]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/of/of_reserved_mem.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24
25 #define MAX_RESERVED_REGIONS    16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33         phys_addr_t *res_base)
34 {
35         phys_addr_t base;
36         /*
37          * We use __memblock_alloc_base() because memblock_alloc_base()
38          * panic()s on allocation failure.
39          */
40         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41         base = __memblock_alloc_base(size, align, end);
42         if (!base)
43                 return -ENOMEM;
44
45         /*
46          * Check if the allocated region fits in to start..end window
47          */
48         if (base < start) {
49                 memblock_free(base, size);
50                 return -ENOMEM;
51         }
52
53         *res_base = base;
54         if (nomap)
55                 return memblock_remove(base, size);
56         return 0;
57 }
58 #else
59 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
60         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
61         phys_addr_t *res_base)
62 {
63         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
64                   size, nomap ? " (nomap)" : "");
65         return -ENOSYS;
66 }
67 #endif
68
69 /**
70  * res_mem_save_node() - save fdt node for second pass initialization
71  */
72 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
73                                       phys_addr_t base, phys_addr_t size)
74 {
75         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
76
77         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
78                 pr_err("Reserved memory: not enough space all defined regions.\n");
79                 return;
80         }
81
82         rmem->fdt_node = node;
83         rmem->name = uname;
84         rmem->base = base;
85         rmem->size = size;
86
87         reserved_mem_count++;
88         return;
89 }
90
91 /**
92  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
93  *                        and 'alloc-ranges' properties
94  */
95 static int __init __reserved_mem_alloc_size(unsigned long node,
96         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
97 {
98         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
99         phys_addr_t start = 0, end = 0;
100         phys_addr_t base = 0, align = 0, size;
101         int len;
102         const __be32 *prop;
103         int nomap;
104         int ret;
105
106         prop = of_get_flat_dt_prop(node, "size", &len);
107         if (!prop)
108                 return -EINVAL;
109
110         if (len != dt_root_size_cells * sizeof(__be32)) {
111                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
112                                 uname);
113                 return -EINVAL;
114         }
115         size = dt_mem_next_cell(dt_root_size_cells, &prop);
116
117         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
118
119         prop = of_get_flat_dt_prop(node, "alignment", &len);
120         if (prop) {
121                 if (len != dt_root_addr_cells * sizeof(__be32)) {
122                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
123                                 uname);
124                         return -EINVAL;
125                 }
126                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
127         }
128
129         /* Need adjust the alignment to satisfy the CMA requirement */
130         if (IS_ENABLED(CONFIG_CMA)
131             && of_flat_dt_is_compatible(node, "shared-dma-pool")
132             && of_get_flat_dt_prop(node, "reusable", NULL)
133             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
134                 unsigned long order =
135                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
136
137                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
138         }
139
140         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
141         if (prop) {
142
143                 if (len % t_len != 0) {
144                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
145                                uname);
146                         return -EINVAL;
147                 }
148
149                 base = 0;
150
151                 while (len > 0) {
152                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
153                         end = start + dt_mem_next_cell(dt_root_size_cells,
154                                                        &prop);
155
156                         ret = early_init_dt_alloc_reserved_memory_arch(size,
157                                         align, start, end, nomap, &base);
158                         if (ret == 0) {
159                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
160                                         uname, &base,
161                                         (unsigned long)size / SZ_1M);
162                                 break;
163                         }
164                         len -= t_len;
165                 }
166
167         } else {
168                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
169                                                         0, 0, nomap, &base);
170                 if (ret == 0)
171                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
172                                 uname, &base, (unsigned long)size / SZ_1M);
173         }
174
175         if (base == 0) {
176                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
177                         uname);
178                 return -ENOMEM;
179         }
