]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92 #endif
93         { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99
100 #define TX_TIMEOUT              (5 * HZ)
101
102 static void qede_remove(struct pci_dev *pdev);
103 static int qede_alloc_rx_buffer(struct qede_dev *edev,
104                                 struct qede_rx_queue *rxq);
105 static void qede_link_update(void *dev, struct qed_link_output *link);
106
107 #ifdef CONFIG_QED_SRIOV
108 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
109 {
110         struct qede_dev *edev = netdev_priv(ndev);
111
112         if (vlan > 4095) {
113                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
114                 return -EINVAL;
115         }
116
117         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
118                    vlan, vf);
119
120         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
121 }
122
123 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
124 {
125         struct qede_dev *edev = netdev_priv(ndev);
126
127         DP_VERBOSE(edev, QED_MSG_IOV,
128                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
129                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
130
131         if (!is_valid_ether_addr(mac)) {
132                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
133                 return -EINVAL;
134         }
135
136         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
137 }
138
139 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
140 {
141         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
142         struct qed_dev_info *qed_info = &edev->dev_info.common;
143         int rc;
144
145         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
146
147         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
148
149         /* Enable/Disable Tx switching for PF */
150         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
151             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
152                 struct qed_update_vport_params params;
153
154                 memset(&params, 0, sizeof(params));
155                 params.vport_id = 0;
156                 params.update_tx_switching_flg = 1;
157                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
158                 edev->ops->vport_update(edev->cdev, &params);
159         }
160
161         return rc;
162 }
163 #endif
164
165 static struct pci_driver qede_pci_driver = {
166         .name = "qede",
167         .id_table = qede_pci_tbl,
168         .probe = qede_probe,
169         .remove = qede_remove,
170 #ifdef CONFIG_QED_SRIOV
171         .sriov_configure = qede_sriov_configure,
172 #endif
173 };
174
175 static void qede_force_mac(void *dev, u8 *mac)
176 {
177         struct qede_dev *edev = dev;
178
179         ether_addr_copy(edev->ndev->dev_addr, mac);
180         ether_addr_copy(edev->primary_mac, mac);
181 }
182
183 static struct qed_eth_cb_ops qede_ll_ops = {
184         {
185                 .link_update = qede_link_update,
186         },
187         .force_mac = qede_force_mac,
188 };
189
190 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
191                              void *ptr)
192 {
193         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
194         struct ethtool_drvinfo drvinfo;
195         struct qede_dev *edev;
196
197         /* Currently only support name change */
198         if (event != NETDEV_CHANGENAME)
199                 goto done;
200
201         /* Check whether this is a qede device */
202         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
203                 goto done;
204
205         memset(&drvinfo, 0, sizeof(drvinfo));
206         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
207         if (strcmp(drvinfo.driver, "qede"))
208                 goto done;
209         edev = netdev_priv(ndev);
210
211         /* Notify qed of the name change */
212         if (!edev->ops || !edev->ops->common)
213                 goto done;
214         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
215                                   "qede");
216
217 done:
218         return NOTIFY_DONE;
219 }
220
221 static struct notifier_block qede_netdev_notifier = {
222         .notifier_call = qede_netdev_event,
223 };
224
225 static
226 int __init qede_init(void)
227 {
228         int ret;
229
230         pr_notice("qede_init: %s\n", version);
231
232         qed_ops = qed_get_eth_ops();
233         if (!qed_ops) {
234                 pr_notice("Failed to get qed ethtool operations\n");
235                 return -EINVAL;
236         }
237
238         /* Must register notifier before pci ops, since we might miss
239          * interface rename after pci probe and netdev registeration.
240          */
241         ret = register_netdevice_notifier(&qede_netdev_notifier);
242         if (ret) {
243                 pr_notice("Failed to register netdevice_notifier\n");
244                 qed_put_eth_ops();
245                 return -EINVAL;
246         }
247
248         ret = pci_register_driver(&qede_pci_driver);
249         if (ret) {
250                 pr_notice("Failed to register driver\n");
251                 unregister_netdevice_notifier(&qede_netdev_notifier);
252                 qed_put_eth_ops();
253                 return -EINVAL;
254         }
255
256         return 0;
257 }
258
259 static void __exit qede_cleanup(void)
260 {
261         pr_notice("qede_cleanup called\n");
262
263         unregister_netdevice_notifier(&qede_netdev_notifier);
264         pci_unregister_driver(&qede_pci_driver);
265         qed_put_eth_ops();
266 }
267
268 module_init(qede_init);
269 module_exit(qede_cleanup);
270
271 /* -------------------------------------------------------------------------
272  * START OF FAST-PATH
273  * -------------------------------------------------------------------------
274  */
275
276 /* Unmap the data and free skb */
277 static int qede_free_tx_pkt(struct qede_dev *edev,
278                             struct qede_tx_queue *txq,
279                             int *len)
280 {
281         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
282         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
283         struct eth_tx_1st_bd *first_bd;
284         struct eth_tx_bd *tx_data_bd;
285         int bds_consumed = 0;
286         int nbds;
287         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
288         int i, split_bd_len = 0;
289
290         if (unlikely(!skb)) {
291                 DP_ERR(edev,
292                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
293                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
294                 return -1;
295         }
296
297         *len = skb->len;
298
299         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
300
301         bds_consumed++;
302
303         nbds = first_bd->data.nbds;
304
305         if (data_split) {
306                 struct eth_tx_bd *split = (struct eth_tx_bd *)
307                         qed_chain_consume(&txq->tx_pbl);
308                 split_bd_len = BD_UNMAP_LEN(split);
309                 bds_consumed++;
310         }
311         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
312                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
313
314         /* Unmap the data of the skb frags */
315         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
316                 tx_data_bd = (struct eth_tx_bd *)
317                         qed_chain_consume(&txq->tx_pbl);
318                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
319                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
320         }
321
322         while (bds_consumed++ < nbds)
323                 qed_chain_consume(&txq->tx_pbl);
324
325         /* Free skb */
326         dev_kfree_skb_any(skb);
327         txq->sw_tx_ring[idx].skb = NULL;
328         txq->sw_tx_ring[idx].flags = 0;
329
330         return 0;
331 }
332
333 /* Unmap the data and free skb when mapping failed during start_xmit */
334 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
335                                     struct qede_tx_queue *txq,
336                                     struct eth_tx_1st_bd *first_bd,
337                                     int nbd,
338                                     bool data_split)
339 {
340         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
341         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
342         struct eth_tx_bd *tx_data_bd;
343         int i, split_bd_len = 0;
344
345         /* Return prod to its position before this skb was handled */
346         qed_chain_set_prod(&txq->tx_pbl,
347                            le16_to_cpu(txq->tx_db.data.bd_prod),
348                            first_bd);
349
350         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
351
352         if (data_split) {
353                 struct eth_tx_bd *split = (struct eth_tx_bd *)
354                                           qed_chain_produce(&txq->tx_pbl);
355                 split_bd_len = BD_UNMAP_LEN(split);
356                 nbd--;
357         }
358
359         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
360                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
361
362         /* Unmap the data of the skb frags */
363         for (i = 0; i < nbd; i++) {
364                 tx_data_bd = (struct eth_tx_bd *)
365                         qed_chain_produce(&txq->tx_pbl);
366                 if (tx_data_bd->nbytes)
367                         dma_unmap_page(&edev->pdev->dev,
368                                        BD_UNMAP_ADDR(tx_data_bd),
369                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
370         }
371
372         /* Return again prod to its position before this skb was handled */
373         qed_chain_set_prod(&txq->tx_pbl,
374                            le16_to_cpu(txq->tx_db.data.bd_prod),
375                            first_bd);
376
377         /* Free skb */
378         dev_kfree_skb_any(skb);
379         txq->sw_tx_ring[idx].skb = NULL;
380         txq->sw_tx_ring[idx].flags = 0;
381 }
382
383 static u32 qede_xmit_type(struct qede_dev *edev,
384                           struct sk_buff *skb,
385                           int *ipv6_ext)
386 {
387         u32 rc = XMIT_L4_CSUM;
388         __be16 l3_proto;
389
390         if (skb->ip_summed != CHECKSUM_PARTIAL)
391                 return XMIT_PLAIN;
392
393         l3_proto = vlan_get_protocol(skb);
394         if (l3_proto == htons(ETH_P_IPV6) &&
395             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
396                 *ipv6_ext = 1;
397
398         if (skb->encapsulation)
399                 rc |= XMIT_ENC;
400
401         if (skb_is_gso(skb))
402                 rc |= XMIT_LSO;
403
404         return rc;
405 }
406
407 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
408                                          struct eth_tx_2nd_bd *second_bd,
409                                          struct eth_tx_3rd_bd *third_bd)
410 {
411         u8 l4_proto;
412         u16 bd2_bits1 = 0, bd2_bits2 = 0;
413
414         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
415
416         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
417                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
418                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
419
420         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
421                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
422
423         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
424                 l4_proto = ipv6_hdr(skb)->nexthdr;
425         else
426                 l4_proto = ip_hdr(skb)->protocol;
427
428         if (l4_proto == IPPROTO_UDP)
429                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
430
431         if (third_bd)
432                 third_bd->data.bitfields |=
433                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
434                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
435                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
436
437         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
438         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
439 }
440
441 static int map_frag_to_bd(struct qede_dev *edev,
442                           skb_frag_t *frag,
443                           struct eth_tx_bd *bd)
444 {
445         dma_addr_t mapping;
446
447         /* Map skb non-linear frag data for DMA */
448         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
449                                    skb_frag_size(frag),
450                                    DMA_TO_DEVICE);
451         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
452                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
453                 return -ENOMEM;
454         }
455
456         /* Setup the data pointer of the frag data */
457         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
458
459         return 0;
460 }
461
462 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
463 {
464         if (is_encap_pkt)
465                 return (skb_inner_transport_header(skb) +
466                         inner_tcp_hdrlen(skb) - skb->data);
467         else
468                 return (skb_transport_header(skb) +
469                         tcp_hdrlen(skb) - skb->data);
470 }
471
472 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
473 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
474 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
475                              u8 xmit_type)
476 {
477         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
478
479         if (xmit_type & XMIT_LSO) {
480                 int hlen;
481
482                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
483
484                 /* linear payload would require its own BD */
485                 if (skb_headlen(skb) > hlen)
486                         allowed_frags--;
487         }
488
489         return (skb_shinfo(skb)->nr_frags > allowed_frags);
490 }
491 #endif
492
493 /* Main transmit function */
494 static
495 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
496                             struct net_device *ndev)
497 {
498         struct qede_dev *edev = netdev_priv(ndev);
499         struct netdev_queue *netdev_txq;
500         struct qede_tx_queue *txq;
501         struct eth_tx_1st_bd *first_bd;
502         struct eth_tx_2nd_bd *second_bd = NULL;
503         struct eth_tx_3rd_bd *third_bd = NULL;
504         struct eth_tx_bd *tx_data_bd = NULL;
505         u16 txq_index;
506         u8 nbd = 0;
507         dma_addr_t mapping;
508         int rc, frag_idx = 0, ipv6_ext = 0;
509         u8 xmit_type;
510         u16 idx;
511         u16 hlen;
512         bool data_split = false;
513
514         /* Get tx-queue context and netdev index */
515         txq_index = skb_get_queue_mapping(skb);
516         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
517         txq = QEDE_TX_QUEUE(edev, txq_index);
518         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
519
520         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
521                                (MAX_SKB_FRAGS + 1));
522
523         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
524
525 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
526         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
527                 if (skb_linearize(skb)) {
528                         DP_NOTICE(edev,
529                                   "SKB linearization failed - silently dropping this SKB\n");
530                         dev_kfree_skb_any(skb);
531                         return NETDEV_TX_OK;
532                 }
533         }
534 #endif
535
536         /* Fill the entry in the SW ring and the BDs in the FW ring */
537         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
538         txq->sw_tx_ring[idx].skb = skb;
539         first_bd = (struct eth_tx_1st_bd *)
540                    qed_chain_produce(&txq->tx_pbl);
541         memset(first_bd, 0, sizeof(*first_bd));
542         first_bd->data.bd_flags.bitfields =
543                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
544
545         /* Map skb linear data for DMA and set in the first BD */
546         mapping = dma_map_single(&edev->pdev->dev, skb->data,
547                                  skb_headlen(skb), DMA_TO_DEVICE);
548         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
549                 DP_NOTICE(edev, "SKB mapping failed\n");
550                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
551                 return NETDEV_TX_OK;
552         }
553         nbd++;
554         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
555
556         /* In case there is IPv6 with extension headers or LSO we need 2nd and
557          * 3rd BDs.
558          */
559         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
560                 second_bd = (struct eth_tx_2nd_bd *)
561                         qed_chain_produce(&txq->tx_pbl);
562                 memset(second_bd, 0, sizeof(*second_bd));
563
564                 nbd++;
565                 third_bd = (struct eth_tx_3rd_bd *)
566                         qed_chain_produce(&txq->tx_pbl);
567                 memset(third_bd, 0, sizeof(*third_bd));
568
569                 nbd++;
570                 /* We need to fill in additional data in second_bd... */
571                 tx_data_bd = (struct eth_tx_bd *)second_bd;
572         }
573
574         if (skb_vlan_tag_present(skb)) {
575                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
576                 first_bd->data.bd_flags.bitfields |=
577                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
578         }
579
580         /* Fill the parsing flags & params according to the requested offload */
581         if (xmit_type & XMIT_L4_CSUM) {
582                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
583
584                 /* We don't re-calculate IP checksum as it is already done by
585                  * the upper stack
586                  */
587                 first_bd->data.bd_flags.bitfields |=
588                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
589
590                 if (xmit_type & XMIT_ENC) {
591                         first_bd->data.bd_flags.bitfields |=
592                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
593                 } else {
594                         /* In cases when OS doesn't indicate for inner offloads
595                          * when packet is tunnelled, we need to override the HW
596                          * tunnel configuration so that packets are treated as
597                          * regular non tunnelled packets and no inner offloads
598                          * are done by the hardware.
