]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_addr(priv, d, addr);
108         dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455         struct bcmgenet_priv *priv = netdev_priv(dev);
456
457         /* Turn on the clock */
458         return clk_prepare_enable(priv->clk);
459 }
460
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463         struct bcmgenet_priv *priv = netdev_priv(dev);
464
465         /* Turn off the clock */
466         clk_disable_unprepare(priv->clk);
467 }
468
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470                                        struct ethtool_link_ksettings *cmd)
471 {
472         struct bcmgenet_priv *priv = netdev_priv(dev);
473
474         if (!netif_running(dev))
475                 return -EINVAL;
476
477         if (!priv->phydev)
478                 return -ENODEV;
479
480         phy_ethtool_ksettings_get(priv->phydev, cmd);
481
482         return 0;
483 }
484
485 static int bcmgenet_set_link_ksettings(struct net_device *dev,
486                                        const struct ethtool_link_ksettings *cmd)
487 {
488         struct bcmgenet_priv *priv = netdev_priv(dev);
489
490         if (!netif_running(dev))
491                 return -EINVAL;
492
493         if (!priv->phydev)
494                 return -ENODEV;
495
496         return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 }
498
499 static int bcmgenet_set_rx_csum(struct net_device *dev,
500                                 netdev_features_t wanted)
501 {
502         struct bcmgenet_priv *priv = netdev_priv(dev);
503         u32 rbuf_chk_ctrl;
504         bool rx_csum_en;
505
506         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
507
508         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
509
510         /* enable rx checksumming */
511         if (rx_csum_en)
512                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
513         else
514                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
515         priv->desc_rxchk_en = rx_csum_en;
516
517         /* If UniMAC forwards CRC, we need to skip over it to get
518          * a valid CHK bit to be set in the per-packet status word
519         */
520         if (rx_csum_en && priv->crc_fwd_en)
521                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
522         else
523                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
524
525         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
526
527         return 0;
528 }
529
530 static int bcmgenet_set_tx_csum(struct net_device *dev,
531                                 netdev_features_t wanted)
532 {
533         struct bcmgenet_priv *priv = netdev_priv(dev);
534         bool desc_64b_en;
535         u32 tbuf_ctrl, rbuf_ctrl;
536
537         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
538         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
539
540         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
541
542         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
543         if (desc_64b_en) {
544                 tbuf_ctrl |= RBUF_64B_EN;
545                 rbuf_ctrl |= RBUF_64B_EN;
546         } else {
547                 tbuf_ctrl &= ~RBUF_64B_EN;
548                 rbuf_ctrl &= ~RBUF_64B_EN;
549         }
550         priv->desc_64b_en = desc_64b_en;
551
552         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
553         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
554
555         return 0;
556 }
557
558 static int bcmgenet_set_features(struct net_device *dev,
559                                  netdev_features_t features)
560 {
561         netdev_features_t changed = features ^ dev->features;
562         netdev_features_t wanted = dev->wanted_features;
563         int ret = 0;
564
565         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
566                 ret = bcmgenet_set_tx_csum(dev, wanted);
567         if (changed & (NETIF_F_RXCSUM))
568                 ret = bcmgenet_set_rx_csum(dev, wanted);
569
570         return ret;
571 }
572
573 static u32 bcmgenet_get_msglevel(struct net_device *dev)
574 {
575         struct bcmgenet_priv *priv = netdev_priv(dev);
576
577         return priv->msg_enable;
578 }
579
580 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
581 {
582         struct bcmgenet_priv *priv = netdev_priv(dev);
583
584         priv->msg_enable = level;
585 }
586
587 static int bcmgenet_get_coalesce(struct net_device *dev,
588                                  struct ethtool_coalesce *ec)
589 {
590         struct bcmgenet_priv *priv = netdev_priv(dev);
591
592         ec->tx_max_coalesced_frames =
593                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
594                                          DMA_MBUF_DONE_THRESH);
595         ec->rx_max_coalesced_frames =
596                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
597                                          DMA_MBUF_DONE_THRESH);
598         ec->rx_coalesce_usecs =
599                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600
601         return 0;
602 }
603
604 static int bcmgenet_set_coalesce(struct net_device *dev,
605                                  struct ethtool_coalesce *ec)
606 {
607         struct bcmgenet_priv *priv = netdev_priv(dev);
608         unsigned int i;
609         u32 reg;
610
611         /* Base system clock is 125Mhz, DMA timeout is this reference clock
612          * divided by 1024, which yields roughly 8.192us, our maximum value
613          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
614          */
615         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616             ec->tx_max_coalesced_frames == 0 ||
617             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
618             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
619                 return -EINVAL;
620
621         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622                 return -EINVAL;
623
624         /* GENET TDMA hardware does not support a configurable timeout, but will
625          * always generate an interrupt either after MBDONE packets have been
626          * transmitted, or when the ring is empty.
627          */
628         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630                 return -EOPNOTSUPP;
631
632         /* Program all TX queues with the same values, as there is no
633          * ethtool knob to do coalescing on a per-queue basis
634          */
635         for (i = 0; i < priv->hw_params->tx_queues; i++)
636                 bcmgenet_tdma_ring_writel(priv, i,
637                                           ec->tx_max_coalesced_frames,
638                                           DMA_MBUF_DONE_THRESH);
639         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
640                                   ec->tx_max_coalesced_frames,
641                                   DMA_MBUF_DONE_THRESH);
642
643         for (i = 0; i < priv->hw_params->rx_queues; i++) {
644                 bcmgenet_rdma_ring_writel(priv, i,
645                                           ec->rx_max_coalesced_frames,
646                                           DMA_MBUF_DONE_THRESH);
647
648                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
649                 reg &= ~DMA_TIMEOUT_MASK;
650                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
651                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
652         }
653
654         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
655                                   ec->rx_max_coalesced_frames,
656                                   DMA_MBUF_DONE_THRESH);
657
658         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
659         reg &= ~DMA_TIMEOUT_MASK;
660         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
661         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
662
663         return 0;
664 }
665
666 /* standard ethtool support functions. */
667 enum bcmgenet_stat_type {
668         BCMGENET_STAT_NETDEV = -1,
669         BCMGENET_STAT_MIB_RX,
670         BCMGENET_STAT_MIB_TX,
671         BCMGENET_STAT_RUNT,
672         BCMGENET_STAT_MISC,
673         BCMGENET_STAT_SOFT,
674 };
675
676 struct bcmgenet_stats {
677         char stat_string[ETH_GSTRING_LEN];
678         int stat_sizeof;
679         int stat_offset;
680         enum bcmgenet_stat_type type;
681         /* reg offset from UMAC base for misc counters */
682         u16 reg_offset;
683 };
684
685 #define STAT_NETDEV(m) { \
686         .stat_string = __stringify(m), \
687         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
688         .stat_offset = offsetof(struct net_device_stats, m), \
689         .type = BCMGENET_STAT_NETDEV, \
690 }
691
692 #define STAT_GENET_MIB(str, m, _type) { \
693         .stat_string = str, \
694         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
695         .stat_offset = offsetof(struct bcmgenet_priv, m), \
696         .type = _type, \
697 }
698
699 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
700 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
701 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703
704 #define STAT_GENET_MISC(str, m, offset) { \
705         .stat_string = str, \
706         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
707         .stat_offset = offsetof(struct bcmgenet_priv, m), \
708         .type = BCMGENET_STAT_MISC, \
709         .reg_offset = offset, \
710 }
711
712 #define STAT_GENET_Q(num) \
713         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
714                         tx_rings[num].packets), \
715         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
716                         tx_rings[num].bytes), \
717         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
718                         rx_rings[num].bytes),    \
719         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
720                         rx_rings[num].packets), \
721         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
722                         rx_rings[num].errors), \
723         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
724                         rx_rings[num].dropped)
725
726 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
727  * between the end of TX stats and the beginning of the RX RUNT
728  */
729 #define BCMGENET_STAT_OFFSET    0xc
730
731 /* Hardware counters must be kept in sync because the order/offset
732  * is important here (order in structure declaration = order in hardware)
733  */
734 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
735         /* general stats */
736         STAT_NETDEV(rx_packets),
737         STAT_NETDEV(tx_packets),
738         STAT_NETDEV(rx_bytes),
739         STAT_NETDEV(tx_bytes),
740         STAT_NETDEV(rx_errors),
741         STAT_NETDEV(tx_errors),
742         STAT_NETDEV(rx_dropped),
743         STAT_NETDEV(tx_dropped),
744         STAT_NETDEV(multicast),
745         /* UniMAC RSV counters */
746         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
747         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
748         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
749         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
750         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
751         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
752         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
753         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
754         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
755         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
756         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
757         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
758         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
759         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
760         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
761         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
762         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
763         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
764         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
765         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
766         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
767         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
768         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
769         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
770         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
771         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
772         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
773         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
774         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
775         /* UniMAC TSV counters */
776         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
777         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
778         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
779         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
780         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
781         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
782         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
783         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
784         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
785         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
786         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
787         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
788         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
789         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
790         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
791         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
792         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
793         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
794         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
795         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
796         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
797         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
798         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
799         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
800         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
801         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
802         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
803         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
804         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
805         /* UniMAC RUNT counters */
806         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
807         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
808         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
809         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
810         /* Misc UniMAC counters */
811         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812                         UMAC_RBUF_OVFL_CNT_V1),
813         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
814                         UMAC_RBUF_ERR_CNT_V1),
815         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
817         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
818         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819         /* Per TX queues */
820         STAT_GENET_Q(0),
821         STAT_GENET_Q(1),
822         STAT_GENET_Q(2),
823         STAT_GENET_Q(3),
824         STAT_GENET_Q(16),
825 };
826
827 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
828
829 static void bcmgenet_get_drvinfo(struct net_device *dev,
830                                  struct ethtool_drvinfo *info)
831 {
832         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
833         strlcpy(info->version, "v2.0", sizeof(info->version));
834 }
835
836 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
837 {
838         switch (string_set) {
839         case ETH_SS_STATS:
840                 return BCMGENET_STATS_LEN;
841         default:
