]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
nvme-pci: fix HMB size calculation
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         dma_addr_t cmb_dma_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         struct nvme_host_mem_buf_desc *host_mem_descs;
113         void **host_mem_desc_bufs;
114 };
115
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118         int n = 0, ret;
119
120         ret = kstrtoint(val, 10, &n);
121         if (ret != 0 || n < 2)
122                 return -EINVAL;
123
124         return param_set_int(val, kp);
125 }
126
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129         return qid * 2 * stride;
130 }
131
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134         return (qid * 2 + 1) * stride;
135 }
136
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139         return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141
142 /*
143  * An NVM Express queue.  Each device has at least two (one for admin
144  * commands and one for I/O commands).
145  */
146 struct nvme_queue {
147         struct device *q_dmadev;
148         struct nvme_dev *dev;
149         spinlock_t q_lock;
150         struct nvme_command *sq_cmds;
151         struct nvme_command __iomem *sq_cmds_io;
152         volatile struct nvme_completion *cqes;
153         struct blk_mq_tags **tags;
154         dma_addr_t sq_dma_addr;
155         dma_addr_t cq_dma_addr;
156         u32 __iomem *q_db;
157         u16 q_depth;
158         s16 cq_vector;
159         u16 sq_tail;
160         u16 cq_head;
161         u16 qid;
162         u8 cq_phase;
163         u8 cqe_seen;
164         u32 *dbbuf_sq_db;
165         u32 *dbbuf_cq_db;
166         u32 *dbbuf_sq_ei;
167         u32 *dbbuf_cq_ei;
168 };
169
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177         struct nvme_request req;
178         struct nvme_queue *nvmeq;
179         int aborted;
180         int npages;             /* In the PRP list. 0 means small pool in use */
181         int nents;              /* Used in scatterlist */
182         int length;             /* Of data, in bytes */
183         dma_addr_t first_dma;
184         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
185         struct scatterlist *sg;
186         struct scatterlist inline_sg[0];
187 };
188
189 /*
190  * Check we didin't inadvertently grow the command struct
191  */
192 static inline void _nvme_check_size(void)
193 {
194         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207 }
208
209 static inline unsigned int nvme_dbbuf_size(u32 stride)
210 {
211         return ((num_possible_cpus() + 1) * 8 * stride);
212 }
213
214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215 {
216         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217
218         if (dev->dbbuf_dbs)
219                 return 0;
220
221         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222                                             &dev->dbbuf_dbs_dma_addr,
223                                             GFP_KERNEL);
224         if (!dev->dbbuf_dbs)
225                 return -ENOMEM;
226         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227                                             &dev->dbbuf_eis_dma_addr,
228                                             GFP_KERNEL);
229         if (!dev->dbbuf_eis) {
230                 dma_free_coherent(dev->dev, mem_size,
231                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232                 dev->dbbuf_dbs = NULL;
233                 return -ENOMEM;
234         }
235
236         return 0;
237 }
238
239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240 {
241         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242
243         if (dev->dbbuf_dbs) {
244                 dma_free_coherent(dev->dev, mem_size,
245                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246                 dev->dbbuf_dbs = NULL;
247         }
248         if (dev->dbbuf_eis) {
249                 dma_free_coherent(dev->dev, mem_size,
250                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251                 dev->dbbuf_eis = NULL;
252         }
253 }
254
255 static void nvme_dbbuf_init(struct nvme_dev *dev,
256                             struct nvme_queue *nvmeq, int qid)
257 {
258         if (!dev->dbbuf_dbs || !qid)
259                 return;
260
261         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265 }
266
267 static void nvme_dbbuf_set(struct nvme_dev *dev)
268 {
269         struct nvme_command c;
270
271         if (!dev->dbbuf_dbs)
272                 return;
273
274         memset(&c, 0, sizeof(c));
275         c.dbbuf.opcode = nvme_admin_dbbuf;
276         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278
279         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
280                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
281                 /* Free memory and continue on */
282                 nvme_dbbuf_dma_free(dev);
283         }
284 }
285
286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287 {
288         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289 }
290
291 /* Update dbbuf and return true if an MMIO is required */
292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293                                               volatile u32 *dbbuf_ei)
294 {
295         if (dbbuf_db) {
296                 u16 old_value;
297
298                 /*
299                  * Ensure that the queue is written before updating
300                  * the doorbell in memory
301                  */
302                 wmb();
303
304                 old_value = *dbbuf_db;
305                 *dbbuf_db = value;
306
307                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308                         return false;
309         }
310
311         return true;
312 }
313
314 /*
315  * Max size of iod being embedded in the request payload
316  */
317 #define NVME_INT_PAGES          2
318 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
319
320 /*
321  * Will slightly overestimate the number of pages needed.  This is OK
322  * as it only leads to a small amount of wasted memory for the lifetime of
323  * the I/O.
324  */
325 static int nvme_npages(unsigned size, struct nvme_dev *dev)
326 {
327         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328                                       dev->ctrl.page_size);
329         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330 }
331
332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333                 unsigned int size, unsigned int nseg)
334 {
335         return sizeof(__le64 *) * nvme_npages(size, dev) +
336                         sizeof(struct scatterlist) * nseg;
337 }
338
339 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340 {
341         return sizeof(struct nvme_iod) +
342                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
343 }
344
345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346                                 unsigned int hctx_idx)
347 {
348         struct nvme_dev *dev = data;
349         struct nvme_queue *nvmeq = dev->queues[0];
350
351         WARN_ON(hctx_idx != 0);
352         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353         WARN_ON(nvmeq->tags);
354
355         hctx->driver_data = nvmeq;
356         nvmeq->tags = &dev->admin_tagset.tags[0];
357         return 0;
358 }
359
360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361 {
362         struct nvme_queue *nvmeq = hctx->driver_data;
363
364         nvmeq->tags = NULL;
365 }
366
367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368                           unsigned int hctx_idx)
369 {
370         struct nvme_dev *dev = data;
371         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
372
373         if (!nvmeq->tags)
374                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
375
376         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
377         hctx->driver_data = nvmeq;
378         return 0;
379 }
380
381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382                 unsigned int hctx_idx, unsigned int numa_node)
383 {
384         struct nvme_dev *dev = set->driver_data;
385         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
386         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387         struct nvme_queue *nvmeq = dev->queues[queue_idx];
388
389         BUG_ON(!nvmeq);
390         iod->nvmeq = nvmeq;
391         return 0;
392 }
393
394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395 {
396         struct nvme_dev *dev = set->driver_data;
397
398         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399 }
400
401 /**
402  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
403  * @nvmeq: The queue to use
404  * @cmd: The command to send
405  *
406  * Safe to use from interrupt context
407  */
408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409                                                 struct nvme_command *cmd)
410 {
411         u16 tail = nvmeq->sq_tail;
412
413         if (nvmeq->sq_cmds_io)
414                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415         else
416                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417
418         if (++tail == nvmeq->q_depth)
419                 tail = 0;
420         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421                                               nvmeq->dbbuf_sq_ei))
422                 writel(tail, nvmeq->q_db);
423         nvmeq->sq_tail = tail;
424 }
425
426 static __le64 **iod_list(struct request *req)
427 {
428         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
430 }
431
432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
433 {
434         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
435         int nseg = blk_rq_nr_phys_segments(rq);
436         unsigned int size = blk_rq_payload_bytes(rq);
437
438         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440                 if (!iod->sg)
441                         return BLK_STS_RESOURCE;
442         } else {
443                 iod->sg = iod->inline_sg;
444         }
445
446         iod->aborted = 0;
447         iod->npages = -1;
448         iod->nents = 0;
449         iod->length = size;
450
451         return BLK_STS_OK;
452 }
453
454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
455 {
456         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457         const int last_prp = dev->ctrl.page_size / 8 - 1;
458         int i;
459         __le64 **list = iod_list(req);
460         dma_addr_t prp_dma = iod->first_dma;
461
462         if (iod->npages == 0)
463                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464         for (i = 0; i < iod->npages; i++) {
465                 __le64 *prp_list = list[i];
466                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468                 prp_dma = next_prp_dma;
469         }
470
471         if (iod->sg != iod->inline_sg)
472                 kfree(iod->sg);
473 }
474
475 #ifdef CONFIG_BLK_DEV_INTEGRITY
476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477 {
478         if (be32_to_cpu(pi->ref_tag) == v)
479                 pi->ref_tag = cpu_to_be32(p);
480 }
481
482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483 {
484         if (be32_to_cpu(pi->ref_tag) == p)
485                 pi->ref_tag = cpu_to_be32(v);
486 }
487
488 /**
489  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490  *
491  * The virtual start sector is the one that was originally submitted by the
492  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
493  * start sector may be different. Remap protection information to match the
494  * physical LBA on writes, and back to the original seed on reads.
