]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75         BCM57301,
76         BCM57302,
77         BCM57304,
78         BCM57402,
79         BCM57404,
80         BCM57406,
81         BCM57314,
82         BCM57304_VF,
83         BCM57404_VF,
84 };
85
86 /* indexed by enum above */
87 static const struct {
88         char *name;
89 } board_info[] = {
90         { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
91         { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
92         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
93         { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
94         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
95         { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
96         { "Broadcom BCM57314 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
97         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
98         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
99 };
100
101 static const struct pci_device_id bnxt_pci_tbl[] = {
102         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
103         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
104         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
105         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
106         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
107         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
108         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
109 #ifdef CONFIG_BNXT_SRIOV
110         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
111         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
112 #endif
113         { 0 }
114 };
115
116 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
117
118 static const u16 bnxt_vf_req_snif[] = {
119         HWRM_FUNC_CFG,
120         HWRM_PORT_PHY_QCFG,
121         HWRM_CFA_L2_FILTER_ALLOC,
122 };
123
124 static const u16 bnxt_async_events_arr[] = {
125         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
126         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
127         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
128         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
129 };
130
131 static bool bnxt_vf_pciid(enum board_idx idx)
132 {
133         return (idx == BCM57304_VF || idx == BCM57404_VF);
134 }
135
136 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
137 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
138 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
139
140 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
141                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
142
143 #define BNXT_CP_DB(db, raw_cons)                                        \
144                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
145
146 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
147                 writel(DB_CP_IRQ_DIS_FLAGS, db)
148
149 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
150 {
151         /* Tell compiler to fetch tx indices from memory. */
152         barrier();
153
154         return bp->tx_ring_size -
155                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
156 }
157
158 static const u16 bnxt_lhint_arr[] = {
159         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
160         TX_BD_FLAGS_LHINT_512_TO_1023,
161         TX_BD_FLAGS_LHINT_1024_TO_2047,
162         TX_BD_FLAGS_LHINT_1024_TO_2047,
163         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
169         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
170         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
171         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
172         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
173         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
174         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
175         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
176         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
177         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
178 };
179
180 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
181 {
182         struct bnxt *bp = netdev_priv(dev);
183         struct tx_bd *txbd;
184         struct tx_bd_ext *txbd1;
185         struct netdev_queue *txq;
186         int i;
187         dma_addr_t mapping;
188         unsigned int length, pad = 0;
189         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
190         u16 prod, last_frag;
191         struct pci_dev *pdev = bp->pdev;
192         struct bnxt_tx_ring_info *txr;
193         struct bnxt_sw_tx_bd *tx_buf;
194
195         i = skb_get_queue_mapping(skb);
196         if (unlikely(i >= bp->tx_nr_rings)) {
197                 dev_kfree_skb_any(skb);
198                 return NETDEV_TX_OK;
199         }
200
201         txr = &bp->tx_ring[i];
202         txq = netdev_get_tx_queue(dev, i);
203         prod = txr->tx_prod;
204
205         free_size = bnxt_tx_avail(bp, txr);
206         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
207                 netif_tx_stop_queue(txq);
208                 return NETDEV_TX_BUSY;
209         }
210
211         length = skb->len;
212         len = skb_headlen(skb);
213         last_frag = skb_shinfo(skb)->nr_frags;
214
215         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
216
217         txbd->tx_bd_opaque = prod;
218
219         tx_buf = &txr->tx_buf_ring[prod];
220         tx_buf->skb = skb;
221         tx_buf->nr_frags = last_frag;
222
223         vlan_tag_flags = 0;
224         cfa_action = 0;
225         if (skb_vlan_tag_present(skb)) {
226                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
227                                  skb_vlan_tag_get(skb);
228                 /* Currently supports 8021Q, 8021AD vlan offloads
229                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
230                  */
231                 if (skb->vlan_proto == htons(ETH_P_8021Q))
232                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
233         }
234
235         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
236                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
237                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
238                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
239                 void *pdata = tx_push_buf->data;
240                 u64 *end;
241                 int j, push_len;
242
243                 /* Set COAL_NOW to be ready quickly for the next push */
244                 tx_push->tx_bd_len_flags_type =
245                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
246                                         TX_BD_TYPE_LONG_TX_BD |
247                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
248                                         TX_BD_FLAGS_COAL_NOW |
249                                         TX_BD_FLAGS_PACKET_END |
250                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
251
252                 if (skb->ip_summed == CHECKSUM_PARTIAL)
253                         tx_push1->tx_bd_hsize_lflags =
254                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
255                 else
256                         tx_push1->tx_bd_hsize_lflags = 0;
257
258                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
259                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
260
261                 end = pdata + length;
262                 end = PTR_ALIGN(end, 8) - 1;
263                 *end = 0;
264
265                 skb_copy_from_linear_data(skb, pdata, len);
266                 pdata += len;
267                 for (j = 0; j < last_frag; j++) {
268                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
269                         void *fptr;
270
271                         fptr = skb_frag_address_safe(frag);
272                         if (!fptr)
273                                 goto normal_tx;
274
275                         memcpy(pdata, fptr, skb_frag_size(frag));
276                         pdata += skb_frag_size(frag);
277                 }
278
279                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
280                 txbd->tx_bd_haddr = txr->data_mapping;
281                 prod = NEXT_TX(prod);
282                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
283                 memcpy(txbd, tx_push1, sizeof(*txbd));
284                 prod = NEXT_TX(prod);
285                 tx_push->doorbell =
286                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
287                 txr->tx_prod = prod;
288
289                 tx_buf->is_push = 1;
290                 netdev_tx_sent_queue(txq, skb->len);
291                 wmb();  /* Sync is_push and byte queue before pushing data */
292
293                 push_len = (length + sizeof(*tx_push) + 7) / 8;
294                 if (push_len > 16) {
295                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
296                         __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
297                                          push_len - 16);
298                 } else {
299                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
300                                          push_len);
301                 }
302
303                 goto tx_done;
304         }
305
306 normal_tx:
307         if (length < BNXT_MIN_PKT_SIZE) {
308                 pad = BNXT_MIN_PKT_SIZE - length;
309                 if (skb_pad(skb, pad)) {
310                         /* SKB already freed. */
311                         tx_buf->skb = NULL;
312                         return NETDEV_TX_OK;
313                 }
314                 length = BNXT_MIN_PKT_SIZE;
315         }
316
317         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
318
319         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
320                 dev_kfree_skb_any(skb);
321                 tx_buf->skb = NULL;
322                 return NETDEV_TX_OK;
323         }
324
325         dma_unmap_addr_set(tx_buf, mapping, mapping);
326         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
327                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
328
329         txbd->tx_bd_haddr = cpu_to_le64(mapping);
330
331         prod = NEXT_TX(prod);
332         txbd1 = (struct tx_bd_ext *)
333                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
334
335         txbd1->tx_bd_hsize_lflags = 0;
336         if (skb_is_gso(skb)) {
337                 u32 hdr_len;
338
339                 if (skb->encapsulation)
340                         hdr_len = skb_inner_network_offset(skb) +
341                                 skb_inner_network_header_len(skb) +
342                                 inner_tcp_hdrlen(skb);
343                 else
344                         hdr_len = skb_transport_offset(skb) +
345                                 tcp_hdrlen(skb);
346
347                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
348                                         TX_BD_FLAGS_T_IPID |
349                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
350                 length = skb_shinfo(skb)->gso_size;
351                 txbd1->tx_bd_mss = cpu_to_le32(length);
352                 length += hdr_len;
353         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
354                 txbd1->tx_bd_hsize_lflags =
355                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
356                 txbd1->tx_bd_mss = 0;
357         }
358
359         length >>= 9;
360         flags |= bnxt_lhint_arr[length];
361         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
362
363         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
364         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
365         for (i = 0; i < last_frag; i++) {
366                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
367
368                 prod = NEXT_TX(prod);
369                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
370
371                 len = skb_frag_size(frag);
372                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
373                                            DMA_TO_DEVICE);
374
375                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
376                         goto tx_dma_error;
377
378                 tx_buf = &txr->tx_buf_ring[prod];
379                 dma_unmap_addr_set(tx_buf, mapping, mapping);
380
381                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
382
383                 flags = len << TX_BD_LEN_SHIFT;
384                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
385         }
386
387         flags &= ~TX_BD_LEN;
388         txbd->tx_bd_len_flags_type =
389                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
390                             TX_BD_FLAGS_PACKET_END);
391
392         netdev_tx_sent_queue(txq, skb->len);
393
394         /* Sync BD data before updating doorbell */
395         wmb();
396
397         prod = NEXT_TX(prod);
398         txr->tx_prod = prod;
399
400         writel(DB_KEY_TX | prod, txr->tx_doorbell);
401         writel(DB_KEY_TX | prod, txr->tx_doorbell);
402
403 tx_done:
404
405         mmiowb();
406
407         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
408                 netif_tx_stop_queue(txq);
409
410                 /* netif_tx_stop_queue() must be done before checking
411                  * tx index in bnxt_tx_avail() below, because in
412                  * bnxt_tx_int(), we update tx index before checking for
413                  * netif_tx_queue_stopped().
414                  */
415                 smp_mb();
416                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
417                         netif_tx_wake_queue(txq);
418         }
419         return NETDEV_TX_OK;
420
421 tx_dma_error:
422         last_frag = i;
423
424         /* start back at beginning and unmap skb */
425         prod = txr->tx_prod;
426         tx_buf = &txr->tx_buf_ring[prod];
427         tx_buf->skb = NULL;
428         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
429                          skb_headlen(skb), PCI_DMA_TODEVICE);
430         prod = NEXT_TX(prod);
431
432         /* unmap remaining mapped pages */
433         for (i = 0; i < last_frag; i++) {
434                 prod = NEXT_TX(prod);
435                 tx_buf = &txr->tx_buf_ring[prod];
436                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
437                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
438                                PCI_DMA_TODEVICE);
439         }
440
441         dev_kfree_skb_any(skb);
442         return NETDEV_TX_OK;
443 }
444
445 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
446 {
447         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
448         int index = txr - &bp->tx_ring[0];
449         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
450         u16 cons = txr->tx_cons;
451         struct pci_dev *pdev = bp->pdev;
452         int i;
453         unsigned int tx_bytes = 0;
454
455         for (i = 0; i < nr_pkts; i++) {
456                 struct bnxt_sw_tx_bd *tx_buf;
457                 struct sk_buff *skb;
458                 int j, last;
459
460                 tx_buf = &txr->tx_buf_ring[cons];
461                 cons = NEXT_TX(cons);
462                 skb = tx_buf->skb;
463                 tx_buf->skb = NULL;
464
465                 if (tx_buf->is_push) {
466                         tx_buf->is_push = 0;
467                         goto next_tx_int;
468                 }
469
470                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
471                                  skb_headlen(skb), PCI_DMA_TODEVICE);
472                 last = tx_buf->nr_frags;
473
474                 for (j = 0; j < last; j++) {
475                         cons = NEXT_TX(cons);
476                         tx_buf = &txr->tx_buf_ring[cons];
477                         dma_unmap_page(
478                                 &pdev->dev,
479                                 dma_unmap_addr(tx_buf, mapping),
480                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
481                                 PCI_DMA_TODEVICE);
482                 }
483
484 next_tx_int:
485                 cons = NEXT_TX(cons);
486
487                 tx_bytes += skb->len;
488                 dev_kfree_skb_any(skb);
489         }
490
491         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
492         txr->tx_cons = cons;
493
494         /* Need to make the tx_cons update visible to bnxt_start_xmit()
495          * before checking for netif_tx_queue_stopped().  Without the
496          * memory barrier, there is a small possibility that bnxt_start_xmit()
497          * will miss it and cause the queue to be stopped forever.
498          */
499         smp_mb();
500
501         if (unlikely(netif_tx_queue_stopped(txq)) &&
502             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
503                 __netif_tx_lock(txq, smp_processor_id());
504                 if (netif_tx_queue_stopped(txq) &&
505                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
506                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
507                         netif_tx_wake_queue(txq);
508                 __netif_tx_unlock(txq);
509         }
510 }
511
512 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
513                                        gfp_t gfp)
514 {
515         u8 *data;
516         struct pci_dev *pdev = bp->pdev;
517
518         data = kmalloc(bp->rx_buf_size, gfp);
519         if (!data)
520                 return NULL;
521
522         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
523                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
524
525         if (dma_mapping_error(&pdev->dev, *mapping)) {
526                 kfree(data);
527                 data = NULL;
528         }
529         return data;
530 }
531
532 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
533                                      struct bnxt_rx_ring_info *rxr,
534                                      u16 prod, gfp_t gfp)
535 {
536         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
537         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
538         u8 *data;
539         dma_addr_t mapping;
540
541         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
542         if (!data)
543                 return -ENOMEM;
544
545         rx_buf->data = data;
546         dma_unmap_addr_set(rx_buf, mapping, mapping);
547
548         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
549
550         return 0;
551 }
552
553 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
554                                u8 *data)
555 {
556         u16 prod = rxr->rx_prod;
557         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
558         struct rx_bd *cons_bd, *prod_bd;
559
560         prod_rx_buf = &rxr->rx_buf_ring[prod];
561         cons_rx_buf = &rxr->rx_buf_ring[cons];
562
563         prod_rx_buf->data = data;
564
565         dma_unmap_addr_set(prod_rx_buf, mapping,
566                            dma_unmap_addr(cons_rx_buf, mapping));
567
568         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
569         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
570
571         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
572 }
573
574 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
575 {
576         u16 next, max = rxr->rx_agg_bmap_size;
577
578         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
579         if (next >= max)
580                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
581         return next;
582 }
583
584 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
585                                      struct bnxt_rx_ring_info *rxr,
586                                      u16 prod, gfp_t gfp)
587 {
588         struct rx_bd *rxbd =
589                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
590         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
591         struct pci_dev *pdev = bp->pdev;
592         struct page *page;
593         dma_addr_t mapping;
594         u16 sw_prod = rxr->rx_sw_agg_prod;
595         unsigned int offset = 0;
596
597         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
598                 page = rxr->rx_page;
599                 if (!page) {
600                         page = alloc_page(gfp);
601                         if (!page)
602                                 return -ENOMEM;
603                         rxr->rx_page = page;
604                         rxr->rx_page_offset = 0;
605                 }
606                 offset = rxr->rx_page_offset;
607                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
608                 if (rxr->rx_page_offset == PAGE_SIZE)
609                         rxr->rx_page = NULL;
610                 else
611                         get_page(page);
612         } else {
613                 page = alloc_page(gfp);
614                 if (!page)
615                         return -ENOMEM;
616         }
617
618         mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
619                                PCI_DMA_FROMDEVICE);
620         if (dma_mapping_error(&pdev->dev, mapping)) {
621                 __free_page(page);
622                 return -EIO;
623         }
624
625         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
626                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
627
628         __set_bit(sw_prod, rxr->rx_agg_bmap);
629         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
630         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
631
632         rx_agg_buf->page = page;
633         rx_agg_buf->offset = offset;
634         rx_agg_buf->mapping = mapping;
635         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
636         rxbd->rx_bd_opaque = sw_prod;
637         return 0;
638 }
639
640 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
641                                    u32 agg_bufs)
642 {
643         struct bnxt *bp = bnapi->bp;
644         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
645         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
646         u16 prod = rxr->rx_agg_prod;
647         u16 sw_prod = rxr->rx_sw_agg_prod;
648         u32 i;
649
650         for (i = 0; i < agg_bufs; i++) {
651                 u16 cons;
652                 struct rx_agg_cmp *agg;
653                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
654                 struct rx_bd *prod_bd;
655                 struct page *page;
656
657                 agg = (struct rx_agg_cmp *)
658                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
659                 cons = agg->rx_agg_cmp_opaque;
660                 __clear_bit(cons, rxr->rx_agg_bmap);
661
662                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
663                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
664
665                 __set_bit(sw_prod, rxr->rx_agg_bmap);
666                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
667                 cons_rx_buf = &rxr->rx_agg_ring[cons];
668
669                 /* It is possible for sw_prod to be equal to cons, so
670                  * set cons_rx_buf->page to NULL first.
671                  */
672                 page = cons_rx_buf->page;
673                 cons_rx_buf->page = NULL;
674                 prod_rx_buf->page = page;
675                 prod_rx_buf->offset = cons_rx_buf->offset;
676
677                 prod_rx_buf->mapping = cons_rx_buf->mapping;
678
679                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680
681                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
682                 prod_bd->rx_bd_opaque = sw_prod;
683
684                 prod = NEXT_RX_AGG(prod);
685                 sw_prod = NEXT_RX_AGG(sw_prod);
686                 cp_cons = NEXT_CMP(cp_cons);
687         }
688         rxr->rx_agg_prod = prod;
689         rxr->rx_sw_agg_prod = sw_prod;
690 }
691
692 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
693                                    struct bnxt_rx_ring_info *rxr, u16 cons,
694                                    u16 prod, u8 *data, dma_addr_t dma_addr,
695                                    unsigned int len)
696 {
697         int err;
698         struct sk_buff *skb;
699
700         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
701         if (unlikely(err)) {
702                 bnxt_reuse_rx_data(rxr, cons, data);
703                 return NULL;
704         }
705
706         skb = build_skb(data, 0);
707         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
708                          PCI_DMA_FROMDEVICE);
709         if (!skb) {
710                 kfree(data);
711                 return NULL;
712         }
713
714         skb_reserve(skb, BNXT_RX_OFFSET);
715         skb_put(skb, len);
716         return skb;
717 }
718
719 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
720                                      struct sk_buff *skb, u16 cp_cons,
721                                      u32 agg_bufs)
722 {
723         struct pci_dev *pdev = bp->pdev;
724         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
725         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
726         u16 prod = rxr->rx_agg_prod;
727         u32 i;
728
729         for (i = 0; i < agg_bufs; i++) {
730                 u16 cons, frag_len;
731                 struct rx_agg_cmp *agg;
732                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
733                 struct page *page;
734                 dma_addr_t mapping;
735
736                 agg = (struct rx_agg_cmp *)
737                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
738                 cons = agg->rx_agg_cmp_opaque;
739                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
740                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
741
742                 cons_rx_buf = &rxr->rx_agg_ring[cons];
743                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
744                                    cons_rx_buf->offset, frag_len);
745                 __clear_bit(cons, rxr->rx_agg_bmap);
746
747                 /* It is possible for bnxt_alloc_rx_page() to allocate
748                  * a sw_prod index that equals the cons index, so we
749                  * need to clear the cons entry now.
750                  */
751                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
752                 page = cons_rx_buf->page;
753                 cons_rx_buf->page = NULL;
754
755                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
756                         struct skb_shared_info *shinfo;
757                         unsigned int nr_frags;
758
759                         shinfo = skb_shinfo(skb);
760                         nr_frags = --shinfo->nr_frags;
761                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
762
763                         dev_kfree_skb(skb);
764
765                         cons_rx_buf->page = page;
766
767                         /* Update prod since possibly some pages have been
768                          * allocated already.
