]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/fec_main.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63
64 #include <asm/cacheflush.h>
65
66 #include "fec.h"
67
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70
71 #define DRIVER_NAME     "fec"
72
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE    (1 << 5)
77 #define FEC_ENET_RSEM_V 0x84
78 #define FEC_ENET_RSFL_V 16
79 #define FEC_ENET_RAEM_V 0x8
80 #define FEC_ENET_RAFL_V 0x8
81 #define FEC_ENET_OPD_V  0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
83
84 static struct platform_device_id fec_devtype[] = {
85         {
86                 /* keep it for coldfire */
87                 .name = DRIVER_NAME,
88                 .driver_data = 0,
89         }, {
90                 .name = "imx25-fec",
91                 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92         }, {
93                 .name = "imx27-fec",
94                 .driver_data = FEC_QUIRK_HAS_RACC,
95         }, {
96                 .name = "imx28-fec",
97                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98                                 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99         }, {
100                 .name = "imx6q-fec",
101                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104                                 FEC_QUIRK_HAS_RACC,
105         }, {
106                 .name = "mvf600-fec",
107                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108         }, {
109                 .name = "imx6sx-fec",
110                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113                                 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114                                 FEC_QUIRK_HAS_RACC,
115         }, {
116                 /* sentinel */
117         }
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120
121 enum imx_fec_type {
122         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
123         IMX27_FEC,      /* runs on i.mx27/35/51 */
124         IMX28_FEC,
125         IMX6Q_FEC,
126         MVF600_FEC,
127         IMX6SX_FEC,
128 };
129
130 static const struct of_device_id fec_dt_ids[] = {
131         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136         { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137         { /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144
145 #if defined(CONFIG_M5272)
146 /*
147  * Some hardware gets it MAC address out of local flash memory.
148  * if this is non-zero then assume it is the address to get MAC from.
149  */
150 #if defined(CONFIG_NETtel)
151 #define FEC_FLASHMAC    0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define FEC_FLASHMAC    0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define FEC_FLASHMAC    0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define FEC_FLASHMAC    (0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC    0xffc0406b
160 #else
161 #define FEC_FLASHMAC    0
162 #endif
163 #endif /* CONFIG_M5272 */
164
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166  */
167 #define PKT_MAXBUF_SIZE         1522
168 #define PKT_MINBUF_SIZE         64
169 #define PKT_MAXBLR_SIZE         1536
170
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS          (1 << 1)
173 #define FEC_RACC_PRODIS         (1 << 2)
174 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175
176 /*
177  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178  * size bits. Other FEC hardware does not, so we need to take that into
179  * account when setting it.
180  */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
184 #else
185 #define OPT_FRAME_SIZE  0
186 #endif
187
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST             (1 << 30)
190 #define FEC_MMFR_OP_READ        (2 << 28)
191 #define FEC_MMFR_OP_WRITE       (1 << 28)
192 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
194 #define FEC_MMFR_TA             (2 << 16)
195 #define FEC_MMFR_DATA(v)        (v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN         (1 << 2)
198 #define FEC_ECR_SLEEP           (1 << 3)
199
200 #define FEC_MII_TIMEOUT         30000 /* us */
201
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204
205 #define FEC_PAUSE_FLAG_AUTONEG  0x1
206 #define FEC_PAUSE_FLAG_ENABLE   0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
210
211 #define COPYBREAK_DEFAULT       256
212
213 #define TSO_HEADER_SIZE         128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS        100
216 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217
218 #define IS_TSO_HEADER(txq, addr) \
219         ((addr >= txq->tso_hdrs_dma) && \
220         (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
221
222 static int mii_cnt;
223
224 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225                                              struct bufdesc_prop *bd)
226 {
227         return (bdp >= bd->last) ? bd->base
228                         : (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
229 }
230
231 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
232                                              struct bufdesc_prop *bd)
233 {
234         return (bdp <= bd->base) ? bd->last
235                         : (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
236 }
237
238 static int fec_enet_get_bd_index(struct bufdesc *bdp,
239                                  struct bufdesc_prop *bd)
240 {
241         return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
242 }
243
244 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
245 {
246         int entries;
247
248         entries = (((const char *)txq->dirty_tx -
249                         (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
250
251         return entries >= 0 ? entries : entries + txq->bd.ring_size;
252 }
253
254 static void swap_buffer(void *bufaddr, int len)
255 {
256         int i;
257         unsigned int *buf = bufaddr;
258
259         for (i = 0; i < len; i += 4, buf++)
260                 swab32s(buf);
261 }
262
263 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
264 {
265         int i;
266         unsigned int *src = src_buf;
267         unsigned int *dst = dst_buf;
268
269         for (i = 0; i < len; i += 4, src++, dst++)
270                 *dst = swab32p(src);
271 }
272
273 static void fec_dump(struct net_device *ndev)
274 {
275         struct fec_enet_private *fep = netdev_priv(ndev);
276         struct bufdesc *bdp;
277         struct fec_enet_priv_tx_q *txq;
278         int index = 0;
279
280         netdev_info(ndev, "TX ring dump\n");
281         pr_info("Nr     SC     addr       len  SKB\n");
282
283         txq = fep->tx_queue[0];
284         bdp = txq->bd.base;
285
286         do {
287                 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
288                         index,
289                         bdp == txq->bd.cur ? 'S' : ' ',
290                         bdp == txq->dirty_tx ? 'H' : ' ',
291                         fec16_to_cpu(bdp->cbd_sc),
292                         fec32_to_cpu(bdp->cbd_bufaddr),
293                         fec16_to_cpu(bdp->cbd_datlen),
294                         txq->tx_skbuff[index]);
295                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
296                 index++;
297         } while (bdp != txq->bd.base);
298 }
299
300 static inline bool is_ipv4_pkt(struct sk_buff *skb)
301 {
302         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
303 }
304
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308         /* Only run for packets requiring a checksum. */
309         if (skb->ip_summed != CHECKSUM_PARTIAL)
310                 return 0;
311
312         if (unlikely(skb_cow_head(skb, 0)))
313                 return -1;
314
315         if (is_ipv4_pkt(skb))
316                 ip_hdr(skb)->check = 0;
317         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
318
319         return 0;
320 }
321
322 static struct bufdesc *
323 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
324                              struct sk_buff *skb,
325                              struct net_device *ndev)
326 {
327         struct fec_enet_private *fep = netdev_priv(ndev);
328         struct bufdesc *bdp = txq->bd.cur;
329         struct bufdesc_ex *ebdp;
330         int nr_frags = skb_shinfo(skb)->nr_frags;
331         int frag, frag_len;
332         unsigned short status;
333         unsigned int estatus = 0;
334         skb_frag_t *this_frag;
335         unsigned int index;
336         void *bufaddr;
337         dma_addr_t addr;
338         int i;
339
340         for (frag = 0; frag < nr_frags; frag++) {
341                 this_frag = &skb_shinfo(skb)->frags[frag];
342                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
343                 ebdp = (struct bufdesc_ex *)bdp;
344
345                 status = fec16_to_cpu(bdp->cbd_sc);
346                 status &= ~BD_ENET_TX_STATS;
347                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
348                 frag_len = skb_shinfo(skb)->frags[frag].size;
349
350                 /* Handle the last BD specially */
351                 if (frag == nr_frags - 1) {
352                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
353                         if (fep->bufdesc_ex) {
354                                 estatus |= BD_ENET_TX_INT;
355                                 if (unlikely(skb_shinfo(skb)->tx_flags &
356                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
357                                         estatus |= BD_ENET_TX_TS;
358                         }
359                 }
360
361                 if (fep->bufdesc_ex) {
362                         if (fep->quirks & FEC_QUIRK_HAS_AVB)
363                                 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
364                         if (skb->ip_summed == CHECKSUM_PARTIAL)
365                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
366                         ebdp->cbd_bdu = 0;
367                         ebdp->cbd_esc = cpu_to_fec32(estatus);
368                 }
369
370                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
371
372                 index = fec_enet_get_bd_index(bdp, &txq->bd);
373                 if (((unsigned long) bufaddr) & fep->tx_align ||
374                         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
375                         memcpy(txq->tx_bounce[index], bufaddr, frag_len);
376                         bufaddr = txq->tx_bounce[index];
377
378                         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
379                                 swap_buffer(bufaddr, frag_len);
380                 }
381
382                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
383                                       DMA_TO_DEVICE);
384                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
385                         if (net_ratelimit())
386                                 netdev_err(ndev, "Tx DMA memory map failed\n");
387                         goto dma_mapping_error;
388                 }
389
390                 bdp->cbd_bufaddr = cpu_to_fec32(addr);
391                 bdp->cbd_datlen = cpu_to_fec16(frag_len);
392                 /* Make sure the updates to rest of the descriptor are
393                  * performed before transferring ownership.
394                  */
395                 wmb();
396                 bdp->cbd_sc = cpu_to_fec16(status);
397         }
398
399         return bdp;
400 dma_mapping_error:
401         bdp = txq->bd.cur;
402         for (i = 0; i < frag; i++) {
403                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404                 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
405                                  fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
406         }
407         return ERR_PTR(-ENOMEM);
408 }
409
410 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
411                                    struct sk_buff *skb, struct net_device *ndev)
412 {
413         struct fec_enet_private *fep = netdev_priv(ndev);
414         int nr_frags = skb_shinfo(skb)->nr_frags;
415         struct bufdesc *bdp, *last_bdp;
416         void *bufaddr;
417         dma_addr_t addr;
418         unsigned short status;
419         unsigned short buflen;
420         unsigned int estatus = 0;
421         unsigned int index;
422         int entries_free;
423
424         entries_free = fec_enet_get_free_txdesc_num(txq);
425         if (entries_free < MAX_SKB_FRAGS + 1) {
426                 dev_kfree_skb_any(skb);
427                 if (net_ratelimit())
428                         netdev_err(ndev, "NOT enough BD for SG!\n");
429                 return NETDEV_TX_OK;
430         }
431
432         /* Protocol checksum off-load for TCP and UDP. */
433         if (fec_enet_clear_csum(skb, ndev)) {
434                 dev_kfree_skb_any(skb);
435                 return NETDEV_TX_OK;
436         }
437
438         /* Fill in a Tx ring entry */
439         bdp = txq->bd.cur;
440         last_bdp = bdp;
441         status = fec16_to_cpu(bdp->cbd_sc);
442         status &= ~BD_ENET_TX_STATS;
443
444         /* Set buffer length and buffer pointer */
445         bufaddr = skb->data;
446         buflen = skb_headlen(skb);
447
448         index = fec_enet_get_bd_index(bdp, &txq->bd);
449         if (((unsigned long) bufaddr) & fep->tx_align ||
450                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
451                 memcpy(txq->tx_bounce[index], skb->data, buflen);
452                 bufaddr = txq->tx_bounce[index];
453
454                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
455                         swap_buffer(bufaddr, buflen);
456         }
457
458         /* Push the data cache so the CPM does not get stale memory data. */
459         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
460         if (dma_mapping_error(&fep->pdev->dev, addr)) {
461                 dev_kfree_skb_any(skb);
462                 if (net_ratelimit())
463                         netdev_err(ndev, "Tx DMA memory map failed\n");
464                 return NETDEV_TX_OK;
465         }
466
467         if (nr_frags) {
468                 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
469                 if (IS_ERR(last_bdp)) {
470                         dma_unmap_single(&fep->pdev->dev, addr,
471                                          buflen, DMA_TO_DEVICE);
472                         dev_kfree_skb_any(skb);
473                         return NETDEV_TX_OK;
474                 }
475         } else {
476                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
477                 if (fep->bufdesc_ex) {
478                         estatus = BD_ENET_TX_INT;
479                         if (unlikely(skb_shinfo(skb)->tx_flags &
480                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
481                                 estatus |= BD_ENET_TX_TS;
482                 }
483         }
484         bdp->cbd_bufaddr = cpu_to_fec32(addr);
485         bdp->cbd_datlen = cpu_to_fec16(buflen);
486
487         if (fep->bufdesc_ex) {
488
489                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
490
491                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
492                         fep->hwts_tx_en))
493                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
494
495                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
496                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
497
498                 if (skb->ip_summed == CHECKSUM_PARTIAL)
499                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
500
501                 ebdp->cbd_bdu = 0;
502                 ebdp->cbd_esc = cpu_to_fec32(estatus);
503         }
504
505         index = fec_enet_get_bd_index(last_bdp, &txq->bd);
506         /* Save skb pointer */
507         txq->tx_skbuff[index] = skb;
508
509         /* Make sure the updates to rest of the descriptor are performed before
510          * transferring ownership.
511          */
512         wmb();
513
514         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
515          * it's the last BD of the frame, and to put the CRC on the end.
516          */
517         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
518         bdp->cbd_sc = cpu_to_fec16(status);
519
520         /* If this was the last BD in the ring, start at the beginning again. */
521         bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
522
523         skb_tx_timestamp(skb);
524
525         /* Make sure the update to bdp and tx_skbuff are performed before
526          * txq->bd.cur.