495  *
496  * Type 0 and 3 do not have a ref tag, so no remapping required.
497  */
498 static void nvme_dif_remap(struct request *req,
499                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500 {
501         struct nvme_ns *ns = req->rq_disk->private_data;
502         struct bio_integrity_payload *bip;
503         struct t10_pi_tuple *pi;
504         void *p, *pmap;
505         u32 i, nlb, ts, phys, virt;
506
507         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508                 return;
509
510         bip = bio_integrity(req->bio);
511         if (!bip)
512                 return;
513
514         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
515
516         p = pmap;
517         virt = bip_get_seed(bip);
518         phys = nvme_block_nr(ns, blk_rq_pos(req));
519         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
520         ts = ns->disk->queue->integrity.tuple_size;
521
522         for (i = 0; i < nlb; i++, virt++, phys++) {
523                 pi = (struct t10_pi_tuple *)p;
524                 dif_swap(phys, virt, pi);
525                 p += ts;
526         }
527         kunmap_atomic(pmap);
528 }
529 #else /* CONFIG_BLK_DEV_INTEGRITY */
530 static void nvme_dif_remap(struct request *req,
531                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532 {
533 }
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536 }
537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538 {
539 }
540 #endif
541
542 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
543 {
544         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545         struct dma_pool *pool;
546         int length = blk_rq_payload_bytes(req);
547         struct scatterlist *sg = iod->sg;
548         int dma_len = sg_dma_len(sg);
549         u64 dma_addr = sg_dma_address(sg);
550         u32 page_size = dev->ctrl.page_size;
551         int offset = dma_addr & (page_size - 1);
552         __le64 *prp_list;
553         __le64 **list = iod_list(req);
554         dma_addr_t prp_dma;
555         int nprps, i;
556
557         length -= (page_size - offset);
558         if (length <= 0)
559                 return BLK_STS_OK;
560
561         dma_len -= (page_size - offset);
562         if (dma_len) {
563                 dma_addr += (page_size - offset);
564         } else {
565                 sg = sg_next(sg);
566                 dma_addr = sg_dma_address(sg);
567                 dma_len = sg_dma_len(sg);
568         }
569
570         if (length <= page_size) {
571                 iod->first_dma = dma_addr;
572                 return BLK_STS_OK;
573         }
574
575         nprps = DIV_ROUND_UP(length, page_size);
576         if (nprps <= (256 / 8)) {
577                 pool = dev->prp_small_pool;
578                 iod->npages = 0;
579         } else {
580                 pool = dev->prp_page_pool;
581                 iod->npages = 1;
582         }
583
584         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
585         if (!prp_list) {
586                 iod->first_dma = dma_addr;
587                 iod->npages = -1;
588                 return BLK_STS_RESOURCE;
589         }
590         list[0] = prp_list;
591         iod->first_dma = prp_dma;
592         i = 0;
593         for (;;) {
594                 if (i == page_size >> 3) {
595                         __le64 *old_prp_list = prp_list;
596                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
597                         if (!prp_list)
598                                 return BLK_STS_RESOURCE;
599                         list[iod->npages++] = prp_list;
600                         prp_list[0] = old_prp_list[i - 1];
601                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602                         i = 1;
603                 }
604                 prp_list[i++] = cpu_to_le64(dma_addr);
605                 dma_len -= page_size;
606                 dma_addr += page_size;
607                 length -= page_size;
608                 if (length <= 0)
609                         break;
610                 if (dma_len > 0)
611                         continue;
612                 if (unlikely(dma_len < 0))
613                         goto bad_sgl;
614                 sg = sg_next(sg);
615                 dma_addr = sg_dma_address(sg);
616                 dma_len = sg_dma_len(sg);
617         }
618
619         return BLK_STS_OK;
620
621  bad_sgl:
622         if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
623                                 blk_rq_payload_bytes(req), iod->nents)) {
624                 for_each_sg(iod->sg, sg, iod->nents, i) {
625                         dma_addr_t phys = sg_phys(sg);
626                         pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
627                                "dma_address:%pad dma_length:%d\n", i, &phys,
628                                         sg->offset, sg->length,
629                                         &sg_dma_address(sg),
630                                         sg_dma_len(sg));
631                 }
632         }
633         return BLK_STS_IOERR;
634
635 }
636
637 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
638                 struct nvme_command *cmnd)
639 {
640         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
641         struct request_queue *q = req->q;
642         enum dma_data_direction dma_dir = rq_data_dir(req) ?
643                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
644         blk_status_t ret = BLK_STS_IOERR;
645
646         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
647         iod->nents = blk_rq_map_sg(q, req, iod->sg);
648         if (!iod->nents)
649                 goto out;
650
651         ret = BLK_STS_RESOURCE;
652         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
653                                 DMA_ATTR_NO_WARN))
654                 goto out;
655
656         ret = nvme_setup_prps(dev, req);
657         if (ret != BLK_STS_OK)
658                 goto out_unmap;
659
660         ret = BLK_STS_IOERR;
661         if (blk_integrity_rq(req)) {
662                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
663                         goto out_unmap;
664
665                 sg_init_table(&iod->meta_sg, 1);
666                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
667                         goto out_unmap;
668
669                 if (rq_data_dir(req))
670                         nvme_dif_remap(req, nvme_dif_prep);
671
672                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
673                         goto out_unmap;
674         }
675
676         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
677         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
678         if (blk_integrity_rq(req))
679                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
680         return BLK_STS_OK;
681
682 out_unmap:
683         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684 out:
685         return ret;
686 }
687
688 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
689 {
690         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691         enum dma_data_direction dma_dir = rq_data_dir(req) ?
692                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
693
694         if (iod->nents) {
695                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
696                 if (blk_integrity_rq(req)) {
697                         if (!rq_data_dir(req))
698                                 nvme_dif_remap(req, nvme_dif_complete);
699                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
700                 }
701         }
702
703         nvme_cleanup_cmd(req);
704         nvme_free_iod(dev, req);
705 }
706
707 /*
708  * NOTE: ns is NULL when called on the admin queue.
709  */
710 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
711                          const struct blk_mq_queue_data *bd)
712 {
713         struct nvme_ns *ns = hctx->queue->queuedata;
714         struct nvme_queue *nvmeq = hctx->driver_data;
715         struct nvme_dev *dev = nvmeq->dev;
716         struct request *req = bd->rq;
717         struct nvme_command cmnd;
718         blk_status_t ret;
719
720         ret = nvme_setup_cmd(ns, req, &cmnd);
721         if (ret)
722                 return ret;
723
724         ret = nvme_init_iod(req, dev);
725         if (ret)
726                 goto out_free_cmd;
727
728         if (blk_rq_nr_phys_segments(req)) {
729                 ret = nvme_map_data(dev, req, &cmnd);
730                 if (ret)
731                         goto out_cleanup_iod;
732         }
733
734         blk_mq_start_request(req);
735
736         spin_lock_irq(&nvmeq->q_lock);
737         if (unlikely(nvmeq->cq_vector < 0)) {
738                 ret = BLK_STS_IOERR;
739                 spin_unlock_irq(&nvmeq->q_lock);
740                 goto out_cleanup_iod;
741         }
742         __nvme_submit_cmd(nvmeq, &cmnd);
743         nvme_process_cq(nvmeq);
744         spin_unlock_irq(&nvmeq->q_lock);
745         return BLK_STS_OK;
746 out_cleanup_iod:
747         nvme_free_iod(dev, req);
748 out_free_cmd:
749         nvme_cleanup_cmd(req);
750         return ret;
751 }
752
753 static void nvme_pci_complete_rq(struct request *req)
754 {
755         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757         nvme_unmap_data(iod->nvmeq->dev, req);
758         nvme_complete_rq(req);
759 }
760
761 /* We read the CQE phase first to check if the rest of the entry is valid */
762 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763                 u16 phase)
764 {
765         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766 }
767
768 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
769 {
770         u16 head = nvmeq->cq_head;
771
772         if (likely(nvmeq->cq_vector >= 0)) {
773                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
774                                                       nvmeq->dbbuf_cq_ei))
775                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
776         }
777 }
778
779 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
780                 struct nvme_completion *cqe)
781 {
782         struct request *req;
783
784         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
785                 dev_warn(nvmeq->dev->ctrl.device,
786                         "invalid id %d completed on queue %d\n",
787                         cqe->command_id, le16_to_cpu(cqe->sq_id));
788                 return;
789         }
790
791         /*
792          * AEN requests are special as they don't time out and can
793          * survive any kind of queue freeze and often don't respond to
794          * aborts.  We don't even bother to allocate a struct request
795          * for them but rather special case them here.