599                          */
600                         first_bd->data.bitfields |= cpu_to_le16(temp);
601                 }
602
603                 /* If the packet is IPv6 with extension header, indicate that
604                  * to FW and pass few params, since the device cracker doesn't
605                  * support parsing IPv6 with extension header/s.
606                  */
607                 if (unlikely(ipv6_ext))
608                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
609         }
610
611         if (xmit_type & XMIT_LSO) {
612                 first_bd->data.bd_flags.bitfields |=
613                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
614                 third_bd->data.lso_mss =
615                         cpu_to_le16(skb_shinfo(skb)->gso_size);
616
617                 if (unlikely(xmit_type & XMIT_ENC)) {
618                         first_bd->data.bd_flags.bitfields |=
619                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
620                         hlen = qede_get_skb_hlen(skb, true);
621                 } else {
622                         first_bd->data.bd_flags.bitfields |=
623                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
624                         hlen = qede_get_skb_hlen(skb, false);
625                 }
626
627                 /* @@@TBD - if will not be removed need to check */
628                 third_bd->data.bitfields |=
629                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
630
631                 /* Make life easier for FW guys who can't deal with header and
632                  * data on same BD. If we need to split, use the second bd...
633                  */
634                 if (unlikely(skb_headlen(skb) > hlen)) {
635                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
636                                    "TSO split header size is %d (%x:%x)\n",
637                                    first_bd->nbytes, first_bd->addr.hi,
638                                    first_bd->addr.lo);
639
640                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
641                                            le32_to_cpu(first_bd->addr.lo)) +
642                                            hlen;
643
644                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
645                                               le16_to_cpu(first_bd->nbytes) -
646                                               hlen);
647
648                         /* this marks the BD as one that has no
649                          * individual mapping
650                          */
651                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
652
653                         first_bd->nbytes = cpu_to_le16(hlen);
654
655                         tx_data_bd = (struct eth_tx_bd *)third_bd;
656                         data_split = true;
657                 }
658         }
659
660         /* Handle fragmented skb */
661         /* special handle for frags inside 2nd and 3rd bds.. */
662         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
663                 rc = map_frag_to_bd(edev,
664                                     &skb_shinfo(skb)->frags[frag_idx],
665                                     tx_data_bd);
666                 if (rc) {
667                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
668                                                 data_split);
669                         return NETDEV_TX_OK;
670                 }
671
672                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
673                         tx_data_bd = (struct eth_tx_bd *)third_bd;
674                 else
675                         tx_data_bd = NULL;
676
677                 frag_idx++;
678         }
679
680         /* map last frags into 4th, 5th .... */
681         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
682                 tx_data_bd = (struct eth_tx_bd *)
683                              qed_chain_produce(&txq->tx_pbl);
684
685                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
686
687                 rc = map_frag_to_bd(edev,
688                                     &skb_shinfo(skb)->frags[frag_idx],
689                                     tx_data_bd);
690                 if (rc) {
691                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
692                                                 data_split);
693                         return NETDEV_TX_OK;
694                 }
695         }
696
697         /* update the first BD with the actual num BDs */
698         first_bd->data.nbds = nbd;
699
700         netdev_tx_sent_queue(netdev_txq, skb->len);
701
702         skb_tx_timestamp(skb);
703
704         /* Advance packet producer only before sending the packet since mapping
705          * of pages may fail.
706          */
707         txq->sw_tx_prod++;
708
709         /* 'next page' entries are counted in the producer value */
710         txq->tx_db.data.bd_prod =
711                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
712
713         /* wmb makes sure that the BDs data is updated before updating the
714          * producer, otherwise FW may read old data from the BDs.
715          */
716         wmb();
717         barrier();
718         writel(txq->tx_db.raw, txq->doorbell_addr);
719
720         /* mmiowb is needed to synchronize doorbell writes from more than one
721          * processor. It guarantees that the write arrives to the device before
722          * the queue lock is released and another start_xmit is called (possibly
723          * on another CPU). Without this barrier, the next doorbell can bypass
724          * this doorbell. This is applicable to IA64/Altix systems.
725          */
726         mmiowb();
727
728         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729                       < (MAX_SKB_FRAGS + 1))) {
730                 netif_tx_stop_queue(netdev_txq);
731                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
732                            "Stop queue was called\n");
733                 /* paired memory barrier is in qede_tx_int(), we have to keep
734                  * ordering of set_bit() in netif_tx_stop_queue() and read of
735                  * fp->bd_tx_cons
736                  */
737                 smp_mb();
738
739                 if (qed_chain_get_elem_left(&txq->tx_pbl)
740                      >= (MAX_SKB_FRAGS + 1) &&
741                     (edev->state == QEDE_STATE_OPEN)) {
742                         netif_tx_wake_queue(netdev_txq);
743                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
744                                    "Wake queue was called\n");
745                 }
746         }
747
748         return NETDEV_TX_OK;
749 }
750
751 int qede_txq_has_work(struct qede_tx_queue *txq)
752 {
753         u16 hw_bd_cons;
754
755         /* Tell compiler that consumer and producer can change */
756         barrier();
757         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
758         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
759                 return 0;
760
761         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
762 }
763
764 static int qede_tx_int(struct qede_dev *edev,
765                        struct qede_tx_queue *txq)
766 {
767         struct netdev_queue *netdev_txq;
768         u16 hw_bd_cons;
769         unsigned int pkts_compl = 0, bytes_compl = 0;
770         int rc;
771
772         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
773
774         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
775         barrier();
776
777         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
778                 int len = 0;
779
780                 rc = qede_free_tx_pkt(edev, txq, &len);
781                 if (rc) {
782                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
783                                   hw_bd_cons,
784                                   qed_chain_get_cons_idx(&txq->tx_pbl));
785                         break;
786                 }
787
788                 bytes_compl += len;
789                 pkts_compl++;
790                 txq->sw_tx_cons++;
791         }
792
793         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
794
795         /* Need to make the tx_bd_cons update visible to start_xmit()
796          * before checking for netif_tx_queue_stopped().  Without the
797          * memory barrier, there is a small possibility that
798          * start_xmit() will miss it and cause the queue to be stopped
799          * forever.
800          * On the other hand we need an rmb() here to ensure the proper
801          * ordering of bit testing in the following
802          * netif_tx_queue_stopped(txq) call.
803          */
804         smp_mb();
805
806         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
807                 /* Taking tx_lock is needed to prevent reenabling the queue
808                  * while it's empty. This could have happen if rx_action() gets
809                  * suspended in qede_tx_int() after the condition before
810                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
811                  *
812                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
813                  * sends some packets consuming the whole queue again->
814                  * stops the queue
815                  */
816
817                 __netif_tx_lock(netdev_txq, smp_processor_id());
818
819                 if ((netif_tx_queue_stopped(netdev_txq)) &&
820                     (edev->state == QEDE_STATE_OPEN) &&
821                     (qed_chain_get_elem_left(&txq->tx_pbl)
822                       >= (MAX_SKB_FRAGS + 1))) {
823                         netif_tx_wake_queue(netdev_txq);
824                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
825                                    "Wake queue was called\n");
826                 }
827
828                 __netif_tx_unlock(netdev_txq);
829         }
830
831         return 0;
832 }
833
834 bool qede_has_rx_work(struct qede_rx_queue *rxq)
835 {
836         u16 hw_comp_cons, sw_comp_cons;
837
838         /* Tell compiler that status block fields can change */
839         barrier();
840
841         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
842         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
843
844         return hw_comp_cons != sw_comp_cons;
845 }
846
847 static bool qede_has_tx_work(struct qede_fastpath *fp)
848 {
849         u8 tc;
850
851         for (tc = 0; tc < fp->edev->num_tc; tc++)
852                 if (qede_txq_has_work(&fp->txqs[tc]))
853                         return true;
854         return false;
855 }
856
857 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
858 {
859         qed_chain_consume(&rxq->rx_bd_ring);
860         rxq->sw_rx_cons++;
861 }
862
863 /* This function reuses the buffer(from an offset) from
864  * consumer index to producer index in the bd ring
865  */
866 static inline void qede_reuse_page(struct qede_dev *edev,
867                                    struct qede_rx_queue *rxq,
868                                    struct sw_rx_data *curr_cons)
869 {
870         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
871         struct sw_rx_data *curr_prod;
872         dma_addr_t new_mapping;
873
874         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
875         *curr_prod = *curr_cons;
876
877         new_mapping = curr_prod->mapping + curr_prod->page_offset;
878
879         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
880         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
881
882         rxq->sw_rx_prod++;
883         curr_cons->data = NULL;
884 }
885
886 /* In case of allocation failures reuse buffers
887  * from consumer index to produce buffers for firmware
888  */
889 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
890                              struct qede_dev *edev, u8 count)
891 {
892         struct sw_rx_data *curr_cons;
893
894         for (; count > 0; count--) {
895                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
896                 qede_reuse_page(edev, rxq, curr_cons);
897                 qede_rx_bd_ring_consume(rxq);
898         }
899 }
900
901 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
902                                          struct qede_rx_queue *rxq,
903                                          struct sw_rx_data *curr_cons)
904 {
905         /* Move to the next segment in the page */
906         curr_cons->page_offset += rxq->rx_buf_seg_size;
907
908         if (curr_cons->page_offset == PAGE_SIZE) {
909                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
910                         /* Since we failed to allocate new buffer
911                          * current buffer can be used again.
912                          */
913                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
914
915                         return -ENOMEM;
916                 }
917
918                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
919                                PAGE_SIZE, DMA_FROM_DEVICE);
920         } else {
921                 /* Increment refcount of the page as we don't want
922                  * network stack to take the ownership of the page
923                  * which can be recycled multiple times by the driver.
924                  */
925                 page_ref_inc(curr_cons->data);
926                 qede_reuse_page(edev, rxq, curr_cons);
927         }
928
929         return 0;
930 }
931
932 static inline void qede_update_rx_prod(struct qede_dev *edev,
933                                        struct qede_rx_queue *rxq)
934 {
935         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
936         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
937         struct eth_rx_prod_data rx_prods = {0};
938
939         /* Update producers */
940         rx_prods.bd_prod = cpu_to_le16(bd_prod);
941         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
942
943         /* Make sure that the BD and SGE data is updated before updating the
944          * producers since FW might read the BD/SGE right after the producer
945          * is updated.
946          */
947         wmb();
948
949         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
950                         (u32 *)&rx_prods);
951
952         /* mmiowb is needed to synchronize doorbell writes from more than one
953          * processor. It guarantees that the write arrives to the device before
954          * the napi lock is released and another qede_poll is called (possibly
955          * on another CPU). Without this barrier, the next doorbell can bypass
956          * this doorbell. This is applicable to IA64/Altix systems.
957          */
958         mmiowb();
959 }
960
961 static u32 qede_get_rxhash(struct qede_dev *edev,
962                            u8 bitfields,
963                            __le32 rss_hash,
964                            enum pkt_hash_types *rxhash_type)
965 {
966         enum rss_hash_type htype;
967
968         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
969
970         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
971                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
972                                 (htype == RSS_HASH_TYPE_IPV6)) ?
973                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
974                 return le32_to_cpu(rss_hash);
975         }
976         *rxhash_type = PKT_HASH_TYPE_NONE;
977         return 0;
978 }
979
980 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
981 {
982         skb_checksum_none_assert(skb);
983
984         if (csum_flag & QEDE_CSUM_UNNECESSARY)
985                 skb->ip_summed = CHECKSUM_UNNECESSARY;
986
987         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
988                 skb->csum_level = 1;
989 }
990
991 static inline void qede_skb_receive(struct qede_dev *edev,
992                                     struct qede_fastpath *fp,
993                                     struct sk_buff *skb,
994                                     u16 vlan_tag)
995 {
996         if (vlan_tag)
997                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
998                                        vlan_tag);
999
1000         napi_gro_receive(&fp->napi, skb);
1001 }
1002
1003 static void qede_set_gro_params(struct qede_dev *edev,
1004                                 struct sk_buff *skb,
1005                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1006 {
1007         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1008
1009         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1010             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1011                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1012         else
1013                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1014
1015         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1016                                         cqe->header_len;
1017 }
1018
1019 static int qede_fill_frag_skb(struct qede_dev *edev,
1020                               struct qede_rx_queue *rxq,
1021                               u8 tpa_agg_index,
1022                               u16 len_on_bd)
1023 {
1024         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1025                                                          NUM_RX_BDS_MAX];
1026         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1027         struct sk_buff *skb = tpa_info->skb;
1028
1029         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1030                 goto out;
1031
1032         /* Add one frag and update the appropriate fields in the skb */
1033         skb_fill_page_desc(skb, tpa_info->frag_id++,
1034                            current_bd->data, current_bd->page_offset,
1035                            len_on_bd);
1036
1037         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1038                 /* Incr page ref count to reuse on allocation failure
1039                  * so that it doesn't get freed while freeing SKB.
1040                  */
1041                 page_ref_inc(current_bd->data);
1042                 goto out;
1043         }
1044
1045         qed_chain_consume(&rxq->rx_bd_ring);
1046         rxq->sw_rx_cons++;
1047
1048         skb->data_len += len_on_bd;
1049         skb->truesize += rxq->rx_buf_seg_size;
1050         skb->len += len_on_bd;
1051
1052         return 0;
1053
1054 out:
1055         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1056         qede_recycle_rx_bd_ring(rxq, edev, 1);
1057         return -ENOMEM;
1058 }
1059
1060 static void qede_tpa_start(struct qede_dev *edev,
1061                            struct qede_rx_queue *rxq,
1062                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1063 {
1064         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1065         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1066         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1067         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1068         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1069         struct sw_rx_data *sw_rx_data_cons;
1070         struct sw_rx_data *sw_rx_data_prod;
1071         enum pkt_hash_types rxhash_type;
1072         u32 rxhash;
1073
1074         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1075         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1076
1077         /* Use pre-allocated replacement buffer - we can't release the agg.
