0;
8765 }
8766
8767 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8768 {
8769         int port = BP_PORT(bp);
8770         int i, rc = 0;
8771         u8 cos;
8772         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8773         u32 reset_code;
8774
8775         /* Wait until tx fastpath tasks complete */
8776         for_each_tx_queue(bp, i) {
8777                 struct bnx2x_fastpath *fp = &bp->fp[i];
8778
8779                 for_each_cos_in_tx_queue(fp, cos)
8780                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8781 #ifdef BNX2X_STOP_ON_ERROR
8782                 if (rc)
8783                         return;
8784 #endif
8785         }
8786
8787         /* Give HW time to discard old tx messages */
8788         usleep_range(1000, 2000);
8789
8790         /* Clean all ETH MACs */
8791         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8792                                 false);
8793         if (rc < 0)
8794                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8795
8796         /* Clean up UC list  */
8797         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8798                                 true);
8799         if (rc < 0)
8800                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8801                           rc);
8802
8803         /* Disable LLH */
8804         if (!CHIP_IS_E1(bp))
8805                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8806
8807         /* Set "drop all" (stop Rx).
8808          * We need to take a netif_addr_lock() here in order to prevent
8809          * a race between the completion code and this code.
8810          */
8811         netif_addr_lock_bh(bp->dev);
8812         /* Schedule the rx_mode command */
8813         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8814                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8815         else
8816                 bnx2x_set_storm_rx_mode(bp);
8817
8818         /* Cleanup multicast configuration */
8819         rparam.mcast_obj = &bp->mcast_obj;
8820         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8821         if (rc < 0)
8822                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8823
8824         netif_addr_unlock_bh(bp->dev);
8825
8826         bnx2x_iov_chip_cleanup(bp);
8827
8828         /*
8829          * Send the UNLOAD_REQUEST to the MCP. This will return if
8830          * this function should perform FUNC, PORT or COMMON HW
8831          * reset.
8832          */
8833         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8834
8835         /*
8836          * (assumption: No Attention from MCP at this stage)
8837          * PMF probably in the middle of TX disable/enable transaction
8838          */
8839         rc = bnx2x_func_wait_started(bp);
8840         if (rc) {
8841                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8842 #ifdef BNX2X_STOP_ON_ERROR
8843                 return;
8844 #endif
8845         }
8846
8847         /* Close multi and leading connections
8848          * Completions for ramrods are collected in a synchronous way
8849          */
8850         for_each_eth_queue(bp, i)
8851                 if (bnx2x_stop_queue(bp, i))
8852 #ifdef BNX2X_STOP_ON_ERROR
8853                         return;
8854 #else
8855                         goto unload_error;
8856 #endif
8857
8858         if (CNIC_LOADED(bp)) {
8859                 for_each_cnic_queue(bp, i)
8860                         if (bnx2x_stop_queue(bp, i))
8861 #ifdef BNX2X_STOP_ON_ERROR
8862                                 return;
8863 #else
8864                                 goto unload_error;
8865 #endif
8866         }
8867
8868         /* If SP settings didn't get completed so far - something
8869          * very wrong has happen.
8870          */
8871         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8872                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8873
8874 #ifndef BNX2X_STOP_ON_ERROR
8875 unload_error:
8876 #endif
8877         rc = bnx2x_func_stop(bp);
8878         if (rc) {
8879                 BNX2X_ERR("Function stop failed!\n");
8880 #ifdef BNX2X_STOP_ON_ERROR
8881                 return;
8882 #endif
8883         }
8884
8885         /* Disable HW interrupts, NAPI */
8886         bnx2x_netif_stop(bp, 1);
8887         /* Delete all NAPI objects */
8888         bnx2x_del_all_napi(bp);
8889         if (CNIC_LOADED(bp))
8890                 bnx2x_del_all_napi_cnic(bp);
8891
8892         /* Release IRQs */
8893         bnx2x_free_irq(bp);
8894
8895         /* Reset the chip */
8896         rc = bnx2x_reset_hw(bp, reset_code);
8897         if (rc)
8898                 BNX2X_ERR("HW_RESET failed\n");
8899
8900         /* Report UNLOAD_DONE to MCP */
8901         bnx2x_send_unload_done(bp, keep_link);
8902 }
8903
8904 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8905 {
8906         u32 val;
8907
8908         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8909
8910         if (CHIP_IS_E1(bp)) {
8911                 int port = BP_PORT(bp);
8912                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8913                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8914
8915                 val = REG_RD(bp, addr);
8916                 val &= ~(0x300);
8917                 REG_WR(bp, addr, val);
8918         } else {
8919                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8920                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8921                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8922                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8923         }
8924 }
8925
8926 /* Close gates #2, #3 and #4: */
8927 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8928 {
8929         u32 val;
8930
8931         /* Gates #2 and #4a are closed/opened for "not E1" only */
8932         if (!CHIP_IS_E1(bp)) {
8933                 /* #4 */
8934                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8935                 /* #2 */
8936                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8937         }
8938
8939         /* #3 */
8940         if (CHIP_IS_E1x(bp)) {
8941                 /* Prevent interrupts from HC on both ports */
8942                 val = REG_RD(bp, HC_REG_CONFIG_1);
8943                 REG_WR(bp, HC_REG_CONFIG_1,
8944                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8945                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8946
8947                 val = REG_RD(bp, HC_REG_CONFIG_0);
8948                 REG_WR(bp, HC_REG_CONFIG_0,
8949                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8950                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8951         } else {
8952                 /* Prevent incoming interrupts in IGU */
8953                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8954
8955                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8956                        (!close) ?
8957                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8958                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8959         }
8960
8961         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8962                 close ? "closing" : "opening");
8963         mmiowb();
8964 }
8965
8966 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8967
8968 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8969 {
8970         /* Do some magic... */
8971         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8972         *magic_val = val & SHARED_MF_CLP_MAGIC;
8973         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8974 }
8975
8976 /**
8977  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8978  *
8979  * @bp:         driver handle
8980  * @magic_val:  old value of the `magic' bit.
8981  */
8982 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8983 {
8984         /* Restore the `magic' bit value... */
8985         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8986         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8987                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8988 }
8989
8990 /**
8991  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8992  *
8993  * @bp:         driver handle
8994  * @magic_val:  old value of 'magic' bit.
8995  *
8996  * Takes care of CLP configurations.
8997  */
8998 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8999 {
9000         u32 shmem;
9001         u32 validity_offset;
9002
9003         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9004
9005         /* Set `magic' bit in order to save MF config */
9006         if (!CHIP_IS_E1(bp))
9007                 bnx2x_clp_reset_prep(bp, magic_val);
9008
9009         /* Get shmem offset */
9010         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9011         validity_offset =
9012                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9013
9014         /* Clear validity map flags */
9015         if (shmem > 0)
9016                 REG_WR(bp, shmem + validity_offset, 0);
9017 }
9018
9019 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9020 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9021
9022 /**
9023  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9024  *
9025  * @bp: driver handle
9026  */
9027 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9028 {
9029         /* special handling for emulation and FPGA,
9030            wait 10 times longer */
9031         if (CHIP_REV_IS_SLOW(bp))
9032                 msleep(MCP_ONE_TIMEOUT*10);
9033         else
9034                 msleep(MCP_ONE_TIMEOUT);
9035 }
9036
9037 /*
9038  * initializes bp->common.shmem_base and waits for validity signature to appear
9039  */
9040 static int bnx2x_init_shmem(struct bnx2x *bp)
9041 {
9042         int cnt = 0;
9043         u32 val = 0;
9044
9045         do {
9046                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9047                 if (bp->common.shmem_base) {
9048                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9049                         if (val & SHR_MEM_VALIDITY_MB)
9050                                 return 0;
9051                 }
9052
9053                 bnx2x_mcp_wait_one(bp);
9054
9055         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9056
9057         BNX2X_ERR("BAD MCP validity signature\n");
9058
9059         return -ENODEV;
9060 }
9061
9062 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9063 {
9064         int rc = bnx2x_init_shmem(bp);
9065
9066         /* Restore the `magic' bit value */
9067         if (!CHIP_IS_E1(bp))
9068                 bnx2x_clp_reset_done(bp, magic_val);
9069
9070         return rc;
9071 }
9072
9073 static void bnx2x_pxp_prep(struct bnx2x *bp)
9074 {
9075         if (!CHIP_IS_E1(bp)) {
9076                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9077                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9078                 mmiowb();
9079         }
9080 }
9081
9082 /*
9083  * Reset the whole chip except for:
9084  *      - PCIE core
9085  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9086  *              one reset bit)
9087  *      - IGU
9088  *      - MISC (including AEU)
9089  *      - GRC
9090  *      - RBCN, RBCP
9091  */
9092 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9093 {
9094         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9095         u32 global_bits2, stay_reset2;
9096
9097         /*
9098          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9099          * (per chip) blocks.
9100          */
9101         global_bits2 =
9102                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9103                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9104
9105         /* Don't reset the following blocks.
9106          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9107          *            reset, as in 4 port device they might still be owned
9108          *            by the MCP (there is only one leader per path).
9109          */
9110         not_reset_mask1 =
9111                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9112                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9113                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9114
9115         not_reset_mask2 =
9116                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9117                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9118                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9119                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9120                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9121                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9122                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9123                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9124                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9125                 MISC_REGISTERS_RESET_REG_2_PGLC |
9126                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9127                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9128                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9129                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9130                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9131                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9132
9133         /*
9134          * Keep the following blocks in reset:
9135          *  - all xxMACs are handled by the bnx2x_link code.
9136          */
9137         stay_reset2 =
9138                 MISC_REGISTERS_RESET_REG_2_XMAC |
9139                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9140
9141         /* Full reset masks according to the chip */
9142         reset_mask1 = 0xffffffff;
9143
9144         if (CHIP_IS_E1(bp))
9145                 reset_mask2 = 0xffff;
9146         else if (CHIP_IS_E1H(bp))
9147                 reset_mask2 = 0x1ffff;
9148         else if (CHIP_IS_E2(bp))
9149                 reset_mask2 = 0xfffff;
9150         else /* CHIP_IS_E3 */
9151                 reset_mask2 = 0x3ffffff;
9152
9153         /* Don't reset global blocks unless we need to */
9154         if (!global)
9155                 reset_mask2 &= ~global_bits2;
9156
9157         /*
9158          * In case of attention in the QM, we need to reset PXP
9159          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9160          * because otherwise QM reset would release 'close the gates' shortly
9161          * before resetting the PXP, then the PSWRQ would send a write
9162          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9163          * read the payload data from PSWWR, but PSWWR would not
9164          * respond. The write queue in PGLUE would stuck, dmae commands
9165          * would not return. Therefore it's important to reset the second
9166          * reset register (containing the
9167          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9168          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9169          * bit).
9170          */
9171         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9172                reset_mask2 & (~not_reset_mask2));
9173
9174         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9175                reset_mask1 & (~not_reset_mask1));
9176
9177         barrier();
9178         mmiowb();
9179
9180         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9181                reset_mask2 & (~stay_reset2));
9182
9183         barrier();
9184         mmiowb();
9185
9186         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9187         mmiowb();
9188 }
9189
9190 /**
9191  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9192  * It should get cleared in no more than 1s.
9193  *
9194  * @bp: driver handle
9195  *
9196  * It should get cleared in no more than 1s. Returns 0 if
9197  * pending writes bit gets cleared.
9198  */
9199 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9200 {
9201         u32 cnt = 1000;
9202         u32 pend_bits = 0;
9203
9204         do {
9205                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9206
9207                 if (pend_bits == 0)
9208                         break;
9209
9210                 usleep_range(1000, 2000);
9211         } while (cnt-- > 0);
9212
9213         if (cnt <= 0) {
9214                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9215                           pend_bits);
9216                 return -EBUSY;
9217         }
9218
9219         return 0;
9220 }
9221
9222 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9223 {
9224         int cnt = 1000;
9225         u32 val = 0;
9226         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9227         u32 tags_63_32 = 0;
9228
9229         /* Empty the Tetris buffer, wait for 1s */
9230         do {
9231                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9232                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9233                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9234                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9235                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9236                 if (CHIP_IS_E3(bp))
9237                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9238
9239                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9240                     ((port_is_idle_0 & 0x1) == 0x1) &&
9241                     ((port_is_idle_1 & 0x1) == 0x1) &&
9242                     (pgl_exp_rom2 == 0xffffffff) &&
9243                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9244                         break;
9245                 usleep_range(1000, 2000);
9246         } while (cnt-- > 0);
9247
9248         if (cnt <= 0) {
9249                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9250                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9251                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9252                           pgl_exp_rom2);
9253                 return -EAGAIN;
9254         }
9255
9256         barrier();
9257
9258         /* Close gates #2, #3 and #4 */
9259         bnx2x_set_234_gates(bp, true);
9260
9261         /* Poll for IGU VQs for 57712 and newer chips */
9262         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9263                 return -EAGAIN;
9264
9265         /* TBD: Indicate that "process kill" is in progress to MCP */
9266
9267         /* Clear "unprepared" bit */
9268         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9269         barrier();
9270
9271         /* Make sure all is written to the chip before the reset */
9272         mmiowb();
9273
9274         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9275          * PSWHST, GRC and PSWRD Tetris buffer.
9276          */
9277         usleep_range(1000, 2000);
9278
9279         /* Prepare to chip reset: */
9280         /* MCP */
9281         if (global)
9282                 bnx2x_reset_mcp_prep(bp, &val);
9283
9284         /* PXP */
9285         bnx2x_pxp_prep(bp);
9286         barrier();
9287
9288         /* reset the chip */
9289         bnx2x_process_kill_chip_reset(bp, global);
9290         barrier();
9291
9292         /* Recover after reset: */
9293         /* MCP */
9294         if (global && bnx2x_reset_mcp_comp(bp, val))
9295                 return -EAGAIN;
9296
9297         /* TBD: Add resetting the NO_MCP mode DB here */
9298
9299         /* Open the gates #2, #3 and #4 */
9300         bnx2x_set_234_gates(bp, false);
9301
9302         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9303          * reset state, re-enable attentions. */
9304
9305         return 0;
9306 }
9307
9308 static int bnx2x_leader_reset(struct bnx2x *bp)
9309 {
9310         int rc = 0;
9311         bool global = bnx2x_reset_is_global(bp);
9312         u32 load_code;
9313
9314         /* if not going to reset MCP - load "fake" driver to reset HW while
9315          * driver is owner of the HW
9316          */
9317         if (!global && !BP_NOMCP(bp)) {
9318                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9319                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9320                 if (!load_code) {
9321                         BNX2X_ERR("MCP response failure, aborting\n");
9322                         rc = -EAGAIN;
9323                         goto exit_leader_reset;
9324                 }
9325                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9326                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9327                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9328                         rc = -EAGAIN;
9329                         goto exit_leader_reset2;
9330                 }
9331                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9332                 if (!load_code) {
9333                         BNX2X_ERR("MCP response failure, aborting\n");
9334                         rc = -EAGAIN;
9335                         goto exit_leader_reset2;
9336                 }
9337         }
9338
9339         /* Try to recover after the failure */
9340         if (bnx2x_process_kill(bp, global)) {
9341                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9342                           BP_PATH(bp));
9343                 rc = -EAGAIN;
9344                 goto exit_leader_reset2;
9345         }
9346
9347         /*
9348          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9349          * state.
9350          */
9351         bnx2x_set_reset_done(bp);
9352         if (global)
9353                 bnx2x_clear_reset_global(bp);
9354
9355 exit_leader_reset2:
9356         /* unload "fake driver" if it was loaded */
9357         if (!global && !BP_NOMCP(bp)) {
9358                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9359                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9360         }
9361 exit_leader_reset:
9362         bp->is_leader = 0;
9363         bnx2x_release_leader_lock(bp);
9364         smp_mb();
9365         return rc;
9366 }
9367
9368 static void bnx2x_recovery_failed(struct bnx2x *bp)
9369 {
9370         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9371
9372         /* Disconnect this device */
9373         netif_device_detach(bp->dev);
9374
9375         /*
9376          * Block ifup for all function on this engine until "process kill"
9377          * or power cycle.
9378          */
9379         bnx2x_set_reset_in_progress(bp);
9380
9381         /* Shut down the power */
9382         bnx2x_set_power_state(bp, PCI_D3hot);
9383
9384         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9385
9386         smp_mb();
9387 }
9388
9389 /*
9390  * Assumption: runs under rtnl lock. This together with the fact
9391  * that it's called only from bnx2x_sp_rtnl() ensure that it
9392  * will never be called when netif_running(bp->dev) is false.
9393  */
9394 static void bnx2x_parity_recover(struct bnx2x *bp)
9395 {
9396         bool global = false;
9397         u32 error_recovered, error_unrecovered;
9398         bool is_parity;
9399
9400         DP(NETIF_MSG_HW, "Handling parity\n");
9401         while (1) {
9402                 switch (bp->recovery_state) {
9403                 case BNX2X_RECOVERY_INIT:
9404                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9405                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9406                         WARN_ON(!is_parity);
9407
9408                         /* Try to get a LEADER_LOCK HW lock */
9409                         if (bnx2x_trylock_leader_lock(bp)) {
9410                                 bnx2x_set_reset_in_progress(bp);
9411                                 /*
9412                                  * Check if there is a global attention and if
9413                                  * there was a global attention, set the global
9414                                  * reset bit.
9415                                  */
9416
9417                                 if (global)
9418                                         bnx2x_set_reset_global(bp);
9419
9420                                 bp->is_leader = 1;
9421                         }
9422
9423                         /* Stop the driver */
9424                         /* If interface has been removed - break */
9425                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9426                                 return;
9427
9428                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9429
9430                         /* Ensure "is_leader", MCP command sequence and
9431                          * "recovery_state" update values are seen on other
9432                          * CPUs.