796          */
797         if (unlikely(nvmeq->qid == 0 &&
798                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
799                 nvme_complete_async_event(&nvmeq->dev->ctrl,
800                                 cqe->status, &cqe->result);
801                 return;
802         }
803
804         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
805         nvme_end_request(req, cqe->status, cqe->result);
806 }
807
808 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
809                 struct nvme_completion *cqe)
810 {
811         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
812                 *cqe = nvmeq->cqes[nvmeq->cq_head];
813
814                 if (++nvmeq->cq_head == nvmeq->q_depth) {
815                         nvmeq->cq_head = 0;
816                         nvmeq->cq_phase = !nvmeq->cq_phase;
817                 }
818                 return true;
819         }
820         return false;
821 }
822
823 static void nvme_process_cq(struct nvme_queue *nvmeq)
824 {
825         struct nvme_completion cqe;
826         int consumed = 0;
827
828         while (nvme_read_cqe(nvmeq, &cqe)) {
829                 nvme_handle_cqe(nvmeq, &cqe);
830                 consumed++;
831         }
832
833         if (consumed) {
834                 nvme_ring_cq_doorbell(nvmeq);
835                 nvmeq->cqe_seen = 1;
836         }
837 }
838
839 static irqreturn_t nvme_irq(int irq, void *data)
840 {
841         irqreturn_t result;
842         struct nvme_queue *nvmeq = data;
843         spin_lock(&nvmeq->q_lock);
844         nvme_process_cq(nvmeq);
845         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
846         nvmeq->cqe_seen = 0;
847         spin_unlock(&nvmeq->q_lock);
848         return result;
849 }
850
851 static irqreturn_t nvme_irq_check(int irq, void *data)
852 {
853         struct nvme_queue *nvmeq = data;
854         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
855                 return IRQ_WAKE_THREAD;
856         return IRQ_NONE;
857 }
858
859 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
860 {
861         struct nvme_completion cqe;
862         int found = 0, consumed = 0;
863
864         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
865                 return 0;
866
867         spin_lock_irq(&nvmeq->q_lock);
868         while (nvme_read_cqe(nvmeq, &cqe)) {
869                 nvme_handle_cqe(nvmeq, &cqe);
870                 consumed++;
871
872                 if (tag == cqe.command_id) {
873                         found = 1;
874                         break;
875                 }
876        }
877
878         if (consumed)
879                 nvme_ring_cq_doorbell(nvmeq);
880         spin_unlock_irq(&nvmeq->q_lock);
881
882         return found;
883 }
884
885 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
886 {
887         struct nvme_queue *nvmeq = hctx->driver_data;
888
889         return __nvme_poll(nvmeq, tag);
890 }
891
892 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
893 {
894         struct nvme_dev *dev = to_nvme_dev(ctrl);
895         struct nvme_queue *nvmeq = dev->queues[0];
896         struct nvme_command c;
897
898         memset(&c, 0, sizeof(c));
899         c.common.opcode = nvme_admin_async_event;
900         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
901
902         spin_lock_irq(&nvmeq->q_lock);
903         __nvme_submit_cmd(nvmeq, &c);
904         spin_unlock_irq(&nvmeq->q_lock);
905 }
906
907 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
908 {
909         struct nvme_command c;
910
911         memset(&c, 0, sizeof(c));
912         c.delete_queue.opcode = opcode;
913         c.delete_queue.qid = cpu_to_le16(id);
914
915         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917
918 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
919                                                 struct nvme_queue *nvmeq)
920 {
921         struct nvme_command c;
922         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
923
924         /*
925          * Note: we (ab)use the fact the the prp fields survive if no data
926          * is attached to the request.
927          */
928         memset(&c, 0, sizeof(c));
929         c.create_cq.opcode = nvme_admin_create_cq;
930         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
931         c.create_cq.cqid = cpu_to_le16(qid);
932         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933         c.create_cq.cq_flags = cpu_to_le16(flags);
934         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
935
936         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938
939 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
940                                                 struct nvme_queue *nvmeq)
941 {
942         struct nvme_command c;
943         int flags = NVME_QUEUE_PHYS_CONTIG;
944
945         /*
946          * Note: we (ab)use the fact the the prp fields survive if no data
947          * is attached to the request.
948          */
949         memset(&c, 0, sizeof(c));
950         c.create_sq.opcode = nvme_admin_create_sq;
951         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
952         c.create_sq.sqid = cpu_to_le16(qid);
953         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
954         c.create_sq.sq_flags = cpu_to_le16(flags);
955         c.create_sq.cqid = cpu_to_le16(qid);
956
957         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
958 }
959
960 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
961 {
962         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
963 }
964
965 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
966 {
967         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
968 }
969
970 static void abort_endio(struct request *req, blk_status_t error)
971 {
972         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
973         struct nvme_queue *nvmeq = iod->nvmeq;
974
975         dev_warn(nvmeq->dev->ctrl.device,
976                  "Abort status: 0x%x", nvme_req(req)->status);
977         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
978         blk_mq_free_request(req);
979 }
980
981 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
982 {
983
984         /* If true, indicates loss of adapter communication, possibly by a
985          * NVMe Subsystem reset.
986          */
987         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
988
989         /* If there is a reset ongoing, we shouldn't reset again. */
990         if (dev->ctrl.state == NVME_CTRL_RESETTING)
991                 return false;
992
993         /* We shouldn't reset unless the controller is on fatal error state
994          * _or_ if we lost the communication with it.
995          */
996         if (!(csts & NVME_CSTS_CFS) && !nssro)
997                 return false;
998
999         /* If PCI error recovery process is happening, we cannot reset or
1000          * the recovery mechanism will surely fail.
1001          */
1002         if (pci_channel_offline(to_pci_dev(dev->dev)))
1003                 return false;
1004
1005         return true;
1006 }
1007
1008 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1009 {
1010         /* Read a config register to help see what died. */
1011         u16 pci_status;
1012         int result;
1013
1014         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1015                                       &pci_status);
1016         if (result == PCIBIOS_SUCCESSFUL)
1017                 dev_warn(dev->ctrl.device,
1018                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1019                          csts, pci_status);
1020         else
1021                 dev_warn(dev->ctrl.device,
1022                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1023                          csts, result);
1024 }
1025
1026 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1027 {
1028         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1029         struct nvme_queue *nvmeq = iod->nvmeq;
1030         struct nvme_dev *dev = nvmeq->dev;
1031         struct request *abort_req;
1032         struct nvme_command cmd;
1033         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1034
1035         /*
1036          * Reset immediately if the controller is failed
1037          */
1038         if (nvme_should_reset(dev, csts)) {
1039                 nvme_warn_reset(dev, csts);
1040                 nvme_dev_disable(dev, false);
1041                 nvme_reset_ctrl(&dev->ctrl);
1042                 return BLK_EH_HANDLED;
1043         }
1044
1045         /*
1046          * Did we miss an interrupt?
1047          */
1048         if (__nvme_poll(nvmeq, req->tag)) {
1049                 dev_warn(dev->ctrl.device,
1050                          "I/O %d QID %d timeout, completion polled\n",
1051                          req->tag, nvmeq->qid);
1052                 return BLK_EH_HANDLED;
1053         }
1054
1055         /*
1056          * Shutdown immediately if controller times out while starting. The
1057          * reset work will see the pci device disabled when it gets the forced
1058          * cancellation error. All outstanding requests are completed on
1059          * shutdown, so we return BLK_EH_HANDLED.
1060          */
1061         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1062                 dev_warn(dev->ctrl.device,
1063                          "I/O %d QID %d timeout, disable controller\n",
1064                          req->tag, nvmeq->qid);
1065                 nvme_dev_disable(dev, false);
1066                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1067                 return BLK_EH_HANDLED;
1068         }
1069
1070         /*
1071          * Shutdown the controller immediately and schedule a reset if the
1072          * command was already aborted once before and still hasn't been
1073          * returned to the driver, or if this is the admin queue.