842                 return -EOPNOTSUPP;
843         }
844 }
845
846 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
847                                  u8 *data)
848 {
849         int i;
850
851         switch (stringset) {
852         case ETH_SS_STATS:
853                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
854                         memcpy(data + i * ETH_GSTRING_LEN,
855                                bcmgenet_gstrings_stats[i].stat_string,
856                                ETH_GSTRING_LEN);
857                 }
858                 break;
859         }
860 }
861
862 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
863 {
864         u16 new_offset;
865         u32 val;
866
867         switch (offset) {
868         case UMAC_RBUF_OVFL_CNT_V1:
869                 if (GENET_IS_V2(priv))
870                         new_offset = RBUF_OVFL_CNT_V2;
871                 else
872                         new_offset = RBUF_OVFL_CNT_V3PLUS;
873
874                 val = bcmgenet_rbuf_readl(priv, new_offset);
875                 /* clear if overflowed */
876                 if (val == ~0)
877                         bcmgenet_rbuf_writel(priv, 0, new_offset);
878                 break;
879         case UMAC_RBUF_ERR_CNT_V1:
880                 if (GENET_IS_V2(priv))
881                         new_offset = RBUF_ERR_CNT_V2;
882                 else
883                         new_offset = RBUF_ERR_CNT_V3PLUS;
884
885                 val = bcmgenet_rbuf_readl(priv, new_offset);
886                 /* clear if overflowed */
887                 if (val == ~0)
888                         bcmgenet_rbuf_writel(priv, 0, new_offset);
889                 break;
890         default:
891                 val = bcmgenet_umac_readl(priv, offset);
892                 /* clear if overflowed */
893                 if (val == ~0)
894                         bcmgenet_umac_writel(priv, 0, offset);
895                 break;
896         }
897
898         return val;
899 }
900
901 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
902 {
903         int i, j = 0;
904
905         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
906                 const struct bcmgenet_stats *s;
907                 u8 offset = 0;
908                 u32 val = 0;
909                 char *p;
910
911                 s = &bcmgenet_gstrings_stats[i];
912                 switch (s->type) {
913                 case BCMGENET_STAT_NETDEV:
914                 case BCMGENET_STAT_SOFT:
915                         continue;
916                 case BCMGENET_STAT_RUNT:
917                         offset += BCMGENET_STAT_OFFSET;
918                         /* fall through */
919                 case BCMGENET_STAT_MIB_TX:
920                         offset += BCMGENET_STAT_OFFSET;
921                         /* fall through */
922                 case BCMGENET_STAT_MIB_RX:
923                         val = bcmgenet_umac_readl(priv,
924                                                   UMAC_MIB_START + j + offset);
925                         offset = 0;     /* Reset Offset */
926                         break;
927                 case BCMGENET_STAT_MISC:
928                         if (GENET_IS_V1(priv)) {
929                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
930                                 /* clear if overflowed */
931                                 if (val == ~0)
932                                         bcmgenet_umac_writel(priv, 0,
933                                                              s->reg_offset);
934                         } else {
935                                 val = bcmgenet_update_stat_misc(priv,
936                                                                 s->reg_offset);
937                         }
938                         break;
939                 }
940
941                 j += s->stat_sizeof;
942                 p = (char *)priv + s->stat_offset;
943                 *(u32 *)p = val;
944         }
945 }
946
947 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948                                        struct ethtool_stats *stats,
949                                        u64 *data)
950 {
951         struct bcmgenet_priv *priv = netdev_priv(dev);
952         int i;
953
954         if (netif_running(dev))
955                 bcmgenet_update_mib_counters(priv);
956
957         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
958                 const struct bcmgenet_stats *s;
959                 char *p;
960
961                 s = &bcmgenet_gstrings_stats[i];
962                 if (s->type == BCMGENET_STAT_NETDEV)
963                         p = (char *)&dev->stats;
964                 else
965                         p = (char *)priv;
966                 p += s->stat_offset;
967                 if (sizeof(unsigned long) != sizeof(u32) &&
968                     s->stat_sizeof == sizeof(unsigned long))
969                         data[i] = *(unsigned long *)p;
970                 else
971                         data[i] = *(u32 *)p;
972         }
973 }
974
975 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
976 {
977         struct bcmgenet_priv *priv = netdev_priv(dev);
978         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
979         u32 reg;
980
981         if (enable && !priv->clk_eee_enabled) {
982                 clk_prepare_enable(priv->clk_eee);
983                 priv->clk_eee_enabled = true;
984         }
985
986         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
987         if (enable)
988                 reg |= EEE_EN;
989         else
990                 reg &= ~EEE_EN;
991         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
992
993         /* Enable EEE and switch to a 27Mhz clock automatically */
994         reg = __raw_readl(priv->base + off);
995         if (enable)
996                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
997         else
998                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
999         __raw_writel(reg, priv->base + off);
1000
1001         /* Do the same for thing for RBUF */
1002         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1003         if (enable)
1004                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1005         else
1006                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1007         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1008
1009         if (!enable && priv->clk_eee_enabled) {
1010                 clk_disable_unprepare(priv->clk_eee);
1011                 priv->clk_eee_enabled = false;
1012         }
1013
1014         priv->eee.eee_enabled = enable;
1015         priv->eee.eee_active = enable;
1016 }
1017
1018 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020         struct bcmgenet_priv *priv = netdev_priv(dev);
1021         struct ethtool_eee *p = &priv->eee;
1022
1023         if (GENET_IS_V1(priv))
1024                 return -EOPNOTSUPP;
1025
1026         e->eee_enabled = p->eee_enabled;
1027         e->eee_active = p->eee_active;
1028         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1029
1030         return phy_ethtool_get_eee(priv->phydev, e);
1031 }
1032
1033 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035         struct bcmgenet_priv *priv = netdev_priv(dev);
1036         struct ethtool_eee *p = &priv->eee;
1037         int ret = 0;
1038
1039         if (GENET_IS_V1(priv))
1040                 return -EOPNOTSUPP;
1041
1042         p->eee_enabled = e->eee_enabled;
1043
1044         if (!p->eee_enabled) {
1045                 bcmgenet_eee_enable_set(dev, false);
1046         } else {
1047                 ret = phy_init_eee(priv->phydev, 0);
1048                 if (ret) {
1049                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1050                         return ret;
1051                 }
1052
1053                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1054                 bcmgenet_eee_enable_set(dev, true);
1055         }
1056
1057         return phy_ethtool_set_eee(priv->phydev, e);
1058 }
1059
1060 /* standard ethtool support functions. */
1061 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062         .begin                  = bcmgenet_begin,
1063         .complete               = bcmgenet_complete,
1064         .get_strings            = bcmgenet_get_strings,
1065         .get_sset_count         = bcmgenet_get_sset_count,
1066         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1067         .get_drvinfo            = bcmgenet_get_drvinfo,
1068         .get_link               = ethtool_op_get_link,
1069         .get_msglevel           = bcmgenet_get_msglevel,
1070         .set_msglevel           = bcmgenet_set_msglevel,
1071         .get_wol                = bcmgenet_get_wol,
1072         .set_wol                = bcmgenet_set_wol,
1073         .get_eee                = bcmgenet_get_eee,
1074         .set_eee                = bcmgenet_set_eee,
1075         .nway_reset             = phy_ethtool_nway_reset,
1076         .get_coalesce           = bcmgenet_get_coalesce,
1077         .set_coalesce           = bcmgenet_set_coalesce,
1078         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1079         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1080 };
1081
1082 /* Power down the unimac, based on mode. */
1083 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084                                 enum bcmgenet_power_mode mode)
1085 {
1086         int ret = 0;
1087         u32 reg;
1088
1089         switch (mode) {
1090         case GENET_POWER_CABLE_SENSE:
1091                 phy_detach(priv->phydev);
1092                 break;
1093
1094         case GENET_POWER_WOL_MAGIC:
1095                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096                 break;
1097
1098         case GENET_POWER_PASSIVE:
1099                 /* Power down LED */
1100                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1101                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102                         if (GENET_IS_V5(priv))
1103                                 reg |= EXT_PWR_DOWN_PHY_EN |
1104                                        EXT_PWR_DOWN_PHY_RD |
1105                                        EXT_PWR_DOWN_PHY_SD |
1106                                        EXT_PWR_DOWN_PHY_RX |
1107                                        EXT_PWR_DOWN_PHY_TX |
1108                                        EXT_IDDQ_GLBL_PWR;
1109                         else
1110                                 reg |= EXT_PWR_DOWN_PHY;
1111
1112                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114
1115                         bcmgenet_phy_power_set(priv->dev, false);
1116                 }
1117                 break;
1118         default:
1119                 break;
1120         }
1121
1122         return 0;
1123 }
1124
1125 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126                               enum bcmgenet_power_mode mode)
1127 {
1128         u32 reg;
1129
1130         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1131                 return;
1132
1133         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1134
1135         switch (mode) {
1136         case GENET_POWER_PASSIVE:
1137                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1138                 if (GENET_IS_V5(priv)) {
1139                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1140                                  EXT_PWR_DOWN_PHY_RD |
1141                                  EXT_PWR_DOWN_PHY_SD |
1142                                  EXT_PWR_DOWN_PHY_RX |
1143                                  EXT_PWR_DOWN_PHY_TX |
1144                                  EXT_IDDQ_GLBL_PWR);
1145                         reg |=   EXT_PHY_RESET;
1146                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147                         mdelay(1);
1148
1149                         reg &=  ~EXT_PHY_RESET;
1150                 } else {
1151                         reg &= ~EXT_PWR_DOWN_PHY;
1152                         reg |= EXT_PWR_DN_EN_LD;
1153                 }
1154                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155                 bcmgenet_phy_power_set(priv->dev, true);
1156                 bcmgenet_mii_reset(priv->dev);
1157                 break;
1158
1159         case GENET_POWER_CABLE_SENSE:
1160                 /* enable APD */
1161                 if (!GENET_IS_V5(priv)) {
1162                         reg |= EXT_PWR_DN_EN_LD;
1163                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164                 }
1165                 break;
1166         case GENET_POWER_WOL_MAGIC:
1167                 bcmgenet_wol_power_up_cfg(priv, mode);
1168                 return;
1169         default:
1170                 break;
1171         }
1172 }
1173
1174 /* ioctl handle special commands that are not present in ethtool. */
1175 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1176 {
1177         struct bcmgenet_priv *priv = netdev_priv(dev);
1178
1179         if (!netif_running(dev))
1180                 return -EINVAL;
1181
1182         if (!priv->phydev)
1183                 return -ENODEV;
1184
1185         return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 }
1187
1188 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1189                                          struct bcmgenet_tx_ring *ring)
1190 {
1191         struct enet_cb *tx_cb_ptr;
1192
1193         tx_cb_ptr = ring->cbs;
1194         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195
1196         /* Advancing local write pointer */
1197         if (ring->write_ptr == ring->end_ptr)
1198                 ring->write_ptr = ring->cb_ptr;
1199         else
1200                 ring->write_ptr++;
1201
1202         return tx_cb_ptr;
1203 }
1204
1205 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1206                                          struct bcmgenet_tx_ring *ring)
1207 {
1208         struct enet_cb *tx_cb_ptr;
1209
1210         tx_cb_ptr = ring->cbs;
1211         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1212
1213         /* Rewinding local write pointer */
1214         if (ring->write_ptr == ring->cb_ptr)
1215                 ring->write_ptr = ring->end_ptr;
1216         else
1217                 ring->write_ptr--;
1218
1219         return tx_cb_ptr;
1220 }
1221
1222 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1223 {
1224         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1225                                  INTRL2_CPU_MASK_SET);
1226 }
1227
1228 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1229 {
1230         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1231                                  INTRL2_CPU_MASK_CLEAR);
1232 }
1233
1234 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1235 {
1236         bcmgenet_intrl2_1_writel(ring->priv,
1237                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1238                                  INTRL2_CPU_MASK_SET);
1239 }
1240
1241 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1242 {
1243         bcmgenet_intrl2_1_writel(ring->priv,
1244                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1245                                  INTRL2_CPU_MASK_CLEAR);
1246 }
1247
1248 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1249 {
1250         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1251                                  INTRL2_CPU_MASK_SET);
1252 }
1253
1254 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1255 {
1256         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1257                                  INTRL2_CPU_MASK_CLEAR);
1258 }
1259
1260 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1261 {
1262         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1263                                  INTRL2_CPU_MASK_CLEAR);
1264 }
1265
1266 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1267 {
1268         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1269                                  INTRL2_CPU_MASK_SET);
1270 }
1271
1272 /* Simple helper to free a transmit control block's resources
1273  * Returns an skb when the last transmit control block associated with the
1274  * skb is freed.  The skb should be freed by the caller if necessary.