1078          * start until its over and we don't want to risk allocation failing
1079          * here, so re-allocate when aggregation will be over.
1080          */
1081         sw_rx_data_prod->mapping = replace_buf->mapping;
1082
1083         sw_rx_data_prod->data = replace_buf->data;
1084         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1085         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1086         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1087
1088         rxq->sw_rx_prod++;
1089
1090         /* move partial skb from cons to pool (don't unmap yet)
1091          * save mapping, incase we drop the packet later on.
1092          */
1093         tpa_info->start_buf = *sw_rx_data_cons;
1094         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1095                            le32_to_cpu(rx_bd_cons->addr.lo));
1096
1097         tpa_info->start_buf_mapping = mapping;
1098         rxq->sw_rx_cons++;
1099
1100         /* set tpa state to start only if we are able to allocate skb
1101          * for this aggregation, otherwise mark as error and aggregation will
1102          * be dropped
1103          */
1104         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1105                                          le16_to_cpu(cqe->len_on_first_bd));
1106         if (unlikely(!tpa_info->skb)) {
1107                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1108                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1109                 goto cons_buf;
1110         }
1111
1112         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1113         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1114
1115         /* Start filling in the aggregation info */
1116         tpa_info->frag_id = 0;
1117         tpa_info->agg_state = QEDE_AGG_STATE_START;
1118
1119         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1120                                  cqe->rss_hash, &rxhash_type);
1121         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1122         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1123              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1124                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1125                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1126         else
1127                 tpa_info->vlan_tag = 0;
1128
1129         /* This is needed in order to enable forwarding support */
1130         qede_set_gro_params(edev, tpa_info->skb, cqe);
1131
1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1133         if (likely(cqe->ext_bd_len_list[0]))
1134                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1135                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1136
1137         if (unlikely(cqe->ext_bd_len_list[1])) {
1138                 DP_ERR(edev,
1139                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1140                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1141         }
1142 }
1143
1144 #ifdef CONFIG_INET
1145 static void qede_gro_ip_csum(struct sk_buff *skb)
1146 {
1147         const struct iphdr *iph = ip_hdr(skb);
1148         struct tcphdr *th;
1149
1150         skb_set_transport_header(skb, sizeof(struct iphdr));
1151         th = tcp_hdr(skb);
1152
1153         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1154                                   iph->saddr, iph->daddr, 0);
1155
1156         tcp_gro_complete(skb);
1157 }
1158
1159 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1160 {
1161         struct ipv6hdr *iph = ipv6_hdr(skb);
1162         struct tcphdr *th;
1163
1164         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1165         th = tcp_hdr(skb);
1166
1167         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1168                                   &iph->saddr, &iph->daddr, 0);
1169         tcp_gro_complete(skb);
1170 }
1171 #endif
1172
1173 static void qede_gro_receive(struct qede_dev *edev,
1174                              struct qede_fastpath *fp,
1175                              struct sk_buff *skb,
1176                              u16 vlan_tag)
1177 {
1178         /* FW can send a single MTU sized packet from gro flow
1179          * due to aggregation timeout/last segment etc. which
1180          * is not expected to be a gro packet. If a skb has zero
1181          * frags then simply push it in the stack as non gso skb.
1182          */
1183         if (unlikely(!skb->data_len)) {
1184                 skb_shinfo(skb)->gso_type = 0;
1185                 skb_shinfo(skb)->gso_size = 0;
1186                 goto send_skb;
1187         }
1188
1189 #ifdef CONFIG_INET
1190         if (skb_shinfo(skb)->gso_size) {
1191                 skb_set_network_header(skb, 0);
1192
1193                 switch (skb->protocol) {
1194                 case htons(ETH_P_IP):
1195                         qede_gro_ip_csum(skb);
1196                         break;
1197                 case htons(ETH_P_IPV6):
1198                         qede_gro_ipv6_csum(skb);
1199                         break;
1200                 default:
1201                         DP_ERR(edev,
1202                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1203                                ntohs(skb->protocol));
1204                 }
1205         }
1206 #endif
1207
1208 send_skb:
1209         skb_record_rx_queue(skb, fp->rss_id);
1210         qede_skb_receive(edev, fp, skb, vlan_tag);
1211 }
1212
1213 static inline void qede_tpa_cont(struct qede_dev *edev,
1214                                  struct qede_rx_queue *rxq,
1215                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1216 {
1217         int i;
1218
1219         for (i = 0; cqe->len_list[i]; i++)
1220                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1221                                    le16_to_cpu(cqe->len_list[i]));
1222
1223         if (unlikely(i > 1))
1224                 DP_ERR(edev,
1225                        "Strange - TPA cont with more than a single len_list entry\n");
1226 }
1227
1228 static void qede_tpa_end(struct qede_dev *edev,
1229                          struct qede_fastpath *fp,
1230                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1231 {
1232         struct qede_rx_queue *rxq = fp->rxq;
1233         struct qede_agg_info *tpa_info;
1234         struct sk_buff *skb;
1235         int i;
1236
1237         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1238         skb = tpa_info->skb;
1239
1240         for (i = 0; cqe->len_list[i]; i++)
1241                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1242                                    le16_to_cpu(cqe->len_list[i]));
1243         if (unlikely(i > 1))
1244                 DP_ERR(edev,
1245                        "Strange - TPA emd with more than a single len_list entry\n");
1246
1247         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1248                 goto err;
1249
1250         /* Sanity */
1251         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1252                 DP_ERR(edev,
1253                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1254                        cqe->num_of_bds, tpa_info->frag_id);
1255         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1256                 DP_ERR(edev,
1257                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1258                        le16_to_cpu(cqe->total_packet_len), skb->len);
1259
1260         memcpy(skb->data,
1261                page_address(tpa_info->start_buf.data) +
1262                 tpa_info->start_cqe.placement_offset +
1263                 tpa_info->start_buf.page_offset,
1264                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1265
1266         /* Recycle [mapped] start buffer for the next replacement */
1267         tpa_info->replace_buf = tpa_info->start_buf;
1268         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1269
1270         /* Finalize the SKB */
1271         skb->protocol = eth_type_trans(skb, edev->ndev);
1272         skb->ip_summed = CHECKSUM_UNNECESSARY;
1273
1274         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1275          * to skb_shinfo(skb)->gso_segs
1276          */
1277         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1278
1279         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1280
1281         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1282
1283         return;
1284 err:
1285         /* The BD starting the aggregation is still mapped; Re-use it for
1286          * future aggregations [as replacement buffer]
1287          */
1288         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1289                sizeof(struct sw_rx_data));
1290         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1291         tpa_info->start_buf.data = NULL;
1292         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1293         dev_kfree_skb_any(tpa_info->skb);
1294         tpa_info->skb = NULL;
1295 }
1296
1297 static bool qede_tunn_exist(u16 flag)
1298 {
1299         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1300                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1301 }
1302
1303 static u8 qede_check_tunn_csum(u16 flag)
1304 {
1305         u16 csum_flag = 0;
1306         u8 tcsum = 0;
1307
1308         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1309                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1310                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1311                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1312
1313         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1314                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1315                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1316                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1317                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1318         }
1319
1320         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1321                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1322                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1323                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1324
1325         if (csum_flag & flag)
1326                 return QEDE_CSUM_ERROR;
1327
1328         return QEDE_CSUM_UNNECESSARY | tcsum;
1329 }
1330
1331 static u8 qede_check_notunn_csum(u16 flag)
1332 {
1333         u16 csum_flag = 0;
1334         u8 csum = 0;
1335
1336         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1337                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1338                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1339                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1340                 csum = QEDE_CSUM_UNNECESSARY;
1341         }
1342
1343         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1344                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1345
1346         if (csum_flag & flag)
1347                 return QEDE_CSUM_ERROR;
1348
1349         return csum;
1350 }
1351
1352 static u8 qede_check_csum(u16 flag)
1353 {
1354         if (!qede_tunn_exist(flag))
1355                 return qede_check_notunn_csum(flag);
1356         else
1357                 return qede_check_tunn_csum(flag);
1358 }
1359
1360 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1361 {
1362         struct qede_dev *edev = fp->edev;
1363         struct qede_rx_queue *rxq = fp->rxq;
1364
1365         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1366         int rx_pkt = 0;
1367         u8 csum_flag;
1368
1369         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1370         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1371
1372         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1373          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1374          * read before it is written by FW, then FW writes CQE and SB, and then
1375          * the CPU reads the hw_comp_cons, it will use an old CQE.
1376          */
1377         rmb();
1378
1379         /* Loop to complete all indicated BDs */
1380         while (sw_comp_cons != hw_comp_cons) {
1381                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1382                 enum pkt_hash_types rxhash_type;
1383                 enum eth_rx_cqe_type cqe_type;
1384                 struct sw_rx_data *sw_rx_data;
1385                 union eth_rx_cqe *cqe;
1386                 struct sk_buff *skb;
1387                 struct page *data;
1388                 __le16 flags;
1389                 u16 len, pad;
1390                 u32 rx_hash;
1391
1392                 /* Get the CQE from the completion ring */
1393                 cqe = (union eth_rx_cqe *)
1394                         qed_chain_consume(&rxq->rx_comp_ring);
1395                 cqe_type = cqe->fast_path_regular.type;
1396
1397                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1398                         edev->ops->eth_cqe_completion(
1399                                         edev->cdev, fp->rss_id,
1400                                         (struct eth_slow_path_rx_cqe *)cqe);
1401                         goto next_cqe;
1402                 }
1403
1404                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1405                         switch (cqe_type) {
1406                         case ETH_RX_CQE_TYPE_TPA_START:
1407                                 qede_tpa_start(edev, rxq,
1408                                                &cqe->fast_path_tpa_start);
1409                                 goto next_cqe;
1410                         case ETH_RX_CQE_TYPE_TPA_CONT:
1411                                 qede_tpa_cont(edev, rxq,
1412                                               &cqe->fast_path_tpa_cont);
1413                                 goto next_cqe;
1414                         case ETH_RX_CQE_TYPE_TPA_END:
1415                                 qede_tpa_end(edev, fp,
1416                                              &cqe->fast_path_tpa_end);
1417                                 goto next_rx_only;
1418                         default:
1419                                 break;
1420                         }
1421                 }
1422
1423                 /* Get the data from the SW ring */
1424                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1425                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1426                 data = sw_rx_data->data;
1427
1428                 fp_cqe = &cqe->fast_path_regular;
1429                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1430                 pad = fp_cqe->placement_offset;
1431                 flags = cqe->fast_path_regular.pars_flags.flags;
1432
1433                 /* If this is an error packet then drop it */
1434                 parse_flag = le16_to_cpu(flags);
1435
1436                 csum_flag = qede_check_csum(parse_flag);
1437                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1438                         DP_NOTICE(edev,
1439                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1440                                   sw_comp_cons, parse_flag);
1441                         rxq->rx_hw_errors++;
1442                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1443                         goto next_cqe;
1444                 }
1445
1446                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1447                 if (unlikely(!skb)) {
1448                         DP_NOTICE(edev,
1449                                   "Build_skb failed, dropping incoming packet\n");
1450                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1451                         rxq->rx_alloc_errors++;
1452                         goto next_cqe;
1453                 }
1454
1455                 /* Copy data into SKB */
1456                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1457                         memcpy(skb_put(skb, len),
1458                                page_address(data) + pad +
1459                                 sw_rx_data->page_offset, len);
1460                         qede_reuse_page(edev, rxq, sw_rx_data);
1461                 } else {
1462                         struct skb_frag_struct *frag;
1463                         unsigned int pull_len;
1464                         unsigned char *va;
1465
1466                         frag = &skb_shinfo(skb)->frags[0];
1467
1468                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1469                                         pad + sw_rx_data->page_offset,
1470                                         len, rxq->rx_buf_seg_size);
1471
1472                         va = skb_frag_address(frag);
1473                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1474
1475                         /* Align the pull_len to optimize memcpy */
1476                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1477
1478                         skb_frag_size_sub(frag, pull_len);
1479                         frag->page_offset += pull_len;
1480                         skb->data_len -= pull_len;
1481                         skb->tail += pull_len;
1482
1483                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1484                                                             sw_rx_data))) {
1485                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1486                                 /* Incr page ref count to reuse on allocation
1487                                  * failure so that it doesn't get freed while
1488                                  * freeing SKB.