769                          */
770                         rxr->rx_agg_prod = prod;
771                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
772                         return NULL;
773                 }
774
775                 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
776                                PCI_DMA_FROMDEVICE);
777
778                 skb->data_len += frag_len;
779                 skb->len += frag_len;
780                 skb->truesize += PAGE_SIZE;
781
782                 prod = NEXT_RX_AGG(prod);
783                 cp_cons = NEXT_CMP(cp_cons);
784         }
785         rxr->rx_agg_prod = prod;
786         return skb;
787 }
788
789 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
790                                u8 agg_bufs, u32 *raw_cons)
791 {
792         u16 last;
793         struct rx_agg_cmp *agg;
794
795         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
796         last = RING_CMP(*raw_cons);
797         agg = (struct rx_agg_cmp *)
798                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
799         return RX_AGG_CMP_VALID(agg, *raw_cons);
800 }
801
802 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
803                                             unsigned int len,
804                                             dma_addr_t mapping)
805 {
806         struct bnxt *bp = bnapi->bp;
807         struct pci_dev *pdev = bp->pdev;
808         struct sk_buff *skb;
809
810         skb = napi_alloc_skb(&bnapi->napi, len);
811         if (!skb)
812                 return NULL;
813
814         dma_sync_single_for_cpu(&pdev->dev, mapping,
815                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
816
817         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
818
819         dma_sync_single_for_device(&pdev->dev, mapping,
820                                    bp->rx_copy_thresh,
821                                    PCI_DMA_FROMDEVICE);
822
823         skb_put(skb, len);
824         return skb;
825 }
826
827 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
828                            u32 *raw_cons, void *cmp)
829 {
830         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
831         struct rx_cmp *rxcmp = cmp;
832         u32 tmp_raw_cons = *raw_cons;
833         u8 cmp_type, agg_bufs = 0;
834
835         cmp_type = RX_CMP_TYPE(rxcmp);
836
837         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
838                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
839                             RX_CMP_AGG_BUFS) >>
840                            RX_CMP_AGG_BUFS_SHIFT;
841         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
842                 struct rx_tpa_end_cmp *tpa_end = cmp;
843
844                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
845                             RX_TPA_END_CMP_AGG_BUFS) >>
846                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
847         }
848
849         if (agg_bufs) {
850                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
851                         return -EBUSY;
852         }
853         *raw_cons = tmp_raw_cons;
854         return 0;
855 }
856
857 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
858 {
859         if (!rxr->bnapi->in_reset) {
860                 rxr->bnapi->in_reset = true;
861                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
862                 schedule_work(&bp->sp_task);
863         }
864         rxr->rx_next_cons = 0xffff;
865 }
866
867 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
868                            struct rx_tpa_start_cmp *tpa_start,
869                            struct rx_tpa_start_cmp_ext *tpa_start1)
870 {
871         u8 agg_id = TPA_START_AGG_ID(tpa_start);
872         u16 cons, prod;
873         struct bnxt_tpa_info *tpa_info;
874         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
875         struct rx_bd *prod_bd;
876         dma_addr_t mapping;
877
878         cons = tpa_start->rx_tpa_start_cmp_opaque;
879         prod = rxr->rx_prod;
880         cons_rx_buf = &rxr->rx_buf_ring[cons];
881         prod_rx_buf = &rxr->rx_buf_ring[prod];
882         tpa_info = &rxr->rx_tpa[agg_id];
883
884         if (unlikely(cons != rxr->rx_next_cons)) {
885                 bnxt_sched_reset(bp, rxr);
886                 return;
887         }
888
889         prod_rx_buf->data = tpa_info->data;
890
891         mapping = tpa_info->mapping;
892         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
893
894         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
895
896         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
897
898         tpa_info->data = cons_rx_buf->data;
899         cons_rx_buf->data = NULL;
900         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
901
902         tpa_info->len =
903                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
904                                 RX_TPA_START_CMP_LEN_SHIFT;
905         if (likely(TPA_START_HASH_VALID(tpa_start))) {
906                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
907
908                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
909                 tpa_info->gso_type = SKB_GSO_TCPV4;
910                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
911                 if (hash_type == 3)
912                         tpa_info->gso_type = SKB_GSO_TCPV6;
913                 tpa_info->rss_hash =
914                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
915         } else {
916                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
917                 tpa_info->gso_type = 0;
918                 if (netif_msg_rx_err(bp))
919                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
920         }
921         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
922         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
923
924         rxr->rx_prod = NEXT_RX(prod);
925         cons = NEXT_RX(cons);
926         rxr->rx_next_cons = NEXT_RX(cons);
927         cons_rx_buf = &rxr->rx_buf_ring[cons];
928
929         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
930         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
931         cons_rx_buf->data = NULL;
932 }
933
934 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
935                            u16 cp_cons, u32 agg_bufs)
936 {
937         if (agg_bufs)
938                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
939 }
940
941 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
942 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
943
944 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
945                                            struct rx_tpa_end_cmp *tpa_end,
946                                            struct rx_tpa_end_cmp_ext *tpa_end1,
947                                            struct sk_buff *skb)
948 {
949 #ifdef CONFIG_INET
950         struct tcphdr *th;
951         int payload_off, tcp_opt_len = 0;
952         int len, nw_off;
953         u16 segs;
954
955         segs = TPA_END_TPA_SEGS(tpa_end);
956         if (segs == 1)
957                 return skb;
958
959         NAPI_GRO_CB(skb)->count = segs;
960         skb_shinfo(skb)->gso_size =
961                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
962         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
963         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
964                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
965                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
966         if (TPA_END_GRO_TS(tpa_end))
967                 tcp_opt_len = 12;
968
969         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
970                 struct iphdr *iph;
971
972                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
973                          ETH_HLEN;
974                 skb_set_network_header(skb, nw_off);
975                 iph = ip_hdr(skb);
976                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
977                 len = skb->len - skb_transport_offset(skb);
978                 th = tcp_hdr(skb);
979                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
980         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
981                 struct ipv6hdr *iph;
982
983                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
984                          ETH_HLEN;
985                 skb_set_network_header(skb, nw_off);
986                 iph = ipv6_hdr(skb);
987                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
988                 len = skb->len - skb_transport_offset(skb);
989                 th = tcp_hdr(skb);
990                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
991         } else {
992                 dev_kfree_skb_any(skb);
993                 return NULL;
994         }
995         tcp_gro_complete(skb);
996
997         if (nw_off) { /* tunnel */
998                 struct udphdr *uh = NULL;
999
1000                 if (skb->protocol == htons(ETH_P_IP)) {
1001                         struct iphdr *iph = (struct iphdr *)skb->data;
1002
1003                         if (iph->protocol == IPPROTO_UDP)
1004                                 uh = (struct udphdr *)(iph + 1);
1005                 } else {
1006                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1007
1008                         if (iph->nexthdr == IPPROTO_UDP)
1009                                 uh = (struct udphdr *)(iph + 1);
1010                 }
1011                 if (uh) {
1012                         if (uh->check)
1013                                 skb_shinfo(skb)->gso_type |=
1014                                         SKB_GSO_UDP_TUNNEL_CSUM;
1015                         else
1016                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1017                 }
1018         }
1019 #endif
1020         return skb;
1021 }
1022
1023 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1024                                            struct bnxt_napi *bnapi,
1025                                            u32 *raw_cons,
1026                                            struct rx_tpa_end_cmp *tpa_end,
1027                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1028                                            bool *agg_event)
1029 {
1030         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1031         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1032         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1033         u8 *data, agg_bufs;
1034         u16 cp_cons = RING_CMP(*raw_cons);
1035         unsigned int len;
1036         struct bnxt_tpa_info *tpa_info;
1037         dma_addr_t mapping;
1038         struct sk_buff *skb;
1039
1040         if (unlikely(bnapi->in_reset)) {
1041                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1042
1043                 if (rc < 0)
1044                         return ERR_PTR(-EBUSY);
1045                 return NULL;
1046         }
1047
1048         tpa_info = &rxr->rx_tpa[agg_id];
1049         data = tpa_info->data;
1050         prefetch(data);
1051         len = tpa_info->len;
1052         mapping = tpa_info->mapping;
1053
1054         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1055                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1056
1057         if (agg_bufs) {
1058                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1059                         return ERR_PTR(-EBUSY);
1060
1061                 *agg_event = true;
1062                 cp_cons = NEXT_CMP(cp_cons);
1063         }
1064
1065         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1066                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1067                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1068                             agg_bufs, (int)MAX_SKB_FRAGS);
1069                 return NULL;
1070         }
1071
1072         if (len <= bp->rx_copy_thresh) {
1073                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1074                 if (!skb) {
1075                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1076                         return NULL;
1077                 }
1078         } else {
1079                 u8 *new_data;
1080                 dma_addr_t new_mapping;
1081
1082                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1083                 if (!new_data) {
1084                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1085                         return NULL;
1086                 }
1087
1088                 tpa_info->data = new_data;
1089                 tpa_info->mapping = new_mapping;
1090
1091                 skb = build_skb(data, 0);
1092                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1093                                  PCI_DMA_FROMDEVICE);
1094
1095                 if (!skb) {
1096                         kfree(data);
1097                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1098                         return NULL;
1099                 }
1100                 skb_reserve(skb, BNXT_RX_OFFSET);
1101                 skb_put(skb, len);
1102         }
1103
1104         if (agg_bufs) {
1105                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1106                 if (!skb) {
1107                         /* Page reuse already handled by bnxt_rx_pages(). */
1108                         return NULL;
1109                 }
1110         }
1111         skb->protocol = eth_type_trans(skb, bp->dev);
1112
1113         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1114                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1115
1116         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1117             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1118                 u16 vlan_proto = tpa_info->metadata >>
1119                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1120                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1121
1122                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1123         }
1124
1125         skb_checksum_none_assert(skb);
1126         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1127                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1128                 skb->csum_level =
1129                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1130         }
1131
1132         if (TPA_END_GRO(tpa_end))
1133                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1134
1135         return skb;
1136 }
1137
1138 /* returns the following:
1139  * 1       - 1 packet successfully received
1140  * 0       - successful TPA_START, packet not completed yet
1141  * -EBUSY  - completion ring does not have all the agg buffers yet
1142  * -ENOMEM - packet aborted due to out of memory
1143  * -EIO    - packet aborted due to hw error indicated in BD
1144  */
1145 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1146                        bool *agg_event)
1147 {
1148         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1149         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1150         struct net_device *dev = bp->dev;
1151         struct rx_cmp *rxcmp;
1152         struct rx_cmp_ext *rxcmp1;
1153         u32 tmp_raw_cons = *raw_cons;
1154         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1155         struct bnxt_sw_rx_bd *rx_buf;
1156         unsigned int len;
1157         u8 *data, agg_bufs, cmp_type;
1158         dma_addr_t dma_addr;
1159         struct sk_buff *skb;
1160         int rc = 0;
1161
1162         rxcmp = (struct rx_cmp *)
1163                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1164
1165         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1166         cp_cons = RING_CMP(tmp_raw_cons);
1167         rxcmp1 = (struct rx_cmp_ext *)
1168                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1169
1170         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1171                 return -EBUSY;
1172
1173         cmp_type = RX_CMP_TYPE(rxcmp);
1174
1175         prod = rxr->rx_prod;
1176
1177         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1178                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1179                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1180
1181                 goto next_rx_no_prod;
1182
1183         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1184                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1185                                    (struct rx_tpa_end_cmp *)rxcmp,
1186                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1187                                    agg_event);
1188
1189                 if (unlikely(IS_ERR(skb)))
1190                         return -EBUSY;
1191
1192                 rc = -ENOMEM;
1193                 if (likely(skb)) {
1194                         skb_record_rx_queue(skb, bnapi->index);
1195                         skb_mark_napi_id(skb, &bnapi->napi);
1196                         if (bnxt_busy_polling(bnapi))
1197                                 netif_receive_skb(skb);
1198                         else
1199                                 napi_gro_receive(&bnapi->napi, skb);
1200                         rc = 1;
1201                 }
1202                 goto next_rx_no_prod;
1203         }
1204
1205         cons = rxcmp->rx_cmp_opaque;
1206         rx_buf = &rxr->rx_buf_ring[cons];
1207         data = rx_buf->data;
1208         if (unlikely(cons != rxr->rx_next_cons)) {
1209                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1210
1211                 bnxt_sched_reset(bp, rxr);
1212                 return rc1;
1213         }
1214         prefetch(data);
1215
1216         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1217                                 RX_CMP_AGG_BUFS_SHIFT;
1218
1219         if (agg_bufs) {
1220                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1221                         return -EBUSY;
1222
1223                 cp_cons = NEXT_CMP(cp_cons);
1224                 *agg_event = true;
1225         }
1226
1227         rx_buf->data = NULL;
1228         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1229                 bnxt_reuse_rx_data(rxr, cons, data);
1230                 if (agg_bufs)
1231                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1232
1233                 rc = -EIO;
1234                 goto next_rx;
1235         }
1236
1237         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1238         dma_addr = dma_unmap_addr(rx_buf, mapping);
1239
1240         if (len <= bp->rx_copy_thresh) {
1241                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1242                 bnxt_reuse_rx_data(rxr, cons, data);
1243                 if (!skb) {
1244                         rc = -ENOMEM;
1245                         goto next_rx;
1246                 }
1247         } else {
1248                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1249                 if (!skb) {
1250                         rc = -ENOMEM;
1251                         goto next_rx;
1252                 }
1253         }
1254
1255         if (agg_bufs) {
1256                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1257                 if (!skb) {
1258                         rc = -ENOMEM;
1259                         goto next_rx;
1260                 }
1261         }
1262
1263         if (RX_CMP_HASH_VALID(rxcmp)) {
1264                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1265                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1266
1267                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1268                 if (hash_type != 1 && hash_type != 3)
1269                         type = PKT_HASH_TYPE_L3;
1270                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1271         }
1272
1273         skb->protocol = eth_type_trans(skb, dev);
1274
1275         if ((rxcmp1->rx_cmp_flags2 &
1276              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1277             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1278                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1279                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1280                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1281
1282                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1283         }
1284
1285         skb_checksum_none_assert(skb);
1286         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1287                 if (dev->features & NETIF_F_RXCSUM) {
1288                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1289                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1290                 }
1291         } else {
1292                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1293                         if (dev->features & NETIF_F_RXCSUM)
1294                                 cpr->rx_l4_csum_errors++;
1295                 }
1296         }
1297
1298         skb_record_rx_queue(skb, bnapi->index);
1299         skb_mark_napi_id(skb, &bnapi->napi);
1300         if (bnxt_busy_polling(bnapi))
1301                 netif_receive_skb(skb);
1302         else
1303                 napi_gro_receive(&bnapi->napi, skb);
1304         rc = 1;
1305
1306 next_rx:
1307         rxr->rx_prod = NEXT_RX(prod);
1308         rxr->rx_next_cons = NEXT_RX(cons);
1309
1310 next_rx_no_prod:
1311         *raw_cons = tmp_raw_cons;
1312
1313         return rc;
1314 }
1315
1316 #define BNXT_GET_EVENT_PORT(data)       \
1317         ((data) &                               \
1318          HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1319
1320 static int bnxt_async_event_process(struct bnxt *bp,
1321                                     struct hwrm_async_event_cmpl *cmpl)
1322 {
1323         u16 event_id = le16_to_cpu(cmpl->event_id);
1324
1325         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1326         switch (event_id) {
1327         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1328                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1329                 struct bnxt_link_info *link_info = &bp->link_info;
1330
1331                 if (BNXT_VF(bp))
1332                         goto async_event_process_exit;
1333                 if (data1 & 0x20000) {
1334                         u16 fw_speed = link_info->force_link_speed;
1335                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1336
1337                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1338                                     speed);
1339                 }
1340                 /* fall thru */
1341         }
1342         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1343                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1344                 break;
1345         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1346                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1347                 break;
1348         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1349                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1350                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1351
1352                 if (BNXT_VF(bp))
1353                         break;
1354
1355                 if (bp->pf.port_id != port_id)
1356                         break;
1357
1358                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1359                 break;
1360         }
1361         default:
1362                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1363                            event_id);
1364                 goto async_event_process_exit;
1365         }
1366         schedule_work(&bp->sp_task);
1367 async_event_process_exit:
1368         return 0;
1369 }
1370
1371 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1372 {
1373         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1374         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1375         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1376                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1377
1378         switch (cmpl_type) {
1379         case CMPL_BASE_TYPE_HWRM_DONE:
1380                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1381                 if (seq_id == bp->hwrm_intr_seq_id)
1382                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1383                 else
1384                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1385                 break;
1386
1387         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1388                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1389
1390                 if ((vf_id < bp->pf.first_vf_id) ||
1391                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1392                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1393                                    vf_id);
1394                         return -EINVAL;
1395                 }
1396
1397                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1398                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1399                 schedule_work(&bp->sp_task);
1400                 break;
1401
1402         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1403                 bnxt_async_event_process(bp,
1404                                          (struct hwrm_async_event_cmpl *)txcmp);
1405
1406         default:
1407                 break;
1408         }
1409
1410         return 0;
1411 }
1412
1413 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1414 {
1415         struct bnxt_napi *bnapi = dev_instance;
1416         struct bnxt *bp = bnapi->bp;
1417         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1418         u32 cons = RING_CMP(cpr->cp_raw_cons);
1419
1420         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1421         napi_schedule(&bnapi->napi);
1422         return IRQ_HANDLED;
1423 }
1424
1425 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1426 {
1427         u32 raw_cons = cpr->cp_raw_cons;
1428         u16 cons = RING_CMP(raw_cons);
1429         struct tx_cmp *txcmp;
1430
1431         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1432
1433         return TX_CMP_VALID(txcmp, raw_cons);
1434 }
1435
1436 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1437 {
1438         struct bnxt_napi *bnapi = dev_instance;
1439         struct bnxt *bp = bnapi->bp;
1440         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1441         u32 cons = RING_CMP(cpr->cp_raw_cons);
1442         u32 int_status;
1443
1444         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1445
1446         if (!bnxt_has_work(bp, cpr)) {
1447                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1448                 /* return if erroneous interrupt */
1449                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1450                         return IRQ_NONE;
1451         }
1452
1453         /* disable ring IRQ */
1454         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1455
1456         /* Return here if interrupt is shared and is disabled. */
1457         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1458                 return IRQ_HANDLED;
1459
1460         napi_schedule(&bnapi->napi);
1461         return IRQ_HANDLED;
1462 }
1463
1464 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1465 {
1466         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1467         u32 raw_cons = cpr->cp_raw_cons;
1468         u32 cons;
1469         int tx_pkts = 0;
1470         int rx_pkts = 0;
1471         bool rx_event = false;
1472         bool agg_event = false;
1473         struct tx_cmp *txcmp;
1474
1475         while (1) {
1476                 int rc;
1477
1478                 cons = RING_CMP(raw_cons);
1479                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1480
1481                 if (!TX_CMP_VALID(txcmp, raw_cons))
1482                         break;
1483
1484                 /* The valid test of the entry must be done first before
1485                  * reading any further.
1486                  */
1487                 dma_rmb();
1488                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1489                         tx_pkts++;
1490                         /* return full budget so NAPI will complete. */
1491                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1492                                 rx_pkts = budget;
1493                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1494                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1495                         if (likely(rc >= 0))
1496                                 rx_pkts += rc;
1497                         else if (rc == -EBUSY)  /* partial completion */
1498                                 break;
1499                         rx_event = true;
1500                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1501                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1502                                     (TX_CMP_TYPE(txcmp) ==
1503                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1504                                     (TX_CMP_TYPE(txcmp) ==
1505                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1506                         bnxt_hwrm_handler(bp, txcmp);
1507                 }
1508                 raw_cons = NEXT_RAW_CMP(raw_cons);
1509
1510                 if (rx_pkts == budget)
1511                         break;
1512         }
1513
1514         cpr->cp_raw_cons = raw_cons;
1515         /* ACK completion ring before freeing tx ring and producing new
1516          * buffers in rx/agg rings to prevent overflowing the completion
1517          * ring.