1074          */
1075         if (!nvmeq->qid || iod->aborted) {
1076                 dev_warn(dev->ctrl.device,
1077                          "I/O %d QID %d timeout, reset controller\n",
1078                          req->tag, nvmeq->qid);
1079                 nvme_dev_disable(dev, false);
1080                 nvme_reset_ctrl(&dev->ctrl);
1081
1082                 /*
1083                  * Mark the request as handled, since the inline shutdown
1084                  * forces all outstanding requests to complete.
1085                  */
1086                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1087                 return BLK_EH_HANDLED;
1088         }
1089
1090         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1091                 atomic_inc(&dev->ctrl.abort_limit);
1092                 return BLK_EH_RESET_TIMER;
1093         }
1094         iod->aborted = 1;
1095
1096         memset(&cmd, 0, sizeof(cmd));
1097         cmd.abort.opcode = nvme_admin_abort_cmd;
1098         cmd.abort.cid = req->tag;
1099         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1100
1101         dev_warn(nvmeq->dev->ctrl.device,
1102                 "I/O %d QID %d timeout, aborting\n",
1103                  req->tag, nvmeq->qid);
1104
1105         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1106                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1107         if (IS_ERR(abort_req)) {
1108                 atomic_inc(&dev->ctrl.abort_limit);
1109                 return BLK_EH_RESET_TIMER;
1110         }
1111
1112         abort_req->timeout = ADMIN_TIMEOUT;
1113         abort_req->end_io_data = NULL;
1114         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1115
1116         /*
1117          * The aborted req will be completed on receiving the abort req.
1118          * We enable the timer again. If hit twice, it'll cause a device reset,
1119          * as the device then is in a faulty state.
1120          */
1121         return BLK_EH_RESET_TIMER;
1122 }
1123
1124 static void nvme_free_queue(struct nvme_queue *nvmeq)
1125 {
1126         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1127                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1128         if (nvmeq->sq_cmds)
1129                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1130                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1131         kfree(nvmeq);
1132 }
1133
1134 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1135 {
1136         int i;
1137
1138         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1139                 struct nvme_queue *nvmeq = dev->queues[i];
1140                 dev->ctrl.queue_count--;
1141                 dev->queues[i] = NULL;
1142                 nvme_free_queue(nvmeq);
1143         }
1144 }
1145
1146 /**
1147  * nvme_suspend_queue - put queue into suspended state
1148  * @nvmeq - queue to suspend
1149  */
1150 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1151 {
1152         int vector;
1153
1154         spin_lock_irq(&nvmeq->q_lock);
1155         if (nvmeq->cq_vector == -1) {
1156                 spin_unlock_irq(&nvmeq->q_lock);
1157                 return 1;
1158         }
1159         vector = nvmeq->cq_vector;
1160         nvmeq->dev->online_queues--;
1161         nvmeq->cq_vector = -1;
1162         spin_unlock_irq(&nvmeq->q_lock);
1163
1164         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1165                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1166
1167         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1168
1169         return 0;
1170 }
1171
1172 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1173 {
1174         struct nvme_queue *nvmeq = dev->queues[0];
1175
1176         if (!nvmeq)
1177                 return;
1178         if (nvme_suspend_queue(nvmeq))
1179                 return;
1180
1181         if (shutdown)
1182                 nvme_shutdown_ctrl(&dev->ctrl);
1183         else
1184                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1185
1186         spin_lock_irq(&nvmeq->q_lock);
1187         nvme_process_cq(nvmeq);
1188         spin_unlock_irq(&nvmeq->q_lock);
1189 }
1190
1191 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1192                                 int entry_size)
1193 {
1194         int q_depth = dev->q_depth;
1195         unsigned q_size_aligned = roundup(q_depth * entry_size,
1196                                           dev->ctrl.page_size);
1197
1198         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1199                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1200                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1201                 q_depth = div_u64(mem_per_q, entry_size);
1202
1203                 /*
1204                  * Ensure the reduced q_depth is above some threshold where it
1205                  * would be better to map queues in system memory with the
1206                  * original depth
1207                  */
1208                 if (q_depth < 64)
1209                         return -ENOMEM;
1210         }
1211
1212         return q_depth;
1213 }
1214
1215 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1216                                 int qid, int depth)
1217 {
1218         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1219                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1220                                                       dev->ctrl.page_size);
1221                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1222                 nvmeq->sq_cmds_io = dev->cmb + offset;
1223         } else {
1224                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1225                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1226                 if (!nvmeq->sq_cmds)
1227                         return -ENOMEM;
1228         }
1229
1230         return 0;
1231 }
1232
1233 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1234                                                         int depth, int node)
1235 {
1236         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1237                                                         node);
1238         if (!nvmeq)
1239                 return NULL;
1240
1241         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1242                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1243         if (!nvmeq->cqes)
1244                 goto free_nvmeq;
1245
1246         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1247                 goto free_cqdma;
1248
1249         nvmeq->q_dmadev = dev->dev;
1250         nvmeq->dev = dev;
1251         spin_lock_init(&nvmeq->q_lock);
1252         nvmeq->cq_head = 0;
1253         nvmeq->cq_phase = 1;
1254         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1255         nvmeq->q_depth = depth;
1256         nvmeq->qid = qid;
1257         nvmeq->cq_vector = -1;
1258         dev->queues[qid] = nvmeq;
1259         dev->ctrl.queue_count++;
1260
1261         return nvmeq;
1262
1263  free_cqdma:
1264         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1265                                                         nvmeq->cq_dma_addr);
1266  free_nvmeq:
1267         kfree(nvmeq);
1268         return NULL;
1269 }
1270
1271 static int queue_request_irq(struct nvme_queue *nvmeq)
1272 {
1273         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1274         int nr = nvmeq->dev->ctrl.instance;
1275
1276         if (use_threaded_interrupts) {
1277                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1278                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1279         } else {
1280                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1281                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1282         }
1283 }
1284
1285 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1286 {
1287         struct nvme_dev *dev = nvmeq->dev;
1288
1289         spin_lock_irq(&nvmeq->q_lock);
1290         nvmeq->sq_tail = 0;
1291         nvmeq->cq_head = 0;
1292         nvmeq->cq_phase = 1;
1293         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1294         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1295         nvme_dbbuf_init(dev, nvmeq, qid);
1296         dev->online_queues++;
1297         spin_unlock_irq(&nvmeq->q_lock);
1298 }
1299
1300 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1301 {
1302         struct nvme_dev *dev = nvmeq->dev;
1303         int result;
1304
1305         nvmeq->cq_vector = qid - 1;
1306         result = adapter_alloc_cq(dev, qid, nvmeq);
1307         if (result < 0)
1308                 return result;
1309
1310         result = adapter_alloc_sq(dev, qid, nvmeq);
1311         if (result < 0)
1312                 goto release_cq;
1313
1314         result = queue_request_irq(nvmeq);
1315         if (result < 0)
1316                 goto release_sq;
1317
1318         nvme_init_queue(nvmeq, qid);
1319         return result;
1320
1321  release_sq:
1322         adapter_delete_sq(dev, qid);
1323  release_cq:
1324         adapter_delete_cq(dev, qid);
1325         return result;
1326 }
1327
1328 static const struct blk_mq_ops nvme_mq_admin_ops = {
1329         .queue_rq       = nvme_queue_rq,
1330         .complete       = nvme_pci_complete_rq,
1331         .init_hctx      = nvme_admin_init_hctx,
1332         .exit_hctx      = nvme_admin_exit_hctx,
1333         .init_request   = nvme_init_request,
1334         .timeout        = nvme_timeout,
1335 };
1336
1337 static const struct blk_mq_ops nvme_mq_ops = {
1338         .queue_rq       = nvme_queue_rq,
1339         .complete       = nvme_pci_complete_rq,
1340         .init_hctx      = nvme_init_hctx,
1341         .init_request   = nvme_init_request,
1342         .map_queues     = nvme_pci_map_queues,
1343         .timeout        = nvme_timeout,
1344         .poll           = nvme_poll,
1345 };
1346
1347 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1348 {
1349         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1350                 /*
1351                  * If the controller was reset during removal, it's possible
1352                  * user requests may be waiting on a stopped queue. Start the
1353                  * queue to flush these to completion.