527          */
528         wmb();
529         txq->bd.cur = bdp;
530
531         /* Trigger transmission start */
532         writel(0, txq->bd.reg_desc_active);
533
534         return 0;
535 }
536
537 static int
538 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
539                           struct net_device *ndev,
540                           struct bufdesc *bdp, int index, char *data,
541                           int size, bool last_tcp, bool is_last)
542 {
543         struct fec_enet_private *fep = netdev_priv(ndev);
544         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
545         unsigned short status;
546         unsigned int estatus = 0;
547         dma_addr_t addr;
548
549         status = fec16_to_cpu(bdp->cbd_sc);
550         status &= ~BD_ENET_TX_STATS;
551
552         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
553
554         if (((unsigned long) data) & fep->tx_align ||
555                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
556                 memcpy(txq->tx_bounce[index], data, size);
557                 data = txq->tx_bounce[index];
558
559                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
560                         swap_buffer(data, size);
561         }
562
563         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
564         if (dma_mapping_error(&fep->pdev->dev, addr)) {
565                 dev_kfree_skb_any(skb);
566                 if (net_ratelimit())
567                         netdev_err(ndev, "Tx DMA memory map failed\n");
568                 return NETDEV_TX_BUSY;
569         }
570
571         bdp->cbd_datlen = cpu_to_fec16(size);
572         bdp->cbd_bufaddr = cpu_to_fec32(addr);
573
574         if (fep->bufdesc_ex) {
575                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
576                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
577                 if (skb->ip_summed == CHECKSUM_PARTIAL)
578                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
579                 ebdp->cbd_bdu = 0;
580                 ebdp->cbd_esc = cpu_to_fec32(estatus);
581         }
582
583         /* Handle the last BD specially */
584         if (last_tcp)
585                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
586         if (is_last) {
587                 status |= BD_ENET_TX_INTR;
588                 if (fep->bufdesc_ex)
589                         ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
590         }
591
592         bdp->cbd_sc = cpu_to_fec16(status);
593
594         return 0;
595 }
596
597 static int
598 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
599                          struct sk_buff *skb, struct net_device *ndev,
600                          struct bufdesc *bdp, int index)
601 {
602         struct fec_enet_private *fep = netdev_priv(ndev);
603         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
604         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
605         void *bufaddr;
606         unsigned long dmabuf;
607         unsigned short status;
608         unsigned int estatus = 0;
609
610         status = fec16_to_cpu(bdp->cbd_sc);
611         status &= ~BD_ENET_TX_STATS;
612         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
613
614         bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
615         dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
616         if (((unsigned long)bufaddr) & fep->tx_align ||
617                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
618                 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
619                 bufaddr = txq->tx_bounce[index];
620
621                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
622                         swap_buffer(bufaddr, hdr_len);
623
624                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
625                                         hdr_len, DMA_TO_DEVICE);
626                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
627                         dev_kfree_skb_any(skb);
628                         if (net_ratelimit())
629                                 netdev_err(ndev, "Tx DMA memory map failed\n");
630                         return NETDEV_TX_BUSY;
631                 }
632         }
633
634         bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
635         bdp->cbd_datlen = cpu_to_fec16(hdr_len);
636
637         if (fep->bufdesc_ex) {
638                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
639                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
640                 if (skb->ip_summed == CHECKSUM_PARTIAL)
641                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
642                 ebdp->cbd_bdu = 0;
643                 ebdp->cbd_esc = cpu_to_fec32(estatus);
644         }
645
646         bdp->cbd_sc = cpu_to_fec16(status);
647
648         return 0;
649 }
650
651 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
652                                    struct sk_buff *skb,
653                                    struct net_device *ndev)
654 {
655         struct fec_enet_private *fep = netdev_priv(ndev);
656         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
657         int total_len, data_left;
658         struct bufdesc *bdp = txq->bd.cur;
659         struct tso_t tso;
660         unsigned int index = 0;
661         int ret;
662
663         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
664                 dev_kfree_skb_any(skb);
665                 if (net_ratelimit())
666                         netdev_err(ndev, "NOT enough BD for TSO!\n");
667                 return NETDEV_TX_OK;
668         }
669
670         /* Protocol checksum off-load for TCP and UDP. */
671         if (fec_enet_clear_csum(skb, ndev)) {
672                 dev_kfree_skb_any(skb);
673                 return NETDEV_TX_OK;
674         }
675
676         /* Initialize the TSO handler, and prepare the first payload */
677         tso_start(skb, &tso);
678
679         total_len = skb->len - hdr_len;
680         while (total_len > 0) {
681                 char *hdr;
682
683                 index = fec_enet_get_bd_index(bdp, &txq->bd);
684                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
685                 total_len -= data_left;
686
687                 /* prepare packet headers: MAC + IP + TCP */
688                 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
689                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
690                 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
691                 if (ret)
692                         goto err_release;
693
694                 while (data_left > 0) {
695                         int size;
696
697                         size = min_t(int, tso.size, data_left);
698                         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
699                         index = fec_enet_get_bd_index(bdp, &txq->bd);
700                         ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
701                                                         bdp, index,
702                                                         tso.data, size,
703                                                         size == data_left,
704                                                         total_len == 0);
705                         if (ret)
706                                 goto err_release;
707
708                         data_left -= size;
709                         tso_build_data(skb, &tso, size);
710                 }
711
712                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713         }
714
715         /* Save skb pointer */
716         txq->tx_skbuff[index] = skb;
717
718         skb_tx_timestamp(skb);
719         txq->bd.cur = bdp;
720
721         /* Trigger transmission start */
722         if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
723             !readl(txq->bd.reg_desc_active) ||
724             !readl(txq->bd.reg_desc_active) ||
725             !readl(txq->bd.reg_desc_active) ||
726             !readl(txq->bd.reg_desc_active))
727                 writel(0, txq->bd.reg_desc_active);
728
729         return 0;
730
731 err_release:
732         /* TODO: Release all used data descriptors for TSO */
733         return ret;
734 }
735
736 static netdev_tx_t
737 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
738 {
739         struct fec_enet_private *fep = netdev_priv(ndev);
740         int entries_free;
741         unsigned short queue;
742         struct fec_enet_priv_tx_q *txq;
743         struct netdev_queue *nq;
744         int ret;
745
746         queue = skb_get_queue_mapping(skb);
747         txq = fep->tx_queue[queue];
748         nq = netdev_get_tx_queue(ndev, queue);
749
750         if (skb_is_gso(skb))
751                 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
752         else
753                 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
754         if (ret)
755                 return ret;
756
757         entries_free = fec_enet_get_free_txdesc_num(txq);
758         if (entries_free <= txq->tx_stop_threshold)
759                 netif_tx_stop_queue(nq);
760
761         return NETDEV_TX_OK;
762 }
763
764 /* Init RX & TX buffer descriptors
765  */
766 static void fec_enet_bd_init(struct net_device *dev)
767 {
768         struct fec_enet_private *fep = netdev_priv(dev);
769         struct fec_enet_priv_tx_q *txq;
770         struct fec_enet_priv_rx_q *rxq;
771         struct bufdesc *bdp;
772         unsigned int i;
773         unsigned int q;
774
775         for (q = 0; q < fep->num_rx_queues; q++) {
776                 /* Initialize the receive buffer descriptors. */
777                 rxq = fep->rx_queue[q];
778                 bdp = rxq->bd.base;
779
780                 for (i = 0; i < rxq->bd.ring_size; i++) {
781
782                         /* Initialize the BD for every fragment in the page. */
783                         if (bdp->cbd_bufaddr)
784                                 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
785                         else
786                                 bdp->cbd_sc = cpu_to_fec16(0);
787                         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
788                 }
789
790                 /* Set the last buffer to wrap */
791                 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
792                 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
793
794                 rxq->bd.cur = rxq->bd.base;
795         }
796
797         for (q = 0; q < fep->num_tx_queues; q++) {
798                 /* ...and the same for transmit */
799                 txq = fep->tx_queue[q];
800                 bdp = txq->bd.base;
801                 txq->bd.cur = bdp;
802
803                 for (i = 0; i < txq->bd.ring_size; i++) {
804                         /* Initialize the BD for every fragment in the page. */
805                         bdp->cbd_sc = cpu_to_fec16(0);
806                         if (txq->tx_skbuff[i]) {
807                                 dev_kfree_skb_any(txq->tx_skbuff[i]);
808                                 txq->tx_skbuff[i] = NULL;
809                         }
810                         bdp->cbd_bufaddr = cpu_to_fec32(0);
811                         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
812                 }
813
814                 /* Set the last buffer to wrap */
815                 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
816                 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
817                 txq->dirty_tx = bdp;
818         }
819 }
820
821 static void fec_enet_active_rxring(struct net_device *ndev)
822 {
823         struct fec_enet_private *fep = netdev_priv(ndev);
824         int i;
825
826         for (i = 0; i < fep->num_rx_queues; i++)
827                 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
828 }
829
830 static void fec_enet_enable_ring(struct net_device *ndev)
831 {
832         struct fec_enet_private *fep = netdev_priv(ndev);
833         struct fec_enet_priv_tx_q *txq;
834         struct fec_enet_priv_rx_q *rxq;
835         int i;
836
837         for (i = 0; i < fep->num_rx_queues; i++) {
838                 rxq = fep->rx_queue[i];
839                 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
840                 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
841
842                 /* enable DMA1/2 */
843                 if (i)
844                         writel(RCMR_MATCHEN | RCMR_CMP(i),
845                                fep->hwp + FEC_RCMR(i));
846         }
847
848         for (i = 0; i < fep->num_tx_queues; i++) {
849                 txq = fep->tx_queue[i];
850                 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
851
852                 /* enable DMA1/2 */
853                 if (i)
854                         writel(DMA_CLASS_EN | IDLE_SLOPE(i),
855                                fep->hwp + FEC_DMA_CFG(i));
856         }
857 }
858
859 static void fec_enet_reset_skb(struct net_device *ndev)
860 {
861         struct fec_enet_private *fep = netdev_priv(ndev);
862         struct fec_enet_priv_tx_q *txq;
863         int i, j;
864
865         for (i = 0; i < fep->num_tx_queues; i++) {
866                 txq = fep->tx_queue[i];
867
868                 for (j = 0; j < txq->bd.ring_size; j++) {
869                         if (txq->tx_skbuff[j]) {
870                                 dev_kfree_skb_any(txq->tx_skbuff[j]);
871                                 txq->tx_skbuff[j] = NULL;
872                         }
873                 }
874         }
875 }
876
877 /*
878  * This function is called to start or restart the FEC during a link
879  * change, transmit timeout, or to reconfigure the FEC.  The network
880  * packet processing for this device must be stopped before this call.
881  */
882 static void
883 fec_restart(struct net_device *ndev)
884 {
885         struct fec_enet_private *fep = netdev_priv(ndev);
886         u32 val;
887         u32 temp_mac[2];
888         u32 rcntl = OPT_FRAME_SIZE | 0x04;
889         u32 ecntl = 0x2; /* ETHEREN */
890
891         /* Whack a reset.  We should wait for this.
892          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
893          * instead of reset MAC itself.
894          */
895         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
896                 writel(0, fep->hwp + FEC_ECNTRL);
897         } else {
898                 writel(1, fep->hwp + FEC_ECNTRL);
899                 udelay(10);
900         }
901
902         /*
903          * enet-mac reset will reset mac address registers too,
904          * so need to reconfigure it.
905          */
906         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
907                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
908                 writel((__force u32)cpu_to_be32(temp_mac[0]),
909                        fep->hwp + FEC_ADDR_LOW);
910                 writel((__force u32)cpu_to_be32(temp_mac[1]),
911                        fep->hwp + FEC_ADDR_HIGH);
912         }
913
914         /* Clear any outstanding interrupt. */
915         writel(0xffffffff, fep->hwp + FEC_IEVENT);
916
917         fec_enet_bd_init(ndev);
918
919         fec_enet_enable_ring(ndev);
920
921         /* Reset tx SKB buffers. */
922         fec_enet_reset_skb(ndev);
923
924         /* Enable MII mode */
925         if (fep->full_duplex == DUPLEX_FULL) {
926                 /* FD enable */
927                 writel(0x04, fep->hwp + FEC_X_CNTRL);
928         } else {
929                 /* No Rcv on Xmit */
930                 rcntl |= 0x02;
931                 writel(0x0, fep->hwp + FEC_X_CNTRL);
932         }
933
934         /* Set MII speed */
935         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
936
937 #if !defined(CONFIG_M5272)
938         if (fep->quirks & FEC_QUIRK_HAS_RACC) {
939                 /* set RX checksum */
940                 val = readl(fep->hwp + FEC_RACC);
941                 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
942                         val |= FEC_RACC_OPTIONS;
943                 else
944                         val &= ~FEC_RACC_OPTIONS;
945                 writel(val, fep->hwp + FEC_RACC);
946                 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
947         }
948 #endif
949
950         /*
951          * The phy interface and speed need to get configured
952          * differently on enet-mac.