9433                          */
9434                         smp_mb();
9435                         break;
9436
9437                 case BNX2X_RECOVERY_WAIT:
9438                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9439                         if (bp->is_leader) {
9440                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9441                                 bool other_load_status =
9442                                         bnx2x_get_load_status(bp, other_engine);
9443                                 bool load_status =
9444                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9445                                 global = bnx2x_reset_is_global(bp);
9446
9447                                 /*
9448                                  * In case of a parity in a global block, let
9449                                  * the first leader that performs a
9450                                  * leader_reset() reset the global blocks in
9451                                  * order to clear global attentions. Otherwise
9452                                  * the gates will remain closed for that
9453                                  * engine.
9454                                  */
9455                                 if (load_status ||
9456                                     (global && other_load_status)) {
9457                                         /* Wait until all other functions get
9458                                          * down.
9459                                          */
9460                                         schedule_delayed_work(&bp->sp_rtnl_task,
9461                                                                 HZ/10);
9462                                         return;
9463                                 } else {
9464                                         /* If all other functions got down -
9465                                          * try to bring the chip back to
9466                                          * normal. In any case it's an exit
9467                                          * point for a leader.
9468                                          */
9469                                         if (bnx2x_leader_reset(bp)) {
9470                                                 bnx2x_recovery_failed(bp);
9471                                                 return;
9472                                         }
9473
9474                                         /* If we are here, means that the
9475                                          * leader has succeeded and doesn't
9476                                          * want to be a leader any more. Try
9477                                          * to continue as a none-leader.
9478                                          */
9479                                         break;
9480                                 }
9481                         } else { /* non-leader */
9482                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9483                                         /* Try to get a LEADER_LOCK HW lock as
9484                                          * long as a former leader may have
9485                                          * been unloaded by the user or
9486                                          * released a leadership by another
9487                                          * reason.
9488                                          */
9489                                         if (bnx2x_trylock_leader_lock(bp)) {
9490                                                 /* I'm a leader now! Restart a
9491                                                  * switch case.
9492                                                  */
9493                                                 bp->is_leader = 1;
9494                                                 break;
9495                                         }
9496
9497                                         schedule_delayed_work(&bp->sp_rtnl_task,
9498                                                                 HZ/10);
9499                                         return;
9500
9501                                 } else {
9502                                         /*
9503                                          * If there was a global attention, wait
9504                                          * for it to be cleared.
9505                                          */
9506                                         if (bnx2x_reset_is_global(bp)) {
9507                                                 schedule_delayed_work(
9508                                                         &bp->sp_rtnl_task,
9509                                                         HZ/10);
9510                                                 return;
9511                                         }
9512
9513                                         error_recovered =
9514                                           bp->eth_stats.recoverable_error;
9515                                         error_unrecovered =
9516                                           bp->eth_stats.unrecoverable_error;
9517                                         bp->recovery_state =
9518                                                 BNX2X_RECOVERY_NIC_LOADING;
9519                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9520                                                 error_unrecovered++;
9521                                                 netdev_err(bp->dev,
9522                                                            "Recovery failed. Power cycle needed\n");
9523                                                 /* Disconnect this device */
9524                                                 netif_device_detach(bp->dev);
9525                                                 /* Shut down the power */
9526                                                 bnx2x_set_power_state(
9527                                                         bp, PCI_D3hot);
9528                                                 smp_mb();
9529                                         } else {
9530                                                 bp->recovery_state =
9531                                                         BNX2X_RECOVERY_DONE;
9532                                                 error_recovered++;
9533                                                 smp_mb();
9534                                         }
9535                                         bp->eth_stats.recoverable_error =
9536                                                 error_recovered;
9537                                         bp->eth_stats.unrecoverable_error =
9538                                                 error_unrecovered;
9539
9540                                         return;
9541                                 }
9542                         }
9543                 default:
9544                         return;
9545                 }
9546         }
9547 }
9548
9549 static int bnx2x_close(struct net_device *dev);
9550
9551 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9552  * scheduled on a general queue in order to prevent a dead lock.
9553  */
9554 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9555 {
9556         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9557
9558         rtnl_lock();
9559
9560         if (!netif_running(bp->dev)) {
9561                 rtnl_unlock();
9562                 return;
9563         }
9564
9565         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9566 #ifdef BNX2X_STOP_ON_ERROR
9567                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9568                           "you will need to reboot when done\n");
9569                 goto sp_rtnl_not_reset;
9570 #endif
9571                 /*
9572                  * Clear all pending SP commands as we are going to reset the
9573                  * function anyway.
9574                  */
9575                 bp->sp_rtnl_state = 0;
9576                 smp_mb();
9577
9578                 bnx2x_parity_recover(bp);
9579
9580                 rtnl_unlock();
9581                 return;
9582         }
9583
9584         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9585 #ifdef BNX2X_STOP_ON_ERROR
9586                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9587                           "you will need to reboot when done\n");
9588                 goto sp_rtnl_not_reset;
9589 #endif
9590
9591                 /*
9592                  * Clear all pending SP commands as we are going to reset the
9593                  * function anyway.
9594                  */
9595                 bp->sp_rtnl_state = 0;
9596                 smp_mb();
9597
9598                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9599                 bnx2x_nic_load(bp, LOAD_NORMAL);
9600
9601                 rtnl_unlock();
9602                 return;
9603         }
9604 #ifdef BNX2X_STOP_ON_ERROR
9605 sp_rtnl_not_reset:
9606 #endif
9607         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9608                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9609         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9610                 bnx2x_after_function_update(bp);
9611         /*
9612          * in case of fan failure we need to reset id if the "stop on error"
9613          * debug flag is set, since we trying to prevent permanent overheating
9614          * damage
9615          */
9616         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9617                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9618                 netif_device_detach(bp->dev);
9619                 bnx2x_close(bp->dev);
9620                 rtnl_unlock();
9621                 return;
9622         }
9623
9624         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9625                 DP(BNX2X_MSG_SP,
9626                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9627                 bnx2x_vfpf_set_mcast(bp->dev);
9628         }
9629         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9630                                &bp->sp_rtnl_state)){
9631                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9632                         bnx2x_tx_disable(bp);
9633                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9634                 }
9635         }
9636
9637         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9638                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9639                 bnx2x_set_rx_mode_inner(bp);
9640         }
9641
9642         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9643                                &bp->sp_rtnl_state))
9644                 bnx2x_pf_set_vfs_vlan(bp);
9645
9646         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9647          * can be called from other contexts as well)
9648          */
9649         rtnl_unlock();
9650
9651         /* enable SR-IOV if applicable */
9652         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9653                                                &bp->sp_rtnl_state)) {
9654                 bnx2x_disable_sriov(bp);
9655                 bnx2x_enable_sriov(bp);
9656         }
9657 }
9658
9659 static void bnx2x_period_task(struct work_struct *work)
9660 {
9661         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9662
9663         if (!netif_running(bp->dev))
9664                 goto period_task_exit;
9665
9666         if (CHIP_REV_IS_SLOW(bp)) {
9667                 BNX2X_ERR("period task called on emulation, ignoring\n");
9668                 goto period_task_exit;
9669         }
9670
9671         bnx2x_acquire_phy_lock(bp);
9672         /*
9673          * The barrier is needed to ensure the ordering between the writing to
9674          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9675          * the reading here.
9676          */
9677         smp_mb();
9678         if (bp->port.pmf) {
9679                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9680
9681                 /* Re-queue task in 1 sec */
9682                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9683         }
9684
9685         bnx2x_release_phy_lock(bp);
9686 period_task_exit:
9687         return;
9688 }
9689
9690 /*
9691  * Init service functions
9692  */
9693
9694 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9695 {
9696         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9697         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9698         return base + (BP_ABS_FUNC(bp)) * stride;
9699 }
9700
9701 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9702                                         struct bnx2x_mac_vals *vals)
9703 {
9704         u32 val, base_addr, offset, mask, reset_reg;
9705         bool mac_stopped = false;
9706         u8 port = BP_PORT(bp);
9707
9708         /* reset addresses as they also mark which values were changed */
9709         vals->bmac_addr = 0;
9710         vals->umac_addr = 0;
9711         vals->xmac_addr = 0;
9712         vals->emac_addr = 0;
9713
9714         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9715
9716         if (!CHIP_IS_E3(bp)) {
9717                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9718                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9719                 if ((mask & reset_reg) && val) {
9720                         u32 wb_data[2];
9721                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9722                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9723                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9724                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9725                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9726
9727                         /*
9728                          * use rd/wr since we cannot use dmae. This is safe
9729                          * since MCP won't access the bus due to the request
9730                          * to unload, and no function on the path can be
9731                          * loaded at this time.
9732                          */
9733                         wb_data[0] = REG_RD(bp, base_addr + offset);
9734                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9735                         vals->bmac_addr = base_addr + offset;
9736                         vals->bmac_val[0] = wb_data[0];
9737                         vals->bmac_val[1] = wb_data[1];
9738                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9739                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9740                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9741                 }
9742                 BNX2X_DEV_INFO("Disable emac Rx\n");
9743                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9744                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9745                 REG_WR(bp, vals->emac_addr, 0);
9746                 mac_stopped = true;
9747         } else {
9748                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9749                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9750                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9751                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9752                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9753                                val & ~(1 << 1));
9754                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9755                                val | (1 << 1));
9756                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9757                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9758                         REG_WR(bp, vals->xmac_addr, 0);
9759                         mac_stopped = true;
9760                 }
9761                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9762                 if (mask & reset_reg) {
9763                         BNX2X_DEV_INFO("Disable umac Rx\n");
9764                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9765                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9766                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9767                         REG_WR(bp, vals->umac_addr, 0);
9768                         mac_stopped = true;
9769                 }
9770         }
9771
9772         if (mac_stopped)
9773                 msleep(20);
9774 }
9775
9776 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9777 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9778 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9779 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9780
9781 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9782 {
9783         u16 rcq, bd;
9784         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9785
9786         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9787         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9788
9789         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9790         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9791
9792         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9793                        port, bd, rcq);
9794 }
9795
9796 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9797 {
9798         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9799                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9800         if (!rc) {
9801                 BNX2X_ERR("MCP response failure, aborting\n");
9802                 return -EBUSY;
9803         }
9804
9805         return 0;
9806 }
9807
9808 static struct bnx2x_prev_path_list *
9809                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9810 {
9811         struct bnx2x_prev_path_list *tmp_list;
9812
9813         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9814                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9815                     bp->pdev->bus->number == tmp_list->bus &&
9816                     BP_PATH(bp) == tmp_list->path)
9817                         return tmp_list;
9818
9819         return NULL;
9820 }
9821
9822 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9823 {
9824         struct bnx2x_prev_path_list *tmp_list;
9825         int rc;
9826
9827         rc = down_interruptible(&bnx2x_prev_sem);
9828         if (rc) {
9829                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9830                 return rc;
9831         }
9832
9833         tmp_list = bnx2x_prev_path_get_entry(bp);
9834         if (tmp_list) {
9835                 tmp_list->aer = 1;
9836                 rc = 0;
9837         } else {
9838                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9839                           BP_PATH(bp));
9840         }
9841
9842         up(&bnx2x_prev_sem);
9843
9844         return rc;
9845 }
9846
9847 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9848 {
9849         struct bnx2x_prev_path_list *tmp_list;
9850         int rc = false;
9851
9852         if (down_trylock(&bnx2x_prev_sem))
9853                 return false;
9854
9855         tmp_list = bnx2x_prev_path_get_entry(bp);
9856         if (tmp_list) {
9857                 if (tmp_list->aer) {
9858                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9859                            BP_PATH(bp));
9860                 } else {
9861                         rc = true;
9862                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9863                                        BP_PATH(bp));
9864                 }
9865         }
9866
9867         up(&bnx2x_prev_sem);
9868
9869         return rc;
9870 }
9871
9872 bool bnx2x_port_after_undi(struct bnx2x *bp)
9873 {
9874         struct bnx2x_prev_path_list *entry;
9875         bool val;
9876
9877         down(&bnx2x_prev_sem);
9878
9879         entry = bnx2x_prev_path_get_entry(bp);
9880         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9881
9882         up(&bnx2x_prev_sem);
9883
9884         return val;
9885 }
9886
9887 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9888 {
9889         struct bnx2x_prev_path_list *tmp_list;
9890         int rc;
9891
9892         rc = down_interruptible(&bnx2x_prev_sem);
9893         if (rc) {
9894                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9895                 return rc;
9896         }
9897
9898         /* Check whether the entry for this path already exists */
9899         tmp_list = bnx2x_prev_path_get_entry(bp);
9900         if (tmp_list) {
9901                 if (!tmp_list->aer) {
9902                         BNX2X_ERR("Re-Marking the path.\n");
9903                 } else {
9904                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9905                            BP_PATH(bp));
9906                         tmp_list->aer = 0;
9907                 }
9908                 up(&bnx2x_prev_sem);
9909                 return 0;
9910         }
9911         up(&bnx2x_prev_sem);
9912
9913         /* Create an entry for this path and add it */
9914         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9915         if (!tmp_list) {
9916                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9917                 return -ENOMEM;
9918         }
9919
9920         tmp_list->bus = bp->pdev->bus->number;
9921         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9922         tmp_list->path = BP_PATH(bp);
9923         tmp_list->aer = 0;
9924         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9925
9926         rc = down_interruptible(&bnx2x_prev_sem);
9927         if (rc) {
9928                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9929                 kfree(tmp_list);
9930         } else {
9931                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9932                    BP_PATH(bp));
9933                 list_add(&tmp_list->list, &bnx2x_prev_list);
9934                 up(&bnx2x_prev_sem);
9935         }
9936
9937         return rc;
9938 }
9939
9940 static int bnx2x_do_flr(struct bnx2x *bp)
9941 {
9942         int i;
9943         u16 status;
9944         struct pci_dev *dev = bp->pdev;
9945
9946         if (CHIP_IS_E1x(bp)) {
9947                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9948                 return -EINVAL;
9949         }
9950
9951         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9952         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9953                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9954                           bp->common.bc_ver);
9955                 return -EINVAL;
9956         }
9957
9958         /* Wait for Transaction Pending bit clean */
9959         for (i = 0; i < 4; i++) {
9960                 if (i)
9961                         msleep((1 << (i - 1)) * 100);
9962
9963                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9964                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9965                         goto clear;
9966         }
9967
9968         dev_err(&dev->dev,
9969                 "transaction is not cleared; proceeding with reset anyway\n");
9970
9971 clear:
9972
9973         BNX2X_DEV_INFO("Initiating FLR\n");
9974         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9975
9976         return 0;
9977 }
9978
9979 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9980 {
9981         int rc;
9982
9983         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9984
9985         /* Test if previous unload process was already finished for this path */
9986         if (bnx2x_prev_is_path_marked(bp))
9987                 return bnx2x_prev_mcp_done(bp);
9988
9989         BNX2X_DEV_INFO("Path is unmarked\n");
9990
9991         /* If function has FLR capabilities, and existing FW version matches
9992          * the one required, then FLR will be sufficient to clean any residue
9993          * left by previous driver
9994          */
9995         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9996
9997         if (!rc) {
9998                 /* fw version is good */
9999                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10000                 rc = bnx2x_do_flr(bp);
10001         }
10002
10003         if (!rc) {
10004                 /* FLR was performed */
10005                 BNX2X_DEV_INFO("FLR successful\n");
10006                 return 0;
10007         }
10008
10009         BNX2X_DEV_INFO("Could not FLR\n");
10010
10011         /* Close the MCP request, return failure*/
10012         rc = bnx2x_prev_mcp_done(bp);
10013         if (!rc)
10014                 rc = BNX2X_PREV_WAIT_NEEDED;
10015
10016         return rc;
10017 }
10018
10019 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10020 {
10021         u32 reset_reg, tmp_reg = 0, rc;
10022         bool prev_undi = false;
10023         struct bnx2x_mac_vals mac_vals;
10024
10025         /* It is possible a previous function received 'common' answer,
10026          * but hasn't loaded yet, therefore creating a scenario of
10027          * multiple functions receiving 'common' on the same path.
10028          */
10029         BNX2X_DEV_INFO("Common unload Flow\n");
10030
10031         memset(&mac_vals, 0, sizeof(mac_vals));
10032
10033         if (bnx2x_prev_is_path_marked(bp))
10034                 return bnx2x_prev_mcp_done(bp);
10035
10036         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10037
10038         /* Reset should be performed after BRB is emptied */
10039         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10040                 u32 timer_count = 1000;
10041
10042                 /* Close the MAC Rx to prevent BRB from filling up */
10043                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10044
10045                 /* close LLH filters towards the BRB */
10046                 bnx2x_set_rx_filter(&bp->link_params, 0);
10047
10048                 /* Check if the UNDI driver was previously loaded
10049                  * UNDI driver initializes CID offset for normal bell to 0x7
10050                  */
10051                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10052                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10053                         if (tmp_reg == 0x7) {
10054                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10055                                 prev_undi = true;
10056                                 /* clear the UNDI indication */
10057                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10058                                 /* clear possible idle check errors */
10059                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10060                         }
10061                 }
10062                 if (!CHIP_IS_E1x(bp))
10063                         /* block FW from writing to host */
10064                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10065
10066                 /* wait until BRB is empty */
10067                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10068                 while (timer_count) {
10069                         u32 prev_brb = tmp_reg;
10070
10071                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10072                         if (!tmp_reg)
10073                                 break;
10074
10075                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10076
10077                         /* reset timer as long as BRB actually gets emptied */
10078                         if (prev_brb > tmp_reg)
10079                                 timer_count = 1000;
10080                         else
10081                                 timer_count--;
10082
10083                         /* If UNDI resides in memory, manually increment it */
10084                         if (prev_undi)
10085                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10086
10087                         udelay(10);
10088                 }
10089
10090                 if (!timer_count)
10091                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10092         }
10093
10094         /* No packets are in the pipeline, path is ready for reset */
10095         bnx2x_reset_common(bp);
10096
10097         if (mac_vals.xmac_addr)
10098                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10099         if (mac_vals.umac_addr)
10100                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10101         if (mac_vals.emac_addr)
10102                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10103         if (mac_vals.bmac_addr) {
10104                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10105                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10106         }
10107
10108         rc = bnx2x_prev_mark_path(bp, prev_undi);
10109         if (rc) {
10110                 bnx2x_prev_mcp_done(bp);
10111                 return rc;
10112         }
10113
10114         return bnx2x_prev_mcp_done(bp);
10115 }
10116
10117 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10118  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10119  * the addresses of the transaction, resulting in was-error bit set in the pci
10120  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10121  * to clear the interrupt which detected this from the pglueb and the was done
10122  * bit
10123  */
10124 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10125 {
10126         if (!CHIP_IS_E1x(bp)) {
10127                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10128                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10129                         DP(BNX2X_MSG_SP,
10130                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10131                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10132                                1 << BP_FUNC(bp));
10133                 }
10134         }
10135 }
10136
10137 static int bnx2x_prev_unload(struct bnx2x *bp)
10138 {
10139         int time_counter = 10;
10140         u32 rc, fw, hw_lock_reg, hw_lock_val;
10141         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10142
10143         /* clear hw from errors which may have resulted from an interrupted
10144          * dmae transaction.