1518          */
1519         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1520
1521         if (tx_pkts)
1522                 bnxt_tx_int(bp, bnapi, tx_pkts);
1523
1524         if (rx_event) {
1525                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1526
1527                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1528                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1529                 if (agg_event) {
1530                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1531                                rxr->rx_agg_doorbell);
1532                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1533                                rxr->rx_agg_doorbell);
1534                 }
1535         }
1536         return rx_pkts;
1537 }
1538
1539 static int bnxt_poll(struct napi_struct *napi, int budget)
1540 {
1541         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1542         struct bnxt *bp = bnapi->bp;
1543         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1544         int work_done = 0;
1545
1546         if (!bnxt_lock_napi(bnapi))
1547                 return budget;
1548
1549         while (1) {
1550                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1551
1552                 if (work_done >= budget)
1553                         break;
1554
1555                 if (!bnxt_has_work(bp, cpr)) {
1556                         napi_complete(napi);
1557                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1558                         break;
1559                 }
1560         }
1561         mmiowb();
1562         bnxt_unlock_napi(bnapi);
1563         return work_done;
1564 }
1565
1566 #ifdef CONFIG_NET_RX_BUSY_POLL
1567 static int bnxt_busy_poll(struct napi_struct *napi)
1568 {
1569         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1570         struct bnxt *bp = bnapi->bp;
1571         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1572         int rx_work, budget = 4;
1573
1574         if (atomic_read(&bp->intr_sem) != 0)
1575                 return LL_FLUSH_FAILED;
1576
1577         if (!bnxt_lock_poll(bnapi))
1578                 return LL_FLUSH_BUSY;
1579
1580         rx_work = bnxt_poll_work(bp, bnapi, budget);
1581
1582         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1583
1584         bnxt_unlock_poll(bnapi);
1585         return rx_work;
1586 }
1587 #endif
1588
1589 static void bnxt_free_tx_skbs(struct bnxt *bp)
1590 {
1591         int i, max_idx;
1592         struct pci_dev *pdev = bp->pdev;
1593
1594         if (!bp->tx_ring)
1595                 return;
1596
1597         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1598         for (i = 0; i < bp->tx_nr_rings; i++) {
1599                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1600                 int j;
1601
1602                 for (j = 0; j < max_idx;) {
1603                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1604                         struct sk_buff *skb = tx_buf->skb;
1605                         int k, last;
1606
1607                         if (!skb) {
1608                                 j++;
1609                                 continue;
1610                         }
1611
1612                         tx_buf->skb = NULL;
1613
1614                         if (tx_buf->is_push) {
1615                                 dev_kfree_skb(skb);
1616                                 j += 2;
1617                                 continue;
1618                         }
1619
1620                         dma_unmap_single(&pdev->dev,
1621                                          dma_unmap_addr(tx_buf, mapping),
1622                                          skb_headlen(skb),
1623                                          PCI_DMA_TODEVICE);
1624
1625                         last = tx_buf->nr_frags;
1626                         j += 2;
1627                         for (k = 0; k < last; k++, j++) {
1628                                 int ring_idx = j & bp->tx_ring_mask;
1629                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1630
1631                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1632                                 dma_unmap_page(
1633                                         &pdev->dev,
1634                                         dma_unmap_addr(tx_buf, mapping),
1635                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1636                         }
1637                         dev_kfree_skb(skb);
1638                 }
1639                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1640         }
1641 }
1642
1643 static void bnxt_free_rx_skbs(struct bnxt *bp)
1644 {
1645         int i, max_idx, max_agg_idx;
1646         struct pci_dev *pdev = bp->pdev;
1647
1648         if (!bp->rx_ring)
1649                 return;
1650
1651         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1652         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1653         for (i = 0; i < bp->rx_nr_rings; i++) {
1654                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1655                 int j;
1656
1657                 if (rxr->rx_tpa) {
1658                         for (j = 0; j < MAX_TPA; j++) {
1659                                 struct bnxt_tpa_info *tpa_info =
1660                                                         &rxr->rx_tpa[j];
1661                                 u8 *data = tpa_info->data;
1662
1663                                 if (!data)
1664                                         continue;
1665
1666                                 dma_unmap_single(
1667                                         &pdev->dev,
1668                                         dma_unmap_addr(tpa_info, mapping),
1669                                         bp->rx_buf_use_size,
1670                                         PCI_DMA_FROMDEVICE);
1671
1672                                 tpa_info->data = NULL;
1673
1674                                 kfree(data);
1675                         }
1676                 }
1677
1678                 for (j = 0; j < max_idx; j++) {
1679                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1680                         u8 *data = rx_buf->data;
1681
1682                         if (!data)
1683                                 continue;
1684
1685                         dma_unmap_single(&pdev->dev,
1686                                          dma_unmap_addr(rx_buf, mapping),
1687                                          bp->rx_buf_use_size,
1688                                          PCI_DMA_FROMDEVICE);
1689
1690                         rx_buf->data = NULL;
1691
1692                         kfree(data);
1693                 }
1694
1695                 for (j = 0; j < max_agg_idx; j++) {
1696                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1697                                 &rxr->rx_agg_ring[j];
1698                         struct page *page = rx_agg_buf->page;
1699
1700                         if (!page)
1701                                 continue;
1702
1703                         dma_unmap_page(&pdev->dev,
1704                                        dma_unmap_addr(rx_agg_buf, mapping),
1705                                        BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1706
1707                         rx_agg_buf->page = NULL;
1708                         __clear_bit(j, rxr->rx_agg_bmap);
1709
1710                         __free_page(page);
1711                 }
1712                 if (rxr->rx_page) {
1713                         __free_page(rxr->rx_page);
1714                         rxr->rx_page = NULL;
1715                 }
1716         }
1717 }
1718
1719 static void bnxt_free_skbs(struct bnxt *bp)
1720 {
1721         bnxt_free_tx_skbs(bp);
1722         bnxt_free_rx_skbs(bp);
1723 }
1724
1725 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1726 {
1727         struct pci_dev *pdev = bp->pdev;
1728         int i;
1729
1730         for (i = 0; i < ring->nr_pages; i++) {
1731                 if (!ring->pg_arr[i])
1732                         continue;
1733
1734                 dma_free_coherent(&pdev->dev, ring->page_size,
1735                                   ring->pg_arr[i], ring->dma_arr[i]);
1736
1737                 ring->pg_arr[i] = NULL;
1738         }
1739         if (ring->pg_tbl) {
1740                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1741                                   ring->pg_tbl, ring->pg_tbl_map);
1742                 ring->pg_tbl = NULL;
1743         }
1744         if (ring->vmem_size && *ring->vmem) {
1745                 vfree(*ring->vmem);
1746                 *ring->vmem = NULL;
1747         }
1748 }
1749
1750 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1751 {
1752         int i;
1753         struct pci_dev *pdev = bp->pdev;
1754
1755         if (ring->nr_pages > 1) {
1756                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1757                                                   ring->nr_pages * 8,
1758                                                   &ring->pg_tbl_map,
1759                                                   GFP_KERNEL);
1760                 if (!ring->pg_tbl)
1761                         return -ENOMEM;
1762         }
1763
1764         for (i = 0; i < ring->nr_pages; i++) {
1765                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1766                                                      ring->page_size,
1767                                                      &ring->dma_arr[i],
1768                                                      GFP_KERNEL);
1769                 if (!ring->pg_arr[i])
1770                         return -ENOMEM;
1771
1772                 if (ring->nr_pages > 1)
1773                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1774         }
1775
1776         if (ring->vmem_size) {
1777                 *ring->vmem = vzalloc(ring->vmem_size);
1778                 if (!(*ring->vmem))
1779                         return -ENOMEM;
1780         }
1781         return 0;
1782 }
1783
1784 static void bnxt_free_rx_rings(struct bnxt *bp)
1785 {
1786         int i;
1787
1788         if (!bp->rx_ring)
1789                 return;
1790
1791         for (i = 0; i < bp->rx_nr_rings; i++) {
1792                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1793                 struct bnxt_ring_struct *ring;
1794
1795                 kfree(rxr->rx_tpa);
1796                 rxr->rx_tpa = NULL;
1797
1798                 kfree(rxr->rx_agg_bmap);
1799                 rxr->rx_agg_bmap = NULL;
1800
1801                 ring = &rxr->rx_ring_struct;
1802                 bnxt_free_ring(bp, ring);
1803
1804                 ring = &rxr->rx_agg_ring_struct;
1805                 bnxt_free_ring(bp, ring);
1806         }
1807 }
1808
1809 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1810 {
1811         int i, rc, agg_rings = 0, tpa_rings = 0;
1812
1813         if (!bp->rx_ring)
1814                 return -ENOMEM;
1815
1816         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1817                 agg_rings = 1;
1818
1819         if (bp->flags & BNXT_FLAG_TPA)
1820                 tpa_rings = 1;
1821
1822         for (i = 0; i < bp->rx_nr_rings; i++) {
1823                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1824                 struct bnxt_ring_struct *ring;
1825
1826                 ring = &rxr->rx_ring_struct;
1827
1828                 rc = bnxt_alloc_ring(bp, ring);
1829                 if (rc)
1830                         return rc;
1831
1832                 if (agg_rings) {
1833                         u16 mem_size;
1834
1835                         ring = &rxr->rx_agg_ring_struct;
1836                         rc = bnxt_alloc_ring(bp, ring);
1837                         if (rc)
1838                                 return rc;
1839
1840                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1841                         mem_size = rxr->rx_agg_bmap_size / 8;
1842                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1843                         if (!rxr->rx_agg_bmap)
1844                                 return -ENOMEM;
1845
1846                         if (tpa_rings) {
1847                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1848                                                 sizeof(struct bnxt_tpa_info),
1849                                                 GFP_KERNEL);
1850                                 if (!rxr->rx_tpa)
1851                                         return -ENOMEM;
1852                         }
1853                 }
1854         }
1855         return 0;
1856 }
1857
1858 static void bnxt_free_tx_rings(struct bnxt *bp)
1859 {
1860         int i;
1861         struct pci_dev *pdev = bp->pdev;
1862
1863         if (!bp->tx_ring)
1864                 return;
1865
1866         for (i = 0; i < bp->tx_nr_rings; i++) {
1867                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1868                 struct bnxt_ring_struct *ring;
1869
1870                 if (txr->tx_push) {
1871                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1872                                           txr->tx_push, txr->tx_push_mapping);
1873                         txr->tx_push = NULL;
1874                 }
1875
1876                 ring = &txr->tx_ring_struct;
1877
1878                 bnxt_free_ring(bp, ring);
1879         }
1880 }
1881
1882 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1883 {
1884         int i, j, rc;
1885         struct pci_dev *pdev = bp->pdev;
1886
1887         bp->tx_push_size = 0;
1888         if (bp->tx_push_thresh) {
1889                 int push_size;
1890
1891                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1892                                         bp->tx_push_thresh);
1893
1894                 if (push_size > 256) {
1895                         push_size = 0;
1896                         bp->tx_push_thresh = 0;
1897                 }
1898
1899                 bp->tx_push_size = push_size;
1900         }
1901
1902         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1903                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1904                 struct bnxt_ring_struct *ring;
1905
1906                 ring = &txr->tx_ring_struct;
1907
1908                 rc = bnxt_alloc_ring(bp, ring);
1909                 if (rc)
1910                         return rc;
1911
1912                 if (bp->tx_push_size) {
1913                         dma_addr_t mapping;
1914
1915                         /* One pre-allocated DMA buffer to backup
1916                          * TX push operation
1917                          */
1918                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1919                                                 bp->tx_push_size,
1920                                                 &txr->tx_push_mapping,
1921                                                 GFP_KERNEL);
1922
1923                         if (!txr->tx_push)
1924                                 return -ENOMEM;
1925
1926                         mapping = txr->tx_push_mapping +
1927                                 sizeof(struct tx_push_bd);
1928                         txr->data_mapping = cpu_to_le64(mapping);
1929
1930                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1931                 }
1932                 ring->queue_id = bp->q_info[j].queue_id;
1933                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1934                         j++;
1935         }
1936         return 0;
1937 }
1938
1939 static void bnxt_free_cp_rings(struct bnxt *bp)
1940 {
1941         int i;
1942
1943         if (!bp->bnapi)
1944                 return;
1945
1946         for (i = 0; i < bp->cp_nr_rings; i++) {
1947                 struct bnxt_napi *bnapi = bp->bnapi[i];
1948                 struct bnxt_cp_ring_info *cpr;
1949                 struct bnxt_ring_struct *ring;
1950
1951                 if (!bnapi)
1952                         continue;
1953
1954                 cpr = &bnapi->cp_ring;
1955                 ring = &cpr->cp_ring_struct;
1956
1957                 bnxt_free_ring(bp, ring);
1958         }
1959 }
1960
1961 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1962 {
1963         int i, rc;
1964
1965         for (i = 0; i < bp->cp_nr_rings; i++) {
1966                 struct bnxt_napi *bnapi = bp->bnapi[i];
1967                 struct bnxt_cp_ring_info *cpr;
1968                 struct bnxt_ring_struct *ring;
1969
1970                 if (!bnapi)
1971                         continue;
1972
1973                 cpr = &bnapi->cp_ring;
1974                 ring = &cpr->cp_ring_struct;
1975
1976                 rc = bnxt_alloc_ring(bp, ring);
1977                 if (rc)
1978                         return rc;
1979         }
1980         return 0;
1981 }
1982
1983 static void bnxt_init_ring_struct(struct bnxt *bp)
1984 {
1985         int i;
1986
1987         for (i = 0; i < bp->cp_nr_rings; i++) {
1988                 struct bnxt_napi *bnapi = bp->bnapi[i];
1989                 struct bnxt_cp_ring_info *cpr;
1990                 struct bnxt_rx_ring_info *rxr;
1991                 struct bnxt_tx_ring_info *txr;
1992                 struct bnxt_ring_struct *ring;
1993
1994                 if (!bnapi)
1995                         continue;
1996
1997                 cpr = &bnapi->cp_ring;
1998                 ring = &cpr->cp_ring_struct;
1999                 ring->nr_pages = bp->cp_nr_pages;
2000                 ring->page_size = HW_CMPD_RING_SIZE;
2001                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2002                 ring->dma_arr = cpr->cp_desc_mapping;
2003                 ring->vmem_size = 0;
2004
2005                 rxr = bnapi->rx_ring;
2006                 if (!rxr)
2007                         goto skip_rx;
2008
2009                 ring = &rxr->rx_ring_struct;
2010                 ring->nr_pages = bp->rx_nr_pages;
2011                 ring->page_size = HW_RXBD_RING_SIZE;
2012                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2013                 ring->dma_arr = rxr->rx_desc_mapping;
2014                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2015                 ring->vmem = (void **)&rxr->rx_buf_ring;
2016
2017                 ring = &rxr->rx_agg_ring_struct;
2018                 ring->nr_pages = bp->rx_agg_nr_pages;
2019                 ring->page_size = HW_RXBD_RING_SIZE;
2020                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2021                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2022                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2023                 ring->vmem = (void **)&rxr->rx_agg_ring;
2024
2025 skip_rx:
2026                 txr = bnapi->tx_ring;
2027                 if (!txr)
2028                         continue;
2029
2030                 ring = &txr->tx_ring_struct;
2031                 ring->nr_pages = bp->tx_nr_pages;
2032                 ring->page_size = HW_RXBD_RING_SIZE;
2033                 ring->pg_arr = (void **)txr->tx_desc_ring;
2034                 ring->dma_arr = txr->tx_desc_mapping;
2035                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2036                 ring->vmem = (void **)&txr->tx_buf_ring;
2037         }
2038 }
2039
2040 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2041 {
2042         int i;
2043         u32 prod;
2044         struct rx_bd **rx_buf_ring;
2045
2046         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2047         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2048                 int j;
2049                 struct rx_bd *rxbd;
2050
2051                 rxbd = rx_buf_ring[i];
2052                 if (!rxbd)
2053                         continue;
2054
2055                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2056                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2057                         rxbd->rx_bd_opaque = prod;
2058                 }
2059         }
2060 }
2061
2062 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2063 {
2064         struct net_device *dev = bp->dev;
2065         struct bnxt_rx_ring_info *rxr;
2066         struct bnxt_ring_struct *ring;
2067         u32 prod, type;
2068         int i;
2069
2070         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2071                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2072
2073         if (NET_IP_ALIGN == 2)
2074                 type |= RX_BD_FLAGS_SOP;
2075
2076         rxr = &bp->rx_ring[ring_nr];
2077         ring = &rxr->rx_ring_struct;
2078         bnxt_init_rxbd_pages(ring, type);
2079
2080         prod = rxr->rx_prod;
2081         for (i = 0; i < bp->rx_ring_size; i++) {
2082                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2083                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2084                                     ring_nr, i, bp->rx_ring_size);
2085                         break;
2086                 }
2087                 prod = NEXT_RX(prod);
2088         }
2089         rxr->rx_prod = prod;
2090         ring->fw_ring_id = INVALID_HW_RING_ID;
2091
2092         ring = &rxr->rx_agg_ring_struct;
2093         ring->fw_ring_id = INVALID_HW_RING_ID;
2094
2095         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2096                 return 0;
2097
2098         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2099                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2100
2101         bnxt_init_rxbd_pages(ring, type);
2102
2103         prod = rxr->rx_agg_prod;
2104         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2105                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2106                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2107                                     ring_nr, i, bp->rx_ring_size);
2108                         break;
2109                 }
2110                 prod = NEXT_RX_AGG(prod);
2111         }
2112         rxr->rx_agg_prod = prod;
2113
2114         if (bp->flags & BNXT_FLAG_TPA) {
2115                 if (rxr->rx_tpa) {
2116                         u8 *data;
2117                         dma_addr_t mapping;
2118
2119                         for (i = 0; i < MAX_TPA; i++) {
2120                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2121                                                             GFP_KERNEL);
2122                                 if (!data)
2123                                         return -ENOMEM;
2124
2125                                 rxr->rx_tpa[i].data = data;
2126                                 rxr->rx_tpa[i].mapping = mapping;
2127                         }
2128                 } else {
2129                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2130                         return -ENOMEM;
2131                 }
2132         }
2133
2134         return 0;
2135 }
2136
2137 static int bnxt_init_rx_rings(struct bnxt *bp)
2138 {
2139         int i, rc = 0;
2140
2141         for (i = 0; i < bp->rx_nr_rings; i++) {
2142                 rc = bnxt_init_one_rx_ring(bp, i);
2143                 if (rc)
2144                         break;
2145         }
2146
2147         return rc;
2148 }
2149
2150 static int bnxt_init_tx_rings(struct bnxt *bp)
2151 {
2152         u16 i;
2153
2154         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2155                                    MAX_SKB_FRAGS + 1);
2156
2157         for (i = 0; i < bp->tx_nr_rings; i++) {
2158                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2159                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2160
2161                 ring->fw_ring_id = INVALID_HW_RING_ID;
2162         }
2163
2164         return 0;
2165 }
2166
2167 static void bnxt_free_ring_grps(struct bnxt *bp)
2168 {
2169         kfree(bp->grp_info);
2170         bp->grp_info = NULL;
2171 }
2172
2173 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2174 {
2175         int i;
2176
2177         if (irq_re_init) {
2178                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2179                                        sizeof(struct bnxt_ring_grp_info),
2180                                        GFP_KERNEL);
2181                 if (!bp->grp_info)
2182                         return -ENOMEM;
2183         }
2184         for (i = 0; i < bp->cp_nr_rings; i++) {
2185                 if (irq_re_init)
2186                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2187                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2188                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2189                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2190                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2191         }
2192         return 0;
2193 }
2194
2195 static void bnxt_free_vnics(struct bnxt *bp)
2196 {
2197         kfree(bp->vnic_info);
2198         bp->vnic_info = NULL;
2199         bp->nr_vnics = 0;
2200 }
2201
2202 static int bnxt_alloc_vnics(struct bnxt *bp)
2203 {
2204         int num_vnics = 1;
2205
2206 #ifdef CONFIG_RFS_ACCEL
2207         if (bp->flags & BNXT_FLAG_RFS)
2208                 num_vnics += bp->rx_nr_rings;
2209 #endif
2210
2211         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2212                                 GFP_KERNEL);
2213         if (!bp->vnic_info)
2214                 return -ENOMEM;
2215
2216         bp->nr_vnics = num_vnics;
2217         return 0;
2218 }
2219
2220 static void bnxt_init_vnics(struct bnxt *bp)
2221 {
2222         int i;
2223
2224         for (i = 0; i < bp->nr_vnics; i++) {
2225                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2226
2227                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2228                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2229                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2230
2231                 if (bp->vnic_info[i].rss_hash_key) {
2232                         if (i == 0)
2233                                 prandom_bytes(vnic->rss_hash_key,
2234                                               HW_HASH_KEY_SIZE);
2235                         else
2236                                 memcpy(vnic->rss_hash_key,
2237                                        bp->vnic_info[0].rss_hash_key,
2238                                        HW_HASH_KEY_SIZE);
2239                 }
2240         }
2241 }
2242
2243 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2244 {
2245         int pages;
2246
2247         pages = ring_size / desc_per_pg;
2248
2249         if (!pages)
2250                 return 1;
2251
2252         pages++;
2253
2254         while (pages & (pages - 1))
2255                 pages++;
2256
2257         return pages;
2258 }
2259
2260 static void bnxt_set_tpa_flags(struct bnxt *bp)
2261 {
2262         bp->flags &= ~BNXT_FLAG_TPA;
2263         if (bp->dev->features & NETIF_F_LRO)
2264                 bp->flags |= BNXT_FLAG_LRO;
2265         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2266                 bp->flags |= BNXT_FLAG_GRO;
2267 }
2268
2269 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2270  * be set on entry.
2271  */
2272 void bnxt_set_ring_params(struct bnxt *bp)
2273 {
2274         u32 ring_size, rx_size, rx_space;
2275         u32 agg_factor = 0, agg_ring_size = 0;
2276
2277         /* 8 for CRC and VLAN */
2278         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2279
2280         rx_space = rx_size + NET_SKB_PAD +
2281                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2282
2283         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2284         ring_size = bp->rx_ring_size;
2285         bp->rx_agg_ring_size = 0;
2286         bp->rx_agg_nr_pages = 0;
2287
2288         if (bp->flags & BNXT_FLAG_TPA)
2289                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2290
2291         bp->flags &= ~BNXT_FLAG_JUMBO;
2292         if (rx_space > PAGE_SIZE) {
2293                 u32 jumbo_factor;
2294
2295                 bp->flags |= BNXT_FLAG_JUMBO;
2296                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2297                 if (jumbo_factor > agg_factor)
2298                         agg_factor = jumbo_factor;
2299         }
2300         agg_ring_size = ring_size * agg_factor;
2301
2302         if (agg_ring_size) {
2303                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2304                                                         RX_DESC_CNT);
2305                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2306                         u32 tmp = agg_ring_size;
2307
2308                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2309                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2310                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2311                                     tmp, agg_ring_size);
2312                 }
2313                 bp->rx_agg_ring_size = agg_ring_size;
2314                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2315                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2316                 rx_space = rx_size + NET_SKB_PAD +
2317                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2318         }
2319
2320         bp->rx_buf_use_size = rx_size;
2321         bp->rx_buf_size = rx_space;
2322
2323         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2324         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2325
2326         ring_size = bp->tx_ring_size;
2327         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2328         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2329
2330         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2331         bp->cp_ring_size = ring_size;
2332
2333         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2334         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2335                 bp->cp_nr_pages = MAX_CP_PAGES;
2336                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2337                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2338                             ring_size, bp->cp_ring_size);
2339         }
2340         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2341         bp->cp_ring_mask = bp->cp_bit - 1;
2342 }
2343
2344 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2345 {
2346         int i;
2347         struct bnxt_vnic_info *vnic;
2348         struct pci_dev *pdev = bp->pdev;
2349
2350         if (!bp->vnic_info)
2351                 return;
2352
2353         for (i = 0; i < bp->nr_vnics; i++) {
2354                 vnic = &bp->vnic_info[i];
2355
2356                 kfree(vnic->fw_grp_ids);
2357                 vnic->fw_grp_ids = NULL;
2358
2359                 kfree(vnic->uc_list);
2360                 vnic->uc_list = NULL;
2361
2362                 if (vnic->mc_list) {
2363                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2364                                           vnic->mc_list, vnic->mc_list_mapping);
2365                         vnic->mc_list = NULL;
2366                 }
2367
2368                 if (vnic->rss_table) {
2369                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2370                                           vnic->rss_table,
2371                                           vnic->rss_table_dma_addr);
2372                         vnic->rss_table = NULL;
2373                 }
2374
2375                 vnic->rss_hash_key = NULL;
2376                 vnic->flags = 0;
2377         }
2378 }
2379
2380 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2381 {
2382         int i, rc = 0, size;
2383         struct bnxt_vnic_info *vnic;
2384         struct pci_dev *pdev = bp->pdev;
2385         int max_rings;
2386
2387         for (i = 0; i < bp->nr_vnics; i++) {
2388                 vnic = &bp->vnic_info[i];
2389
2390                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2391                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2392
2393                         if (mem_size > 0) {
2394                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2395                                 if (!vnic->uc_list) {
2396                                         rc = -ENOMEM;
2397                                         goto out;
2398                                 }
2399                         }
2400                 }
2401
2402                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2403                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2404                         vnic->mc_list =
2405                                 dma_alloc_coherent(&pdev->dev,
2406                                                    vnic->mc_list_size,
2407                                                    &vnic->mc_list_mapping,
2408                                                    GFP_KERNEL);
2409                         if (!vnic->mc_list) {
2410                                 rc = -ENOMEM;
2411                                 goto out;
2412                         }
2413                 }
2414
2415                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2416                         max_rings = bp->rx_nr_rings;
2417                 else
2418                         max_rings = 1;
2419
2420                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2421                 if (!vnic->fw_grp_ids) {
2422                         rc = -ENOMEM;
2423                         goto out;
2424                 }
2425
2426                 /* Allocate rss table and hash key */
2427                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2428                                                      &vnic->rss_table_dma_addr,
2429                                                      GFP_KERNEL);
2430                 if (!vnic->rss_table) {
2431                         rc = -ENOMEM;
2432                         goto out;
2433                 }
2434
2435                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2436
2437                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2438                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2439         }
2440         return 0;
2441
2442 out:
2443         return rc;
2444 }
2445
2446 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2447 {
2448         struct pci_dev *pdev = bp->pdev;
2449
2450         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2451                           bp->hwrm_cmd_resp_dma_addr);
2452
2453         bp->hwrm_cmd_resp_addr = NULL;
2454         if (bp->hwrm_dbg_resp_addr) {
2455                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2456                                   bp->hwrm_dbg_resp_addr,
2457                                   bp->hwrm_dbg_resp_dma_addr);
2458
2459                 bp->hwrm_dbg_resp_addr = NULL;
2460         }
2461 }
2462
2463 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2464 {
2465         struct pci_dev *pdev = bp->pdev;
2466
2467         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2468                                                    &bp->hwrm_cmd_resp_dma_addr,
2469                                                    GFP_KERNEL);
2470         if (!bp->hwrm_cmd_resp_addr)
2471                 return -ENOMEM;
2472         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2473                                                     HWRM_DBG_REG_BUF_SIZE,
2474                                                     &bp->hwrm_dbg_resp_dma_addr,
2475                                                     GFP_KERNEL);
2476         if (!bp->hwrm_dbg_resp_addr)
2477                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2478
2479         return 0;
2480 }
2481
2482 static void bnxt_free_stats(struct bnxt *bp)
2483 {
2484         u32 size, i;
2485         struct pci_dev *pdev = bp->pdev;
2486
2487         if (bp->hw_rx_port_stats) {
2488                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2489                                   bp->hw_rx_port_stats,
2490                                   bp->hw_rx_port_stats_map);
2491                 bp->hw_rx_port_stats = NULL;
2492                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2493         }
2494
2495         if (!bp->bnapi)
2496                 return;
2497
2498         size = sizeof(struct ctx_hw_stats);
2499
2500         for (i = 0; i < bp->cp_nr_rings; i++) {
2501                 struct bnxt_napi *bnapi = bp->bnapi[i];
2502                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2503
2504                 if (cpr->hw_stats) {
2505                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2506                                           cpr->hw_stats_map);
2507                         cpr->hw_stats = NULL;
2508                 }
2509         }
2510 }
2511
2512 static int bnxt_alloc_stats(struct bnxt *bp)
2513 {
2514         u32 size, i;
2515         struct pci_dev *pdev = bp->pdev;
2516
2517         size = sizeof(struct ctx_hw_stats);
2518
2519         for (i = 0; i < bp->cp_nr_rings; i++) {
2520                 struct bnxt_napi *bnapi = bp->bnapi[i];
2521                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2522
2523                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2524                                                    &cpr->hw_stats_map,
2525                                                    GFP_KERNEL);
2526                 if (!cpr->hw_stats)
2527                         return -ENOMEM;
2528
2529                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2530         }
2531
2532         if (BNXT_PF(bp)) {
2533                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2534                                          sizeof(struct tx_port_stats) + 1024;
2535
2536                 bp->hw_rx_port_stats =
2537                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2538                                            &bp->hw_rx_port_stats_map,
2539                                            GFP_KERNEL);
2540                 if (!bp->hw_rx_port_stats)
2541                         return -ENOMEM;
2542
2543                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2544                                        512;
2545                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2546                                            sizeof(struct rx_port_stats) + 512;
2547                 bp->flags |= BNXT_FLAG_PORT_STATS;
2548         }
2549         return 0;
2550 }
2551
2552 static void bnxt_clear_ring_indices(struct bnxt *bp)
2553 {
2554         int i;
2555
2556         if (!bp->bnapi)
2557                 return;
2558
2559         for (i = 0; i < bp->cp_nr_rings; i++) {
2560                 struct bnxt_napi *bnapi = bp->bnapi[i];
2561                 struct bnxt_cp_ring_info *cpr;
2562                 struct bnxt_rx_ring_info *rxr;
2563                 struct bnxt_tx_ring_info *txr;
2564
2565                 if (!bnapi)
2566                         continue;
2567
2568                 cpr = &bnapi->cp_ring;
2569                 cpr->cp_raw_cons = 0;
2570
2571                 txr = bnapi->tx_ring;
2572                 if (txr) {
2573                         txr->tx_prod = 0;
2574                         txr->tx_cons = 0;
2575                 }
2576
2577                 rxr = bnapi->rx_ring;
2578                 if (rxr) {
2579                         rxr->rx_prod = 0;
2580                         rxr->rx_agg_prod = 0;
2581                         rxr->rx_sw_agg_prod = 0;
2582                         rxr->rx_next_cons = 0;
2583                 }
2584         }
2585 }
2586
2587 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2588 {
2589 #ifdef CONFIG_RFS_ACCEL
2590         int i;
2591
2592         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2593          * safe to delete the hash table.