953          */
954         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
955                 /* Enable flow control and length check */
956                 rcntl |= 0x40000000 | 0x00000020;
957
958                 /* RGMII, RMII or MII */
959                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
960                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
961                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
962                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
963                         rcntl |= (1 << 6);
964                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
965                         rcntl |= (1 << 8);
966                 else
967                         rcntl &= ~(1 << 8);
968
969                 /* 1G, 100M or 10M */
970                 if (ndev->phydev) {
971                         if (ndev->phydev->speed == SPEED_1000)
972                                 ecntl |= (1 << 5);
973                         else if (ndev->phydev->speed == SPEED_100)
974                                 rcntl &= ~(1 << 9);
975                         else
976                                 rcntl |= (1 << 9);
977                 }
978         } else {
979 #ifdef FEC_MIIGSK_ENR
980                 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
981                         u32 cfgr;
982                         /* disable the gasket and wait */
983                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
984                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
985                                 udelay(1);
986
987                         /*
988                          * configure the gasket:
989                          *   RMII, 50 MHz, no loopback, no echo
990                          *   MII, 25 MHz, no loopback, no echo
991                          */
992                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
994                         if (ndev->phydev && ndev->phydev->speed == SPEED_10)
995                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
996                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
997
998                         /* re-enable the gasket */
999                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000                 }
1001 #endif
1002         }
1003
1004 #if !defined(CONFIG_M5272)
1005         /* enable pause frame*/
1006         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008              ndev->phydev && ndev->phydev->pause)) {
1009                 rcntl |= FEC_ENET_FCE;
1010
1011                 /* set FIFO threshold parameter to reduce overrun */
1012                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016
1017                 /* OPD */
1018                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019         } else {
1020                 rcntl &= ~FEC_ENET_FCE;
1021         }
1022 #endif /* !defined(CONFIG_M5272) */
1023
1024         writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025
1026         /* Setup multicast filter. */
1027         set_multicast_list(ndev);
1028 #ifndef CONFIG_M5272
1029         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031 #endif
1032
1033         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034                 /* enable ENET endian swap */
1035                 ecntl |= (1 << 8);
1036                 /* enable ENET store and forward mode */
1037                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038         }
1039
1040         if (fep->bufdesc_ex)
1041                 ecntl |= (1 << 4);
1042
1043 #ifndef CONFIG_M5272
1044         /* Enable the MIB statistic event counters */
1045         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046 #endif
1047
1048         /* And last, enable the transmit and receive processing */
1049         writel(ecntl, fep->hwp + FEC_ECNTRL);
1050         fec_enet_active_rxring(ndev);
1051
1052         if (fep->bufdesc_ex)
1053                 fec_ptp_start_cyclecounter(ndev);
1054
1055         /* Enable interrupts we wish to service */
1056         if (fep->link)
1057                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058         else
1059                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060
1061         /* Init the interrupt coalescing */
1062         fec_enet_itr_coal_init(ndev);
1063
1064 }
1065
1066 static void
1067 fec_stop(struct net_device *ndev)
1068 {
1069         struct fec_enet_private *fep = netdev_priv(ndev);
1070         struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072         u32 val;
1073
1074         /* We cannot expect a graceful transmit stop without link !!! */
1075         if (fep->link) {
1076                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077                 udelay(10);
1078                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080         }
1081
1082         /* Whack a reset.  We should wait for this.
1083          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084          * instead of reset MAC itself.
1085          */
1086         if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087                 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088                         writel(0, fep->hwp + FEC_ECNTRL);
1089                 } else {
1090                         writel(1, fep->hwp + FEC_ECNTRL);
1091                         udelay(10);
1092                 }
1093                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094         } else {
1095                 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096                 val = readl(fep->hwp + FEC_ECNTRL);
1097                 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098                 writel(val, fep->hwp + FEC_ECNTRL);
1099
1100                 if (pdata && pdata->sleep_mode_enable)
1101                         pdata->sleep_mode_enable(true);
1102         }
1103         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104
1105         /* We have to keep ENET enabled to have MII interrupt stay working */
1106         if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107                 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108                 writel(2, fep->hwp + FEC_ECNTRL);
1109                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110         }
1111 }
1112
1113
1114 static void
1115 fec_timeout(struct net_device *ndev)
1116 {
1117         struct fec_enet_private *fep = netdev_priv(ndev);
1118
1119         fec_dump(ndev);
1120
1121         ndev->stats.tx_errors++;
1122
1123         schedule_work(&fep->tx_timeout_work);
1124 }
1125
1126 static void fec_enet_timeout_work(struct work_struct *work)
1127 {
1128         struct fec_enet_private *fep =
1129                 container_of(work, struct fec_enet_private, tx_timeout_work);
1130         struct net_device *ndev = fep->netdev;
1131
1132         rtnl_lock();
1133         if (netif_device_present(ndev) || netif_running(ndev)) {
1134                 napi_disable(&fep->napi);
1135                 netif_tx_lock_bh(ndev);
1136                 fec_restart(ndev);
1137                 netif_wake_queue(ndev);
1138                 netif_tx_unlock_bh(ndev);
1139                 napi_enable(&fep->napi);
1140         }
1141         rtnl_unlock();
1142 }
1143
1144 static void
1145 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146         struct skb_shared_hwtstamps *hwtstamps)
1147 {
1148         unsigned long flags;
1149         u64 ns;
1150
1151         spin_lock_irqsave(&fep->tmreg_lock, flags);
1152         ns = timecounter_cyc2time(&fep->tc, ts);
1153         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154
1155         memset(hwtstamps, 0, sizeof(*hwtstamps));
1156         hwtstamps->hwtstamp = ns_to_ktime(ns);
1157 }
1158
1159 static void
1160 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161 {
1162         struct  fec_enet_private *fep;
1163         struct bufdesc *bdp;
1164         unsigned short status;
1165         struct  sk_buff *skb;
1166         struct fec_enet_priv_tx_q *txq;
1167         struct netdev_queue *nq;
1168         int     index = 0;
1169         int     entries_free;
1170
1171         fep = netdev_priv(ndev);
1172
1173         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174
1175         txq = fep->tx_queue[queue_id];
1176         /* get next bdp of dirty_tx */
1177         nq = netdev_get_tx_queue(ndev, queue_id);
1178         bdp = txq->dirty_tx;
1179
1180         /* get next bdp of dirty_tx */
1181         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182
1183         while (bdp != READ_ONCE(txq->bd.cur)) {
1184                 /* Order the load of bd.cur and cbd_sc */
1185                 rmb();
1186                 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187                 if (status & BD_ENET_TX_READY)
1188                         break;
1189
1190                 index = fec_enet_get_bd_index(bdp, &txq->bd);
1191
1192                 skb = txq->tx_skbuff[index];
1193                 txq->tx_skbuff[index] = NULL;
1194                 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195                         dma_unmap_single(&fep->pdev->dev,
1196                                          fec32_to_cpu(bdp->cbd_bufaddr),
1197                                          fec16_to_cpu(bdp->cbd_datlen),
1198                                          DMA_TO_DEVICE);
1199                 bdp->cbd_bufaddr = cpu_to_fec32(0);
1200                 if (!skb)
1201                         goto skb_done;
1202
1203                 /* Check for errors. */
1204                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1205                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1206                                    BD_ENET_TX_CSL)) {
1207                         ndev->stats.tx_errors++;
1208                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1209                                 ndev->stats.tx_heartbeat_errors++;
1210                         if (status & BD_ENET_TX_LC)  /* Late collision */
1211                                 ndev->stats.tx_window_errors++;
1212                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1213                                 ndev->stats.tx_aborted_errors++;
1214                         if (status & BD_ENET_TX_UN)  /* Underrun */
1215                                 ndev->stats.tx_fifo_errors++;
1216                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1217                                 ndev->stats.tx_carrier_errors++;
1218                 } else {
1219                         ndev->stats.tx_packets++;
1220                         ndev->stats.tx_bytes += skb->len;
1221                 }
1222
1223                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1224                         fep->bufdesc_ex) {
1225                         struct skb_shared_hwtstamps shhwtstamps;
1226                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1227
1228                         fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1229                         skb_tstamp_tx(skb, &shhwtstamps);
1230                 }
1231
1232                 /* Deferred means some collisions occurred during transmit,
1233                  * but we eventually sent the packet OK.
1234                  */
1235                 if (status & BD_ENET_TX_DEF)
1236                         ndev->stats.collisions++;
1237
1238                 /* Free the sk buffer associated with this last transmit */
1239                 dev_kfree_skb_any(skb);
1240 skb_done:
1241                 /* Make sure the update to bdp and tx_skbuff are performed
1242                  * before dirty_tx
1243                  */
1244                 wmb();
1245                 txq->dirty_tx = bdp;
1246
1247                 /* Update pointer to next buffer descriptor to be transmitted */
1248                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1249
1250                 /* Since we have freed up a buffer, the ring is no longer full
1251                  */
1252                 if (netif_queue_stopped(ndev)) {
1253                         entries_free = fec_enet_get_free_txdesc_num(txq);
1254                         if (entries_free >= txq->tx_wake_threshold)
1255                                 netif_tx_wake_queue(nq);
1256                 }
1257         }
1258
1259         /* ERR006538: Keep the transmitter going */
1260         if (bdp != txq->bd.cur &&
1261             readl(txq->bd.reg_desc_active) == 0)
1262                 writel(0, txq->bd.reg_desc_active);
1263 }
1264
1265 static void
1266 fec_enet_tx(struct net_device *ndev)
1267 {
1268         struct fec_enet_private *fep = netdev_priv(ndev);
1269         u16 queue_id;
1270         /* First process class A queue, then Class B and Best Effort queue */
1271         for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1272                 clear_bit(queue_id, &fep->work_tx);
1273                 fec_enet_tx_queue(ndev, queue_id);
1274         }
1275         return;
1276 }
1277
1278 static int
1279 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1280 {
1281         struct  fec_enet_private *fep = netdev_priv(ndev);
1282         int off;
1283
1284         off = ((unsigned long)skb->data) & fep->rx_align;
1285         if (off)
1286                 skb_reserve(skb, fep->rx_align + 1 - off);
1287
1288         bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1289         if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1290                 if (net_ratelimit())
1291                         netdev_err(ndev, "Rx DMA memory map failed\n");
1292                 return -ENOMEM;
1293         }
1294
1295         return 0;
1296 }
1297
1298 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1299                                struct bufdesc *bdp, u32 length, bool swap)
1300 {
1301         struct  fec_enet_private *fep = netdev_priv(ndev);
1302         struct sk_buff *new_skb;
1303
1304         if (length > fep->rx_copybreak)
1305                 return false;
1306
1307         new_skb = netdev_alloc_skb(ndev, length);
1308         if (!new_skb)
1309                 return false;
1310
1311         dma_sync_single_for_cpu(&fep->pdev->dev,
1312                                 fec32_to_cpu(bdp->cbd_bufaddr),
1313                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1314                                 DMA_FROM_DEVICE);
1315         if (!swap)
1316                 memcpy(new_skb->data, (*skb)->data, length);
1317         else
1318                 swap_buffer2(new_skb->data, (*skb)->data, length);
1319         *skb = new_skb;
1320
1321         return true;
1322 }
1323
1324 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1325  * When we update through the ring, if the next incoming buffer has
1326  * not been given to the system, we just set the empty indicator,
1327  * effectively tossing the packet.
1328  */
1329 static int
1330 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1331 {
1332         struct fec_enet_private *fep = netdev_priv(ndev);
1333         struct fec_enet_priv_rx_q *rxq;
1334         struct bufdesc *bdp;
1335         unsigned short status;
1336         struct  sk_buff *skb_new = NULL;
1337         struct  sk_buff *skb;
1338         ushort  pkt_len;
1339         __u8 *data;
1340         int     pkt_received = 0;
1341         struct  bufdesc_ex *ebdp = NULL;
1342         bool    vlan_packet_rcvd = false;
1343         u16     vlan_tag;
1344         int     index = 0;
1345         bool    is_copybreak;
1346         bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1347
1348 #ifdef CONFIG_M532x
1349         flush_cache_all();
1350 #endif
1351         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1352         rxq = fep->rx_queue[queue_id];
1353
1354         /* First, grab all of the stats for the incoming packet.
1355          * These get messed up if we get called due to a busy condition.
1356          */
1357         bdp = rxq->bd.cur;
1358
1359         while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1360
1361                 if (pkt_received >= budget)
1362                         break;
1363                 pkt_received++;
1364
1365                 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1366
1367                 /* Check for errors. */
1368                 status ^= BD_ENET_RX_LAST;
1369                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1370                            BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1371                            BD_ENET_RX_CL)) {
1372                         ndev->stats.rx_errors++;
1373                         if (status & BD_ENET_RX_OV) {
1374                                 /* FIFO overrun */
1375                                 ndev->stats.rx_fifo_errors++;
1376                                 goto rx_processing_done;
1377                         }
1378                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1379                                                 | BD_ENET_RX_LAST)) {
1380                                 /* Frame too long or too short. */
1381                                 ndev->stats.rx_length_errors++;
1382                                 if (status & BD_ENET_RX_LAST)
1383                                         netdev_err(ndev, "rcv is not +last\n");
1384                         }
1385                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1386                                 ndev->stats.rx_crc_errors++;
1387                         /* Report late collisions as a frame error. */
1388                         if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1389                                 ndev->stats.rx_frame_errors++;
1390                         goto rx_processing_done;
1391                 }
1392
1393                 /* Process the incoming frame. */
1394                 ndev->stats.rx_packets++;
1395                 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1396                 ndev->stats.rx_bytes += pkt_len;
1397
1398                 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1399                 skb = rxq->rx_skbuff[index];
1400
1401                 /* The packet length includes FCS, but we don't want to
1402                  * include that when passing upstream as it messes up
1403                  * bridging applications.