180
181         *res_base = base;
182         *res_size = size;
183
184         return 0;
185 }
186
187 static const struct of_device_id __rmem_of_table_sentinel
188         __used __section(__reservedmem_of_table_end);
189
190 /**
191  * res_mem_init_node() - call region specific reserved memory init code
192  */
193 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
194 {
195         extern const struct of_device_id __reservedmem_of_table[];
196         const struct of_device_id *i;
197
198         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
199                 reservedmem_of_init_fn initfn = i->data;
200                 const char *compat = i->compatible;
201
202                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
203                         continue;
204
205                 if (initfn(rmem) == 0) {
206                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
207                                 rmem->name, compat);
208                         return 0;
209                 }
210         }
211         return -ENOENT;
212 }
213
214 static int __init __rmem_cmp(const void *a, const void *b)
215 {
216         const struct reserved_mem *ra = a, *rb = b;
217
218         if (ra->base < rb->base)
219                 return -1;
220
221         if (ra->base > rb->base)
222                 return 1;
223
224         return 0;
225 }
226
227 static void __init __rmem_check_for_overlap(void)
228 {
229         int i;
230
231         if (reserved_mem_count < 2)
232                 return;
233
234         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
235              __rmem_cmp, NULL);
236         for (i = 0; i < reserved_mem_count - 1; i++) {
237                 struct reserved_mem *this, *next;
238
239                 this = &reserved_mem[i];
240                 next = &reserved_mem[i + 1];
241                 if (!(this->base && next->base))
242                         continue;
243                 if (this->base + this->size > next->base) {
244                         phys_addr_t this_end, next_end;
245
246                         this_end = this->base + this->size;
247                         next_end = next->base + next->size;
248                         pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
249                                this->name, &this->base, &this_end,
250                                next->name, &next->base, &next_end);
251                 }
252         }
253 }
254
255 /**
256  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
257  */
258 void __init fdt_init_reserved_mem(void)
259 {
260         int i;
261
262         /* check for overlapping reserved regions */
263         __rmem_check_for_overlap();
264
265         for (i = 0; i < reserved_mem_count; i++) {
266                 struct reserved_mem *rmem = &reserved_mem[i];
267                 unsigned long node = rmem->fdt_node;
268                 int len;
269                 const __be32 *prop;
270                 int err = 0;
271
272                 prop = of_get_flat_dt_prop(node, "phandle", &len);
273                 if (!prop)
274                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
275                 if (prop)
276                         rmem->phandle = of_read_number(prop, len/4);
277
278                 if (rmem->size == 0)
279                         err = __reserved_mem_alloc_size(node, rmem->name,
280                                                  &rmem->base, &rmem->size);
281                 if (err == 0)
282                         __reserved_mem_init_node(rmem);
283         }
284 }
285
286 static inline struct reserved_mem *__find_rmem(struct device_node *node)
287 {
288         unsigned int i;
289
290         if (!node->phandle)
291                 return NULL;
292
293         for (i = 0; i < reserved_mem_count; i++)
294                 if (reserved_mem[i].phandle == node->phandle)
295                         return &reserved_mem[i];
296         return NULL;
297 }
298
299 /**
300  * of_reserved_mem_device_init() - assign reserved memory region to given device
301  *
302  * This function assign memory region pointed by "memory-region" device tree
303  * property to the given device.
304  */
305 int of_reserved_mem_device_init(struct device *dev)
306 {
307         struct reserved_mem *rmem;
308         struct device_node *np;
309         int ret;
310
311         np = of_parse_phandle(dev->of_node, "memory-region", 0);
312         if (!np)
313                 return -ENODEV;
314
315         rmem = __find_rmem(np);
316         of_node_put(np);
317
318         if (!rmem || !rmem->ops || !rmem->ops->device_init)
319                 return -EINVAL;
320
321         ret = rmem->ops->device_init(rmem, dev);
322         if (ret == 0)
323                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
324
325         return ret;
326 }
327 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
328
329 /**
330  * of_reserved_mem_device_release() - release reserved memory device structures
331  *
332  * This function releases structures allocated for memory region handling for
333  * the given device.
334  */
335 void of_reserved_mem_device_release(struct device *dev)
336 {
337         struct reserved_mem *rmem;
338         struct device_node *np;
339
340         np = of_parse_phandle(dev->of_node, "memory-region", 0);
341         if (!np)
342                 return;
343
344         rmem = __find_rmem(np);
345         of_node_put(np);
346
347         if (!rmem || !rmem->ops || !rmem->ops->device_release)
348                 return;
349
350         rmem->ops->device_release(rmem, dev);
351 }
352 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);