10145          */
10146         bnx2x_prev_interrupted_dmae(bp);
10147
10148         /* Release previously held locks */
10149         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10150                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10151                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10152
10153         hw_lock_val = REG_RD(bp, hw_lock_reg);
10154         if (hw_lock_val) {
10155                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10156                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10157                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10158                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10159                 }
10160
10161                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10162                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10163         } else
10164                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10165
10166         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10167                 BNX2X_DEV_INFO("Release previously held alr\n");
10168                 bnx2x_release_alr(bp);
10169         }
10170
10171         do {
10172                 int aer = 0;
10173                 /* Lock MCP using an unload request */
10174                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10175                 if (!fw) {
10176                         BNX2X_ERR("MCP response failure, aborting\n");
10177                         rc = -EBUSY;
10178                         break;
10179                 }
10180
10181                 rc = down_interruptible(&bnx2x_prev_sem);
10182                 if (rc) {
10183                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10184                                   rc);
10185                 } else {
10186                         /* If Path is marked by EEH, ignore unload status */
10187                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10188                                  bnx2x_prev_path_get_entry(bp)->aer);
10189                         up(&bnx2x_prev_sem);
10190                 }
10191
10192                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10193                         rc = bnx2x_prev_unload_common(bp);
10194                         break;
10195                 }
10196
10197                 /* non-common reply from MCP might require looping */
10198                 rc = bnx2x_prev_unload_uncommon(bp);
10199                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10200                         break;
10201
10202                 msleep(20);
10203         } while (--time_counter);
10204
10205         if (!time_counter || rc) {
10206                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10207                 rc = -EBUSY;
10208         }
10209
10210         /* Mark function if its port was used to boot from SAN */
10211         if (bnx2x_port_after_undi(bp))
10212                 bp->link_params.feature_config_flags |=
10213                         FEATURE_CONFIG_BOOT_FROM_SAN;
10214
10215         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10216
10217         return rc;
10218 }
10219
10220 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10221 {
10222         u32 val, val2, val3, val4, id, boot_mode;
10223         u16 pmc;
10224
10225         /* Get the chip revision id and number. */
10226         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10227         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10228         id = ((val & 0xffff) << 16);
10229         val = REG_RD(bp, MISC_REG_CHIP_REV);
10230         id |= ((val & 0xf) << 12);
10231
10232         /* Metal is read from PCI regs, but we can't access >=0x400 from
10233          * the configuration space (so we need to reg_rd)
10234          */
10235         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10236         id |= (((val >> 24) & 0xf) << 4);
10237         val = REG_RD(bp, MISC_REG_BOND_ID);
10238         id |= (val & 0xf);
10239         bp->common.chip_id = id;
10240
10241         /* force 57811 according to MISC register */
10242         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10243                 if (CHIP_IS_57810(bp))
10244                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10245                                 (bp->common.chip_id & 0x0000FFFF);
10246                 else if (CHIP_IS_57810_MF(bp))
10247                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10248                                 (bp->common.chip_id & 0x0000FFFF);
10249                 bp->common.chip_id |= 0x1;
10250         }
10251
10252         /* Set doorbell size */
10253         bp->db_size = (1 << BNX2X_DB_SHIFT);
10254
10255         if (!CHIP_IS_E1x(bp)) {
10256                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10257                 if ((val & 1) == 0)
10258                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10259                 else
10260                         val = (val >> 1) & 1;
10261                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10262                                                        "2_PORT_MODE");
10263                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10264                                                  CHIP_2_PORT_MODE;
10265
10266                 if (CHIP_MODE_IS_4_PORT(bp))
10267                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10268                 else
10269                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10270         } else {
10271                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10272                 bp->pfid = bp->pf_num;                  /* 0..7 */
10273         }
10274
10275         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10276
10277         bp->link_params.chip_id = bp->common.chip_id;
10278         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10279
10280         val = (REG_RD(bp, 0x2874) & 0x55);
10281         if ((bp->common.chip_id & 0x1) ||
10282             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10283                 bp->flags |= ONE_PORT_FLAG;
10284                 BNX2X_DEV_INFO("single port device\n");
10285         }
10286
10287         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10288         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10289                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10290         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10291                        bp->common.flash_size, bp->common.flash_size);
10292
10293         bnx2x_init_shmem(bp);
10294
10295         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10296                                         MISC_REG_GENERIC_CR_1 :
10297                                         MISC_REG_GENERIC_CR_0));
10298
10299         bp->link_params.shmem_base = bp->common.shmem_base;
10300         bp->link_params.shmem2_base = bp->common.shmem2_base;
10301         if (SHMEM2_RD(bp, size) >
10302             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10303                 bp->link_params.lfa_base =
10304                 REG_RD(bp, bp->common.shmem2_base +
10305                        (u32)offsetof(struct shmem2_region,
10306                                      lfa_host_addr[BP_PORT(bp)]));
10307         else
10308                 bp->link_params.lfa_base = 0;
10309         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10310                        bp->common.shmem_base, bp->common.shmem2_base);
10311
10312         if (!bp->common.shmem_base) {
10313                 BNX2X_DEV_INFO("MCP not active\n");
10314                 bp->flags |= NO_MCP_FLAG;
10315                 return;
10316         }
10317
10318         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10319         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10320
10321         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10322                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10323                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10324
10325         bp->link_params.feature_config_flags = 0;
10326         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10327         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10328                 bp->link_params.feature_config_flags |=
10329                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10330         else
10331                 bp->link_params.feature_config_flags &=
10332                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10333
10334         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10335         bp->common.bc_ver = val;
10336         BNX2X_DEV_INFO("bc_ver %X\n", val);
10337         if (val < BNX2X_BC_VER) {
10338                 /* for now only warn
10339                  * later we might need to enforce this */
10340                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10341                           BNX2X_BC_VER, val);
10342         }
10343         bp->link_params.feature_config_flags |=
10344                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10345                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10346
10347         bp->link_params.feature_config_flags |=
10348                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10349                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10350         bp->link_params.feature_config_flags |=
10351                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10352                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10353         bp->link_params.feature_config_flags |=
10354                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10355                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10356
10357         bp->link_params.feature_config_flags |=
10358                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10359                 FEATURE_CONFIG_MT_SUPPORT : 0;
10360
10361         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10362                         BC_SUPPORTS_PFC_STATS : 0;
10363
10364         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10365                         BC_SUPPORTS_FCOE_FEATURES : 0;
10366
10367         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10368                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10369
10370         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10371                         BC_SUPPORTS_RMMOD_CMD : 0;
10372
10373         boot_mode = SHMEM_RD(bp,
10374                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10375                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10376         switch (boot_mode) {
10377         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10378                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10379                 break;
10380         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10381                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10382                 break;
10383         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10384                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10385                 break;
10386         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10387                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10388                 break;
10389         }
10390
10391         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10392         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10393
10394         BNX2X_DEV_INFO("%sWoL capable\n",
10395                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10396
10397         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10398         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10399         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10400         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10401
10402         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10403                  val, val2, val3, val4);
10404 }
10405
10406 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10407 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10408
10409 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10410 {
10411         int pfid = BP_FUNC(bp);
10412         int igu_sb_id;
10413         u32 val;
10414         u8 fid, igu_sb_cnt = 0;
10415
10416         bp->igu_base_sb = 0xff;
10417         if (CHIP_INT_MODE_IS_BC(bp)) {
10418                 int vn = BP_VN(bp);
10419                 igu_sb_cnt = bp->igu_sb_cnt;
10420                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10421                         FP_SB_MAX_E1x;
10422
10423                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10424                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10425
10426                 return 0;
10427         }
10428
10429         /* IGU in normal mode - read CAM */
10430         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10431              igu_sb_id++) {
10432                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10433                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10434                         continue;
10435                 fid = IGU_FID(val);
10436                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10437                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10438                                 continue;
10439                         if (IGU_VEC(val) == 0)
10440                                 /* default status block */
10441                                 bp->igu_dsb_id = igu_sb_id;
10442                         else {
10443                                 if (bp->igu_base_sb == 0xff)
10444                                         bp->igu_base_sb = igu_sb_id;
10445                                 igu_sb_cnt++;
10446                         }
10447                 }
10448         }
10449
10450 #ifdef CONFIG_PCI_MSI
10451         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10452          * optional that number of CAM entries will not be equal to the value
10453          * advertised in PCI.
10454          * Driver should use the minimal value of both as the actual status
10455          * block count
10456          */
10457         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10458 #endif
10459
10460         if (igu_sb_cnt == 0) {
10461                 BNX2X_ERR("CAM configuration error\n");
10462                 return -EINVAL;
10463         }
10464
10465         return 0;
10466 }
10467
10468 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10469 {
10470         int cfg_size = 0, idx, port = BP_PORT(bp);
10471
10472         /* Aggregation of supported attributes of all external phys */
10473         bp->port.supported[0] = 0;
10474         bp->port.supported[1] = 0;
10475         switch (bp->link_params.num_phys) {
10476         case 1:
10477                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10478                 cfg_size = 1;
10479                 break;
10480         case 2:
10481                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10482                 cfg_size = 1;
10483                 break;
10484         case 3:
10485                 if (bp->link_params.multi_phy_config &
10486                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10487                         bp->port.supported[1] =
10488                                 bp->link_params.phy[EXT_PHY1].supported;
10489                         bp->port.supported[0] =
10490                                 bp->link_params.phy[EXT_PHY2].supported;
10491                 } else {
10492                         bp->port.supported[0] =
10493                                 bp->link_params.phy[EXT_PHY1].supported;
10494                         bp->port.supported[1] =
10495                                 bp->link_params.phy[EXT_PHY2].supported;
10496                 }
10497                 cfg_size = 2;
10498                 break;
10499         }
10500
10501         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10502                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10503                            SHMEM_RD(bp,
10504                            dev_info.port_hw_config[port].external_phy_config),
10505                            SHMEM_RD(bp,
10506                            dev_info.port_hw_config[port].external_phy_config2));
10507                         return;
10508         }
10509
10510         if (CHIP_IS_E3(bp))
10511                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10512         else {
10513                 switch (switch_cfg) {
10514                 case SWITCH_CFG_1G:
10515                         bp->port.phy_addr = REG_RD(
10516                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10517                         break;
10518                 case SWITCH_CFG_10G:
10519                         bp->port.phy_addr = REG_RD(
10520                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10521                         break;
10522                 default:
10523                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10524                                   bp->port.link_config[0]);
10525                         return;
10526                 }
10527         }
10528         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10529         /* mask what we support according to speed_cap_mask per configuration */
10530         for (idx = 0; idx < cfg_size; idx++) {
10531                 if (!(bp->link_params.speed_cap_mask[idx] &
10532                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10533                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10534
10535                 if (!(bp->link_params.speed_cap_mask[idx] &
10536                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10537                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10538
10539                 if (!(bp->link_params.speed_cap_mask[idx] &
10540                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10541                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10542
10543                 if (!(bp->link_params.speed_cap_mask[idx] &
10544                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10545                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10546
10547                 if (!(bp->link_params.speed_cap_mask[idx] &
10548                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10549                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10550                                                      SUPPORTED_1000baseT_Full);
10551
10552                 if (!(bp->link_params.speed_cap_mask[idx] &
10553                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10554                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10555
10556                 if (!(bp->link_params.speed_cap_mask[idx] &
10557                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10558                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10559
10560                 if (!(bp->link_params.speed_cap_mask[idx] &
10561                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10562                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10563         }
10564
10565         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10566                        bp->port.supported[1]);
10567 }
10568
10569 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10570 {
10571         u32 link_config, idx, cfg_size = 0;
10572         bp->port.advertising[0] = 0;
10573         bp->port.advertising[1] = 0;
10574         switch (bp->link_params.num_phys) {
10575         case 1:
10576         case 2:
10577                 cfg_size = 1;
10578                 break;
10579         case 3:
10580                 cfg_size = 2;
10581                 break;
10582         }
10583         for (idx = 0; idx < cfg_size; idx++) {
10584                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10585                 link_config = bp->port.link_config[idx];
10586                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10587                 case PORT_FEATURE_LINK_SPEED_AUTO:
10588                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10589                                 bp->link_params.req_line_speed[idx] =
10590                                         SPEED_AUTO_NEG;
10591                                 bp->port.advertising[idx] |=
10592                                         bp->port.supported[idx];
10593                                 if (bp->link_params.phy[EXT_PHY1].type ==
10594                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10595                                         bp->port.advertising[idx] |=
10596                                         (SUPPORTED_100baseT_Half |
10597                                          SUPPORTED_100baseT_Full);
10598                         } else {
10599                                 /* force 10G, no AN */
10600                                 bp->link_params.req_line_speed[idx] =
10601                                         SPEED_10000;
10602                                 bp->port.advertising[idx] |=
10603                                         (ADVERTISED_10000baseT_Full |
10604                                          ADVERTISED_FIBRE);
10605                                 continue;
10606                         }
10607                         break;
10608
10609                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10610                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10611                                 bp->link_params.req_line_speed[idx] =
10612                                         SPEED_10;
10613                                 bp->port.advertising[idx] |=
10614                                         (ADVERTISED_10baseT_Full |
10615                                          ADVERTISED_TP);
10616                         } else {
10617                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10618                                             link_config,
10619                                     bp->link_params.speed_cap_mask[idx]);
10620                                 return;
10621                         }
10622                         break;
10623
10624                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10625                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10626                                 bp->link_params.req_line_speed[idx] =
10627                                         SPEED_10;
10628                                 bp->link_params.req_duplex[idx] =
10629                                         DUPLEX_HALF;
10630                                 bp->port.advertising[idx] |=
10631                                         (ADVERTISED_10baseT_Half |
10632                                          ADVERTISED_TP);
10633                         } else {
10634                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10635                                             link_config,
10636                                           bp->link_params.speed_cap_mask[idx]);
10637                                 return;
10638                         }
10639                         break;
10640
10641                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10642                         if (bp->port.supported[idx] &
10643                             SUPPORTED_100baseT_Full) {
10644                                 bp->link_params.req_line_speed[idx] =
10645                                         SPEED_100;
10646                                 bp->port.advertising[idx] |=
10647                                         (ADVERTISED_100baseT_Full |
10648                                          ADVERTISED_TP);
10649                         } else {
10650                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10651                                             link_config,
10652                                           bp->link_params.speed_cap_mask[idx]);
10653                                 return;
10654                         }
10655                         break;
10656
10657                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10658                         if (bp->port.supported[idx] &
10659                             SUPPORTED_100baseT_Half) {
10660                                 bp->link_params.req_line_speed[idx] =
10661                                                                 SPEED_100;
10662                                 bp->link_params.req_duplex[idx] =
10663                                                                 DUPLEX_HALF;
10664                                 bp->port.advertising[idx] |=
10665                                         (ADVERTISED_100baseT_Half |
10666                                          ADVERTISED_TP);
10667                         } else {
10668                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10669                                     link_config,
10670                                     bp->link_params.speed_cap_mask[idx]);
10671                                 return;
10672                         }
10673                         break;
10674
10675                 case PORT_FEATURE_LINK_SPEED_1G:
10676                         if (bp->port.supported[idx] &
10677                             SUPPORTED_1000baseT_Full) {
10678                                 bp->link_params.req_line_speed[idx] =
10679                                         SPEED_1000;
10680                                 bp->port.advertising[idx] |=
10681                                         (ADVERTISED_1000baseT_Full |
10682                                          ADVERTISED_TP);
10683                         } else {
10684                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10685                                     link_config,
10686                                     bp->link_params.speed_cap_mask[idx]);
10687                                 return;
10688                         }
10689                         break;
10690
10691                 case PORT_FEATURE_LINK_SPEED_2_5G:
10692                         if (bp->port.supported[idx] &
10693                             SUPPORTED_2500baseX_Full) {
10694                                 bp->link_params.req_line_speed[idx] =
10695                                         SPEED_2500;
10696                                 bp->port.advertising[idx] |=
10697                                         (ADVERTISED_2500baseX_Full |
10698                                                 ADVERTISED_TP);
10699                         } else {
10700                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10701                                     link_config,
10702                                     bp->link_params.speed_cap_mask[idx]);
10703                                 return;
10704                         }
10705                         break;
10706
10707                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10708                         if (bp->port.supported[idx] &
10709                             SUPPORTED_10000baseT_Full) {
10710                                 bp->link_params.req_line_speed[idx] =
10711                                         SPEED_10000;
10712                                 bp->port.advertising[idx] |=
10713                                         (ADVERTISED_10000baseT_Full |
10714                                                 ADVERTISED_FIBRE);
10715                         } else {
10716                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10717                                     link_config,
10718                                     bp->link_params.speed_cap_mask[idx]);
10719                                 return;
10720                         }
10721                         break;
10722                 case PORT_FEATURE_LINK_SPEED_20G:
10723                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10724
10725                         break;
10726                 default:
10727                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10728                                   link_config);
10729                                 bp->link_params.req_line_speed[idx] =
10730                                                         SPEED_AUTO_NEG;
10731                                 bp->port.advertising[idx] =
10732                                                 bp->port.supported[idx];
10733                         break;
10734                 }
10735
10736                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10737                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10738                 if (bp->link_params.req_flow_ctrl[idx] ==
10739                     BNX2X_FLOW_CTRL_AUTO) {
10740                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10741                                 bp->link_params.req_flow_ctrl[idx] =
10742                                                         BNX2X_FLOW_CTRL_NONE;
10743                         else
10744                                 bnx2x_set_requested_fc(bp);
10745                 }
10746
10747                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10748                                bp->link_params.req_line_speed[idx],
10749                                bp->link_params.req_duplex[idx],
10750                                bp->link_params.req_flow_ctrl[idx],
10751                                bp->port.advertising[idx]);
10752         }
10753 }
10754
10755 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10756 {
10757         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10758         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10759         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10760         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10761 }
10762
10763 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10764 {
10765         int port = BP_PORT(bp);
10766         u32 config;
10767         u32 ext_phy_type, ext_phy_config, eee_mode;
10768
10769         bp->link_params.bp = bp;
10770         bp->link_params.port = port;
10771
10772         bp->link_params.lane_config =
10773                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10774
10775         bp->link_params.speed_cap_mask[0] =
10776                 SHMEM_RD(bp,
10777                          dev_info.port_hw_config[port].speed_capability_mask) &
10778                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10779         bp->link_params.speed_cap_mask[1] =
10780                 SHMEM_RD(bp,
10781                          dev_info.port_hw_config[port].speed_capability_mask2) &
10782                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10783         bp->port.link_config[0] =
10784                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10785
10786         bp->port.link_config[1] =
10787                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10788
10789         bp->link_params.multi_phy_config =
10790                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10791         /* If the device is capable of WoL, set the default state according
10792          * to the HW
10793          */
10794         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10795         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10796                    (config & PORT_FEATURE_WOL_ENABLED));
10797
10798         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10799             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10800                 bp->flags |= NO_ISCSI_FLAG;
10801         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10802             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10803                 bp->flags |= NO_FCOE_FLAG;
10804
10805         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10806                        bp->link_params.lane_config,
10807                        bp->link_params.speed_cap_mask[0],
10808                        bp->port.link_config[0]);
10809
10810         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10811                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10812         bnx2x_phy_probe(&bp->link_params);
10813         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10814
10815         bnx2x_link_settings_requested(bp);
10816
10817         /*
10818          * If connected directly, work with the internal PHY, otherwise, work
10819          * with the external PHY
10820          */
10821         ext_phy_config =
10822                 SHMEM_RD(bp,
10823                          dev_info.port_hw_config[port].external_phy_config);
10824         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10825         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10826                 bp->mdio.prtad = bp->port.phy_addr;
10827
10828         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10829                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10830                 bp->mdio.prtad =
10831                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10832
10833         /* Configure link feature according to nvram value */
10834         eee_mode = (((SHMEM_RD(bp, dev_info.