1275  */
1276 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1277                                            struct enet_cb *cb)
1278 {
1279         struct sk_buff *skb;
1280
1281         skb = cb->skb;
1282
1283         if (skb) {
1284                 cb->skb = NULL;
1285                 if (cb == GENET_CB(skb)->first_cb)
1286                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1287                                          dma_unmap_len(cb, dma_len),
1288                                          DMA_TO_DEVICE);
1289                 else
1290                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1291                                        dma_unmap_len(cb, dma_len),
1292                                        DMA_TO_DEVICE);
1293                 dma_unmap_addr_set(cb, dma_addr, 0);
1294
1295                 if (cb == GENET_CB(skb)->last_cb)
1296                         return skb;
1297
1298         } else if (dma_unmap_addr(cb, dma_addr)) {
1299                 dma_unmap_page(dev,
1300                                dma_unmap_addr(cb, dma_addr),
1301                                dma_unmap_len(cb, dma_len),
1302                                DMA_TO_DEVICE);
1303                 dma_unmap_addr_set(cb, dma_addr, 0);
1304         }
1305
1306         return 0;
1307 }
1308
1309 /* Simple helper to free a receive control block's resources */
1310 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1311                                            struct enet_cb *cb)
1312 {
1313         struct sk_buff *skb;
1314
1315         skb = cb->skb;
1316         cb->skb = NULL;
1317
1318         if (dma_unmap_addr(cb, dma_addr)) {
1319                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1320                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1321                 dma_unmap_addr_set(cb, dma_addr, 0);
1322         }
1323
1324         return skb;
1325 }
1326
1327 /* Unlocked version of the reclaim routine */
1328 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1329                                           struct bcmgenet_tx_ring *ring)
1330 {
1331         struct bcmgenet_priv *priv = netdev_priv(dev);
1332         unsigned int txbds_processed = 0;
1333         unsigned int bytes_compl = 0;
1334         unsigned int pkts_compl = 0;
1335         unsigned int txbds_ready;
1336         unsigned int c_index;
1337         struct sk_buff *skb;
1338
1339         /* Clear status before servicing to reduce spurious interrupts */
1340         if (ring->index == DESC_INDEX)
1341                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1342                                          INTRL2_CPU_CLEAR);
1343         else
1344                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1345                                          INTRL2_CPU_CLEAR);
1346
1347         /* Compute how many buffers are transmitted since last xmit call */
1348         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1349                 & DMA_C_INDEX_MASK;
1350         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1351
1352         netif_dbg(priv, tx_done, dev,
1353                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1354                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1355
1356         /* Reclaim transmitted buffers */
1357         while (txbds_processed < txbds_ready) {
1358                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1359                                           &priv->tx_cbs[ring->clean_ptr]);
1360                 if (skb) {
1361                         pkts_compl++;
1362                         bytes_compl += GENET_CB(skb)->bytes_sent;
1363                         dev_kfree_skb_any(skb);
1364                 }
1365
1366                 txbds_processed++;
1367                 if (likely(ring->clean_ptr < ring->end_ptr))
1368                         ring->clean_ptr++;
1369                 else
1370                         ring->clean_ptr = ring->cb_ptr;
1371         }
1372
1373         ring->free_bds += txbds_processed;
1374         ring->c_index = c_index;
1375
1376         ring->packets += pkts_compl;
1377         ring->bytes += bytes_compl;
1378
1379         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1380                                   pkts_compl, bytes_compl);
1381
1382         return txbds_processed;
1383 }
1384
1385 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1386                                 struct bcmgenet_tx_ring *ring)
1387 {
1388         unsigned int released;
1389         unsigned long flags;
1390
1391         spin_lock_irqsave(&ring->lock, flags);
1392         released = __bcmgenet_tx_reclaim(dev, ring);
1393         spin_unlock_irqrestore(&ring->lock, flags);
1394
1395         return released;
1396 }
1397
1398 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1399 {
1400         struct bcmgenet_tx_ring *ring =
1401                 container_of(napi, struct bcmgenet_tx_ring, napi);
1402         unsigned int work_done = 0;
1403         struct netdev_queue *txq;
1404         unsigned long flags;
1405
1406         spin_lock_irqsave(&ring->lock, flags);
1407         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1408         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1409                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1410                 netif_tx_wake_queue(txq);
1411         }
1412         spin_unlock_irqrestore(&ring->lock, flags);
1413
1414         if (work_done == 0) {
1415                 napi_complete(napi);
1416                 ring->int_enable(ring);
1417
1418                 return 0;
1419         }
1420
1421         return budget;
1422 }
1423
1424 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1425 {
1426         struct bcmgenet_priv *priv = netdev_priv(dev);
1427         int i;
1428
1429         if (netif_is_multiqueue(dev)) {
1430                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1431                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1432         }
1433
1434         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1435 }
1436
1437 /* Reallocate the SKB to put enough headroom in front of it and insert
1438  * the transmit checksum offsets in the descriptors
1439  */
1440 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1441                                             struct sk_buff *skb)
1442 {
1443         struct status_64 *status = NULL;
1444         struct sk_buff *new_skb;
1445         u16 offset;
1446         u8 ip_proto;
1447         u16 ip_ver;
1448         u32 tx_csum_info;
1449
1450         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1451                 /* If 64 byte status block enabled, must make sure skb has
1452                  * enough headroom for us to insert 64B status block.
1453                  */
1454                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1455                 dev_kfree_skb(skb);
1456                 if (!new_skb) {
1457                         dev->stats.tx_dropped++;
1458                         return NULL;
1459                 }
1460                 skb = new_skb;
1461         }
1462
1463         skb_push(skb, sizeof(*status));
1464         status = (struct status_64 *)skb->data;
1465
1466         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1467                 ip_ver = htons(skb->protocol);
1468                 switch (ip_ver) {
1469                 case ETH_P_IP:
1470                         ip_proto = ip_hdr(skb)->protocol;
1471                         break;
1472                 case ETH_P_IPV6:
1473                         ip_proto = ipv6_hdr(skb)->nexthdr;
1474                         break;
1475                 default:
1476                         return skb;
1477                 }
1478
1479                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1480                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1481                                 (offset + skb->csum_offset);
1482
1483                 /* Set the length valid bit for TCP and UDP and just set
1484                  * the special UDP flag for IPv4, else just set to 0.
1485                  */
1486                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1487                         tx_csum_info |= STATUS_TX_CSUM_LV;
1488                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1489                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1490                 } else {
1491                         tx_csum_info = 0;
1492                 }
1493
1494                 status->tx_csum_info = tx_csum_info;
1495         }
1496
1497         return skb;
1498 }
1499
1500 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1501 {
1502         struct bcmgenet_priv *priv = netdev_priv(dev);
1503         struct device *kdev = &priv->pdev->dev;
1504         struct bcmgenet_tx_ring *ring = NULL;
1505         struct enet_cb *tx_cb_ptr;
1506         struct netdev_queue *txq;
1507         unsigned long flags = 0;
1508         int nr_frags, index;
1509         dma_addr_t mapping;
1510         unsigned int size;
1511         skb_frag_t *frag;
1512         u32 len_stat;
1513         int ret;
1514         int i;
1515
1516         index = skb_get_queue_mapping(skb);
1517         /* Mapping strategy:
1518          * queue_mapping = 0, unclassified, packet xmited through ring16
1519          * queue_mapping = 1, goes to ring 0. (highest priority queue
1520          * queue_mapping = 2, goes to ring 1.
1521          * queue_mapping = 3, goes to ring 2.
1522          * queue_mapping = 4, goes to ring 3.
1523          */
1524         if (index == 0)
1525                 index = DESC_INDEX;
1526         else
1527                 index -= 1;
1528
1529         ring = &priv->tx_rings[index];
1530         txq = netdev_get_tx_queue(dev, ring->queue);
1531
1532         nr_frags = skb_shinfo(skb)->nr_frags;
1533
1534         spin_lock_irqsave(&ring->lock, flags);
1535         if (ring->free_bds <= (nr_frags + 1)) {
1536                 if (!netif_tx_queue_stopped(txq)) {
1537                         netif_tx_stop_queue(txq);
1538                         netdev_err(dev,
1539                                    "%s: tx ring %d full when queue %d awake\n",
1540                                    __func__, index, ring->queue);
1541                 }
1542                 ret = NETDEV_TX_BUSY;
1543                 goto out;
1544         }
1545
1546         if (skb_padto(skb, ETH_ZLEN)) {
1547                 ret = NETDEV_TX_OK;
1548                 goto out;
1549         }
1550
1551         /* Retain how many bytes will be sent on the wire, without TSB inserted
1552          * by transmit checksum offload
1553          */
1554         GENET_CB(skb)->bytes_sent = skb->len;
1555
1556         /* set the SKB transmit checksum */
1557         if (priv->desc_64b_en) {
1558                 skb = bcmgenet_put_tx_csum(dev, skb);
1559                 if (!skb) {
1560                         ret = NETDEV_TX_OK;
1561                         goto out;
1562                 }
1563         }
1564
1565         for (i = 0; i <= nr_frags; i++) {
1566                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1567
1568                 if (unlikely(!tx_cb_ptr))
1569                         BUG();
1570
1571                 if (!i) {
1572                         /* Transmit single SKB or head of fragment list */
1573                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1574                         size = skb_headlen(skb);
1575                         mapping = dma_map_single(kdev, skb->data, size,
1576                                                  DMA_TO_DEVICE);
1577                 } else {
1578                         /* xmit fragment */
1579                         frag = &skb_shinfo(skb)->frags[i - 1];
1580                         size = skb_frag_size(frag);
1581                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1582                                                    DMA_TO_DEVICE);
1583                 }
1584
1585                 ret = dma_mapping_error(kdev, mapping);
1586                 if (ret) {
1587                         priv->mib.tx_dma_failed++;
1588                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1589                         ret = NETDEV_TX_OK;
1590                         goto out_unmap_frags;
1591                 }
1592                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1593                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1594
1595                 tx_cb_ptr->skb = skb;
1596
1597                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1598                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1599
1600                 if (!i) {
1601                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1602                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1603                                 len_stat |= DMA_TX_DO_CSUM;
1604                 }
1605                 if (i == nr_frags)
1606                         len_stat |= DMA_EOP;
1607
1608                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1609         }
1610
1611         GENET_CB(skb)->last_cb = tx_cb_ptr;
1612         skb_tx_timestamp(skb);
1613
1614         /* Decrement total BD count and advance our write pointer */
1615         ring->free_bds -= nr_frags + 1;
1616         ring->prod_index += nr_frags + 1;
1617         ring->prod_index &= DMA_P_INDEX_MASK;
1618
1619         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1620
1621         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1622                 netif_tx_stop_queue(txq);
1623
1624         if (!skb->xmit_more || netif_xmit_stopped(txq))
1625                 /* Packets are ready, update producer index */
1626                 bcmgenet_tdma_ring_writel(priv, ring->index,
1627                                           ring->prod_index, TDMA_PROD_INDEX);
1628 out:
1629         spin_unlock_irqrestore(&ring->lock, flags);
1630
1631         return ret;
1632
1633 out_unmap_frags:
1634         /* Back up for failed control block mapping */
1635         bcmgenet_put_txcb(priv, ring);
1636
1637         /* Unmap successfully mapped control blocks */
1638         while (i-- > 0) {
1639                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1640                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1641         }
1642
1643         dev_kfree_skb(skb);
1644         goto out;
1645 }
1646
1647 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1648                                           struct enet_cb *cb)
1649 {
1650         struct device *kdev = &priv->pdev->dev;
1651         struct sk_buff *skb;
1652         struct sk_buff *rx_skb;
1653         dma_addr_t mapping;
1654
1655         /* Allocate a new Rx skb */
1656         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1657         if (!skb) {
1658                 priv->mib.alloc_rx_buff_failed++;
1659                 netif_err(priv, rx_err, priv->dev,
1660                           "%s: Rx skb allocation failed\n", __func__);
1661                 return NULL;
1662         }
1663
1664         /* DMA-map the new Rx skb */
1665         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1666                                  DMA_FROM_DEVICE);
1667         if (dma_mapping_error(kdev, mapping)) {
1668                 priv->mib.rx_dma_failed++;
1669                 dev_kfree_skb_any(skb);
1670                 netif_err(priv, rx_err, priv->dev,
1671                           "%s: Rx skb DMA mapping failed\n", __func__);
1672                 return NULL;
1673         }
1674
1675         /* Grab the current Rx skb from the ring and DMA-unmap it */
1676         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1677
1678         /* Put the new Rx skb on the ring */
1679         cb->skb = skb;
1680         dma_unmap_addr_set(cb, dma_addr, mapping);
1681         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1682         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1683
1684         /* Return the current Rx skb to caller */
1685         return rx_skb;
1686 }
1687
1688 /* bcmgenet_desc_rx - descriptor based rx process.
1689  * this could be called from bottom half, or from NAPI polling method.