1489                                  */
1490
1491                                 page_ref_inc(sw_rx_data->data);
1492                                 rxq->rx_alloc_errors++;
1493                                 qede_recycle_rx_bd_ring(rxq, edev,
1494                                                         fp_cqe->bd_num);
1495                                 dev_kfree_skb_any(skb);
1496                                 goto next_cqe;
1497                         }
1498                 }
1499
1500                 qede_rx_bd_ring_consume(rxq);
1501
1502                 if (fp_cqe->bd_num != 1) {
1503                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1504                         u8 num_frags;
1505
1506                         pkt_len -= len;
1507
1508                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1509                              num_frags--) {
1510                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1511                                                 rxq->rx_buf_size : pkt_len;
1512                                 if (unlikely(!cur_size)) {
1513                                         DP_ERR(edev,
1514                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1515                                                num_frags);
1516                                         qede_recycle_rx_bd_ring(rxq, edev,
1517                                                                 num_frags);
1518                                         dev_kfree_skb_any(skb);
1519                                         goto next_cqe;
1520                                 }
1521
1522                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1523                                         qede_recycle_rx_bd_ring(rxq, edev,
1524                                                                 num_frags);
1525                                         dev_kfree_skb_any(skb);
1526                                         goto next_cqe;
1527                                 }
1528
1529                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1530                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1531                                 qede_rx_bd_ring_consume(rxq);
1532
1533                                 dma_unmap_page(&edev->pdev->dev,
1534                                                sw_rx_data->mapping,
1535                                                PAGE_SIZE, DMA_FROM_DEVICE);
1536
1537                                 skb_fill_page_desc(skb,
1538                                                    skb_shinfo(skb)->nr_frags++,
1539                                                    sw_rx_data->data, 0,
1540                                                    cur_size);
1541
1542                                 skb->truesize += PAGE_SIZE;
1543                                 skb->data_len += cur_size;
1544                                 skb->len += cur_size;
1545                                 pkt_len -= cur_size;
1546                         }
1547
1548                         if (unlikely(pkt_len))
1549                                 DP_ERR(edev,
1550                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1551                                        pkt_len);
1552                 }
1553
1554                 skb->protocol = eth_type_trans(skb, edev->ndev);
1555
1556                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1557                                           fp_cqe->rss_hash,
1558                                           &rxhash_type);
1559
1560                 skb_set_hash(skb, rx_hash, rxhash_type);
1561
1562                 qede_set_skb_csum(skb, csum_flag);
1563
1564                 skb_record_rx_queue(skb, fp->rss_id);
1565
1566                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1567 next_rx_only:
1568                 rx_pkt++;
1569
1570 next_cqe: /* don't consume bd rx buffer */
1571                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1572                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1573                 /* CR TPA - revisit how to handle budget in TPA perhaps
1574                  * increase on "end"
1575                  */
1576                 if (rx_pkt == budget)
1577                         break;
1578         } /* repeat while sw_comp_cons != hw_comp_cons... */
1579
1580         /* Update producers */
1581         qede_update_rx_prod(edev, rxq);
1582
1583         return rx_pkt;
1584 }
1585
1586 static int qede_poll(struct napi_struct *napi, int budget)
1587 {
1588         int work_done = 0;
1589         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1590                                                  napi);
1591         struct qede_dev *edev = fp->edev;
1592
1593         while (1) {
1594                 u8 tc;
1595
1596                 for (tc = 0; tc < edev->num_tc; tc++)
1597                         if (qede_txq_has_work(&fp->txqs[tc]))
1598                                 qede_tx_int(edev, &fp->txqs[tc]);
1599
1600                 if (qede_has_rx_work(fp->rxq)) {
1601                         work_done += qede_rx_int(fp, budget - work_done);
1602
1603                         /* must not complete if we consumed full budget */
1604                         if (work_done >= budget)
1605                                 break;
1606                 }
1607
1608                 /* Fall out from the NAPI loop if needed */
1609                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1610                         qed_sb_update_sb_idx(fp->sb_info);
1611                         /* *_has_*_work() reads the status block,
1612                          * thus we need to ensure that status block indices
1613                          * have been actually read (qed_sb_update_sb_idx)
1614                          * prior to this check (*_has_*_work) so that
1615                          * we won't write the "newer" value of the status block
1616                          * to HW (if there was a DMA right after
1617                          * qede_has_rx_work and if there is no rmb, the memory
1618                          * reading (qed_sb_update_sb_idx) may be postponed
1619                          * to right before *_ack_sb). In this case there
1620                          * will never be another interrupt until there is
1621                          * another update of the status block, while there
1622                          * is still unhandled work.
1623                          */
1624                         rmb();
1625
1626                         if (!(qede_has_rx_work(fp->rxq) ||
1627                               qede_has_tx_work(fp))) {
1628                                 napi_complete(napi);
1629                                 /* Update and reenable interrupts */
1630                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1631                                            1 /*update*/);
1632                                 break;
1633                         }
1634                 }
1635         }
1636
1637         return work_done;
1638 }
1639
1640 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1641 {
1642         struct qede_fastpath *fp = fp_cookie;
1643
1644         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1645
1646         napi_schedule_irqoff(&fp->napi);
1647         return IRQ_HANDLED;
1648 }
1649
1650 /* -------------------------------------------------------------------------
1651  * END OF FAST-PATH
1652  * -------------------------------------------------------------------------
1653  */
1654
1655 static int qede_open(struct net_device *ndev);
1656 static int qede_close(struct net_device *ndev);
1657 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1658 static void qede_set_rx_mode(struct net_device *ndev);
1659 static void qede_config_rx_mode(struct net_device *ndev);
1660
1661 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1662                                  enum qed_filter_xcast_params_type opcode,
1663                                  unsigned char mac[ETH_ALEN])
1664 {
1665         struct qed_filter_params filter_cmd;
1666
1667         memset(&filter_cmd, 0, sizeof(filter_cmd));
1668         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1669         filter_cmd.filter.ucast.type = opcode;
1670         filter_cmd.filter.ucast.mac_valid = 1;
1671         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1672
1673         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1674 }
1675
1676 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1677                                   enum qed_filter_xcast_params_type opcode,
1678                                   u16 vid)
1679 {
1680         struct qed_filter_params filter_cmd;
1681
1682         memset(&filter_cmd, 0, sizeof(filter_cmd));
1683         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1684         filter_cmd.filter.ucast.type = opcode;
1685         filter_cmd.filter.ucast.vlan_valid = 1;
1686         filter_cmd.filter.ucast.vlan = vid;
1687
1688         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1689 }
1690
1691 void qede_fill_by_demand_stats(struct qede_dev *edev)
1692 {
1693         struct qed_eth_stats stats;
1694
1695         edev->ops->get_vport_stats(edev->cdev, &stats);
1696         edev->stats.no_buff_discards = stats.no_buff_discards;
1697         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1698         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1699         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1700         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1701         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1702         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1703         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1704         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1705
1706         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1707         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1708         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1709         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1710         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1711         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1712         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1713         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1714         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1715         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1716         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1717         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1718
1719         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1720         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1721         edev->stats.rx_128_to_255_byte_packets =
1722                                 stats.rx_128_to_255_byte_packets;
1723         edev->stats.rx_256_to_511_byte_packets =
1724                                 stats.rx_256_to_511_byte_packets;
1725         edev->stats.rx_512_to_1023_byte_packets =
1726                                 stats.rx_512_to_1023_byte_packets;
1727         edev->stats.rx_1024_to_1518_byte_packets =
1728                                 stats.rx_1024_to_1518_byte_packets;
1729         edev->stats.rx_1519_to_1522_byte_packets =
1730                                 stats.rx_1519_to_1522_byte_packets;
1731         edev->stats.rx_1519_to_2047_byte_packets =
1732                                 stats.rx_1519_to_2047_byte_packets;
1733         edev->stats.rx_2048_to_4095_byte_packets =
1734                                 stats.rx_2048_to_4095_byte_packets;
1735         edev->stats.rx_4096_to_9216_byte_packets =
1736                                 stats.rx_4096_to_9216_byte_packets;
1737         edev->stats.rx_9217_to_16383_byte_packets =
1738                                 stats.rx_9217_to_16383_byte_packets;
1739         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1740         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1741         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1742         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1743         edev->stats.rx_align_errors = stats.rx_align_errors;
1744         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1745         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1746         edev->stats.rx_jabbers = stats.rx_jabbers;
1747         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1748         edev->stats.rx_fragments = stats.rx_fragments;
1749         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1750         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1751         edev->stats.tx_128_to_255_byte_packets =
1752                                 stats.tx_128_to_255_byte_packets;
1753         edev->stats.tx_256_to_511_byte_packets =
1754                                 stats.tx_256_to_511_byte_packets;
1755         edev->stats.tx_512_to_1023_byte_packets =
1756                                 stats.tx_512_to_1023_byte_packets;
1757         edev->stats.tx_1024_to_1518_byte_packets =
1758                                 stats.tx_1024_to_1518_byte_packets;
1759         edev->stats.tx_1519_to_2047_byte_packets =
1760                                 stats.tx_1519_to_2047_byte_packets;
1761         edev->stats.tx_2048_to_4095_byte_packets =
1762                                 stats.tx_2048_to_4095_byte_packets;
1763         edev->stats.tx_4096_to_9216_byte_packets =
1764                                 stats.tx_4096_to_9216_byte_packets;
1765         edev->stats.tx_9217_to_16383_byte_packets =
1766                                 stats.tx_9217_to_16383_byte_packets;
1767         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1768         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1769         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1770         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1771         edev->stats.brb_truncates = stats.brb_truncates;
1772         edev->stats.brb_discards = stats.brb_discards;
1773         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1774 }
1775
1776 static struct rtnl_link_stats64 *qede_get_stats64(
1777                             struct net_device *dev,
1778                             struct rtnl_link_stats64 *stats)
1779 {
1780         struct qede_dev *edev = netdev_priv(dev);
1781
1782         qede_fill_by_demand_stats(edev);
1783
1784         stats->rx_packets = edev->stats.rx_ucast_pkts +
1785                             edev->stats.rx_mcast_pkts +
1786                             edev->stats.rx_bcast_pkts;
1787         stats->tx_packets = edev->stats.tx_ucast_pkts +
1788                             edev->stats.tx_mcast_pkts +
1789                             edev->stats.tx_bcast_pkts;
1790
1791         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1792                           edev->stats.rx_mcast_bytes +
1793                           edev->stats.rx_bcast_bytes;
1794
1795         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1796                           edev->stats.tx_mcast_bytes +
1797                           edev->stats.tx_bcast_bytes;
1798
1799         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1800         stats->multicast = edev->stats.rx_mcast_pkts +
1801                            edev->stats.rx_bcast_pkts;
1802
1803         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1804
1805         stats->collisions = edev->stats.tx_total_collisions;
1806         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1807         stats->rx_frame_errors = edev->stats.rx_align_errors;
1808
1809         return stats;
1810 }
1811
1812 #ifdef CONFIG_QED_SRIOV
1813 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1814                               struct ifla_vf_info *ivi)
1815 {
1816         struct qede_dev *edev = netdev_priv(dev);
1817
1818         if (!edev->ops)
1819                 return -EINVAL;
1820
1821         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1822 }
1823
1824 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1825                             int min_tx_rate, int max_tx_rate)
1826 {
1827         struct qede_dev *edev = netdev_priv(dev);
1828
1829         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1830                                         max_tx_rate);
1831 }
1832
1833 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1834 {
1835         struct qede_dev *edev = netdev_priv(dev);
1836
1837         if (!edev->ops)
1838                 return -EINVAL;
1839
1840         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1841 }
1842
1843 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1844                                   int link_state)
1845 {
1846         struct qede_dev *edev = netdev_priv(dev);
1847
1848         if (!edev->ops)
1849                 return -EINVAL;
1850
1851         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1852 }
1853 #endif
1854
1855 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1856 {
1857         struct qed_update_vport_params params;
1858         int rc;
1859
1860         /* Proceed only if action actually needs to be performed */
1861         if (edev->accept_any_vlan == action)
1862                 return;
1863
1864         memset(&params, 0, sizeof(params));
1865
1866         params.vport_id = 0;
1867         params.accept_any_vlan = action;
1868         params.update_accept_any_vlan_flg = 1;
1869
1870         rc = edev->ops->vport_update(edev->cdev, &params);
1871         if (rc) {
1872                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1873                        action ? "enable" : "disable");
1874         } else {
1875                 DP_INFO(edev, "%s accept-any-vlan\n",
1876                         action ? "enabled" : "disabled");
1877                 edev->accept_any_vlan = action;
1878         }
1879 }
1880
1881 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1882 {
1883         struct qede_dev *edev = netdev_priv(dev);
1884         struct qede_vlan *vlan, *tmp;
1885         int rc;
1886
1887         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1888
1889         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1890         if (!vlan) {
1891                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1892                 return -ENOMEM;
1893         }
1894         INIT_LIST_HEAD(&vlan->list);
1895         vlan->vid = vid;
1896         vlan->configured = false;
1897
1898         /* Verify vlan isn't already configured */
1899         list_for_each_entry(tmp, &edev->vlan_list, list) {
1900                 if (tmp->vid == vlan->vid) {
1901                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1902                                    "vlan already configured\n");
1903                         kfree(vlan);
1904                         return -EEXIST;
1905                 }
1906         }
1907
1908         /* If interface is down, cache this VLAN ID and return */
1909         if (edev->state != QEDE_STATE_OPEN) {
1910                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1911                            "Interface is down, VLAN %d will be configured when interface is up\n",
1912                            vid);
1913                 if (vid != 0)
1914                         edev->non_configured_vlans++;
1915                 list_add(&vlan->list, &edev->vlan_list);
1916
1917                 return 0;
1918         }
1919
1920         /* Check for the filter limit.
1921          * Note - vlan0 has a reserved filter and can be added without
1922          * worrying about quota
1923          */
1924         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1925             (vlan->vid == 0)) {
1926                 rc = qede_set_ucast_rx_vlan(edev,
1927                                             QED_FILTER_XCAST_TYPE_ADD,
1928                                             vlan->vid);
1929                 if (rc) {
1930                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1931                                vlan->vid);
1932                         kfree(vlan);
1933                         return -EINVAL;
1934                 }
1935                 vlan->configured = true;
1936
1937                 /* vlan0 filter isn't consuming out of our quota */
1938                 if (vlan->vid != 0)
1939                         edev->configured_vlans++;
1940         } else {
1941                 /* Out of quota; Activate accept-any-VLAN mode */
1942                 if (!edev->non_configured_vlans)
1943                         qede_config_accept_any_vlan(edev, true);
1944
1945                 edev->non_configured_vlans++;
1946         }
1947
1948         list_add(&vlan->list, &edev->vlan_list);
1949
1950         return 0;
1951 }
1952
1953 static void qede_del_vlan_from_list(struct qede_dev *edev,
1954                                     struct qede_vlan *vlan)
1955 {
1956         /* vlan0 filter isn't consuming out of our quota */
1957         if (vlan->vid != 0) {
1958                 if (vlan->configured)
1959                         edev->configured_vlans--;
1960                 else
1961                         edev->non_configured_vlans--;
1962         }
1963
1964         list_del(&vlan->list);
1965         kfree(vlan);
1966 }
1967
1968 static int qede_configure_vlan_filters(struct qede_dev *edev)
1969 {
1970         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1971         struct qed_dev_eth_info *dev_info;
1972         struct qede_vlan *vlan = NULL;
1973
1974         if (list_empty(&edev->vlan_list))
1975                 return 0;
1976
1977         dev_info = &edev->dev_info;
1978
1979         /* Configure non-configured vlans */
1980         list_for_each_entry(vlan, &edev->vlan_list, list) {
1981                 if (vlan->configured)
1982                         continue;
1983
1984                 /* We have used all our credits, now enable accept_any_vlan */
1985                 if ((vlan->vid != 0) &&
1986                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1987                         accept_any_vlan = 1;
1988                         continue;
1989                 }
1990
1991                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1992
1993                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1994                                             vlan->vid);
1995                 if (rc) {
1996                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1997                                vlan->vid);
1998                         real_rc = rc;
1999                         continue;
2000                 }
2001
2002                 vlan->configured = true;
2003                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2004                 if (vlan->vid != 0) {
2005                         edev->non_configured_vlans--;
2006                         edev->configured_vlans++;
2007                 }
2008         }
2009
2010         /* enable accept_any_vlan mode if we have more VLANs than credits,
2011          * or remove accept_any_vlan mode if we've actually removed
2012          * a non-configured vlan, and all remaining vlans are truly configured.