1404                  */
1405                 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1406                                                   need_swap);
1407                 if (!is_copybreak) {
1408                         skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1409                         if (unlikely(!skb_new)) {
1410                                 ndev->stats.rx_dropped++;
1411                                 goto rx_processing_done;
1412                         }
1413                         dma_unmap_single(&fep->pdev->dev,
1414                                          fec32_to_cpu(bdp->cbd_bufaddr),
1415                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1416                                          DMA_FROM_DEVICE);
1417                 }
1418
1419                 prefetch(skb->data - NET_IP_ALIGN);
1420                 skb_put(skb, pkt_len - 4);
1421                 data = skb->data;
1422                 if (!is_copybreak && need_swap)
1423                         swap_buffer(data, pkt_len);
1424
1425                 /* Extract the enhanced buffer descriptor */
1426                 ebdp = NULL;
1427                 if (fep->bufdesc_ex)
1428                         ebdp = (struct bufdesc_ex *)bdp;
1429
1430                 /* If this is a VLAN packet remove the VLAN Tag */
1431                 vlan_packet_rcvd = false;
1432                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1433                     fep->bufdesc_ex &&
1434                     (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1435                         /* Push and remove the vlan tag */
1436                         struct vlan_hdr *vlan_header =
1437                                         (struct vlan_hdr *) (data + ETH_HLEN);
1438                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1439
1440                         vlan_packet_rcvd = true;
1441
1442                         memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1443                         skb_pull(skb, VLAN_HLEN);
1444                 }
1445
1446                 skb->protocol = eth_type_trans(skb, ndev);
1447
1448                 /* Get receive timestamp from the skb */
1449                 if (fep->hwts_rx_en && fep->bufdesc_ex)
1450                         fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1451                                           skb_hwtstamps(skb));
1452
1453                 if (fep->bufdesc_ex &&
1454                     (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1455                         if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1456                                 /* don't check it */
1457                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1458                         } else {
1459                                 skb_checksum_none_assert(skb);
1460                         }
1461                 }
1462
1463                 /* Handle received VLAN packets */
1464                 if (vlan_packet_rcvd)
1465                         __vlan_hwaccel_put_tag(skb,
1466                                                htons(ETH_P_8021Q),
1467                                                vlan_tag);
1468
1469                 napi_gro_receive(&fep->napi, skb);
1470
1471                 if (is_copybreak) {
1472                         dma_sync_single_for_device(&fep->pdev->dev,
1473                                                    fec32_to_cpu(bdp->cbd_bufaddr),
1474                                                    FEC_ENET_RX_FRSIZE - fep->rx_align,
1475                                                    DMA_FROM_DEVICE);
1476                 } else {
1477                         rxq->rx_skbuff[index] = skb_new;
1478                         fec_enet_new_rxbdp(ndev, bdp, skb_new);
1479                 }
1480
1481 rx_processing_done:
1482                 /* Clear the status flags for this buffer */
1483                 status &= ~BD_ENET_RX_STATS;
1484
1485                 /* Mark the buffer empty */
1486                 status |= BD_ENET_RX_EMPTY;
1487
1488                 if (fep->bufdesc_ex) {
1489                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1490
1491                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1492                         ebdp->cbd_prot = 0;
1493                         ebdp->cbd_bdu = 0;
1494                 }
1495                 /* Make sure the updates to rest of the descriptor are
1496                  * performed before transferring ownership.
1497                  */
1498                 wmb();
1499                 bdp->cbd_sc = cpu_to_fec16(status);
1500
1501                 /* Update BD pointer to next entry */
1502                 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1503
1504                 /* Doing this here will keep the FEC running while we process
1505                  * incoming frames.  On a heavily loaded network, we should be
1506                  * able to keep up at the expense of system resources.
1507                  */
1508                 writel(0, rxq->bd.reg_desc_active);
1509         }
1510         rxq->bd.cur = bdp;
1511         return pkt_received;
1512 }
1513
1514 static int
1515 fec_enet_rx(struct net_device *ndev, int budget)
1516 {
1517         int     pkt_received = 0;
1518         u16     queue_id;
1519         struct fec_enet_private *fep = netdev_priv(ndev);
1520
1521         for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1522                 int ret;
1523
1524                 ret = fec_enet_rx_queue(ndev,
1525                                         budget - pkt_received, queue_id);
1526
1527                 if (ret < budget - pkt_received)
1528                         clear_bit(queue_id, &fep->work_rx);
1529
1530                 pkt_received += ret;
1531         }
1532         return pkt_received;
1533 }
1534
1535 static bool
1536 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1537 {
1538         if (int_events == 0)
1539                 return false;
1540
1541         if (int_events & FEC_ENET_RXF)
1542                 fep->work_rx |= (1 << 2);
1543         if (int_events & FEC_ENET_RXF_1)
1544                 fep->work_rx |= (1 << 0);
1545         if (int_events & FEC_ENET_RXF_2)
1546                 fep->work_rx |= (1 << 1);
1547
1548         if (int_events & FEC_ENET_TXF)
1549                 fep->work_tx |= (1 << 2);
1550         if (int_events & FEC_ENET_TXF_1)
1551                 fep->work_tx |= (1 << 0);
1552         if (int_events & FEC_ENET_TXF_2)
1553                 fep->work_tx |= (1 << 1);
1554
1555         return true;
1556 }
1557
1558 static irqreturn_t
1559 fec_enet_interrupt(int irq, void *dev_id)
1560 {
1561         struct net_device *ndev = dev_id;
1562         struct fec_enet_private *fep = netdev_priv(ndev);
1563         uint int_events;
1564         irqreturn_t ret = IRQ_NONE;
1565
1566         int_events = readl(fep->hwp + FEC_IEVENT);
1567         writel(int_events, fep->hwp + FEC_IEVENT);
1568         fec_enet_collect_events(fep, int_events);
1569
1570         if ((fep->work_tx || fep->work_rx) && fep->link) {
1571                 ret = IRQ_HANDLED;
1572
1573                 if (napi_schedule_prep(&fep->napi)) {
1574                         /* Disable the NAPI interrupts */
1575                         writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1576                         __napi_schedule(&fep->napi);
1577                 }
1578         }
1579
1580         if (int_events & FEC_ENET_MII) {
1581                 ret = IRQ_HANDLED;
1582                 complete(&fep->mdio_done);
1583         }
1584
1585         if (fep->ptp_clock)
1586                 fec_ptp_check_pps_event(fep);
1587
1588         return ret;
1589 }
1590
1591 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1592 {
1593         struct net_device *ndev = napi->dev;
1594         struct fec_enet_private *fep = netdev_priv(ndev);
1595         int pkts;
1596
1597         pkts = fec_enet_rx(ndev, budget);
1598
1599         fec_enet_tx(ndev);
1600
1601         if (pkts < budget) {
1602                 napi_complete(napi);
1603                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1604         }
1605         return pkts;
1606 }
1607
1608 /* ------------------------------------------------------------------------- */
1609 static void fec_get_mac(struct net_device *ndev)
1610 {
1611         struct fec_enet_private *fep = netdev_priv(ndev);
1612         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1613         unsigned char *iap, tmpaddr[ETH_ALEN];
1614
1615         /*
1616          * try to get mac address in following order:
1617          *
1618          * 1) module parameter via kernel command line in form
1619          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1620          */
1621         iap = macaddr;
1622
1623         /*
1624          * 2) from device tree data
1625          */
1626         if (!is_valid_ether_addr(iap)) {
1627                 struct device_node *np = fep->pdev->dev.of_node;
1628                 if (np) {
1629                         const char *mac = of_get_mac_address(np);
1630                         if (mac)
1631                                 iap = (unsigned char *) mac;
1632                 }
1633         }
1634
1635         /*
1636          * 3) from flash or fuse (via platform data)
1637          */
1638         if (!is_valid_ether_addr(iap)) {
1639 #ifdef CONFIG_M5272
1640                 if (FEC_FLASHMAC)
1641                         iap = (unsigned char *)FEC_FLASHMAC;
1642 #else
1643                 if (pdata)
1644                         iap = (unsigned char *)&pdata->mac;
1645 #endif
1646         }
1647
1648         /*
1649          * 4) FEC mac registers set by bootloader
1650          */
1651         if (!is_valid_ether_addr(iap)) {
1652                 *((__be32 *) &tmpaddr[0]) =
1653                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1654                 *((__be16 *) &tmpaddr[4]) =
1655                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1656                 iap = &tmpaddr[0];
1657         }
1658
1659         /*
1660          * 5) random mac address
1661          */
1662         if (!is_valid_ether_addr(iap)) {
1663                 /* Report it and use a random ethernet address instead */
1664                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1665                 eth_hw_addr_random(ndev);
1666                 netdev_info(ndev, "Using random MAC address: %pM\n",
1667                             ndev->dev_addr);
1668                 return;
1669         }
1670
1671         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1672
1673         /* Adjust MAC if using macaddr */
1674         if (iap == macaddr)
1675                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1676 }
1677
1678 /* ------------------------------------------------------------------------- */
1679
1680 /*
1681  * Phy section
1682  */
1683 static void fec_enet_adjust_link(struct net_device *ndev)
1684 {
1685         struct fec_enet_private *fep = netdev_priv(ndev);
1686         struct phy_device *phy_dev = ndev->phydev;
1687         int status_change = 0;
1688
1689         /* Prevent a state halted on mii error */
1690         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1691                 phy_dev->state = PHY_RESUMING;
1692                 return;
1693         }
1694
1695         /*
1696          * If the netdev is down, or is going down, we're not interested
1697          * in link state events, so just mark our idea of the link as down
1698          * and ignore the event.
1699          */
1700         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1701                 fep->link = 0;
1702         } else if (phy_dev->link) {
1703                 if (!fep->link) {
1704                         fep->link = phy_dev->link;
1705                         status_change = 1;
1706                 }
1707
1708                 if (fep->full_duplex != phy_dev->duplex) {
1709                         fep->full_duplex = phy_dev->duplex;
1710                         status_change = 1;
1711                 }
1712
1713                 if (phy_dev->speed != fep->speed) {
1714                         fep->speed = phy_dev->speed;
1715                         status_change = 1;
1716                 }
1717
1718                 /* if any of the above changed restart the FEC */
1719                 if (status_change) {
1720                         napi_disable(&fep->napi);
1721                         netif_tx_lock_bh(ndev);
1722                         fec_restart(ndev);
1723                         netif_wake_queue(ndev);
1724                         netif_tx_unlock_bh(ndev);
1725                         napi_enable(&fep->napi);
1726                 }
1727         } else {
1728                 if (fep->link) {
1729                         napi_disable(&fep->napi);
1730                         netif_tx_lock_bh(ndev);
1731                         fec_stop(ndev);
1732                         netif_tx_unlock_bh(ndev);
1733                         napi_enable(&fep->napi);
1734                         fep->link = phy_dev->link;
1735                         status_change = 1;
1736                 }
1737         }
1738
1739         if (status_change)
1740                 phy_print_status(phy_dev);
1741 }
1742
1743 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1744 {
1745         struct fec_enet_private *fep = bus->priv;
1746         struct device *dev = &fep->pdev->dev;
1747         unsigned long time_left;
1748         int ret = 0;
1749
1750         ret = pm_runtime_get_sync(dev);
1751         if (ret < 0)
1752                 return ret;
1753
1754         fep->mii_timeout = 0;
1755         reinit_completion(&fep->mdio_done);
1756
1757         /* start a read op */
1758         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1759                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1760                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1761
1762         /* wait for end of transfer */
1763         time_left = wait_for_completion_timeout(&fep->mdio_done,
1764                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1765         if (time_left == 0) {
1766                 fep->mii_timeout = 1;
1767                 netdev_err(fep->netdev, "MDIO read timeout\n");
1768                 ret = -ETIMEDOUT;
1769                 goto out;
1770         }
1771
1772         ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1773
1774 out:
1775         pm_runtime_mark_last_busy(dev);
1776         pm_runtime_put_autosuspend(dev);
1777
1778         return ret;
1779 }
1780
1781 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1782                            u16 value)
1783 {
1784         struct fec_enet_private *fep = bus->priv;
1785         struct device *dev = &fep->pdev->dev;
1786         unsigned long time_left;
1787         int ret;
1788
1789         ret = pm_runtime_get_sync(dev);
1790         if (ret < 0)
1791                 return ret;
1792         else
1793                 ret = 0;
1794
1795         fep->mii_timeout = 0;
1796         reinit_completion(&fep->mdio_done);
1797
1798         /* start a write op */
1799         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802                 fep->hwp + FEC_MII_DATA);
1803
1804         /* wait for end of transfer */
1805         time_left = wait_for_completion_timeout(&fep->mdio_done,
1806                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1807         if (time_left == 0) {
1808                 fep->mii_timeout = 1;
1809                 netdev_err(fep->netdev, "MDIO write timeout\n");
1810                 ret  = -ETIMEDOUT;
1811         }
1812
1813         pm_runtime_mark_last_busy(dev);
1814         pm_runtime_put_autosuspend(dev);
1815
1816         return ret;
1817 }
1818
1819 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1820 {
1821         struct fec_enet_private *fep = netdev_priv(ndev);
1822         int ret;
1823
1824         if (enable) {
1825                 ret = clk_prepare_enable(fep->clk_ahb);
1826                 if (ret)
1827                         return ret;
1828                 if (fep->clk_enet_out) {
1829                         ret = clk_prepare_enable(fep->clk_enet_out);
1830                         if (ret)
1831                                 goto failed_clk_enet_out;
1832                 }
1833                 if (fep->clk_ptp) {
1834                         mutex_lock(&fep->ptp_clk_mutex);
1835                         ret = clk_prepare_enable(fep->clk_ptp);
1836                         if (ret) {
1837                                 mutex_unlock(&fep->ptp_clk_mutex);
1838                                 goto failed_clk_ptp;
1839                         } else {
1840                                 fep->ptp_clk_on = true;
1841                         }
1842                         mutex_unlock(&fep->ptp_clk_mutex);
1843                 }
1844                 if (fep->clk_ref) {
1845                         ret = clk_prepare_enable(fep->clk_ref);
1846                         if (ret)
1847                                 goto failed_clk_ref;
1848                 }
1849         } else {
1850                 clk_disable_unprepare(fep->clk_ahb);
1851                 if (fep->clk_enet_out)
1852                         clk_disable_unprepare(fep->clk_enet_out);
1853                 if (fep->clk_ptp) {
1854                         mutex_lock(&fep->ptp_clk_mutex);
1855                         clk_disable_unprepare(fep->clk_ptp);
1856                         fep->ptp_clk_on = false;
1857                         mutex_unlock(&fep->ptp_clk_mutex);
1858                 }
1859                 if (fep->clk_ref)
1860                         clk_disable_unprepare(fep->clk_ref);
1861         }
1862
1863         return 0;
1864
1865 failed_clk_ref:
1866         if (fep->clk_ref)
1867                 clk_disable_unprepare(fep->clk_ref);
1868 failed_clk_ptp:
1869         if (fep->clk_enet_out)
1870                 clk_disable_unprepare(fep->clk_enet_out);
1871 failed_clk_enet_out:
1872                 clk_disable_unprepare(fep->clk_ahb);
1873
1874         return ret;
1875 }
1876
1877 static int fec_enet_mii_probe(struct net_device *ndev)
1878 {
1879         struct fec_enet_private *fep = netdev_priv(ndev);
1880         struct phy_device *phy_dev = NULL;
1881         char mdio_bus_id[MII_BUS_ID_SIZE];
1882         char phy_name[MII_BUS_ID_SIZE + 3];
1883         int phy_id;
1884         int dev_id = fep->dev_id;
1885
1886         if (fep->phy_node) {
1887                 phy_dev = of_phy_connect(ndev, fep->phy_node,
1888                                          &fec_enet_adjust_link, 0,
1889                                          fep->phy_interface);
1890                 if (!phy_dev)
1891                         return -ENODEV;
1892         } else {
1893                 /* check for attached phy */
1894                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1895                         if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1896                                 continue;
1897                         if (dev_id--)
1898                                 continue;
1899                         strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1900                         break;
1901                 }
1902
1903                 if (phy_id >= PHY_MAX_ADDR) {
1904                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1905                         strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1906                         phy_id = 0;
1907                 }
1908
1909                 snprintf(phy_name, sizeof(phy_name),
1910                          PHY_ID_FMT, mdio_bus_id, phy_id);
1911                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1912                                       fep->phy_interface);
1913         }
1914
1915         if (IS_ERR(phy_dev)) {
1916                 netdev_err(ndev, "could not attach to PHY\n");
1917                 return PTR_ERR(phy_dev);
1918         }
1919
1920         /* mask with MAC supported features */
1921         if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1922                 phy_dev->supported &= PHY_GBIT_FEATURES;
1923                 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1924 #if !defined(CONFIG_M5272)
1925                 phy_dev->supported |= SUPPORTED_Pause;
1926 #endif
1927         }
1928         else
1929                 phy_dev->supported &= PHY_BASIC_FEATURES;
1930
1931         phy_dev->advertising = phy_dev->supported;
1932
1933         fep->link = 0;
1934         fep->full_duplex = 0;
1935
1936         phy_attached_info(phy_dev);
1937
1938         return 0;
1939 }
1940
1941 static int fec_enet_mii_init(struct platform_device *pdev)
1942 {
1943         static struct mii_bus *fec0_mii_bus;
1944         struct net_device *ndev = platform_get_drvdata(pdev);
1945         struct fec_enet_private *fep = netdev_priv(ndev);
1946         struct device_node *node;
1947         int err = -ENXIO;
1948         u32 mii_speed, holdtime;
1949
1950         /*
1951          * The i.MX28 dual fec interfaces are not equal.