1690  */
1691 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1692                                      unsigned int budget)
1693 {
1694         struct bcmgenet_priv *priv = ring->priv;
1695         struct net_device *dev = priv->dev;
1696         struct enet_cb *cb;
1697         struct sk_buff *skb;
1698         u32 dma_length_status;
1699         unsigned long dma_flag;
1700         int len;
1701         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1702         unsigned int p_index, mask;
1703         unsigned int discards;
1704         unsigned int chksum_ok = 0;
1705
1706         /* Clear status before servicing to reduce spurious interrupts */
1707         if (ring->index == DESC_INDEX) {
1708                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1709                                          INTRL2_CPU_CLEAR);
1710         } else {
1711                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1712                 bcmgenet_intrl2_1_writel(priv,
1713                                          mask,
1714                                          INTRL2_CPU_CLEAR);
1715         }
1716
1717         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1718
1719         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1720                    DMA_P_INDEX_DISCARD_CNT_MASK;
1721         if (discards > ring->old_discards) {
1722                 discards = discards - ring->old_discards;
1723                 ring->errors += discards;
1724                 ring->old_discards += discards;
1725
1726                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1727                 if (ring->old_discards >= 0xC000) {
1728                         ring->old_discards = 0;
1729                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1730                                                   RDMA_PROD_INDEX);
1731                 }
1732         }
1733
1734         p_index &= DMA_P_INDEX_MASK;
1735         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1736
1737         netif_dbg(priv, rx_status, dev,
1738                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1739
1740         while ((rxpktprocessed < rxpkttoprocess) &&
1741                (rxpktprocessed < budget)) {
1742                 cb = &priv->rx_cbs[ring->read_ptr];
1743                 skb = bcmgenet_rx_refill(priv, cb);
1744
1745                 if (unlikely(!skb)) {
1746                         ring->dropped++;
1747                         goto next;
1748                 }
1749
1750                 if (!priv->desc_64b_en) {
1751                         dma_length_status =
1752                                 dmadesc_get_length_status(priv, cb->bd_addr);
1753                 } else {
1754                         struct status_64 *status;
1755
1756                         status = (struct status_64 *)skb->data;
1757                         dma_length_status = status->length_status;
1758                 }
1759
1760                 /* DMA flags and length are still valid no matter how
1761                  * we got the Receive Status Vector (64B RSB or register)
1762                  */
1763                 dma_flag = dma_length_status & 0xffff;
1764                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1765
1766                 netif_dbg(priv, rx_status, dev,
1767                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1768                           __func__, p_index, ring->c_index,
1769                           ring->read_ptr, dma_length_status);
1770
1771                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1772                         netif_err(priv, rx_status, dev,
1773                                   "dropping fragmented packet!\n");
1774                         ring->errors++;
1775                         dev_kfree_skb_any(skb);
1776                         goto next;
1777                 }
1778
1779                 /* report errors */
1780                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1781                                                 DMA_RX_OV |
1782                                                 DMA_RX_NO |
1783                                                 DMA_RX_LG |
1784                                                 DMA_RX_RXER))) {
1785                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1786                                   (unsigned int)dma_flag);
1787                         if (dma_flag & DMA_RX_CRC_ERROR)
1788                                 dev->stats.rx_crc_errors++;
1789                         if (dma_flag & DMA_RX_OV)
1790                                 dev->stats.rx_over_errors++;
1791                         if (dma_flag & DMA_RX_NO)
1792                                 dev->stats.rx_frame_errors++;
1793                         if (dma_flag & DMA_RX_LG)
1794                                 dev->stats.rx_length_errors++;
1795                         dev->stats.rx_errors++;
1796                         dev_kfree_skb_any(skb);
1797                         goto next;
1798                 } /* error packet */
1799
1800                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1801                              priv->desc_rxchk_en;
1802
1803                 skb_put(skb, len);
1804                 if (priv->desc_64b_en) {
1805                         skb_pull(skb, 64);
1806                         len -= 64;
1807                 }
1808
1809                 if (likely(chksum_ok))
1810                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1811
1812                 /* remove hardware 2bytes added for IP alignment */
1813                 skb_pull(skb, 2);
1814                 len -= 2;
1815
1816                 if (priv->crc_fwd_en) {
1817                         skb_trim(skb, len - ETH_FCS_LEN);
1818                         len -= ETH_FCS_LEN;
1819                 }
1820
1821                 /*Finish setting up the received SKB and send it to the kernel*/
1822                 skb->protocol = eth_type_trans(skb, priv->dev);
1823                 ring->packets++;
1824                 ring->bytes += len;
1825                 if (dma_flag & DMA_RX_MULT)
1826                         dev->stats.multicast++;
1827
1828                 /* Notify kernel */
1829                 napi_gro_receive(&ring->napi, skb);
1830                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1831
1832 next:
1833                 rxpktprocessed++;
1834                 if (likely(ring->read_ptr < ring->end_ptr))
1835                         ring->read_ptr++;
1836                 else
1837                         ring->read_ptr = ring->cb_ptr;
1838
1839                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1840                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1841         }
1842
1843         return rxpktprocessed;
1844 }
1845
1846 /* Rx NAPI polling method */
1847 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1848 {
1849         struct bcmgenet_rx_ring *ring = container_of(napi,
1850                         struct bcmgenet_rx_ring, napi);
1851         unsigned int work_done;
1852
1853         work_done = bcmgenet_desc_rx(ring, budget);
1854
1855         if (work_done < budget) {
1856                 napi_complete_done(napi, work_done);
1857                 ring->int_enable(ring);
1858         }
1859
1860         return work_done;
1861 }
1862
1863 /* Assign skb to RX DMA descriptor. */
1864 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1865                                      struct bcmgenet_rx_ring *ring)
1866 {
1867         struct enet_cb *cb;
1868         struct sk_buff *skb;
1869         int i;
1870
1871         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1872
1873         /* loop here for each buffer needing assign */
1874         for (i = 0; i < ring->size; i++) {
1875                 cb = ring->cbs + i;
1876                 skb = bcmgenet_rx_refill(priv, cb);
1877                 if (skb)
1878                         dev_kfree_skb_any(skb);
1879                 if (!cb->skb)
1880                         return -ENOMEM;
1881         }
1882
1883         return 0;
1884 }
1885
1886 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1887 {
1888         struct sk_buff *skb;
1889         struct enet_cb *cb;
1890         int i;
1891
1892         for (i = 0; i < priv->num_rx_bds; i++) {
1893                 cb = &priv->rx_cbs[i];
1894
1895                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1896                 if (skb)
1897                         dev_kfree_skb_any(skb);
1898         }
1899 }
1900
1901 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1902 {
1903         u32 reg;
1904
1905         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1906         if (enable)
1907                 reg |= mask;
1908         else
1909                 reg &= ~mask;
1910         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1911
1912         /* UniMAC stops on a packet boundary, wait for a full-size packet
1913          * to be processed
1914          */
1915         if (enable == 0)
1916                 usleep_range(1000, 2000);
1917 }
1918
1919 static int reset_umac(struct bcmgenet_priv *priv)
1920 {
1921         struct device *kdev = &priv->pdev->dev;
1922         unsigned int timeout = 0;
1923         u32 reg;
1924
1925         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1926         bcmgenet_rbuf_ctrl_set(priv, 0);
1927         udelay(10);
1928
1929         /* disable MAC while updating its registers */
1930         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1931
1932         /* issue soft reset, wait for it to complete */
1933         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1934         while (timeout++ < 1000) {
1935                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1936                 if (!(reg & CMD_SW_RESET))
1937                         return 0;
1938
1939                 udelay(1);
1940         }
1941
1942         if (timeout == 1000) {
1943                 dev_err(kdev,
1944                         "timeout waiting for MAC to come out of reset\n");
1945                 return -ETIMEDOUT;
1946         }
1947
1948         return 0;
1949 }
1950
1951 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1952 {
1953         /* Mask all interrupts.*/
1954         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1955         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1956         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1957         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1958 }
1959
1960 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1961 {
1962         u32 int0_enable = 0;
1963
1964         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1965          * and MoCA PHY
1966          */
1967         if (priv->internal_phy) {
1968                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1969         } else if (priv->ext_phy) {
1970                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1971         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1972                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1973                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1974         }
1975         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1976 }
1977
1978 static int init_umac(struct bcmgenet_priv *priv)
1979 {
1980         struct device *kdev = &priv->pdev->dev;
1981         int ret;
1982         u32 reg;
1983         u32 int0_enable = 0;
1984
1985         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1986
1987         ret = reset_umac(priv);
1988         if (ret)
1989                 return ret;
1990
1991         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1992         /* clear tx/rx counter */
1993         bcmgenet_umac_writel(priv,
1994                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1995                              UMAC_MIB_CTRL);
1996         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1997
1998         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1999
2000         /* init rx registers, enable ip header optimization */
2001         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2002         reg |= RBUF_ALIGN_2B;
2003         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2004
2005         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2006                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2007
2008         bcmgenet_intr_disable(priv);
2009
2010         /* Configure backpressure vectors for MoCA */
2011         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2012                 reg = bcmgenet_bp_mc_get(priv);
2013                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2014
2015                 /* bp_mask: back pressure mask */
2016                 if (netif_is_multiqueue(priv->dev))
2017                         reg |= priv->hw_params->bp_in_mask;
2018                 else
2019                         reg &= ~priv->hw_params->bp_in_mask;
2020                 bcmgenet_bp_mc_set(priv, reg);
2021         }
2022
2023         /* Enable MDIO interrupts on GENET v3+ */
2024         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2025                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2026
2027         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2028
2029         dev_dbg(kdev, "done init umac\n");
2030
2031         return 0;
2032 }
2033
2034 /* Initialize a Tx ring along with corresponding hardware registers */
2035 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2036                                   unsigned int index, unsigned int size,
2037                                   unsigned int start_ptr, unsigned int end_ptr)
2038 {
2039         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2040         u32 words_per_bd = WORDS_PER_BD(priv);
2041         u32 flow_period_val = 0;
2042
2043         spin_lock_init(&ring->lock);
2044         ring->priv = priv;
2045         ring->index = index;
2046         if (index == DESC_INDEX) {
2047                 ring->queue = 0;
2048                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2049                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2050         } else {
2051                 ring->queue = index + 1;
2052                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2053                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2054         }
2055         ring->cbs = priv->tx_cbs + start_ptr;
2056         ring->size = size;
2057         ring->clean_ptr = start_ptr;
2058         ring->c_index = 0;
2059         ring->free_bds = size;
2060         ring->write_ptr = start_ptr;
2061         ring->cb_ptr = start_ptr;
2062         ring->end_ptr = end_ptr - 1;
2063         ring->prod_index = 0;
2064
2065         /* Set flow period for ring != 16 */
2066         if (index != DESC_INDEX)
2067                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2068
2069         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2070         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2071         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2072         /* Disable rate control for now */
2073         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2074                                   TDMA_FLOW_PERIOD);
2075         bcmgenet_tdma_ring_writel(priv, index,
2076                                   ((size << DMA_RING_SIZE_SHIFT) |
2077                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2078
2079         /* Set start and end address, read and write pointers */
2080         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2081                                   DMA_START_ADDR);
2082         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2083                                   TDMA_READ_PTR);
2084         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2085                                   TDMA_WRITE_PTR);
2086         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2087                                   DMA_END_ADDR);
2088 }
2089
2090 /* Initialize a RDMA ring */
2091 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2092                                  unsigned int index, unsigned int size,
2093                                  unsigned int start_ptr, unsigned int end_ptr)
2094 {
2095         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2096         u32 words_per_bd = WORDS_PER_BD(priv);
2097         int ret;
2098
2099         ring->priv = priv;
2100         ring->index = index;
2101         if (index == DESC_INDEX) {
2102                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2103                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2104         } else {
2105                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2106                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2107         }
2108         ring->cbs = priv->rx_cbs + start_ptr;
2109         ring->size = size;
2110         ring->c_index = 0;
2111         ring->read_ptr = start_ptr;
2112         ring->cb_ptr = start_ptr;
2113         ring->end_ptr = end_ptr - 1;
2114
2115         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2116         if (ret)
2117                 return ret;
2118
2119         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2120         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2121         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2122         bcmgenet_rdma_ring_writel(priv, index,
2123                                   ((size << DMA_RING_SIZE_SHIFT) |
2124                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2125         bcmgenet_rdma_ring_writel(priv, index,
2126                                   (DMA_FC_THRESH_LO <<
2127                                    DMA_XOFF_THRESHOLD_SHIFT) |
2128                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2129
2130         /* Set start and end address, read and write pointers */
2131         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2132                                   DMA_START_ADDR);
2133         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2134                                   RDMA_READ_PTR);
2135         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2136                                   RDMA_WRITE_PTR);
2137         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2138                                   DMA_END_ADDR);
2139
2140         return ret;
2141 }
2142
2143 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2144 {
2145         unsigned int i;
2146         struct bcmgenet_tx_ring *ring;
2147
2148         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2149                 ring = &priv->tx_rings[i];
2150                 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2151         }
2152
2153         ring = &priv->tx_rings[DESC_INDEX];
2154         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2155 }
2156
2157 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2158 {
2159         unsigned int i;
2160         u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2161         u32 int1_enable = 0;
2162         struct bcmgenet_tx_ring *ring;
2163
2164         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2165                 ring = &priv->tx_rings[i];
2166                 napi_enable(&ring->napi);
2167                 int1_enable |= (1 << i);
2168         }
2169
2170         ring = &priv->tx_rings[DESC_INDEX];
2171         napi_enable(&ring->napi);
2172
2173         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2174         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2175 }
2176
2177 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2178 {
2179         unsigned int i;
2180         u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2181         u32 int1_disable = 0xffff;
2182         struct bcmgenet_tx_ring *ring;
2183
2184         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2185         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2186
2187         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2188                 ring = &priv->tx_rings[i];
2189                 napi_disable(&ring->napi);
2190         }
2191
2192         ring = &priv->tx_rings[DESC_INDEX];
2193         napi_disable(&ring->napi);
2194 }
2195
2196 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2197 {
2198         unsigned int i;
2199         struct bcmgenet_tx_ring *ring;
2200
2201         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2202                 ring = &priv->tx_rings[i];
2203                 netif_napi_del(&ring->napi);
2204         }
2205
2206         ring = &priv->tx_rings[DESC_INDEX];
2207         netif_napi_del(&ring->napi);
2208 }
2209
2210 /* Initialize Tx queues
2211  *
2212  * Queues 0-3 are priority-based, each one has 32 descriptors,
2213  * with queue 0 being the highest priority queue.
