]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x3241103C, "Smart Array P212", &SA5_access},
162         {0x3243103C, "Smart Array P410", &SA5_access},
163         {0x3245103C, "Smart Array P410i", &SA5_access},
164         {0x3247103C, "Smart Array P411", &SA5_access},
165         {0x3249103C, "Smart Array P812", &SA5_access},
166         {0x324A103C, "Smart Array P712m", &SA5_access},
167         {0x324B103C, "Smart Array P711m", &SA5_access},
168         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169         {0x3350103C, "Smart Array P222", &SA5_access},
170         {0x3351103C, "Smart Array P420", &SA5_access},
171         {0x3352103C, "Smart Array P421", &SA5_access},
172         {0x3353103C, "Smart Array P822", &SA5_access},
173         {0x3354103C, "Smart Array P420i", &SA5_access},
174         {0x3355103C, "Smart Array P220i", &SA5_access},
175         {0x3356103C, "Smart Array P721m", &SA5_access},
176         {0x1920103C, "Smart Array P430i", &SA5_access},
177         {0x1921103C, "Smart Array P830i", &SA5_access},
178         {0x1922103C, "Smart Array P430", &SA5_access},
179         {0x1923103C, "Smart Array P431", &SA5_access},
180         {0x1924103C, "Smart Array P830", &SA5_access},
181         {0x1925103C, "Smart Array P831", &SA5_access},
182         {0x1926103C, "Smart Array P731m", &SA5_access},
183         {0x1928103C, "Smart Array P230i", &SA5_access},
184         {0x1929103C, "Smart Array P530", &SA5_access},
185         {0x21BD103C, "Smart Array P244br", &SA5_access},
186         {0x21BE103C, "Smart Array P741m", &SA5_access},
187         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
188         {0x21C0103C, "Smart Array P440ar", &SA5_access},
189         {0x21C1103C, "Smart Array P840ar", &SA5_access},
190         {0x21C2103C, "Smart Array P440", &SA5_access},
191         {0x21C3103C, "Smart Array P441", &SA5_access},
192         {0x21C4103C, "Smart Array", &SA5_access},
193         {0x21C5103C, "Smart Array P841", &SA5_access},
194         {0x21C6103C, "Smart HBA H244br", &SA5_access},
195         {0x21C7103C, "Smart HBA H240", &SA5_access},
196         {0x21C8103C, "Smart HBA H241", &SA5_access},
197         {0x21C9103C, "Smart Array", &SA5_access},
198         {0x21CA103C, "Smart Array P246br", &SA5_access},
199         {0x21CB103C, "Smart Array P840", &SA5_access},
200         {0x21CC103C, "Smart Array", &SA5_access},
201         {0x21CD103C, "Smart Array", &SA5_access},
202         {0x21CE103C, "Smart HBA", &SA5_access},
203         {0x05809005, "SmartHBA-SA", &SA5_access},
204         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
205         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
207         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
208         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221                         struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225                 struct sas_rphy *rphy);
226
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239         void __user *arg);
240 #endif
241
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246                                             struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249         int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257         unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_slave_alloc(struct scsi_device *sdev);
262 static int hpsa_slave_configure(struct scsi_device *sdev);
263 static void hpsa_slave_destroy(struct scsi_device *sdev);
264
265 static void hpsa_update_scsi_devices(struct ctlr_info *h);
266 static int check_for_unit_attention(struct ctlr_info *h,
267         struct CommandList *c);
268 static void check_ioctl_unit_attention(struct ctlr_info *h,
269         struct CommandList *c);
270 /* performant mode helper functions */
271 static void calc_bucket_map(int *bucket, int num_buckets,
272         int nsgs, int min_blocks, u32 *bucket_map);
273 static void hpsa_free_performant_mode(struct ctlr_info *h);
274 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
275 static inline u32 next_command(struct ctlr_info *h, u8 q);
276 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
277                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
278                                u64 *cfg_offset);
279 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
280                                     unsigned long *memory_bar);
281 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
282 static int wait_for_device_to_become_ready(struct ctlr_info *h,
283                                            unsigned char lunaddr[],
284                                            int reply_queue);
285 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
286                                      int wait_for_ready);
287 static inline void finish_cmd(struct CommandList *c);
288 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
289 #define BOARD_NOT_READY 0
290 #define BOARD_READY 1
291 static void hpsa_drain_accel_commands(struct ctlr_info *h);
292 static void hpsa_flush_cache(struct ctlr_info *h);
293 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
294         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
295         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
296 static void hpsa_command_resubmit_worker(struct work_struct *work);
297 static u32 lockup_detected(struct ctlr_info *h);
298 static int detect_controller_lockup(struct ctlr_info *h);
299 static void hpsa_disable_rld_caching(struct ctlr_info *h);
300 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
301         struct ReportExtendedLUNdata *buf, int bufsize);
302 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
303         unsigned char scsi3addr[], u8 page);
304 static int hpsa_luns_changed(struct ctlr_info *h);
305 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
306                                struct hpsa_scsi_dev_t *dev,
307                                unsigned char *scsi3addr);
308
309 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
310 {
311         unsigned long *priv = shost_priv(sdev->host);
312         return (struct ctlr_info *) *priv;
313 }
314
315 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
316 {
317         unsigned long *priv = shost_priv(sh);
318         return (struct ctlr_info *) *priv;
319 }
320
321 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
322 {
323         return c->scsi_cmd == SCSI_CMD_IDLE;
324 }
325
326 static inline bool hpsa_is_pending_event(struct CommandList *c)
327 {
328         return c->reset_pending;
329 }
330
331 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
332 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
333                         u8 *sense_key, u8 *asc, u8 *ascq)
334 {
335         struct scsi_sense_hdr sshdr;
336         bool rc;
337
338         *sense_key = -1;
339         *asc = -1;
340         *ascq = -1;
341
342         if (sense_data_len < 1)
343                 return;
344
345         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
346         if (rc) {
347                 *sense_key = sshdr.sense_key;
348                 *asc = sshdr.asc;
349                 *ascq = sshdr.ascq;
350         }
351 }
352
353 static int check_for_unit_attention(struct ctlr_info *h,
354         struct CommandList *c)
355 {
356         u8 sense_key, asc, ascq;
357         int sense_len;
358
359         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
360                 sense_len = sizeof(c->err_info->SenseInfo);
361         else
362                 sense_len = c->err_info->SenseLen;
363
364         decode_sense_data(c->err_info->SenseInfo, sense_len,
365                                 &sense_key, &asc, &ascq);
366         if (sense_key != UNIT_ATTENTION || asc == 0xff)
367                 return 0;
368
369         switch (asc) {
370         case STATE_CHANGED:
371                 dev_warn(&h->pdev->dev,
372                         "%s: a state change detected, command retried\n",
373                         h->devname);
374                 break;
375         case LUN_FAILED:
376                 dev_warn(&h->pdev->dev,
377                         "%s: LUN failure detected\n", h->devname);
378                 break;
379         case REPORT_LUNS_CHANGED:
380                 dev_warn(&h->pdev->dev,
381                         "%s: report LUN data changed\n", h->devname);
382         /*
383          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
384          * target (array) devices.