1354                  */
1355                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1356                 blk_cleanup_queue(dev->ctrl.admin_q);
1357                 blk_mq_free_tag_set(&dev->admin_tagset);
1358         }
1359 }
1360
1361 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1362 {
1363         if (!dev->ctrl.admin_q) {
1364                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1365                 dev->admin_tagset.nr_hw_queues = 1;
1366
1367                 /*
1368                  * Subtract one to leave an empty queue entry for 'Full Queue'
1369                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1370                  */
1371                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1372                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1373                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1374                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1375                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1376                 dev->admin_tagset.driver_data = dev;
1377
1378                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1379                         return -ENOMEM;
1380
1381                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1382                 if (IS_ERR(dev->ctrl.admin_q)) {
1383                         blk_mq_free_tag_set(&dev->admin_tagset);
1384                         return -ENOMEM;
1385                 }
1386                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1387                         nvme_dev_remove_admin(dev);
1388                         dev->ctrl.admin_q = NULL;
1389                         return -ENODEV;
1390                 }
1391         } else
1392                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1393
1394         return 0;
1395 }
1396
1397 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401
1402 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1403 {
1404         struct pci_dev *pdev = to_pci_dev(dev->dev);
1405
1406         if (size <= dev->bar_mapped_size)
1407                 return 0;
1408         if (size > pci_resource_len(pdev, 0))
1409                 return -ENOMEM;
1410         if (dev->bar)
1411                 iounmap(dev->bar);
1412         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1413         if (!dev->bar) {
1414                 dev->bar_mapped_size = 0;
1415                 return -ENOMEM;
1416         }
1417         dev->bar_mapped_size = size;
1418         dev->dbs = dev->bar + NVME_REG_DBS;
1419
1420         return 0;
1421 }
1422
1423 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1424 {
1425         int result;
1426         u32 aqa;
1427         struct nvme_queue *nvmeq;
1428
1429         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1430         if (result < 0)
1431                 return result;
1432
1433         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1434                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1435
1436         if (dev->subsystem &&
1437             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1438                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1439
1440         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1441         if (result < 0)
1442                 return result;
1443
1444         nvmeq = dev->queues[0];
1445         if (!nvmeq) {
1446                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1447                                         dev_to_node(dev->dev));
1448                 if (!nvmeq)
1449                         return -ENOMEM;
1450         }
1451
1452         aqa = nvmeq->q_depth - 1;
1453         aqa |= aqa << 16;
1454
1455         writel(aqa, dev->bar + NVME_REG_AQA);
1456         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1457         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1458
1459         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1460         if (result)
1461                 return result;
1462
1463         nvmeq->cq_vector = 0;
1464         result = queue_request_irq(nvmeq);
1465         if (result) {
1466                 nvmeq->cq_vector = -1;
1467                 return result;
1468         }
1469
1470         return result;
1471 }
1472
1473 static int nvme_create_io_queues(struct nvme_dev *dev)
1474 {
1475         unsigned i, max;
1476         int ret = 0;
1477
1478         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1479                 /* vector == qid - 1, match nvme_create_queue */
1480                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1481                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1482                         ret = -ENOMEM;
1483                         break;
1484                 }
1485         }
1486
1487         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1488         for (i = dev->online_queues; i <= max; i++) {
1489                 ret = nvme_create_queue(dev->queues[i], i);
1490                 if (ret)
1491                         break;
1492         }
1493
1494         /*
1495          * Ignore failing Create SQ/CQ commands, we can continue with less
1496          * than the desired aount of queues, and even a controller without
1497          * I/O queues an still be used to issue admin commands.  This might
1498          * be useful to upgrade a buggy firmware for example.
1499          */
1500         return ret >= 0 ? 0 : ret;
1501 }
1502
1503 static ssize_t nvme_cmb_show(struct device *dev,
1504                              struct device_attribute *attr,
1505                              char *buf)
1506 {
1507         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1508
1509         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1510                        ndev->cmbloc, ndev->cmbsz);
1511 }
1512 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1513
1514 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1515 {
1516         u64 szu, size, offset;
1517         resource_size_t bar_size;
1518         struct pci_dev *pdev = to_pci_dev(dev->dev);
1519         void __iomem *cmb;
1520         dma_addr_t dma_addr;
1521
1522         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1523         if (!(NVME_CMB_SZ(dev->cmbsz)))
1524                 return NULL;
1525         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1526
1527         if (!use_cmb_sqes)
1528                 return NULL;
1529
1530         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1531         size = szu * NVME_CMB_SZ(dev->cmbsz);
1532         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1533         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1534
1535         if (offset > bar_size)
1536                 return NULL;
1537
1538         /*
1539          * Controllers may support a CMB size larger than their BAR,
1540          * for example, due to being behind a bridge. Reduce the CMB to
1541          * the reported size of the BAR
1542          */
1543         if (size > bar_size - offset)
1544                 size = bar_size - offset;
1545
1546         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1547         cmb = ioremap_wc(dma_addr, size);
1548         if (!cmb)
1549                 return NULL;
1550
1551         dev->cmb_dma_addr = dma_addr;
1552         dev->cmb_size = size;
1553         return cmb;
1554 }
1555
1556 static inline void nvme_release_cmb(struct nvme_dev *dev)
1557 {
1558         if (dev->cmb) {
1559                 iounmap(dev->cmb);
1560                 dev->cmb = NULL;
1561                 if (dev->cmbsz) {
1562                         sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1563                                                      &dev_attr_cmb.attr, NULL);
1564                         dev->cmbsz = 0;
1565                 }
1566         }
1567 }
1568
1569 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1570 {
1571         size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1572         struct nvme_command c;
1573         u64 dma_addr;
1574         int ret;
1575
1576         dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1577                         DMA_TO_DEVICE);
1578         if (dma_mapping_error(dev->dev, dma_addr))
1579                 return -ENOMEM;
1580
1581         memset(&c, 0, sizeof(c));
1582         c.features.opcode       = nvme_admin_set_features;
1583         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1584         c.features.dword11      = cpu_to_le32(bits);
1585         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1586                                               ilog2(dev->ctrl.page_size));
1587         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1588         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1589         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1590
1591         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1592         if (ret) {
1593                 dev_warn(dev->ctrl.device,
1594                          "failed to set host mem (err %d, flags %#x).\n",
1595                          ret, bits);
1596         }
1597         dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1598         return ret;
1599 }
1600
1601 static void nvme_free_host_mem(struct nvme_dev *dev)
1602 {
1603         int i;
1604
1605         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1606                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1607                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1608
1609                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1610                                 le64_to_cpu(desc->addr));
1611         }
1612
1613         kfree(dev->host_mem_desc_bufs);
1614         dev->host_mem_desc_bufs = NULL;
1615         kfree(dev->host_mem_descs);
1616         dev->host_mem_descs = NULL;
1617 }
1618
1619 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1620 {
1621         struct nvme_host_mem_buf_desc *descs;
1622         u32 chunk_size, max_entries, len;
1623         int i = 0;
1624         void **bufs;
1625         u64 size = 0, tmp;
1626
1627         /* start big and work our way down */
1628         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1629 retry:
1630         tmp = (preferred + chunk_size - 1);
1631         do_div(tmp, chunk_size);
1632         max_entries = tmp;
1633         descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1634         if (!descs)
1635                 goto out;
1636
1637         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1638         if (!bufs)
1639                 goto out_free_descs;
1640
1641         for (size = 0; size < preferred; size += len) {
1642                 dma_addr_t dma_addr;
1643
1644                 len = min_t(u64, chunk_size, preferred - size);
1645                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1646                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1647                 if (!bufs[i])
1648                         break;
1649
1650                 descs[i].addr = cpu_to_le64(dma_addr);
1651                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1652                 i++;
1653         }
1654
1655         if (!size || (min && size < min)) {
1656                 dev_warn(dev->ctrl.device,
1657                         "failed to allocate host memory buffer.\n");
1658                 goto out_free_bufs;
1659         }
1660
1661         dev_info(dev->ctrl.device,
1662                 "allocated %lld MiB host memory buffer.\n",
1663                 size >> ilog2(SZ_1M));
1664         dev->nr_host_mem_descs = i;
1665         dev->host_mem_size = size;
1666         dev->host_mem_descs = descs;
1667         dev->host_mem_desc_bufs = bufs;
1668         return 0;
1669
1670 out_free_bufs:
1671         while (--i >= 0) {
1672                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1673
1674                 dma_free_coherent(dev->dev, size, bufs[i],
1675                                 le64_to_cpu(descs[i].addr));
1676         }
1677
1678         kfree(bufs);
1679 out_free_descs:
1680         kfree(descs);
1681 out:
1682         /* try a smaller chunk size if we failed early */
1683         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1684                 chunk_size /= 2;
1685                 goto retry;
1686         }
1687         dev->host_mem_descs = NULL;
1688         return -ENOMEM;
1689 }
1690
1691 static void nvme_setup_host_mem(struct nvme_dev *dev)
1692 {
1693         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1694         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1695         u64 min = (u64)dev->ctrl.hmmin * 4096;
1696         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1697
1698         preferred = min(preferred, max);
1699         if (min > max) {
1700                 dev_warn(dev->ctrl.device,
1701                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1702                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1703                 nvme_free_host_mem(dev);
1704                 return;
1705         }
1706
1707         /*
1708          * If we already have a buffer allocated check if we can reuse it.