2214  *
2215  * Queue 16 is the default Tx queue with
2216  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2217  *
2218  * The transmit control block pool is then partitioned as follows:
2219  * - Tx queue 0 uses tx_cbs[0..31]
2220  * - Tx queue 1 uses tx_cbs[32..63]
2221  * - Tx queue 2 uses tx_cbs[64..95]
2222  * - Tx queue 3 uses tx_cbs[96..127]
2223  * - Tx queue 16 uses tx_cbs[128..255]
2224  */
2225 static void bcmgenet_init_tx_queues(struct net_device *dev)
2226 {
2227         struct bcmgenet_priv *priv = netdev_priv(dev);
2228         u32 i, dma_enable;
2229         u32 dma_ctrl, ring_cfg;
2230         u32 dma_priority[3] = {0, 0, 0};
2231
2232         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2233         dma_enable = dma_ctrl & DMA_EN;
2234         dma_ctrl &= ~DMA_EN;
2235         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2236
2237         dma_ctrl = 0;
2238         ring_cfg = 0;
2239
2240         /* Enable strict priority arbiter mode */
2241         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2242
2243         /* Initialize Tx priority queues */
2244         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2245                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2246                                       i * priv->hw_params->tx_bds_per_q,
2247                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2248                 ring_cfg |= (1 << i);
2249                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2250                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2251                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2252         }
2253
2254         /* Initialize Tx default queue 16 */
2255         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2256                               priv->hw_params->tx_queues *
2257                               priv->hw_params->tx_bds_per_q,
2258                               TOTAL_DESC);
2259         ring_cfg |= (1 << DESC_INDEX);
2260         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2261         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2262                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2263                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2264
2265         /* Set Tx queue priorities */
2266         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2267         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2268         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2269
2270         /* Initialize Tx NAPI */
2271         bcmgenet_init_tx_napi(priv);
2272
2273         /* Enable Tx queues */
2274         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275
2276         /* Enable Tx DMA */
2277         if (dma_enable)
2278                 dma_ctrl |= DMA_EN;
2279         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2280 }
2281
2282 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2283 {
2284         unsigned int i;
2285         struct bcmgenet_rx_ring *ring;
2286
2287         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2288                 ring = &priv->rx_rings[i];
2289                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2290         }
2291
2292         ring = &priv->rx_rings[DESC_INDEX];
2293         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2294 }
2295
2296 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2297 {
2298         unsigned int i;
2299         u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2300         u32 int1_enable = 0;
2301         struct bcmgenet_rx_ring *ring;
2302
2303         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2304                 ring = &priv->rx_rings[i];
2305                 napi_enable(&ring->napi);
2306                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2307         }
2308
2309         ring = &priv->rx_rings[DESC_INDEX];
2310         napi_enable(&ring->napi);
2311
2312         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2313         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2314 }
2315
2316 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2317 {
2318         unsigned int i;
2319         u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2320         u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2321         struct bcmgenet_rx_ring *ring;
2322
2323         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2324         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2325
2326         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2327                 ring = &priv->rx_rings[i];
2328                 napi_disable(&ring->napi);
2329         }
2330
2331         ring = &priv->rx_rings[DESC_INDEX];
2332         napi_disable(&ring->napi);
2333 }
2334
2335 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2336 {
2337         unsigned int i;
2338         struct bcmgenet_rx_ring *ring;
2339
2340         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2341                 ring = &priv->rx_rings[i];
2342                 netif_napi_del(&ring->napi);
2343         }
2344
2345         ring = &priv->rx_rings[DESC_INDEX];
2346         netif_napi_del(&ring->napi);
2347 }
2348
2349 /* Initialize Rx queues
2350  *
2351  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2352  * used to direct traffic to these queues.
2353  *
2354  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2355  */
2356 static int bcmgenet_init_rx_queues(struct net_device *dev)
2357 {
2358         struct bcmgenet_priv *priv = netdev_priv(dev);
2359         u32 i;
2360         u32 dma_enable;
2361         u32 dma_ctrl;
2362         u32 ring_cfg;
2363         int ret;
2364
2365         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2366         dma_enable = dma_ctrl & DMA_EN;
2367         dma_ctrl &= ~DMA_EN;
2368         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2369
2370         dma_ctrl = 0;
2371         ring_cfg = 0;
2372
2373         /* Initialize Rx priority queues */
2374         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2375                 ret = bcmgenet_init_rx_ring(priv, i,
2376                                             priv->hw_params->rx_bds_per_q,
2377                                             i * priv->hw_params->rx_bds_per_q,
2378                                             (i + 1) *
2379                                             priv->hw_params->rx_bds_per_q);
2380                 if (ret)
2381                         return ret;
2382
2383                 ring_cfg |= (1 << i);
2384                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2385         }
2386
2387         /* Initialize Rx default queue 16 */
2388         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2389                                     priv->hw_params->rx_queues *
2390                                     priv->hw_params->rx_bds_per_q,
2391                                     TOTAL_DESC);
2392         if (ret)
2393                 return ret;
2394
2395         ring_cfg |= (1 << DESC_INDEX);
2396         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2397
2398         /* Initialize Rx NAPI */
2399         bcmgenet_init_rx_napi(priv);
2400
2401         /* Enable rings */
2402         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2403
2404         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2405         if (dma_enable)
2406                 dma_ctrl |= DMA_EN;
2407         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2408
2409         return 0;
2410 }
2411
2412 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2413 {
2414         int ret = 0;
2415         int timeout = 0;
2416         u32 reg;
2417         u32 dma_ctrl;
2418         int i;
2419
2420         /* Disable TDMA to stop add more frames in TX DMA */
2421         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2422         reg &= ~DMA_EN;
2423         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2424
2425         /* Check TDMA status register to confirm TDMA is disabled */
2426         while (timeout++ < DMA_TIMEOUT_VAL) {
2427                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2428                 if (reg & DMA_DISABLED)
2429                         break;
2430
2431                 udelay(1);
2432         }
2433
2434         if (timeout == DMA_TIMEOUT_VAL) {
2435                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2436                 ret = -ETIMEDOUT;
2437         }
2438
2439         /* Wait 10ms for packet drain in both tx and rx dma */
2440         usleep_range(10000, 20000);
2441
2442         /* Disable RDMA */
2443         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2444         reg &= ~DMA_EN;
2445         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2446
2447         timeout = 0;
2448         /* Check RDMA status register to confirm RDMA is disabled */
2449         while (timeout++ < DMA_TIMEOUT_VAL) {
2450                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2451                 if (reg & DMA_DISABLED)
2452                         break;
2453
2454                 udelay(1);
2455         }
2456
2457         if (timeout == DMA_TIMEOUT_VAL) {
2458                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2459                 ret = -ETIMEDOUT;
2460         }
2461
2462         dma_ctrl = 0;
2463         for (i = 0; i < priv->hw_params->rx_queues; i++)
2464                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2465         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2466         reg &= ~dma_ctrl;
2467         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2468
2469         dma_ctrl = 0;
2470         for (i = 0; i < priv->hw_params->tx_queues; i++)
2471                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2472         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2473         reg &= ~dma_ctrl;
2474         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2475
2476         return ret;
2477 }
2478
2479 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2480 {
2481         struct netdev_queue *txq;
2482         struct sk_buff *skb;
2483         struct enet_cb *cb;
2484         int i;
2485
2486         bcmgenet_fini_rx_napi(priv);
2487         bcmgenet_fini_tx_napi(priv);
2488
2489         /* disable DMA */
2490         bcmgenet_dma_teardown(priv);
2491
2492         for (i = 0; i < priv->num_tx_bds; i++) {
2493                 cb = priv->tx_cbs + i;
2494                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2495                 if (skb)
2496                         dev_kfree_skb(skb);
2497         }
2498
2499         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2500                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2501                 netdev_tx_reset_queue(txq);
2502         }
2503
2504         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2505         netdev_tx_reset_queue(txq);
2506
2507         bcmgenet_free_rx_buffers(priv);
2508         kfree(priv->rx_cbs);
2509         kfree(priv->tx_cbs);
2510 }
2511
2512 /* init_edma: Initialize DMA control register */
2513 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2514 {
2515         int ret;
2516         unsigned int i;
2517         struct enet_cb *cb;
2518
2519         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2520
2521         /* Initialize common Rx ring structures */
2522         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2523         priv->num_rx_bds = TOTAL_DESC;
2524         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2525                                GFP_KERNEL);
2526         if (!priv->rx_cbs)
2527                 return -ENOMEM;
2528
2529         for (i = 0; i < priv->num_rx_bds; i++) {
2530                 cb = priv->rx_cbs + i;
2531                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2532         }
2533
2534         /* Initialize common TX ring structures */
2535         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2536         priv->num_tx_bds = TOTAL_DESC;
2537         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2538                                GFP_KERNEL);
2539         if (!priv->tx_cbs) {
2540                 kfree(priv->rx_cbs);
2541                 return -ENOMEM;
2542         }
2543
2544         for (i = 0; i < priv->num_tx_bds; i++) {
2545                 cb = priv->tx_cbs + i;
2546                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2547         }
2548
2549         /* Init rDma */
2550         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2551
2552         /* Initialize Rx queues */
2553         ret = bcmgenet_init_rx_queues(priv->dev);
2554         if (ret) {
2555                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2556                 bcmgenet_free_rx_buffers(priv);
2557                 kfree(priv->rx_cbs);
2558                 kfree(priv->tx_cbs);
2559                 return ret;
2560         }
2561
2562         /* Init tDma */
2563         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2564
2565         /* Initialize Tx queues */
2566         bcmgenet_init_tx_queues(priv->dev);
2567
2568         return 0;
2569 }
2570
2571 /* Interrupt bottom half */
2572 static void bcmgenet_irq_task(struct work_struct *work)
2573 {
2574         unsigned long flags;
2575         unsigned int status;
2576         struct bcmgenet_priv *priv = container_of(