385          */
386                 break;
387         case POWER_OR_RESET:
388                 dev_warn(&h->pdev->dev,
389                         "%s: a power on or device reset detected\n",
390                         h->devname);
391                 break;
392         case UNIT_ATTENTION_CLEARED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: unit attention cleared by another initiator\n",
395                         h->devname);
396                 break;
397         default:
398                 dev_warn(&h->pdev->dev,
399                         "%s: unknown unit attention detected\n",
400                         h->devname);
401                 break;
402         }
403         return 1;
404 }
405
406 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
407 {
408         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
409                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
410                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
411                 return 0;
412         dev_warn(&h->pdev->dev, HPSA "device busy");
413         return 1;
414 }
415
416 static u32 lockup_detected(struct ctlr_info *h);
417 static ssize_t host_show_lockup_detected(struct device *dev,
418                 struct device_attribute *attr, char *buf)
419 {
420         int ld;
421         struct ctlr_info *h;
422         struct Scsi_Host *shost = class_to_shost(dev);
423
424         h = shost_to_hba(shost);
425         ld = lockup_detected(h);
426
427         return sprintf(buf, "ld=%d\n", ld);
428 }
429
430 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
431                                          struct device_attribute *attr,
432                                          const char *buf, size_t count)
433 {
434         int status, len;
435         struct ctlr_info *h;
436         struct Scsi_Host *shost = class_to_shost(dev);
437         char tmpbuf[10];
438
439         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
440                 return -EACCES;
441         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
442         strncpy(tmpbuf, buf, len);
443         tmpbuf[len] = '\0';
444         if (sscanf(tmpbuf, "%d", &status) != 1)
445                 return -EINVAL;
446         h = shost_to_hba(shost);
447         h->acciopath_status = !!status;
448         dev_warn(&h->pdev->dev,
449                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
450                 h->acciopath_status ? "enabled" : "disabled");
451         return count;
452 }
453
454 static ssize_t host_store_raid_offload_debug(struct device *dev,
455                                          struct device_attribute *attr,
456                                          const char *buf, size_t count)
457 {
458         int debug_level, len;
459         struct ctlr_info *h;
460         struct Scsi_Host *shost = class_to_shost(dev);
461         char tmpbuf[10];
462
463         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
464                 return -EACCES;
465         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
466         strncpy(tmpbuf, buf, len);
467         tmpbuf[len] = '\0';
468         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
469                 return -EINVAL;
470         if (debug_level < 0)
471                 debug_level = 0;
472         h = shost_to_hba(shost);
473         h->raid_offload_debug = debug_level;
474         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
475                 h->raid_offload_debug);
476         return count;
477 }
478
479 static ssize_t host_store_rescan(struct device *dev,
480                                  struct device_attribute *attr,
481                                  const char *buf, size_t count)
482 {
483         struct ctlr_info *h;
484         struct Scsi_Host *shost = class_to_shost(dev);
485         h = shost_to_hba(shost);
486         hpsa_scan_start(h->scsi_host);
487         return count;
488 }
489
490 static ssize_t host_show_firmware_revision(struct device *dev,
491              struct device_attribute *attr, char *buf)
492 {
493         struct ctlr_info *h;
494         struct Scsi_Host *shost = class_to_shost(dev);
495         unsigned char *fwrev;
496
497         h = shost_to_hba(shost);
498         if (!h->hba_inquiry_data)
499                 return 0;
500         fwrev = &h->hba_inquiry_data[32];
501         return snprintf(buf, 20, "%c%c%c%c\n",
502                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
503 }
504
505 static ssize_t host_show_commands_outstanding(struct device *dev,
506              struct device_attribute *attr, char *buf)
507 {
508         struct Scsi_Host *shost = class_to_shost(dev);
509         struct ctlr_info *h = shost_to_hba(shost);
510
511         return snprintf(buf, 20, "%d\n",
512                         atomic_read(&h->commands_outstanding));
513 }
514
515 static ssize_t host_show_transport_mode(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 20, "%s\n",
523                 h->transMethod & CFGTBL_Trans_Performant ?
524                         "performant" : "simple");
525 }
526
527 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
528         struct device_attribute *attr, char *buf)
529 {
530         struct ctlr_info *h;
531         struct Scsi_Host *shost = class_to_shost(dev);
532
533         h = shost_to_hba(shost);
534         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
535                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
536 }
537
538 /* List of controllers which cannot be hard reset on kexec with reset_devices */
539 static u32 unresettable_controller[] = {
540         0x324a103C, /* Smart Array P712m */
541         0x324b103C, /* Smart Array P711m */
542         0x3223103C, /* Smart Array P800 */
543         0x3234103C, /* Smart Array P400 */
544         0x3235103C, /* Smart Array P400i */
545         0x3211103C, /* Smart Array E200i */
546         0x3212103C, /* Smart Array E200 */
547         0x3213103C, /* Smart Array E200i */
548         0x3214103C, /* Smart Array E200i */
549         0x3215103C, /* Smart Array E200i */
550         0x3237103C, /* Smart Array E500 */
551         0x323D103C, /* Smart Array P700m */
552         0x40800E11, /* Smart Array 5i */
553         0x409C0E11, /* Smart Array 6400 */
554         0x409D0E11, /* Smart Array 6400 EM */
555         0x40700E11, /* Smart Array 5300 */
556         0x40820E11, /* Smart Array 532 */
557         0x40830E11, /* Smart Array 5312 */
558         0x409A0E11, /* Smart Array 641 */
559         0x409B0E11, /* Smart Array 642 */
560         0x40910E11, /* Smart Array 6i */
561 };
562
563 /* List of controllers which cannot even be soft reset */
564 static u32 soft_unresettable_controller[] = {
565         0x40800E11, /* Smart Array 5i */
566         0x40700E11, /* Smart Array 5300 */
567         0x40820E11, /* Smart Array 532 */
568         0x40830E11, /* Smart Array 5312 */
569         0x409A0E11, /* Smart Array 641 */
570         0x409B0E11, /* Smart Array 642 */
571         0x40910E11, /* Smart Array 6i */
572         /* Exclude 640x boards.  These are two pci devices in one slot
573          * which share a battery backed cache module.  One controls the
574          * cache, the other accesses the cache through the one that controls
575          * it.  If we reset the one controlling the cache, the other will
576          * likely not be happy.  Just forbid resetting this conjoined mess.
577          * The 640x isn't really supported by hpsa anyway.
578          */
579         0x409C0E11, /* Smart Array 6400 */
580         0x409D0E11, /* Smart Array 6400 EM */
581 };
582
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585         int i;
586
587         for (i = 0; i < nelems; i++)
588                 if (a[i] == board_id)
589                         return 1;
590         return 0;
591 }
592
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595         return !board_id_in_array(unresettable_controller,
596                         ARRAY_SIZE(unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601         return !board_id_in_array(soft_unresettable_controller,
602                         ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604
605 static int ctlr_is_resettable(u32 board_id)
606 {
607         return ctlr_is_hard_resettable(board_id) ||
608                 ctlr_is_soft_resettable(board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%8phN\n", lunid);
698 }
699
700 static ssize_t unique_id_show(struct device *dev,
701              struct device_attribute *attr, char *buf)
702 {
703         struct ctlr_info *h;
704         struct scsi_device *sdev;
705         struct hpsa_scsi_dev_t *hdev;
706         unsigned long flags;
707         unsigned char sn[16];
708
709         sdev = to_scsi_device(dev);
710         h = sdev_to_hba(sdev);
711         spin_lock_irqsave(&h->lock, flags);
712         hdev = sdev->hostdata;
713         if (!hdev) {
714                 spin_unlock_irqrestore(&h->lock, flags);
715                 return -ENODEV;
716         }
717         memcpy(sn, hdev->device_id, sizeof(sn));
718         spin_unlock_irqrestore(&h->lock, flags);
719         return snprintf(buf, 16 * 2 + 2,
720                         "%02X%02X%02X%02X%02X%02X%02X%02X"
721                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
722                         sn[0], sn[1], sn[2], sn[3],
723                         sn[4], sn[5], sn[6], sn[7],
724                         sn[8], sn[9], sn[10], sn[11],
725                         sn[12], sn[13], sn[14], sn[15]);
726 }
727
728 static ssize_t sas_address_show(struct device *dev,
729               struct device_attribute *attr, char *buf)
730 {
731         struct ctlr_info *h;
732         struct scsi_device *sdev;
733         struct hpsa_scsi_dev_t *hdev;
734         unsigned long flags;
735         u64 sas_address;
736
737         sdev = to_scsi_device(dev);
738         h = sdev_to_hba(sdev);
739         spin_lock_irqsave(&h->lock, flags);
740         hdev = sdev->hostdata;
741         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
742                 spin_unlock_irqrestore(&h->lock, flags);
743                 return -ENODEV;
744         }
745         sas_address = hdev->sas_address;
746         spin_unlock_irqrestore(&h->lock, flags);
747
748         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
749 }
750
751 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
752              struct device_attribute *attr, char *buf)
753 {
754         struct ctlr_info *h;
755         struct scsi_device *sdev;
756         struct hpsa_scsi_dev_t *hdev;
757         unsigned long flags;
758         int offload_enabled;
759
760         sdev = to_scsi_device(dev);
761         h = sdev_to_hba(sdev);
762         spin_lock_irqsave(&h->lock, flags);
763         hdev = sdev->hostdata;
764         if (!hdev) {
765                 spin_unlock_irqrestore(&h->lock, flags);
766                 return -ENODEV;
767         }
768         offload_enabled = hdev->offload_enabled;
769         spin_unlock_irqrestore(&h->lock, flags);
770         return snprintf(buf, 20, "%d\n", offload_enabled);
771 }
772
773 #define MAX_PATHS 8
774 static ssize_t path_info_show(struct device *dev,
775              struct device_attribute *attr, char *buf)
776 {
777         struct ctlr_info *h;
778         struct scsi_device *sdev;
779         struct hpsa_scsi_dev_t *hdev;
780         unsigned long flags;
781         int i;
782         int output_len = 0;
783         u8 box;
784         u8 bay;
785         u8 path_map_index = 0;
786         char *active;
787         unsigned char phys_connector[2];
788
789         sdev = to_scsi_device(dev);
790         h = sdev_to_hba(sdev);
791         spin_lock_irqsave(&h->devlock, flags);
792         hdev = sdev->hostdata;
793         if (!hdev) {
794                 spin_unlock_irqrestore(&h->devlock, flags);
795                 return -ENODEV;
796         }
797
798         bay = hdev->bay;
799         for (i = 0; i < MAX_PATHS; i++) {
800                 path_map_index = 1<<i;
801                 if (i == hdev->active_path_index)
802                         active = "Active";
803                 else if (hdev->path_map & path_map_index)
804                         active = "Inactive";
805                 else
806                         continue;
807
808                 output_len += scnprintf(buf + output_len,