2013          */
2014
2015         if (accept_any_vlan)
2016                 qede_config_accept_any_vlan(edev, true);
2017         else if (!edev->non_configured_vlans)
2018                 qede_config_accept_any_vlan(edev, false);
2019
2020         return real_rc;
2021 }
2022
2023 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2024 {
2025         struct qede_dev *edev = netdev_priv(dev);
2026         struct qede_vlan *vlan = NULL;
2027         int rc;
2028
2029         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2030
2031         /* Find whether entry exists */
2032         list_for_each_entry(vlan, &edev->vlan_list, list)
2033                 if (vlan->vid == vid)
2034                         break;
2035
2036         if (!vlan || (vlan->vid != vid)) {
2037                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2038                            "Vlan isn't configured\n");
2039                 return 0;
2040         }
2041
2042         if (edev->state != QEDE_STATE_OPEN) {
2043                 /* As interface is already down, we don't have a VPORT
2044                  * instance to remove vlan filter. So just update vlan list
2045                  */
2046                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2047                            "Interface is down, removing VLAN from list only\n");
2048                 qede_del_vlan_from_list(edev, vlan);
2049                 return 0;
2050         }
2051
2052         /* Remove vlan */
2053         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2054         if (rc) {
2055                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2056                 return -EINVAL;
2057         }
2058
2059         qede_del_vlan_from_list(edev, vlan);
2060
2061         /* We have removed a VLAN - try to see if we can
2062          * configure non-configured VLAN from the list.
2063          */
2064         rc = qede_configure_vlan_filters(edev);
2065
2066         return rc;
2067 }
2068
2069 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2070 {
2071         struct qede_vlan *vlan = NULL;
2072
2073         if (list_empty(&edev->vlan_list))
2074                 return;
2075
2076         list_for_each_entry(vlan, &edev->vlan_list, list) {
2077                 if (!vlan->configured)
2078                         continue;
2079
2080                 vlan->configured = false;
2081
2082                 /* vlan0 filter isn't consuming out of our quota */
2083                 if (vlan->vid != 0) {
2084                         edev->non_configured_vlans++;
2085                         edev->configured_vlans--;
2086                 }
2087
2088                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2089                            "marked vlan %d as non-configured\n",
2090                            vlan->vid);
2091         }
2092
2093         edev->accept_any_vlan = false;
2094 }
2095
2096 int qede_set_features(struct net_device *dev, netdev_features_t features)
2097 {
2098         struct qede_dev *edev = netdev_priv(dev);
2099         netdev_features_t changes = features ^ dev->features;
2100         bool need_reload = false;
2101
2102         /* No action needed if hardware GRO is disabled during driver load */
2103         if (changes & NETIF_F_GRO) {
2104                 if (dev->features & NETIF_F_GRO)
2105                         need_reload = !edev->gro_disable;
2106                 else
2107                         need_reload = edev->gro_disable;
2108         }
2109
2110         if (need_reload && netif_running(edev->ndev)) {
2111                 dev->features = features;
2112                 qede_reload(edev, NULL, NULL);
2113                 return 1;
2114         }
2115
2116         return 0;
2117 }
2118
2119 #ifdef CONFIG_QEDE_VXLAN
2120 static void qede_add_vxlan_port(struct net_device *dev,
2121                                 sa_family_t sa_family, __be16 port)
2122 {
2123         struct qede_dev *edev = netdev_priv(dev);
2124         u16 t_port = ntohs(port);
2125
2126         if (edev->vxlan_dst_port)
2127                 return;
2128
2129         edev->vxlan_dst_port = t_port;
2130
2131         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2132
2133         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2134         schedule_delayed_work(&edev->sp_task, 0);
2135 }
2136
2137 static void qede_del_vxlan_port(struct net_device *dev,
2138                                 sa_family_t sa_family, __be16 port)
2139 {
2140         struct qede_dev *edev = netdev_priv(dev);
2141         u16 t_port = ntohs(port);
2142
2143         if (t_port != edev->vxlan_dst_port)
2144                 return;
2145
2146         edev->vxlan_dst_port = 0;
2147
2148         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2149
2150         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2151         schedule_delayed_work(&edev->sp_task, 0);
2152 }
2153 #endif
2154
2155 #ifdef CONFIG_QEDE_GENEVE
2156 static void qede_add_geneve_port(struct net_device *dev,
2157                                  sa_family_t sa_family, __be16 port)
2158 {
2159         struct qede_dev *edev = netdev_priv(dev);
2160         u16 t_port = ntohs(port);
2161
2162         if (edev->geneve_dst_port)
2163                 return;
2164
2165         edev->geneve_dst_port = t_port;
2166
2167         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2168         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2169         schedule_delayed_work(&edev->sp_task, 0);
2170 }
2171
2172 static void qede_del_geneve_port(struct net_device *dev,
2173                                  sa_family_t sa_family, __be16 port)
2174 {
2175         struct qede_dev *edev = netdev_priv(dev);
2176         u16 t_port = ntohs(port);
2177
2178         if (t_port != edev->geneve_dst_port)
2179                 return;
2180
2181         edev->geneve_dst_port = 0;
2182
2183         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2184         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2185         schedule_delayed_work(&edev->sp_task, 0);
2186 }
2187 #endif
2188
2189 static const struct net_device_ops qede_netdev_ops = {
2190         .ndo_open = qede_open,
2191         .ndo_stop = qede_close,
2192         .ndo_start_xmit = qede_start_xmit,
2193         .ndo_set_rx_mode = qede_set_rx_mode,
2194         .ndo_set_mac_address = qede_set_mac_addr,
2195         .ndo_validate_addr = eth_validate_addr,
2196         .ndo_change_mtu = qede_change_mtu,
2197 #ifdef CONFIG_QED_SRIOV
2198         .ndo_set_vf_mac = qede_set_vf_mac,
2199         .ndo_set_vf_vlan = qede_set_vf_vlan,
2200 #endif
2201         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2202         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2203         .ndo_set_features = qede_set_features,
2204         .ndo_get_stats64 = qede_get_stats64,
2205 #ifdef CONFIG_QED_SRIOV
2206         .ndo_set_vf_link_state = qede_set_vf_link_state,
2207         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2208         .ndo_get_vf_config = qede_get_vf_config,
2209         .ndo_set_vf_rate = qede_set_vf_rate,
2210 #endif
2211 #ifdef CONFIG_QEDE_VXLAN
2212         .ndo_add_vxlan_port = qede_add_vxlan_port,
2213         .ndo_del_vxlan_port = qede_del_vxlan_port,
2214 #endif
2215 #ifdef CONFIG_QEDE_GENEVE
2216         .ndo_add_geneve_port = qede_add_geneve_port,
2217         .ndo_del_geneve_port = qede_del_geneve_port,
2218 #endif
2219 };
2220
2221 /* -------------------------------------------------------------------------
2222  * START OF PROBE / REMOVE
2223  * -------------------------------------------------------------------------
2224  */
2225
2226 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2227                                             struct pci_dev *pdev,
2228                                             struct qed_dev_eth_info *info,
2229                                             u32 dp_module,
2230                                             u8 dp_level)
2231 {
2232         struct net_device *ndev;
2233         struct qede_dev *edev;
2234
2235         ndev = alloc_etherdev_mqs(sizeof(*edev),
2236                                   info->num_queues,
2237                                   info->num_queues);
2238         if (!ndev) {
2239                 pr_err("etherdev allocation failed\n");
2240                 return NULL;
2241         }
2242
2243         edev = netdev_priv(ndev);
2244         edev->ndev = ndev;
2245         edev->cdev = cdev;
2246         edev->pdev = pdev;
2247         edev->dp_module = dp_module;
2248         edev->dp_level = dp_level;
2249         edev->ops = qed_ops;
2250         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2251         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2252
2253         SET_NETDEV_DEV(ndev, &pdev->dev);
2254
2255         memset(&edev->stats, 0, sizeof(edev->stats));
2256         memcpy(&edev->dev_info, info, sizeof(*info));
2257
2258         edev->num_tc = edev->dev_info.num_tc;
2259
2260         INIT_LIST_HEAD(&edev->vlan_list);
2261
2262         return edev;
2263 }
2264
2265 static void qede_init_ndev(struct qede_dev *edev)
2266 {
2267         struct net_device *ndev = edev->ndev;
2268         struct pci_dev *pdev = edev->pdev;
2269         u32 hw_features;
2270
2271         pci_set_drvdata(pdev, ndev);
2272
2273         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2274         ndev->base_addr = ndev->mem_start;
2275         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2276         ndev->irq = edev->dev_info.common.pci_irq;
2277
2278         ndev->watchdog_timeo = TX_TIMEOUT;
2279
2280         ndev->netdev_ops = &qede_netdev_ops;
2281
2282         qede_set_ethtool_ops(ndev);
2283
2284         /* user-changeble features */
2285         hw_features = NETIF_F_GRO | NETIF_F_SG |
2286                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2287                       NETIF_F_TSO | NETIF_F_TSO6;
2288
2289         /* Encap features*/
2290         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2291                        NETIF_F_TSO_ECN;
2292         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2293                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2294                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2295                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2296
2297         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2298                               NETIF_F_HIGHDMA;
2299         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2300                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2301                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2302
2303         ndev->hw_features = hw_features;
2304
2305         /* Set network device HW mac */
2306         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2307 }
2308
2309 /* This function converts from 32b param to two params of level and module
2310  * Input 32b decoding:
2311  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2312  * 'happy' flow, e.g. memory allocation failed.
2313  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2314  * and provide important parameters.
2315  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2316  * module. VERBOSE prints are for tracking the specific flow in low level.
2317  *
2318  * Notice that the level should be that of the lowest required logs.