2577                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2578
2579         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2580
2581         spin_lock_irqsave(&priv->lock, flags);
2582         status = priv->irq0_stat;
2583         priv->irq0_stat = 0;
2584         spin_unlock_irqrestore(&priv->lock, flags);
2585
2586         if (status & UMAC_IRQ_MPD_R) {
2587                 netif_dbg(priv, wol, priv->dev,
2588                           "magic packet detected, waking up\n");
2589                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2590         }
2591
2592         /* Link UP/DOWN event */
2593         if (status & UMAC_IRQ_LINK_EVENT)
2594                 phy_mac_interrupt(priv->phydev,
2595                                   !!(status & UMAC_IRQ_LINK_UP));
2596 }
2597
2598 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2599 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2600 {
2601         struct bcmgenet_priv *priv = dev_id;
2602         struct bcmgenet_rx_ring *rx_ring;
2603         struct bcmgenet_tx_ring *tx_ring;
2604         unsigned int index, status;
2605
2606         /* Read irq status */
2607         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2608                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2609
2610         /* clear interrupts */
2611         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2612
2613         netif_dbg(priv, intr, priv->dev,
2614                   "%s: IRQ=0x%x\n", __func__, status);
2615
2616         /* Check Rx priority queue interrupts */
2617         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2618                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2619                         continue;
2620
2621                 rx_ring = &priv->rx_rings[index];
2622
2623                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2624                         rx_ring->int_disable(rx_ring);
2625                         __napi_schedule_irqoff(&rx_ring->napi);
2626                 }
2627         }
2628
2629         /* Check Tx priority queue interrupts */
2630         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2631                 if (!(status & BIT(index)))
2632                         continue;
2633
2634                 tx_ring = &priv->tx_rings[index];
2635
2636                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2637                         tx_ring->int_disable(tx_ring);
2638                         __napi_schedule_irqoff(&tx_ring->napi);
2639                 }
2640         }
2641
2642         return IRQ_HANDLED;
2643 }
2644
2645 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2646 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2647 {
2648         struct bcmgenet_priv *priv = dev_id;
2649         struct bcmgenet_rx_ring *rx_ring;
2650         struct bcmgenet_tx_ring *tx_ring;
2651         unsigned int status;
2652         unsigned long flags;
2653
2654         /* Read irq status */
2655         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2656                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2657
2658         /* clear interrupts */
2659         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2660
2661         netif_dbg(priv, intr, priv->dev,
2662                   "IRQ=0x%x\n", status);
2663
2664         if (status & UMAC_IRQ_RXDMA_DONE) {
2665                 rx_ring = &priv->rx_rings[DESC_INDEX];
2666
2667                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2668                         rx_ring->int_disable(rx_ring);
2669                         __napi_schedule_irqoff(&rx_ring->napi);
2670                 }
2671         }
2672
2673         if (status & UMAC_IRQ_TXDMA_DONE) {
2674                 tx_ring = &priv->tx_rings[DESC_INDEX];
2675
2676                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2677                         tx_ring->int_disable(tx_ring);
2678                         __napi_schedule_irqoff(&tx_ring->napi);
2679                 }
2680         }
2681
2682         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2683                                 UMAC_IRQ_PHY_DET_F |
2684                                 UMAC_IRQ_LINK_EVENT |
2685                                 UMAC_IRQ_HFB_SM |
2686                                 UMAC_IRQ_HFB_MM)) {
2687                 /* all other interested interrupts handled in bottom half */
2688                 schedule_work(&priv->bcmgenet_irq_work);
2689         }
2690
2691         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2692                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2693                 wake_up(&priv->wq);
2694         }
2695
2696         /* all other interested interrupts handled in bottom half */
2697         status &= (UMAC_IRQ_LINK_EVENT |
2698                    UMAC_IRQ_MPD_R);
2699         if (status) {
2700                 /* Save irq status for bottom-half processing. */
2701                 spin_lock_irqsave(&priv->lock, flags);
2702                 priv->irq0_stat |= status;
2703                 spin_unlock_irqrestore(&priv->lock, flags);
2704
2705                 schedule_work(&priv->bcmgenet_irq_work);
2706         }
2707
2708         return IRQ_HANDLED;
2709 }
2710
2711 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2712 {
2713         struct bcmgenet_priv *priv = dev_id;
2714
2715         pm_wakeup_event(&priv->pdev->dev, 0);
2716
2717         return IRQ_HANDLED;
2718 }
2719
2720 #ifdef CONFIG_NET_POLL_CONTROLLER
2721 static void bcmgenet_poll_controller(struct net_device *dev)
2722 {
2723         struct bcmgenet_priv *priv = netdev_priv(dev);
2724
2725         /* Invoke the main RX/TX interrupt handler */
2726         disable_irq(priv->irq0);
2727         bcmgenet_isr0(priv->irq0, priv);
2728         enable_irq(priv->irq0);
2729
2730         /* And the interrupt handler for RX/TX priority queues */
2731         disable_irq(priv->irq1);
2732         bcmgenet_isr1(priv->irq1, priv);
2733         enable_irq(priv->irq1);
2734 }
2735 #endif
2736
2737 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2738 {
2739         u32 reg;
2740
2741         reg = bcmgenet_rbuf_ctrl_get(priv);
2742         reg |= BIT(1);
2743         bcmgenet_rbuf_ctrl_set(priv, reg);
2744         udelay(10);
2745
2746         reg &= ~BIT(1);
2747         bcmgenet_rbuf_ctrl_set(priv, reg);
2748         udelay(10);
2749 }
2750
2751 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2752                                  unsigned char *addr)
2753 {
2754         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2755                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2756         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2757 }
2758
2759 /* Returns a reusable dma control register value */
2760 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2761 {
2762         u32 reg;
2763         u32 dma_ctrl;
2764
2765         /* disable DMA */
2766         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2767         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2768         reg &= ~dma_ctrl;
2769         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2770
2771         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2772         reg &= ~dma_ctrl;
2773         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2774
2775         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2776         udelay(10);
2777         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2778
2779         return dma_ctrl;
2780 }
2781
2782 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2783 {
2784         u32 reg;
2785
2786         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787         reg |= dma_ctrl;
2788         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789
2790         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2791         reg |= dma_ctrl;
2792         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2793 }
2794
2795 /* bcmgenet_hfb_clear
2796  *
2797  * Clear Hardware Filter Block and disable all filtering.
2798  */
2799 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2800 {
2801         u32 i;
2802
2803         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2804         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2805         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2806
2807         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2808                 bcmgenet_rdma_writel(priv, 0x0, i);
2809
2810         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2811                 bcmgenet_hfb_reg_writel(priv, 0x0,
2812                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2813
2814         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2815                         priv->hw_params->hfb_filter_size; i++)
2816                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2817 }
2818
2819 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2820 {
2821         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2822                 return;
2823
2824         bcmgenet_hfb_clear(priv);
2825 }
2826
2827 static void bcmgenet_netif_start(struct net_device *dev)
2828 {
2829         struct bcmgenet_priv *priv = netdev_priv(dev);
2830
2831         /* Start the network engine */
2832         bcmgenet_enable_rx_napi(priv);
2833         bcmgenet_enable_tx_napi(priv);
2834
2835         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2836
2837         netif_tx_start_all_queues(dev);
2838
2839         /* Monitor link interrupts now */
2840         bcmgenet_link_intr_enable(priv);
2841
2842         phy_start(priv->phydev);
2843 }
2844
2845 static int bcmgenet_open(struct net_device *dev)
2846 {
2847         struct bcmgenet_priv *priv = netdev_priv(dev);
2848         unsigned long dma_ctrl;
2849         u32 reg;
2850         int ret;
2851
2852         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2853
2854         /* Turn on the clock */
2855         clk_prepare_enable(priv->clk);
2856
2857         /* If this is an internal GPHY, power it back on now, before UniMAC is
2858          * brought out of reset as absolutely no UniMAC activity is allowed
2859          */
2860         if (priv->internal_phy)
2861                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2862
2863         /* take MAC out of reset */
2864         bcmgenet_umac_reset(priv);
2865
2866         ret = init_umac(priv);
2867         if (ret)
2868                 goto err_clk_disable;
2869
2870         /* disable ethernet MAC while updating its registers */
2871         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2872
2873         /* Make sure we reflect the value of CRC_CMD_FWD */
2874         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2875         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2876
2877         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2878
2879         if (priv->internal_phy) {
2880                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2881                 reg |= EXT_ENERGY_DET_MASK;
2882                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2883         }
2884
2885         /* Disable RX/TX DMA and flush TX queues */
2886         dma_ctrl = bcmgenet_dma_disable(priv);
2887
2888         /* Reinitialize TDMA and RDMA and SW housekeeping */
2889         ret = bcmgenet_init_dma(priv);
2890         if (ret) {
2891                 netdev_err(dev, "failed to initialize DMA\n");
2892                 goto err_clk_disable;
2893         }
2894
2895         /* Always enable ring 16 - descriptor ring */
2896         bcmgenet_enable_dma(priv, dma_ctrl);
2897
2898         /* HFB init */
2899         bcmgenet_hfb_init(priv);
2900
2901         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2902                           dev->name, priv);
2903         if (ret < 0) {
2904                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2905                 goto err_fini_dma;
2906         }
2907
2908         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2909                           dev->name, priv);
2910         if (ret < 0) {
2911                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2912                 goto err_irq0;
2913         }
2914
2915         ret = bcmgenet_mii_probe(dev);
2916         if (ret) {
2917                 netdev_err(dev, "failed to connect to PHY\n");
2918                 goto err_irq1;
2919         }
2920
2921         bcmgenet_netif_start(dev);
2922
2923         return 0;
2924
2925 err_irq1:
2926         free_irq(priv->irq1, priv);
2927 err_irq0:
2928         free_irq(priv->irq0, priv);
2929 err_fini_dma:
2930         bcmgenet_fini_dma(priv);
2931 err_clk_disable:
2932         if (priv->internal_phy)
2933                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2934         clk_disable_unprepare(priv->clk);
2935         return ret;
2936 }
2937
2938 static void bcmgenet_netif_stop(struct net_device *dev)
2939 {
2940         struct bcmgenet_priv *priv = netdev_priv(dev);
2941
2942         netif_tx_stop_all_queues(dev);
2943         phy_stop(priv->phydev);
2944         bcmgenet_intr_disable(priv);
2945         bcmgenet_disable_rx_napi(priv);
2946         bcmgenet_disable_tx_napi(priv);
2947
2948         /* Wait for pending work items to complete. Since interrupts are
2949          * disabled no new work will be scheduled.