809                                 PAGE_SIZE - output_len,
810                                 "[%d:%d:%d:%d] %20.20s ",
811                                 h->scsi_host->host_no,
812                                 hdev->bus, hdev->target, hdev->lun,
813                                 scsi_device_type(hdev->devtype));
814
815                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
816                         output_len += scnprintf(buf + output_len,
817                                                 PAGE_SIZE - output_len,
818                                                 "%s\n", active);
819                         continue;
820                 }
821
822                 box = hdev->box[i];
823                 memcpy(&phys_connector, &hdev->phys_connector[i],
824                         sizeof(phys_connector));
825                 if (phys_connector[0] < '0')
826                         phys_connector[0] = '0';
827                 if (phys_connector[1] < '0')
828                         phys_connector[1] = '0';
829                 output_len += scnprintf(buf + output_len,
830                                 PAGE_SIZE - output_len,
831                                 "PORT: %.2s ",
832                                 phys_connector);
833                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
834                         hdev->expose_device) {
835                         if (box == 0 || box == 0xFF) {
836                                 output_len += scnprintf(buf + output_len,
837                                         PAGE_SIZE - output_len,
838                                         "BAY: %hhu %s\n",
839                                         bay, active);
840                         } else {
841                                 output_len += scnprintf(buf + output_len,
842                                         PAGE_SIZE - output_len,
843                                         "BOX: %hhu BAY: %hhu %s\n",
844                                         box, bay, active);
845                         }
846                 } else if (box != 0 && box != 0xFF) {
847                         output_len += scnprintf(buf + output_len,
848                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
849                                 box, active);
850                 } else
851                         output_len += scnprintf(buf + output_len,
852                                 PAGE_SIZE - output_len, "%s\n", active);
853         }
854
855         spin_unlock_irqrestore(&h->devlock, flags);
856         return output_len;
857 }
858
859 static ssize_t host_show_ctlr_num(struct device *dev,
860         struct device_attribute *attr, char *buf)
861 {
862         struct ctlr_info *h;
863         struct Scsi_Host *shost = class_to_shost(dev);
864
865         h = shost_to_hba(shost);
866         return snprintf(buf, 20, "%d\n", h->ctlr);
867 }
868
869 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
870 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
871 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
872 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
873 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
874 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
875                         host_show_hp_ssd_smart_path_enabled, NULL);
876 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
877 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
878                 host_show_hp_ssd_smart_path_status,
879                 host_store_hp_ssd_smart_path_status);
880 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
881                         host_store_raid_offload_debug);
882 static DEVICE_ATTR(firmware_revision, S_IRUGO,
883         host_show_firmware_revision, NULL);
884 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
885         host_show_commands_outstanding, NULL);
886 static DEVICE_ATTR(transport_mode, S_IRUGO,
887         host_show_transport_mode, NULL);
888 static DEVICE_ATTR(resettable, S_IRUGO,
889         host_show_resettable, NULL);
890 static DEVICE_ATTR(lockup_detected, S_IRUGO,
891         host_show_lockup_detected, NULL);
892 static DEVICE_ATTR(ctlr_num, S_IRUGO,
893         host_show_ctlr_num, NULL);
894
895 static struct device_attribute *hpsa_sdev_attrs[] = {
896         &dev_attr_raid_level,
897         &dev_attr_lunid,
898         &dev_attr_unique_id,
899         &dev_attr_hp_ssd_smart_path_enabled,
900         &dev_attr_path_info,
901         &dev_attr_sas_address,
902         NULL,
903 };
904
905 static struct device_attribute *hpsa_shost_attrs[] = {
906         &dev_attr_rescan,
907         &dev_attr_firmware_revision,
908         &dev_attr_commands_outstanding,
909         &dev_attr_transport_mode,
910         &dev_attr_resettable,
911         &dev_attr_hp_ssd_smart_path_status,
912         &dev_attr_raid_offload_debug,
913         &dev_attr_lockup_detected,
914         &dev_attr_ctlr_num,
915         NULL,
916 };
917
918 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
919                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
920
921 static struct scsi_host_template hpsa_driver_template = {
922         .module                 = THIS_MODULE,
923         .name                   = HPSA,
924         .proc_name              = HPSA,
925         .queuecommand           = hpsa_scsi_queue_command,
926         .scan_start             = hpsa_scan_start,
927         .scan_finished          = hpsa_scan_finished,
928         .change_queue_depth     = hpsa_change_queue_depth,
929         .this_id                = -1,
930         .use_clustering         = ENABLE_CLUSTERING,
931         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
932         .ioctl                  = hpsa_ioctl,
933         .slave_alloc            = hpsa_slave_alloc,
934         .slave_configure        = hpsa_slave_configure,
935         .slave_destroy          = hpsa_slave_destroy,
936 #ifdef CONFIG_COMPAT
937         .compat_ioctl           = hpsa_compat_ioctl,
938 #endif
939         .sdev_attrs = hpsa_sdev_attrs,
940         .shost_attrs = hpsa_shost_attrs,
941         .max_sectors = 1024,
942         .no_write_same = 1,
943 };
944
945 static inline u32 next_command(struct ctlr_info *h, u8 q)
946 {
947         u32 a;
948         struct reply_queue_buffer *rq = &h->reply_queue[q];
949
950         if (h->transMethod & CFGTBL_Trans_io_accel1)
951                 return h->access.command_completed(h, q);
952
953         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
954                 return h->access.command_completed(h, q);
955
956         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
957                 a = rq->head[rq->current_entry];
958                 rq->current_entry++;
959                 atomic_dec(&h->commands_outstanding);
960         } else {
961                 a = FIFO_EMPTY;
962         }
963         /* Check for wraparound */
964         if (rq->current_entry == h->max_commands) {
965                 rq->current_entry = 0;
966                 rq->wraparound ^= 1;
967         }
968         return a;
969 }
970
971 /*
972  * There are some special bits in the bus address of the
973  * command that we have to set for the controller to know
974  * how to process the command:
975  *
976  * Normal performant mode:
977  * bit 0: 1 means performant mode, 0 means simple mode.
978  * bits 1-3 = block fetch table entry
979  * bits 4-6 = command type (== 0)
980  *
981  * ioaccel1 mode:
982  * bit 0 = "performant mode" bit.
983  * bits 1-3 = block fetch table entry
984  * bits 4-6 = command type (== 110)
985  * (command type is needed because ioaccel1 mode
986  * commands are submitted through the same register as normal
987  * mode commands, so this is how the controller knows whether
988  * the command is normal mode or ioaccel1 mode.)
989  *
990  * ioaccel2 mode:
991  * bit 0 = "performant mode" bit.
992  * bits 1-4 = block fetch table entry (note extra bit)
993  * bits 4-6 = not needed, because ioaccel2 mode has
994  * a separate special register for submitting commands.
995  */
996
997 /*
998  * set_performant_mode: Modify the tag for cciss performant
999  * set bit 0 for pull model, bits 3-1 for block fetch
1000  * register number
1001  */
1002 #define DEFAULT_REPLY_QUEUE (-1)
1003 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1004                                         int reply_queue)
1005 {
1006         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1007                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1008                 if (unlikely(!h->msix_vectors))
1009                         return;
1010                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1011                         c->Header.ReplyQueue =
1012                                 raw_smp_processor_id() % h->nreply_queues;
1013                 else
1014                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1015         }
1016 }
1017
1018 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1019                                                 struct CommandList *c,
1020                                                 int reply_queue)
1021 {
1022         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1023
1024         /*
1025          * Tell the controller to post the reply to the queue for this
1026          * processor.  This seems to give the best I/O throughput.
1027          */
1028         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1029                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1030         else
1031                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1032         /*
1033          * Set the bits in the address sent down to include:
1034          *  - performant mode bit (bit 0)
1035          *  - pull count (bits 1-3)
1036          *  - command type (bits 4-6)
1037          */
1038         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1039                                         IOACCEL1_BUSADDR_CMDTYPE;
1040 }
1041
1042 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1043                                                 struct CommandList *c,
1044                                                 int reply_queue)
1045 {
1046         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1047                 &h->ioaccel2_cmd_pool[c->cmdindex];
1048
1049         /* Tell the controller to post the reply to the queue for this
1050          * processor.  This seems to give the best I/O throughput.
1051          */
1052         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1053                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1054         else
1055                 cp->reply_queue = reply_queue % h->nreply_queues;
1056         /* Set the bits in the address sent down to include:
1057          *  - performant mode bit not used in ioaccel mode 2
1058          *  - pull count (bits 0-3)
1059          *  - command type isn't needed for ioaccel2
1060          */
1061         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1062 }
1063
1064 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1065                                                 struct CommandList *c,
1066                                                 int reply_queue)
1067 {
1068         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1069
1070         /*
1071          * Tell the controller to post the reply to the queue for this
1072          * processor.  This seems to give the best I/O throughput.
1073          */
1074         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1075                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1076         else
1077                 cp->reply_queue = reply_queue % h->nreply_queues;
1078         /*
1079          * Set the bits in the address sent down to include:
1080          *  - performant mode bit not used in ioaccel mode 2
1081          *  - pull count (bits 0-3)
1082          *  - command type isn't needed for ioaccel2
1083          */
1084         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1085 }
1086
1087 static int is_firmware_flash_cmd(u8 *cdb)
1088 {
1089         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1090 }
1091
1092 /*
1093  * During firmware flash, the heartbeat register may not update as frequently
1094  * as it should.  So we dial down lockup detection during firmware flash. and
1095  * dial it back up when firmware flash completes.