1709          */
1710         if (dev->host_mem_descs) {
1711                 if (dev->host_mem_size >= min)
1712                         enable_bits |= NVME_HOST_MEM_RETURN;
1713                 else
1714                         nvme_free_host_mem(dev);
1715         }
1716
1717         if (!dev->host_mem_descs) {
1718                 if (nvme_alloc_host_mem(dev, min, preferred))
1719                         return;
1720         }
1721
1722         if (nvme_set_host_mem(dev, enable_bits))
1723                 nvme_free_host_mem(dev);
1724 }
1725
1726 static int nvme_setup_io_queues(struct nvme_dev *dev)
1727 {
1728         struct nvme_queue *adminq = dev->queues[0];
1729         struct pci_dev *pdev = to_pci_dev(dev->dev);
1730         int result, nr_io_queues;
1731         unsigned long size;
1732
1733         nr_io_queues = num_present_cpus();
1734         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1735         if (result < 0)
1736                 return result;
1737
1738         if (nr_io_queues == 0)
1739                 return 0;
1740
1741         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1742                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1743                                 sizeof(struct nvme_command));
1744                 if (result > 0)
1745                         dev->q_depth = result;
1746                 else
1747                         nvme_release_cmb(dev);
1748         }
1749
1750         do {
1751                 size = db_bar_size(dev, nr_io_queues);
1752                 result = nvme_remap_bar(dev, size);
1753                 if (!result)
1754                         break;
1755                 if (!--nr_io_queues)
1756                         return -ENOMEM;
1757         } while (1);
1758         adminq->q_db = dev->dbs;
1759
1760         /* Deregister the admin queue's interrupt */
1761         pci_free_irq(pdev, 0, adminq);
1762
1763         /*
1764          * If we enable msix early due to not intx, disable it again before
1765          * setting up the full range we need.
1766          */
1767         pci_free_irq_vectors(pdev);
1768         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1769                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1770         if (nr_io_queues <= 0)
1771                 return -EIO;
1772         dev->max_qid = nr_io_queues;
1773
1774         /*
1775          * Should investigate if there's a performance win from allocating
1776          * more queues than interrupt vectors; it might allow the submission
1777          * path to scale better, even if the receive path is limited by the
1778          * number of interrupts.
1779          */
1780
1781         result = queue_request_irq(adminq);
1782         if (result) {
1783                 adminq->cq_vector = -1;
1784                 return result;
1785         }
1786         return nvme_create_io_queues(dev);
1787 }
1788
1789 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1790 {
1791         struct nvme_queue *nvmeq = req->end_io_data;
1792
1793         blk_mq_free_request(req);
1794         complete(&nvmeq->dev->ioq_wait);
1795 }
1796
1797 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1798 {
1799         struct nvme_queue *nvmeq = req->end_io_data;
1800
1801         if (!error) {
1802                 unsigned long flags;
1803
1804                 /*
1805                  * We might be called with the AQ q_lock held
1806                  * and the I/O queue q_lock should always
1807                  * nest inside the AQ one.
1808                  */
1809                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1810                                         SINGLE_DEPTH_NESTING);
1811                 nvme_process_cq(nvmeq);
1812                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1813         }
1814
1815         nvme_del_queue_end(req, error);
1816 }
1817
1818 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1819 {
1820         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1821         struct request *req;
1822         struct nvme_command cmd;
1823
1824         memset(&cmd, 0, sizeof(cmd));
1825         cmd.delete_queue.opcode = opcode;
1826         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1827
1828         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1829         if (IS_ERR(req))
1830                 return PTR_ERR(req);
1831
1832         req->timeout = ADMIN_TIMEOUT;
1833         req->end_io_data = nvmeq;
1834
1835         blk_execute_rq_nowait(q, NULL, req, false,
1836                         opcode == nvme_admin_delete_cq ?
1837                                 nvme_del_cq_end : nvme_del_queue_end);
1838         return 0;
1839 }
1840
1841 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1842 {
1843         int pass;
1844         unsigned long timeout;
1845         u8 opcode = nvme_admin_delete_sq;
1846
1847         for (pass = 0; pass < 2; pass++) {
1848                 int sent = 0, i = queues;
1849
1850                 reinit_completion(&dev->ioq_wait);
1851  retry:
1852                 timeout = ADMIN_TIMEOUT;
1853                 for (; i > 0; i--, sent++)
1854                         if (nvme_delete_queue(dev->queues[i], opcode))
1855                                 break;
1856
1857                 while (sent--) {
1858                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1859                         if (timeout == 0)
1860                                 return;
1861                         if (i)
1862                                 goto retry;
1863                 }
1864                 opcode = nvme_admin_delete_cq;
1865         }
1866 }
1867
1868 /*
1869  * Return: error value if an error occurred setting up the queues or calling
1870  * Identify Device.  0 if these succeeded, even if adding some of the
1871  * namespaces failed.  At the moment, these failures are silent.  TBD which
1872  * failures should be reported.
1873  */
1874 static int nvme_dev_add(struct nvme_dev *dev)
1875 {
1876         if (!dev->ctrl.tagset) {
1877                 dev->tagset.ops = &nvme_mq_ops;
1878                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1879                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1880                 dev->tagset.numa_node = dev_to_node(dev->dev);
1881                 dev->tagset.queue_depth =
1882                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1883                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1884                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1885                 dev->tagset.driver_data = dev;
1886
1887                 if (blk_mq_alloc_tag_set(&dev->tagset))
1888                         return 0;
1889                 dev->ctrl.tagset = &dev->tagset;
1890
1891                 nvme_dbbuf_set(dev);
1892         } else {
1893                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1894
1895                 /* Free previously allocated queues that are no longer usable */
1896                 nvme_free_queues(dev, dev->online_queues);
1897         }
1898
1899         return 0;
1900 }
1901
1902 static int nvme_pci_enable(struct nvme_dev *dev)
1903 {
1904         int result = -ENOMEM;
1905         struct pci_dev *pdev = to_pci_dev(dev->dev);
1906
1907         if (pci_enable_device_mem(pdev))
1908                 return result;
1909
1910         pci_set_master(pdev);
1911
1912         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1913             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1914                 goto disable;
1915
1916         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1917                 result = -ENODEV;
1918                 goto disable;
1919         }
1920
1921         /*
1922          * Some devices and/or platforms don't advertise or work with INTx
1923          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1924          * adjust this later.
1925          */
1926         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1927         if (result < 0)
1928                 return result;
1929
1930         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1931
1932         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1933                                 io_queue_depth);
1934         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1935         dev->dbs = dev->bar + 4096;
1936
1937         /*
1938          * Temporary fix for the Apple controller found in the MacBook8,1 and
1939          * some MacBook7,1 to avoid controller resets and data loss.
1940          */
1941         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1942                 dev->q_depth = 2;
1943                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1944                         "set queue depth=%u to work around controller resets\n",
1945                         dev->q_depth);
1946         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1947                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1948                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1949                 dev->q_depth = 64;
1950                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1951                         "set queue depth=%u\n", dev->q_depth);
1952         }
1953
1954         /*
1955          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1956          * populate sysfs if a CMB is implemented. Note that we add the
1957          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1958          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1959          * NULL as final argument to sysfs_add_file_to_group.