10835                       port_feature_config[port].eee_power_mode)) &
10836                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10837                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10838         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10839                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10840                                            EEE_MODE_ENABLE_LPI |
10841                                            EEE_MODE_OUTPUT_TIME;
10842         } else {
10843                 bp->link_params.eee_mode = 0;
10844         }
10845 }
10846
10847 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10848 {
10849         u32 no_flags = NO_ISCSI_FLAG;
10850         int port = BP_PORT(bp);
10851         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10852                                 drv_lic_key[port].max_iscsi_conn);
10853
10854         if (!CNIC_SUPPORT(bp)) {
10855                 bp->flags |= no_flags;
10856                 return;
10857         }
10858
10859         /* Get the number of maximum allowed iSCSI connections */
10860         bp->cnic_eth_dev.max_iscsi_conn =
10861                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10862                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10863
10864         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10865                        bp->cnic_eth_dev.max_iscsi_conn);
10866
10867         /*
10868          * If maximum allowed number of connections is zero -
10869          * disable the feature.
10870          */
10871         if (!bp->cnic_eth_dev.max_iscsi_conn)
10872                 bp->flags |= no_flags;
10873 }
10874
10875 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10876 {
10877         /* Port info */
10878         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10879                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10880         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10881                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10882
10883         /* Node info */
10884         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10885                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10886         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10887                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10888 }
10889
10890 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10891 {
10892         u8 count = 0;
10893
10894         if (IS_MF(bp)) {
10895                 u8 fid;
10896
10897                 /* iterate over absolute function ids for this path: */
10898                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10899                         if (IS_MF_SD(bp)) {
10900                                 u32 cfg = MF_CFG_RD(bp,
10901                                                     func_mf_config[fid].config);
10902
10903                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10904                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10905                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10906                                         count++;
10907                         } else {
10908                                 u32 cfg = MF_CFG_RD(bp,
10909                                                     func_ext_config[fid].
10910                                                                       func_cfg);
10911
10912                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10913                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10914                                         count++;
10915                         }
10916                 }
10917         } else { /* SF */
10918                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10919
10920                 for (port = 0; port < port_cnt; port++) {
10921                         u32 lic = SHMEM_RD(bp,
10922                                            drv_lic_key[port].max_fcoe_conn) ^
10923                                   FW_ENCODE_32BIT_PATTERN;
10924                         if (lic)
10925                                 count++;
10926                 }
10927         }
10928
10929         return count;
10930 }
10931
10932 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10933 {
10934         int port = BP_PORT(bp);
10935         int func = BP_ABS_FUNC(bp);
10936         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10937                                 drv_lic_key[port].max_fcoe_conn);
10938         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10939
10940         if (!CNIC_SUPPORT(bp)) {
10941                 bp->flags |= NO_FCOE_FLAG;
10942                 return;
10943         }
10944
10945         /* Get the number of maximum allowed FCoE connections */
10946         bp->cnic_eth_dev.max_fcoe_conn =
10947                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10948                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10949
10950         /* Calculate the number of maximum allowed FCoE tasks */
10951         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10952
10953         /* check if FCoE resources must be shared between different functions */
10954         if (num_fcoe_func)
10955                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10956
10957         /* Read the WWN: */
10958         if (!IS_MF(bp)) {
10959                 /* Port info */
10960                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10961                         SHMEM_RD(bp,
10962                                  dev_info.port_hw_config[port].
10963                                  fcoe_wwn_port_name_upper);
10964                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10965                         SHMEM_RD(bp,
10966                                  dev_info.port_hw_config[port].
10967                                  fcoe_wwn_port_name_lower);
10968
10969                 /* Node info */
10970                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10971                         SHMEM_RD(bp,
10972                                  dev_info.port_hw_config[port].
10973                                  fcoe_wwn_node_name_upper);
10974                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10975                         SHMEM_RD(bp,
10976                                  dev_info.port_hw_config[port].
10977                                  fcoe_wwn_node_name_lower);
10978         } else if (!IS_MF_SD(bp)) {
10979                 /*
10980                  * Read the WWN info only if the FCoE feature is enabled for
10981                  * this function.
10982                  */
10983                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10984                         bnx2x_get_ext_wwn_info(bp, func);
10985
10986         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10987                 bnx2x_get_ext_wwn_info(bp, func);
10988         }
10989
10990         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10991
10992         /*
10993          * If maximum allowed number of connections is zero -
10994          * disable the feature.
10995          */
10996         if (!bp->cnic_eth_dev.max_fcoe_conn)
10997                 bp->flags |= NO_FCOE_FLAG;
10998 }
10999
11000 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11001 {
11002         /*
11003          * iSCSI may be dynamically disabled but reading
11004          * info here we will decrease memory usage by driver
11005          * if the feature is disabled for good
11006          */
11007         bnx2x_get_iscsi_info(bp);
11008         bnx2x_get_fcoe_info(bp);
11009 }
11010
11011 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11012 {
11013         u32 val, val2;
11014         int func = BP_ABS_FUNC(bp);
11015         int port = BP_PORT(bp);
11016         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11017         u8 *fip_mac = bp->fip_mac;
11018
11019         if (IS_MF(bp)) {
11020                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11021                  * FCoE MAC then the appropriate feature should be disabled.
11022                  * In non SD mode features configuration comes from struct
11023                  * func_ext_config.
11024                  */
11025                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11026                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11027                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11028                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11029                                                  iscsi_mac_addr_upper);
11030                                 val = MF_CFG_RD(bp, func_ext_config[func].
11031                                                 iscsi_mac_addr_lower);
11032                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11033                                 BNX2X_DEV_INFO
11034                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11035                         } else {
11036                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11037                         }
11038
11039                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11040                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11041                                                  fcoe_mac_addr_upper);
11042                                 val = MF_CFG_RD(bp, func_ext_config[func].
11043                                                 fcoe_mac_addr_lower);
11044                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11045                                 BNX2X_DEV_INFO
11046                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11047                         } else {
11048                                 bp->flags |= NO_FCOE_FLAG;
11049                         }
11050
11051                         bp->mf_ext_config = cfg;
11052
11053                 } else { /* SD MODE */
11054                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11055                                 /* use primary mac as iscsi mac */
11056                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11057
11058                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11059                                 BNX2X_DEV_INFO
11060                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11061                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11062                                 /* use primary mac as fip mac */
11063                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11064                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11065                                 BNX2X_DEV_INFO
11066                                         ("Read FIP MAC: %pM\n", fip_mac);
11067                         }
11068                 }
11069
11070                 /* If this is a storage-only interface, use SAN mac as
11071                  * primary MAC. Notice that for SD this is already the case,
11072                  * as the SAN mac was copied from the primary MAC.
11073                  */
11074                 if (IS_MF_FCOE_AFEX(bp))
11075                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11076         } else {
11077                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11078                                 iscsi_mac_upper);
11079                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11080                                iscsi_mac_lower);
11081                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11082
11083                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11084                                 fcoe_fip_mac_upper);
11085                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11086                                fcoe_fip_mac_lower);
11087                 bnx2x_set_mac_buf(fip_mac, val, val2);
11088         }
11089
11090         /* Disable iSCSI OOO if MAC configuration is invalid. */
11091         if (!is_valid_ether_addr(iscsi_mac)) {
11092                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11093                 memset(iscsi_mac, 0, ETH_ALEN);
11094         }
11095
11096         /* Disable FCoE if MAC configuration is invalid. */
11097         if (!is_valid_ether_addr(fip_mac)) {
11098                 bp->flags |= NO_FCOE_FLAG;
11099                 memset(bp->fip_mac, 0, ETH_ALEN);
11100         }
11101 }
11102
11103 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11104 {
11105         u32 val, val2;
11106         int func = BP_ABS_FUNC(bp);
11107         int port = BP_PORT(bp);
11108
11109         /* Zero primary MAC configuration */
11110         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11111
11112         if (BP_NOMCP(bp)) {
11113                 BNX2X_ERROR("warning: random MAC workaround active\n");
11114                 eth_hw_addr_random(bp->dev);
11115         } else if (IS_MF(bp)) {
11116                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11117                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11118                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11119                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11120                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11121
11122                 if (CNIC_SUPPORT(bp))
11123                         bnx2x_get_cnic_mac_hwinfo(bp);
11124         } else {
11125                 /* in SF read MACs from port configuration */
11126                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11127                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11128                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11129
11130                 if (CNIC_SUPPORT(bp))
11131                         bnx2x_get_cnic_mac_hwinfo(bp);
11132         }
11133
11134         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11135
11136         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11137                 dev_err(&bp->pdev->dev,
11138                         "bad Ethernet MAC address configuration: %pM\n"
11139                         "change it manually before bringing up the appropriate network interface\n",
11140                         bp->dev->dev_addr);
11141 }
11142
11143 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11144 {
11145         int tmp;
11146         u32 cfg;
11147
11148         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11149                 /* Take function: tmp = func */
11150                 tmp = BP_ABS_FUNC(bp);
11151                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11152                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11153         } else {
11154                 /* Take port: tmp = port */
11155                 tmp = BP_PORT(bp);
11156                 cfg = SHMEM_RD(bp,
11157                                dev_info.port_hw_config[tmp].generic_features);
11158                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11159         }
11160         return cfg;
11161 }
11162
11163 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11164 {
11165         int /*abs*/func = BP_ABS_FUNC(bp);
11166         int vn;
11167         u32 val = 0;
11168         int rc = 0;
11169
11170         bnx2x_get_common_hwinfo(bp);
11171
11172         /*
11173          * initialize IGU parameters
11174          */
11175         if (CHIP_IS_E1x(bp)) {
11176                 bp->common.int_block = INT_BLOCK_HC;
11177
11178                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11179                 bp->igu_base_sb = 0;
11180         } else {
11181                 bp->common.int_block = INT_BLOCK_IGU;
11182
11183                 /* do not allow device reset during IGU info processing */
11184                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11185
11186                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11187
11188                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11189                         int tout = 5000;
11190
11191                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11192
11193                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11194                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11195                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11196
11197                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11198                                 tout--;
11199                                 usleep_range(1000, 2000);
11200                         }
11201
11202                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11203                                 dev_err(&bp->pdev->dev,
11204                                         "FORCING Normal Mode failed!!!\n");
11205                                 bnx2x_release_hw_lock(bp,
11206                                                       HW_LOCK_RESOURCE_RESET);
11207                                 return -EPERM;
11208                         }
11209                 }
11210
11211                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11212                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11213                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11214                 } else
11215                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11216
11217                 rc = bnx2x_get_igu_cam_info(bp);
11218                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11219                 if (rc)
11220                         return rc;
11221         }
11222
11223         /*
11224          * set base FW non-default (fast path) status block id, this value is
11225          * used to initialize the fw_sb_id saved on the fp/queue structure to
11226          * determine the id used by the FW.
11227          */
11228         if (CHIP_IS_E1x(bp))
11229                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11230         else /*
11231               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11232               * the same queue are indicated on the same IGU SB). So we prefer
11233               * FW and IGU SBs to be the same value.
11234               */
11235                 bp->base_fw_ndsb = bp->igu_base_sb;
11236
11237         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11238                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11239                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11240
11241         /*
11242          * Initialize MF configuration
11243          */
11244
11245         bp->mf_ov = 0;
11246         bp->mf_mode = 0;
11247         vn = BP_VN(bp);
11248
11249         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11250                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11251                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11252                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11253
11254                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11255                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11256                 else
11257                         bp->common.mf_cfg_base = bp->common.shmem_base +
11258                                 offsetof(struct shmem_region, func_mb) +
11259                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11260                 /*
11261                  * get mf configuration:
11262                  * 1. Existence of MF configuration
11263                  * 2. MAC address must be legal (check only upper bytes)
11264                  *    for  Switch-Independent mode;
11265                  *    OVLAN must be legal for Switch-Dependent mode
11266                  * 3. SF_MODE configures specific MF mode
11267                  */
11268                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11269                         /* get mf configuration */
11270                         val = SHMEM_RD(bp,
11271                                        dev_info.shared_feature_config.config);
11272                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11273
11274                         switch (val) {
11275                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11276                                 val = MF_CFG_RD(bp, func_mf_config[func].
11277                                                 mac_upper);
11278                                 /* check for legal mac (upper bytes)*/
11279                                 if (val != 0xffff) {
11280                                         bp->mf_mode = MULTI_FUNCTION_SI;
11281                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11282                                                    func_mf_config[func].config);
11283                                 } else
11284                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11285                                 break;
11286                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11287                                 if ((!CHIP_IS_E1x(bp)) &&
11288                                     (MF_CFG_RD(bp, func_mf_config[func].