2319  */
2320 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2321 {
2322         *p_dp_level = QED_LEVEL_NOTICE;
2323         *p_dp_module = 0;
2324
2325         if (debug & QED_LOG_VERBOSE_MASK) {
2326                 *p_dp_level = QED_LEVEL_VERBOSE;
2327                 *p_dp_module = (debug & 0x3FFFFFFF);
2328         } else if (debug & QED_LOG_INFO_MASK) {
2329                 *p_dp_level = QED_LEVEL_INFO;
2330         } else if (debug & QED_LOG_NOTICE_MASK) {
2331                 *p_dp_level = QED_LEVEL_NOTICE;
2332         }
2333 }
2334
2335 static void qede_free_fp_array(struct qede_dev *edev)
2336 {
2337         if (edev->fp_array) {
2338                 struct qede_fastpath *fp;
2339                 int i;
2340
2341                 for_each_rss(i) {
2342                         fp = &edev->fp_array[i];
2343
2344                         kfree(fp->sb_info);
2345                         kfree(fp->rxq);
2346                         kfree(fp->txqs);
2347                 }
2348                 kfree(edev->fp_array);
2349         }
2350         edev->num_rss = 0;
2351 }
2352
2353 static int qede_alloc_fp_array(struct qede_dev *edev)
2354 {
2355         struct qede_fastpath *fp;
2356         int i;
2357
2358         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2359                                  sizeof(*edev->fp_array), GFP_KERNEL);
2360         if (!edev->fp_array) {
2361                 DP_NOTICE(edev, "fp array allocation failed\n");
2362                 goto err;
2363         }
2364
2365         for_each_rss(i) {
2366                 fp = &edev->fp_array[i];
2367
2368                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2369                 if (!fp->sb_info) {
2370                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2371                         goto err;
2372                 }
2373
2374                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2375                 if (!fp->rxq) {
2376                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2377                         goto err;
2378                 }
2379
2380                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2381                 if (!fp->txqs) {
2382                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2383                         goto err;
2384                 }
2385         }
2386
2387         return 0;
2388 err:
2389         qede_free_fp_array(edev);
2390         return -ENOMEM;
2391 }
2392
2393 static void qede_sp_task(struct work_struct *work)
2394 {
2395         struct qede_dev *edev = container_of(work, struct qede_dev,
2396                                              sp_task.work);
2397         struct qed_dev *cdev = edev->cdev;
2398
2399         mutex_lock(&edev->qede_lock);
2400
2401         if (edev->state == QEDE_STATE_OPEN) {
2402                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2403                         qede_config_rx_mode(edev->ndev);
2404         }
2405
2406         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2407                 struct qed_tunn_params tunn_params;
2408
2409                 memset(&tunn_params, 0, sizeof(tunn_params));
2410                 tunn_params.update_vxlan_port = 1;
2411                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2412                 qed_ops->tunn_config(cdev, &tunn_params);
2413         }
2414
2415         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2416                 struct qed_tunn_params tunn_params;
2417
2418                 memset(&tunn_params, 0, sizeof(tunn_params));
2419                 tunn_params.update_geneve_port = 1;
2420                 tunn_params.geneve_port = edev->geneve_dst_port;
2421                 qed_ops->tunn_config(cdev, &tunn_params);
2422         }
2423
2424         mutex_unlock(&edev->qede_lock);
2425 }
2426
2427 static void qede_update_pf_params(struct qed_dev *cdev)
2428 {
2429         struct qed_pf_params pf_params;
2430
2431         /* 64 rx + 64 tx */
2432         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2433         pf_params.eth_pf_params.num_cons = 128;
2434         qed_ops->common->update_pf_params(cdev, &pf_params);
2435 }
2436
2437 enum qede_probe_mode {
2438         QEDE_PROBE_NORMAL,
2439 };
2440
2441 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2442                         bool is_vf, enum qede_probe_mode mode)
2443 {
2444         struct qed_probe_params probe_params;
2445         struct qed_slowpath_params params;
2446         struct qed_dev_eth_info dev_info;
2447         struct qede_dev *edev;
2448         struct qed_dev *cdev;
2449         int rc;
2450
2451         if (unlikely(dp_level & QED_LEVEL_INFO))
2452                 pr_notice("Starting qede probe\n");
2453
2454         memset(&probe_params, 0, sizeof(probe_params));
2455         probe_params.protocol = QED_PROTOCOL_ETH;
2456         probe_params.dp_module = dp_module;
2457         probe_params.dp_level = dp_level;
2458         probe_params.is_vf = is_vf;
2459         cdev = qed_ops->common->probe(pdev, &probe_params);
2460         if (!cdev) {
2461                 rc = -ENODEV;
2462                 goto err0;
2463         }
2464
2465         qede_update_pf_params(cdev);
2466
2467         /* Start the Slowpath-process */
2468         memset(&params, 0, sizeof(struct qed_slowpath_params));
2469         params.int_mode = QED_INT_MODE_MSIX;
2470         params.drv_major = QEDE_MAJOR_VERSION;
2471         params.drv_minor = QEDE_MINOR_VERSION;
2472         params.drv_rev = QEDE_REVISION_VERSION;
2473         params.drv_eng = QEDE_ENGINEERING_VERSION;
2474         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2475         rc = qed_ops->common->slowpath_start(cdev, &params);
2476         if (rc) {
2477                 pr_notice("Cannot start slowpath\n");
2478                 goto err1;
2479         }
2480
2481         /* Learn information crucial for qede to progress */
2482         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2483         if (rc)
2484                 goto err2;
2485
2486         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2487                                    dp_level);
2488         if (!edev) {
2489                 rc = -ENOMEM;
2490                 goto err2;
2491         }
2492
2493         if (is_vf)
2494                 edev->flags |= QEDE_FLAG_IS_VF;
2495
2496         qede_init_ndev(edev);
2497
2498         rc = register_netdev(edev->ndev);
2499         if (rc) {
2500                 DP_NOTICE(edev, "Cannot register net-device\n");
2501                 goto err3;
2502         }
2503
2504         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2505
2506         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2507
2508         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2509         mutex_init(&edev->qede_lock);
2510
2511         DP_INFO(edev, "Ending successfully qede probe\n");
2512
2513         return 0;
2514
2515 err3:
2516         free_netdev(edev->ndev);
2517 err2:
2518         qed_ops->common->slowpath_stop(cdev);
2519 err1:
2520         qed_ops->common->remove(cdev);
2521 err0:
2522         return rc;
2523 }
2524
2525 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2526 {
2527         bool is_vf = false;
2528         u32 dp_module = 0;
2529         u8 dp_level = 0;
2530
2531         switch ((enum qede_pci_private)id->driver_data) {
2532         case QEDE_PRIVATE_VF:
2533                 if (debug & QED_LOG_VERBOSE_MASK)
2534                         dev_err(&pdev->dev, "Probing a VF\n");
2535                 is_vf = true;
2536                 break;
2537         default:
2538                 if (debug & QED_LOG_VERBOSE_MASK)
2539                         dev_err(&pdev->dev, "Probing a PF\n");
2540         }
2541
2542         qede_config_debug(debug, &dp_module, &dp_level);
2543
2544         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2545                             QEDE_PROBE_NORMAL);
2546 }
2547
2548 enum qede_remove_mode {
2549         QEDE_REMOVE_NORMAL,
2550 };
2551
2552 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2553 {
2554         struct net_device *ndev = pci_get_drvdata(pdev);
2555         struct qede_dev *edev = netdev_priv(ndev);
2556         struct qed_dev *cdev = edev->cdev;
2557
2558         DP_INFO(edev, "Starting qede_remove\n");
2559
2560         cancel_delayed_work_sync(&edev->sp_task);
2561         unregister_netdev(ndev);
2562
2563         edev->ops->common->set_power_state(cdev, PCI_D0);
2564
2565         pci_set_drvdata(pdev, NULL);
2566
2567         free_netdev(ndev);
2568
2569         /* Use global ops since we've freed edev */
2570         qed_ops->common->slowpath_stop(cdev);
2571         qed_ops->common->remove(cdev);
2572
2573         pr_notice("Ending successfully qede_remove\n");
2574 }
2575
2576 static void qede_remove(struct pci_dev *pdev)
2577 {
2578         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2579 }
2580
2581 /* -------------------------------------------------------------------------
2582  * START OF LOAD / UNLOAD
2583  * -------------------------------------------------------------------------
2584  */
2585
2586 static int qede_set_num_queues(struct qede_dev *edev)
2587 {
2588         int rc;
2589         u16 rss_num;
2590
2591         /* Setup queues according to possible resources*/
2592         if (edev->req_rss)
2593                 rss_num = edev->req_rss;
2594         else
2595                 rss_num = netif_get_num_default_rss_queues() *
2596                           edev->dev_info.common.num_hwfns;
2597
2598         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2599
2600         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2601         if (rc > 0) {
2602                 /* Managed to request interrupts for our queues */
2603                 edev->num_rss = rc;
2604                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2605                         QEDE_RSS_CNT(edev), rss_num);
2606                 rc = 0;
2607         }
2608         return rc;
2609 }
2610
2611 static void qede_free_mem_sb(struct qede_dev *edev,
2612                              struct qed_sb_info *sb_info)
2613 {
2614         if (sb_info->sb_virt)
2615                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2616                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2617 }
2618
2619 /* This function allocates fast-path status block memory */
2620 static int qede_alloc_mem_sb(struct qede_dev *edev,
2621                              struct qed_sb_info *sb_info,
2622                              u16 sb_id)
2623 {
2624         struct status_block *sb_virt;
2625         dma_addr_t sb_phys;
2626         int rc;
2627
2628         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2629                                      sizeof(*sb_virt),
2630                                      &sb_phys, GFP_KERNEL);
2631         if (!sb_virt) {
2632                 DP_ERR(edev, "Status block allocation failed\n");
2633                 return -ENOMEM;
2634         }
2635
2636         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2637                                         sb_virt, sb_phys, sb_id,
2638                                         QED_SB_TYPE_L2_QUEUE);
2639         if (rc) {
2640                 DP_ERR(edev, "Status block initialization failed\n");
2641                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2642                                   sb_virt, sb_phys);
2643                 return rc;
2644         }
2645
2646         return 0;
2647 }
2648
2649 static void qede_free_rx_buffers(struct qede_dev *edev,
2650                                  struct qede_rx_queue *rxq)
2651 {
2652         u16 i;
2653
2654         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2655                 struct sw_rx_data *rx_buf;
2656                 struct page *data;
2657
2658                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2659                 data = rx_buf->data;
2660
2661                 dma_unmap_page(&edev->pdev->dev,
2662                                rx_buf->mapping,
2663                                PAGE_SIZE, DMA_FROM_DEVICE);
2664
2665                 rx_buf->data = NULL;
2666                 __free_page(data);
2667         }
2668 }
2669
2670 static void qede_free_sge_mem(struct qede_dev *edev,
2671                               struct qede_rx_queue *rxq) {
2672         int i;
2673
2674         if (edev->gro_disable)
2675                 return;
2676
2677         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2678                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2679                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2680
2681                 if (replace_buf->data) {
2682                         dma_unmap_page(&edev->pdev->dev,
2683                                        replace_buf->mapping,
2684                                        PAGE_SIZE, DMA_FROM_DEVICE);
2685                         __free_page(replace_buf->data);
2686                 }
2687         }
2688 }
2689
2690 static void qede_free_mem_rxq(struct qede_dev *edev,
2691                               struct qede_rx_queue *rxq)
2692 {
2693         qede_free_sge_mem(edev, rxq);
2694
2695         /* Free rx buffers */
2696         qede_free_rx_buffers(edev, rxq);
2697
2698         /* Free the parallel SW ring */
2699         kfree(rxq->sw_rx_ring);
2700
2701         /* Free the real RQ ring used by FW */
2702         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2703         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2704 }
2705
2706 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2707                                 struct qede_rx_queue *rxq)
2708 {
2709         struct sw_rx_data *sw_rx_data;
2710         struct eth_rx_bd *rx_bd;
2711         dma_addr_t mapping;
2712         struct page *data;
2713         u16 rx_buf_size;
2714
2715         rx_buf_size = rxq->rx_buf_size;
2716
2717         data = alloc_pages(GFP_ATOMIC, 0);
2718         if (unlikely(!data)) {
2719                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2720                 return -ENOMEM;
2721         }
2722
2723         /* Map the entire page as it would be used
2724          * for multiple RX buffer segment size mapping.
2725          */
2726         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2727                                PAGE_SIZE, DMA_FROM_DEVICE);
2728         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2729                 __free_page(data);
2730                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2731                 return -ENOMEM;
2732         }
2733
2734         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2735         sw_rx_data->page_offset = 0;
2736         sw_rx_data->data = data;
2737         sw_rx_data->mapping = mapping;
2738
2739         /* Advance PROD and get BD pointer */
2740         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2741         WARN_ON(!rx_bd);
2742         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2743         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2744
2745         rxq->sw_rx_prod++;
2746
2747         return 0;
2748 }
2749
2750 static int qede_alloc_sge_mem(struct qede_dev *edev,
2751                               struct qede_rx_queue *rxq)
2752 {
2753         dma_addr_t mapping;
2754         int i;
2755
2756         if (edev->gro_disable)
2757                 return 0;
2758
2759         if (edev->ndev->mtu > PAGE_SIZE) {
2760                 edev->gro_disable = 1;
2761                 return 0;
2762         }
2763
2764         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2765                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2766                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2767
2768                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2769                 if (unlikely(!replace_buf->data)) {
2770                         DP_NOTICE(edev,
2771                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2772                         goto err;
2773                 }
2774
2775                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2776                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2777                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2778                         DP_NOTICE(edev,
2779                                   "Failed to map TPA replacement buffer\n");
2780                         goto err;
2781                 }
2782
2783                 replace_buf->mapping = mapping;
2784                 tpa_info->replace_buf.page_offset = 0;
2785
2786                 tpa_info->replace_buf_mapping = mapping;
2787                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2788         }
2789
2790         return 0;
2791 err:
2792         qede_free_sge_mem(edev, rxq);
2793         edev->gro_disable = 1;
2794         return -ENOMEM;
2795 }
2796
2797 /* This function allocates all memory needed per Rx queue */
2798 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2799                               struct qede_rx_queue *rxq)
2800 {
2801         int i, rc, size;
2802
2803         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2804
2805         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2806                            edev->ndev->mtu;
2807         if (rxq->rx_buf_size > PAGE_SIZE)
2808                 rxq->rx_buf_size = PAGE_SIZE;
2809
2810         /* Segment size to spilt a page in multiple equal parts */
2811         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2812
2813         /* Allocate the parallel driver ring for Rx buffers */
2814         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2815         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2816         if (!rxq->sw_rx_ring) {
2817                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2818                 rc = -ENOMEM;
2819                 goto err;
2820         }
2821
2822         /* Allocate FW Rx ring  */
2823         rc = edev->ops->common->chain_alloc(edev->cdev,
2824                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2825                                             QED_CHAIN_MODE_NEXT_PTR,
2826                                             RX_RING_SIZE,
2827                                             sizeof(struct eth_rx_bd),
2828                                             &rxq->rx_bd_ring);
2829
2830         if (rc)
2831                 goto err;
2832
2833         /* Allocate FW completion ring */
2834         rc = edev->ops->common->chain_alloc(edev->cdev,
2835                                             QED_CHAIN_USE_TO_CONSUME,
2836                                             QED_CHAIN_MODE_PBL,
2837                                             RX_RING_SIZE,
2838                                             sizeof(union eth_rx_cqe),
2839                                             &rxq->rx_comp_ring);
2840         if (rc)
2841                 goto err;
2842
2843         /* Allocate buffers for the Rx ring */
2844         for (i = 0; i < rxq->num_rx_buffers; i++) {
2845                 rc = qede_alloc_rx_buffer(edev, rxq);
2846                 if (rc) {
2847                         DP_ERR(edev,
2848                                "Rx buffers allocation failed at index %d\n", i);
2849                         goto err;
2850                 }
2851         }
2852
2853         rc = qede_alloc_sge_mem(edev, rxq);
2854 err:
2855         return rc;
2856 }
2857
2858 static void qede_free_mem_txq(struct qede_dev *edev,
2859                               struct qede_tx_queue *txq)
2860 {
2861         /* Free the parallel SW ring */
2862         kfree(txq->sw_tx_ring);
2863
2864         /* Free the real RQ ring used by FW */
2865         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2866 }
2867
2868 /* This function allocates all memory needed per Tx queue */
2869 static int qede_alloc_mem_txq(struct qede_dev *edev,
2870                               struct qede_tx_queue *txq)
2871 {
2872         int size, rc;
2873         union eth_tx_bd_types *p_virt;
2874
2875         txq->num_tx_buffers = edev->q_num_tx_buffers;
2876
2877         /* Allocate the parallel driver ring for Tx buffers */
2878         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2879         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2880         if (!txq->sw_tx_ring) {
2881                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2882                 goto err;
2883         }
2884
2885         rc = edev->ops->common->chain_alloc(edev->cdev,
2886                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2887                                             QED_CHAIN_MODE_PBL,
2888                                             NUM_TX_BDS_MAX,
2889                                             sizeof(*p_virt),
2890                                             &txq->tx_pbl);
2891         if (rc)
2892                 goto err;
2893
2894         return 0;
2895
2896 err:
2897         qede_free_mem_txq(edev, txq);
2898         return -ENOMEM;
2899 }
2900
2901 /* This function frees all memory of a single fp */
2902 static void qede_free_mem_fp(struct qede_dev *edev,
2903                              struct qede_fastpath *fp)
2904 {
2905         int tc;
2906
2907         qede_free_mem_sb(edev, fp->sb_info);
2908
2909         qede_free_mem_rxq(edev, fp->rxq);
2910
2911         for (tc = 0; tc < edev->num_tc; tc++)
2912                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2913 }
2914
2915 /* This function allocates all memory needed for a single fp (i.e. an entity
2916  * which contains status block, one rx queue and multiple per-TC tx queues.