2594          */
2595         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2596                 struct hlist_head *head;
2597                 struct hlist_node *tmp;
2598                 struct bnxt_ntuple_filter *fltr;
2599
2600                 head = &bp->ntp_fltr_hash_tbl[i];
2601                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2602                         hlist_del(&fltr->hash);
2603                         kfree(fltr);
2604                 }
2605         }
2606         if (irq_reinit) {
2607                 kfree(bp->ntp_fltr_bmap);
2608                 bp->ntp_fltr_bmap = NULL;
2609         }
2610         bp->ntp_fltr_count = 0;
2611 #endif
2612 }
2613
2614 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2615 {
2616 #ifdef CONFIG_RFS_ACCEL
2617         int i, rc = 0;
2618
2619         if (!(bp->flags & BNXT_FLAG_RFS))
2620                 return 0;
2621
2622         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2623                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2624
2625         bp->ntp_fltr_count = 0;
2626         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2627                                     GFP_KERNEL);
2628
2629         if (!bp->ntp_fltr_bmap)
2630                 rc = -ENOMEM;
2631
2632         return rc;
2633 #else
2634         return 0;
2635 #endif
2636 }
2637
2638 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2639 {
2640         bnxt_free_vnic_attributes(bp);
2641         bnxt_free_tx_rings(bp);
2642         bnxt_free_rx_rings(bp);
2643         bnxt_free_cp_rings(bp);
2644         bnxt_free_ntp_fltrs(bp, irq_re_init);
2645         if (irq_re_init) {
2646                 bnxt_free_stats(bp);
2647                 bnxt_free_ring_grps(bp);
2648                 bnxt_free_vnics(bp);
2649                 kfree(bp->tx_ring);
2650                 bp->tx_ring = NULL;
2651                 kfree(bp->rx_ring);
2652                 bp->rx_ring = NULL;
2653                 kfree(bp->bnapi);
2654                 bp->bnapi = NULL;
2655         } else {
2656                 bnxt_clear_ring_indices(bp);
2657         }
2658 }
2659
2660 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2661 {
2662         int i, j, rc, size, arr_size;
2663         void *bnapi;
2664
2665         if (irq_re_init) {
2666                 /* Allocate bnapi mem pointer array and mem block for
2667                  * all queues
2668                  */
2669                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2670                                 bp->cp_nr_rings);
2671                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2672                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2673                 if (!bnapi)
2674                         return -ENOMEM;
2675
2676                 bp->bnapi = bnapi;
2677                 bnapi += arr_size;
2678                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2679                         bp->bnapi[i] = bnapi;
2680                         bp->bnapi[i]->index = i;
2681                         bp->bnapi[i]->bp = bp;
2682                 }
2683
2684                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2685                                       sizeof(struct bnxt_rx_ring_info),
2686                                       GFP_KERNEL);
2687                 if (!bp->rx_ring)
2688                         return -ENOMEM;
2689
2690                 for (i = 0; i < bp->rx_nr_rings; i++) {
2691                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2692                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2693                 }
2694
2695                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2696                                       sizeof(struct bnxt_tx_ring_info),
2697                                       GFP_KERNEL);
2698                 if (!bp->tx_ring)
2699                         return -ENOMEM;
2700
2701                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2702                         j = 0;
2703                 else
2704                         j = bp->rx_nr_rings;
2705
2706                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2707                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2708                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2709                 }
2710
2711                 rc = bnxt_alloc_stats(bp);
2712                 if (rc)
2713                         goto alloc_mem_err;
2714
2715                 rc = bnxt_alloc_ntp_fltrs(bp);
2716                 if (rc)
2717                         goto alloc_mem_err;
2718
2719                 rc = bnxt_alloc_vnics(bp);
2720                 if (rc)
2721                         goto alloc_mem_err;
2722         }
2723
2724         bnxt_init_ring_struct(bp);
2725
2726         rc = bnxt_alloc_rx_rings(bp);
2727         if (rc)
2728                 goto alloc_mem_err;
2729
2730         rc = bnxt_alloc_tx_rings(bp);
2731         if (rc)
2732                 goto alloc_mem_err;
2733
2734         rc = bnxt_alloc_cp_rings(bp);
2735         if (rc)
2736                 goto alloc_mem_err;
2737
2738         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2739                                   BNXT_VNIC_UCAST_FLAG;
2740         rc = bnxt_alloc_vnic_attributes(bp);
2741         if (rc)
2742                 goto alloc_mem_err;
2743         return 0;
2744
2745 alloc_mem_err:
2746         bnxt_free_mem(bp, true);
2747         return rc;
2748 }
2749
2750 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2751                             u16 cmpl_ring, u16 target_id)
2752 {
2753         struct input *req = request;
2754
2755         req->req_type = cpu_to_le16(req_type);
2756         req->cmpl_ring = cpu_to_le16(cmpl_ring);
2757         req->target_id = cpu_to_le16(target_id);
2758         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2759 }
2760
2761 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2762                                  int timeout, bool silent)
2763 {
2764         int i, intr_process, rc, tmo_count;
2765         struct input *req = msg;
2766         u32 *data = msg;
2767         __le32 *resp_len, *valid;
2768         u16 cp_ring_id, len = 0;
2769         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2770
2771         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2772         memset(resp, 0, PAGE_SIZE);
2773         cp_ring_id = le16_to_cpu(req->cmpl_ring);
2774         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2775
2776         /* Write request msg to hwrm channel */
2777         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2778
2779         for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2780                 writel(0, bp->bar0 + i);
2781
2782         /* currently supports only one outstanding message */
2783         if (intr_process)
2784                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2785
2786         /* Ring channel doorbell */
2787         writel(1, bp->bar0 + 0x100);
2788
2789         if (!timeout)
2790                 timeout = DFLT_HWRM_CMD_TIMEOUT;
2791
2792         i = 0;
2793         tmo_count = timeout * 40;
2794         if (intr_process) {
2795                 /* Wait until hwrm response cmpl interrupt is processed */
2796                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2797                        i++ < tmo_count) {
2798                         usleep_range(25, 40);
2799                 }
2800
2801                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2802                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2803                                    le16_to_cpu(req->req_type));
2804                         return -1;
2805                 }
2806         } else {
2807                 /* Check if response len is updated */
2808                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2809                 for (i = 0; i < tmo_count; i++) {
2810                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2811                               HWRM_RESP_LEN_SFT;
2812                         if (len)
2813                                 break;
2814                         usleep_range(25, 40);
2815                 }
2816
2817                 if (i >= tmo_count) {
2818                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2819                                    timeout, le16_to_cpu(req->req_type),
2820                                    le16_to_cpu(req->seq_id), len);
2821                         return -1;
2822                 }
2823
2824                 /* Last word of resp contains valid bit */
2825                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2826                 for (i = 0; i < 5; i++) {
2827                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2828                                 break;
2829                         udelay(1);
2830                 }
2831
2832                 if (i >= 5) {
2833                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2834                                    timeout, le16_to_cpu(req->req_type),
2835                                    le16_to_cpu(req->seq_id), len, *valid);
2836                         return -1;
2837                 }
2838         }
2839
2840         rc = le16_to_cpu(resp->error_code);
2841         if (rc && !silent)
2842                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2843                            le16_to_cpu(resp->req_type),
2844                            le16_to_cpu(resp->seq_id), rc);
2845         return rc;
2846 }
2847
2848 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2849 {
2850         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2851 }
2852
2853 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2854 {
2855         int rc;
2856
2857         mutex_lock(&bp->hwrm_cmd_lock);
2858         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2859         mutex_unlock(&bp->hwrm_cmd_lock);
2860         return rc;
2861 }
2862
2863 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2864                              int timeout)
2865 {
2866         int rc;
2867
2868         mutex_lock(&bp->hwrm_cmd_lock);
2869         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2870         mutex_unlock(&bp->hwrm_cmd_lock);
2871         return rc;
2872 }
2873
2874 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2875 {
2876         struct hwrm_func_drv_rgtr_input req = {0};
2877         int i;
2878         DECLARE_BITMAP(async_events_bmap, 256);
2879         u32 *events = (u32 *)async_events_bmap;
2880
2881         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2882
2883         req.enables =
2884                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2885                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2886                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2887
2888         memset(async_events_bmap, 0, sizeof(async_events_bmap));
2889         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
2890                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
2891
2892         for (i = 0; i < 8; i++)
2893                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
2894
2895         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
2896         req.ver_maj = DRV_VER_MAJ;
2897         req.ver_min = DRV_VER_MIN;
2898         req.ver_upd = DRV_VER_UPD;
2899
2900         if (BNXT_PF(bp)) {
2901                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2902                 u32 *data = (u32 *)vf_req_snif_bmap;
2903
2904                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2905                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2906                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2907
2908                 for (i = 0; i < 8; i++)
2909                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2910
2911                 req.enables |=
2912                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2913         }
2914
2915         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2916 }
2917
2918 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2919 {
2920         struct hwrm_func_drv_unrgtr_input req = {0};
2921
2922         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2923         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2924 }
2925
2926 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2927 {
2928         u32 rc = 0;
2929         struct hwrm_tunnel_dst_port_free_input req = {0};
2930
2931         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2932         req.tunnel_type = tunnel_type;
2933
2934         switch (tunnel_type) {
2935         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2936                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2937                 break;
2938         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2939                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2940                 break;
2941         default:
2942                 break;
2943         }
2944
2945         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2946         if (rc)
2947                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2948                            rc);
2949         return rc;
2950 }
2951
2952 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2953                                            u8 tunnel_type)
2954 {
2955         u32 rc = 0;
2956         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2957         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2958
2959         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2960
2961         req.tunnel_type = tunnel_type;
2962         req.tunnel_dst_port_val = port;
2963
2964         mutex_lock(&bp->hwrm_cmd_lock);
2965         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2966         if (rc) {
2967                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2968                            rc);
2969                 goto err_out;
2970         }
2971
2972         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2973                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2974
2975         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2976                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2977 err_out:
2978         mutex_unlock(&bp->hwrm_cmd_lock);
2979         return rc;
2980 }
2981
2982 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2983 {
2984         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2985         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2986
2987         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2988         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2989
2990         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2991         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2992         req.mask = cpu_to_le32(vnic->rx_mask);
2993         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2994 }
2995
2996 #ifdef CONFIG_RFS_ACCEL
2997 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2998                                             struct bnxt_ntuple_filter *fltr)
2999 {
3000         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3001
3002         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3003         req.ntuple_filter_id = fltr->filter_id;
3004         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3005 }
3006
3007 #define BNXT_NTP_FLTR_FLAGS                                     \
3008         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3009          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3010          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3011          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3012          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3013          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3014          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3015          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3016          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3017          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3018          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3019          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3020          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3021          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3022
3023 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3024                                              struct bnxt_ntuple_filter *fltr)
3025 {
3026         int rc = 0;
3027         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3028         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3029                 bp->hwrm_cmd_resp_addr;
3030         struct flow_keys *keys = &fltr->fkeys;
3031         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3032
3033         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3034         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
3035
3036         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3037
3038         req.ethertype = htons(ETH_P_IP);
3039         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3040         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3041         req.ip_protocol = keys->basic.ip_proto;
3042
3043         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3044         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3045         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3046         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3047
3048         req.src_port = keys->ports.src;
3049         req.src_port_mask = cpu_to_be16(0xffff);
3050         req.dst_port = keys->ports.dst;
3051         req.dst_port_mask = cpu_to_be16(0xffff);
3052
3053         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3054         mutex_lock(&bp->hwrm_cmd_lock);
3055         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3056         if (!rc)
3057                 fltr->filter_id = resp->ntuple_filter_id;
3058         mutex_unlock(&bp->hwrm_cmd_lock);
3059         return rc;
3060 }
3061 #endif
3062
3063 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3064                                      u8 *mac_addr)
3065 {
3066         u32 rc = 0;
3067         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3068         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3069
3070         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3071         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
3072                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3073         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3074         req.enables =
3075                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3076                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3077                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3078         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3079         req.l2_addr_mask[0] = 0xff;
3080         req.l2_addr_mask[1] = 0xff;
3081         req.l2_addr_mask[2] = 0xff;
3082         req.l2_addr_mask[3] = 0xff;
3083         req.l2_addr_mask[4] = 0xff;
3084         req.l2_addr_mask[5] = 0xff;
3085
3086         mutex_lock(&bp->hwrm_cmd_lock);
3087         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3088         if (!rc)
3089                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3090                                                         resp->l2_filter_id;
3091         mutex_unlock(&bp->hwrm_cmd_lock);
3092         return rc;
3093 }
3094
3095 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3096 {
3097         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3098         int rc = 0;
3099
3100         /* Any associated ntuple filters will also be cleared by firmware. */
3101         mutex_lock(&bp->hwrm_cmd_lock);
3102         for (i = 0; i < num_of_vnics; i++) {
3103                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3104
3105                 for (j = 0; j < vnic->uc_filter_count; j++) {
3106                         struct hwrm_cfa_l2_filter_free_input req = {0};
3107
3108                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3109                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3110
3111                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3112
3113                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3114                                                 HWRM_CMD_TIMEOUT);
3115                 }
3116                 vnic->uc_filter_count = 0;
3117         }
3118         mutex_unlock(&bp->hwrm_cmd_lock);
3119
3120         return rc;
3121 }
3122
3123 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3124 {
3125         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3126         struct hwrm_vnic_tpa_cfg_input req = {0};
3127
3128         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3129
3130         if (tpa_flags) {
3131                 u16 mss = bp->dev->mtu - 40;
3132                 u32 nsegs, n, segs = 0, flags;
3133
3134                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3135                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3136                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3137                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3138                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3139                 if (tpa_flags & BNXT_FLAG_GRO)
3140                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3141
3142                 req.flags = cpu_to_le32(flags);
3143
3144                 req.enables =
3145                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3146                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3147                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3148
3149                 /* Number of segs are log2 units, and first packet is not
3150                  * included as part of this units.