1096  */
1097 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1098 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1099 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1100 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1101                 struct CommandList *c)
1102 {
1103         if (!is_firmware_flash_cmd(c->Request.CDB))
1104                 return;
1105         atomic_inc(&h->firmware_flash_in_progress);
1106         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1107 }
1108
1109 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1110                 struct CommandList *c)
1111 {
1112         if (is_firmware_flash_cmd(c->Request.CDB) &&
1113                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1114                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1115 }
1116
1117 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1118         struct CommandList *c, int reply_queue)
1119 {
1120         dial_down_lockup_detection_during_fw_flash(h, c);
1121         atomic_inc(&h->commands_outstanding);
1122         switch (c->cmd_type) {
1123         case CMD_IOACCEL1:
1124                 set_ioaccel1_performant_mode(h, c, reply_queue);
1125                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1126                 break;
1127         case CMD_IOACCEL2:
1128                 set_ioaccel2_performant_mode(h, c, reply_queue);
1129                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1130                 break;
1131         case IOACCEL2_TMF:
1132                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1133                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1134                 break;
1135         default:
1136                 set_performant_mode(h, c, reply_queue);
1137                 h->access.submit_command(h, c);
1138         }
1139 }
1140
1141 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1142 {
1143         if (unlikely(hpsa_is_pending_event(c)))
1144                 return finish_cmd(c);
1145
1146         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1147 }
1148
1149 static inline int is_hba_lunid(unsigned char scsi3addr[])
1150 {
1151         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1152 }
1153
1154 static inline int is_scsi_rev_5(struct ctlr_info *h)
1155 {
1156         if (!h->hba_inquiry_data)
1157                 return 0;
1158         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1159                 return 1;
1160         return 0;
1161 }
1162
1163 static int hpsa_find_target_lun(struct ctlr_info *h,
1164         unsigned char scsi3addr[], int bus, int *target, int *lun)
1165 {
1166         /* finds an unused bus, target, lun for a new physical device
1167          * assumes h->devlock is held
1168          */
1169         int i, found = 0;
1170         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1171
1172         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1173
1174         for (i = 0; i < h->ndevices; i++) {
1175                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1176                         __set_bit(h->dev[i]->target, lun_taken);
1177         }
1178
1179         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1180         if (i < HPSA_MAX_DEVICES) {
1181                 /* *bus = 1; */
1182                 *target = i;
1183                 *lun = 0;
1184                 found = 1;
1185         }
1186         return !found;
1187 }
1188
1189 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1190         struct hpsa_scsi_dev_t *dev, char *description)
1191 {
1192 #define LABEL_SIZE 25
1193         char label[LABEL_SIZE];
1194
1195         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1196                 return;
1197
1198         switch (dev->devtype) {
1199         case TYPE_RAID:
1200                 snprintf(label, LABEL_SIZE, "controller");
1201                 break;
1202         case TYPE_ENCLOSURE:
1203                 snprintf(label, LABEL_SIZE, "enclosure");
1204                 break;
1205         case TYPE_DISK:
1206         case TYPE_ZBC:
1207                 if (dev->external)
1208                         snprintf(label, LABEL_SIZE, "external");
1209                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1210                         snprintf(label, LABEL_SIZE, "%s",
1211                                 raid_label[PHYSICAL_DRIVE]);
1212                 else
1213                         snprintf(label, LABEL_SIZE, "RAID-%s",
1214                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1215                                 raid_label[dev->raid_level]);
1216                 break;
1217         case TYPE_ROM:
1218                 snprintf(label, LABEL_SIZE, "rom");
1219                 break;
1220         case TYPE_TAPE:
1221                 snprintf(label, LABEL_SIZE, "tape");
1222                 break;
1223         case TYPE_MEDIUM_CHANGER:
1224                 snprintf(label, LABEL_SIZE, "changer");
1225                 break;
1226         default:
1227                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1228                 break;
1229         }
1230
1231         dev_printk(level, &h->pdev->dev,
1232                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1233                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1234                         description,
1235                         scsi_device_type(dev->devtype),
1236                         dev->vendor,
1237                         dev->model,
1238                         label,
1239                         dev->offload_config ? '+' : '-',
1240                         dev->offload_enabled ? '+' : '-',
1241                         dev->expose_device);
1242 }
1243
1244 /* Add an entry into h->dev[] array. */
1245 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1246                 struct hpsa_scsi_dev_t *device,
1247                 struct hpsa_scsi_dev_t *added[], int *nadded)
1248 {
1249         /* assumes h->devlock is held */
1250         int n = h->ndevices;
1251         int i;
1252         unsigned char addr1[8], addr2[8];
1253         struct hpsa_scsi_dev_t *sd;
1254
1255         if (n >= HPSA_MAX_DEVICES) {
1256                 dev_err(&h->pdev->dev, "too many devices, some will be "
1257                         "inaccessible.\n");
1258                 return -1;
1259         }
1260
1261         /* physical devices do not have lun or target assigned until now. */
1262         if (device->lun != -1)
1263                 /* Logical device, lun is already assigned. */
1264                 goto lun_assigned;
1265
1266         /* If this device a non-zero lun of a multi-lun device
1267          * byte 4 of the 8-byte LUN addr will contain the logical
1268          * unit no, zero otherwise.
1269          */
1270         if (device->scsi3addr[4] == 0) {
1271                 /* This is not a non-zero lun of a multi-lun device */
1272                 if (hpsa_find_target_lun(h, device->scsi3addr,
1273                         device->bus, &device->target, &device->lun) != 0)
1274                         return -1;
1275                 goto lun_assigned;
1276         }
1277
1278         /* This is a non-zero lun of a multi-lun device.
1279          * Search through our list and find the device which
1280          * has the same 8 byte LUN address, excepting byte 4 and 5.
1281          * Assign the same bus and target for this new LUN.
1282          * Use the logical unit number from the firmware.
1283          */
1284         memcpy(addr1, device->scsi3addr, 8);
1285         addr1[4] = 0;
1286         addr1[5] = 0;
1287         for (i = 0; i < n; i++) {
1288                 sd = h->dev[i];
1289                 memcpy(addr2, sd->scsi3addr, 8);
1290                 addr2[4] = 0;
1291                 addr2[5] = 0;
1292                 /* differ only in byte 4 and 5? */
1293                 if (memcmp(addr1, addr2, 8) == 0) {
1294                         device->bus = sd->bus;
1295                         device->target = sd->target;
1296                         device->lun = device->scsi3addr[4];
1297                         break;
1298                 }
1299         }
1300         if (device->lun == -1) {
1301                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1302                         " suspect firmware bug or unsupported hardware "
1303                         "configuration.\n");
1304                         return -1;
1305         }
1306
1307 lun_assigned:
1308
1309         h->dev[n] = device;
1310         h->ndevices++;
1311         added[*nadded] = device;
1312         (*nadded)++;
1313         hpsa_show_dev_msg(KERN_INFO, h, device,
1314                 device->expose_device ? "added" : "masked");
1315         device->offload_to_be_enabled = device->offload_enabled;
1316         device->offload_enabled = 0;
1317         return 0;
1318 }
1319
1320 /* Update an entry in h->dev[] array. */
1321 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1322         int entry, struct hpsa_scsi_dev_t *new_entry)
1323 {
1324         int offload_enabled;
1325         /* assumes h->devlock is held */
1326         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1327
1328         /* Raid level changed. */
1329         h->dev[entry]->raid_level = new_entry->raid_level;
1330
1331         /* Raid offload parameters changed.  Careful about the ordering. */
1332         if (new_entry->offload_config && new_entry->offload_enabled) {
1333                 /*
1334                  * if drive is newly offload_enabled, we want to copy the
1335                  * raid map data first.  If previously offload_enabled and
1336                  * offload_config were set, raid map data had better be
1337                  * the same as it was before.  if raid map data is changed
1338                  * then it had better be the case that
1339                  * h->dev[entry]->offload_enabled is currently 0.
1340                  */
1341                 h->dev[entry]->raid_map = new_entry->raid_map;
1342                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1343         }
1344         if (new_entry->hba_ioaccel_enabled) {
1345                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1346                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1347         }
1348         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1349         h->dev[entry]->offload_config = new_entry->offload_config;
1350         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1351         h->dev[entry]->queue_depth = new_entry->queue_depth;
1352
1353         /*
1354          * We can turn off ioaccel offload now, but need to delay turning
1355          * it on until we can update h->dev[entry]->phys_disk[], but we
1356          * can't do that until all the devices are updated.