1952          * Here are the differences:
1953          *
1954          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1955          *  - fec0 acts as the 1588 time master while fec1 is slave
1956          *  - external phys can only be configured by fec0
1957          *
1958          * That is to say fec1 can not work independently. It only works
1959          * when fec0 is working. The reason behind this design is that the
1960          * second interface is added primarily for Switch mode.
1961          *
1962          * Because of the last point above, both phys are attached on fec0
1963          * mdio interface in board design, and need to be configured by
1964          * fec0 mii_bus.
1965          */
1966         if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1967                 /* fec1 uses fec0 mii_bus */
1968                 if (mii_cnt && fec0_mii_bus) {
1969                         fep->mii_bus = fec0_mii_bus;
1970                         mii_cnt++;
1971                         return 0;
1972                 }
1973                 return -ENOENT;
1974         }
1975
1976         fep->mii_timeout = 0;
1977
1978         /*
1979          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1980          *
1981          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1982          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1983          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1984          * document.
1985          */
1986         mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1987         if (fep->quirks & FEC_QUIRK_ENET_MAC)
1988                 mii_speed--;
1989         if (mii_speed > 63) {
1990                 dev_err(&pdev->dev,
1991                         "fec clock (%lu) to fast to get right mii speed\n",
1992                         clk_get_rate(fep->clk_ipg));
1993                 err = -EINVAL;
1994                 goto err_out;
1995         }
1996
1997         /*
1998          * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
1999          * MII_SPEED) register that defines the MDIO output hold time. Earlier
2000          * versions are RAZ there, so just ignore the difference and write the
2001          * register always.
2002          * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2003          * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2004          * output.
2005          * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2006          * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2007          * holdtime cannot result in a value greater than 3.
2008          */
2009         holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2010
2011         fep->phy_speed = mii_speed << 1 | holdtime << 8;
2012
2013         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2014
2015         fep->mii_bus = mdiobus_alloc();
2016         if (fep->mii_bus == NULL) {
2017                 err = -ENOMEM;
2018                 goto err_out;
2019         }
2020
2021         fep->mii_bus->name = "fec_enet_mii_bus";
2022         fep->mii_bus->read = fec_enet_mdio_read;
2023         fep->mii_bus->write = fec_enet_mdio_write;
2024         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2025                 pdev->name, fep->dev_id + 1);
2026         fep->mii_bus->priv = fep;
2027         fep->mii_bus->parent = &pdev->dev;
2028
2029         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2030         if (node) {
2031                 err = of_mdiobus_register(fep->mii_bus, node);
2032                 of_node_put(node);
2033         } else {
2034                 err = mdiobus_register(fep->mii_bus);
2035         }
2036
2037         if (err)
2038                 goto err_out_free_mdiobus;
2039
2040         mii_cnt++;
2041
2042         /* save fec0 mii_bus */
2043         if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2044                 fec0_mii_bus = fep->mii_bus;
2045
2046         return 0;
2047
2048 err_out_free_mdiobus:
2049         mdiobus_free(fep->mii_bus);
2050 err_out:
2051         return err;
2052 }
2053
2054 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2055 {
2056         if (--mii_cnt == 0) {
2057                 mdiobus_unregister(fep->mii_bus);
2058                 mdiobus_free(fep->mii_bus);
2059         }
2060 }
2061
2062 static void fec_enet_get_drvinfo(struct net_device *ndev,
2063                                  struct ethtool_drvinfo *info)
2064 {
2065         struct fec_enet_private *fep = netdev_priv(ndev);
2066
2067         strlcpy(info->driver, fep->pdev->dev.driver->name,
2068                 sizeof(info->driver));
2069         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2070         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2071 }
2072
2073 static int fec_enet_get_regs_len(struct net_device *ndev)
2074 {
2075         struct fec_enet_private *fep = netdev_priv(ndev);
2076         struct resource *r;
2077         int s = 0;
2078
2079         r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2080         if (r)
2081                 s = resource_size(r);
2082
2083         return s;
2084 }
2085
2086 /* List of registers that can be safety be read to dump them with ethtool */
2087 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2088         defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2089 static u32 fec_enet_register_offset[] = {
2090         FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2091         FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2092         FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2093         FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2094         FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2095         FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2096         FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2097         FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2098         FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2099         FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2100         FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2101         FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2102         RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2103         RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2104         RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2105         RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2106         RMON_T_P_GTE2048, RMON_T_OCTETS,
2107         IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2108         IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2109         IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2110         RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2111         RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2112         RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2113         RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2114         RMON_R_P_GTE2048, RMON_R_OCTETS,
2115         IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2116         IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2117 };
2118 #else
2119 static u32 fec_enet_register_offset[] = {
2120         FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2121         FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2122         FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2123         FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2124         FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2125         FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2126         FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2127         FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2128         FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2129 };
2130 #endif
2131
2132 static void fec_enet_get_regs(struct net_device *ndev,
2133                               struct ethtool_regs *regs, void *regbuf)
2134 {
2135         struct fec_enet_private *fep = netdev_priv(ndev);
2136         u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2137         u32 *buf = (u32 *)regbuf;
2138         u32 i, off;
2139
2140         memset(buf, 0, regs->len);
2141
2142         for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2143                 off = fec_enet_register_offset[i] / 4;
2144                 buf[off] = readl(&theregs[off]);
2145         }
2146 }
2147
2148 static int fec_enet_get_ts_info(struct net_device *ndev,
2149                                 struct ethtool_ts_info *info)
2150 {
2151         struct fec_enet_private *fep = netdev_priv(ndev);
2152
2153         if (fep->bufdesc_ex) {
2154
2155                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2156                                         SOF_TIMESTAMPING_RX_SOFTWARE |
2157                                         SOF_TIMESTAMPING_SOFTWARE |
2158                                         SOF_TIMESTAMPING_TX_HARDWARE |
2159                                         SOF_TIMESTAMPING_RX_HARDWARE |
2160                                         SOF_TIMESTAMPING_RAW_HARDWARE;
2161                 if (fep->ptp_clock)
2162                         info->phc_index = ptp_clock_index(fep->ptp_clock);
2163                 else
2164                         info->phc_index = -1;
2165
2166                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2167                                  (1 << HWTSTAMP_TX_ON);
2168
2169                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2170                                    (1 << HWTSTAMP_FILTER_ALL);
2171                 return 0;
2172         } else {
2173                 return ethtool_op_get_ts_info(ndev, info);
2174         }
2175 }
2176
2177 #if !defined(CONFIG_M5272)
2178
2179 static void fec_enet_get_pauseparam(struct net_device *ndev,
2180                                     struct ethtool_pauseparam *pause)
2181 {
2182         struct fec_enet_private *fep = netdev_priv(ndev);
2183
2184         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2185         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2186         pause->rx_pause = pause->tx_pause;
2187 }
2188
2189 static int fec_enet_set_pauseparam(struct net_device *ndev,
2190                                    struct ethtool_pauseparam *pause)
2191 {
2192         struct fec_enet_private *fep = netdev_priv(ndev);
2193
2194         if (!ndev->phydev)
2195                 return -ENODEV;
2196
2197         if (pause->tx_pause != pause->rx_pause) {
2198                 netdev_info(ndev,
2199                         "hardware only support enable/disable both tx and rx");
2200                 return -EINVAL;
2201         }
2202
2203         fep->pause_flag = 0;
2204
2205         /* tx pause must be same as rx pause */
2206         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2207         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2208
2209         if (pause->rx_pause || pause->autoneg) {
2210                 ndev->phydev->supported |= ADVERTISED_Pause;
2211                 ndev->phydev->advertising |= ADVERTISED_Pause;
2212         } else {
2213                 ndev->phydev->supported &= ~ADVERTISED_Pause;
2214                 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2215         }
2216
2217         if (pause->autoneg) {
2218                 if (netif_running(ndev))
2219                         fec_stop(ndev);
2220                 phy_start_aneg(ndev->phydev);
2221         }
2222         if (netif_running(ndev)) {
2223                 napi_disable(&fep->napi);
2224                 netif_tx_lock_bh(ndev);
2225                 fec_restart(ndev);
2226                 netif_wake_queue(ndev);
2227                 netif_tx_unlock_bh(ndev);
2228                 napi_enable(&fep->napi);
2229         }
2230
2231         return 0;
2232 }
2233
2234 static const struct fec_stat {
2235         char name[ETH_GSTRING_LEN];
2236         u16 offset;
2237 } fec_stats[] = {
2238         /* RMON TX */
2239         { "tx_dropped", RMON_T_DROP },
2240         { "tx_packets", RMON_T_PACKETS },
2241         { "tx_broadcast", RMON_T_BC_PKT },
2242         { "tx_multicast", RMON_T_MC_PKT },
2243         { "tx_crc_errors", RMON_T_CRC_ALIGN },
2244         { "tx_undersize", RMON_T_UNDERSIZE },
2245         { "tx_oversize", RMON_T_OVERSIZE },
2246         { "tx_fragment", RMON_T_FRAG },
2247         { "tx_jabber", RMON_T_JAB },
2248         { "tx_collision", RMON_T_COL },
2249         { "tx_64byte", RMON_T_P64 },
2250         { "tx_65to127byte", RMON_T_P65TO127 },
2251         { "tx_128to255byte", RMON_T_P128TO255 },
2252         { "tx_256to511byte", RMON_T_P256TO511 },
2253         { "tx_512to1023byte", RMON_T_P512TO1023 },
2254         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2255         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2256         { "tx_octets", RMON_T_OCTETS },
2257
2258         /* IEEE TX */
2259         { "IEEE_tx_drop", IEEE_T_DROP },
2260         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2261         { "IEEE_tx_1col", IEEE_T_1COL },
2262         { "IEEE_tx_mcol", IEEE_T_MCOL },
2263         { "IEEE_tx_def", IEEE_T_DEF },
2264         { "IEEE_tx_lcol", IEEE_T_LCOL },
2265         { "IEEE_tx_excol", IEEE_T_EXCOL },
2266         { "IEEE_tx_macerr", IEEE_T_MACERR },
2267         { "IEEE_tx_cserr", IEEE_T_CSERR },
2268         { "IEEE_tx_sqe", IEEE_T_SQE },
2269         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2270         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2271
2272         /* RMON RX */
2273         { "rx_packets", RMON_R_PACKETS },
2274         { "rx_broadcast", RMON_R_BC_PKT },
2275         { "rx_multicast", RMON_R_MC_PKT },
2276         { "rx_crc_errors", RMON_R_CRC_ALIGN },
2277         { "rx_undersize", RMON_R_UNDERSIZE },
2278         { "rx_oversize", RMON_R_OVERSIZE },
2279         { "rx_fragment", RMON_R_FRAG },
2280         { "rx_jabber", RMON_R_JAB },
2281         { "rx_64byte", RMON_R_P64 },
2282         { "rx_65to127byte", RMON_R_P65TO127 },
2283         { "rx_128to255byte", RMON_R_P128TO255 },
2284         { "rx_256to511byte", RMON_R_P256TO511 },
2285         { "rx_512to1023byte", RMON_R_P512TO1023 },
2286         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2287         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2288         { "rx_octets", RMON_R_OCTETS },
2289
2290         /* IEEE RX */
2291         { "IEEE_rx_drop", IEEE_R_DROP },
2292         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2293         { "IEEE_rx_crc", IEEE_R_CRC },
2294         { "IEEE_rx_align", IEEE_R_ALIGN },
2295         { "IEEE_rx_macerr", IEEE_R_MACERR },
2296         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2297         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2298 };
2299
2300 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2301         struct ethtool_stats *stats, u64 *data)
2302 {
2303         struct fec_enet_private *fep = netdev_priv(dev);
2304         int i;
2305
2306         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2307                 data[i] = readl(fep->hwp + fec_stats[i].offset);
2308 }
2309
2310 static void fec_enet_get_strings(struct net_device *netdev,
2311         u32 stringset, u8 *data)
2312 {
2313         int i;
2314         switch (stringset) {
2315         case ETH_SS_STATS:
2316                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2317                         memcpy(data + i * ETH_GSTRING_LEN,
2318                                 fec_stats[i].name, ETH_GSTRING_LEN);
2319                 break;
2320         }
2321 }
2322
2323 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2324 {
2325         switch (sset) {
2326         case ETH_SS_STATS:
2327                 return ARRAY_SIZE(fec_stats);
2328         default:
2329                 return -EOPNOTSUPP;
2330         }
2331 }
2332 #endif /* !defined(CONFIG_M5272) */
2333
2334 static int fec_enet_nway_reset(struct net_device *dev)
2335 {
2336         struct phy_device *phydev = dev->phydev;
2337
2338         if (!phydev)
2339                 return -ENODEV;
2340
2341         return genphy_restart_aneg(phydev);
2342 }
2343
2344 /* ITR clock source is enet system clock (clk_ahb).