2917  */
2918 static int qede_alloc_mem_fp(struct qede_dev *edev,
2919                              struct qede_fastpath *fp)
2920 {
2921         int rc, tc;
2922
2923         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2924         if (rc)
2925                 goto err;
2926
2927         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2928         if (rc)
2929                 goto err;
2930
2931         for (tc = 0; tc < edev->num_tc; tc++) {
2932                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2933                 if (rc)
2934                         goto err;
2935         }
2936
2937         return 0;
2938 err:
2939         return rc;
2940 }
2941
2942 static void qede_free_mem_load(struct qede_dev *edev)
2943 {
2944         int i;
2945
2946         for_each_rss(i) {
2947                 struct qede_fastpath *fp = &edev->fp_array[i];
2948
2949                 qede_free_mem_fp(edev, fp);
2950         }
2951 }
2952
2953 /* This function allocates all qede memory at NIC load. */
2954 static int qede_alloc_mem_load(struct qede_dev *edev)
2955 {
2956         int rc = 0, rss_id;
2957
2958         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2959                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2960
2961                 rc = qede_alloc_mem_fp(edev, fp);
2962                 if (rc) {
2963                         DP_ERR(edev,
2964                                "Failed to allocate memory for fastpath - rss id = %d\n",
2965                                rss_id);
2966                         qede_free_mem_load(edev);
2967                         return rc;
2968                 }
2969         }
2970
2971         return 0;
2972 }
2973
2974 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2975 static void qede_init_fp(struct qede_dev *edev)
2976 {
2977         int rss_id, txq_index, tc;
2978         struct qede_fastpath *fp;
2979
2980         for_each_rss(rss_id) {
2981                 fp = &edev->fp_array[rss_id];
2982
2983                 fp->edev = edev;
2984                 fp->rss_id = rss_id;
2985
2986                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2987
2988                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2989
2990                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2991                 fp->rxq->rxq_id = rss_id;
2992
2993                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2994                 for (tc = 0; tc < edev->num_tc; tc++) {
2995                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2996                         fp->txqs[tc].index = txq_index;
2997                 }
2998
2999                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3000                          edev->ndev->name, rss_id);
3001         }
3002
3003         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3004 }
3005
3006 static int qede_set_real_num_queues(struct qede_dev *edev)
3007 {
3008         int rc = 0;
3009
3010         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3011         if (rc) {
3012                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3013                 return rc;
3014         }
3015         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3016         if (rc) {
3017                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3018                 return rc;
3019         }
3020
3021         return 0;
3022 }
3023
3024 static void qede_napi_disable_remove(struct qede_dev *edev)
3025 {
3026         int i;
3027
3028         for_each_rss(i) {
3029                 napi_disable(&edev->fp_array[i].napi);
3030
3031                 netif_napi_del(&edev->fp_array[i].napi);
3032         }
3033 }
3034
3035 static void qede_napi_add_enable(struct qede_dev *edev)
3036 {
3037         int i;
3038
3039         /* Add NAPI objects */
3040         for_each_rss(i) {
3041                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3042                                qede_poll, NAPI_POLL_WEIGHT);
3043                 napi_enable(&edev->fp_array[i].napi);
3044         }
3045 }
3046
3047 static void qede_sync_free_irqs(struct qede_dev *edev)
3048 {
3049         int i;
3050
3051         for (i = 0; i < edev->int_info.used_cnt; i++) {
3052                 if (edev->int_info.msix_cnt) {
3053                         synchronize_irq(edev->int_info.msix[i].vector);
3054                         free_irq(edev->int_info.msix[i].vector,
3055                                  &edev->fp_array[i]);
3056                 } else {
3057                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3058                 }
3059         }
3060
3061         edev->int_info.used_cnt = 0;
3062 }
3063
3064 static int qede_req_msix_irqs(struct qede_dev *edev)
3065 {
3066         int i, rc;
3067
3068         /* Sanitize number of interrupts == number of prepared RSS queues */
3069         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3070                 DP_ERR(edev,
3071                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3072                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3073                 return -EINVAL;
3074         }
3075
3076         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3077                 rc = request_irq(edev->int_info.msix[i].vector,
3078                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3079                                  &edev->fp_array[i]);
3080                 if (rc) {
3081                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3082                         qede_sync_free_irqs(edev);
3083                         return rc;
3084                 }
3085                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3086                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3087                            edev->fp_array[i].name, i,
3088                            &edev->fp_array[i]);
3089                 edev->int_info.used_cnt++;
3090         }
3091
3092         return 0;
3093 }
3094
3095 static void qede_simd_fp_handler(void *cookie)
3096 {
3097         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3098
3099         napi_schedule_irqoff(&fp->napi);
3100 }
3101
3102 static int qede_setup_irqs(struct qede_dev *edev)
3103 {
3104         int i, rc = 0;
3105
3106         /* Learn Interrupt configuration */
3107         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3108         if (rc)
3109                 return rc;
3110
3111         if (edev->int_info.msix_cnt) {
3112                 rc = qede_req_msix_irqs(edev);
3113                 if (rc)
3114                         return rc;
3115                 edev->ndev->irq = edev->int_info.msix[0].vector;
3116         } else {
3117                 const struct qed_common_ops *ops;
3118
3119                 /* qed should learn receive the RSS ids and callbacks */
3120                 ops = edev->ops->common;
3121                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3122                         ops->simd_handler_config(edev->cdev,
3123                                                  &edev->fp_array[i], i,
3124                                                  qede_simd_fp_handler);
3125                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3126         }
3127         return 0;
3128 }
3129
3130 static int qede_drain_txq(struct qede_dev *edev,
3131                           struct qede_tx_queue *txq,
3132                           bool allow_drain)
3133 {
3134         int rc, cnt = 1000;
3135
3136         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3137                 if (!cnt) {
3138                         if (allow_drain) {
3139                                 DP_NOTICE(edev,
3140                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3141                                           txq->index);
3142                                 rc = edev->ops->common->drain(edev->cdev);
3143                                 if (rc)
3144                                         return rc;
3145                                 return qede_drain_txq(edev, txq, false);
3146                         }
3147                         DP_NOTICE(edev,
3148                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3149                                   txq->index, txq->sw_tx_prod,
3150                                   txq->sw_tx_cons);
3151                         return -ENODEV;
3152                 }
3153                 cnt--;
3154                 usleep_range(1000, 2000);
3155                 barrier();
3156         }
3157
3158         /* FW finished processing, wait for HW to transmit all tx packets */
3159         usleep_range(1000, 2000);
3160
3161         return 0;
3162 }
3163
3164 static int qede_stop_queues(struct qede_dev *edev)
3165 {
3166         struct qed_update_vport_params vport_update_params;
3167         struct qed_dev *cdev = edev->cdev;
3168         int rc, tc, i;
3169
3170         /* Disable the vport */
3171         memset(&vport_update_params, 0, sizeof(vport_update_params));
3172         vport_update_params.vport_id = 0;
3173         vport_update_params.update_vport_active_flg = 1;
3174         vport_update_params.vport_active_flg = 0;
3175         vport_update_params.update_rss_flg = 0;
3176
3177         rc = edev->ops->vport_update(cdev, &vport_update_params);
3178         if (rc) {
3179                 DP_ERR(edev, "Failed to update vport\n");
3180                 return rc;
3181         }
3182
3183         /* Flush Tx queues. If needed, request drain from MCP */
3184         for_each_rss(i) {
3185                 struct qede_fastpath *fp = &edev->fp_array[i];
3186
3187                 for (tc = 0; tc < edev->num_tc; tc++) {
3188                         struct qede_tx_queue *txq = &fp->txqs[tc];
3189
3190                         rc = qede_drain_txq(edev, txq, true);
3191                         if (rc)
3192                                 return rc;
3193                 }
3194         }
3195
3196         /* Stop all Queues in reverse order*/
3197         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3198                 struct qed_stop_rxq_params rx_params;
3199
3200                 /* Stop the Tx Queue(s)*/
3201                 for (tc = 0; tc < edev->num_tc; tc++) {
3202                         struct qed_stop_txq_params tx_params;
3203
3204                         tx_params.rss_id = i;
3205                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3206                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3207                         if (rc) {
3208                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3209                                        tx_params.tx_queue_id);
3210                                 return rc;
3211                         }
3212                 }
3213
3214                 /* Stop the Rx Queue*/
3215                 memset(&rx_params, 0, sizeof(rx_params));
3216                 rx_params.rss_id = i;
3217                 rx_params.rx_queue_id = i;
3218
3219                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3220                 if (rc) {
3221                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3222                         return rc;
3223                 }
3224         }
3225
3226         /* Stop the vport */
3227         rc = edev->ops->vport_stop(cdev, 0);
3228         if (rc)
3229                 DP_ERR(edev, "Failed to stop VPORT\n");
3230
3231         return rc;
3232 }
3233
3234 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3235 {
3236         int rc, tc, i;
3237         int vlan_removal_en = 1;
3238         struct qed_dev *cdev = edev->cdev;
3239         struct qed_update_vport_params vport_update_params;
3240         struct qed_queue_start_common_params q_params;
3241         struct qed_dev_info *qed_info = &edev->dev_info.common;
3242         struct qed_start_vport_params start = {0};
3243         bool reset_rss_indir = false;
3244
3245         if (!edev->num_rss) {
3246                 DP_ERR(edev,
3247                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3248                 return -EINVAL;
3249         }
3250
3251         start.gro_enable = !edev->gro_disable;
3252         start.mtu = edev->ndev->mtu;
3253         start.vport_id = 0;
3254         start.drop_ttl0 = true;
3255         start.remove_inner_vlan = vlan_removal_en;
3256
3257         rc = edev->ops->vport_start(cdev, &start);
3258
3259         if (rc) {
3260                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3261                 return rc;
3262         }
3263
3264         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3265                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3266                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3267
3268         for_each_rss(i) {
3269                 struct qede_fastpath *fp = &edev->fp_array[i];
3270                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3271
3272                 memset(&q_params, 0, sizeof(q_params));
3273                 q_params.rss_id = i;
3274                 q_params.queue_id = i;
3275                 q_params.vport_id = 0;
3276                 q_params.sb = fp->sb_info->igu_sb_id;
3277                 q_params.sb_idx = RX_PI;
3278
3279                 rc = edev->ops->q_rx_start(cdev, &q_params,
3280                                            fp->rxq->rx_buf_size,
3281                                            fp->rxq->rx_bd_ring.p_phys_addr,
3282                                            phys_table,
3283                                            fp->rxq->rx_comp_ring.page_cnt,
3284                                            &fp->rxq->hw_rxq_prod_addr);
3285                 if (rc) {
3286                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3287                         return rc;
3288                 }
3289
3290                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3291
3292                 qede_update_rx_prod(edev, fp->rxq);
3293
3294                 for (tc = 0; tc < edev->num_tc; tc++) {
3295                         struct qede_tx_queue *txq = &fp->txqs[tc];
3296                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3297
3298                         memset(&q_params, 0, sizeof(q_params));
3299                         q_params.rss_id = i;
3300                         q_params.queue_id = txq_index;
3301                         q_params.vport_id = 0;
3302                         q_params.sb = fp->sb_info->igu_sb_id;
3303                         q_params.sb_idx = TX_PI(tc);
3304
3305                         rc = edev->ops->q_tx_start(cdev, &q_params,
3306                                                    txq->tx_pbl.pbl.p_phys_table,
3307                                                    txq->tx_pbl.page_cnt,
3308                                                    &txq->doorbell_addr);
3309                         if (rc) {
3310                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3311                                        txq_index, rc);
3312                                 return rc;
3313                         }
3314
3315                         txq->hw_cons_ptr =
3316                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3317                         SET_FIELD(txq->tx_db.data.params,
3318                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3319                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3320                                   DB_AGG_CMD_SET);
3321                         SET_FIELD(txq->tx_db.data.params,
3322                                   ETH_DB_DATA_AGG_VAL_SEL,
3323                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3324
3325                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3326                 }
3327         }
3328
3329         /* Prepare and send the vport enable */
3330         memset(&vport_update_params, 0, sizeof(vport_update_params));
3331         vport_update_params.vport_id = start.vport_id;
3332         vport_update_params.update_vport_active_flg = 1;
3333         vport_update_params.vport_active_flg = 1;
3334
3335         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3336             qed_info->tx_switching) {
3337                 vport_update_params.update_tx_switching_flg = 1;
3338                 vport_update_params.tx_switching_flg = 1;
3339         }
3340
3341         /* Fill struct with RSS params */
3342         if (QEDE_RSS_CNT(edev) > 1) {
3343                 vport_update_params.update_rss_flg = 1;
3344
3345                 /* Need to validate current RSS config uses valid entries */