2950          */
2951         cancel_work_sync(&priv->bcmgenet_irq_work);
2952
2953         priv->old_link = -1;
2954         priv->old_speed = -1;
2955         priv->old_duplex = -1;
2956         priv->old_pause = -1;
2957 }
2958
2959 static int bcmgenet_close(struct net_device *dev)
2960 {
2961         struct bcmgenet_priv *priv = netdev_priv(dev);
2962         int ret;
2963
2964         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2965
2966         bcmgenet_netif_stop(dev);
2967
2968         /* Really kill the PHY state machine and disconnect from it */
2969         phy_disconnect(priv->phydev);
2970
2971         /* Disable MAC receive */
2972         umac_enable_set(priv, CMD_RX_EN, false);
2973
2974         ret = bcmgenet_dma_teardown(priv);
2975         if (ret)
2976                 return ret;
2977
2978         /* Disable MAC transmit. TX DMA disabled must be done before this */
2979         umac_enable_set(priv, CMD_TX_EN, false);
2980
2981         /* tx reclaim */
2982         bcmgenet_tx_reclaim_all(dev);
2983         bcmgenet_fini_dma(priv);
2984
2985         free_irq(priv->irq0, priv);
2986         free_irq(priv->irq1, priv);
2987
2988         if (priv->internal_phy)
2989                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2990
2991         clk_disable_unprepare(priv->clk);
2992
2993         return ret;
2994 }
2995
2996 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2997 {
2998         struct bcmgenet_priv *priv = ring->priv;
2999         u32 p_index, c_index, intsts, intmsk;
3000         struct netdev_queue *txq;
3001         unsigned int free_bds;
3002         unsigned long flags;
3003         bool txq_stopped;
3004
3005         if (!netif_msg_tx_err(priv))
3006                 return;
3007
3008         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3009
3010         spin_lock_irqsave(&ring->lock, flags);
3011         if (ring->index == DESC_INDEX) {
3012                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3013                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3014         } else {
3015                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3016                 intmsk = 1 << ring->index;
3017         }
3018         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3019         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3020         txq_stopped = netif_tx_queue_stopped(txq);
3021         free_bds = ring->free_bds;
3022         spin_unlock_irqrestore(&ring->lock, flags);
3023
3024         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3025                   "TX queue status: %s, interrupts: %s\n"
3026                   "(sw)free_bds: %d (sw)size: %d\n"
3027                   "(sw)p_index: %d (hw)p_index: %d\n"
3028                   "(sw)c_index: %d (hw)c_index: %d\n"
3029                   "(sw)clean_p: %d (sw)write_p: %d\n"
3030                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3031                   ring->index, ring->queue,
3032                   txq_stopped ? "stopped" : "active",
3033                   intsts & intmsk ? "enabled" : "disabled",
3034                   free_bds, ring->size,
3035                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3036                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3037                   ring->clean_ptr, ring->write_ptr,
3038                   ring->cb_ptr, ring->end_ptr);
3039 }
3040
3041 static void bcmgenet_timeout(struct net_device *dev)
3042 {
3043         struct bcmgenet_priv *priv = netdev_priv(dev);
3044         u32 int0_enable = 0;
3045         u32 int1_enable = 0;
3046         unsigned int q;
3047
3048         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3049
3050         for (q = 0; q < priv->hw_params->tx_queues; q++)
3051                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3052         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3053
3054         bcmgenet_tx_reclaim_all(dev);
3055
3056         for (q = 0; q < priv->hw_params->tx_queues; q++)
3057                 int1_enable |= (1 << q);
3058
3059         int0_enable = UMAC_IRQ_TXDMA_DONE;
3060
3061         /* Re-enable TX interrupts if disabled */
3062         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3063         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3064
3065         netif_trans_update(dev);
3066
3067         dev->stats.tx_errors++;
3068
3069         netif_tx_wake_all_queues(dev);
3070 }
3071
3072 #define MAX_MC_COUNT    16
3073
3074 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3075                                          unsigned char *addr,
3076                                          int *i,
3077                                          int *mc)
3078 {
3079         u32 reg;
3080
3081         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3082                              UMAC_MDF_ADDR + (*i * 4));
3083         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3084                              addr[4] << 8 | addr[5],
3085                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3086         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3087         reg |= (1 << (MAX_MC_COUNT - *mc));
3088         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3089         *i += 2;
3090         (*mc)++;
3091 }
3092
3093 static void bcmgenet_set_rx_mode(struct net_device *dev)
3094 {
3095         struct bcmgenet_priv *priv = netdev_priv(dev);
3096         struct netdev_hw_addr *ha;
3097         int i, mc;
3098         u32 reg;
3099
3100         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3101
3102         /* Promiscuous mode */
3103         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3104         if (dev->flags & IFF_PROMISC) {
3105                 reg |= CMD_PROMISC;
3106                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3107                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3108                 return;
3109         } else {
3110                 reg &= ~CMD_PROMISC;
3111                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3112         }
3113
3114         /* UniMac doesn't support ALLMULTI */
3115         if (dev->flags & IFF_ALLMULTI) {
3116                 netdev_warn(dev, "ALLMULTI is not supported\n");
3117                 return;
3118         }
3119
3120         /* update MDF filter */
3121         i = 0;
3122         mc = 0;
3123         /* Broadcast */
3124         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3125         /* my own address.*/
3126         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3127         /* Unicast list*/
3128         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3129                 return;
3130
3131         if (!netdev_uc_empty(dev))
3132                 netdev_for_each_uc_addr(ha, dev)
3133                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3134         /* Multicast */
3135         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3136                 return;
3137
3138         netdev_for_each_mc_addr(ha, dev)
3139                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3140 }
3141
3142 /* Set the hardware MAC address. */
3143 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3144 {
3145         struct sockaddr *addr = p;
3146
3147         /* Setting the MAC address at the hardware level is not possible
3148          * without disabling the UniMAC RX/TX enable bits.
3149          */
3150         if (netif_running(dev))
3151                 return -EBUSY;
3152
3153         ether_addr_copy(dev->dev_addr, addr->sa_data);
3154
3155         return 0;
3156 }
3157
3158 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3159 {
3160         struct bcmgenet_priv *priv = netdev_priv(dev);
3161         unsigned long tx_bytes = 0, tx_packets = 0;
3162         unsigned long rx_bytes = 0, rx_packets = 0;
3163         unsigned long rx_errors = 0, rx_dropped = 0;
3164         struct bcmgenet_tx_ring *tx_ring;
3165         struct bcmgenet_rx_ring *rx_ring;
3166         unsigned int q;
3167
3168         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3169                 tx_ring = &priv->tx_rings[q];
3170                 tx_bytes += tx_ring->bytes;
3171                 tx_packets += tx_ring->packets;
3172         }
3173         tx_ring = &priv->tx_rings[DESC_INDEX];
3174         tx_bytes += tx_ring->bytes;
3175         tx_packets += tx_ring->packets;
3176
3177         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3178                 rx_ring = &priv->rx_rings[q];
3179
3180                 rx_bytes += rx_ring->bytes;
3181                 rx_packets += rx_ring->packets;
3182                 rx_errors += rx_ring->errors;
3183                 rx_dropped += rx_ring->dropped;
3184         }
3185         rx_ring = &priv->rx_rings[DESC_INDEX];
3186         rx_bytes += rx_ring->bytes;
3187         rx_packets += rx_ring->packets;
3188         rx_errors += rx_ring->errors;
3189         rx_dropped += rx_ring->dropped;
3190
3191         dev->stats.tx_bytes = tx_bytes;
3192         dev->stats.tx_packets = tx_packets;
3193         dev->stats.rx_bytes = rx_bytes;
3194         dev->stats.rx_packets = rx_packets;
3195         dev->stats.rx_errors = rx_errors;
3196         dev->stats.rx_missed_errors = rx_errors;
3197         return &dev->stats;
3198 }
3199
3200 static const struct net_device_ops bcmgenet_netdev_ops = {
3201         .ndo_open               = bcmgenet_open,
3202         .ndo_stop               = bcmgenet_close,
3203         .ndo_start_xmit         = bcmgenet_xmit,
3204         .ndo_tx_timeout         = bcmgenet_timeout,
3205         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3206         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3207         .ndo_do_ioctl           = bcmgenet_ioctl,
3208         .ndo_set_features       = bcmgenet_set_features,
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
3210         .ndo_poll_controller    = bcmgenet_poll_controller,
3211 #endif
3212         .ndo_get_stats          = bcmgenet_get_stats,
3213 };
3214
3215 /* Array of GENET hardware parameters/characteristics */
3216 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3217         [GENET_V1] = {
3218                 .tx_queues = 0,
3219                 .tx_bds_per_q = 0,
3220                 .rx_queues = 0,
3221                 .rx_bds_per_q = 0,
3222                 .bp_in_en_shift = 16,
3223                 .bp_in_mask = 0xffff,
3224                 .hfb_filter_cnt = 16,
3225                 .qtag_mask = 0x1F,
3226                 .hfb_offset = 0x1000,
3227                 .rdma_offset = 0x2000,
3228                 .tdma_offset = 0x3000,
3229                 .words_per_bd = 2,
3230         },
3231         [GENET_V2] = {
3232                 .tx_queues = 4,
3233                 .tx_bds_per_q = 32,
3234                 .rx_queues = 0,
3235                 .rx_bds_per_q = 0,
3236                 .bp_in_en_shift = 16,
3237                 .bp_in_mask = 0xffff,
3238                 .hfb_filter_cnt = 16,
3239                 .qtag_mask = 0x1F,
3240                 .tbuf_offset = 0x0600,
3241                 .hfb_offset = 0x1000,
3242                 .hfb_reg_offset = 0x2000,
3243                 .rdma_offset = 0x3000,
3244                 .tdma_offset = 0x4000,
3245                 .words_per_bd = 2,
3246                 .flags = GENET_HAS_EXT,
3247         },
3248         [GENET_V3] = {
3249                 .tx_queues = 4,
3250                 .tx_bds_per_q = 32,
3251                 .rx_queues = 0,
3252                 .rx_bds_per_q = 0,
3253                 .bp_in_en_shift = 17,
3254                 .bp_in_mask = 0x1ffff,
3255                 .hfb_filter_cnt = 48,
3256                 .hfb_filter_size = 128,
3257                 .qtag_mask = 0x3F,
3258                 .tbuf_offset = 0x0600,
3259                 .hfb_offset = 0x8000,
3260                 .hfb_reg_offset = 0xfc00,
3261                 .rdma_offset = 0x10000,
3262                 .tdma_offset = 0x11000,
3263                 .words_per_bd = 2,
3264                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3265                          GENET_HAS_MOCA_LINK_DET,
3266         },
3267         [GENET_V4] = {
3268                 .tx_queues = 4,
3269                 .tx_bds_per_q = 32,
3270                 .rx_queues = 0,
3271                 .rx_bds_per_q = 0,
3272                 .bp_in_en_shift = 17,
3273                 .bp_in_mask = 0x1ffff,
3274                 .hfb_filter_cnt = 48,
3275                 .hfb_filter_size = 128,
3276                 .qtag_mask = 0x3F,
3277                 .tbuf_offset = 0x0600,
3278                 .hfb_offset = 0x8000,
3279                 .hfb_reg_offset = 0xfc00,
3280                 .rdma_offset = 0x2000,
3281                 .tdma_offset = 0x4000,
3282                 .words_per_bd = 3,
3283                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3284                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3285         },
3286         [GENET_V5] = {
3287                 .tx_queues = 4,
3288                 .tx_bds_per_q = 32,
3289                 .rx_queues = 0,
3290                 .rx_bds_per_q = 0,
3291                 .bp_in_en_shift = 17,
3292                 .bp_in_mask = 0x1ffff,
3293                 .hfb_filter_cnt = 48,
3294                 .hfb_filter_size = 128,
3295                 .qtag_mask = 0x3F,
3296                 .tbuf_offset = 0x0600,
3297                 .hfb_offset = 0x8000,
3298                 .hfb_reg_offset = 0xfc00,
3299                 .rdma_offset = 0x2000,
3300                 .tdma_offset = 0x4000,
3301                 .words_per_bd = 3,
3302                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3303                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3304         },
3305 };
3306
3307 /* Infer hardware parameters from the detected GENET version */
3308 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3309 {
3310         struct bcmgenet_hw_params *params;
3311         u32 reg;
3312         u8 major;
3313         u16 gphy_rev;
3314
3315         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3316                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3317                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3318                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3319         } else if (GENET_IS_V3(priv)) {
3320                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3321                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3322                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3323         } else if (GENET_IS_V2(priv)) {
3324                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3325                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3326                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3327         } else if (GENET_IS_V1(priv)) {
3328                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3329                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3331         }
3332
3333         /* enum genet_version starts at 1 */
3334         priv->hw_params = &bcmgenet_hw_params[priv->version];
3335         params = priv->hw_params;
3336
3337         /* Read GENET HW version */
3338         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3339         major = (reg >> 24 & 0x0f);
3340         if (major == 6)
3341                 major = 5;
3342         else if (major == 5)
3343                 major = 4;
3344         else if (major == 0)
3345                 major = 1;
3346         if (major != priv->version) {
3347                 dev_err(&priv->pdev->dev,
3348                         "GENET version mismatch, got: %d, configured for: %d\n",
3349                         major, priv->version);
3350         }
3351
3352         /* Print the GENET core version */
3353         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3354                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3355
3356         /* Store the integrated PHY revision for the MDIO probing function
3357          * to pass this information to the PHY driver. The PHY driver expects
3358          * to find the PHY major revision in bits 15:8 while the GENET register
3359          * stores that information in bits 7:0, account for that.