11289                                                mac_upper) != 0xffff) &&
11290                                     (SHMEM2_HAS(bp,
11291                                                 afex_driver_support))) {
11292                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11293                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11294                                                 func_mf_config[func].config);
11295                                 } else {
11296                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11297                                 }
11298                                 break;
11299                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11300                                 /* get OV configuration */
11301                                 val = MF_CFG_RD(bp,
11302                                         func_mf_config[FUNC_0].e1hov_tag);
11303                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11304
11305                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11306                                         bp->mf_mode = MULTI_FUNCTION_SD;
11307                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11308                                                 func_mf_config[func].config);
11309                                 } else
11310                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11311                                 break;
11312                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11313                                 bp->mf_config[vn] = 0;
11314                                 break;
11315                         default:
11316                                 /* Unknown configuration: reset mf_config */
11317                                 bp->mf_config[vn] = 0;
11318                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11319                         }
11320                 }
11321
11322                 BNX2X_DEV_INFO("%s function mode\n",
11323                                IS_MF(bp) ? "multi" : "single");
11324
11325                 switch (bp->mf_mode) {
11326                 case MULTI_FUNCTION_SD:
11327                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11328                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11329                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11330                                 bp->mf_ov = val;
11331                                 bp->path_has_ovlan = true;
11332
11333                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11334                                                func, bp->mf_ov, bp->mf_ov);
11335                         } else {
11336                                 dev_err(&bp->pdev->dev,
11337                                         "No valid MF OV for func %d, aborting\n",
11338                                         func);
11339                                 return -EPERM;
11340                         }
11341                         break;
11342                 case MULTI_FUNCTION_AFEX:
11343                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11344                         break;
11345                 case MULTI_FUNCTION_SI:
11346                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11347                                        func);
11348                         break;
11349                 default:
11350                         if (vn) {
11351                                 dev_err(&bp->pdev->dev,
11352                                         "VN %d is in a single function mode, aborting\n",
11353                                         vn);
11354                                 return -EPERM;
11355                         }
11356                         break;
11357                 }
11358
11359                 /* check if other port on the path needs ovlan:
11360                  * Since MF configuration is shared between ports
11361                  * Possible mixed modes are only
11362                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11363                  */
11364                 if (CHIP_MODE_IS_4_PORT(bp) &&
11365                     !bp->path_has_ovlan &&
11366                     !IS_MF(bp) &&
11367                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11368                         u8 other_port = !BP_PORT(bp);
11369                         u8 other_func = BP_PATH(bp) + 2*other_port;
11370                         val = MF_CFG_RD(bp,
11371                                         func_mf_config[other_func].e1hov_tag);
11372                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11373                                 bp->path_has_ovlan = true;
11374                 }
11375         }
11376
11377         /* adjust igu_sb_cnt to MF for E1x */
11378         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11379                 bp->igu_sb_cnt /= E1HVN_MAX;
11380
11381         /* port info */
11382         bnx2x_get_port_hwinfo(bp);
11383
11384         /* Get MAC addresses */
11385         bnx2x_get_mac_hwinfo(bp);
11386
11387         bnx2x_get_cnic_info(bp);
11388
11389         return rc;
11390 }
11391
11392 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11393 {
11394         int cnt, i, block_end, rodi;
11395         char vpd_start[BNX2X_VPD_LEN+1];
11396         char str_id_reg[VENDOR_ID_LEN+1];
11397         char str_id_cap[VENDOR_ID_LEN+1];
11398         char *vpd_data;
11399         char *vpd_extended_data = NULL;
11400         u8 len;
11401
11402         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11403         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11404
11405         if (cnt < BNX2X_VPD_LEN)
11406                 goto out_not_found;
11407
11408         /* VPD RO tag should be first tag after identifier string, hence
11409          * we should be able to find it in first BNX2X_VPD_LEN chars
11410          */
11411         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11412                              PCI_VPD_LRDT_RO_DATA);
11413         if (i < 0)
11414                 goto out_not_found;
11415
11416         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11417                     pci_vpd_lrdt_size(&vpd_start[i]);
11418
11419         i += PCI_VPD_LRDT_TAG_SIZE;
11420
11421         if (block_end > BNX2X_VPD_LEN) {
11422                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11423                 if (vpd_extended_data  == NULL)
11424                         goto out_not_found;
11425
11426                 /* read rest of vpd image into vpd_extended_data */
11427                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11428                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11429                                    block_end - BNX2X_VPD_LEN,
11430                                    vpd_extended_data + BNX2X_VPD_LEN);
11431                 if (cnt < (block_end - BNX2X_VPD_LEN))
11432                         goto out_not_found;
11433                 vpd_data = vpd_extended_data;
11434         } else
11435                 vpd_data = vpd_start;
11436
11437         /* now vpd_data holds full vpd content in both cases */
11438
11439         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11440                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11441         if (rodi < 0)
11442                 goto out_not_found;
11443
11444         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11445
11446         if (len != VENDOR_ID_LEN)
11447                 goto out_not_found;
11448
11449         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11450
11451         /* vendor specific info */
11452         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11453         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11454         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11455             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11456
11457                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11458                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11459                 if (rodi >= 0) {
11460                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11461
11462                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11463
11464                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11465                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11466                                 bp->fw_ver[len] = ' ';
11467                         }
11468                 }
11469                 kfree(vpd_extended_data);
11470                 return;
11471         }
11472 out_not_found:
11473         kfree(vpd_extended_data);
11474         return;
11475 }
11476
11477 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11478 {
11479         u32 flags = 0;
11480
11481         if (CHIP_REV_IS_FPGA(bp))
11482                 SET_FLAGS(flags, MODE_FPGA);
11483         else if (CHIP_REV_IS_EMUL(bp))
11484                 SET_FLAGS(flags, MODE_EMUL);
11485         else
11486                 SET_FLAGS(flags, MODE_ASIC);
11487
11488         if (CHIP_MODE_IS_4_PORT(bp))
11489                 SET_FLAGS(flags, MODE_PORT4);
11490         else
11491                 SET_FLAGS(flags, MODE_PORT2);
11492
11493         if (CHIP_IS_E2(bp))
11494                 SET_FLAGS(flags, MODE_E2);
11495         else if (CHIP_IS_E3(bp)) {
11496                 SET_FLAGS(flags, MODE_E3);
11497                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11498                         SET_FLAGS(flags, MODE_E3_A0);
11499                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11500                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11501         }
11502
11503         if (IS_MF(bp)) {
11504                 SET_FLAGS(flags, MODE_MF);
11505                 switch (bp->mf_mode) {
11506                 case MULTI_FUNCTION_SD:
11507                         SET_FLAGS(flags, MODE_MF_SD);
11508                         break;
11509                 case MULTI_FUNCTION_SI:
11510                         SET_FLAGS(flags, MODE_MF_SI);
11511                         break;
11512                 case MULTI_FUNCTION_AFEX:
11513                         SET_FLAGS(flags, MODE_MF_AFEX);
11514                         break;
11515                 }
11516         } else
11517                 SET_FLAGS(flags, MODE_SF);
11518
11519 #if defined(__LITTLE_ENDIAN)
11520         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11521 #else /*(__BIG_ENDIAN)*/
11522         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11523 #endif
11524         INIT_MODE_FLAGS(bp) = flags;
11525 }
11526
11527 static int bnx2x_init_bp(struct bnx2x *bp)
11528 {
11529         int func;
11530         int rc;
11531
11532         mutex_init(&bp->port.phy_mutex);
11533         mutex_init(&bp->fw_mb_mutex);
11534         spin_lock_init(&bp->stats_lock);
11535         sema_init(&bp->stats_sema, 1);
11536
11537         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11538         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11539         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11540         if (IS_PF(bp)) {
11541                 rc = bnx2x_get_hwinfo(bp);
11542                 if (rc)
11543                         return rc;
11544         } else {
11545                 eth_zero_addr(bp->dev->dev_addr);
11546         }
11547
11548         bnx2x_set_modes_bitmap(bp);
11549
11550         rc = bnx2x_alloc_mem_bp(bp);
11551         if (rc)
11552                 return rc;
11553
11554         bnx2x_read_fwinfo(bp);
11555
11556         func = BP_FUNC(bp);
11557
11558         /* need to reset chip if undi was active */
11559         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11560                 /* init fw_seq */
11561                 bp->fw_seq =
11562                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11563                                                         DRV_MSG_SEQ_NUMBER_MASK;
11564                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11565
11566                 bnx2x_prev_unload(bp);
11567         }
11568
11569         if (CHIP_REV_IS_FPGA(bp))
11570                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11571
11572         if (BP_NOMCP(bp) && (func == 0))
11573                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11574
11575         bp->disable_tpa = disable_tpa;
11576         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11577
11578         /* Set TPA flags */
11579         if (bp->disable_tpa) {
11580                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11581                 bp->dev->features &= ~NETIF_F_LRO;
11582         } else {
11583                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11584                 bp->dev->features |= NETIF_F_LRO;
11585         }
11586
11587         if (CHIP_IS_E1(bp))
11588                 bp->dropless_fc = 0;
11589         else
11590                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11591
11592         bp->mrrs = mrrs;
11593
11594         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11595         if (IS_VF(bp))
11596                 bp->rx_ring_size = MAX_RX_AVAIL;
11597
11598         /* make sure that the numbers are in the right granularity */
11599         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11600         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11601
11602         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11603
11604         init_timer(&bp->timer);
11605         bp->timer.expires = jiffies + bp->current_interval;
11606         bp->timer.data = (unsigned long) bp;
11607         bp->timer.function = bnx2x_timer;
11608
11609         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11610             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11611             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11612             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11613                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11614                 bnx2x_dcbx_init_params(bp);
11615         } else {
11616                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11617         }
11618
11619         if (CHIP_IS_E1x(bp))
11620                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11621         else
11622                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11623
11624         /* multiple tx priority */
11625         if (IS_VF(bp))
11626                 bp->max_cos = 1;
11627         else if (CHIP_IS_E1x(bp))
11628                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11629         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11630                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11631         else if (CHIP_IS_E3B0(bp))
11632                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11633         else
11634                 BNX2X_ERR("unknown chip %x revision %x\n",
11635                           CHIP_NUM(bp), CHIP_REV(bp));
11636         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11637
11638         /* We need at least one default status block for slow-path events,
11639          * second status block for the L2 queue, and a third status block for
11640          * CNIC if supported.
11641          */
11642         if (CNIC_SUPPORT(bp))
11643                 bp->min_msix_vec_cnt = 3;
11644         else
11645                 bp->min_msix_vec_cnt = 2;
11646         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11647
11648         bp->dump_preset_idx = 1;
11649
11650         return rc;
11651 }
11652
11653 /****************************************************************************
11654 * General service functions
11655 ****************************************************************************/
11656
11657 /*
11658  * net_device service functions
11659  */
11660
11661 /* called with rtnl_lock */
11662 static int bnx2x_open(struct net_device *dev)
11663 {
11664         struct bnx2x *bp = netdev_priv(dev);
11665         bool global = false;
11666         int other_engine = BP_PATH(bp) ? 0 : 1;
11667         bool other_load_status, load_status;
11668         int rc;
11669
11670         bp->stats_init = true;
11671
11672         netif_carrier_off(dev);
11673
11674         bnx2x_set_power_state(bp, PCI_D0);
11675
11676         /* If parity had happen during the unload, then attentions
11677          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11678          * want the first function loaded on the current engine to
11679          * complete the recovery.
11680          * Parity recovery is only relevant for PF driver.
11681          */
11682         if (IS_PF(bp)) {
11683                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11684                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11685                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11686                     bnx2x_chk_parity_attn(bp, &global, true)) {
11687                         do {
11688                                 /* If there are attentions and they are in a
11689                                  * global blocks, set the GLOBAL_RESET bit
11690                                  * regardless whether it will be this function
11691                                  * that will complete the recovery or not.
11692                                  */
11693                                 if (global)
11694                                         bnx2x_set_reset_global(bp);
11695
11696                                 /* Only the first function on the current
11697                                  * engine should try to recover in open. In case
11698                                  * of attentions in global blocks only the first
11699                                  * in the chip should try to recover.
11700                                  */
11701                                 if ((!load_status &&
11702                                      (!global || !other_load_status)) &&
11703                                       bnx2x_trylock_leader_lock(bp) &&
11704                                       !bnx2x_leader_reset(bp)) {
11705                                         netdev_info(bp->dev,
11706                                                     "Recovered in open\n");
11707                                         break;
11708                                 }
11709
11710                                 /* recovery has failed... */
11711                                 bnx2x_set_power_state(bp, PCI_D3hot);
11712                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11713
11714                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11715                                           "If you still see this message after a few retries then power cycle is required.\n");
11716
11717                                 return -EAGAIN;
11718                         } while (0);
11719                 }
11720         }
11721
11722         bp->recovery_state = BNX2X_RECOVERY_DONE;
11723         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11724         if (rc)
11725                 return rc;
11726         return bnx2x_open_epilog(bp);
11727 }
11728
11729 /* called with rtnl_lock */
11730 static int bnx2x_close(struct net_device *dev)
11731 {
11732         struct bnx2x *bp = netdev_priv(dev);
11733
11734         /* Unload the driver, release IRQs */
11735         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11736
11737         return 0;
11738 }
11739
11740 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11741                                       struct bnx2x_mcast_ramrod_params *p)
11742 {
11743         int mc_count = netdev_mc_count(bp->dev);
11744         struct bnx2x_mcast_list_elem *mc_mac =
11745                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11746         struct netdev_hw_addr *ha;
11747
11748         if (!mc_mac)
11749                 return -ENOMEM;
11750
11751         INIT_LIST_HEAD(&p->mcast_list);
11752
11753         netdev_for_each_mc_addr(ha, bp->dev) {
11754                 mc_mac->mac = bnx2x_mc_addr(ha);
11755                 list_add_tail(&mc_mac->link, &p->mcast_list);
11756                 mc_mac++;
11757         }
11758
11759         p->mcast_list_len = mc_count;
11760
11761         return 0;
11762 }
11763
11764 static void bnx2x_free_mcast_macs_list(
11765         struct bnx2x_mcast_ramrod_params *p)
11766 {
11767         struct bnx2x_mcast_list_elem *mc_mac =
11768                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11769                                  link);
11770
11771         WARN_ON(!mc_mac);
11772         kfree(mc_mac);
11773 }
11774
11775 /**
11776  * bnx2x_set_uc_list - configure a new unicast MACs list.
11777  *
11778  * @bp: driver handle
11779  *
11780  * We will use zero (0) as a MAC type for these MACs.
11781  */
11782 static int bnx2x_set_uc_list(struct bnx2x *bp)
11783 {
11784         int rc;
11785         struct net_device *dev = bp->dev;
11786         struct netdev_hw_addr *ha;
11787         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11788         unsigned long ramrod_flags = 0;
11789
11790         /* First schedule a cleanup up of old configuration */
11791         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11792         if (rc < 0) {
11793                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11794                 return rc;
11795         }
11796
11797         netdev_for_each_uc_addr(ha, dev) {
11798                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11799                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11800                 if (rc == -EEXIST) {
11801                         DP(BNX2X_MSG_SP,
11802                            "Failed to schedule ADD operations: %d\n", rc);
11803                         /* do not treat adding same MAC as error */
11804                         rc = 0;
11805
11806                 } else if (rc < 0) {
11807
11808                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11809                                   rc);
11810                         return rc;
11811                 }
11812         }
11813
11814         /* Execute the pending commands */
11815         __set_bit(RAMROD_CONT, &ramrod_flags);
11816         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11817                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11818 }
11819
11820 static int bnx2x_set_mc_list(struct bnx2x *bp)
11821 {
11822         struct net_device *dev = bp->dev;
11823         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11824         int rc = 0;
11825
11826         rparam.mcast_obj = &bp->mcast_obj;
11827
11828         /* first, clear all configured multicast MACs */
11829         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11830         if (rc < 0) {
11831                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11832                 return rc;
11833         }
11834
11835         /* then, configure a new MACs list */
11836         if (netdev_mc_count(dev)) {
11837                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11838                 if (rc) {
11839                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11840                                   rc);
11841                         return rc;
11842                 }
11843
11844                 /* Now add the new MACs */
11845                 rc = bnx2x_config_mcast(bp, &rparam,
11846                                         BNX2X_MCAST_CMD_ADD);
11847                 if (rc < 0)
11848                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11849                                   rc);
11850
11851                 bnx2x_free_mcast_macs_list(&rparam);
11852         }
11853
11854         return rc;
11855 }
11856
11857 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11858 void bnx2x_set_rx_mode(struct net_device *dev)
11859 {
11860         struct bnx2x *bp = netdev_priv(dev);
11861
11862         if (bp->state != BNX2X_STATE_OPEN) {
11863                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11864                 return;
11865         } else {
11866                 /* Schedule an SP task to handle rest of change */
11867                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11868                 smp_mb__before_clear_bit();
11869                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11870                 smp_mb__after_clear_bit();
11871                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11872         }
11873 }
11874
11875 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11876 {
11877         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11878
11879         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11880
11881         netif_addr_lock_bh(bp->dev);
11882
11883         if (bp->dev->flags & IFF_PROMISC) {
11884                 rx_mode = BNX2X_RX_MODE_PROMISC;
11885         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
11886                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11887                     CHIP_IS_E1(bp))) {
11888                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11889         } else {
11890                 if (IS_PF(bp)) {
11891                         /* some multicasts */
11892                         if (bnx2x_set_mc_list(bp) < 0)
11893                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11894
11895                         /* release bh lock, as bnx2x_set_uc_list might sleep */
11896                         netif_addr_unlock_bh(bp->dev);
11897                         if (bnx2x_set_uc_list(bp) < 0)
11898                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11899                         netif_addr_lock_bh(bp->dev);
11900                 } else {
11901                         /* configuring mcast to a vf involves sleeping (when we
11902                          * wait for the pf's response).