3346                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3347                         if (edev->rss_params.rss_ind_table[i] >=
3348                             edev->num_rss) {
3349                                 reset_rss_indir = true;
3350                                 break;
3351                         }
3352                 }
3353
3354                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3355                     reset_rss_indir) {
3356                         u16 val;
3357
3358                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3359                                 u16 indir_val;
3360
3361                                 val = QEDE_RSS_CNT(edev);
3362                                 indir_val = ethtool_rxfh_indir_default(i, val);
3363                                 edev->rss_params.rss_ind_table[i] = indir_val;
3364                         }
3365                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3366                 }
3367
3368                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3369                         netdev_rss_key_fill(edev->rss_params.rss_key,
3370                                             sizeof(edev->rss_params.rss_key));
3371                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3372                 }
3373
3374                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3375                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3376                                                     QED_RSS_IPV6 |
3377                                                     QED_RSS_IPV4_TCP |
3378                                                     QED_RSS_IPV6_TCP;
3379                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3380                 }
3381
3382                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3383                        sizeof(vport_update_params.rss_params));
3384         } else {
3385                 memset(&vport_update_params.rss_params, 0,
3386                        sizeof(vport_update_params.rss_params));
3387         }
3388
3389         rc = edev->ops->vport_update(cdev, &vport_update_params);
3390         if (rc) {
3391                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3392                 return rc;
3393         }
3394
3395         return 0;
3396 }
3397
3398 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3399                                  enum qed_filter_xcast_params_type opcode,
3400                                  unsigned char *mac, int num_macs)
3401 {
3402         struct qed_filter_params filter_cmd;
3403         int i;
3404
3405         memset(&filter_cmd, 0, sizeof(filter_cmd));
3406         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3407         filter_cmd.filter.mcast.type = opcode;
3408         filter_cmd.filter.mcast.num = num_macs;
3409
3410         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3411                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3412
3413         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3414 }
3415
3416 enum qede_unload_mode {
3417         QEDE_UNLOAD_NORMAL,
3418 };
3419
3420 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3421 {
3422         struct qed_link_params link_params;
3423         int rc;
3424
3425         DP_INFO(edev, "Starting qede unload\n");
3426
3427         mutex_lock(&edev->qede_lock);
3428         edev->state = QEDE_STATE_CLOSED;
3429
3430         /* Close OS Tx */
3431         netif_tx_disable(edev->ndev);
3432         netif_carrier_off(edev->ndev);
3433
3434         /* Reset the link */
3435         memset(&link_params, 0, sizeof(link_params));
3436         link_params.link_up = false;
3437         edev->ops->common->set_link(edev->cdev, &link_params);
3438         rc = qede_stop_queues(edev);
3439         if (rc) {
3440                 qede_sync_free_irqs(edev);
3441                 goto out;
3442         }
3443
3444         DP_INFO(edev, "Stopped Queues\n");
3445
3446         qede_vlan_mark_nonconfigured(edev);
3447         edev->ops->fastpath_stop(edev->cdev);
3448
3449         /* Release the interrupts */
3450         qede_sync_free_irqs(edev);
3451         edev->ops->common->set_fp_int(edev->cdev, 0);
3452
3453         qede_napi_disable_remove(edev);
3454
3455         qede_free_mem_load(edev);
3456         qede_free_fp_array(edev);
3457
3458 out:
3459         mutex_unlock(&edev->qede_lock);
3460         DP_INFO(edev, "Ending qede unload\n");
3461 }
3462
3463 enum qede_load_mode {
3464         QEDE_LOAD_NORMAL,
3465         QEDE_LOAD_RELOAD,
3466 };
3467
3468 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3469 {
3470         struct qed_link_params link_params;
3471         struct qed_link_output link_output;
3472         int rc;
3473
3474         DP_INFO(edev, "Starting qede load\n");
3475
3476         rc = qede_set_num_queues(edev);
3477         if (rc)
3478                 goto err0;
3479
3480         rc = qede_alloc_fp_array(edev);
3481         if (rc)
3482                 goto err0;
3483
3484         qede_init_fp(edev);
3485
3486         rc = qede_alloc_mem_load(edev);
3487         if (rc)
3488                 goto err1;
3489         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3490                 QEDE_RSS_CNT(edev), edev->num_tc);
3491
3492         rc = qede_set_real_num_queues(edev);
3493         if (rc)
3494                 goto err2;
3495
3496         qede_napi_add_enable(edev);
3497         DP_INFO(edev, "Napi added and enabled\n");
3498
3499         rc = qede_setup_irqs(edev);
3500         if (rc)
3501                 goto err3;
3502         DP_INFO(edev, "Setup IRQs succeeded\n");
3503
3504         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3505         if (rc)
3506                 goto err4;
3507         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3508
3509         /* Add primary mac and set Rx filters */
3510         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3511
3512         mutex_lock(&edev->qede_lock);
3513         edev->state = QEDE_STATE_OPEN;
3514         mutex_unlock(&edev->qede_lock);
3515
3516         /* Program un-configured VLANs */
3517         qede_configure_vlan_filters(edev);
3518
3519         /* Ask for link-up using current configuration */
3520         memset(&link_params, 0, sizeof(link_params));
3521         link_params.link_up = true;
3522         edev->ops->common->set_link(edev->cdev, &link_params);
3523
3524         /* Query whether link is already-up */
3525         memset(&link_output, 0, sizeof(link_output));
3526         edev->ops->common->get_link(edev->cdev, &link_output);
3527         qede_link_update(edev, &link_output);
3528
3529         DP_INFO(edev, "Ending successfully qede load\n");
3530
3531         return 0;
3532
3533 err4:
3534         qede_sync_free_irqs(edev);
3535         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3536 err3:
3537         qede_napi_disable_remove(edev);
3538 err2:
3539         qede_free_mem_load(edev);
3540 err1:
3541         edev->ops->common->set_fp_int(edev->cdev, 0);
3542         qede_free_fp_array(edev);
3543         edev->num_rss = 0;
3544 err0:
3545         return rc;
3546 }
3547
3548 void qede_reload(struct qede_dev *edev,
3549                  void (*func)(struct qede_dev *, union qede_reload_args *),
3550                  union qede_reload_args *args)
3551 {
3552         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3553         /* Call function handler to update parameters
3554          * needed for function load.
3555          */
3556         if (func)
3557                 func(edev, args);
3558
3559         qede_load(edev, QEDE_LOAD_RELOAD);
3560
3561         mutex_lock(&edev->qede_lock);
3562         qede_config_rx_mode(edev->ndev);
3563         mutex_unlock(&edev->qede_lock);
3564 }
3565
3566 /* called with rtnl_lock */
3567 static int qede_open(struct net_device *ndev)
3568 {
3569         struct qede_dev *edev = netdev_priv(ndev);
3570         int rc;
3571
3572         netif_carrier_off(ndev);
3573
3574         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3575
3576         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3577
3578         if (rc)
3579                 return rc;
3580
3581 #ifdef CONFIG_QEDE_VXLAN
3582         vxlan_get_rx_port(ndev);
3583 #endif
3584 #ifdef CONFIG_QEDE_GENEVE
3585         geneve_get_rx_port(ndev);
3586 #endif
3587         return 0;
3588 }
3589
3590 static int qede_close(struct net_device *ndev)
3591 {
3592         struct qede_dev *edev = netdev_priv(ndev);
3593
3594         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3595
3596         return 0;
3597 }
3598
3599 static void qede_link_update(void *dev, struct qed_link_output *link)
3600 {
3601         struct qede_dev *edev = dev;
3602
3603         if (!netif_running(edev->ndev)) {
3604                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3605                 return;
3606         }
3607
3608         if (link->link_up) {
3609                 if (!netif_carrier_ok(edev->ndev)) {
3610                         DP_NOTICE(edev, "Link is up\n");
3611                         netif_tx_start_all_queues(edev->ndev);
3612                         netif_carrier_on(edev->ndev);
3613                 }
3614         } else {
3615                 if (netif_carrier_ok(edev->ndev)) {
3616                         DP_NOTICE(edev, "Link is down\n");
3617                         netif_tx_disable(edev->ndev);
3618                         netif_carrier_off(edev->ndev);
3619                 }
3620         }
3621 }
3622
3623 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3624 {
3625         struct qede_dev *edev = netdev_priv(ndev);
3626         struct sockaddr *addr = p;
3627         int rc;
3628
3629         ASSERT_RTNL(); /* @@@TBD To be removed */
3630
3631         DP_INFO(edev, "Set_mac_addr called\n");
3632
3633         if (!is_valid_ether_addr(addr->sa_data)) {
3634                 DP_NOTICE(edev, "The MAC address is not valid\n");
3635                 return -EFAULT;
3636         }
3637
3638         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3639                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3640                 return -EINVAL;
3641         }
3642
3643         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3644
3645         if (!netif_running(ndev))  {
3646                 DP_NOTICE(edev, "The device is currently down\n");
3647                 return 0;
3648         }
3649
3650         /* Remove the previous primary mac */
3651         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3652                                    edev->primary_mac);
3653         if (rc)
3654                 return rc;
3655
3656         /* Add MAC filter according to the new unicast HW MAC address */
3657         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3658         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3659                                       edev->primary_mac);
3660 }
3661
3662 static int
3663 qede_configure_mcast_filtering(struct net_device *ndev,
3664                                enum qed_filter_rx_mode_type *accept_flags)
3665 {
3666         struct qede_dev *edev = netdev_priv(ndev);
3667         unsigned char *mc_macs, *temp;
3668         struct netdev_hw_addr *ha;
3669         int rc = 0, mc_count;
3670         size_t size;
3671
3672         size = 64 * ETH_ALEN;
3673
3674         mc_macs = kzalloc(size, GFP_KERNEL);
3675         if (!mc_macs) {
3676                 DP_NOTICE(edev,
3677                           "Failed to allocate memory for multicast MACs\n");
3678                 rc = -ENOMEM;
3679                 goto exit;
3680         }
3681
3682         temp = mc_macs;
3683
3684         /* Remove all previously configured MAC filters */
3685         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3686                                    mc_macs, 1);
3687         if (rc)
3688                 goto exit;
3689
3690         netif_addr_lock_bh(ndev);
3691
3692         mc_count = netdev_mc_count(ndev);
3693         if (mc_count < 64) {
3694                 netdev_for_each_mc_addr(ha, ndev) {
3695                         ether_addr_copy(temp, ha->addr);
3696                         temp += ETH_ALEN;
3697                 }
3698         }
3699
3700         netif_addr_unlock_bh(ndev);
3701
3702         /* Check for all multicast @@@TBD resource allocation */
3703         if ((ndev->flags & IFF_ALLMULTI) ||
3704             (mc_count > 64)) {
3705                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3706                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3707         } else {
3708                 /* Add all multicast MAC filters */
3709                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3710                                            mc_macs, mc_count);
3711         }
3712
3713 exit:
3714         kfree(mc_macs);
3715         return rc;
3716 }
3717
3718 static void qede_set_rx_mode(struct net_device *ndev)
3719 {
3720         struct qede_dev *edev = netdev_priv(ndev);
3721
3722         DP_INFO(edev, "qede_set_rx_mode called\n");
3723
3724         if (edev->state != QEDE_STATE_OPEN) {
3725                 DP_INFO(edev,
3726                         "qede_set_rx_mode called while interface is down\n");
3727         } else {
3728                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3729                 schedule_delayed_work(&edev->sp_task, 0);
3730         }
3731 }
3732
3733 /* Must be called with qede_lock held */
3734 static void qede_config_rx_mode(struct net_device *ndev)
3735 {
3736         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3737         struct qede_dev *edev = netdev_priv(ndev);
3738         struct qed_filter_params rx_mode;
3739         unsigned char *uc_macs, *temp;
3740         struct netdev_hw_addr *ha;
3741         int rc, uc_count;
3742         size_t size;
3743
3744         netif_addr_lock_bh(ndev);
3745
3746         uc_count = netdev_uc_count(ndev);
3747         size = uc_count * ETH_ALEN;
3748
3749         uc_macs = kzalloc(size, GFP_ATOMIC);
3750         if (!uc_macs) {
3751                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3752                 netif_addr_unlock_bh(ndev);
3753                 return;
3754         }
3755
3756         temp = uc_macs;
3757         netdev_for_each_uc_addr(ha, ndev) {
3758                 ether_addr_copy(temp, ha->addr);
3759                 temp += ETH_ALEN;
3760         }
3761
3762         netif_addr_unlock_bh(ndev);
3763
3764         /* Configure the struct for the Rx mode */
3765         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3766         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3767
3768         /* Remove all previous unicast secondary macs and multicast macs
3769          * (configrue / leave the primary mac)
3770          */
3771         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3772                                    edev->primary_mac);
3773         if (rc)
3774                 goto out;
3775
3776         /* Check for promiscuous */
3777         if ((ndev->flags & IFF_PROMISC) ||
3778             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3779                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3780         } else {
3781                 /* Add MAC filters according to the unicast secondary macs */
3782                 int i;
3783
3784                 temp = uc_macs;
3785                 for (i = 0; i < uc_count; i++) {
3786                         rc = qede_set_ucast_rx_mac(edev,
3787                                                    QED_FILTER_XCAST_TYPE_ADD,
3788                                                    temp);
3789                         if (rc)
3790                                 goto out;
3791
3792                         temp += ETH_ALEN;
3793                 }
3794
3795                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3796                 if (rc)
3797                         goto out;
3798         }
3799
3800         /* take care of VLAN mode */
3801         if (ndev->flags & IFF_PROMISC) {
3802                 qede_config_accept_any_vlan(edev, true);
3803         } else if (!edev->non_configured_vlans) {
3804                 /* It's possible that accept_any_vlan mode is set due to a
3805                  * previous setting of IFF_PROMISC. If vlan credits are
3806                  * sufficient, disable accept_any_vlan.
3807                  */
3808                 qede_config_accept_any_vlan(edev, false);
3809         }
3810
3811         rx_mode.filter.accept_flags = accept_flags;
3812         edev->ops->filter_config(edev->cdev, &rx_mode);
3813 out:
3814         kfree(uc_macs);
3815 }