3151                  */
3152                 if (mss <= BNXT_RX_PAGE_SIZE) {
3153                         n = BNXT_RX_PAGE_SIZE / mss;
3154                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3155                 } else {
3156                         n = mss / BNXT_RX_PAGE_SIZE;
3157                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3158                                 n++;
3159                         nsegs = (MAX_SKB_FRAGS - n) / n;
3160                 }
3161
3162                 segs = ilog2(nsegs);
3163                 req.max_agg_segs = cpu_to_le16(segs);
3164                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3165
3166                 req.min_agg_len = cpu_to_le32(512);
3167         }
3168         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3169
3170         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3171 }
3172
3173 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3174 {
3175         u32 i, j, max_rings;
3176         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3177         struct hwrm_vnic_rss_cfg_input req = {0};
3178
3179         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3180                 return 0;
3181
3182         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3183         if (set_rss) {
3184                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3185                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3186                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3187                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3188
3189                 req.hash_type = cpu_to_le32(vnic->hash_type);
3190
3191                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3192                         max_rings = bp->rx_nr_rings;
3193                 else
3194                         max_rings = 1;
3195
3196                 /* Fill the RSS indirection table with ring group ids */
3197                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3198                         if (j == max_rings)
3199                                 j = 0;
3200                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3201                 }
3202
3203                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3204                 req.hash_key_tbl_addr =
3205                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3206         }
3207         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3208         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3209 }
3210
3211 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3212 {
3213         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3214         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3215
3216         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3217         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3218                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3219                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3220         req.enables =
3221                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3222                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3223         /* thresholds not implemented in firmware yet */
3224         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3225         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3226         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3227         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3228 }
3229
3230 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3231 {
3232         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3233
3234         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3235         req.rss_cos_lb_ctx_id =
3236                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3237
3238         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3239         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3240 }
3241
3242 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3243 {
3244         int i;
3245
3246         for (i = 0; i < bp->nr_vnics; i++) {
3247                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3248
3249                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3250                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3251         }
3252         bp->rsscos_nr_ctxs = 0;
3253 }
3254
3255 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3256 {
3257         int rc;
3258         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3259         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3260                                                 bp->hwrm_cmd_resp_addr;
3261
3262         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3263                                -1);
3264
3265         mutex_lock(&bp->hwrm_cmd_lock);
3266         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3267         if (!rc)
3268                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3269                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3270         mutex_unlock(&bp->hwrm_cmd_lock);
3271
3272         return rc;
3273 }
3274
3275 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3276 {
3277         unsigned int ring = 0, grp_idx;
3278         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3279         struct hwrm_vnic_cfg_input req = {0};
3280
3281         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3282         /* Only RSS support for now TBD: COS & LB */
3283         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3284                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3285         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3286         req.cos_rule = cpu_to_le16(0xffff);
3287         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3288                 ring = 0;
3289         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3290                 ring = vnic_id - 1;
3291
3292         grp_idx = bp->rx_ring[ring].bnapi->index;
3293         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3294         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3295
3296         req.lb_rule = cpu_to_le16(0xffff);
3297         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3298                               VLAN_HLEN);
3299
3300         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3301                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3302
3303         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3304 }
3305
3306 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3307 {
3308         u32 rc = 0;
3309
3310         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3311                 struct hwrm_vnic_free_input req = {0};
3312
3313                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3314                 req.vnic_id =
3315                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3316
3317                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3318                 if (rc)
3319                         return rc;
3320                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3321         }
3322         return rc;
3323 }
3324
3325 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3326 {
3327         u16 i;
3328
3329         for (i = 0; i < bp->nr_vnics; i++)
3330                 bnxt_hwrm_vnic_free_one(bp, i);
3331 }
3332
3333 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3334                                 unsigned int start_rx_ring_idx,
3335                                 unsigned int nr_rings)
3336 {
3337         int rc = 0;
3338         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3339         struct hwrm_vnic_alloc_input req = {0};
3340         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3341
3342         /* map ring groups to this vnic */
3343         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3344                 grp_idx = bp->rx_ring[i].bnapi->index;
3345                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3346                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3347                                    j, nr_rings);
3348                         break;
3349                 }
3350                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3351                                         bp->grp_info[grp_idx].fw_grp_id;
3352         }
3353
3354         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3355         if (vnic_id == 0)
3356                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3357
3358         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3359
3360         mutex_lock(&bp->hwrm_cmd_lock);
3361         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3362         if (!rc)
3363                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3364         mutex_unlock(&bp->hwrm_cmd_lock);
3365         return rc;
3366 }
3367
3368 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3369 {
3370         u16 i;
3371         u32 rc = 0;
3372
3373         mutex_lock(&bp->hwrm_cmd_lock);
3374         for (i = 0; i < bp->rx_nr_rings; i++) {
3375                 struct hwrm_ring_grp_alloc_input req = {0};
3376                 struct hwrm_ring_grp_alloc_output *resp =
3377                                         bp->hwrm_cmd_resp_addr;
3378                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3379
3380                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3381
3382                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3383                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3384                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3385                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3386
3387                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3388                                         HWRM_CMD_TIMEOUT);
3389                 if (rc)
3390                         break;
3391
3392                 bp->grp_info[grp_idx].fw_grp_id =
3393                         le32_to_cpu(resp->ring_group_id);
3394         }
3395         mutex_unlock(&bp->hwrm_cmd_lock);
3396         return rc;
3397 }
3398
3399 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3400 {
3401         u16 i;
3402         u32 rc = 0;
3403         struct hwrm_ring_grp_free_input req = {0};
3404
3405         if (!bp->grp_info)
3406                 return 0;
3407
3408         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3409
3410         mutex_lock(&bp->hwrm_cmd_lock);
3411         for (i = 0; i < bp->cp_nr_rings; i++) {
3412                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3413                         continue;
3414                 req.ring_group_id =
3415                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3416
3417                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3418                                         HWRM_CMD_TIMEOUT);
3419                 if (rc)
3420                         break;
3421                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3422         }
3423         mutex_unlock(&bp->hwrm_cmd_lock);
3424         return rc;
3425 }
3426
3427 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3428                                     struct bnxt_ring_struct *ring,
3429                                     u32 ring_type, u32 map_index,
3430                                     u32 stats_ctx_id)
3431 {
3432         int rc = 0, err = 0;
3433         struct hwrm_ring_alloc_input req = {0};
3434         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3435         u16 ring_id;
3436
3437         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3438
3439         req.enables = 0;
3440         if (ring->nr_pages > 1) {
3441                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3442                 /* Page size is in log2 units */
3443                 req.page_size = BNXT_PAGE_SHIFT;
3444                 req.page_tbl_depth = 1;
3445         } else {
3446                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3447         }
3448         req.fbo = 0;
3449         /* Association of ring index with doorbell index and MSIX number */
3450         req.logical_id = cpu_to_le16(map_index);
3451
3452         switch (ring_type) {
3453         case HWRM_RING_ALLOC_TX:
3454                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3455                 /* Association of transmit ring with completion ring */
3456                 req.cmpl_ring_id =
3457                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3458                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3459                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3460                 req.queue_id = cpu_to_le16(ring->queue_id);
3461                 break;
3462         case HWRM_RING_ALLOC_RX:
3463                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3464                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3465                 break;
3466         case HWRM_RING_ALLOC_AGG:
3467                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3468                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3469                 break;
3470         case HWRM_RING_ALLOC_CMPL:
3471                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3472                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3473                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3474                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3475                 break;
3476         default:
3477                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3478                            ring_type);
3479                 return -1;
3480         }
3481
3482         mutex_lock(&bp->hwrm_cmd_lock);
3483         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3484         err = le16_to_cpu(resp->error_code);
3485         ring_id = le16_to_cpu(resp->ring_id);
3486         mutex_unlock(&bp->hwrm_cmd_lock);
3487
3488         if (rc || err) {
3489                 switch (ring_type) {
3490                 case RING_FREE_REQ_RING_TYPE_CMPL:
3491                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3492                                    rc, err);
3493                         return -1;
3494
3495                 case RING_FREE_REQ_RING_TYPE_RX:
3496                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3497                                    rc, err);
3498                         return -1;
3499
3500                 case RING_FREE_REQ_RING_TYPE_TX:
3501                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3502                                    rc, err);
3503                         return -1;
3504
3505                 default:
3506                         netdev_err(bp->dev, "Invalid ring\n");
3507                         return -1;
3508                 }
3509         }
3510         ring->fw_ring_id = ring_id;
3511         return rc;
3512 }
3513
3514 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3515 {
3516         int i, rc = 0;
3517
3518         for (i = 0; i < bp->cp_nr_rings; i++) {
3519                 struct bnxt_napi *bnapi = bp->bnapi[i];
3520                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3521                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3522
3523                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3524                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3525                                               INVALID_STATS_CTX_ID);
3526                 if (rc)
3527                         goto err_out;
3528                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3529                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3530         }
3531
3532         for (i = 0; i < bp->tx_nr_rings; i++) {
3533                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3534                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3535                 u32 map_idx = txr->bnapi->index;
3536                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3537
3538                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3539                                               map_idx, fw_stats_ctx);
3540                 if (rc)
3541                         goto err_out;
3542                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3543         }
3544
3545         for (i = 0; i < bp->rx_nr_rings; i++) {
3546                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3547                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3548                 u32 map_idx = rxr->bnapi->index;
3549
3550                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3551                                               map_idx, INVALID_STATS_CTX_ID);
3552                 if (rc)
3553                         goto err_out;
3554                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3555                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3556                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3557         }
3558
3559         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3560                 for (i = 0; i < bp->rx_nr_rings; i++) {
3561                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3562                         struct bnxt_ring_struct *ring =
3563                                                 &rxr->rx_agg_ring_struct;
3564                         u32 grp_idx = rxr->bnapi->index;
3565                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3566
3567                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3568                                                       HWRM_RING_ALLOC_AGG,
3569                                                       map_idx,
3570                                                       INVALID_STATS_CTX_ID);
3571                         if (rc)
3572                                 goto err_out;
3573
3574                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3575                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3576                                rxr->rx_agg_doorbell);
3577                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3578                 }
3579         }
3580 err_out:
3581         return rc;
3582 }
3583
3584 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3585                                    struct bnxt_ring_struct *ring,
3586                                    u32 ring_type, int cmpl_ring_id)
3587 {
3588         int rc;
3589         struct hwrm_ring_free_input req = {0};
3590         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3591         u16 error_code;
3592
3593         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3594         req.ring_type = ring_type;
3595         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3596
3597         mutex_lock(&bp->hwrm_cmd_lock);
3598         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3599         error_code = le16_to_cpu(resp->error_code);
3600         mutex_unlock(&bp->hwrm_cmd_lock);
3601
3602         if (rc || error_code) {
3603                 switch (ring_type) {
3604                 case RING_FREE_REQ_RING_TYPE_CMPL:
3605                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3606                                    rc);
3607                         return rc;
3608                 case RING_FREE_REQ_RING_TYPE_RX:
3609                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3610                                    rc);
3611                         return rc;
3612                 case RING_FREE_REQ_RING_TYPE_TX:
3613                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3614                                    rc);
3615                         return rc;
3616                 default:
3617                         netdev_err(bp->dev, "Invalid ring\n");
3618                         return -1;
3619                 }
3620         }
3621         return 0;
3622 }
3623
3624 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3625 {
3626         int i;
3627
3628         if (!bp->bnapi)
3629                 return;
3630
3631         for (i = 0; i < bp->tx_nr_rings; i++) {
3632                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3633                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3634                 u32 grp_idx = txr->bnapi->index;
3635                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3636
3637                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3638                         hwrm_ring_free_send_msg(bp, ring,
3639                                                 RING_FREE_REQ_RING_TYPE_TX,
3640                                                 close_path ? cmpl_ring_id :
3641                                                 INVALID_HW_RING_ID);
3642                         ring->fw_ring_id = INVALID_HW_RING_ID;
3643                 }
3644         }
3645
3646         for (i = 0; i < bp->rx_nr_rings; i++) {
3647                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3648                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3649                 u32 grp_idx = rxr->bnapi->index;
3650                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3651
3652                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3653                         hwrm_ring_free_send_msg(bp, ring,
3654                                                 RING_FREE_REQ_RING_TYPE_RX,
3655                                                 close_path ? cmpl_ring_id :
3656                                                 INVALID_HW_RING_ID);
3657                         ring->fw_ring_id = INVALID_HW_RING_ID;
3658                         bp->grp_info[grp_idx].rx_fw_ring_id =
3659                                 INVALID_HW_RING_ID;
3660                 }
3661         }
3662
3663         for (i = 0; i < bp->rx_nr_rings; i++) {
3664                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3665                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3666                 u32 grp_idx = rxr->bnapi->index;
3667                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3668
3669                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3670                         hwrm_ring_free_send_msg(bp, ring,
3671                                                 RING_FREE_REQ_RING_TYPE_RX,
3672                                                 close_path ? cmpl_ring_id :
3673                                                 INVALID_HW_RING_ID);
3674                         ring->fw_ring_id = INVALID_HW_RING_ID;
3675                         bp->grp_info[grp_idx].agg_fw_ring_id =
3676                                 INVALID_HW_RING_ID;
3677                 }
3678         }
3679
3680         for (i = 0; i < bp->cp_nr_rings; i++) {
3681                 struct bnxt_napi *bnapi = bp->bnapi[i];
3682                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3683                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3684
3685                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3686                         hwrm_ring_free_send_msg(bp, ring,
3687                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3688                                                 INVALID_HW_RING_ID);
3689                         ring->fw_ring_id = INVALID_HW_RING_ID;
3690                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3691                 }
3692         }
3693 }
3694
3695 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3696         u32 buf_tmrs, u16 flags,
3697         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3698 {
3699         req->flags = cpu_to_le16(flags);
3700         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3701         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3702         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3703         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3704         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3705         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3706         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3707         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3708 }
3709
3710 int bnxt_hwrm_set_coal(struct bnxt *bp)
3711 {
3712         int i, rc = 0;
3713         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3714                                                            req_tx = {0}, *req;
3715         u16 max_buf, max_buf_irq;
3716         u16 buf_tmr, buf_tmr_irq;
3717         u32 flags;
3718
3719         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3720                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3721         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3722                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3723
3724         /* Each rx completion (2 records) should be DMAed immediately.
3725          * DMA 1/4 of the completion buffers at a time.
3726          */
3727         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3728         /* max_buf must not be zero */
3729         max_buf = clamp_t(u16, max_buf, 1, 63);
3730         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3731         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3732         /* buf timer set to 1/4 of interrupt timer */
3733         buf_tmr = max_t(u16, buf_tmr / 4, 1);
3734         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3735         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3736
3737         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3738
3739         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3740          * if coal_ticks is less than 25 us.
3741          */
3742         if (bp->rx_coal_ticks < 25)
3743                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3744
3745         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3746                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3747
3748         /* max_buf must not be zero */
3749         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3750         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3751         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3752         /* buf timer set to 1/4 of interrupt timer */
3753         buf_tmr = max_t(u16, buf_tmr / 4, 1);
3754         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3755         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3756
3757         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3758         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3759                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3760
3761         mutex_lock(&bp->hwrm_cmd_lock);
3762         for (i = 0; i < bp->cp_nr_rings; i++) {
3763                 struct bnxt_napi *bnapi = bp->bnapi[i];
3764
3765                 req = &req_rx;
3766                 if (!bnapi->rx_ring)
3767                         req = &req_tx;
3768                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3769
3770                 rc = _hwrm_send_message(bp, req, sizeof(*req),
3771                                         HWRM_CMD_TIMEOUT);
3772                 if (rc)
3773                         break;
3774         }
3775         mutex_unlock(&bp->hwrm_cmd_lock);
3776         return rc;
3777 }
3778
3779 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3780 {
3781         int rc = 0, i;
3782         struct hwrm_stat_ctx_free_input req = {0};
3783
3784         if (!bp->bnapi)
3785                 return 0;
3786
3787         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3788
3789         mutex_lock(&bp->hwrm_cmd_lock);
3790         for (i = 0; i < bp->cp_nr_rings; i++) {
3791                 struct bnxt_napi *bnapi = bp->bnapi[i];
3792                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3793
3794                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3795                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3796
3797                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3798                                                 HWRM_CMD_TIMEOUT);
3799                         if (rc)
3800                                 break;
3801
3802                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3803                 }
3804         }
3805         mutex_unlock(&bp->hwrm_cmd_lock);
3806         return rc;
3807 }
3808
3809 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3810 {
3811         int rc = 0, i;
3812         struct hwrm_stat_ctx_alloc_input req = {0};
3813         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3814
3815         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3816
3817         req.update_period_ms = cpu_to_le32(1000);
3818
3819         mutex_lock(&bp->hwrm_cmd_lock);
3820         for (i = 0; i < bp->cp_nr_rings; i++) {
3821                 struct bnxt_napi *bnapi = bp->bnapi[i];
3822                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3823
3824                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3825
3826                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3827                                         HWRM_CMD_TIMEOUT);
3828                 if (rc)
3829                         break;
3830
3831                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3832
3833                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3834         }
3835         mutex_unlock(&bp->hwrm_cmd_lock);
3836         return 0;
3837 }
3838
3839 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3840 {
3841         int rc = 0;
3842         struct hwrm_func_qcaps_input req = {0};
3843         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3844
3845         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3846         req.fid = cpu_to_le16(0xffff);
3847
3848         mutex_lock(&bp->hwrm_cmd_lock);
3849         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3850         if (rc)
3851                 goto hwrm_func_qcaps_exit;
3852
3853         if (BNXT_PF(bp)) {
3854                 struct bnxt_pf_info *pf = &bp->pf;
3855
3856                 pf->fw_fid = le16_to_cpu(resp->fid);
3857                 pf->port_id = le16_to_cpu(resp->port_id);
3858                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
3859                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3860                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3861                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3862                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3863                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3864                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3865                 if (!pf->max_hw_ring_grps)
3866                         pf->max_hw_ring_grps = pf->max_tx_rings;
3867                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3868                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3869                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3870                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3871                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3872                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3873                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3874                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3875                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3876                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3877                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3878         } else {
3879 #ifdef CONFIG_BNXT_SRIOV
3880                 struct bnxt_vf_info *vf = &bp->vf;
3881
3882                 vf->fw_fid = le16_to_cpu(resp->fid);
3883                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
3884                 if (is_valid_ether_addr(vf->mac_addr))
3885                         /* overwrite netdev dev_adr with admin VF MAC */
3886                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3887                 else
3888                         random_ether_addr(bp->dev->dev_addr);
3889
3890                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3891                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3892                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3893                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3894                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3895                 if (!vf->max_hw_ring_grps)
3896                         vf->max_hw_ring_grps = vf->max_tx_rings;
3897                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3898                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3899                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3900 #endif
3901         }
3902
3903         bp->tx_push_thresh = 0;
3904         if (resp->flags &
3905             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3906                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3907
3908 hwrm_func_qcaps_exit:
3909         mutex_unlock(&bp->hwrm_cmd_lock);
3910         return rc;
3911 }
3912
3913 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3914 {
3915         struct hwrm_func_reset_input req = {0};
3916
3917         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3918         req.enables = 0;
3919
3920         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3921 }
3922
3923 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3924 {
3925         int rc = 0;
3926         struct hwrm_queue_qportcfg_input req = {0};
3927         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3928         u8 i, *qptr;
3929
3930         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3931
3932         mutex_lock(&bp->hwrm_cmd_lock);
3933         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3934         if (rc)
3935                 goto qportcfg_exit;
3936
3937         if (!resp->max_configurable_queues) {
3938                 rc = -EINVAL;
3939                 goto qportcfg_exit;
3940         }
3941         bp->max_tc = resp->max_configurable_queues;
3942         if (bp->max_tc > BNXT_MAX_QUEUE)
3943                 bp->max_tc = BNXT_MAX_QUEUE;
3944
3945         qptr = &resp->queue_id0;
3946         for (i = 0; i < bp->max_tc; i++) {
3947                 bp->q_info[i].queue_id = *qptr++;
3948                 bp->q_info[i].queue_profile = *qptr++;
3949         }
3950
3951 qportcfg_exit:
3952         mutex_unlock(&bp->hwrm_cmd_lock);
3953         return rc;
3954 }
3955
3956 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3957 {
3958         int rc;
3959         struct hwrm_ver_get_input req = {0};
3960         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3961
3962         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3963         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3964         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3965         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3966         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3967         mutex_lock(&bp->hwrm_cmd_lock);
3968         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3969         if (rc)
3970                 goto hwrm_ver_get_exit;
3971
3972         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3973
3974         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
3975                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
3976         if (resp->hwrm_intf_maj < 1) {
3977                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3978                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3979                             resp->hwrm_intf_upd);
3980                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3981         }
3982         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3983                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3984                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3985
3986         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3987         if (!bp->hwrm_cmd_timeout)
3988                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3989
3990         if (resp->hwrm_intf_maj >= 1)
3991                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
3992
3993 hwrm_ver_get_exit:
3994         mutex_unlock(&bp->hwrm_cmd_lock);
3995         return rc;
3996 }
3997
3998 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3999 {
4000         int rc;
4001         struct bnxt_pf_info *pf = &bp->pf;
4002         struct hwrm_port_qstats_input req = {0};
4003
4004         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4005                 return 0;
4006
4007         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4008         req.port_id = cpu_to_le16(pf->port_id);
4009         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4010         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4011         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4012         return rc;
4013 }
4014
4015 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4016 {
4017         if (bp->vxlan_port_cnt) {
4018                 bnxt_hwrm_tunnel_dst_port_free(