2345  * TCTT unit is cycle_ns * 64 cycle
2346  * So, the ICTT value = X us / (cycle_ns * 64)
2347  */
2348 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2349 {
2350         struct fec_enet_private *fep = netdev_priv(ndev);
2351
2352         return us * (fep->itr_clk_rate / 64000) / 1000;
2353 }
2354
2355 /* Set threshold for interrupt coalescing */
2356 static void fec_enet_itr_coal_set(struct net_device *ndev)
2357 {
2358         struct fec_enet_private *fep = netdev_priv(ndev);
2359         int rx_itr, tx_itr;
2360
2361         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2362                 return;
2363
2364         /* Must be greater than zero to avoid unpredictable behavior */
2365         if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2366             !fep->tx_time_itr || !fep->tx_pkts_itr)
2367                 return;
2368
2369         /* Select enet system clock as Interrupt Coalescing
2370          * timer Clock Source
2371          */
2372         rx_itr = FEC_ITR_CLK_SEL;
2373         tx_itr = FEC_ITR_CLK_SEL;
2374
2375         /* set ICFT and ICTT */
2376         rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2377         rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2378         tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2379         tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2380
2381         rx_itr |= FEC_ITR_EN;
2382         tx_itr |= FEC_ITR_EN;
2383
2384         writel(tx_itr, fep->hwp + FEC_TXIC0);
2385         writel(rx_itr, fep->hwp + FEC_RXIC0);
2386         writel(tx_itr, fep->hwp + FEC_TXIC1);
2387         writel(rx_itr, fep->hwp + FEC_RXIC1);
2388         writel(tx_itr, fep->hwp + FEC_TXIC2);
2389         writel(rx_itr, fep->hwp + FEC_RXIC2);
2390 }
2391
2392 static int
2393 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2394 {
2395         struct fec_enet_private *fep = netdev_priv(ndev);
2396
2397         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2398                 return -EOPNOTSUPP;
2399
2400         ec->rx_coalesce_usecs = fep->rx_time_itr;
2401         ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2402
2403         ec->tx_coalesce_usecs = fep->tx_time_itr;
2404         ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2405
2406         return 0;
2407 }
2408
2409 static int
2410 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2411 {
2412         struct fec_enet_private *fep = netdev_priv(ndev);
2413         unsigned int cycle;
2414
2415         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2416                 return -EOPNOTSUPP;
2417
2418         if (ec->rx_max_coalesced_frames > 255) {
2419                 pr_err("Rx coalesced frames exceed hardware limitation\n");
2420                 return -EINVAL;
2421         }
2422
2423         if (ec->tx_max_coalesced_frames > 255) {
2424                 pr_err("Tx coalesced frame exceed hardware limitation\n");
2425                 return -EINVAL;
2426         }
2427
2428         cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2429         if (cycle > 0xFFFF) {
2430                 pr_err("Rx coalesced usec exceed hardware limitation\n");
2431                 return -EINVAL;
2432         }
2433
2434         cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2435         if (cycle > 0xFFFF) {
2436                 pr_err("Rx coalesced usec exceed hardware limitation\n");
2437                 return -EINVAL;
2438         }
2439
2440         fep->rx_time_itr = ec->rx_coalesce_usecs;
2441         fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2442
2443         fep->tx_time_itr = ec->tx_coalesce_usecs;
2444         fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2445
2446         fec_enet_itr_coal_set(ndev);
2447
2448         return 0;
2449 }
2450
2451 static void fec_enet_itr_coal_init(struct net_device *ndev)
2452 {
2453         struct ethtool_coalesce ec;
2454
2455         ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2456         ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2457
2458         ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2459         ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2460
2461         fec_enet_set_coalesce(ndev, &ec);
2462 }
2463
2464 static int fec_enet_get_tunable(struct net_device *netdev,
2465                                 const struct ethtool_tunable *tuna,
2466                                 void *data)
2467 {
2468         struct fec_enet_private *fep = netdev_priv(netdev);
2469         int ret = 0;
2470
2471         switch (tuna->id) {
2472         case ETHTOOL_RX_COPYBREAK:
2473                 *(u32 *)data = fep->rx_copybreak;
2474                 break;
2475         default:
2476                 ret = -EINVAL;
2477                 break;
2478         }
2479
2480         return ret;
2481 }
2482
2483 static int fec_enet_set_tunable(struct net_device *netdev,
2484                                 const struct ethtool_tunable *tuna,
2485                                 const void *data)
2486 {
2487         struct fec_enet_private *fep = netdev_priv(netdev);
2488         int ret = 0;
2489
2490         switch (tuna->id) {
2491         case ETHTOOL_RX_COPYBREAK:
2492                 fep->rx_copybreak = *(u32 *)data;
2493                 break;
2494         default:
2495                 ret = -EINVAL;
2496                 break;
2497         }
2498
2499         return ret;
2500 }
2501
2502 static void
2503 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2504 {
2505         struct fec_enet_private *fep = netdev_priv(ndev);
2506
2507         if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2508                 wol->supported = WAKE_MAGIC;
2509                 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2510         } else {
2511                 wol->supported = wol->wolopts = 0;
2512         }
2513 }
2514
2515 static int
2516 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2517 {
2518         struct fec_enet_private *fep = netdev_priv(ndev);
2519
2520         if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2521                 return -EINVAL;
2522
2523         if (wol->wolopts & ~WAKE_MAGIC)
2524                 return -EINVAL;
2525
2526         device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2527         if (device_may_wakeup(&ndev->dev)) {
2528                 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2529                 if (fep->irq[0] > 0)
2530                         enable_irq_wake(fep->irq[0]);
2531         } else {
2532                 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2533                 if (fep->irq[0] > 0)
2534                         disable_irq_wake(fep->irq[0]);
2535         }
2536
2537         return 0;
2538 }
2539
2540 static const struct ethtool_ops fec_enet_ethtool_ops = {
2541         .get_drvinfo            = fec_enet_get_drvinfo,
2542         .get_regs_len           = fec_enet_get_regs_len,
2543         .get_regs               = fec_enet_get_regs,
2544         .nway_reset             = fec_enet_nway_reset,
2545         .get_link               = ethtool_op_get_link,
2546         .get_coalesce           = fec_enet_get_coalesce,
2547         .set_coalesce           = fec_enet_set_coalesce,
2548 #ifndef CONFIG_M5272
2549         .get_pauseparam         = fec_enet_get_pauseparam,
2550         .set_pauseparam         = fec_enet_set_pauseparam,
2551         .get_strings            = fec_enet_get_strings,
2552         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2553         .get_sset_count         = fec_enet_get_sset_count,
2554 #endif
2555         .get_ts_info            = fec_enet_get_ts_info,
2556         .get_tunable            = fec_enet_get_tunable,
2557         .set_tunable            = fec_enet_set_tunable,
2558         .get_wol                = fec_enet_get_wol,
2559         .set_wol                = fec_enet_set_wol,
2560         .get_link_ksettings     = phy_ethtool_get_link_ksettings,
2561         .set_link_ksettings     = phy_ethtool_set_link_ksettings,
2562 };
2563
2564 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2565 {
2566         struct fec_enet_private *fep = netdev_priv(ndev);
2567         struct phy_device *phydev = ndev->phydev;
2568
2569         if (!netif_running(ndev))
2570                 return -EINVAL;
2571
2572         if (!phydev)
2573                 return -ENODEV;
2574
2575         if (fep->bufdesc_ex) {
2576                 if (cmd == SIOCSHWTSTAMP)
2577                         return fec_ptp_set(ndev, rq);
2578                 if (cmd == SIOCGHWTSTAMP)
2579                         return fec_ptp_get(ndev, rq);
2580         }
2581
2582         return phy_mii_ioctl(phydev, rq, cmd);
2583 }
2584
2585 static void fec_enet_free_buffers(struct net_device *ndev)
2586 {
2587         struct fec_enet_private *fep = netdev_priv(ndev);
2588         unsigned int i;
2589         struct sk_buff *skb;
2590         struct bufdesc  *bdp;
2591         struct fec_enet_priv_tx_q *txq;
2592         struct fec_enet_priv_rx_q *rxq;
2593         unsigned int q;
2594
2595         for (q = 0; q < fep->num_rx_queues; q++) {
2596                 rxq = fep->rx_queue[q];
2597                 bdp = rxq->bd.base;
2598                 for (i = 0; i < rxq->bd.ring_size; i++) {
2599                         skb = rxq->rx_skbuff[i];
2600                         rxq->rx_skbuff[i] = NULL;
2601                         if (skb) {
2602                                 dma_unmap_single(&fep->pdev->dev,
2603                                                  fec32_to_cpu(bdp->cbd_bufaddr),
2604                                                  FEC_ENET_RX_FRSIZE - fep->rx_align,
2605                                                  DMA_FROM_DEVICE);
2606                                 dev_kfree_skb(skb);
2607                         }
2608                         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2609                 }
2610         }
2611
2612         for (q = 0; q < fep->num_tx_queues; q++) {
2613                 txq = fep->tx_queue[q];
2614                 bdp = txq->bd.base;
2615                 for (i = 0; i < txq->bd.ring_size; i++) {
2616                         kfree(txq->tx_bounce[i]);
2617                         txq->tx_bounce[i] = NULL;
2618                         skb = txq->tx_skbuff[i];
2619                         txq->tx_skbuff[i] = NULL;
2620                         dev_kfree_skb(skb);
2621                 }
2622         }
2623 }
2624
2625 static void fec_enet_free_queue(struct net_device *ndev)
2626 {
2627         struct fec_enet_private *fep = netdev_priv(ndev);
2628         int i;
2629         struct fec_enet_priv_tx_q *txq;
2630
2631         for (i = 0; i < fep->num_tx_queues; i++)
2632                 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2633                         txq = fep->tx_queue[i];
2634                         dma_free_coherent(NULL,
2635                                           txq->bd.ring_size * TSO_HEADER_SIZE,
2636                                           txq->tso_hdrs,
2637                                           txq->tso_hdrs_dma);
2638                 }
2639
2640         for (i = 0; i < fep->num_rx_queues; i++)
2641                 kfree(fep->rx_queue[i]);
2642         for (i = 0; i < fep->num_tx_queues; i++)
2643                 kfree(fep->tx_queue[i]);
2644 }
2645
2646 static int fec_enet_alloc_queue(struct net_device *ndev)
2647 {
2648         struct fec_enet_private *fep = netdev_priv(ndev);
2649         int i;
2650         int ret = 0;
2651         struct fec_enet_priv_tx_q *txq;
2652
2653         for (i = 0; i < fep->num_tx_queues; i++) {
2654                 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2655                 if (!txq) {
2656                         ret = -ENOMEM;
2657                         goto alloc_failed;
2658                 }
2659
2660                 fep->tx_queue[i] = txq;
2661                 txq->bd.ring_size = TX_RING_SIZE;
2662                 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2663
2664                 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2665                 txq->tx_wake_threshold =
2666                         (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2667
2668                 txq->tso_hdrs = dma_alloc_coherent(NULL,
2669                                         txq->bd.ring_size * TSO_HEADER_SIZE,
2670                                         &txq->tso_hdrs_dma,
2671                                         GFP_KERNEL);
2672                 if (!txq->tso_hdrs) {
2673                         ret = -ENOMEM;
2674                         goto alloc_failed;
2675                 }
2676         }
2677
2678         for (i = 0; i < fep->num_rx_queues; i++) {
2679                 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2680                                            GFP_KERNEL);
2681                 if (!fep->rx_queue[i]) {
2682                         ret = -ENOMEM;
2683                         goto alloc_failed;
2684                 }
2685
2686                 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2687                 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2688         }
2689         return ret;
2690
2691 alloc_failed:
2692         fec_enet_free_queue(ndev);
2693         return ret;
2694 }
2695
2696 static int
2697 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2698 {
2699         struct fec_enet_private *fep = netdev_priv(ndev);
2700         unsigned int i;
2701         struct sk_buff *skb;
2702         struct bufdesc  *bdp;
2703         struct fec_enet_priv_rx_q *rxq;
2704
2705         rxq = fep->rx_queue[queue];
2706         bdp = rxq->bd.base;
2707         for (i = 0; i < rxq->bd.ring_size; i++) {
2708                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2709                 if (!skb)
2710                         goto err_alloc;
2711
2712                 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2713                         dev_kfree_skb(skb);
2714                         goto err_alloc;
2715                 }
2716
2717                 rxq->rx_skbuff[i] = skb;
2718                 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2719
2720                 if (fep->bufdesc_ex) {
2721                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2722                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2723                 }
2724
2725                 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2726         }
2727
2728         /* Set the last buffer to wrap. */
2729         bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2730         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2731         return 0;
2732
2733  err_alloc:
2734         fec_enet_free_buffers(ndev);
2735         return -ENOMEM;
2736 }
2737
2738 static int
2739 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2740 {
2741         struct fec_enet_private *fep = netdev_priv(ndev);
2742         unsigned int i;
2743         struct bufdesc  *bdp;
2744         struct fec_enet_priv_tx_q *txq;
2745
2746         txq = fep->tx_queue[queue];
2747         bdp = txq->bd.base;
2748         for (i = 0; i < txq->bd.ring_size; i++) {
2749                 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2750                 if (!txq->tx_bounce[i])
2751                         goto err_alloc;
2752
2753                 bdp->cbd_sc = cpu_to_fec16(0);
2754                 bdp->cbd_bufaddr = cpu_to_fec32(0);
2755
2756                 if (fep->bufdesc_ex) {
2757                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2758                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2759                 }
2760
2761                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2762         }
2763
2764         /* Set the last buffer to wrap. */
2765         bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2766         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2767
2768         return 0;
2769
2770  err_alloc:
2771         fec_enet_free_buffers(ndev);
2772         return -ENOMEM;
2773 }
2774
2775 static int fec_enet_alloc_buffers(struct net_device *ndev)
2776 {
2777         struct fec_enet_private *fep = netdev_priv(ndev);
2778         unsigned int i;
2779
2780         for (i = 0; i < fep->num_rx_queues; i++)
2781                 if (fec_enet_alloc_rxq_buffers(ndev, i))
2782                         return -ENOMEM;
2783
2784         for (i = 0; i < fep->num_tx_queues; i++)
2785                 if (fec_enet_alloc_txq_buffers(ndev, i))
2786                         return -ENOMEM;
2787         return 0;
2788 }
2789
2790 static int
2791 fec_enet_open(struct net_device *ndev)
2792 {
2793         struct fec_enet_private *fep = netdev_priv(ndev);
2794         int ret;
2795
2796         ret = pm_runtime_get_sync(&fep->pdev->dev);
2797         if (ret < 0)
2798                 return ret;
2799
2800         pinctrl_pm_select_default_state(&fep->pdev->dev);
2801         ret = fec_enet_clk_enable(ndev, true);
2802         if (ret)
2803                 goto clk_enable;
2804
2805         /* I should reset the ring buffers here, but I don't yet know
2806          * a simple way to do that.