1960          */
1961
1962         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1963                 dev->cmb = nvme_map_cmb(dev);
1964
1965                 if (dev->cmbsz) {
1966                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1967                                                     &dev_attr_cmb.attr, NULL))
1968                                 dev_warn(dev->ctrl.device,
1969                                          "failed to add sysfs attribute for CMB\n");
1970                 }
1971         }
1972
1973         pci_enable_pcie_error_reporting(pdev);
1974         pci_save_state(pdev);
1975         return 0;
1976
1977  disable:
1978         pci_disable_device(pdev);
1979         return result;
1980 }
1981
1982 static void nvme_dev_unmap(struct nvme_dev *dev)
1983 {
1984         if (dev->bar)
1985                 iounmap(dev->bar);
1986         pci_release_mem_regions(to_pci_dev(dev->dev));
1987 }
1988
1989 static void nvme_pci_disable(struct nvme_dev *dev)
1990 {
1991         struct pci_dev *pdev = to_pci_dev(dev->dev);
1992
1993         nvme_release_cmb(dev);
1994         pci_free_irq_vectors(pdev);
1995
1996         if (pci_is_enabled(pdev)) {
1997                 pci_disable_pcie_error_reporting(pdev);
1998                 pci_disable_device(pdev);
1999         }
2000 }
2001
2002 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2003 {
2004         int i, queues;
2005         bool dead = true;
2006         struct pci_dev *pdev = to_pci_dev(dev->dev);
2007
2008         mutex_lock(&dev->shutdown_lock);
2009         if (pci_is_enabled(pdev)) {
2010                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2011
2012                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2013                     dev->ctrl.state == NVME_CTRL_RESETTING)
2014                         nvme_start_freeze(&dev->ctrl);
2015                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2016                         pdev->error_state  != pci_channel_io_normal);
2017         }
2018
2019         /*
2020          * Give the controller a chance to complete all entered requests if
2021          * doing a safe shutdown.
2022          */
2023         if (!dead) {
2024                 if (shutdown)
2025                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2026
2027                 /*
2028                  * If the controller is still alive tell it to stop using the
2029                  * host memory buffer.  In theory the shutdown / reset should
2030                  * make sure that it doesn't access the host memoery anymore,
2031                  * but I'd rather be safe than sorry..
2032                  */
2033                 if (dev->host_mem_descs)
2034                         nvme_set_host_mem(dev, 0);
2035
2036         }
2037         nvme_stop_queues(&dev->ctrl);
2038
2039         queues = dev->online_queues - 1;
2040         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2041                 nvme_suspend_queue(dev->queues[i]);
2042
2043         if (dead) {
2044                 /* A device might become IO incapable very soon during
2045                  * probe, before the admin queue is configured. Thus,
2046                  * queue_count can be 0 here.
2047                  */
2048                 if (dev->ctrl.queue_count)
2049                         nvme_suspend_queue(dev->queues[0]);
2050         } else {
2051                 nvme_disable_io_queues(dev, queues);
2052                 nvme_disable_admin_queue(dev, shutdown);
2053         }
2054         nvme_pci_disable(dev);
2055
2056         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2057         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2058
2059         /*
2060          * The driver will not be starting up queues again if shutting down so
2061          * must flush all entered requests to their failed completion to avoid
2062          * deadlocking blk-mq hot-cpu notifier.
2063          */
2064         if (shutdown)
2065                 nvme_start_queues(&dev->ctrl);
2066         mutex_unlock(&dev->shutdown_lock);
2067 }
2068
2069 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2070 {
2071         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2072                                                 PAGE_SIZE, PAGE_SIZE, 0);
2073         if (!dev->prp_page_pool)
2074                 return -ENOMEM;
2075
2076         /* Optimisation for I/Os between 4k and 128k */
2077         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2078                                                 256, 256, 0);
2079         if (!dev->prp_small_pool) {
2080                 dma_pool_destroy(dev->prp_page_pool);
2081                 return -ENOMEM;
2082         }
2083         return 0;
2084 }
2085
2086 static void nvme_release_prp_pools(struct nvme_dev *dev)
2087 {
2088         dma_pool_destroy(dev->prp_page_pool);
2089         dma_pool_destroy(dev->prp_small_pool);
2090 }
2091
2092 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2093 {
2094         struct nvme_dev *dev = to_nvme_dev(ctrl);
2095
2096         nvme_dbbuf_dma_free(dev);
2097         put_device(dev->dev);
2098         if (dev->tagset.tags)
2099                 blk_mq_free_tag_set(&dev->tagset);
2100         if (dev->ctrl.admin_q)
2101                 blk_put_queue(dev->ctrl.admin_q);
2102         kfree(dev->queues);
2103         free_opal_dev(dev->ctrl.opal_dev);
2104         kfree(dev);
2105 }
2106
2107 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2108 {
2109         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2110
2111         kref_get(&dev->ctrl.kref);
2112         nvme_dev_disable(dev, false);
2113         if (!schedule_work(&dev->remove_work))
2114                 nvme_put_ctrl(&dev->ctrl);
2115 }
2116
2117 static void nvme_reset_work(struct work_struct *work)
2118 {
2119         struct nvme_dev *dev =
2120                 container_of(work, struct nvme_dev, ctrl.reset_work);
2121         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2122         int result = -ENODEV;
2123
2124         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2125                 goto out;
2126
2127         /*
2128          * If we're called to reset a live controller first shut it down before
2129          * moving on.
2130          */
2131         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2132                 nvme_dev_disable(dev, false);
2133
2134         result = nvme_pci_enable(dev);
2135         if (result)
2136                 goto out;
2137
2138         result = nvme_pci_configure_admin_queue(dev);
2139         if (result)
2140                 goto out;
2141
2142         nvme_init_queue(dev->queues[0], 0);
2143         result = nvme_alloc_admin_tags(dev);
2144         if (result)
2145                 goto out;
2146
2147         result = nvme_init_identify(&dev->ctrl);
2148         if (result)
2149                 goto out;
2150
2151         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2152                 if (!dev->ctrl.opal_dev)
2153                         dev->ctrl.opal_dev =
2154                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2155                 else if (was_suspend)
2156                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2157         } else {
2158                 free_opal_dev(dev->ctrl.opal_dev);
2159                 dev->ctrl.opal_dev = NULL;
2160         }
2161
2162         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2163                 result = nvme_dbbuf_dma_alloc(dev);
2164                 if (result)
2165                         dev_warn(dev->dev,
2166                                  "unable to allocate dma for dbbuf\n");
2167         }
2168
2169         if (dev->ctrl.hmpre)
2170                 nvme_setup_host_mem(dev);
2171
2172         result = nvme_setup_io_queues(dev);
2173         if (result)
2174                 goto out;
2175
2176         /*
2177          * Keep the controller around but remove all namespaces if we don't have
2178          * any working I/O queue.
2179          */
2180         if (dev->online_queues < 2) {
2181                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2182                 nvme_kill_queues(&dev->ctrl);
2183                 nvme_remove_namespaces(&dev->ctrl);
2184         } else {
2185                 nvme_start_queues(&dev->ctrl);
2186                 nvme_wait_freeze(&dev->ctrl);
2187                 nvme_dev_add(dev);
2188                 nvme_unfreeze(&dev->ctrl);
2189         }
2190
2191         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2192                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2193                 goto out;
2194         }
2195
2196         nvme_start_ctrl(&dev->ctrl);
2197         return;
2198
2199  out:
2200         nvme_remove_dead_ctrl(dev, result);
2201 }
2202
2203 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2204 {
2205         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2206         struct pci_dev *pdev = to_pci_dev(dev->dev);
2207
2208         nvme_kill_queues(&dev->ctrl);
2209         if (pci_get_drvdata(pdev))
2210                 device_release_driver(&pdev->dev);
2211         nvme_put_ctrl(&dev->ctrl);
2212 }
2213
2214 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2215 {
2216         *val = readl(to_nvme_dev(ctrl)->bar + off);
2217         return 0;
2218 }
2219
2220 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2221 {
2222         writel(val, to_nvme_dev(ctrl)->bar + off);
2223         return 0;
2224 }
2225
2226 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2227 {
2228         *val = readq(to_nvme_dev(ctrl)->bar + off);
2229         return 0;
2230 }
2231
2232 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2233         .name                   = "pcie",
2234         .module                 = THIS_MODULE,
2235         .flags                  = NVME_F_METADATA_SUPPORTED,
2236         .reg_read32             = nvme_pci_reg_read32,
2237         .reg_write32            = nvme_pci_reg_write32,
2238         .reg_read64             = nvme_pci_reg_read64,
2239         .free_ctrl              = nvme_pci_free_ctrl,
2240         .submit_async_event     = nvme_pci_submit_async_event,
2241 };
2242
2243 static int nvme_dev_map(struct nvme_dev *dev)
2244 {
2245         struct pci_dev *pdev = to_pci_dev(dev->dev);
2246
2247         if (pci_request_mem_regions(pdev, "nvme"))
2248                 return -ENODEV;
2249
2250         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2251                 goto release;
2252
2253         return 0;
2254   release:
2255         pci_release_mem_regions(pdev);
2256         return -ENODEV;
2257 }
2258
2259 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2260 {
2261         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2262                 /*
2263                  * Several Samsung devices seem to drop off the PCIe bus
2264                  * randomly when APST is on and uses the deepest sleep state.