4019                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4020         }
4021         bp->vxlan_port_cnt = 0;
4022         if (bp->nge_port_cnt) {
4023                 bnxt_hwrm_tunnel_dst_port_free(
4024                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4025         }
4026         bp->nge_port_cnt = 0;
4027 }
4028
4029 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4030 {
4031         int rc, i;
4032         u32 tpa_flags = 0;
4033
4034         if (set_tpa)
4035                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4036         for (i = 0; i < bp->nr_vnics; i++) {
4037                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4038                 if (rc) {
4039                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4040                                    rc, i);
4041                         return rc;
4042                 }
4043         }
4044         return 0;
4045 }
4046
4047 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4048 {
4049         int i;
4050
4051         for (i = 0; i < bp->nr_vnics; i++)
4052                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4053 }
4054
4055 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4056                                     bool irq_re_init)
4057 {
4058         if (bp->vnic_info) {
4059                 bnxt_hwrm_clear_vnic_filter(bp);
4060                 /* clear all RSS setting before free vnic ctx */
4061                 bnxt_hwrm_clear_vnic_rss(bp);
4062                 bnxt_hwrm_vnic_ctx_free(bp);
4063                 /* before free the vnic, undo the vnic tpa settings */
4064                 if (bp->flags & BNXT_FLAG_TPA)
4065                         bnxt_set_tpa(bp, false);
4066                 bnxt_hwrm_vnic_free(bp);
4067         }
4068         bnxt_hwrm_ring_free(bp, close_path);
4069         bnxt_hwrm_ring_grp_free(bp);
4070         if (irq_re_init) {
4071                 bnxt_hwrm_stat_ctx_free(bp);
4072                 bnxt_hwrm_free_tunnel_ports(bp);
4073         }
4074 }
4075
4076 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4077 {
4078         int rc;
4079
4080         /* allocate context for vnic */
4081         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
4082         if (rc) {
4083                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4084                            vnic_id, rc);
4085                 goto vnic_setup_err;
4086         }
4087         bp->rsscos_nr_ctxs++;
4088
4089         /* configure default vnic, ring grp */
4090         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4091         if (rc) {
4092                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4093                            vnic_id, rc);
4094                 goto vnic_setup_err;
4095         }
4096
4097         /* Enable RSS hashing on vnic */
4098         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4099         if (rc) {
4100                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4101                            vnic_id, rc);
4102                 goto vnic_setup_err;
4103         }
4104
4105         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4106                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4107                 if (rc) {
4108                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4109                                    vnic_id, rc);
4110                 }
4111         }
4112
4113 vnic_setup_err:
4114         return rc;
4115 }
4116
4117 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4118 {
4119 #ifdef CONFIG_RFS_ACCEL
4120         int i, rc = 0;
4121
4122         for (i = 0; i < bp->rx_nr_rings; i++) {
4123                 u16 vnic_id = i + 1;
4124                 u16 ring_id = i;
4125
4126                 if (vnic_id >= bp->nr_vnics)
4127                         break;
4128
4129                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4130                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4131                 if (rc) {
4132                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4133                                    vnic_id, rc);
4134                         break;
4135                 }
4136                 rc = bnxt_setup_vnic(bp, vnic_id);
4137                 if (rc)
4138                         break;
4139         }
4140         return rc;
4141 #else
4142         return 0;
4143 #endif
4144 }
4145
4146 static int bnxt_cfg_rx_mode(struct bnxt *);
4147 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4148
4149 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4150 {
4151         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4152         int rc = 0;
4153
4154         if (irq_re_init) {
4155                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4156                 if (rc) {
4157                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4158                                    rc);
4159                         goto err_out;
4160                 }
4161         }
4162
4163         rc = bnxt_hwrm_ring_alloc(bp);
4164         if (rc) {
4165                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4166                 goto err_out;
4167         }
4168
4169         rc = bnxt_hwrm_ring_grp_alloc(bp);
4170         if (rc) {
4171                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4172                 goto err_out;
4173         }
4174
4175         /* default vnic 0 */
4176         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4177         if (rc) {
4178                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4179                 goto err_out;
4180         }
4181
4182         rc = bnxt_setup_vnic(bp, 0);
4183         if (rc)
4184                 goto err_out;
4185
4186         if (bp->flags & BNXT_FLAG_RFS) {
4187                 rc = bnxt_alloc_rfs_vnics(bp);
4188                 if (rc)
4189                         goto err_out;
4190         }
4191
4192         if (bp->flags & BNXT_FLAG_TPA) {
4193                 rc = bnxt_set_tpa(bp, true);
4194                 if (rc)
4195                         goto err_out;
4196         }
4197
4198         if (BNXT_VF(bp))
4199                 bnxt_update_vf_mac(bp);
4200
4201         /* Filter for default vnic 0 */
4202         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4203         if (rc) {
4204                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4205                 goto err_out;
4206         }
4207         vnic->uc_filter_count = 1;
4208
4209         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4210
4211         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4212                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4213
4214         if (bp->dev->flags & IFF_ALLMULTI) {
4215                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4216                 vnic->mc_list_count = 0;
4217         } else {
4218                 u32 mask = 0;
4219
4220                 bnxt_mc_list_updated(bp, &mask);
4221                 vnic->rx_mask |= mask;
4222         }
4223
4224         rc = bnxt_cfg_rx_mode(bp);
4225         if (rc)
4226                 goto err_out;
4227
4228         rc = bnxt_hwrm_set_coal(bp);
4229         if (rc)
4230                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4231                             rc);
4232
4233         return 0;
4234
4235 err_out:
4236         bnxt_hwrm_resource_free(bp, 0, true);
4237
4238         return rc;
4239 }
4240
4241 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4242 {
4243         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4244         return 0;
4245 }
4246
4247 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4248 {
4249         bnxt_init_rx_rings(bp);
4250         bnxt_init_tx_rings(bp);
4251         bnxt_init_ring_grps(bp, irq_re_init);
4252         bnxt_init_vnics(bp);
4253
4254         return bnxt_init_chip(bp, irq_re_init);
4255 }
4256
4257 static void bnxt_disable_int(struct bnxt *bp)
4258 {
4259         int i;
4260
4261         if (!bp->bnapi)
4262                 return;
4263
4264         for (i = 0; i < bp->cp_nr_rings; i++) {
4265                 struct bnxt_napi *bnapi = bp->bnapi[i];
4266                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4267
4268                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4269         }
4270 }
4271
4272 static void bnxt_enable_int(struct bnxt *bp)
4273 {
4274         int i;
4275
4276         atomic_set(&bp->intr_sem, 0);
4277         for (i = 0; i < bp->cp_nr_rings; i++) {
4278                 struct bnxt_napi *bnapi = bp->bnapi[i];
4279                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4280
4281                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4282         }
4283 }
4284
4285 static int bnxt_set_real_num_queues(struct bnxt *bp)
4286 {
4287         int rc;
4288         struct net_device *dev = bp->dev;
4289
4290         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4291         if (rc)
4292                 return rc;
4293
4294         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4295         if (rc)
4296                 return rc;
4297
4298 #ifdef CONFIG_RFS_ACCEL
4299         if (bp->flags & BNXT_FLAG_RFS)
4300                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4301 #endif
4302
4303         return rc;
4304 }
4305
4306 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4307                            bool shared)
4308 {
4309         int _rx = *rx, _tx = *tx;
4310
4311         if (shared) {
4312                 *rx = min_t(int, _rx, max);
4313                 *tx = min_t(int, _tx, max);
4314         } else {
4315                 if (max < 2)
4316                         return -ENOMEM;
4317
4318                 while (_rx + _tx > max) {
4319                         if (_rx > _tx && _rx > 1)
4320                                 _rx--;
4321                         else if (_tx > 1)
4322                                 _tx--;
4323                 }
4324                 *rx = _rx;
4325                 *tx = _tx;
4326         }
4327         return 0;
4328 }
4329
4330 static int bnxt_setup_msix(struct bnxt *bp)
4331 {
4332         struct msix_entry *msix_ent;
4333         struct net_device *dev = bp->dev;
4334         int i, total_vecs, rc = 0, min = 1;
4335         const int len = sizeof(bp->irq_tbl[0].name);
4336
4337         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4338         total_vecs = bp->cp_nr_rings;
4339
4340         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4341         if (!msix_ent)
4342                 return -ENOMEM;
4343
4344         for (i = 0; i < total_vecs; i++) {
4345                 msix_ent[i].entry = i;
4346                 msix_ent[i].vector = 0;
4347         }
4348
4349         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4350                 min = 2;
4351
4352         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4353         if (total_vecs < 0) {
4354                 rc = -ENODEV;
4355                 goto msix_setup_exit;
4356         }
4357
4358         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4359         if (bp->irq_tbl) {
4360                 int tcs;
4361
4362                 /* Trim rings based upon num of vectors allocated */
4363                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4364                                      total_vecs, min == 1);
4365                 if (rc)
4366                         goto msix_setup_exit;
4367
4368                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4369                 tcs = netdev_get_num_tc(dev);
4370                 if (tcs > 1) {
4371                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4372                         if (bp->tx_nr_rings_per_tc == 0) {
4373                                 netdev_reset_tc(dev);
4374                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4375                         } else {
4376                                 int i, off, count;
4377
4378                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4379                                 for (i = 0; i < tcs; i++) {
4380                                         count = bp->tx_nr_rings_per_tc;
4381                                         off = i * count;
4382                                         netdev_set_tc_queue(dev, i, count, off);
4383                                 }
4384                         }
4385                 }
4386                 bp->cp_nr_rings = total_vecs;
4387
4388                 for (i = 0; i < bp->cp_nr_rings; i++) {
4389                         char *attr;
4390
4391                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4392                         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4393                                 attr = "TxRx";
4394                         else if (i < bp->rx_nr_rings)
4395                                 attr = "rx";
4396                         else
4397                                 attr = "tx";
4398
4399                         snprintf(bp->irq_tbl[i].name, len,
4400                                  "%s-%s-%d", dev->name, attr, i);
4401                         bp->irq_tbl[i].handler = bnxt_msix;
4402                 }
4403                 rc = bnxt_set_real_num_queues(bp);
4404                 if (rc)
4405                         goto msix_setup_exit;
4406         } else {
4407                 rc = -ENOMEM;
4408                 goto msix_setup_exit;
4409         }
4410         bp->flags |= BNXT_FLAG_USING_MSIX;
4411         kfree(msix_ent);
4412         return 0;
4413
4414 msix_setup_exit:
4415         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4416         pci_disable_msix(bp->pdev);
4417         kfree(msix_ent);
4418         return rc;
4419 }
4420
4421 static int bnxt_setup_inta(struct bnxt *bp)
4422 {
4423         int rc;
4424         const int len = sizeof(bp->irq_tbl[0].name);
4425
4426         if (netdev_get_num_tc(bp->dev))
4427                 netdev_reset_tc(bp->dev);
4428
4429         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4430         if (!bp->irq_tbl) {
4431                 rc = -ENOMEM;
4432                 return rc;
4433         }
4434         bp->rx_nr_rings = 1;
4435         bp->tx_nr_rings = 1;
4436         bp->cp_nr_rings = 1;
4437         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4438         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4439         bp->irq_tbl[0].vector = bp->pdev->irq;
4440         snprintf(bp->irq_tbl[0].name, len,
4441                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4442         bp->irq_tbl[0].handler = bnxt_inta;
4443         rc = bnxt_set_real_num_queues(bp);
4444         return rc;
4445 }
4446
4447 static int bnxt_setup_int_mode(struct bnxt *bp)
4448 {
4449         int rc = 0;
4450
4451         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4452                 rc = bnxt_setup_msix(bp);
4453
4454         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4455                 /* fallback to INTA */
4456                 rc = bnxt_setup_inta(bp);
4457         }
4458         return rc;
4459 }
4460
4461 static void bnxt_free_irq(struct bnxt *bp)
4462 {
4463         struct bnxt_irq *irq;
4464         int i;
4465
4466 #ifdef CONFIG_RFS_ACCEL
4467         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4468         bp->dev->rx_cpu_rmap = NULL;
4469 #endif
4470         if (!bp->irq_tbl)
4471                 return;
4472
4473         for (i = 0; i < bp->cp_nr_rings; i++) {
4474                 irq = &bp->irq_tbl[i];
4475                 if (irq->requested)
4476                         free_irq(irq->vector, bp->bnapi[i]);
4477                 irq->requested = 0;
4478         }
4479         if (bp->flags & BNXT_FLAG_USING_MSIX)
4480                 pci_disable_msix(bp->pdev);
4481         kfree(bp->irq_tbl);
4482         bp->irq_tbl = NULL;
4483 }
4484
4485 static int bnxt_request_irq(struct bnxt *bp)
4486 {
4487         int i, j, rc = 0;
4488         unsigned long flags = 0;
4489 #ifdef CONFIG_RFS_ACCEL
4490         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4491 #endif
4492
4493         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4494                 flags = IRQF_SHARED;
4495
4496         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4497                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4498 #ifdef CONFIG_RFS_ACCEL
4499                 if (rmap && bp->bnapi[i]->rx_ring) {
4500                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4501                         if (rc)
4502                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4503                                             j);
4504                         j++;
4505                 }
4506 #endif
4507                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4508                                  bp->bnapi[i]);
4509                 if (rc)
4510                         break;
4511
4512                 irq->requested = 1;
4513         }
4514         return rc;
4515 }
4516
4517 static void bnxt_del_napi(struct bnxt *bp)
4518 {
4519         int i;
4520
4521         if (!bp->bnapi)
4522                 return;
4523
4524         for (i = 0; i < bp->cp_nr_rings; i++) {
4525                 struct bnxt_napi *bnapi = bp->bnapi[i];
4526
4527                 napi_hash_del(&bnapi->napi);
4528                 netif_napi_del(&bnapi->napi);
4529         }
4530 }
4531
4532 static void bnxt_init_napi(struct bnxt *bp)
4533 {
4534         int i;
4535         struct bnxt_napi *bnapi;
4536
4537         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4538                 for (i = 0; i < bp->cp_nr_rings; i++) {
4539                         bnapi = bp->bnapi[i];
4540                         netif_napi_add(bp->dev, &bnapi->napi,
4541                                        bnxt_poll, 64);
4542                 }
4543         } else {
4544                 bnapi = bp->bnapi[0];
4545                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4546         }
4547 }
4548
4549 static void bnxt_disable_napi(struct bnxt *bp)
4550 {
4551         int i;
4552
4553         if (!bp->bnapi)
4554                 return;
4555
4556         for (i = 0; i < bp->cp_nr_rings; i++) {
4557                 napi_disable(&bp->bnapi[i]->napi);
4558                 bnxt_disable_poll(bp->bnapi[i]);
4559         }
4560 }
4561
4562 static void bnxt_enable_napi(struct bnxt *bp)
4563 {
4564         int i;
4565
4566         for (i = 0; i < bp->cp_nr_rings; i++) {
4567                 bp->bnapi[i]->in_reset = false;
4568                 bnxt_enable_poll(bp->bnapi[i]);
4569                 napi_enable(&bp->bnapi[i]->napi);
4570         }
4571 }
4572
4573 static void bnxt_tx_disable(struct bnxt *bp)
4574 {
4575         int i;
4576         struct bnxt_tx_ring_info *txr;
4577         struct netdev_queue *txq;
4578
4579         if (bp->tx_ring) {
4580                 for (i = 0; i < bp->tx_nr_rings; i++) {
4581                         txr = &bp->tx_ring[i];
4582                         txq = netdev_get_tx_queue(bp->dev, i);
4583                         __netif_tx_lock(txq, smp_processor_id());
4584                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4585                         __netif_tx_unlock(txq);
4586                 }
4587         }
4588         /* Stop all TX queues */
4589         netif_tx_disable(bp->dev);
4590         netif_carrier_off(bp->dev);
4591 }
4592
4593 static void bnxt_tx_enable(struct bnxt *bp)
4594 {
4595         int i;
4596         struct bnxt_tx_ring_info *txr;
4597         struct netdev_queue *txq;
4598
4599         for (i = 0; i < bp->tx_nr_rings; i++) {
4600                 txr = &bp->tx_ring[i];
4601                 txq = netdev_get_tx_queue(bp->dev, i);
4602                 txr->dev_state = 0;
4603         }
4604         netif_tx_wake_all_queues(bp->dev);
4605         if (bp->link_info.link_up)
4606                 netif_carrier_on(bp->dev);
4607 }
4608
4609 static void bnxt_report_link(struct bnxt *bp)
4610 {
4611         if (bp->link_info.link_up) {
4612                 const char *duplex;
4613                 const char *flow_ctrl;
4614                 u16 speed;
4615
4616                 netif_carrier_on(bp->dev);
4617                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4618                         duplex = "full";
4619                 else
4620                         duplex = "half";
4621                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4622                         flow_ctrl = "ON - receive & transmit";
4623                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4624                         flow_ctrl = "ON - transmit";
4625                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4626                         flow_ctrl = "ON - receive";
4627                 else
4628                         flow_ctrl = "none";
4629                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4630                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4631                             speed, duplex, flow_ctrl);
4632                 if (bp->flags & BNXT_FLAG_EEE_CAP)
4633                         netdev_info(bp->dev, "EEE is %s\n",
4634                                     bp->eee.eee_active ? "active" :
4635                                                          "not active");
4636         } else {
4637                 netif_carrier_off(bp->dev);
4638                 netdev_err(bp->dev, "NIC Link is Down\n");
4639         }
4640 }
4641
4642 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
4643 {
4644         int rc = 0;
4645         struct hwrm_port_phy_qcaps_input req = {0};
4646         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4647
4648         if (bp->hwrm_spec_code < 0x10201)
4649                 return 0;
4650
4651         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
4652
4653         mutex_lock(&bp->hwrm_cmd_lock);
4654         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4655         if (rc)
4656                 goto hwrm_phy_qcaps_exit;
4657
4658         if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
4659                 struct ethtool_eee *eee = &bp->eee;
4660                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
4661
4662                 bp->flags |= BNXT_FLAG_EEE_CAP;
4663                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4664                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
4665                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
4666                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
4667                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
4668         }
4669
4670 hwrm_phy_qcaps_exit:
4671         mutex_unlock(&bp->hwrm_cmd_lock);
4672         return rc;
4673 }
4674
4675 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4676 {
4677         int rc = 0;
4678         struct bnxt_link_info *link_info = &bp->link_info;
4679         struct hwrm_port_phy_qcfg_input req = {0};
4680         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4681         u8 link_up = link_info->link_up;
4682
4683         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4684
4685         mutex_lock(&bp->hwrm_cmd_lock);
4686         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4687         if (rc) {
4688                 mutex_unlock(&bp->hwrm_cmd_lock);
4689                 return rc;
4690         }
4691
4692         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4693         link_info->phy_link_status = resp->link;
4694         link_info->duplex =  resp->duplex;
4695         link_info->pause = resp->pause;
4696         link_info->auto_mode = resp->auto_mode;
4697         link_info->auto_pause_setting = resp->auto_pause;
4698         link_info->lp_pause = resp->link_partner_adv_pause;
4699         link_info->force_pause_setting = resp->force_pause;
4700         link_info->duplex_setting = resp->duplex;
4701         if (link_info->phy_link_status == BNXT_LINK_LINK)
4702                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4703         else
4704                 link_info->link_speed = 0;
4705         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4706         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4707         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4708         link_info->lp_auto_link_speeds =
4709                 le16_to_cpu(resp->link_partner_adv_speeds);
4710         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4711         link_info->phy_ver[0] = resp->phy_maj;
4712         link_info->phy_ver[1] = resp->phy_min;
4713         link_info->phy_ver[2] = resp->phy_bld;
4714         link_info->media_type = resp->media_type;
4715         link_info->phy_type = resp->phy_type;
4716         link_info->transceiver = resp->xcvr_pkg_type;
4717         link_info->phy_addr = resp->eee_config_phy_addr &
4718                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
4719         link_info->module_status = resp->module_status;
4720
4721         if (bp->flags & BNXT_FLAG_EEE_CAP) {
4722                 struct ethtool_eee *eee = &bp->eee;
4723                 u16 fw_speeds;
4724
4725                 eee->eee_active = 0;
4726                 if (resp->eee_config_phy_addr &
4727                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
4728                         eee->eee_active = 1;
4729                         fw_speeds = le16_to_cpu(
4730                                 resp->link_partner_adv_eee_link_speed_mask);
4731                         eee->lp_advertised =
4732                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4733                 }
4734
4735                 /* Pull initial EEE config */
4736                 if (!chng_link_state) {
4737                         if (resp->eee_config_phy_addr &
4738                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
4739                                 eee->eee_enabled = 1;
4740
4741                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
4742                         eee->advertised =
4743                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4744
4745                         if (resp->eee_config_phy_addr &
4746                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
4747                                 __le32 tmr;
4748
4749                                 eee->tx_lpi_enabled = 1;
4750                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
4751                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
4752                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
4753                         }
4754                 }
4755         }
4756         /* TODO: need to add more logic to report VF link */
4757         if (chng_link_state) {
4758                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4759                         link_info->link_up = 1;
4760                 else
4761                         link_info->link_up = 0;
4762                 if (link_up != link_info->link_up)
4763                         bnxt_report_link(bp);
4764         } else {
4765                 /* alwasy link down if not require to update link state */
4766                 link_info->link_up = 0;
4767         }
4768         mutex_unlock(&bp->hwrm_cmd_lock);
4769         return 0;
4770 }
4771
4772 static void bnxt_get_port_module_status(struct bnxt *bp)
4773 {
4774         struct bnxt_link_info *link_info = &bp->link_info;
4775         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
4776         u8 module_status;
4777
4778         if (bnxt_update_link(bp, true))
4779                 return;
4780
4781         module_status = link_info->module_status;
4782         switch (module_status) {
4783         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
4784         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
4785         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
4786                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
4787                             bp->pf.port_id);
4788                 if (bp->hwrm_spec_code >= 0x10201) {
4789                         netdev_warn(bp->dev, "Module part number %s\n",
4790                                     resp->phy_vendor_partnumber);
4791                 }
4792                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
4793                         netdev_warn(bp->dev, "TX is disabled\n");
4794                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
4795                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
4796         }
4797 }
4798
4799 static void
4800 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4801 {
4802         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4803                 if (bp->hwrm_spec_code >= 0x10201)
4804                         req->auto_pause =
4805                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
4806                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4807                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4808                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4809                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4810                 req->enables |=
4811                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4812         } else {
4813                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4814                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4815                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4816                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4817                 req->enables |=
4818                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4819                 if (bp->hwrm_spec_code >= 0x10201) {
4820                         req->auto_pause = req->force_pause;
4821                         req->enables |= cpu_to_le32(
4822                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4823                 }
4824         }
4825 }
4826
4827 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4828                                       struct hwrm_port_phy_cfg_input *req)
4829 {
4830         u8 autoneg = bp->link_info.autoneg;
4831         u16 fw_link_speed = bp->link_info.req_link_speed;
4832         u32 advertising = bp->link_info.advertising;
4833
4834         if (autoneg & BNXT_AUTONEG_SPEED) {
4835                 req->auto_mode |=
4836                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
4837
4838                 req->enables |= cpu_to_le32(
4839                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4840                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4841
4842                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4843                 req->flags |=
4844                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4845         } else {
4846                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4847                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4848         }
4849
4850         /* tell chimp that the setting takes effect immediately */
4851         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4852 }
4853
4854 int bnxt_hwrm_set_pause(struct bnxt *bp)
4855 {
4856         struct hwrm_port_phy_cfg_input req = {0};
4857         int rc;
4858
4859         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4860         bnxt_hwrm_set_pause_common(bp, &req);
4861
4862         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4863             bp->link_info.force_link_chng)
4864                 bnxt_hwrm_set_link_common(bp, &req);
4865
4866         mutex_lock(&bp->hwrm_cmd_lock);
4867         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4868         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4869                 /* since changing of pause setting doesn't trigger any link
4870                  * change event, the driver needs to update the current pause
4871                  * result upon successfully return of the phy_cfg command
4872                  */
4873                 bp->link_info.pause =
4874                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4875                 bp->link_info.auto_pause_setting = 0;
4876                 if (!bp->link_info.force_link_chng)
4877                         bnxt_report_link(bp);
4878         }
4879         bp->link_info.force_link_chng = false;
4880         mutex_unlock(&bp->hwrm_cmd_lock);
4881         return rc;
4882 }
4883
4884 static void bnxt_hwrm_set_eee(struct bnxt *bp,
4885                               struct hwrm_port_phy_cfg_input *req)
4886 {
4887         struct ethtool_eee *eee = &bp->eee;
4888
4889         if (eee->eee_enabled) {
4890                 u16 eee_speeds;
4891                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
4892
4893                 if (eee->tx_lpi_enabled)
4894                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
4895                 else
4896                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
4897
4898                 req->flags |= cpu_to_le32(flags);
4899                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
4900                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
4901                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
4902         } else {
4903                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
4904         }
4905 }
4906
4907 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
4908 {
4909         struct hwrm_port_phy_cfg_input req = {0};
4910
4911         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4912         if (set_pause)
4913                 bnxt_hwrm_set_pause_common(bp, &req);
4914
4915         bnxt_hwrm_set_link_common(bp, &req);
4916
4917         if (set_eee)
4918                 bnxt_hwrm_set_eee(bp, &req);
4919         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4920 }
4921
4922 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
4923 {
4924         struct hwrm_port_phy_cfg_input req = {0};
4925
4926         if (BNXT_VF(bp))
4927                 return 0;
4928
4929         if (pci_num_vf(bp->pdev))
4930                 return 0;
4931
4932         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4933         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
4934         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4935 }
4936
4937 static bool bnxt_eee_config_ok(struct bnxt *bp)
4938 {
4939         struct ethtool_eee *eee = &bp->eee;
4940         struct bnxt_link_info *link_info = &bp->link_info;
4941
4942         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
4943                 return true;
4944
4945         if (eee->eee_enabled) {
4946                 u32 advertising =
4947                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
4948
4949                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4950                         eee->eee_enabled = 0;
4951                         return false;
4952                 }
4953                 if (eee->advertised & ~advertising) {
4954                         eee->advertised = advertising & eee->supported;
4955                         return false;
4956                 }
4957         }
4958         return true;
4959 }
4960
4961 static int bnxt_update_phy_setting(struct bnxt *bp)
4962 {
4963         int rc;
4964         bool update_link = false;
4965         bool update_pause = false;
4966         bool update_eee = false;
4967         struct bnxt_link_info *link_info = &bp->link_info;
4968
4969         rc = bnxt_update_link(bp, true);
4970         if (rc) {
4971                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4972                            rc);
4973                 return rc;
4974         }
4975         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4976             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
4977             link_info->req_flow_ctrl)
4978                 update_pause = true;
4979         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4980             link_info->force_pause_setting != link_info->req_flow_ctrl)
4981                 update_pause = true;
4982         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4983                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4984                         update_link = true;
4985                 if (link_info->req_link_speed != link_info->force_link_speed)
4986                         update_link = true;
4987                 if (link_info->req_duplex != link_info->duplex_setting)
4988                         update_link = true;
4989         } else {
4990                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4991                         update_link = true;
4992                 if (link_info->advertising != link_info->auto_link_speeds)
4993                         update_link = true;
4994         }
4995
4996         if (!bnxt_eee_config_ok(bp))
4997                 update_eee = true;
4998
4999         if (update_link)
5000                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5001         else if (update_pause)
5002                 rc = bnxt_hwrm_set_pause(bp);
5003         if (rc) {
5004                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5005                            rc);
5006                 return rc;
5007         }
5008
5009         return rc;
5010 }
5011
5012 /* Common routine to pre-map certain register block to different GRC window.