1357          */
1358         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1359         if (!new_entry->offload_enabled)
1360                 h->dev[entry]->offload_enabled = 0;
1361
1362         offload_enabled = h->dev[entry]->offload_enabled;
1363         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1364         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1365         h->dev[entry]->offload_enabled = offload_enabled;
1366 }
1367
1368 /* Replace an entry from h->dev[] array. */
1369 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1370         int entry, struct hpsa_scsi_dev_t *new_entry,
1371         struct hpsa_scsi_dev_t *added[], int *nadded,
1372         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1373 {
1374         /* assumes h->devlock is held */
1375         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1376         removed[*nremoved] = h->dev[entry];
1377         (*nremoved)++;
1378
1379         /*
1380          * New physical devices won't have target/lun assigned yet
1381          * so we need to preserve the values in the slot we are replacing.
1382          */
1383         if (new_entry->target == -1) {
1384                 new_entry->target = h->dev[entry]->target;
1385                 new_entry->lun = h->dev[entry]->lun;
1386         }
1387
1388         h->dev[entry] = new_entry;
1389         added[*nadded] = new_entry;
1390         (*nadded)++;
1391         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1392         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1393         new_entry->offload_enabled = 0;
1394 }
1395
1396 /* Remove an entry from h->dev[] array. */
1397 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1398         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1399 {
1400         /* assumes h->devlock is held */
1401         int i;
1402         struct hpsa_scsi_dev_t *sd;
1403
1404         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405
1406         sd = h->dev[entry];
1407         removed[*nremoved] = h->dev[entry];
1408         (*nremoved)++;
1409
1410         for (i = entry; i < h->ndevices-1; i++)
1411                 h->dev[i] = h->dev[i+1];
1412         h->ndevices--;
1413         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1414 }
1415
1416 #define SCSI3ADDR_EQ(a, b) ( \
1417         (a)[7] == (b)[7] && \
1418         (a)[6] == (b)[6] && \
1419         (a)[5] == (b)[5] && \
1420         (a)[4] == (b)[4] && \
1421         (a)[3] == (b)[3] && \
1422         (a)[2] == (b)[2] && \
1423         (a)[1] == (b)[1] && \
1424         (a)[0] == (b)[0])
1425
1426 static void fixup_botched_add(struct ctlr_info *h,
1427         struct hpsa_scsi_dev_t *added)
1428 {
1429         /* called when scsi_add_device fails in order to re-adjust
1430          * h->dev[] to match the mid layer's view.
1431          */
1432         unsigned long flags;
1433         int i, j;
1434
1435         spin_lock_irqsave(&h->lock, flags);
1436         for (i = 0; i < h->ndevices; i++) {
1437                 if (h->dev[i] == added) {
1438                         for (j = i; j < h->ndevices-1; j++)
1439                                 h->dev[j] = h->dev[j+1];
1440                         h->ndevices--;
1441                         break;
1442                 }
1443         }
1444         spin_unlock_irqrestore(&h->lock, flags);
1445         kfree(added);
1446 }
1447
1448 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1449         struct hpsa_scsi_dev_t *dev2)
1450 {
1451         /* we compare everything except lun and target as these
1452          * are not yet assigned.  Compare parts likely
1453          * to differ first
1454          */
1455         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1456                 sizeof(dev1->scsi3addr)) != 0)
1457                 return 0;
1458         if (memcmp(dev1->device_id, dev2->device_id,
1459                 sizeof(dev1->device_id)) != 0)
1460                 return 0;
1461         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1462                 return 0;
1463         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1464                 return 0;
1465         if (dev1->devtype != dev2->devtype)
1466                 return 0;
1467         if (dev1->bus != dev2->bus)
1468                 return 0;
1469         return 1;
1470 }
1471
1472 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1473         struct hpsa_scsi_dev_t *dev2)
1474 {
1475         /* Device attributes that can change, but don't mean
1476          * that the device is a different device, nor that the OS
1477          * needs to be told anything about the change.
1478          */
1479         if (dev1->raid_level != dev2->raid_level)
1480                 return 1;
1481         if (dev1->offload_config != dev2->offload_config)
1482                 return 1;
1483         if (dev1->offload_enabled != dev2->offload_enabled)
1484                 return 1;
1485         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1486                 if (dev1->queue_depth != dev2->queue_depth)
1487                         return 1;
1488         return 0;
1489 }
1490
1491 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1492  * and return needle location in *index.  If scsi3addr matches, but not
1493  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1494  * location in *index.
1495  * In the case of a minor device attribute change, such as RAID level, just
1496  * return DEVICE_UPDATED, along with the updated device's location in index.
1497  * If needle not found, return DEVICE_NOT_FOUND.
1498  */
1499 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1500         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1501         int *index)
1502 {
1503         int i;
1504 #define DEVICE_NOT_FOUND 0
1505 #define DEVICE_CHANGED 1
1506 #define DEVICE_SAME 2
1507 #define DEVICE_UPDATED 3
1508         if (needle == NULL)
1509                 return DEVICE_NOT_FOUND;
1510
1511         for (i = 0; i < haystack_size; i++) {
1512                 if (haystack[i] == NULL) /* previously removed. */
1513                         continue;
1514                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1515                         *index = i;
1516                         if (device_is_the_same(needle, haystack[i])) {
1517                                 if (device_updated(needle, haystack[i]))
1518                                         return DEVICE_UPDATED;
1519                                 return DEVICE_SAME;
1520                         } else {
1521                                 /* Keep offline devices offline */
1522                                 if (needle->volume_offline)
1523                                         return DEVICE_NOT_FOUND;
1524                                 return DEVICE_CHANGED;
1525                         }
1526                 }
1527         }
1528         *index = -1;
1529         return DEVICE_NOT_FOUND;
1530 }
1531
1532 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1533                                         unsigned char scsi3addr[])
1534 {
1535         struct offline_device_entry *device;
1536         unsigned long flags;
1537
1538         /* Check to see if device is already on the list */
1539         spin_lock_irqsave(&h->offline_device_lock, flags);
1540         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1541                 if (memcmp(device->scsi3addr, scsi3addr,
1542                         sizeof(device->scsi3addr)) == 0) {
1543                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1544                         return;
1545                 }
1546         }
1547         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1548
1549         /* Device is not on the list, add it. */
1550         device = kmalloc(sizeof(*device), GFP_KERNEL);
1551         if (!device)
1552                 return;
1553
1554         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1555         spin_lock_irqsave(&h->offline_device_lock, flags);
1556         list_add_tail(&device->offline_list, &h->offline_device_list);
1557         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1558 }
1559
1560 /* Print a message explaining various offline volume states */
1561 static void hpsa_show_volume_status(struct ctlr_info *h,
1562         struct hpsa_scsi_dev_t *sd)
1563 {
1564         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1565                 dev_info(&h->pdev->dev,
1566                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1567                         h->scsi_host->host_no,
1568                         sd->bus, sd->target, sd->lun);
1569         switch (sd->volume_offline) {
1570         case HPSA_LV_OK:
1571                 break;
1572         case HPSA_LV_UNDERGOING_ERASE:
1573                 dev_info(&h->pdev->dev,
1574                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1575                         h->scsi_host->host_no,
1576                         sd->bus, sd->target, sd->lun);
1577                 break;
1578         case HPSA_LV_NOT_AVAILABLE:
1579                 dev_info(&h->pdev->dev,
1580                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1581                         h->scsi_host->host_no,
1582                         sd->bus, sd->target, sd->lun);
1583                 break;
1584         case HPSA_LV_UNDERGOING_RPI:
1585                 dev_info(&h->pdev->dev,
1586                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1587                         h->scsi_host->host_no,
1588                         sd->bus, sd->target, sd->lun);
1589                 break;
1590         case HPSA_LV_PENDING_RPI:
1591                 dev_info(&h->pdev->dev,
1592                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1593                         h->scsi_host->host_no,
1594                         sd->bus, sd->target, sd->lun);
1595                 break;
1596         case HPSA_LV_ENCRYPTED_NO_KEY:
1597                 dev_info(&h->pdev->dev,
1598                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1599                         h->scsi_host->host_no,
1600                         sd->bus, sd->target, sd->lun);
1601                 break;
1602         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1603                 dev_info(&h->pdev->dev,
1604                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1605                         h->scsi_host->host_no,
1606                         sd->bus, sd->target, sd->lun);
1607                 break;
1608         case HPSA_LV_UNDERGOING_ENCRYPTION:
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613                 break;
1614         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619                 break;
1620         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625                 break;
1626         case HPSA_LV_PENDING_ENCRYPTION:
1627                 dev_info(&h->pdev->dev,
1628                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1629                         h->scsi_host->host_no,
1630                         sd->bus, sd->target, sd->lun);
1631                 break;
1632         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1633                 dev_info(&h->pdev->dev,
1634                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1635                         h->scsi_host->host_no,
1636                         sd->bus, sd->target, sd->lun);
1637                 break;
1638         }
1639 }
1640
1641 /*
1642  * Figure the list of physical drive pointers for a logical drive with
1643  * raid offload configured.