2807          */
2808
2809         ret = fec_enet_alloc_buffers(ndev);
2810         if (ret)
2811                 goto err_enet_alloc;
2812
2813         /* Init MAC prior to mii bus probe */
2814         fec_restart(ndev);
2815
2816         /* Probe and connect to PHY when open the interface */
2817         ret = fec_enet_mii_probe(ndev);
2818         if (ret)
2819                 goto err_enet_mii_probe;
2820
2821         napi_enable(&fep->napi);
2822         phy_start(ndev->phydev);
2823         netif_tx_start_all_queues(ndev);
2824
2825         device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2826                                  FEC_WOL_FLAG_ENABLE);
2827
2828         return 0;
2829
2830 err_enet_mii_probe:
2831         fec_enet_free_buffers(ndev);
2832 err_enet_alloc:
2833         fec_enet_clk_enable(ndev, false);
2834 clk_enable:
2835         pm_runtime_mark_last_busy(&fep->pdev->dev);
2836         pm_runtime_put_autosuspend(&fep->pdev->dev);
2837         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2838         return ret;
2839 }
2840
2841 static int
2842 fec_enet_close(struct net_device *ndev)
2843 {
2844         struct fec_enet_private *fep = netdev_priv(ndev);
2845
2846         phy_stop(ndev->phydev);
2847
2848         if (netif_device_present(ndev)) {
2849                 napi_disable(&fep->napi);
2850                 netif_tx_disable(ndev);
2851                 fec_stop(ndev);
2852         }
2853
2854         phy_disconnect(ndev->phydev);
2855
2856         fec_enet_clk_enable(ndev, false);
2857         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2858         pm_runtime_mark_last_busy(&fep->pdev->dev);
2859         pm_runtime_put_autosuspend(&fep->pdev->dev);
2860
2861         fec_enet_free_buffers(ndev);
2862
2863         return 0;
2864 }
2865
2866 /* Set or clear the multicast filter for this adaptor.
2867  * Skeleton taken from sunlance driver.
2868  * The CPM Ethernet implementation allows Multicast as well as individual
2869  * MAC address filtering.  Some of the drivers check to make sure it is
2870  * a group multicast address, and discard those that are not.  I guess I
2871  * will do the same for now, but just remove the test if you want
2872  * individual filtering as well (do the upper net layers want or support
2873  * this kind of feature?).
2874  */
2875
2876 #define HASH_BITS       6               /* #bits in hash */
2877 #define CRC32_POLY      0xEDB88320
2878
2879 static void set_multicast_list(struct net_device *ndev)
2880 {
2881         struct fec_enet_private *fep = netdev_priv(ndev);
2882         struct netdev_hw_addr *ha;
2883         unsigned int i, bit, data, crc, tmp;
2884         unsigned char hash;
2885
2886         if (ndev->flags & IFF_PROMISC) {
2887                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2888                 tmp |= 0x8;
2889                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2890                 return;
2891         }
2892
2893         tmp = readl(fep->hwp + FEC_R_CNTRL);
2894         tmp &= ~0x8;
2895         writel(tmp, fep->hwp + FEC_R_CNTRL);
2896
2897         if (ndev->flags & IFF_ALLMULTI) {
2898                 /* Catch all multicast addresses, so set the
2899                  * filter to all 1's
2900                  */
2901                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2902                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2903
2904                 return;
2905         }
2906
2907         /* Clear filter and add the addresses in hash register
2908          */
2909         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2910         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2911
2912         netdev_for_each_mc_addr(ha, ndev) {
2913                 /* calculate crc32 value of mac address */
2914                 crc = 0xffffffff;
2915
2916                 for (i = 0; i < ndev->addr_len; i++) {
2917                         data = ha->addr[i];
2918                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2919                                 crc = (crc >> 1) ^
2920                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2921                         }
2922                 }
2923
2924                 /* only upper 6 bits (HASH_BITS) are used
2925                  * which point to specific bit in he hash registers
2926                  */
2927                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2928
2929                 if (hash > 31) {
2930                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2931                         tmp |= 1 << (hash - 32);
2932                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933                 } else {
2934                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2935                         tmp |= 1 << hash;
2936                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2937                 }
2938         }
2939 }
2940
2941 /* Set a MAC change in hardware. */
2942 static int
2943 fec_set_mac_address(struct net_device *ndev, void *p)
2944 {
2945         struct fec_enet_private *fep = netdev_priv(ndev);
2946         struct sockaddr *addr = p;
2947
2948         if (addr) {
2949                 if (!is_valid_ether_addr(addr->sa_data))
2950                         return -EADDRNOTAVAIL;
2951                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2952         }
2953
2954         /* Add netif status check here to avoid system hang in below case:
2955          * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2956          * After ethx down, fec all clocks are gated off and then register
2957          * access causes system hang.
2958          */
2959         if (!netif_running(ndev))
2960                 return 0;
2961
2962         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2963                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2964                 fep->hwp + FEC_ADDR_LOW);
2965         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2966                 fep->hwp + FEC_ADDR_HIGH);
2967         return 0;
2968 }
2969
2970 #ifdef CONFIG_NET_POLL_CONTROLLER
2971 /**
2972  * fec_poll_controller - FEC Poll controller function
2973  * @dev: The FEC network adapter
2974  *
2975  * Polled functionality used by netconsole and others in non interrupt mode
2976  *
2977  */
2978 static void fec_poll_controller(struct net_device *dev)
2979 {
2980         int i;
2981         struct fec_enet_private *fep = netdev_priv(dev);
2982
2983         for (i = 0; i < FEC_IRQ_NUM; i++) {
2984                 if (fep->irq[i] > 0) {
2985                         disable_irq(fep->irq[i]);
2986                         fec_enet_interrupt(fep->irq[i], dev);
2987                         enable_irq(fep->irq[i]);
2988                 }
2989         }
2990 }
2991 #endif
2992
2993 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2994         netdev_features_t features)
2995 {
2996         struct fec_enet_private *fep = netdev_priv(netdev);
2997         netdev_features_t changed = features ^ netdev->features;
2998
2999         netdev->features = features;
3000
3001         /* Receive checksum has been changed */
3002         if (changed & NETIF_F_RXCSUM) {
3003                 if (features & NETIF_F_RXCSUM)
3004                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3005                 else
3006                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3007         }
3008 }
3009
3010 static int fec_set_features(struct net_device *netdev,
3011         netdev_features_t features)
3012 {
3013         struct fec_enet_private *fep = netdev_priv(netdev);
3014         netdev_features_t changed = features ^ netdev->features;
3015
3016         if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3017                 napi_disable(&fep->napi);
3018                 netif_tx_lock_bh(netdev);
3019                 fec_stop(netdev);
3020                 fec_enet_set_netdev_features(netdev, features);
3021                 fec_restart(netdev);
3022                 netif_tx_wake_all_queues(netdev);
3023                 netif_tx_unlock_bh(netdev);
3024                 napi_enable(&fep->napi);
3025         } else {
3026                 fec_enet_set_netdev_features(netdev, features);
3027         }
3028
3029         return 0;
3030 }
3031
3032 static const struct net_device_ops fec_netdev_ops = {
3033         .ndo_open               = fec_enet_open,
3034         .ndo_stop               = fec_enet_close,
3035         .ndo_start_xmit         = fec_enet_start_xmit,
3036         .ndo_set_rx_mode        = set_multicast_list,
3037         .ndo_change_mtu         = eth_change_mtu,
3038         .ndo_validate_addr      = eth_validate_addr,
3039         .ndo_tx_timeout         = fec_timeout,
3040         .ndo_set_mac_address    = fec_set_mac_address,
3041         .ndo_do_ioctl           = fec_enet_ioctl,
3042 #ifdef CONFIG_NET_POLL_CONTROLLER
3043         .ndo_poll_controller    = fec_poll_controller,
3044 #endif
3045         .ndo_set_features       = fec_set_features,
3046 };
3047
3048 static const unsigned short offset_des_active_rxq[] = {
3049         FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3050 };
3051
3052 static const unsigned short offset_des_active_txq[] = {
3053         FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3054 };
3055
3056  /*
3057   * XXX:  We need to clean up on failure exits here.
3058   *
3059   */
3060 static int fec_enet_init(struct net_device *ndev)
3061 {
3062         struct fec_enet_private *fep = netdev_priv(ndev);
3063         struct bufdesc *cbd_base;
3064         dma_addr_t bd_dma;
3065         int bd_size;
3066         unsigned int i;
3067         unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3068                         sizeof(struct bufdesc);
3069         unsigned dsize_log2 = __fls(dsize);
3070
3071         WARN_ON(dsize != (1 << dsize_log2));
3072 #if defined(CONFIG_ARM)
3073         fep->rx_align = 0xf;
3074         fep->tx_align = 0xf;
3075 #else
3076         fep->rx_align = 0x3;
3077         fep->tx_align = 0x3;
3078 #endif
3079
3080         fec_enet_alloc_queue(ndev);
3081
3082         bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3083
3084         /* Allocate memory for buffer descriptors. */
3085         cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3086                                        GFP_KERNEL);
3087         if (!cbd_base) {
3088                 return -ENOMEM;
3089         }
3090
3091         memset(cbd_base, 0, bd_size);
3092
3093         /* Get the Ethernet address */
3094         fec_get_mac(ndev);
3095         /* make sure MAC we just acquired is programmed into the hw */
3096         fec_set_mac_address(ndev, NULL);
3097
3098         /* Set receive and transmit descriptor base. */
3099         for (i = 0; i < fep->num_rx_queues; i++) {
3100                 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3101                 unsigned size = dsize * rxq->bd.ring_size;
3102
3103                 rxq->bd.qid = i;
3104                 rxq->bd.base = cbd_base;
3105                 rxq->bd.cur = cbd_base;
3106                 rxq->bd.dma = bd_dma;
3107                 rxq->bd.dsize = dsize;
3108                 rxq->bd.dsize_log2 = dsize_log2;
3109                 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3110                 bd_dma += size;
3111                 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3112                 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3113         }
3114
3115         for (i = 0; i < fep->num_tx_queues; i++) {
3116                 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3117                 unsigned size = dsize * txq->bd.ring_size;
3118
3119                 txq->bd.qid = i;
3120                 txq->bd.base = cbd_base;
3121                 txq->bd.cur = cbd_base;
3122                 txq->bd.dma = bd_dma;
3123                 txq->bd.dsize = dsize;
3124                 txq->bd.dsize_log2 = dsize_log2;
3125                 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3126                 bd_dma += size;
3127                 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3128                 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3129         }
3130
3131
3132         /* The FEC Ethernet specific entries in the device structure */
3133         ndev->watchdog_timeo = TX_TIMEOUT;
3134         ndev->netdev_ops = &fec_netdev_ops;
3135         ndev->ethtool_ops = &fec_enet_ethtool_ops;
3136
3137         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3138         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3139
3140         if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3141                 /* enable hw VLAN support */
3142                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3143
3144         if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3145                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3146
3147                 /* enable hw accelerator */
3148                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3149                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3150                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3151         }
3152
3153         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3154                 fep->tx_align = 0;
3155                 fep->rx_align = 0x3f;
3156         }
3157
3158         ndev->hw_features = ndev->features;
3159
3160         fec_restart(ndev);
3161
3162         return 0;
3163 }
3164
3165 #ifdef CONFIG_OF
3166 static void fec_reset_phy(struct platform_device *pdev)
3167 {
3168         int err, phy_reset;
3169         bool active_high = false;
3170         int msec = 1;
3171         struct device_node *np = pdev->dev.of_node;
3172
3173         if (!np)
3174                 return;
3175
3176         of_property_read_u32(np, "phy-reset-duration", &msec);
3177         /* A sane reset duration should not be longer than 1s */
3178         if (msec > 1000)
3179                 msec = 1;
3180
3181         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3182         if (!gpio_is_valid(phy_reset))
3183                 return;
3184
3185         active_high = of_property_read_bool(np, "phy-reset-active-high");
3186
3187         err = devm_gpio_request_one(&pdev->dev, phy_reset,
3188                         active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3189                         "phy-reset");
3190         if (err) {
3191                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3192                 return;
3193         }
3194         msleep(msec);
3195         gpio_set_value_cansleep(phy_reset, !active_high);
3196 }
3197 #else /* CONFIG_OF */
3198 static void fec_reset_phy(struct platform_device *pdev)
3199 {
3200         /*
3201          * In case of platform probe, the reset has been done
3202          * by machine code.