5013  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5014  * in PF and 3 windows in VF that can be customized to map in different
5015  * register blocks.
5016  */
5017 static void bnxt_preset_reg_win(struct bnxt *bp)
5018 {
5019         if (BNXT_PF(bp)) {
5020                 /* CAG registers map to GRC window #4 */
5021                 writel(BNXT_CAG_REG_BASE,
5022                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5023         }
5024 }
5025
5026 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5027 {
5028         int rc = 0;
5029
5030         bnxt_preset_reg_win(bp);
5031         netif_carrier_off(bp->dev);
5032         if (irq_re_init) {
5033                 rc = bnxt_setup_int_mode(bp);
5034                 if (rc) {
5035                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5036                                    rc);
5037                         return rc;
5038                 }
5039         }
5040         if ((bp->flags & BNXT_FLAG_RFS) &&
5041             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5042                 /* disable RFS if falling back to INTA */
5043                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5044                 bp->flags &= ~BNXT_FLAG_RFS;
5045         }
5046
5047         rc = bnxt_alloc_mem(bp, irq_re_init);
5048         if (rc) {
5049                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5050                 goto open_err_free_mem;
5051         }
5052
5053         if (irq_re_init) {
5054                 bnxt_init_napi(bp);
5055                 rc = bnxt_request_irq(bp);
5056                 if (rc) {
5057                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5058                         goto open_err;
5059                 }
5060         }
5061
5062         bnxt_enable_napi(bp);
5063
5064         rc = bnxt_init_nic(bp, irq_re_init);
5065         if (rc) {
5066                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5067                 goto open_err;
5068         }
5069
5070         if (link_re_init) {
5071                 rc = bnxt_update_phy_setting(bp);
5072                 if (rc)
5073                         netdev_warn(bp->dev, "failed to update phy settings\n");
5074         }
5075
5076         if (irq_re_init) {
5077 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
5078                 vxlan_get_rx_port(bp->dev);
5079 #endif
5080                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
5081                                 bp, htons(0x17c1),
5082                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
5083                         bp->nge_port_cnt = 1;
5084         }
5085
5086         set_bit(BNXT_STATE_OPEN, &bp->state);
5087         bnxt_enable_int(bp);
5088         /* Enable TX queues */
5089         bnxt_tx_enable(bp);
5090         mod_timer(&bp->timer, jiffies + bp->current_interval);
5091         /* Poll link status and check for SFP+ module status */
5092         bnxt_get_port_module_status(bp);
5093
5094         return 0;
5095
5096 open_err:
5097         bnxt_disable_napi(bp);
5098         bnxt_del_napi(bp);
5099
5100 open_err_free_mem:
5101         bnxt_free_skbs(bp);
5102         bnxt_free_irq(bp);
5103         bnxt_free_mem(bp, true);
5104         return rc;
5105 }
5106
5107 /* rtnl_lock held */
5108 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5109 {
5110         int rc = 0;
5111
5112         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5113         if (rc) {
5114                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5115                 dev_close(bp->dev);
5116         }
5117         return rc;
5118 }
5119
5120 static int bnxt_open(struct net_device *dev)
5121 {
5122         struct bnxt *bp = netdev_priv(dev);
5123         int rc = 0;
5124
5125         rc = bnxt_hwrm_func_reset(bp);
5126         if (rc) {
5127                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5128                            rc);
5129                 rc = -1;
5130                 return rc;
5131         }
5132         return __bnxt_open_nic(bp, true, true);
5133 }
5134
5135 static void bnxt_disable_int_sync(struct bnxt *bp)
5136 {
5137         int i;
5138
5139         atomic_inc(&bp->intr_sem);
5140         if (!netif_running(bp->dev))
5141                 return;
5142
5143         bnxt_disable_int(bp);
5144         for (i = 0; i < bp->cp_nr_rings; i++)
5145                 synchronize_irq(bp->irq_tbl[i].vector);
5146 }
5147
5148 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5149 {
5150         int rc = 0;
5151
5152 #ifdef CONFIG_BNXT_SRIOV
5153         if (bp->sriov_cfg) {
5154                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5155                                                       !bp->sriov_cfg,
5156                                                       BNXT_SRIOV_CFG_WAIT_TMO);
5157                 if (rc)
5158                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5159         }
5160 #endif
5161         /* Change device state to avoid TX queue wake up's */
5162         bnxt_tx_disable(bp);
5163
5164         clear_bit(BNXT_STATE_OPEN, &bp->state);
5165         smp_mb__after_atomic();
5166         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5167                 msleep(20);
5168
5169         /* Flush rings before disabling interrupts */
5170         bnxt_shutdown_nic(bp, irq_re_init);
5171
5172         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5173
5174         bnxt_disable_napi(bp);
5175         bnxt_disable_int_sync(bp);
5176         del_timer_sync(&bp->timer);
5177         bnxt_free_skbs(bp);
5178
5179         if (irq_re_init) {
5180                 bnxt_free_irq(bp);
5181                 bnxt_del_napi(bp);
5182         }
5183         bnxt_free_mem(bp, irq_re_init);
5184         return rc;
5185 }
5186
5187 static int bnxt_close(struct net_device *dev)
5188 {
5189         struct bnxt *bp = netdev_priv(dev);
5190
5191         bnxt_close_nic(bp, true, true);
5192         bnxt_hwrm_shutdown_link(bp);
5193         return 0;
5194 }
5195
5196 /* rtnl_lock held */
5197 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5198 {
5199         switch (cmd) {
5200         case SIOCGMIIPHY:
5201                 /* fallthru */
5202         case SIOCGMIIREG: {
5203                 if (!netif_running(dev))
5204                         return -EAGAIN;
5205
5206                 return 0;
5207         }
5208
5209         case SIOCSMIIREG:
5210                 if (!netif_running(dev))
5211                         return -EAGAIN;
5212
5213                 return 0;
5214
5215         default:
5216                 /* do nothing */
5217                 break;
5218         }
5219         return -EOPNOTSUPP;
5220 }
5221
5222 static struct rtnl_link_stats64 *
5223 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5224 {
5225         u32 i;
5226         struct bnxt *bp = netdev_priv(dev);
5227
5228         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5229
5230         if (!bp->bnapi)
5231                 return stats;
5232
5233         /* TODO check if we need to synchronize with bnxt_close path */
5234         for (i = 0; i < bp->cp_nr_rings; i++) {
5235                 struct bnxt_napi *bnapi = bp->bnapi[i];
5236                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5237                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5238
5239                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5240                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5241                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5242
5243                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5244                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5245                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5246
5247                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5248                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5249                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5250
5251                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5252                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5253                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5254
5255                 stats->rx_missed_errors +=
5256                         le64_to_cpu(hw_stats->rx_discard_pkts);
5257
5258                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5259
5260                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5261         }
5262
5263         if (bp->flags & BNXT_FLAG_PORT_STATS) {
5264                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5265                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5266
5267                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5268                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5269                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5270                                           le64_to_cpu(rx->rx_ovrsz_frames) +
5271                                           le64_to_cpu(rx->rx_runt_frames);
5272                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5273                                    le64_to_cpu(rx->rx_jbr_frames);
5274                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5275                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5276                 stats->tx_errors = le64_to_cpu(tx->tx_err);
5277         }
5278
5279         return stats;
5280 }
5281
5282 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5283 {
5284         struct net_device *dev = bp->dev;
5285         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5286         struct netdev_hw_addr *ha;
5287         u8 *haddr;
5288         int mc_count = 0;
5289         bool update = false;
5290         int off = 0;
5291
5292         netdev_for_each_mc_addr(ha, dev) {
5293                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5294                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5295                         vnic->mc_list_count = 0;
5296                         return false;
5297                 }
5298                 haddr = ha->addr;
5299                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5300                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5301                         update = true;
5302                 }
5303                 off += ETH_ALEN;
5304                 mc_count++;
5305         }
5306         if (mc_count)
5307                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5308
5309         if (mc_count != vnic->mc_list_count) {
5310                 vnic->mc_list_count = mc_count;
5311                 update = true;
5312         }
5313         return update;
5314 }
5315
5316 static bool bnxt_uc_list_updated(struct bnxt *bp)
5317 {
5318         struct net_device *dev = bp->dev;
5319         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5320         struct netdev_hw_addr *ha;
5321         int off = 0;
5322
5323         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5324                 return true;
5325
5326         netdev_for_each_uc_addr(ha, dev) {
5327                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5328                         return true;
5329
5330                 off += ETH_ALEN;
5331         }
5332         return false;
5333 }
5334
5335 static void bnxt_set_rx_mode(struct net_device *dev)
5336 {
5337         struct bnxt *bp = netdev_priv(dev);
5338         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5339         u32 mask = vnic->rx_mask;
5340         bool mc_update = false;
5341         bool uc_update;
5342
5343         if (!netif_running(dev))
5344                 return;
5345
5346         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5347                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5348                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5349
5350         /* Only allow PF to be in promiscuous mode */
5351         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5352                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5353
5354         uc_update = bnxt_uc_list_updated(bp);
5355
5356         if (dev->flags & IFF_ALLMULTI) {
5357                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5358                 vnic->mc_list_count = 0;
5359         } else {
5360                 mc_update = bnxt_mc_list_updated(bp, &mask);
5361         }
5362
5363         if (mask != vnic->rx_mask || uc_update || mc_update) {
5364                 vnic->rx_mask = mask;
5365
5366                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5367                 schedule_work(&bp->sp_task);
5368         }
5369 }
5370
5371 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5372 {
5373         struct net_device *dev = bp->dev;
5374         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5375         struct netdev_hw_addr *ha;
5376         int i, off = 0, rc;
5377         bool uc_update;
5378
5379         netif_addr_lock_bh(dev);
5380         uc_update = bnxt_uc_list_updated(bp);
5381         netif_addr_unlock_bh(dev);
5382
5383         if (!uc_update)
5384                 goto skip_uc;
5385
5386         mutex_lock(&bp->hwrm_cmd_lock);
5387         for (i = 1; i < vnic->uc_filter_count; i++) {
5388                 struct hwrm_cfa_l2_filter_free_input req = {0};
5389
5390                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5391                                        -1);
5392
5393                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5394
5395                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5396                                         HWRM_CMD_TIMEOUT);
5397         }
5398         mutex_unlock(&bp->hwrm_cmd_lock);
5399
5400         vnic->uc_filter_count = 1;
5401
5402         netif_addr_lock_bh(dev);
5403         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5404                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5405         } else {
5406                 netdev_for_each_uc_addr(ha, dev) {
5407                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5408                         off += ETH_ALEN;
5409                         vnic->uc_filter_count++;
5410                 }
5411         }
5412         netif_addr_unlock_bh(dev);
5413
5414         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5415                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5416                 if (rc) {
5417                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5418                                    rc);
5419                         vnic->uc_filter_count = i;
5420                         return rc;
5421                 }
5422         }
5423
5424 skip_uc:
5425         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5426         if (rc)
5427                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5428                            rc);
5429
5430         return rc;
5431 }
5432
5433 static bool bnxt_rfs_capable(struct bnxt *bp)
5434 {
5435 #ifdef CONFIG_RFS_ACCEL
5436         struct bnxt_pf_info *pf = &bp->pf;
5437         int vnics;
5438
5439         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5440                 return false;
5441
5442         vnics = 1 + bp->rx_nr_rings;
5443         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5444                 return false;
5445
5446         return true;
5447 #else
5448         return false;
5449 #endif
5450 }
5451
5452 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5453                                            netdev_features_t features)
5454 {
5455         struct bnxt *bp = netdev_priv(dev);
5456
5457         if (!bnxt_rfs_capable(bp))
5458                 features &= ~NETIF_F_NTUPLE;
5459
5460         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
5461          * turned on or off together.
5462          */
5463         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5464             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5465                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5466                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5467                                       NETIF_F_HW_VLAN_STAG_RX);
5468                 else
5469                         features |= NETIF_F_HW_VLAN_CTAG_RX |
5470                                     NETIF_F_HW_VLAN_STAG_RX;
5471         }
5472
5473         return features;
5474 }
5475
5476 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5477 {
5478         struct bnxt *bp = netdev_priv(dev);
5479         u32 flags = bp->flags;
5480         u32 changes;
5481         int rc = 0;
5482         bool re_init = false;
5483         bool update_tpa = false;
5484
5485         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5486         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5487                 flags |= BNXT_FLAG_GRO;
5488         if (features & NETIF_F_LRO)
5489                 flags |= BNXT_FLAG_LRO;
5490
5491         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5492                 flags |= BNXT_FLAG_STRIP_VLAN;
5493
5494         if (features & NETIF_F_NTUPLE)
5495                 flags |= BNXT_FLAG_RFS;
5496
5497         changes = flags ^ bp->flags;
5498         if (changes & BNXT_FLAG_TPA) {
5499                 update_tpa = true;
5500                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5501                     (flags & BNXT_FLAG_TPA) == 0)
5502                         re_init = true;
5503         }
5504
5505         if (changes & ~BNXT_FLAG_TPA)
5506                 re_init = true;
5507
5508         if (flags != bp->flags) {
5509                 u32 old_flags = bp->flags;
5510
5511                 bp->flags = flags;
5512
5513                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5514                         if (update_tpa)
5515                                 bnxt_set_ring_params(bp);
5516                         return rc;
5517                 }
5518
5519                 if (re_init) {
5520                         bnxt_close_nic(bp, false, false);
5521                         if (update_tpa)
5522                                 bnxt_set_ring_params(bp);
5523
5524                         return bnxt_open_nic(bp, false, false);
5525                 }
5526                 if (update_tpa) {
5527                         rc = bnxt_set_tpa(bp,
5528                                           (flags & BNXT_FLAG_TPA) ?
5529                                           true : false);
5530                         if (rc)
5531                                 bp->flags = old_flags;
5532                 }
5533         }
5534         return rc;
5535 }
5536
5537 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5538 {
5539         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5540         int i = bnapi->index;
5541
5542         if (!txr)
5543                 return;
5544
5545         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5546                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5547                     txr->tx_cons);
5548 }
5549
5550 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5551 {
5552         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5553         int i = bnapi->index;
5554
5555         if (!rxr)
5556                 return;
5557
5558         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5559                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5560                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5561                     rxr->rx_sw_agg_prod);
5562 }
5563
5564 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5565 {
5566         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5567         int i = bnapi->index;
5568
5569         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5570                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5571 }
5572
5573 static void bnxt_dbg_dump_states(struct bnxt *bp)
5574 {
5575         int i;
5576         struct bnxt_napi *bnapi;
5577
5578         for (i = 0; i < bp->cp_nr_rings; i++) {
5579                 bnapi = bp->bnapi[i];
5580                 if (netif_msg_drv(bp)) {
5581                         bnxt_dump_tx_sw_state(bnapi);
5582                         bnxt_dump_rx_sw_state(bnapi);
5583                         bnxt_dump_cp_sw_state(bnapi);
5584                 }
5585         }
5586 }
5587
5588 static void bnxt_reset_task(struct bnxt *bp)
5589 {
5590         bnxt_dbg_dump_states(bp);
5591         if (netif_running(bp->dev)) {
5592                 bnxt_close_nic(bp, false, false);
5593                 bnxt_open_nic(bp, false, false);
5594         }
5595 }
5596
5597 static void bnxt_tx_timeout(struct net_device *dev)
5598 {
5599         struct bnxt *bp = netdev_priv(dev);
5600
5601         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5602         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5603         schedule_work(&bp->sp_task);
5604 }
5605
5606 #ifdef CONFIG_NET_POLL_CONTROLLER
5607 static void bnxt_poll_controller(struct net_device *dev)
5608 {
5609         struct bnxt *bp = netdev_priv(dev);
5610         int i;
5611
5612         for (i = 0; i < bp->cp_nr_rings; i++) {
5613                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5614
5615                 disable_irq(irq->vector);
5616                 irq->handler(irq->vector, bp->bnapi[i]);
5617                 enable_irq(irq->vector);
5618         }
5619 }
5620 #endif
5621
5622 static void bnxt_timer(unsigned long data)
5623 {
5624         struct bnxt *bp = (struct bnxt *)data;
5625         struct net_device *dev = bp->dev;
5626
5627         if (!netif_running(dev))
5628                 return;
5629
5630         if (atomic_read(&bp->intr_sem) != 0)
5631                 goto bnxt_restart_timer;
5632
5633         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5634                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5635                 schedule_work(&bp->sp_task);
5636         }
5637 bnxt_restart_timer:
5638         mod_timer(&bp->timer, jiffies + bp->current_interval);
5639 }
5640
5641 static void bnxt_cfg_ntp_filters(struct bnxt *);
5642
5643 static void bnxt_sp_task(struct work_struct *work)
5644 {
5645         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5646         int rc;
5647
5648         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5649         smp_mb__after_atomic();
5650         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5651                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5652                 return;
5653         }
5654
5655         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5656                 bnxt_cfg_rx_mode(bp);
5657
5658         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5659                 bnxt_cfg_ntp_filters(bp);
5660         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5661                 rc = bnxt_update_link(bp, true);
5662                 if (rc)
5663                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5664                                    rc);
5665         }
5666         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5667                 bnxt_hwrm_exec_fwd_req(bp);
5668         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5669                 bnxt_hwrm_tunnel_dst_port_alloc(
5670                         bp, bp->vxlan_port,
5671                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5672         }
5673         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5674                 bnxt_hwrm_tunnel_dst_port_free(
5675                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5676         }
5677         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5678                 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5679                  * for BNXT_STATE_IN_SP_TASK to clear.