2265                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2266                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2267                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2268                  * laptops.
2269                  */
2270                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2271                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2272                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2273                         return NVME_QUIRK_NO_DEEPEST_PS;
2274         }
2275
2276         return 0;
2277 }
2278
2279 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2280 {
2281         int node, result = -ENOMEM;
2282         struct nvme_dev *dev;
2283         unsigned long quirks = id->driver_data;
2284
2285         node = dev_to_node(&pdev->dev);
2286         if (node == NUMA_NO_NODE)
2287                 set_dev_node(&pdev->dev, first_memory_node);
2288
2289         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2290         if (!dev)
2291                 return -ENOMEM;
2292         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2293                                                         GFP_KERNEL, node);
2294         if (!dev->queues)
2295                 goto free;
2296
2297         dev->dev = get_device(&pdev->dev);
2298         pci_set_drvdata(pdev, dev);
2299
2300         result = nvme_dev_map(dev);
2301         if (result)
2302                 goto put_pci;
2303
2304         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2305         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2306         mutex_init(&dev->shutdown_lock);
2307         init_completion(&dev->ioq_wait);
2308
2309         result = nvme_setup_prp_pools(dev);
2310         if (result)
2311                 goto unmap;
2312
2313         quirks |= check_dell_samsung_bug(pdev);
2314
2315         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2316                         quirks);
2317         if (result)
2318                 goto release_pools;
2319
2320         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2321         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2322
2323         queue_work(nvme_wq, &dev->ctrl.reset_work);
2324         return 0;
2325
2326  release_pools:
2327         nvme_release_prp_pools(dev);
2328  unmap:
2329         nvme_dev_unmap(dev);
2330  put_pci:
2331         put_device(dev->dev);
2332  free:
2333         kfree(dev->queues);
2334         kfree(dev);
2335         return result;
2336 }
2337
2338 static void nvme_reset_prepare(struct pci_dev *pdev)
2339 {
2340         struct nvme_dev *dev = pci_get_drvdata(pdev);
2341         nvme_dev_disable(dev, false);
2342 }
2343
2344 static void nvme_reset_done(struct pci_dev *pdev)
2345 {
2346         struct nvme_dev *dev = pci_get_drvdata(pdev);
2347         nvme_reset_ctrl(&dev->ctrl);
2348 }
2349
2350 static void nvme_shutdown(struct pci_dev *pdev)
2351 {
2352         struct nvme_dev *dev = pci_get_drvdata(pdev);
2353         nvme_dev_disable(dev, true);
2354 }
2355
2356 /*
2357  * The driver's remove may be called on a device in a partially initialized
2358  * state. This function must not have any dependencies on the device state in
2359  * order to proceed.
2360  */
2361 static void nvme_remove(struct pci_dev *pdev)
2362 {
2363         struct nvme_dev *dev = pci_get_drvdata(pdev);
2364
2365         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2366
2367         cancel_work_sync(&dev->ctrl.reset_work);
2368         pci_set_drvdata(pdev, NULL);
2369
2370         if (!pci_device_is_present(pdev)) {
2371                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2372                 nvme_dev_disable(dev, false);
2373         }
2374
2375         flush_work(&dev->ctrl.reset_work);
2376         nvme_stop_ctrl(&dev->ctrl);
2377         nvme_remove_namespaces(&dev->ctrl);
2378         nvme_dev_disable(dev, true);
2379         nvme_free_host_mem(dev);
2380         nvme_dev_remove_admin(dev);
2381         nvme_free_queues(dev, 0);
2382         nvme_uninit_ctrl(&dev->ctrl);
2383         nvme_release_prp_pools(dev);
2384         nvme_dev_unmap(dev);
2385         nvme_put_ctrl(&dev->ctrl);
2386 }
2387
2388 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2389 {
2390         int ret = 0;
2391
2392         if (numvfs == 0) {
2393                 if (pci_vfs_assigned(pdev)) {
2394                         dev_warn(&pdev->dev,
2395                                 "Cannot disable SR-IOV VFs while assigned\n");
2396                         return -EPERM;
2397                 }
2398                 pci_disable_sriov(pdev);
2399                 return 0;
2400         }
2401
2402         ret = pci_enable_sriov(pdev, numvfs);
2403         return ret ? ret : numvfs;
2404 }
2405
2406 #ifdef CONFIG_PM_SLEEP
2407 static int nvme_suspend(struct device *dev)
2408 {
2409         struct pci_dev *pdev = to_pci_dev(dev);
2410         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2411
2412         nvme_dev_disable(ndev, true);
2413         return 0;
2414 }
2415
2416 static int nvme_resume(struct device *dev)
2417 {
2418         struct pci_dev *pdev = to_pci_dev(dev);
2419         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2420
2421         nvme_reset_ctrl(&ndev->ctrl);
2422         return 0;
2423 }
2424 #endif
2425
2426 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2427
2428 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2429                                                 pci_channel_state_t state)
2430 {
2431         struct nvme_dev *dev = pci_get_drvdata(pdev);
2432
2433         /*
2434          * A frozen channel requires a reset. When detected, this method will
2435          * shutdown the controller to quiesce. The controller will be restarted
2436          * after the slot reset through driver's slot_reset callback.
2437          */
2438         switch (state) {
2439         case pci_channel_io_normal:
2440                 return PCI_ERS_RESULT_CAN_RECOVER;
2441         case pci_channel_io_frozen:
2442                 dev_warn(dev->ctrl.device,
2443                         "frozen state error detected, reset controller\n");
2444                 nvme_dev_disable(dev, false);
2445                 return PCI_ERS_RESULT_NEED_RESET;
2446         case pci_channel_io_perm_failure:
2447                 dev_warn(dev->ctrl.device,
2448                         "failure state error detected, request disconnect\n");
2449                 return PCI_ERS_RESULT_DISCONNECT;
2450         }
2451         return PCI_ERS_RESULT_NEED_RESET;
2452 }
2453
2454 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2455 {
2456         struct nvme_dev *dev = pci_get_drvdata(pdev);
2457
2458         dev_info(dev->ctrl.device, "restart after slot reset\n");
2459         pci_restore_state(pdev);
2460         nvme_reset_ctrl(&dev->ctrl);
2461         return PCI_ERS_RESULT_RECOVERED;
2462 }
2463
2464 static void nvme_error_resume(struct pci_dev *pdev)
2465 {
2466         pci_cleanup_aer_uncorrect_error_status(pdev);
2467 }
2468
2469 static const struct pci_error_handlers nvme_err_handler = {
2470         .error_detected = nvme_error_detected,
2471         .slot_reset     = nvme_slot_reset,
2472         .resume         = nvme_error_resume,
2473         .reset_prepare  = nvme_reset_prepare,
2474         .reset_done     = nvme_reset_done,
2475 };
2476
2477 static const struct pci_device_id nvme_id_table[] = {
2478         { PCI_VDEVICE(INTEL, 0x0953),
2479                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2480                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2481         { PCI_VDEVICE(INTEL, 0x0a53),
2482                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2483                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2484         { PCI_VDEVICE(INTEL, 0x0a54),
2485                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2486                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2487         { PCI_VDEVICE(INTEL, 0x0a55),
2488                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2489                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2490         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2491                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2492         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2493                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2494         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2495                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2496         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2497                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2498         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2499                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2500         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2501                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2502         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2503         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2504         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2505         { 0, }
2506 };
2507 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2508
2509 static struct pci_driver nvme_driver = {
2510         .name           = "nvme",
2511         .id_table       = nvme_id_table,
2512         .probe          = nvme_probe,
2513         .remove         = nvme_remove,
2514         .shutdown       = nvme_shutdown,
2515         .driver         = {
2516                 .pm     = &nvme_dev_pm_ops,
2517         },
2518         .sriov_configure = nvme_pci_sriov_configure,
2519         .err_handler    = &nvme_err_handler,
2520 };
2521
2522 static int __init nvme_init(void)
2523 {
2524         return pci_register_driver(&nvme_driver);
2525 }
2526
2527 static void __exit nvme_exit(void)
2528 {
2529         pci_unregister_driver(&nvme_driver);
2530         _nvme_check_size();
2531 }
2532
2533 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2534 MODULE_LICENSE("GPL");
2535 MODULE_VERSION("1.0");
2536 module_init(nvme_init);
2537 module_exit(nvme_exit);