]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/ptp/ptp_clock.c
Merge tag 'fbdev-v4.13-rc5' of git://github.com/bzolnier/linux
[karo-tx-linux.git] / drivers / ptp / ptp_clock.c
1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <uapi/linux/sched/types.h>
32
33 #include "ptp_private.h"
34
35 #define PTP_MAX_ALARMS 4
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39
40 /* private globals */
41
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44
45 static DEFINE_IDA(ptp_clocks_map);
46
47 /* time stamp event queue operations */
48
49 static inline int queue_free(struct timestamp_event_queue *q)
50 {
51         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
52 }
53
54 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
55                                        struct ptp_clock_event *src)
56 {
57         struct ptp_extts_event *dst;
58         unsigned long flags;
59         s64 seconds;
60         u32 remainder;
61
62         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
63
64         spin_lock_irqsave(&queue->lock, flags);
65
66         dst = &queue->buf[queue->tail];
67         dst->index = src->index;
68         dst->t.sec = seconds;
69         dst->t.nsec = remainder;
70
71         if (!queue_free(queue))
72                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
73
74         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
75
76         spin_unlock_irqrestore(&queue->lock, flags);
77 }
78
79 static s32 scaled_ppm_to_ppb(long ppm)
80 {
81         /*
82          * The 'freq' field in the 'struct timex' is in parts per
83          * million, but with a 16 bit binary fractional field.
84          *
85          * We want to calculate
86          *
87          *    ppb = scaled_ppm * 1000 / 2^16
88          *
89          * which simplifies to
90          *
91          *    ppb = scaled_ppm * 125 / 2^13
92          */
93         s64 ppb = 1 + ppm;
94         ppb *= 125;
95         ppb >>= 13;
96         return (s32) ppb;
97 }
98
99 /* posix clock implementation */
100
101 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
102 {
103         tp->tv_sec = 0;
104         tp->tv_nsec = 1;
105         return 0;
106 }
107
108 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
109 {
110         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
111
112         return  ptp->info->settime64(ptp->info, tp);
113 }
114
115 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
116 {
117         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118         int err;
119
120         err = ptp->info->gettime64(ptp->info, tp);
121         return err;
122 }
123
124 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
125 {
126         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
127         struct ptp_clock_info *ops;
128         int err = -EOPNOTSUPP;
129
130         ops = ptp->info;
131
132         if (tx->modes & ADJ_SETOFFSET) {
133                 struct timespec64 ts;
134                 ktime_t kt;
135                 s64 delta;
136
137                 ts.tv_sec  = tx->time.tv_sec;
138                 ts.tv_nsec = tx->time.tv_usec;
139
140                 if (!(tx->modes & ADJ_NANO))
141                         ts.tv_nsec *= 1000;
142
143                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
144                         return -EINVAL;
145
146                 kt = timespec64_to_ktime(ts);
147                 delta = ktime_to_ns(kt);
148                 err = ops->adjtime(ops, delta);
149         } else if (tx->modes & ADJ_FREQUENCY) {
150                 s32 ppb = scaled_ppm_to_ppb(tx->freq);
151                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
152                         return -ERANGE;
153                 if (ops->adjfine)
154                         err = ops->adjfine(ops, tx->freq);
155                 else
156                         err = ops->adjfreq(ops, ppb);
157                 ptp->dialed_frequency = tx->freq;
158         } else if (tx->modes == 0) {
159                 tx->freq = ptp->dialed_frequency;
160                 err = 0;
161         }
162
163         return err;
164 }
165
166 static struct posix_clock_operations ptp_clock_ops = {
167         .owner          = THIS_MODULE,
168         .clock_adjtime  = ptp_clock_adjtime,
169         .clock_gettime  = ptp_clock_gettime,
170         .clock_getres   = ptp_clock_getres,
171         .clock_settime  = ptp_clock_settime,
172         .ioctl          = ptp_ioctl,
173         .open           = ptp_open,
174         .poll           = ptp_poll,
175         .read           = ptp_read,
176 };
177
178 static void delete_ptp_clock(struct posix_clock *pc)
179 {
180         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
181
182         mutex_destroy(&ptp->tsevq_mux);
183         mutex_destroy(&ptp->pincfg_mux);
184         ida_simple_remove(&ptp_clocks_map, ptp->index);
185         kfree(ptp);
186 }
187
188 static void ptp_aux_kworker(struct kthread_work *work)
189 {
190         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
191                                              aux_work.work);
192         struct ptp_clock_info *info = ptp->info;
193         long delay;
194
195         delay = info->do_aux_work(info);
196
197         if (delay >= 0)
198                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
199 }
200
201 /* public interface */
202
203 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
204                                      struct device *parent)
205 {
206         struct ptp_clock *ptp;
207         int err = 0, index, major = MAJOR(ptp_devt);
208
209         if (info->n_alarm > PTP_MAX_ALARMS)
210                 return ERR_PTR(-EINVAL);
211
212         /* Initialize a clock structure. */
213         err = -ENOMEM;
214         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
215         if (ptp == NULL)
216                 goto no_memory;
217
218         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
219         if (index < 0) {
220                 err = index;
221                 goto no_slot;
222         }
223
224         ptp->clock.ops = ptp_clock_ops;
225         ptp->clock.release = delete_ptp_clock;
226         ptp->info = info;
227         ptp->devid = MKDEV(major, index);
228         ptp->index = index;
229         spin_lock_init(&ptp->tsevq.lock);
230         mutex_init(&ptp->tsevq_mux);
231         mutex_init(&ptp->pincfg_mux);
232         init_waitqueue_head(&ptp->tsev_wq);
233
234         if (ptp->info->do_aux_work) {
235                 char *worker_name = kasprintf(GFP_KERNEL, "ptp%d", ptp->index);
236
237                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
238                 ptp->kworker = kthread_create_worker(0, worker_name ?