5680                  */
5681                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5682                 rtnl_lock();
5683                 bnxt_reset_task(bp);
5684                 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5685                 rtnl_unlock();
5686         }
5687
5688         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
5689                 bnxt_get_port_module_status(bp);
5690
5691         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5692                 bnxt_hwrm_port_qstats(bp);
5693
5694         smp_mb__before_atomic();
5695         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5696 }
5697
5698 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5699 {
5700         int rc;
5701         struct bnxt *bp = netdev_priv(dev);
5702
5703         SET_NETDEV_DEV(dev, &pdev->dev);
5704
5705         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5706         rc = pci_enable_device(pdev);
5707         if (rc) {
5708                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5709                 goto init_err;
5710         }
5711
5712         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5713                 dev_err(&pdev->dev,
5714                         "Cannot find PCI device base address, aborting\n");
5715                 rc = -ENODEV;
5716                 goto init_err_disable;
5717         }
5718
5719         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5720         if (rc) {
5721                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5722                 goto init_err_disable;
5723         }
5724
5725         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5726             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5727                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5728                 goto init_err_disable;
5729         }
5730
5731         pci_set_master(pdev);
5732
5733         bp->dev = dev;
5734         bp->pdev = pdev;
5735
5736         bp->bar0 = pci_ioremap_bar(pdev, 0);
5737         if (!bp->bar0) {
5738                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5739                 rc = -ENOMEM;
5740                 goto init_err_release;
5741         }
5742
5743         bp->bar1 = pci_ioremap_bar(pdev, 2);
5744         if (!bp->bar1) {
5745                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5746                 rc = -ENOMEM;
5747                 goto init_err_release;
5748         }
5749
5750         bp->bar2 = pci_ioremap_bar(pdev, 4);
5751         if (!bp->bar2) {
5752                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5753                 rc = -ENOMEM;
5754                 goto init_err_release;
5755         }
5756
5757         pci_enable_pcie_error_reporting(pdev);
5758
5759         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5760
5761         spin_lock_init(&bp->ntp_fltr_lock);
5762
5763         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5764         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5765
5766         /* tick values in micro seconds */
5767         bp->rx_coal_ticks = 12;
5768         bp->rx_coal_bufs = 30;
5769         bp->rx_coal_ticks_irq = 1;
5770         bp->rx_coal_bufs_irq = 2;
5771
5772         bp->tx_coal_ticks = 25;
5773         bp->tx_coal_bufs = 30;
5774         bp->tx_coal_ticks_irq = 2;
5775         bp->tx_coal_bufs_irq = 2;
5776
5777         init_timer(&bp->timer);
5778         bp->timer.data = (unsigned long)bp;
5779         bp->timer.function = bnxt_timer;
5780         bp->current_interval = BNXT_TIMER_INTERVAL;
5781
5782         clear_bit(BNXT_STATE_OPEN, &bp->state);
5783
5784         return 0;
5785
5786 init_err_release:
5787         if (bp->bar2) {
5788                 pci_iounmap(pdev, bp->bar2);
5789                 bp->bar2 = NULL;
5790         }
5791
5792         if (bp->bar1) {
5793                 pci_iounmap(pdev, bp->bar1);
5794                 bp->bar1 = NULL;
5795         }
5796
5797         if (bp->bar0) {
5798                 pci_iounmap(pdev, bp->bar0);
5799                 bp->bar0 = NULL;
5800         }
5801
5802         pci_release_regions(pdev);
5803
5804 init_err_disable:
5805         pci_disable_device(pdev);
5806
5807 init_err:
5808         return rc;
5809 }
5810
5811 /* rtnl_lock held */
5812 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5813 {
5814         struct sockaddr *addr = p;
5815         struct bnxt *bp = netdev_priv(dev);
5816         int rc = 0;
5817
5818         if (!is_valid_ether_addr(addr->sa_data))
5819                 return -EADDRNOTAVAIL;
5820
5821         rc = bnxt_approve_mac(bp, addr->sa_data);
5822         if (rc)
5823                 return rc;
5824
5825         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5826                 return 0;
5827
5828         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5829         if (netif_running(dev)) {
5830                 bnxt_close_nic(bp, false, false);
5831                 rc = bnxt_open_nic(bp, false, false);
5832         }
5833
5834         return rc;
5835 }
5836
5837 /* rtnl_lock held */
5838 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5839 {
5840         struct bnxt *bp = netdev_priv(dev);
5841
5842         if (new_mtu < 60 || new_mtu > 9000)
5843                 return -EINVAL;
5844
5845         if (netif_running(dev))
5846                 bnxt_close_nic(bp, false, false);
5847
5848         dev->mtu = new_mtu;
5849         bnxt_set_ring_params(bp);
5850
5851         if (netif_running(dev))
5852                 return bnxt_open_nic(bp, false, false);
5853
5854         return 0;
5855 }
5856
5857 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5858                          struct tc_to_netdev *ntc)
5859 {
5860         struct bnxt *bp = netdev_priv(dev);
5861         u8 tc;
5862
5863         if (ntc->type != TC_SETUP_MQPRIO)
5864                 return -EINVAL;
5865
5866         tc = ntc->tc;
5867
5868         if (tc > bp->max_tc) {
5869                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5870                            tc, bp->max_tc);
5871                 return -EINVAL;
5872         }
5873
5874         if (netdev_get_num_tc(dev) == tc)
5875                 return 0;
5876
5877         if (tc) {
5878                 int max_rx_rings, max_tx_rings, rc;
5879                 bool sh = false;
5880
5881                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5882                         sh = true;
5883
5884                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5885                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5886                         return -ENOMEM;
5887         }
5888
5889         /* Needs to close the device and do hw resource re-allocations */
5890         if (netif_running(bp->dev))
5891                 bnxt_close_nic(bp, true, false);
5892
5893         if (tc) {
5894                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5895                 netdev_set_num_tc(dev, tc);
5896         } else {
5897                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5898                 netdev_reset_tc(dev);
5899         }
5900         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5901         bp->num_stat_ctxs = bp->cp_nr_rings;
5902
5903         if (netif_running(bp->dev))
5904                 return bnxt_open_nic(bp, true, false);
5905
5906         return 0;
5907 }
5908
5909 #ifdef CONFIG_RFS_ACCEL
5910 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5911                             struct bnxt_ntuple_filter *f2)
5912 {
5913         struct flow_keys *keys1 = &f1->fkeys;
5914         struct flow_keys *keys2 = &f2->fkeys;
5915
5916         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5917             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5918             keys1->ports.ports == keys2->ports.ports &&
5919             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5920             keys1->basic.n_proto == keys2->basic.n_proto &&
5921             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5922                 return true;
5923
5924         return false;
5925 }
5926
5927 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5928                               u16 rxq_index, u32 flow_id)
5929 {
5930         struct bnxt *bp = netdev_priv(dev);
5931         struct bnxt_ntuple_filter *fltr, *new_fltr;
5932         struct flow_keys *fkeys;
5933         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5934         int rc = 0, idx, bit_id;
5935         struct hlist_head *head;
5936
5937         if (skb->encapsulation)
5938                 return -EPROTONOSUPPORT;
5939
5940         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5941         if (!new_fltr)
5942                 return -ENOMEM;
5943
5944         fkeys = &new_fltr->fkeys;
5945         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5946                 rc = -EPROTONOSUPPORT;
5947                 goto err_free;
5948         }
5949
5950         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5951             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5952              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5953                 rc = -EPROTONOSUPPORT;
5954                 goto err_free;
5955         }
5956
5957         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5958
5959         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5960         head = &bp->ntp_fltr_hash_tbl[idx];
5961         rcu_read_lock();
5962         hlist_for_each_entry_rcu(fltr, head, hash) {
5963                 if (bnxt_fltr_match(fltr, new_fltr)) {
5964                         rcu_read_unlock();
5965                         rc = 0;
5966                         goto err_free;
5967                 }
5968         }
5969         rcu_read_unlock();
5970
5971         spin_lock_bh(&bp->ntp_fltr_lock);
5972         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5973                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
5974         if (bit_id < 0) {
5975                 spin_unlock_bh(&bp->ntp_fltr_lock);
5976                 rc = -ENOMEM;
5977                 goto err_free;
5978         }
5979
5980         new_fltr->sw_id = (u16)bit_id;
5981         new_fltr->flow_id = flow_id;
5982         new_fltr->rxq = rxq_index;
5983         hlist_add_head_rcu(&new_fltr->hash, head);
5984         bp->ntp_fltr_count++;
5985         spin_unlock_bh(&bp->ntp_fltr_lock);
5986
5987         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5988         schedule_work(&bp->sp_task);
5989
5990         return new_fltr->sw_id;
5991
5992 err_free:
5993         kfree(new_fltr);
5994         return rc;
5995 }
5996
5997 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5998 {
5999         int i;
6000
6001         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6002                 struct hlist_head *head;
6003                 struct hlist_node *tmp;
6004                 struct bnxt_ntuple_filter *fltr;
6005                 int rc;
6006
6007                 head = &bp->ntp_fltr_hash_tbl[i];
6008                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6009                         bool del = false;
6010
6011                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6012                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6013                                                         fltr->flow_id,
6014                                                         fltr->sw_id)) {
6015                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
6016                                                                          fltr);
6017                                         del = true;
6018                                 }
6019                         } else {
6020                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6021                                                                        fltr);
6022                                 if (rc)
6023                                         del = true;
6024                                 else
6025                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
6026                         }
6027
6028                         if (del) {
6029                                 spin_lock_bh(&bp->ntp_fltr_lock);
6030                                 hlist_del_rcu(&fltr->hash);
6031                                 bp->ntp_fltr_count--;
6032                                 spin_unlock_bh(&bp->ntp_fltr_lock);
6033                                 synchronize_rcu();
6034                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6035                                 kfree(fltr);
6036                         }
6037                 }
6038         }
6039         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6040                 netdev_info(bp->dev, "Receive PF driver unload event!");
6041 }
6042
6043 #else
6044
6045 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6046 {
6047 }
6048
6049 #endif /* CONFIG_RFS_ACCEL */
6050
6051 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6052                                 __be16 port)
6053 {
6054         struct bnxt *bp = netdev_priv(dev);
6055
6056         if (!netif_running(dev))
6057                 return;
6058
6059         if (sa_family != AF_INET6 && sa_family != AF_INET)
6060                 return;
6061
6062         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
6063                 return;
6064
6065         bp->vxlan_port_cnt++;
6066         if (bp->vxlan_port_cnt == 1) {
6067                 bp->vxlan_port = port;
6068                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6069                 schedule_work(&bp->sp_task);
6070         }
6071 }
6072
6073 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6074                                 __be16 port)
6075 {
6076         struct bnxt *bp = netdev_priv(dev);
6077
6078         if (!netif_running(dev))
6079                 return;
6080
6081         if (sa_family != AF_INET6 && sa_family != AF_INET)
6082                 return;
6083
6084         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
6085                 bp->vxlan_port_cnt--;
6086
6087                 if (bp->vxlan_port_cnt == 0) {
6088                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6089                         schedule_work(&bp->sp_task);
6090                 }
6091         }
6092 }
6093
6094 static const struct net_device_ops bnxt_netdev_ops = {
6095         .ndo_open               = bnxt_open,
6096         .ndo_start_xmit         = bnxt_start_xmit,
6097         .ndo_stop               = bnxt_close,
6098         .ndo_get_stats64        = bnxt_get_stats64,
6099         .ndo_set_rx_mode        = bnxt_set_rx_mode,
6100         .ndo_do_ioctl           = bnxt_ioctl,
6101         .ndo_validate_addr      = eth_validate_addr,
6102         .ndo_set_mac_address    = bnxt_change_mac_addr,
6103         .ndo_change_mtu         = bnxt_change_mtu,
6104         .ndo_fix_features       = bnxt_fix_features,
6105         .ndo_set_features       = bnxt_set_features,
6106         .ndo_tx_timeout         = bnxt_tx_timeout,
6107 #ifdef CONFIG_BNXT_SRIOV
6108         .ndo_get_vf_config      = bnxt_get_vf_config,
6109         .ndo_set_vf_mac         = bnxt_set_vf_mac,
6110         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
6111         .ndo_set_vf_rate        = bnxt_set_vf_bw,
6112         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
6113         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
6114 #endif
6115 #ifdef CONFIG_NET_POLL_CONTROLLER
6116         .ndo_poll_controller    = bnxt_poll_controller,
6117 #endif
6118         .ndo_setup_tc           = bnxt_setup_tc,
6119 #ifdef CONFIG_RFS_ACCEL
6120         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
6121 #endif
6122         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
6123         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
6124 #ifdef CONFIG_NET_RX_BUSY_POLL
6125         .ndo_busy_poll          = bnxt_busy_poll,
6126 #endif
6127 };
6128
6129 static void bnxt_remove_one(struct pci_dev *pdev)
6130 {
6131         struct net_device *dev = pci_get_drvdata(pdev);
6132         struct bnxt *bp = netdev_priv(dev);
6133
6134         if (BNXT_PF(bp))
6135                 bnxt_sriov_disable(bp);
6136
6137         pci_disable_pcie_error_reporting(pdev);
6138         unregister_netdev(dev);
6139         cancel_work_sync(&bp->sp_task);
6140         bp->sp_event = 0;
6141
6142         bnxt_hwrm_func_drv_unrgtr(bp);
6143         bnxt_free_hwrm_resources(bp);
6144         pci_iounmap(pdev, bp->bar2);
6145         pci_iounmap(pdev, bp->bar1);
6146         pci_iounmap(pdev, bp->bar0);
6147         free_netdev(dev);
6148
6149         pci_release_regions(pdev);
6150         pci_disable_device(pdev);
6151 }
6152
6153 static int bnxt_probe_phy(struct bnxt *bp)
6154 {
6155         int rc = 0;
6156         struct bnxt_link_info *link_info = &bp->link_info;
6157
6158         rc = bnxt_hwrm_phy_qcaps(bp);
6159         if (rc) {
6160                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6161                            rc);
6162                 return rc;
6163         }
6164
6165         rc = bnxt_update_link(bp, false);
6166         if (rc) {
6167                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6168                            rc);
6169                 return rc;
6170         }
6171
6172         /*initialize the ethool setting copy with NVM settings */
6173         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6174                 link_info->autoneg = BNXT_AUTONEG_SPEED;
6175                 if (bp->hwrm_spec_code >= 0x10201) {
6176                         if (link_info->auto_pause_setting &
6177                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6178                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6179                 } else {
6180                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6181                 }
6182                 link_info->advertising = link_info->auto_link_speeds;
6183         } else {
6184                 link_info->req_link_speed = link_info->force_link_speed;
6185                 link_info->req_duplex = link_info->duplex_setting;
6186         }
6187         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6188                 link_info->req_flow_ctrl =
6189                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6190         else
6191                 link_info->req_flow_ctrl = link_info->force_pause_setting;
6192         return rc;
6193 }
6194
6195 static int bnxt_get_max_irq(struct pci_dev *pdev)
6196 {
6197         u16 ctrl;
6198
6199         if (!pdev->msix_cap)
6200                 return 1;
6201
6202         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6203         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6204 }
6205
6206 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6207                                 int *max_cp)
6208 {
6209         int max_ring_grps = 0;
6210
6211 #ifdef CONFIG_BNXT_SRIOV
6212         if (!BNXT_PF(bp)) {
6213                 *max_tx = bp->vf.max_tx_rings;
6214                 *max_rx = bp->vf.max_rx_rings;
6215                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6216                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6217                 max_ring_grps = bp->vf.max_hw_ring_grps;
6218         } else
6219 #endif
6220         {
6221                 *max_tx = bp->pf.max_tx_rings;
6222                 *max_rx = bp->pf.max_rx_rings;
6223                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6224                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6225                 max_ring_grps = bp->pf.max_hw_ring_grps;
6226         }
6227
6228         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6229                 *max_rx >>= 1;
6230         *max_rx = min_t(int, *max_rx, max_ring_grps);
6231 }
6232
6233 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6234 {
6235         int rx, tx, cp;
6236
6237         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6238         if (!rx || !tx || !cp)
6239                 return -ENOMEM;
6240
6241         *max_rx = rx;
6242         *max_tx = tx;
6243         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6244 }
6245
6246 static int bnxt_set_dflt_rings(struct bnxt *bp)
6247 {
6248         int dflt_rings, max_rx_rings, max_tx_rings, rc;
6249         bool sh = true;
6250
6251         if (sh)
6252                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6253         dflt_rings = netif_get_num_default_rss_queues();
6254         rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6255         if (rc)
6256                 return rc;
6257         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6258         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6259         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6260         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6261                                bp->tx_nr_rings + bp->rx_nr_rings;
6262         bp->num_stat_ctxs = bp->cp_nr_rings;
6263         return rc;
6264 }
6265
6266 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6267 {
6268         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6269         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6270
6271         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6272             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6273                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6274         else
6275                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6276                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6277                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6278                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6279                             "Unknown", width);
6280 }
6281
6282 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6283 {
6284         static int version_printed;
6285         struct net_device *dev;
6286         struct bnxt *bp;
6287         int rc, max_irqs;
6288
6289         if (version_printed++ == 0)
6290                 pr_info("%s", version);
6291
6292         max_irqs = bnxt_get_max_irq(pdev);
6293         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6294         if (!dev)
6295                 return -ENOMEM;
6296
6297         bp = netdev_priv(dev);
6298
6299         if (bnxt_vf_pciid(ent->driver_data))
6300                 bp->flags |= BNXT_FLAG_VF;
6301
6302         if (pdev->msix_cap)
6303                 bp->flags |= BNXT_FLAG_MSIX_CAP;
6304
6305         rc = bnxt_init_board(pdev, dev);
6306         if (rc < 0)
6307                 goto init_err_free;
6308
6309         dev->netdev_ops = &bnxt_netdev_ops;
6310         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6311         dev->ethtool_ops = &bnxt_ethtool_ops;
6312
6313         pci_set_drvdata(pdev, dev);
6314
6315         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6316                            NETIF_F_TSO | NETIF_F_TSO6 |
6317                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6318                            NETIF_F_GSO_IPXIP4 |
6319                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6320                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6321                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
6322
6323         dev->hw_enc_features =
6324                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6325                         NETIF_F_TSO | NETIF_F_TSO6 |
6326                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6327                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6328                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6329         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6330                                     NETIF_F_GSO_GRE_CSUM;
6331         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6332         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6333                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6334         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6335         dev->priv_flags |= IFF_UNICAST_FLT;
6336
6337 #ifdef CONFIG_BNXT_SRIOV
6338         init_waitqueue_head(&bp->sriov_cfg_wait);
6339 #endif
6340         rc = bnxt_alloc_hwrm_resources(bp);
6341         if (rc)
6342                 goto init_err;
6343
6344         mutex_init(&bp->hwrm_cmd_lock);
6345         bnxt_hwrm_ver_get(bp);
6346
6347         rc = bnxt_hwrm_func_drv_rgtr(bp);
6348         if (rc)
6349                 goto init_err;
6350
6351         /* Get the MAX capabilities for this function */
6352         rc = bnxt_hwrm_func_qcaps(bp);
6353         if (rc) {
6354                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6355                            rc);
6356                 rc = -1;
6357                 goto init_err;
6358         }
6359
6360         rc = bnxt_hwrm_queue_qportcfg(bp);
6361         if (rc) {
6362                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6363                            rc);
6364                 rc = -1;
6365                 goto init_err;
6366         }
6367
6368         bnxt_set_tpa_flags(bp);
6369         bnxt_set_ring_params(bp);
6370         if (BNXT_PF(bp))
6371                 bp->pf.max_irqs = max_irqs;
6372 #if defined(CONFIG_BNXT_SRIOV)
6373         else
6374                 bp->vf.max_irqs = max_irqs;
6375 #endif
6376         bnxt_set_dflt_rings(bp);
6377
6378         if (BNXT_PF(bp)) {
6379                 dev->hw_features |= NETIF_F_NTUPLE;
6380                 if (bnxt_rfs_capable(bp)) {
6381                         bp->flags |= BNXT_FLAG_RFS;
6382                         dev->features |= NETIF_F_NTUPLE;
6383                 }
6384         }
6385
6386         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6387                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6388
6389         rc = bnxt_probe_phy(bp);
6390         if (rc)
6391                 goto init_err;
6392
6393         rc = register_netdev(dev);
6394         if (rc)
6395                 goto init_err;
6396
6397         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6398                     board_info[ent->driver_data].name,
6399                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
6400
6401         bnxt_parse_log_pcie_link(bp);
6402
6403         return 0;
6404
6405 init_err:
6406         pci_iounmap(pdev, bp->bar0);
6407         pci_release_regions(pdev);
6408         pci_disable_device(pdev);
6409
6410 init_err_free:
6411         free_netdev(dev);
6412         return rc;
6413 }
6414
6415 /**
6416  * bnxt_io_error_detected - called when PCI error is detected
6417  * @pdev: Pointer to PCI device
6418  * @state: The current pci connection state
6419  *
6420  * This function is called after a PCI bus error affecting
6421  * this device has been detected.
6422  */
6423 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6424                                                pci_channel_state_t state)
6425 {
6426         struct net_device *netdev = pci_get_drvdata(pdev);
6427
6428         netdev_info(netdev, "PCI I/O error detected\n");
6429
6430         rtnl_lock();
6431         netif_device_detach(netdev);
6432
6433         if (state == pci_channel_io_perm_failure) {
6434                 rtnl_unlock();
6435                 return PCI_ERS_RESULT_DISCONNECT;
6436         }
6437
6438         if (netif_running(netdev))
6439                 bnxt_close(netdev);
6440
6441         pci_disable_device(pdev);
6442         rtnl_unlock();
6443
6444         /* Request a slot slot reset. */
6445         return PCI_ERS_RESULT_NEED_RESET;
6446 }
6447
6448 /**
6449  * bnxt_io_slot_reset - called after the pci bus has been reset.
6450  * @pdev: Pointer to PCI device
6451  *
6452  * Restart the card from scratch, as if from a cold-boot.
6453  * At this point, the card has exprienced a hard reset,
6454  * followed by fixups by BIOS, and has its config space
6455  * set up identically to what it was at cold boot.
6456  */
6457 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6458 {
6459         struct net_device *netdev = pci_get_drvdata(pdev);
6460         struct bnxt *bp = netdev_priv(netdev);
6461         int err = 0;
6462         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6463
6464         netdev_info(bp->dev, "PCI Slot Reset\n");
6465
6466         rtnl_lock();
6467
6468         if (pci_enable_device(pdev)) {
6469                 dev_err(&pdev->dev,
6470                         "Cannot re-enable PCI device after reset.\n");
6471         } else {
6472                 pci_set_master(pdev);
6473
6474                 if (netif_running(netdev))
6475                         err = bnxt_open(netdev);
6476
6477                 if (!err)
6478                         result = PCI_ERS_RESULT_RECOVERED;
6479         }
6480
6481         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6482                 dev_close(netdev);
6483
6484         rtnl_unlock();
6485
6486         err = pci_cleanup_aer_uncorrect_error_status(pdev);
6487         if (err) {
6488                 dev_err(&pdev->dev,
6489                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6490                          err); /* non-fatal, continue */
6491         }
6492
6493         return PCI_ERS_RESULT_RECOVERED;
6494 }
6495
6496 /**
6497  * bnxt_io_resume - called when traffic can start flowing again.
6498  * @pdev: Pointer to PCI device
6499  *
6500  * This callback is called when the error recovery driver tells
6501  * us that its OK to resume normal operation.
6502  */
6503 static void bnxt_io_resume(struct pci_dev *pdev)
6504 {
6505         struct net_device *netdev = pci_get_drvdata(pdev);
6506
6507         rtnl_lock();
6508
6509         netif_device_attach(netdev);
6510
6511         rtnl_unlock();
6512 }
6513
6514 static const struct pci_error_handlers bnxt_err_handler = {
6515         .error_detected = bnxt_io_error_detected,
6516         .slot_reset     = bnxt_io_slot_reset,
6517         .resume         = bnxt_io_resume
6518 };
6519
6520 static struct pci_driver bnxt_pci_driver = {
6521         .name           = DRV_MODULE_NAME,
6522         .id_table       = bnxt_pci_tbl,
6523         .probe          = bnxt_init_one,
6524         .remove         = bnxt_remove_one,
6525         .err_handler    = &bnxt_err_handler,
6526 #if defined(CONFIG_BNXT_SRIOV)
6527         .sriov_configure = bnxt_sriov_configure,
6528 #endif
6529 };
6530
6531 module_pci_driver(bnxt_pci_driver);