3203          */
3204 }
3205 #endif /* CONFIG_OF */
3206
3207 static void
3208 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3209 {
3210         struct device_node *np = pdev->dev.of_node;
3211
3212         *num_tx = *num_rx = 1;
3213
3214         if (!np || !of_device_is_available(np))
3215                 return;
3216
3217         /* parse the num of tx and rx queues */
3218         of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3219
3220         of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3221
3222         if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3223                 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3224                          *num_tx);
3225                 *num_tx = 1;
3226                 return;
3227         }
3228
3229         if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3230                 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3231                          *num_rx);
3232                 *num_rx = 1;
3233                 return;
3234         }
3235
3236 }
3237
3238 static int
3239 fec_probe(struct platform_device *pdev)
3240 {
3241         struct fec_enet_private *fep;
3242         struct fec_platform_data *pdata;
3243         struct net_device *ndev;
3244         int i, irq, ret = 0;
3245         struct resource *r;
3246         const struct of_device_id *of_id;
3247         static int dev_id;
3248         struct device_node *np = pdev->dev.of_node, *phy_node;
3249         int num_tx_qs;
3250         int num_rx_qs;
3251
3252         fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3253
3254         /* Init network device */
3255         ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3256                                   num_tx_qs, num_rx_qs);
3257         if (!ndev)
3258                 return -ENOMEM;
3259
3260         SET_NETDEV_DEV(ndev, &pdev->dev);
3261
3262         /* setup board info structure */
3263         fep = netdev_priv(ndev);
3264
3265         of_id = of_match_device(fec_dt_ids, &pdev->dev);
3266         if (of_id)
3267                 pdev->id_entry = of_id->data;
3268         fep->quirks = pdev->id_entry->driver_data;
3269
3270         fep->netdev = ndev;
3271         fep->num_rx_queues = num_rx_qs;
3272         fep->num_tx_queues = num_tx_qs;
3273
3274 #if !defined(CONFIG_M5272)
3275         /* default enable pause frame auto negotiation */
3276         if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3277                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3278 #endif
3279
3280         /* Select default pin state */
3281         pinctrl_pm_select_default_state(&pdev->dev);
3282
3283         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3284         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3285         if (IS_ERR(fep->hwp)) {
3286                 ret = PTR_ERR(fep->hwp);
3287                 goto failed_ioremap;
3288         }
3289
3290         fep->pdev = pdev;
3291         fep->dev_id = dev_id++;
3292
3293         platform_set_drvdata(pdev, ndev);
3294
3295         if (of_get_property(np, "fsl,magic-packet", NULL))
3296                 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3297
3298         phy_node = of_parse_phandle(np, "phy-handle", 0);
3299         if (!phy_node && of_phy_is_fixed_link(np)) {
3300                 ret = of_phy_register_fixed_link(np);
3301                 if (ret < 0) {
3302                         dev_err(&pdev->dev,
3303                                 "broken fixed-link specification\n");
3304                         goto failed_phy;
3305                 }
3306                 phy_node = of_node_get(np);
3307         }
3308         fep->phy_node = phy_node;
3309
3310         ret = of_get_phy_mode(pdev->dev.of_node);
3311         if (ret < 0) {
3312                 pdata = dev_get_platdata(&pdev->dev);
3313                 if (pdata)
3314                         fep->phy_interface = pdata->phy;
3315                 else
3316                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
3317         } else {
3318                 fep->phy_interface = ret;
3319         }
3320
3321         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3322         if (IS_ERR(fep->clk_ipg)) {
3323                 ret = PTR_ERR(fep->clk_ipg);
3324                 goto failed_clk;
3325         }
3326
3327         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3328         if (IS_ERR(fep->clk_ahb)) {
3329                 ret = PTR_ERR(fep->clk_ahb);
3330                 goto failed_clk;
3331         }
3332
3333         fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3334
3335         /* enet_out is optional, depends on board */
3336         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3337         if (IS_ERR(fep->clk_enet_out))
3338                 fep->clk_enet_out = NULL;
3339
3340         fep->ptp_clk_on = false;
3341         mutex_init(&fep->ptp_clk_mutex);
3342
3343         /* clk_ref is optional, depends on board */
3344         fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3345         if (IS_ERR(fep->clk_ref))
3346                 fep->clk_ref = NULL;
3347
3348         fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3349         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3350         if (IS_ERR(fep->clk_ptp)) {
3351                 fep->clk_ptp = NULL;
3352                 fep->bufdesc_ex = false;
3353         }
3354
3355         ret = fec_enet_clk_enable(ndev, true);
3356         if (ret)
3357                 goto failed_clk;
3358
3359         ret = clk_prepare_enable(fep->clk_ipg);
3360         if (ret)
3361                 goto failed_clk_ipg;
3362
3363         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3364         if (!IS_ERR(fep->reg_phy)) {
3365                 ret = regulator_enable(fep->reg_phy);
3366                 if (ret) {
3367                         dev_err(&pdev->dev,
3368                                 "Failed to enable phy regulator: %d\n", ret);
3369                         goto failed_regulator;
3370                 }
3371         } else {
3372                 fep->reg_phy = NULL;
3373         }
3374
3375         pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3376         pm_runtime_use_autosuspend(&pdev->dev);
3377         pm_runtime_get_noresume(&pdev->dev);
3378         pm_runtime_set_active(&pdev->dev);
3379         pm_runtime_enable(&pdev->dev);
3380
3381         fec_reset_phy(pdev);
3382
3383         if (fep->bufdesc_ex)
3384                 fec_ptp_init(pdev);
3385
3386         ret = fec_enet_init(ndev);
3387         if (ret)
3388                 goto failed_init;
3389
3390         for (i = 0; i < FEC_IRQ_NUM; i++) {
3391                 irq = platform_get_irq(pdev, i);
3392                 if (irq < 0) {
3393                         if (i)
3394                                 break;
3395                         ret = irq;
3396                         goto failed_irq;
3397                 }
3398                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3399                                        0, pdev->name, ndev);
3400                 if (ret)
3401                         goto failed_irq;
3402
3403                 fep->irq[i] = irq;
3404         }
3405
3406         init_completion(&fep->mdio_done);
3407         ret = fec_enet_mii_init(pdev);
3408         if (ret)
3409                 goto failed_mii_init;
3410
3411         /* Carrier starts down, phylib will bring it up */
3412         netif_carrier_off(ndev);
3413         fec_enet_clk_enable(ndev, false);
3414         pinctrl_pm_select_sleep_state(&pdev->dev);
3415
3416         ret = register_netdev(ndev);
3417         if (ret)
3418                 goto failed_register;
3419
3420         device_init_wakeup(&ndev->dev, fep->wol_flag &
3421                            FEC_WOL_HAS_MAGIC_PACKET);
3422
3423         if (fep->bufdesc_ex && fep->ptp_clock)
3424                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3425
3426         fep->rx_copybreak = COPYBREAK_DEFAULT;
3427         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3428
3429         pm_runtime_mark_last_busy(&pdev->dev);
3430         pm_runtime_put_autosuspend(&pdev->dev);
3431
3432         return 0;
3433
3434 failed_register:
3435         fec_enet_mii_remove(fep);
3436 failed_mii_init:
3437 failed_irq:
3438 failed_init:
3439         fec_ptp_stop(pdev);
3440         if (fep->reg_phy)
3441                 regulator_disable(fep->reg_phy);
3442 failed_regulator:
3443         clk_disable_unprepare(fep->clk_ipg);
3444 failed_clk_ipg:
3445         fec_enet_clk_enable(ndev, false);
3446 failed_clk:
3447 failed_phy:
3448         of_node_put(phy_node);
3449 failed_ioremap:
3450         free_netdev(ndev);
3451
3452         return ret;
3453 }
3454
3455 static int
3456 fec_drv_remove(struct platform_device *pdev)
3457 {
3458         struct net_device *ndev = platform_get_drvdata(pdev);
3459         struct fec_enet_private *fep = netdev_priv(ndev);
3460
3461         cancel_work_sync(&fep->tx_timeout_work);
3462         fec_ptp_stop(pdev);
3463         unregister_netdev(ndev);
3464         fec_enet_mii_remove(fep);
3465         if (fep->reg_phy)
3466                 regulator_disable(fep->reg_phy);
3467         of_node_put(fep->phy_node);
3468         free_netdev(ndev);
3469
3470         return 0;
3471 }
3472
3473 static int __maybe_unused fec_suspend(struct device *dev)
3474 {
3475         struct net_device *ndev = dev_get_drvdata(dev);
3476         struct fec_enet_private *fep = netdev_priv(ndev);
3477
3478         rtnl_lock();
3479         if (netif_running(ndev)) {
3480                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3481                         fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3482                 phy_stop(ndev->phydev);
3483                 napi_disable(&fep->napi);
3484                 netif_tx_lock_bh(ndev);
3485                 netif_device_detach(ndev);
3486                 netif_tx_unlock_bh(ndev);
3487                 fec_stop(ndev);
3488                 fec_enet_clk_enable(ndev, false);
3489                 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3490                         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3491         }
3492         rtnl_unlock();
3493
3494         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3495                 regulator_disable(fep->reg_phy);
3496
3497         /* SOC supply clock to phy, when clock is disabled, phy link down
3498          * SOC control phy regulator, when regulator is disabled, phy link down
3499          */
3500         if (fep->clk_enet_out || fep->reg_phy)
3501                 fep->link = 0;
3502
3503         return 0;
3504 }
3505
3506 static int __maybe_unused fec_resume(struct device *dev)
3507 {
3508         struct net_device *ndev = dev_get_drvdata(dev);
3509         struct fec_enet_private *fep = netdev_priv(ndev);
3510         struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3511         int ret;
3512         int val;
3513
3514         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3515                 ret = regulator_enable(fep->reg_phy);
3516                 if (ret)
3517                         return ret;
3518         }
3519
3520         rtnl_lock();
3521         if (netif_running(ndev)) {
3522                 ret = fec_enet_clk_enable(ndev, true);
3523                 if (ret) {
3524                         rtnl_unlock();
3525                         goto failed_clk;
3526                 }
3527                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3528                         if (pdata && pdata->sleep_mode_enable)
3529                                 pdata->sleep_mode_enable(false);
3530                         val = readl(fep->hwp + FEC_ECNTRL);
3531                         val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3532                         writel(val, fep->hwp + FEC_ECNTRL);
3533                         fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3534                 } else {
3535                         pinctrl_pm_select_default_state(&fep->pdev->dev);
3536                 }
3537                 fec_restart(ndev);
3538                 netif_tx_lock_bh(ndev);
3539                 netif_device_attach(ndev);
3540                 netif_tx_unlock_bh(ndev);
3541                 napi_enable(&fep->napi);
3542                 phy_start(ndev->phydev);
3543         }
3544         rtnl_unlock();
3545
3546         return 0;
3547
3548 failed_clk:
3549         if (fep->reg_phy)
3550                 regulator_disable(fep->reg_phy);
3551         return ret;
3552 }
3553
3554 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3555 {
3556         struct net_device *ndev = dev_get_drvdata(dev);
3557         struct fec_enet_private *fep = netdev_priv(ndev);
3558
3559         clk_disable_unprepare(fep->clk_ipg);
3560
3561         return 0;
3562 }
3563
3564 static int __maybe_unused fec_runtime_resume(struct device *dev)
3565 {
3566         struct net_device *ndev = dev_get_drvdata(dev);
3567         struct fec_enet_private *fep = netdev_priv(ndev);
3568
3569         return clk_prepare_enable(fep->clk_ipg);
3570 }
3571
3572 static const struct dev_pm_ops fec_pm_ops = {
3573         SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3574         SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3575 };
3576
3577 static struct platform_driver fec_driver = {
3578         .driver = {
3579                 .name   = DRIVER_NAME,
3580                 .pm     = &fec_pm_ops,
3581                 .of_match_table = fec_dt_ids,
3582         },
3583         .id_table = fec_devtype,
3584         .probe  = fec_probe,
3585         .remove = fec_drv_remove,
3586 };
3587
3588 module_platform_driver(fec_driver);
3589
3590 MODULE_ALIAS("platform:"DRIVER_NAME);
3591 MODULE_LICENSE("GPL");