11903                          */
11904                         smp_mb__before_clear_bit();
11905                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11906                                 &bp->sp_rtnl_state);
11907                         smp_mb__after_clear_bit();
11908                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11909                 }
11910         }
11911
11912         bp->rx_mode = rx_mode;
11913         /* handle ISCSI SD mode */
11914         if (IS_MF_ISCSI_SD(bp))
11915                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11916
11917         /* Schedule the rx_mode command */
11918         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11919                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11920                 netif_addr_unlock_bh(bp->dev);
11921                 return;
11922         }
11923
11924         if (IS_PF(bp)) {
11925                 bnx2x_set_storm_rx_mode(bp);
11926                 netif_addr_unlock_bh(bp->dev);
11927         } else {
11928                 /* VF will need to request the PF to make this change, and so
11929                  * the VF needs to release the bottom-half lock prior to the
11930                  * request (as it will likely require sleep on the VF side)
11931                  */
11932                 netif_addr_unlock_bh(bp->dev);
11933                 bnx2x_vfpf_storm_rx_mode(bp);
11934         }
11935 }
11936
11937 /* called with rtnl_lock */
11938 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11939                            int devad, u16 addr)
11940 {
11941         struct bnx2x *bp = netdev_priv(netdev);
11942         u16 value;
11943         int rc;
11944
11945         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11946            prtad, devad, addr);
11947
11948         /* The HW expects different devad if CL22 is used */
11949         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11950
11951         bnx2x_acquire_phy_lock(bp);
11952         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11953         bnx2x_release_phy_lock(bp);
11954         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11955
11956         if (!rc)
11957                 rc = value;
11958         return rc;
11959 }
11960
11961 /* called with rtnl_lock */
11962 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11963                             u16 addr, u16 value)
11964 {
11965         struct bnx2x *bp = netdev_priv(netdev);
11966         int rc;
11967
11968         DP(NETIF_MSG_LINK,
11969            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11970            prtad, devad, addr, value);
11971
11972         /* The HW expects different devad if CL22 is used */
11973         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11974
11975         bnx2x_acquire_phy_lock(bp);
11976         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11977         bnx2x_release_phy_lock(bp);
11978         return rc;
11979 }
11980
11981 /* called with rtnl_lock */
11982 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11983 {
11984         struct bnx2x *bp = netdev_priv(dev);
11985         struct mii_ioctl_data *mdio = if_mii(ifr);
11986
11987         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11988            mdio->phy_id, mdio->reg_num, mdio->val_in);
11989
11990         if (!netif_running(dev))
11991                 return -EAGAIN;
11992
11993         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11994 }
11995
11996 #ifdef CONFIG_NET_POLL_CONTROLLER
11997 static void poll_bnx2x(struct net_device *dev)
11998 {
11999         struct bnx2x *bp = netdev_priv(dev);
12000         int i;
12001
12002         for_each_eth_queue(bp, i) {
12003                 struct bnx2x_fastpath *fp = &bp->fp[i];
12004                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12005         }
12006 }
12007 #endif
12008
12009 static int bnx2x_validate_addr(struct net_device *dev)
12010 {
12011         struct bnx2x *bp = netdev_priv(dev);
12012
12013         /* query the bulletin board for mac address configured by the PF */
12014         if (IS_VF(bp))
12015                 bnx2x_sample_bulletin(bp);
12016
12017         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12018                 BNX2X_ERR("Non-valid Ethernet address\n");
12019                 return -EADDRNOTAVAIL;
12020         }
12021         return 0;
12022 }
12023
12024 static const struct net_device_ops bnx2x_netdev_ops = {
12025         .ndo_open               = bnx2x_open,
12026         .ndo_stop               = bnx2x_close,
12027         .ndo_start_xmit         = bnx2x_start_xmit,
12028         .ndo_select_queue       = bnx2x_select_queue,
12029         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12030         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12031         .ndo_validate_addr      = bnx2x_validate_addr,
12032         .ndo_do_ioctl           = bnx2x_ioctl,
12033         .ndo_change_mtu         = bnx2x_change_mtu,
12034         .ndo_fix_features       = bnx2x_fix_features,
12035         .ndo_set_features       = bnx2x_set_features,
12036         .ndo_tx_timeout         = bnx2x_tx_timeout,
12037 #ifdef CONFIG_NET_POLL_CONTROLLER
12038         .ndo_poll_controller    = poll_bnx2x,
12039 #endif
12040         .ndo_setup_tc           = bnx2x_setup_tc,
12041 #ifdef CONFIG_BNX2X_SRIOV
12042         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12043         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12044         .ndo_get_vf_config      = bnx2x_get_vf_config,
12045 #endif
12046 #ifdef NETDEV_FCOE_WWNN
12047         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12048 #endif
12049
12050 #ifdef CONFIG_NET_RX_BUSY_POLL
12051         .ndo_busy_poll          = bnx2x_low_latency_recv,
12052 #endif
12053 };
12054
12055 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12056 {
12057         struct device *dev = &bp->pdev->dev;
12058
12059         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12060                 bp->flags |= USING_DAC_FLAG;
12061                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12062                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12063                         return -EIO;
12064                 }
12065         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12066                 dev_err(dev, "System does not support DMA, aborting\n");
12067                 return -EIO;
12068         }
12069
12070         return 0;
12071 }
12072
12073 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12074                           struct net_device *dev, unsigned long board_type)
12075 {
12076         int rc;
12077         u32 pci_cfg_dword;
12078         bool chip_is_e1x = (board_type == BCM57710 ||
12079                             board_type == BCM57711 ||
12080                             board_type == BCM57711E);
12081
12082         SET_NETDEV_DEV(dev, &pdev->dev);
12083
12084         bp->dev = dev;
12085         bp->pdev = pdev;
12086
12087         rc = pci_enable_device(pdev);
12088         if (rc) {
12089                 dev_err(&bp->pdev->dev,
12090                         "Cannot enable PCI device, aborting\n");
12091                 goto err_out;
12092         }
12093
12094         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12095                 dev_err(&bp->pdev->dev,
12096                         "Cannot find PCI device base address, aborting\n");
12097                 rc = -ENODEV;
12098                 goto err_out_disable;
12099         }
12100
12101         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12102                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12103                 rc = -ENODEV;
12104                 goto err_out_disable;
12105         }
12106
12107         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12108         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12109             PCICFG_REVESION_ID_ERROR_VAL) {
12110                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12111                 rc = -ENODEV;
12112                 goto err_out_disable;
12113         }
12114
12115         if (atomic_read(&pdev->enable_cnt) == 1) {
12116                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12117                 if (rc) {
12118                         dev_err(&bp->pdev->dev,
12119                                 "Cannot obtain PCI resources, aborting\n");
12120                         goto err_out_disable;
12121                 }
12122
12123                 pci_set_master(pdev);
12124                 pci_save_state(pdev);
12125         }
12126
12127         if (IS_PF(bp)) {
12128                 bp->pm_cap = pdev->pm_cap;
12129                 if (bp->pm_cap == 0) {
12130                         dev_err(&bp->pdev->dev,
12131                                 "Cannot find power management capability, aborting\n");
12132                         rc = -EIO;
12133                         goto err_out_release;
12134                 }
12135         }
12136
12137         if (!pci_is_pcie(pdev)) {
12138                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12139                 rc = -EIO;
12140                 goto err_out_release;
12141         }
12142
12143         rc = bnx2x_set_coherency_mask(bp);
12144         if (rc)
12145                 goto err_out_release;
12146
12147         dev->mem_start = pci_resource_start(pdev, 0);
12148         dev->base_addr = dev->mem_start;
12149         dev->mem_end = pci_resource_end(pdev, 0);
12150
12151         dev->irq = pdev->irq;
12152
12153         bp->regview = pci_ioremap_bar(pdev, 0);
12154         if (!bp->regview) {
12155                 dev_err(&bp->pdev->dev,
12156                         "Cannot map register space, aborting\n");
12157                 rc = -ENOMEM;
12158                 goto err_out_release;
12159         }
12160
12161         /* In E1/E1H use pci device function given by kernel.
12162          * In E2/E3 read physical function from ME register since these chips
12163          * support Physical Device Assignment where kernel BDF maybe arbitrary
12164          * (depending on hypervisor).
12165          */
12166         if (chip_is_e1x) {
12167                 bp->pf_num = PCI_FUNC(pdev->devfn);
12168         } else {
12169                 /* chip is E2/3*/
12170                 pci_read_config_dword(bp->pdev,
12171                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12172                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12173                                   ME_REG_ABS_PF_NUM_SHIFT);
12174         }
12175         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12176
12177         /* clean indirect addresses */
12178         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12179                                PCICFG_VENDOR_ID_OFFSET);
12180         /*
12181          * Clean the following indirect addresses for all functions since it
12182          * is not used by the driver.
12183          */
12184         if (IS_PF(bp)) {
12185                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12186                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12187                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12188                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12189
12190                 if (chip_is_e1x) {
12191                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12192                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12193                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12194                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12195                 }
12196
12197                 /* Enable internal target-read (in case we are probed after PF
12198                  * FLR). Must be done prior to any BAR read access. Only for
12199                  * 57712 and up
12200                  */
12201                 if (!chip_is_e1x)
12202                         REG_WR(bp,
12203                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12204         }
12205
12206         dev->watchdog_timeo = TX_TIMEOUT;
12207
12208         dev->netdev_ops = &bnx2x_netdev_ops;
12209         bnx2x_set_ethtool_ops(bp, dev);
12210
12211         dev->priv_flags |= IFF_UNICAST_FLT;
12212
12213         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12214                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12215                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12216                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12217         if (!CHIP_IS_E1x(bp)) {
12218                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12219                 dev->hw_enc_features =
12220                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12221                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12222                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12223         }
12224
12225         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12226                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12227
12228         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12229         if (bp->flags & USING_DAC_FLAG)
12230                 dev->features |= NETIF_F_HIGHDMA;
12231
12232         /* Add Loopback capability to the device */
12233         dev->hw_features |= NETIF_F_LOOPBACK;
12234
12235 #ifdef BCM_DCBNL
12236         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12237 #endif
12238
12239         /* get_port_hwinfo() will set prtad and mmds properly */
12240         bp->mdio.prtad = MDIO_PRTAD_NONE;
12241         bp->mdio.mmds = 0;
12242         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12243         bp->mdio.dev = dev;
12244         bp->mdio.mdio_read = bnx2x_mdio_read;
12245         bp->mdio.mdio_write = bnx2x_mdio_write;
12246
12247         return 0;
12248
12249 err_out_release:
12250         if (atomic_read(&pdev->enable_cnt) == 1)
12251                 pci_release_regions(pdev);
12252
12253 err_out_disable:
12254         pci_disable_device(pdev);
12255         pci_set_drvdata(pdev, NULL);
12256
12257 err_out:
12258         return rc;
12259 }
12260
12261 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12262                                        enum bnx2x_pci_bus_speed *speed)
12263 {
12264         u32 link_speed, val = 0;
12265
12266         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12267         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12268
12269         link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12270
12271         switch (link_speed) {
12272         case 3:
12273                 *speed = BNX2X_PCI_LINK_SPEED_8000;
12274                 break;
12275         case 2:
12276                 *speed = BNX2X_PCI_LINK_SPEED_5000;
12277                 break;
12278         default:
12279                 *speed = BNX2X_PCI_LINK_SPEED_2500;
12280         }
12281 }
12282
12283 static int bnx2x_check_firmware(struct bnx2x *bp)
12284 {
12285         const struct firmware *firmware = bp->firmware;
12286         struct bnx2x_fw_file_hdr *fw_hdr;
12287         struct bnx2x_fw_file_section *sections;
12288         u32 offset, len, num_ops;
12289         __be16 *ops_offsets;
12290         int i;
12291         const u8 *fw_ver;
12292
12293         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12294                 BNX2X_ERR("Wrong FW size\n");
12295                 return -EINVAL;
12296         }
12297
12298         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12299         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12300
12301         /* Make sure none of the offsets and sizes make us read beyond
12302          * the end of the firmware data */
12303         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12304                 offset = be32_to_cpu(sections[i].offset);
12305                 len = be32_to_cpu(sections[i].len);
12306                 if (offset + len > firmware->size) {
12307                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12308                         return -EINVAL;
12309                 }
12310         }
12311
12312         /* Likewise for the init_ops offsets */
12313         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12314         ops_offsets = (__force __be16 *)(firmware->data + offset);
12315         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12316
12317         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12318                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12319                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12320                         return -EINVAL;
12321                 }
12322         }
12323
12324         /* Check FW version */
12325         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12326         fw_ver = firmware->data + offset;
12327         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12328             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12329             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12330             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12331                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12332                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12333                        BCM_5710_FW_MAJOR_VERSION,
12334                        BCM_5710_FW_MINOR_VERSION,
12335                        BCM_5710_FW_REVISION_VERSION,
12336                        BCM_5710_FW_ENGINEERING_VERSION);
12337                 return -EINVAL;
12338         }
12339
12340         return 0;
12341 }
12342
12343 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12344 {
12345         const __be32 *source = (const __be32 *)_source;
12346         u32 *target = (u32 *)_target;
12347         u32 i;
12348
12349         for (i = 0; i < n/4; i++)
12350                 target[i] = be32_to_cpu(source[i]);
12351 }
12352
12353 /*
12354    Ops array is stored in the following format:
12355    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12356  */
12357 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12358 {
12359         const __be32 *source = (const __be32 *)_source;
12360         struct raw_op *target = (struct raw_op *)_target;
12361         u32 i, j, tmp;
12362
12363         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12364                 tmp = be32_to_cpu(source[j]);
12365                 target[i].op = (tmp >> 24) & 0xff;
12366                 target[i].offset = tmp & 0xffffff;
12367                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12368         }
12369 }
12370
12371 /* IRO array is stored in the following format:
12372  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12373  */
12374 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12375 {
12376         const __be32 *source = (const __be32 *)_source;
12377         struct iro *target = (struct iro *)_target;
12378         u32 i, j, tmp;
12379
12380         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12381                 target[i].base = be32_to_cpu(source[j]);
12382                 j++;
12383                 tmp = be32_to_cpu(source[j]);
12384                 target[i].m1 = (tmp >> 16) & 0xffff;
12385                 target[i].m2 = tmp & 0xffff;
12386                 j++;
12387                 tmp = be32_to_cpu(source[j]);
12388                 target[i].m3 = (tmp >> 16) & 0xffff;
12389                 target[i].size = tmp & 0xffff;
12390                 j++;
12391         }
12392 }
12393
12394 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12395 {
12396         const __be16 *source = (const __be16 *)_source;
12397         u16 *target = (u16 *)_target;
12398         u32 i;
12399
12400         for (i = 0; i < n/2; i++)
12401                 target[i] = be16_to_cpu(source[i]);
12402 }
12403
12404 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12405 do {                                                                    \
12406         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12407         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12408         if (!bp->arr)                                                   \
12409                 goto lbl;                                               \
12410         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12411              (u8 *)bp->arr, len);                                       \
12412 } while (0)
12413
12414 static int bnx2x_init_firmware(struct bnx2x *bp)
12415 {
12416         const char *fw_file_name;
12417         struct bnx2x_fw_file_hdr *fw_hdr;
12418         int rc;
12419
12420         if (bp->firmware)
12421                 return 0;
12422
12423         if (CHIP_IS_E1(bp))
12424                 fw_file_name = FW_FILE_NAME_E1;
12425         else if (CHIP_IS_E1H(bp))
12426                 fw_file_name = FW_FILE_NAME_E1H;
12427         else if (!CHIP_IS_E1x(bp))
12428                 fw_file_name = FW_FILE_NAME_E2;
12429         else {
12430                 BNX2X_ERR("Unsupported chip revision\n");
12431                 return -EINVAL;
12432         }
12433         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12434
12435         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12436         if (rc) {
12437                 BNX2X_ERR("Can't load firmware file %s\n",
12438                           fw_file_name);
12439                 goto request_firmware_exit;
12440         }
12441
12442         rc = bnx2x_check_firmware(bp);
12443         if (rc) {
12444                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12445                 goto request_firmware_exit;
12446         }
12447
12448         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12449
12450         /* Initialize the pointers to the init arrays */
12451         /* Blob */
12452         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12453
12454         /* Opcodes */
12455         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12456
12457         /* Offsets */
12458         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12459                             be16_to_cpu_n);
12460
12461         /* STORMs firmware */
12462         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12463                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12464         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12465                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12466         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12467                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12468         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12469                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12470         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12471                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12472         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12473                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12474         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12475                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12476         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12477                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12478         /* IRO */
12479         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12480
12481         return 0;
12482
12483 iro_alloc_err:
12484         kfree(bp->init_ops_offsets);
12485 init_offsets_alloc_err:
12486         kfree(bp->init_ops);
12487 init_ops_alloc_err:
12488         kfree(bp->init_data);
12489 request_firmware_exit:
12490         release_firmware(bp->firmware);
12491         bp->firmware = NULL;
12492
12493         return rc;
12494 }
12495
12496 static void bnx2x_release_firmware(struct bnx2x *bp)
12497 {
12498         kfree(bp->init_ops_offsets);
12499         kfree(bp->init_ops);
12500         kfree(bp->init_data);
12501         release_firmware(bp->firmware);
12502         bp->firmware = NULL;
12503 }
12504
12505 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12506         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12507         .init_hw_cmn      = bnx2x_init_hw_common,
12508         .init_hw_port     = bnx2x_init_hw_port,
12509         .init_hw_func     = bnx2x_init_hw_func,
12510
12511         .reset_hw_cmn     = bnx2x_reset_common,
12512         .reset_hw_port    = bnx2x_reset_port,
12513         .reset_hw_func    = bnx2x_reset_func,
12514
12515         .gunzip_init      = bnx2x_gunzip_init,
12516         .gunzip_end       = bnx2x_gunzip_end,
12517
12518         .init_fw          = bnx2x_init_firmware,
12519         .release_fw       = bnx2x_release_firmware,
12520 };
12521
12522 void bnx2x__init_func_obj(struct bnx2x *bp)
12523 {
12524         /* Prepare DMAE related driver resources */
12525         bnx2x_setup_dmae(bp);
12526
12527         bnx2x_init_func_obj(bp, &bp->func_obj,
12528                             bnx2x_sp(bp, func_rdata),
12529                             bnx2x_sp_mapping(bp, func_rdata),
12530                             bnx2x_sp(bp, func_afex_rdata),
12531                             bnx2x_sp_mapping(bp, func_afex_rdata),
12532                             &bnx2x_func_sp_drv);
12533 }
12534
12535 /* must be called after sriov-enable */
12536 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12537 {
12538         int cid_count = BNX2X_L2_MAX_CID(bp);
12539
12540         if (IS_SRIOV(bp))
12541                 cid_count += BNX2X_VF_CIDS;
12542
12543         if (CNIC_SUPPORT(bp))
12544                 cid_count += CNIC_CID_MAX;
12545
12546         return roundup(cid_count, QM_CID_ROUND);
12547 }
12548
12549 /**
12550  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12551  *
12552  * @dev:        pci device
12553  *
12554  */
12555 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12556                                      int cnic_cnt, bool is_vf)
12557 {
12558         int index;
12559         u16 control = 0;
12560
12561         /*
12562          * If MSI-X is not supported - return number of SBs needed to support
12563          * one fast path queue: one FP queue + SB for CNIC
12564          */
12565         if (!pdev->msix_cap) {
12566                 dev_info(&pdev->dev, "no msix capability found\n");
12567                 return 1 + cnic_cnt;
12568         }
12569         dev_info(&pdev->dev, "msix capability found\n");
12570
12571         /*
12572          * The value in the PCI configuration space is the index of the last
12573          * entry, namely one less than the actual size of the table, which is
12574          * exactly what we want to return from this function: number of all SBs
12575          * without the default SB.