1644  */
1645 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1646                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1647                                 struct hpsa_scsi_dev_t *logical_drive)
1648 {
1649         struct raid_map_data *map = &logical_drive->raid_map;
1650         struct raid_map_disk_data *dd = &map->data[0];
1651         int i, j;
1652         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1653                                 le16_to_cpu(map->metadata_disks_per_row);
1654         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1655                                 le16_to_cpu(map->layout_map_count) *
1656                                 total_disks_per_row;
1657         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1658                                 total_disks_per_row;
1659         int qdepth;
1660
1661         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1662                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1663
1664         logical_drive->nphysical_disks = nraid_map_entries;
1665
1666         qdepth = 0;
1667         for (i = 0; i < nraid_map_entries; i++) {
1668                 logical_drive->phys_disk[i] = NULL;
1669                 if (!logical_drive->offload_config)
1670                         continue;
1671                 for (j = 0; j < ndevices; j++) {
1672                         if (dev[j] == NULL)
1673                                 continue;
1674                         if (dev[j]->devtype != TYPE_DISK &&
1675                             dev[j]->devtype != TYPE_ZBC)
1676                                 continue;
1677                         if (is_logical_device(dev[j]))
1678                                 continue;
1679                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1680                                 continue;
1681
1682                         logical_drive->phys_disk[i] = dev[j];
1683                         if (i < nphys_disk)
1684                                 qdepth = min(h->nr_cmds, qdepth +
1685                                     logical_drive->phys_disk[i]->queue_depth);
1686                         break;
1687                 }
1688
1689                 /*
1690                  * This can happen if a physical drive is removed and
1691                  * the logical drive is degraded.  In that case, the RAID
1692                  * map data will refer to a physical disk which isn't actually
1693                  * present.  And in that case offload_enabled should already
1694                  * be 0, but we'll turn it off here just in case
1695                  */
1696                 if (!logical_drive->phys_disk[i]) {
1697                         logical_drive->offload_enabled = 0;
1698                         logical_drive->offload_to_be_enabled = 0;
1699                         logical_drive->queue_depth = 8;
1700                 }
1701         }
1702         if (nraid_map_entries)
1703                 /*
1704                  * This is correct for reads, too high for full stripe writes,
1705                  * way too high for partial stripe writes
1706                  */
1707                 logical_drive->queue_depth = qdepth;
1708         else
1709                 logical_drive->queue_depth = h->nr_cmds;
1710 }
1711
1712 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1713                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1714 {
1715         int i;
1716
1717         for (i = 0; i < ndevices; i++) {
1718                 if (dev[i] == NULL)
1719                         continue;
1720                 if (dev[i]->devtype != TYPE_DISK &&
1721                     dev[i]->devtype != TYPE_ZBC)
1722                         continue;
1723                 if (!is_logical_device(dev[i]))
1724                         continue;
1725
1726                 /*
1727                  * If offload is currently enabled, the RAID map and
1728                  * phys_disk[] assignment *better* not be changing
1729                  * and since it isn't changing, we do not need to
1730                  * update it.
1731                  */
1732                 if (dev[i]->offload_enabled)
1733                         continue;
1734
1735                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1736         }
1737 }
1738
1739 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1740 {
1741         int rc = 0;
1742
1743         if (!h->scsi_host)
1744                 return 1;
1745
1746         if (is_logical_device(device)) /* RAID */
1747                 rc = scsi_add_device(h->scsi_host, device->bus,
1748                                         device->target, device->lun);
1749         else /* HBA */
1750                 rc = hpsa_add_sas_device(h->sas_host, device);
1751
1752         return rc;
1753 }
1754
1755 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1756                                                 struct hpsa_scsi_dev_t *dev)
1757 {
1758         int i;
1759         int count = 0;
1760
1761         for (i = 0; i < h->nr_cmds; i++) {
1762                 struct CommandList *c = h->cmd_pool + i;
1763                 int refcount = atomic_inc_return(&c->refcount);
1764
1765                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1766                                 dev->scsi3addr)) {
1767                         unsigned long flags;
1768
1769                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1770                         if (!hpsa_is_cmd_idle(c))
1771                                 ++count;
1772                         spin_unlock_irqrestore(&h->lock, flags);
1773                 }
1774
1775                 cmd_free(h, c);
1776         }
1777
1778         return count;
1779 }
1780
1781 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1782                                                 struct hpsa_scsi_dev_t *device)
1783 {
1784         int cmds = 0;
1785         int waits = 0;
1786
1787         while (1) {
1788                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1789                 if (cmds == 0)
1790                         break;
1791                 if (++waits > 20)
1792                         break;
1793                 dev_warn(&h->pdev->dev,
1794                         "%s: removing device with %d outstanding commands!\n",
1795                         __func__, cmds);
1796                 msleep(1000);
1797         }
1798 }
1799
1800 static void hpsa_remove_device(struct ctlr_info *h,
1801                         struct hpsa_scsi_dev_t *device)
1802 {
1803         struct scsi_device *sdev = NULL;
1804
1805         if (!h->scsi_host)
1806                 return;
1807
1808         if (is_logical_device(device)) { /* RAID */
1809                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1810                                                 device->target, device->lun);
1811                 if (sdev) {
1812                         scsi_remove_device(sdev);
1813                         scsi_device_put(sdev);
1814                 } else {
1815                         /*
1816                          * We don't expect to get here.  Future commands
1817                          * to this device will get a selection timeout as
1818                          * if the device were gone.
1819                          */
1820                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1821                                         "didn't find device for removal.");
1822                 }
1823         } else { /* HBA */
1824
1825                 device->removed = 1;
1826                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1827
1828                 hpsa_remove_sas_device(device);
1829         }
1830 }
1831
1832 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1833         struct hpsa_scsi_dev_t *sd[], int nsds)
1834 {
1835         /* sd contains scsi3 addresses and devtypes, and inquiry
1836          * data.  This function takes what's in sd to be the current
1837          * reality and updates h->dev[] to reflect that reality.
1838          */
1839         int i, entry, device_change, changes = 0;
1840         struct hpsa_scsi_dev_t *csd;
1841         unsigned long flags;
1842         struct hpsa_scsi_dev_t **added, **removed;
1843         int nadded, nremoved;
1844
1845         /*
1846          * A reset can cause a device status to change
1847          * re-schedule the scan to see what happened.
1848          */
1849         spin_lock_irqsave(&h->reset_lock, flags);
1850         if (h->reset_in_progress) {
1851                 h->drv_req_rescan = 1;
1852                 spin_unlock_irqrestore(&h->reset_lock, flags);
1853                 return;
1854         }
1855         spin_unlock_irqrestore(&h->reset_lock, flags);
1856
1857         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1858         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1859
1860         if (!added || !removed) {
1861                 dev_warn(&h->pdev->dev, "out of memory in "
1862                         "adjust_hpsa_scsi_table\n");
1863                 goto free_and_out;
1864         }
1865
1866         spin_lock_irqsave(&h->devlock, flags);
1867
1868         /* find any devices in h->dev[] that are not in
1869          * sd[] and remove them from h->dev[], and for any
1870          * devices which have changed, remove the old device
1871          * info and add the new device info.
1872          * If minor device attributes change, just update
1873          * the existing device structure.
1874          */
1875         i = 0;
1876         nremoved = 0;
1877         nadded = 0;
1878         while (i < h->ndevices) {
1879                 csd = h->dev[i];
1880                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1881                 if (device_change == DEVICE_NOT_FOUND) {
1882                         changes++;
1883                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1884                         continue; /* remove ^^^, hence i not incremented */
1885                 } else if (device_change == DEVICE_CHANGED) {
1886                         changes++;
1887                         hpsa_scsi_replace_entry(h, i, sd[entry],
1888                                 added, &nadded, removed, &nremoved);
1889                         /* Set it to NULL to prevent it from being freed
1890                          * at the bottom of hpsa_update_scsi_devices()
1891                          */
1892                         sd[entry] = NULL;
1893                 } else if (device_change == DEVICE_UPDATED) {
1894                         hpsa_scsi_update_entry(h, i, sd[entry]);
1895                 }
1896                 i++;
1897         }
1898
1899         /* Now, make sure every device listed in sd[] is also
1900          * listed in h->dev[], adding them if they aren't found
1901          */
1902
1903         for (i = 0; i < nsds; i++) {
1904                 if (!sd[i]) /* if already added above. */
1905                         continue;
1906
1907                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1908                  * as the SCSI mid-layer does not handle such devices well.
1909                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1910                  * at 160Hz, and prevents the system from coming up.
1911                  */
1912                 if (sd[i]->volume_offline) {
1913                         hpsa_show_volume_status(h, sd[i]);
1914                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1915                         continue;
1916                 }
1917
1918                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1919                                         h->ndevices, &entry);
1920                 if (device_change == DEVICE_NOT_FOUND) {
1921                         changes++;
1922                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1923                                 break;
1924                         sd[i] = NULL; /* prevent from being freed later. */
1925                 } else if (device_change == DEVICE_CHANGED) {
1926                         /* should never happen... */
1927                         changes++;
1928                         dev_warn(&h->pdev->dev,
1929                                 "device unexpectedly changed.\n");
1930                         /* but if it does happen, we just ignore that device */
1931                 }
1932         }
1933         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1934
1935         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1936          * any logical drives that need it enabled.