239                                                      worker_name : info->name);
240                 kfree(worker_name);
241                 if (IS_ERR(ptp->kworker)) {
242                         err = PTR_ERR(ptp->kworker);
243                         pr_err("failed to create ptp aux_worker %d\n", err);
244                         goto kworker_err;
245                 }
246         }
247
248         err = ptp_populate_pin_groups(ptp);
249         if (err)
250                 goto no_pin_groups;
251
252         /* Create a new device in our class. */
253         ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
254                                              ptp, ptp->pin_attr_groups,
255                                              "ptp%d", ptp->index);
256         if (IS_ERR(ptp->dev))
257                 goto no_device;
258
259         /* Register a new PPS source. */
260         if (info->pps) {
261                 struct pps_source_info pps;
262                 memset(&pps, 0, sizeof(pps));
263                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
264                 pps.mode = PTP_PPS_MODE;
265                 pps.owner = info->owner;
266                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
267                 if (!ptp->pps_source) {
268                         pr_err("failed to register pps source\n");
269                         goto no_pps;
270                 }
271         }
272
273         /* Create a posix clock. */
274         err = posix_clock_register(&ptp->clock, ptp->devid);
275         if (err) {
276                 pr_err("failed to create posix clock\n");
277                 goto no_clock;
278         }
279
280         return ptp;
281
282 no_clock:
283         if (ptp->pps_source)
284                 pps_unregister_source(ptp->pps_source);
285 no_pps:
286         device_destroy(ptp_class, ptp->devid);
287 no_device:
288         ptp_cleanup_pin_groups(ptp);
289 no_pin_groups:
290         if (ptp->kworker)
291                 kthread_destroy_worker(ptp->kworker);
292 kworker_err:
293         mutex_destroy(&ptp->tsevq_mux);
294         mutex_destroy(&ptp->pincfg_mux);
295         ida_simple_remove(&ptp_clocks_map, index);
296 no_slot:
297         kfree(ptp);
298 no_memory:
299         return ERR_PTR(err);
300 }
301 EXPORT_SYMBOL(ptp_clock_register);
302
303 int ptp_clock_unregister(struct ptp_clock *ptp)
304 {
305         ptp->defunct = 1;
306         wake_up_interruptible(&ptp->tsev_wq);
307
308         if (ptp->kworker) {
309                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
310                 kthread_destroy_worker(ptp->kworker);
311         }
312
313         /* Release the clock's resources. */
314         if (ptp->pps_source)
315                 pps_unregister_source(ptp->pps_source);
316
317         device_destroy(ptp_class, ptp->devid);
318         ptp_cleanup_pin_groups(ptp);
319
320         posix_clock_unregister(&ptp->clock);
321         return 0;
322 }
323 EXPORT_SYMBOL(ptp_clock_unregister);
324
325 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
326 {
327         struct pps_event_time evt;
328
329         switch (event->type) {
330
331         case PTP_CLOCK_ALARM:
332                 break;
333
334         case PTP_CLOCK_EXTTS:
335                 enqueue_external_timestamp(&ptp->tsevq, event);
336                 wake_up_interruptible(&ptp->tsev_wq);
337                 break;
338
339         case PTP_CLOCK_PPS:
340                 pps_get_ts(&evt);
341                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
342                 break;
343
344         case PTP_CLOCK_PPSUSR:
345                 pps_event(ptp->pps_source, &event->pps_times,
346                           PTP_PPS_EVENT, NULL);
347                 break;
348         }
349 }
350 EXPORT_SYMBOL(ptp_clock_event);
351
352 int ptp_clock_index(struct ptp_clock *ptp)
353 {
354         return ptp->index;
355 }
356 EXPORT_SYMBOL(ptp_clock_index);
357
358 int ptp_find_pin(struct ptp_clock *ptp,
359                  enum ptp_pin_function func, unsigned int chan)
360 {
361         struct ptp_pin_desc *pin = NULL;
362         int i;
363
364         mutex_lock(&ptp->pincfg_mux);
365         for (i = 0; i < ptp->info->n_pins; i++) {
366                 if (ptp->info->pin_config[i].func == func &&
367                     ptp->info->pin_config[i].chan == chan) {
368                         pin = &ptp->info->pin_config[i];
369                         break;
370                 }
371         }
372         mutex_unlock(&ptp->pincfg_mux);
373
374         return pin ? i : -1;
375 }
376 EXPORT_SYMBOL(ptp_find_pin);
377
378 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
379 {
380         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
381 }
382 EXPORT_SYMBOL(ptp_schedule_worker);
383
384 /* module operations */
385
386 static void __exit ptp_exit(void)
387 {
388         class_destroy(ptp_class);
389         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
390         ida_destroy(&ptp_clocks_map);
391 }
392
393 static int __init ptp_init(void)
394 {
395         int err;
396
397         ptp_class = class_create(THIS_MODULE, "ptp");
398         if (IS_ERR(ptp_class)) {
399                 pr_err("ptp: failed to allocate class\n");
400                 return PTR_ERR(ptp_class);
401         }
402
403         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
404         if (err < 0) {
405                 pr_err("ptp: failed to allocate device region\n");
406                 goto no_region;
407         }
408
409         ptp_class->dev_groups = ptp_groups;
410         pr_info("PTP clock support registered\n");
411         return 0;
412
413 no_region:
414         class_destroy(ptp_class);
415         return err;
416 }
417
418 subsys_initcall(ptp_init);
419 module_exit(ptp_exit);
420
421 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
422 MODULE_DESCRIPTION("PTP clocks support");
423 MODULE_LICENSE("GPL");