12576          * For VFs there is no default SB, then we return (index+1).
12577          */
12578         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12579
12580         index = control & PCI_MSIX_FLAGS_QSIZE;
12581
12582         return is_vf ? index + 1 : index;
12583 }
12584
12585 static int set_max_cos_est(int chip_id)
12586 {
12587         switch (chip_id) {
12588         case BCM57710:
12589         case BCM57711:
12590         case BCM57711E:
12591                 return BNX2X_MULTI_TX_COS_E1X;
12592         case BCM57712:
12593         case BCM57712_MF:
12594         case BCM57712_VF:
12595                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12596         case BCM57800:
12597         case BCM57800_MF:
12598         case BCM57800_VF:
12599         case BCM57810:
12600         case BCM57810_MF:
12601         case BCM57840_4_10:
12602         case BCM57840_2_20:
12603         case BCM57840_O:
12604         case BCM57840_MFO:
12605         case BCM57810_VF:
12606         case BCM57840_MF:
12607         case BCM57840_VF:
12608         case BCM57811:
12609         case BCM57811_MF:
12610         case BCM57811_VF:
12611                 return BNX2X_MULTI_TX_COS_E3B0;
12612                 return 1;
12613         default:
12614                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12615                 return -ENODEV;
12616         }
12617 }
12618
12619 static int set_is_vf(int chip_id)
12620 {
12621         switch (chip_id) {
12622         case BCM57712_VF:
12623         case BCM57800_VF:
12624         case BCM57810_VF:
12625         case BCM57840_VF:
12626         case BCM57811_VF:
12627                 return true;
12628         default:
12629                 return false;
12630         }
12631 }
12632
12633 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12634
12635 static int bnx2x_init_one(struct pci_dev *pdev,
12636                                     const struct pci_device_id *ent)
12637 {
12638         struct net_device *dev = NULL;
12639         struct bnx2x *bp;
12640         int pcie_width;
12641         enum bnx2x_pci_bus_speed pcie_speed;
12642         int rc, max_non_def_sbs;
12643         int rx_count, tx_count, rss_count, doorbell_size;
12644         int max_cos_est;
12645         bool is_vf;
12646         int cnic_cnt;
12647
12648         /* An estimated maximum supported CoS number according to the chip
12649          * version.
12650          * We will try to roughly estimate the maximum number of CoSes this chip
12651          * may support in order to minimize the memory allocated for Tx
12652          * netdev_queue's. This number will be accurately calculated during the
12653          * initialization of bp->max_cos based on the chip versions AND chip
12654          * revision in the bnx2x_init_bp().
12655          */
12656         max_cos_est = set_max_cos_est(ent->driver_data);
12657         if (max_cos_est < 0)
12658                 return max_cos_est;
12659         is_vf = set_is_vf(ent->driver_data);
12660         cnic_cnt = is_vf ? 0 : 1;
12661
12662         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12663
12664         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12665         rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12666
12667         if (rss_count < 1)
12668                 return -EINVAL;
12669
12670         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12671         rx_count = rss_count + cnic_cnt;
12672
12673         /* Maximum number of netdev Tx queues:
12674          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12675          */
12676         tx_count = rss_count * max_cos_est + cnic_cnt;
12677
12678         /* dev zeroed in init_etherdev */
12679         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12680         if (!dev)
12681                 return -ENOMEM;
12682
12683         bp = netdev_priv(dev);
12684
12685         bp->flags = 0;
12686         if (is_vf)
12687                 bp->flags |= IS_VF_FLAG;
12688
12689         bp->igu_sb_cnt = max_non_def_sbs;
12690         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12691         bp->msg_enable = debug;
12692         bp->cnic_support = cnic_cnt;
12693         bp->cnic_probe = bnx2x_cnic_probe;
12694
12695         pci_set_drvdata(pdev, dev);
12696
12697         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12698         if (rc < 0) {
12699                 free_netdev(dev);
12700                 return rc;
12701         }
12702
12703         BNX2X_DEV_INFO("This is a %s function\n",
12704                        IS_PF(bp) ? "physical" : "virtual");
12705         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12706         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12707         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12708                        tx_count, rx_count);
12709
12710         rc = bnx2x_init_bp(bp);
12711         if (rc)
12712                 goto init_one_exit;
12713
12714         /* Map doorbells here as we need the real value of bp->max_cos which
12715          * is initialized in bnx2x_init_bp() to determine the number of
12716          * l2 connections.
12717          */
12718         if (IS_VF(bp)) {
12719                 bp->doorbells = bnx2x_vf_doorbells(bp);
12720                 rc = bnx2x_vf_pci_alloc(bp);
12721                 if (rc)
12722                         goto init_one_exit;
12723         } else {
12724                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12725                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12726                         dev_err(&bp->pdev->dev,
12727                                 "Cannot map doorbells, bar size too small, aborting\n");
12728                         rc = -ENOMEM;
12729                         goto init_one_exit;
12730                 }
12731                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12732                                                 doorbell_size);
12733         }
12734         if (!bp->doorbells) {
12735                 dev_err(&bp->pdev->dev,
12736                         "Cannot map doorbell space, aborting\n");
12737                 rc = -ENOMEM;
12738                 goto init_one_exit;
12739         }
12740
12741         if (IS_VF(bp)) {
12742                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12743                 if (rc)
12744                         goto init_one_exit;
12745         }
12746
12747         /* Enable SRIOV if capability found in configuration space */
12748         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12749         if (rc)
12750                 goto init_one_exit;
12751
12752         /* calc qm_cid_count */
12753         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12754         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12755
12756         /* disable FCOE L2 queue for E1x*/
12757         if (CHIP_IS_E1x(bp))
12758                 bp->flags |= NO_FCOE_FLAG;
12759
12760         /* Set bp->num_queues for MSI-X mode*/
12761         bnx2x_set_num_queues(bp);
12762
12763         /* Configure interrupt mode: try to enable MSI-X/MSI if
12764          * needed.
12765          */
12766         rc = bnx2x_set_int_mode(bp);
12767         if (rc) {
12768                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12769                 goto init_one_exit;
12770         }
12771         BNX2X_DEV_INFO("set interrupts successfully\n");
12772
12773         /* register the net device */
12774         rc = register_netdev(dev);
12775         if (rc) {
12776                 dev_err(&pdev->dev, "Cannot register net device\n");
12777                 goto init_one_exit;
12778         }
12779         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12780
12781         if (!NO_FCOE(bp)) {
12782                 /* Add storage MAC address */
12783                 rtnl_lock();
12784                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12785                 rtnl_unlock();
12786         }
12787
12788         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12789         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12790                        pcie_width, pcie_speed);
12791
12792         BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12793                        board_info[ent->driver_data].name,
12794                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12795                        pcie_width,
12796                        pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12797                        pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12798                        pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12799                        "Unknown",
12800                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12801
12802         return 0;
12803
12804 init_one_exit:
12805         if (bp->regview)
12806                 iounmap(bp->regview);
12807
12808         if (IS_PF(bp) && bp->doorbells)
12809                 iounmap(bp->doorbells);
12810
12811         free_netdev(dev);
12812
12813         if (atomic_read(&pdev->enable_cnt) == 1)
12814                 pci_release_regions(pdev);
12815
12816         pci_disable_device(pdev);
12817         pci_set_drvdata(pdev, NULL);
12818
12819         return rc;
12820 }
12821
12822 static void __bnx2x_remove(struct pci_dev *pdev,
12823                            struct net_device *dev,
12824                            struct bnx2x *bp,
12825                            bool remove_netdev)
12826 {
12827         /* Delete storage MAC address */
12828         if (!NO_FCOE(bp)) {
12829                 rtnl_lock();
12830                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12831                 rtnl_unlock();
12832         }
12833
12834 #ifdef BCM_DCBNL
12835         /* Delete app tlvs from dcbnl */
12836         bnx2x_dcbnl_update_applist(bp, true);
12837 #endif
12838
12839         if (IS_PF(bp) &&
12840             !BP_NOMCP(bp) &&
12841             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12842                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12843
12844         /* Close the interface - either directly or implicitly */
12845         if (remove_netdev) {
12846                 unregister_netdev(dev);
12847         } else {
12848                 rtnl_lock();
12849                 dev_close(dev);
12850                 rtnl_unlock();
12851         }
12852
12853         bnx2x_iov_remove_one(bp);
12854
12855         /* Power on: we can't let PCI layer write to us while we are in D3 */
12856         if (IS_PF(bp))
12857                 bnx2x_set_power_state(bp, PCI_D0);
12858
12859         /* Disable MSI/MSI-X */
12860         bnx2x_disable_msi(bp);
12861
12862         /* Power off */
12863         if (IS_PF(bp))
12864                 bnx2x_set_power_state(bp, PCI_D3hot);
12865
12866         /* Make sure RESET task is not scheduled before continuing */
12867         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12868
12869         /* send message via vfpf channel to release the resources of this vf */
12870         if (IS_VF(bp))
12871                 bnx2x_vfpf_release(bp);
12872
12873         /* Assumes no further PCIe PM changes will occur */
12874         if (system_state == SYSTEM_POWER_OFF) {
12875                 pci_wake_from_d3(pdev, bp->wol);
12876                 pci_set_power_state(pdev, PCI_D3hot);
12877         }
12878
12879         if (bp->regview)
12880                 iounmap(bp->regview);
12881
12882         /* for vf doorbells are part of the regview and were unmapped along with
12883          * it. FW is only loaded by PF.
12884          */
12885         if (IS_PF(bp)) {
12886                 if (bp->doorbells)
12887                         iounmap(bp->doorbells);
12888
12889                 bnx2x_release_firmware(bp);
12890         }
12891         bnx2x_free_mem_bp(bp);
12892
12893         if (remove_netdev)
12894                 free_netdev(dev);
12895
12896         if (atomic_read(&pdev->enable_cnt) == 1)
12897                 pci_release_regions(pdev);
12898
12899         pci_disable_device(pdev);
12900         pci_set_drvdata(pdev, NULL);
12901 }
12902
12903 static void bnx2x_remove_one(struct pci_dev *pdev)
12904 {
12905         struct net_device *dev = pci_get_drvdata(pdev);
12906         struct bnx2x *bp;
12907
12908         if (!dev) {
12909                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12910                 return;
12911         }
12912         bp = netdev_priv(dev);
12913
12914         __bnx2x_remove(pdev, dev, bp, true);
12915 }
12916
12917 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12918 {
12919         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12920
12921         bp->rx_mode = BNX2X_RX_MODE_NONE;
12922
12923         if (CNIC_LOADED(bp))
12924                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12925
12926         /* Stop Tx */
12927         bnx2x_tx_disable(bp);
12928         /* Delete all NAPI objects */
12929         bnx2x_del_all_napi(bp);
12930         if (CNIC_LOADED(bp))
12931                 bnx2x_del_all_napi_cnic(bp);
12932         netdev_reset_tc(bp->dev);
12933
12934         del_timer_sync(&bp->timer);
12935         cancel_delayed_work(&bp->sp_task);
12936         cancel_delayed_work(&bp->period_task);
12937
12938         spin_lock_bh(&bp->stats_lock);
12939         bp->stats_state = STATS_STATE_DISABLED;
12940         spin_unlock_bh(&bp->stats_lock);
12941
12942         bnx2x_save_statistics(bp);
12943
12944         netif_carrier_off(bp->dev);
12945
12946         return 0;
12947 }
12948
12949 /**
12950  * bnx2x_io_error_detected - called when PCI error is detected
12951  * @pdev: Pointer to PCI device
12952  * @state: The current pci connection state
12953  *
12954  * This function is called after a PCI bus error affecting
12955  * this device has been detected.
12956  */
12957 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12958                                                 pci_channel_state_t state)
12959 {
12960         struct net_device *dev = pci_get_drvdata(pdev);
12961         struct bnx2x *bp = netdev_priv(dev);
12962
12963         rtnl_lock();
12964
12965         BNX2X_ERR("IO error detected\n");
12966
12967         netif_device_detach(dev);
12968
12969         if (state == pci_channel_io_perm_failure) {
12970                 rtnl_unlock();
12971                 return PCI_ERS_RESULT_DISCONNECT;
12972         }
12973
12974         if (netif_running(dev))
12975                 bnx2x_eeh_nic_unload(bp);
12976
12977         bnx2x_prev_path_mark_eeh(bp);
12978
12979         pci_disable_device(pdev);
12980
12981         rtnl_unlock();
12982
12983         /* Request a slot reset */
12984         return PCI_ERS_RESULT_NEED_RESET;
12985 }
12986
12987 /**
12988  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12989  * @pdev: Pointer to PCI device
12990  *
12991  * Restart the card from scratch, as if from a cold-boot.
12992  */
12993 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12994 {
12995         struct net_device *dev = pci_get_drvdata(pdev);
12996         struct bnx2x *bp = netdev_priv(dev);
12997         int i;
12998
12999         rtnl_lock();
13000         BNX2X_ERR("IO slot reset initializing...\n");
13001         if (pci_enable_device(pdev)) {
13002                 dev_err(&pdev->dev,
13003                         "Cannot re-enable PCI device after reset\n");
13004                 rtnl_unlock();
13005                 return PCI_ERS_RESULT_DISCONNECT;
13006         }
13007
13008         pci_set_master(pdev);
13009         pci_restore_state(pdev);
13010         pci_save_state(pdev);
13011
13012         if (netif_running(dev))
13013                 bnx2x_set_power_state(bp, PCI_D0);
13014
13015         if (netif_running(dev)) {
13016                 BNX2X_ERR("IO slot reset --> driver unload\n");
13017
13018                 /* MCP should have been reset; Need to wait for validity */
13019                 bnx2x_init_shmem(bp);
13020
13021                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13022                         u32 v;
13023
13024                         v = SHMEM2_RD(bp,
13025                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13026                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13027                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13028                 }
13029                 bnx2x_drain_tx_queues(bp);
13030                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13031                 bnx2x_netif_stop(bp, 1);
13032                 bnx2x_free_irq(bp);
13033
13034                 /* Report UNLOAD_DONE to MCP */
13035                 bnx2x_send_unload_done(bp, true);
13036
13037                 bp->sp_state = 0;
13038                 bp->port.pmf = 0;
13039
13040                 bnx2x_prev_unload(bp);
13041
13042                 /* We should have reseted the engine, so It's fair to
13043                  * assume the FW will no longer write to the bnx2x driver.
13044                  */
13045                 bnx2x_squeeze_objects(bp);
13046                 bnx2x_free_skbs(bp);
13047                 for_each_rx_queue(bp, i)
13048                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13049                 bnx2x_free_fp_mem(bp);
13050                 bnx2x_free_mem(bp);
13051
13052                 bp->state = BNX2X_STATE_CLOSED;
13053         }
13054
13055         rtnl_unlock();
13056
13057         return PCI_ERS_RESULT_RECOVERED;
13058 }
13059
13060 /**
13061  * bnx2x_io_resume - called when traffic can start flowing again
13062  * @pdev: Pointer to PCI device
13063  *
13064  * This callback is called when the error recovery driver tells us that
13065  * its OK to resume normal operation.
13066  */
13067 static void bnx2x_io_resume(struct pci_dev *pdev)
13068 {
13069         struct net_device *dev = pci_get_drvdata(pdev);
13070         struct bnx2x *bp = netdev_priv(dev);
13071
13072         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13073                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13074                 return;
13075         }
13076
13077         rtnl_lock();
13078
13079         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13080                                                         DRV_MSG_SEQ_NUMBER_MASK;
13081
13082         if (netif_running(dev))
13083                 bnx2x_nic_load(bp, LOAD_NORMAL);
13084
13085         netif_device_attach(dev);
13086
13087         rtnl_unlock();
13088 }
13089
13090 static const struct pci_error_handlers bnx2x_err_handler = {
13091         .error_detected = bnx2x_io_error_detected,
13092         .slot_reset     = bnx2x_io_slot_reset,
13093         .resume         = bnx2x_io_resume,
13094 };
13095
13096 static void bnx2x_shutdown(struct pci_dev *pdev)
13097 {
13098         struct net_device *dev = pci_get_drvdata(pdev);
13099         struct bnx2x *bp;
13100
13101         if (!dev)
13102                 return;
13103
13104         bp = netdev_priv(dev);
13105         if (!bp)
13106                 return;
13107
13108         rtnl_lock();
13109         netif_device_detach(dev);
13110         rtnl_unlock();
13111
13112         /* Don't remove the netdevice, as there are scenarios which will cause
13113          * the kernel to hang, e.g., when trying to remove bnx2i while the
13114          * rootfs is mounted from SAN.