1937          */
1938         for (i = 0; i < h->ndevices; i++) {
1939                 if (h->dev[i] == NULL)
1940                         continue;
1941                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1942         }
1943
1944         spin_unlock_irqrestore(&h->devlock, flags);
1945
1946         /* Monitor devices which are in one of several NOT READY states to be
1947          * brought online later. This must be done without holding h->devlock,
1948          * so don't touch h->dev[]
1949          */
1950         for (i = 0; i < nsds; i++) {
1951                 if (!sd[i]) /* if already added above. */
1952                         continue;
1953                 if (sd[i]->volume_offline)
1954                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1955         }
1956
1957         /* Don't notify scsi mid layer of any changes the first time through
1958          * (or if there are no changes) scsi_scan_host will do it later the
1959          * first time through.
1960          */
1961         if (!changes)
1962                 goto free_and_out;
1963
1964         /* Notify scsi mid layer of any removed devices */
1965         for (i = 0; i < nremoved; i++) {
1966                 if (removed[i] == NULL)
1967                         continue;
1968                 if (removed[i]->expose_device)
1969                         hpsa_remove_device(h, removed[i]);
1970                 kfree(removed[i]);
1971                 removed[i] = NULL;
1972         }
1973
1974         /* Notify scsi mid layer of any added devices */
1975         for (i = 0; i < nadded; i++) {
1976                 int rc = 0;
1977
1978                 if (added[i] == NULL)
1979                         continue;
1980                 if (!(added[i]->expose_device))
1981                         continue;
1982                 rc = hpsa_add_device(h, added[i]);
1983                 if (!rc)
1984                         continue;
1985                 dev_warn(&h->pdev->dev,
1986                         "addition failed %d, device not added.", rc);
1987                 /* now we have to remove it from h->dev,
1988                  * since it didn't get added to scsi mid layer
1989                  */
1990                 fixup_botched_add(h, added[i]);
1991                 h->drv_req_rescan = 1;
1992         }
1993
1994 free_and_out:
1995         kfree(added);
1996         kfree(removed);
1997 }
1998
1999 /*
2000  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2001  * Assume's h->devlock is held.
2002  */
2003 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2004         int bus, int target, int lun)
2005 {
2006         int i;
2007         struct hpsa_scsi_dev_t *sd;
2008
2009         for (i = 0; i < h->ndevices; i++) {
2010                 sd = h->dev[i];
2011                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2012                         return sd;
2013         }
2014         return NULL;
2015 }
2016
2017 static int hpsa_slave_alloc(struct scsi_device *sdev)
2018 {
2019         struct hpsa_scsi_dev_t *sd = NULL;
2020         unsigned long flags;
2021         struct ctlr_info *h;
2022
2023         h = sdev_to_hba(sdev);
2024         spin_lock_irqsave(&h->devlock, flags);
2025         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2026                 struct scsi_target *starget;
2027                 struct sas_rphy *rphy;
2028
2029                 starget = scsi_target(sdev);
2030                 rphy = target_to_rphy(starget);
2031                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2032                 if (sd) {
2033                         sd->target = sdev_id(sdev);
2034                         sd->lun = sdev->lun;
2035                 }
2036         }
2037         if (!sd)
2038                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2039                                         sdev_id(sdev), sdev->lun);
2040
2041         if (sd && sd->expose_device) {
2042                 atomic_set(&sd->ioaccel_cmds_out, 0);
2043                 sdev->hostdata = sd;
2044         } else
2045                 sdev->hostdata = NULL;
2046         spin_unlock_irqrestore(&h->devlock, flags);
2047         return 0;
2048 }
2049
2050 /* configure scsi device based on internal per-device structure */
2051 static int hpsa_slave_configure(struct scsi_device *sdev)
2052 {
2053         struct hpsa_scsi_dev_t *sd;
2054         int queue_depth;
2055
2056         sd = sdev->hostdata;
2057         sdev->no_uld_attach = !sd || !sd->expose_device;
2058
2059         if (sd) {
2060                 if (sd->external)
2061                         queue_depth = EXTERNAL_QD;
2062                 else
2063                         queue_depth = sd->queue_depth != 0 ?
2064                                         sd->queue_depth : sdev->host->can_queue;
2065         } else
2066                 queue_depth = sdev->host->can_queue;
2067
2068         scsi_change_queue_depth(sdev, queue_depth);
2069
2070         return 0;
2071 }
2072
2073 static void hpsa_slave_destroy(struct scsi_device *sdev)
2074 {
2075         /* nothing to do. */
2076 }
2077
2078 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2079 {
2080         int i;
2081
2082         if (!h->ioaccel2_cmd_sg_list)
2083                 return;
2084         for (i = 0; i < h->nr_cmds; i++) {
2085                 kfree(h->ioaccel2_cmd_sg_list[i]);
2086                 h->ioaccel2_cmd_sg_list[i] = NULL;
2087         }
2088         kfree(h->ioaccel2_cmd_sg_list);
2089         h->ioaccel2_cmd_sg_list = NULL;
2090 }
2091
2092 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2093 {
2094         int i;
2095
2096         if (h->chainsize <= 0)
2097                 return 0;
2098
2099         h->ioaccel2_cmd_sg_list =
2100                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2101                                         GFP_KERNEL);
2102         if (!h->ioaccel2_cmd_sg_list)
2103                 return -ENOMEM;
2104         for (i = 0; i < h->nr_cmds; i++) {
2105                 h->ioaccel2_cmd_sg_list[i] =
2106                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2107                                         h->maxsgentries, GFP_KERNEL);
2108                 if (!h->ioaccel2_cmd_sg_list[i])
2109                         goto clean;
2110         }
2111         return 0;
2112
2113 clean:
2114         hpsa_free_ioaccel2_sg_chain_blocks(h);
2115         return -ENOMEM;
2116 }
2117
2118 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2119 {
2120         int i;
2121
2122         if (!h->cmd_sg_list)
2123                 return;
2124         for (i = 0; i < h->nr_cmds; i++) {
2125                 kfree(h->cmd_sg_list[i]);
2126                 h->cmd_sg_list[i] = NULL;
2127         }
2128         kfree(h->cmd_sg_list);
2129         h->cmd_sg_list = NULL;
2130 }
2131
2132 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2133 {
2134         int i;
2135
2136         if (h->chainsize <= 0)
2137                 return 0;
2138
2139         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2140                                 GFP_KERNEL);
2141         if (!h->cmd_sg_list)
2142                 return -ENOMEM;
2143
2144         for (i = 0; i < h->nr_cmds; i++) {
2145                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2146                                                 h->chainsize, GFP_KERNEL);
2147                 if (!h->cmd_sg_list[i])
2148                         goto clean;
2149
2150         }
2151         return 0;
2152
2153 clean:
2154         hpsa_free_sg_chain_blocks(h);
2155         return -ENOMEM;
2156 }
2157
2158 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2159         struct io_accel2_cmd *cp, struct CommandList *c)
2160 {
2161         struct ioaccel2_sg_element *chain_block;
2162         u64 temp64;
2163         u32 chain_size;
2164
2165         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2166         chain_size = le32_to_cpu(cp->sg[0].length);
2167         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2168                                 PCI_DMA_TODEVICE);
2169         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2170                 /* prevent subsequent unmapping */
2171                 cp->sg->address = 0;
2172                 return -1;
2173         }
2174         cp->sg->address = cpu_to_le64(temp64);
2175         return 0;
2176 }
2177
2178 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2179         struct io_accel2_cmd *cp)
2180 {
2181         struct ioaccel2_sg_element *chain_sg;
2182         u64 temp64;
2183         u32 chain_size;
2184
2185         chain_sg = cp->sg;
2186         temp64 = le64_to_cpu(chain_sg->address);
2187         chain_size = le32_to_cpu(cp->sg[0].length);
2188         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2189 }
2190
2191 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2192         struct CommandList *c)
2193 {
2194         struct SGDescriptor *chain_sg, *chain_block;
2195         u64 temp64;
2196         u32 chain_len;
2197
2198         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2199         chain_block = h->cmd_sg_list[c->cmdindex];
2200         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2201         chain_len = sizeof(*chain_sg) *
2202                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2203         chain_sg->Len = cpu_to_le32(chain_len);
2204         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2205                                 PCI_DMA_TODEVICE);
2206         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2207                 /* prevent subsequent unmapping */
2208                 chain_sg->Addr = cpu_to_le64(0);
2209                 return -1;
2210         }
2211         chain_sg->Addr = cpu_to_le64(temp64);
2212         return 0;
2213 }
2214
2215 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2216         struct CommandList *c)
2217 {
2218         struct SGDescriptor *chain_sg;
2219
2220         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2221                 return;
2222
2223         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2224         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2225                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2226 }
2227
2228
2229 /* Decode the various types of errors on ioaccel2 path.
2230  * Return 1 for any error that should generate a RAID path retry.
2231  * Return 0 for errors that don't require a RAID path retry.