3360          *
3361          * On newer chips, starting with PHY revision G0, a new scheme is
3362          * deployed similar to the Starfighter 2 switch with GPHY major
3363          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3364          * is reserved as well as special value 0x01ff, we have a small
3365          * heuristic to check for the new GPHY revision and re-arrange things
3366          * so the GPHY driver is happy.
3367          */
3368         gphy_rev = reg & 0xffff;
3369
3370         if (GENET_IS_V5(priv)) {
3371                 /* The EPHY revision should come from the MDIO registers of
3372                  * the PHY not from GENET.
3373                  */
3374                 if (gphy_rev != 0) {
3375                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3376                                 gphy_rev);
3377                 }
3378         /* This is reserved so should require special treatment */
3379         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3380                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3381                 return;
3382         /* This is the good old scheme, just GPHY major, no minor nor patch */
3383         } else if ((gphy_rev & 0xf0) != 0) {
3384                 priv->gphy_rev = gphy_rev << 8;
3385         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3386         } else if ((gphy_rev & 0xff00) != 0) {
3387                 priv->gphy_rev = gphy_rev;
3388         }
3389
3390 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3391         if (!(params->flags & GENET_HAS_40BITS))
3392                 pr_warn("GENET does not support 40-bits PA\n");
3393 #endif
3394
3395         pr_debug("Configuration for version: %d\n"
3396                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3397                 "BP << en: %2d, BP msk: 0x%05x\n"
3398                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3399                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3400                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3401                 "Words/BD: %d\n",
3402                 priv->version,
3403                 params->tx_queues, params->tx_bds_per_q,
3404                 params->rx_queues, params->rx_bds_per_q,
3405                 params->bp_in_en_shift, params->bp_in_mask,
3406                 params->hfb_filter_cnt, params->qtag_mask,
3407                 params->tbuf_offset, params->hfb_offset,
3408                 params->hfb_reg_offset,
3409                 params->rdma_offset, params->tdma_offset,
3410                 params->words_per_bd);
3411 }
3412
3413 static const struct of_device_id bcmgenet_match[] = {
3414         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3415         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3416         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3417         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3418         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3419         { },
3420 };
3421 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3422
3423 static int bcmgenet_probe(struct platform_device *pdev)
3424 {
3425         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3426         struct device_node *dn = pdev->dev.of_node;
3427         const struct of_device_id *of_id = NULL;
3428         struct bcmgenet_priv *priv;
3429         struct net_device *dev;
3430         const void *macaddr;
3431         struct resource *r;
3432         int err = -EIO;
3433         const char *phy_mode_str;
3434
3435         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3436         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3437                                  GENET_MAX_MQ_CNT + 1);
3438         if (!dev) {
3439                 dev_err(&pdev->dev, "can't allocate net device\n");
3440                 return -ENOMEM;
3441         }
3442
3443         if (dn) {
3444                 of_id = of_match_node(bcmgenet_match, dn);
3445                 if (!of_id)
3446                         return -EINVAL;
3447         }
3448
3449         priv = netdev_priv(dev);
3450         priv->irq0 = platform_get_irq(pdev, 0);
3451         priv->irq1 = platform_get_irq(pdev, 1);
3452         priv->wol_irq = platform_get_irq(pdev, 2);
3453         if (!priv->irq0 || !priv->irq1) {
3454                 dev_err(&pdev->dev, "can't find IRQs\n");
3455                 err = -EINVAL;
3456                 goto err;
3457         }
3458
3459         if (dn) {
3460                 macaddr = of_get_mac_address(dn);
3461                 if (!macaddr) {
3462                         dev_err(&pdev->dev, "can't find MAC address\n");
3463                         err = -EINVAL;
3464                         goto err;
3465                 }
3466         } else {
3467                 macaddr = pd->mac_address;
3468         }
3469
3470         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3471         priv->base = devm_ioremap_resource(&pdev->dev, r);
3472         if (IS_ERR(priv->base)) {
3473                 err = PTR_ERR(priv->base);
3474                 goto err;
3475         }
3476
3477         spin_lock_init(&priv->lock);
3478
3479         SET_NETDEV_DEV(dev, &pdev->dev);
3480         dev_set_drvdata(&pdev->dev, dev);
3481         ether_addr_copy(dev->dev_addr, macaddr);
3482         dev->watchdog_timeo = 2 * HZ;
3483         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3484         dev->netdev_ops = &bcmgenet_netdev_ops;
3485
3486         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3487
3488         /* Set hardware features */
3489         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3490                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3491
3492         /* Request the WOL interrupt and advertise suspend if available */
3493         priv->wol_irq_disabled = true;
3494         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3495                                dev->name, priv);
3496         if (!err)
3497                 device_set_wakeup_capable(&pdev->dev, 1);
3498
3499         /* Set the needed headroom to account for any possible
3500          * features enabling/disabling at runtime
3501          */
3502         dev->needed_headroom += 64;
3503
3504         netdev_boot_setup_check(dev);
3505
3506         priv->dev = dev;
3507         priv->pdev = pdev;
3508         if (of_id)
3509                 priv->version = (enum bcmgenet_version)of_id->data;
3510         else
3511                 priv->version = pd->genet_version;
3512
3513         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3514         if (IS_ERR(priv->clk)) {
3515                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3516                 priv->clk = NULL;
3517         }
3518
3519         clk_prepare_enable(priv->clk);
3520
3521         bcmgenet_set_hw_params(priv);
3522
3523         /* Mii wait queue */
3524         init_waitqueue_head(&priv->wq);
3525         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3526         priv->rx_buf_len = RX_BUF_LENGTH;
3527         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3528
3529         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3530         if (IS_ERR(priv->clk_wol)) {
3531                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3532                 priv->clk_wol = NULL;
3533         }
3534
3535         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3536         if (IS_ERR(priv->clk_eee)) {
3537                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3538                 priv->clk_eee = NULL;
3539         }
3540
3541         /* If this is an internal GPHY, power it on now, before UniMAC is
3542          * brought out of reset as absolutely no UniMAC activity is allowed
3543          */
3544         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3545             !strcasecmp(phy_mode_str, "internal"))
3546                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3547
3548         err = reset_umac(priv);
3549         if (err)
3550                 goto err_clk_disable;
3551
3552         err = bcmgenet_mii_init(dev);
3553         if (err)
3554                 goto err_clk_disable;
3555
3556         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3557          * just the ring 16 descriptor based TX
3558          */
3559         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3560         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3561
3562         /* libphy will determine the link state */
3563         netif_carrier_off(dev);
3564
3565         /* Turn off the main clock, WOL clock is handled separately */
3566         clk_disable_unprepare(priv->clk);
3567
3568         err = register_netdev(dev);
3569         if (err)
3570                 goto err;
3571
3572         return err;
3573
3574 err_clk_disable:
3575         clk_disable_unprepare(priv->clk);
3576 err:
3577         free_netdev(dev);
3578         return err;
3579 }
3580
3581 static int bcmgenet_remove(struct platform_device *pdev)
3582 {
3583         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3584
3585         dev_set_drvdata(&pdev->dev, NULL);
3586         unregister_netdev(priv->dev);
3587         bcmgenet_mii_exit(priv->dev);
3588         free_netdev(priv->dev);
3589
3590         return 0;
3591 }
3592
3593 #ifdef CONFIG_PM_SLEEP
3594 static int bcmgenet_suspend(struct device *d)
3595 {
3596         struct net_device *dev = dev_get_drvdata(d);
3597         struct bcmgenet_priv *priv = netdev_priv(dev);
3598         int ret;
3599
3600         if (!netif_running(dev))
3601                 return 0;
3602
3603         bcmgenet_netif_stop(dev);
3604
3605         if (!device_may_wakeup(d))
3606                 phy_suspend(priv->phydev);
3607
3608         netif_device_detach(dev);
3609
3610         /* Disable MAC receive */
3611         umac_enable_set(priv, CMD_RX_EN, false);
3612
3613         ret = bcmgenet_dma_teardown(priv);
3614         if (ret)
3615                 return ret;
3616
3617         /* Disable MAC transmit. TX DMA disabled must be done before this */
3618         umac_enable_set(priv, CMD_TX_EN, false);
3619
3620         /* tx reclaim */
3621         bcmgenet_tx_reclaim_all(dev);
3622         bcmgenet_fini_dma(priv);
3623
3624         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3625         if (device_may_wakeup(d) && priv->wolopts) {
3626                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3627                 clk_prepare_enable(priv->clk_wol);
3628         } else if (priv->internal_phy) {
3629                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3630         }
3631
3632         /* Turn off the clocks */
3633         clk_disable_unprepare(priv->clk);
3634
3635         return ret;
3636 }
3637
3638 static int bcmgenet_resume(struct device *d)
3639 {
3640         struct net_device *dev = dev_get_drvdata(d);
3641         struct bcmgenet_priv *priv = netdev_priv(dev);
3642         unsigned long dma_ctrl;
3643         int ret;
3644         u32 reg;
3645
3646         if (!netif_running(dev))
3647                 return 0;
3648
3649         /* Turn on the clock */
3650         ret = clk_prepare_enable(priv->clk);
3651         if (ret)
3652                 return ret;
3653
3654         /* If this is an internal GPHY, power it back on now, before UniMAC is
3655          * brought out of reset as absolutely no UniMAC activity is allowed
3656          */
3657         if (priv->internal_phy)
3658                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3659
3660         bcmgenet_umac_reset(priv);
3661
3662         ret = init_umac(priv);
3663         if (ret)
3664                 goto out_clk_disable;
3665
3666         /* From WOL-enabled suspend, switch to regular clock */
3667         if (priv->wolopts)
3668                 clk_disable_unprepare(priv->clk_wol);
3669
3670         phy_init_hw(priv->phydev);
3671         /* Speed settings must be restored */
3672         bcmgenet_mii_config(priv->dev, false);
3673
3674         /* disable ethernet MAC while updating its registers */
3675         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3676
3677         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3678
3679         if (priv->internal_phy) {
3680                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3681                 reg |= EXT_ENERGY_DET_MASK;
3682                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3683         }
3684
3685         if (priv->wolopts)
3686                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3687
3688         /* Disable RX/TX DMA and flush TX queues */
3689         dma_ctrl = bcmgenet_dma_disable(priv);
3690
3691         /* Reinitialize TDMA and RDMA and SW housekeeping */
3692         ret = bcmgenet_init_dma(priv);
3693         if (ret) {
3694                 netdev_err(dev, "failed to initialize DMA\n");
3695                 goto out_clk_disable;
3696         }
3697
3698         /* Always enable ring 16 - descriptor ring */
3699         bcmgenet_enable_dma(priv, dma_ctrl);
3700
3701         netif_device_attach(dev);
3702
3703         if (!device_may_wakeup(d))
3704                 phy_resume(priv->phydev);
3705
3706         if (priv->eee.eee_enabled)
3707                 bcmgenet_eee_enable_set(dev, true);
3708
3709         bcmgenet_netif_start(dev);
3710
3711         return 0;
3712
3713 out_clk_disable:
3714         if (priv->internal_phy)
3715                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3716         clk_disable_unprepare(priv->clk);
3717         return ret;
3718 }
3719 #endif /* CONFIG_PM_SLEEP */
3720
3721 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3722
3723 static struct platform_driver bcmgenet_driver = {
3724         .probe  = bcmgenet_probe,
3725         .remove = bcmgenet_remove,
3726         .driver = {
3727                 .name   = "bcmgenet",
3728                 .of_match_table = bcmgenet_match,
3729                 .pm     = &bcmgenet_pm_ops,
3730         },
3731 };
3732 module_platform_driver(bcmgenet_driver);
3733
3734 MODULE_AUTHOR("Broadcom Corporation");
3735 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3736 MODULE_ALIAS("platform:bcmgenet");
3737 MODULE_LICENSE("GPL");