13115          */
13116         __bnx2x_remove(pdev, dev, bp, false);
13117 }
13118
13119 static struct pci_driver bnx2x_pci_driver = {
13120         .name        = DRV_MODULE_NAME,
13121         .id_table    = bnx2x_pci_tbl,
13122         .probe       = bnx2x_init_one,
13123         .remove      = bnx2x_remove_one,
13124         .suspend     = bnx2x_suspend,
13125         .resume      = bnx2x_resume,
13126         .err_handler = &bnx2x_err_handler,
13127 #ifdef CONFIG_BNX2X_SRIOV
13128         .sriov_configure = bnx2x_sriov_configure,
13129 #endif
13130         .shutdown    = bnx2x_shutdown,
13131 };
13132
13133 static int __init bnx2x_init(void)
13134 {
13135         int ret;
13136
13137         pr_info("%s", version);
13138
13139         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13140         if (bnx2x_wq == NULL) {
13141                 pr_err("Cannot create workqueue\n");
13142                 return -ENOMEM;
13143         }
13144
13145         ret = pci_register_driver(&bnx2x_pci_driver);
13146         if (ret) {
13147                 pr_err("Cannot register driver\n");
13148                 destroy_workqueue(bnx2x_wq);
13149         }
13150         return ret;
13151 }
13152
13153 static void __exit bnx2x_cleanup(void)
13154 {
13155         struct list_head *pos, *q;
13156
13157         pci_unregister_driver(&bnx2x_pci_driver);
13158
13159         destroy_workqueue(bnx2x_wq);
13160
13161         /* Free globally allocated resources */
13162         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13163                 struct bnx2x_prev_path_list *tmp =
13164                         list_entry(pos, struct bnx2x_prev_path_list, list);
13165                 list_del(pos);
13166                 kfree(tmp);
13167         }
13168 }
13169
13170 void bnx2x_notify_link_changed(struct bnx2x *bp)
13171 {
13172         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13173 }
13174
13175 module_init(bnx2x_init);
13176 module_exit(bnx2x_cleanup);
13177
13178 /**
13179  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13180  *
13181  * @bp:         driver handle
13182  * @set:        set or clear the CAM entry
13183  *
13184  * This function will wait until the ramrod completion returns.
13185  * Return 0 if success, -ENODEV if ramrod doesn't return.
13186  */
13187 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13188 {
13189         unsigned long ramrod_flags = 0;
13190
13191         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13192         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13193                                  &bp->iscsi_l2_mac_obj, true,
13194                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13195 }
13196
13197 /* count denotes the number of new completions we have seen */
13198 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13199 {
13200         struct eth_spe *spe;
13201         int cxt_index, cxt_offset;
13202
13203 #ifdef BNX2X_STOP_ON_ERROR
13204         if (unlikely(bp->panic))
13205                 return;
13206 #endif
13207
13208         spin_lock_bh(&bp->spq_lock);
13209         BUG_ON(bp->cnic_spq_pending < count);
13210         bp->cnic_spq_pending -= count;
13211
13212         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13213                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13214                                 & SPE_HDR_CONN_TYPE) >>
13215                                 SPE_HDR_CONN_TYPE_SHIFT;
13216                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13217                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13218
13219                 /* Set validation for iSCSI L2 client before sending SETUP
13220                  *  ramrod
13221                  */
13222                 if (type == ETH_CONNECTION_TYPE) {
13223                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13224                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13225                                         ILT_PAGE_CIDS;
13226                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13227                                         (cxt_index * ILT_PAGE_CIDS);
13228                                 bnx2x_set_ctx_validation(bp,
13229                                         &bp->context[cxt_index].
13230                                                          vcxt[cxt_offset].eth,
13231                                         BNX2X_ISCSI_ETH_CID(bp));
13232                         }
13233                 }
13234
13235                 /*
13236                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13237                  * and in the air. We also check that number of outstanding
13238                  * COMMON ramrods is not more than the EQ and SPQ can
13239                  * accommodate.
13240                  */
13241                 if (type == ETH_CONNECTION_TYPE) {
13242                         if (!atomic_read(&bp->cq_spq_left))
13243                                 break;
13244                         else
13245                                 atomic_dec(&bp->cq_spq_left);
13246                 } else if (type == NONE_CONNECTION_TYPE) {
13247                         if (!atomic_read(&bp->eq_spq_left))
13248                                 break;
13249                         else
13250                                 atomic_dec(&bp->eq_spq_left);
13251                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13252                            (type == FCOE_CONNECTION_TYPE)) {
13253                         if (bp->cnic_spq_pending >=
13254                             bp->cnic_eth_dev.max_kwqe_pending)
13255                                 break;
13256                         else
13257                                 bp->cnic_spq_pending++;
13258                 } else {
13259                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13260                         bnx2x_panic();
13261                         break;
13262                 }
13263
13264                 spe = bnx2x_sp_get_next(bp);
13265                 *spe = *bp->cnic_kwq_cons;
13266
13267                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13268                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13269
13270                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13271                         bp->cnic_kwq_cons = bp->cnic_kwq;
13272                 else
13273                         bp->cnic_kwq_cons++;
13274         }
13275         bnx2x_sp_prod_update(bp);
13276         spin_unlock_bh(&bp->spq_lock);
13277 }
13278
13279 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13280                                struct kwqe_16 *kwqes[], u32 count)
13281 {
13282         struct bnx2x *bp = netdev_priv(dev);
13283         int i;
13284
13285 #ifdef BNX2X_STOP_ON_ERROR
13286         if (unlikely(bp->panic)) {
13287                 BNX2X_ERR("Can't post to SP queue while panic\n");
13288                 return -EIO;
13289         }
13290 #endif
13291
13292         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13293             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13294                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13295                 return -EAGAIN;
13296         }
13297
13298         spin_lock_bh(&bp->spq_lock);
13299
13300         for (i = 0; i < count; i++) {
13301                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13302
13303                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13304                         break;
13305
13306                 *bp->cnic_kwq_prod = *spe;
13307
13308                 bp->cnic_kwq_pending++;
13309
13310                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13311                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13312                    spe->data.update_data_addr.hi,
13313                    spe->data.update_data_addr.lo,
13314                    bp->cnic_kwq_pending);
13315
13316                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13317                         bp->cnic_kwq_prod = bp->cnic_kwq;
13318                 else
13319                         bp->cnic_kwq_prod++;
13320         }
13321
13322         spin_unlock_bh(&bp->spq_lock);
13323
13324         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13325                 bnx2x_cnic_sp_post(bp, 0);
13326
13327         return i;
13328 }
13329
13330 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13331 {
13332         struct cnic_ops *c_ops;
13333         int rc = 0;
13334
13335         mutex_lock(&bp->cnic_mutex);
13336         c_ops = rcu_dereference_protected(bp->cnic_ops,
13337                                           lockdep_is_held(&bp->cnic_mutex));
13338         if (c_ops)
13339                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13340         mutex_unlock(&bp->cnic_mutex);
13341
13342         return rc;
13343 }
13344
13345 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13346 {
13347         struct cnic_ops *c_ops;
13348         int rc = 0;
13349
13350         rcu_read_lock();
13351         c_ops = rcu_dereference(bp->cnic_ops);
13352         if (c_ops)
13353                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13354         rcu_read_unlock();
13355
13356         return rc;
13357 }
13358
13359 /*
13360  * for commands that have no data
13361  */
13362 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13363 {
13364         struct cnic_ctl_info ctl = {0};
13365
13366         ctl.cmd = cmd;
13367
13368         return bnx2x_cnic_ctl_send(bp, &ctl);
13369 }
13370
13371 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13372 {
13373         struct cnic_ctl_info ctl = {0};
13374
13375         /* first we tell CNIC and only then we count this as a completion */
13376         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13377         ctl.data.comp.cid = cid;
13378         ctl.data.comp.error = err;
13379
13380         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13381         bnx2x_cnic_sp_post(bp, 0);
13382 }
13383
13384 /* Called with netif_addr_lock_bh() taken.
13385  * Sets an rx_mode config for an iSCSI ETH client.
13386  * Doesn't block.
13387  * Completion should be checked outside.
13388  */
13389 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13390 {
13391         unsigned long accept_flags = 0, ramrod_flags = 0;
13392         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13393         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13394
13395         if (start) {
13396                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13397                  * because it's the only way for UIO Queue to accept
13398                  * multicasts (in non-promiscuous mode only one Queue per
13399                  * function will receive multicast packets (leading in our
13400                  * case).
13401                  */
13402                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13403                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13404                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13405                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13406
13407                 /* Clear STOP_PENDING bit if START is requested */
13408                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13409
13410                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13411         } else
13412                 /* Clear START_PENDING bit if STOP is requested */
13413                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13414
13415         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13416                 set_bit(sched_state, &bp->sp_state);
13417         else {
13418                 __set_bit(RAMROD_RX, &ramrod_flags);
13419                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13420                                     ramrod_flags);
13421         }
13422 }
13423
13424 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13425 {
13426         struct bnx2x *bp = netdev_priv(dev);
13427         int rc = 0;
13428
13429         switch (ctl->cmd) {
13430         case DRV_CTL_CTXTBL_WR_CMD: {
13431                 u32 index = ctl->data.io.offset;
13432                 dma_addr_t addr = ctl->data.io.dma_addr;
13433
13434                 bnx2x_ilt_wr(bp, index, addr);
13435                 break;
13436         }
13437
13438         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13439                 int count = ctl->data.credit.credit_count;
13440
13441                 bnx2x_cnic_sp_post(bp, count);
13442                 break;
13443         }
13444
13445         /* rtnl_lock is held.  */
13446         case DRV_CTL_START_L2_CMD: {
13447                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13448                 unsigned long sp_bits = 0;
13449
13450                 /* Configure the iSCSI classification object */
13451                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13452                                    cp->iscsi_l2_client_id,
13453                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13454                                    bnx2x_sp(bp, mac_rdata),
13455                                    bnx2x_sp_mapping(bp, mac_rdata),
13456                                    BNX2X_FILTER_MAC_PENDING,
13457                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13458                                    &bp->macs_pool);
13459
13460                 /* Set iSCSI MAC address */
13461                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13462                 if (rc)
13463                         break;
13464
13465                 mmiowb();
13466                 barrier();
13467
13468                 /* Start accepting on iSCSI L2 ring */
13469
13470                 netif_addr_lock_bh(dev);
13471                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13472                 netif_addr_unlock_bh(dev);
13473
13474                 /* bits to wait on */
13475                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13476                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13477
13478                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13479                         BNX2X_ERR("rx_mode completion timed out!\n");
13480
13481                 break;
13482         }
13483
13484         /* rtnl_lock is held.  */
13485         case DRV_CTL_STOP_L2_CMD: {
13486                 unsigned long sp_bits = 0;
13487
13488                 /* Stop accepting on iSCSI L2 ring */
13489                 netif_addr_lock_bh(dev);
13490                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13491                 netif_addr_unlock_bh(dev);
13492
13493                 /* bits to wait on */
13494                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13495                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13496
13497                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13498                         BNX2X_ERR("rx_mode completion timed out!\n");
13499
13500                 mmiowb();
13501                 barrier();
13502
13503                 /* Unset iSCSI L2 MAC */
13504                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13505                                         BNX2X_ISCSI_ETH_MAC, true);
13506                 break;
13507         }
13508         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13509                 int count = ctl->data.credit.credit_count;
13510
13511                 smp_mb__before_atomic_inc();
13512                 atomic_add(count, &bp->cq_spq_left);
13513                 smp_mb__after_atomic_inc();
13514                 break;
13515         }
13516         case DRV_CTL_ULP_REGISTER_CMD: {
13517                 int ulp_type = ctl->data.register_data.ulp_type;
13518
13519                 if (CHIP_IS_E3(bp)) {
13520                         int idx = BP_FW_MB_IDX(bp);
13521                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13522                         int path = BP_PATH(bp);
13523                         int port = BP_PORT(bp);
13524                         int i;
13525                         u32 scratch_offset;
13526                         u32 *host_addr;
13527
13528                         /* first write capability to shmem2 */
13529                         if (ulp_type == CNIC_ULP_ISCSI)
13530                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13531                         else if (ulp_type == CNIC_ULP_FCOE)
13532                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13533                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13534
13535                         if ((ulp_type != CNIC_ULP_FCOE) ||
13536                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13537                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13538                                 break;
13539
13540                         /* if reached here - should write fcoe capabilities */
13541                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13542                         if (!scratch_offset)
13543                                 break;
13544                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13545                                                    fcoe_features[path][port]);
13546                         host_addr = (u32 *) &(ctl->data.register_data.
13547                                               fcoe_features);
13548                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13549                              i += 4)
13550                                 REG_WR(bp, scratch_offset + i,
13551                                        *(host_addr + i/4));
13552                 }
13553                 break;
13554         }
13555
13556         case DRV_CTL_ULP_UNREGISTER_CMD: {
13557                 int ulp_type = ctl->data.ulp_type;
13558
13559                 if (CHIP_IS_E3(bp)) {
13560                         int idx = BP_FW_MB_IDX(bp);
13561                         u32 cap;
13562
13563                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13564                         if (ulp_type == CNIC_ULP_ISCSI)
13565                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13566                         else if (ulp_type == CNIC_ULP_FCOE)
13567                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13568                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13569                 }
13570                 break;
13571         }
13572
13573         default:
13574                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13575                 rc = -EINVAL;
13576         }
13577
13578         return rc;
13579 }
13580
13581 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13582 {
13583         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13584
13585         if (bp->flags & USING_MSIX_FLAG) {
13586                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13587                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13588                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13589         } else {
13590                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13591                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13592         }
13593         if (!CHIP_IS_E1x(bp))
13594                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13595         else
13596                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13597
13598         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13599         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13600         cp->irq_arr[1].status_blk = bp->def_status_blk;
13601         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13602         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13603
13604         cp->num_irq = 2;
13605 }
13606
13607 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13608 {
13609         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13610
13611         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13612                              bnx2x_cid_ilt_lines(bp);
13613         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13614         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13615         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13616
13617         if (NO_ISCSI_OOO(bp))
13618                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13619 }
13620
13621 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13622                                void *data)
13623 {
13624         struct bnx2x *bp = netdev_priv(dev);
13625         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13626         int rc;
13627
13628         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13629
13630         if (ops == NULL) {
13631                 BNX2X_ERR("NULL ops received\n");
13632                 return -EINVAL;
13633         }
13634
13635         if (!CNIC_SUPPORT(bp)) {
13636                 BNX2X_ERR("Can't register CNIC when not supported\n");
13637                 return -EOPNOTSUPP;
13638         }
13639
13640         if (!CNIC_LOADED(bp)) {
13641                 rc = bnx2x_load_cnic(bp);
13642                 if (rc) {
13643                         BNX2X_ERR("CNIC-related load failed\n");
13644                         return rc;
13645                 }
13646         }
13647
13648         bp->cnic_enabled = true;
13649
13650         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13651         if (!bp->cnic_kwq)
13652                 return -ENOMEM;
13653
13654         bp->cnic_kwq_cons = bp->cnic_kwq;
13655         bp->cnic_kwq_prod = bp->cnic_kwq;
13656         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13657
13658         bp->cnic_spq_pending = 0;
13659         bp->cnic_kwq_pending = 0;
13660
13661         bp->cnic_data = data;
13662
13663         cp->num_irq = 0;
13664         cp->drv_state |= CNIC_DRV_STATE_REGD;
13665         cp->iro_arr = bp->iro_arr;
13666
13667         bnx2x_setup_cnic_irq_info(bp);
13668
13669         rcu_assign_pointer(bp->cnic_ops, ops);
13670
13671         return 0;
13672 }
13673
13674 static int bnx2x_unregister_cnic(struct net_device *dev)
13675 {
13676         struct bnx2x *bp = netdev_priv(dev);
13677         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13678
13679         mutex_lock(&bp->cnic_mutex);
13680         cp->drv_state = 0;
13681         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13682         mutex_unlock(&bp->cnic_mutex);
13683         synchronize_rcu();
13684         bp->cnic_enabled = false;
13685         kfree(bp->cnic_kwq);
13686         bp->cnic_kwq = NULL;
13687
13688         return 0;
13689 }
13690
13691 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13692 {
13693         struct bnx2x *bp = netdev_priv(dev);
13694         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13695
13696         /* If both iSCSI and FCoE are disabled - return NULL in
13697          * order to indicate CNIC that it should not try to work
13698          * with this device.
13699          */
13700         if (NO_ISCSI(bp) && NO_FCOE(bp))
13701                 return NULL;
13702
13703         cp->drv_owner = THIS_MODULE;
13704         cp->chip_id = CHIP_ID(bp);
13705         cp->pdev = bp->pdev;
13706         cp->io_base = bp->regview;
13707         cp->io_base2 = bp->doorbells;
13708         cp->max_kwqe_pending = 8;
13709         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13710         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13711                              bnx2x_cid_ilt_lines(bp);
13712         cp->ctx_tbl_len = CNIC_ILT_LINES;
13713         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13714         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13715         cp->drv_ctl = bnx2x_drv_ctl;
13716         cp->drv_register_cnic = bnx2x_register_cnic;
13717         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13718         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13719         cp->iscsi_l2_client_id =
13720                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13721         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13722
13723         if (NO_ISCSI_OOO(bp))
13724                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13725
13726         if (NO_ISCSI(bp))
13727                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13728
13729         if (NO_FCOE(bp))
13730                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13731
13732         BNX2X_DEV_INFO(
13733                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13734            cp->ctx_blk_size,
13735            cp->ctx_tbl_offset,
13736            cp->ctx_tbl_len,
13737            cp->starting_cid);
13738         return cp;
13739 }
13740
13741 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13742 {
13743         struct bnx2x *bp = fp->bp;
13744         u32 offset = BAR_USTRORM_INTMEM;
13745
13746         if (IS_VF(bp))
13747                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13748         else if (!CHIP_IS_E1x(bp))
13749                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13750         else
13751                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13752
13753         return offset;
13754 }
13755
13756 /* called only on E1H or E2.
13757  * When pretending to be PF, the pretend value is the function number 0...7
13758  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13759  * combination
13760  */
13761 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13762 {
13763         u32 pretend_reg;
13764
13765         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13766                 return -1;
13767
13768         /* get my own pretend register */
13769         pretend_reg = bnx2x_get_pretend_reg(bp);
13770         REG_WR(bp, pretend_reg, pretend_func_val);
13771         REG_RD(bp, pretend_reg);
13772         return 0;
13773 }