2232  */
2233 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2234                                         struct CommandList *c,
2235                                         struct scsi_cmnd *cmd,
2236                                         struct io_accel2_cmd *c2,
2237                                         struct hpsa_scsi_dev_t *dev)
2238 {
2239         int data_len;
2240         int retry = 0;
2241         u32 ioaccel2_resid = 0;
2242
2243         switch (c2->error_data.serv_response) {
2244         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2245                 switch (c2->error_data.status) {
2246                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2247                         break;
2248                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2249                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2250                         if (c2->error_data.data_present !=
2251                                         IOACCEL2_SENSE_DATA_PRESENT) {
2252                                 memset(cmd->sense_buffer, 0,
2253                                         SCSI_SENSE_BUFFERSIZE);
2254                                 break;
2255                         }
2256                         /* copy the sense data */
2257                         data_len = c2->error_data.sense_data_len;
2258                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2259                                 data_len = SCSI_SENSE_BUFFERSIZE;
2260                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2261                                 data_len =
2262                                         sizeof(c2->error_data.sense_data_buff);
2263                         memcpy(cmd->sense_buffer,
2264                                 c2->error_data.sense_data_buff, data_len);
2265                         retry = 1;
2266                         break;
2267                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2268                         retry = 1;
2269                         break;
2270                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2271                         retry = 1;
2272                         break;
2273                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2274                         retry = 1;
2275                         break;
2276                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2277                         retry = 1;
2278                         break;
2279                 default:
2280                         retry = 1;
2281                         break;
2282                 }
2283                 break;
2284         case IOACCEL2_SERV_RESPONSE_FAILURE:
2285                 switch (c2->error_data.status) {
2286                 case IOACCEL2_STATUS_SR_IO_ERROR:
2287                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2288                 case IOACCEL2_STATUS_SR_OVERRUN:
2289                         retry = 1;
2290                         break;
2291                 case IOACCEL2_STATUS_SR_UNDERRUN:
2292                         cmd->result = (DID_OK << 16);           /* host byte */
2293                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2294                         ioaccel2_resid = get_unaligned_le32(
2295                                                 &c2->error_data.resid_cnt[0]);
2296                         scsi_set_resid(cmd, ioaccel2_resid);
2297                         break;
2298                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2299                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2300                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2301                         /*
2302                          * Did an HBA disk disappear? We will eventually
2303                          * get a state change event from the controller but
2304                          * in the meantime, we need to tell the OS that the
2305                          * HBA disk is no longer there and stop I/O
2306                          * from going down. This allows the potential re-insert
2307                          * of the disk to get the same device node.
2308                          */
2309                         if (dev->physical_device && dev->expose_device) {
2310                                 cmd->result = DID_NO_CONNECT << 16;
2311                                 dev->removed = 1;
2312                                 h->drv_req_rescan = 1;
2313                                 dev_warn(&h->pdev->dev,
2314                                         "%s: device is gone!\n", __func__);
2315                         } else
2316                                 /*
2317                                  * Retry by sending down the RAID path.
2318                                  * We will get an event from ctlr to
2319                                  * trigger rescan regardless.
2320                                  */
2321                                 retry = 1;
2322                         break;
2323                 default:
2324                         retry = 1;
2325                 }
2326                 break;
2327         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2328                 break;
2329         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2330                 break;
2331         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2332                 retry = 1;
2333                 break;
2334         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2335                 break;
2336         default:
2337                 retry = 1;
2338                 break;
2339         }
2340
2341         return retry;   /* retry on raid path? */
2342 }
2343
2344 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2345                 struct CommandList *c)
2346 {
2347         bool do_wake = false;
2348
2349         /*
2350          * Reset c->scsi_cmd here so that the reset handler will know
2351          * this command has completed.  Then, check to see if the handler is
2352          * waiting for this command, and, if so, wake it.
2353          */
2354         c->scsi_cmd = SCSI_CMD_IDLE;
2355         mb();   /* Declare command idle before checking for pending events. */
2356         if (c->reset_pending) {
2357                 unsigned long flags;
2358                 struct hpsa_scsi_dev_t *dev;
2359
2360                 /*
2361                  * There appears to be a reset pending; lock the lock and
2362                  * reconfirm.  If so, then decrement the count of outstanding
2363                  * commands and wake the reset command if this is the last one.
2364                  */
2365                 spin_lock_irqsave(&h->lock, flags);
2366                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2367                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2368                         do_wake = true;
2369                 c->reset_pending = NULL;
2370                 spin_unlock_irqrestore(&h->lock, flags);
2371         }
2372
2373         if (do_wake)
2374                 wake_up_all(&h->event_sync_wait_queue);
2375 }
2376
2377 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2378                                       struct CommandList *c)
2379 {
2380         hpsa_cmd_resolve_events(h, c);
2381         cmd_tagged_free(h, c);
2382 }
2383
2384 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2385                 struct CommandList *c, struct scsi_cmnd *cmd)
2386 {
2387         hpsa_cmd_resolve_and_free(h, c);
2388         if (cmd && cmd->scsi_done)
2389                 cmd->scsi_done(cmd);
2390 }
2391
2392 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2393 {
2394         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2395         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2396 }
2397
2398 static void process_ioaccel2_completion(struct ctlr_info *h,
2399                 struct CommandList *c, struct scsi_cmnd *cmd,
2400                 struct hpsa_scsi_dev_t *dev)
2401 {
2402         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2403
2404         /* check for good status */
2405         if (likely(c2->error_data.serv_response == 0 &&
2406                         c2->error_data.status == 0))
2407                 return hpsa_cmd_free_and_done(h, c, cmd);
2408
2409         /*
2410          * Any RAID offload error results in retry which will use
2411          * the normal I/O path so the controller can handle whatever's
2412          * wrong.
2413          */
2414         if (is_logical_device(dev) &&
2415                 c2->error_data.serv_response ==
2416                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2417                 if (c2->error_data.status ==
2418                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2419                         dev->offload_enabled = 0;
2420                         dev->offload_to_be_enabled = 0;
2421                 }
2422
2423                 return hpsa_retry_cmd(h, c);
2424         }
2425
2426         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2427                 return hpsa_retry_cmd(h, c);
2428
2429         return hpsa_cmd_free_and_done(h, c, cmd);
2430 }
2431
2432 /* Returns 0 on success, < 0 otherwise. */
2433 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2434                                         struct CommandList *cp)
2435 {
2436         u8 tmf_status = cp->err_info->ScsiStatus;
2437
2438         switch (tmf_status) {
2439         case CISS_TMF_COMPLETE:
2440                 /*
2441                  * CISS_TMF_COMPLETE never happens, instead,
2442                  * ei->CommandStatus == 0 for this case.
2443                  */
2444         case CISS_TMF_SUCCESS:
2445                 return 0;
2446         case CISS_TMF_INVALID_FRAME:
2447         case CISS_TMF_NOT_SUPPORTED:
2448         case CISS_TMF_FAILED:
2449         case CISS_TMF_WRONG_LUN:
2450         case CISS_TMF_OVERLAPPED_TAG:
2451                 break;
2452         default:
2453                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2454                                 tmf_status);
2455                 break;
2456         }
2457         return -tmf_status;
2458 }
2459
2460 static void complete_scsi_command(struct CommandList *cp)
2461 {
2462         struct scsi_cmnd *cmd;
2463         struct ctlr_info *h;
2464         struct ErrorInfo *ei;
2465         struct hpsa_scsi_dev_t *dev;
2466         struct io_accel2_cmd *c2;
2467
2468         u8 sense_key;
2469         u8 asc;      /* additional sense code */
2470         u8 ascq;     /* additional sense code qualifier */
2471         unsigned long sense_data_size;
2472
2473         ei = cp->err_info;
2474         cmd = cp->scsi_cmd;
2475         h = cp->h;
2476
2477         if (!cmd->device) {
2478                 cmd->result = DID_NO_CONNECT << 16;
2479                 return hpsa_cmd_free_and_done(h, cp, cmd);
2480         }
2481
2482         dev = cmd->device->hostdata;
2483         if (!dev) {
2484                 cmd->result = DID_NO_CONNECT << 16;
2485                 return hpsa_cmd_free_and_done(h, cp, cmd);
2486         }
2487         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2488
2489         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2490         if ((cp->cmd_type == CMD_SCSI) &&
2491                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2492                 hpsa_unmap_sg_chain_block(h, cp);
2493
2494         if ((cp->cmd_type == CMD_IOACCEL2) &&
2495                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2496                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2497
2498         cmd->result = (DID_OK << 16);           /* host byte */
2499         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2500
2501         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2502                 if (dev->physical_device && dev->expose_device &&
2503                         dev->removed) {
2504                         cmd->result = DID_NO_CONNECT << 16;
2505                         return hpsa_cmd_free_and_done(h, cp, cmd);
2506                 }
2507                 if (likely(cp->phys_disk != NULL))
2508                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509         }
2510
2511         /*
2512          * We check for lockup status here as it may be set for
2513          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2514          * fail_all_oustanding_cmds()
2515          */
2516         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2517                 /* DID_NO_CONNECT will prevent a retry */
2518                 cmd->result = DID_NO_CONNECT << 16;
2519                 return hpsa_cmd_free_and_done(h, cp, cmd);
2520         }
2521
2522         if ((unlikely(hpsa_is_pending_event(cp))))
2523                 if (cp->reset_pending)
2524                         return hpsa_cmd_free_and_done(h, cp, cmd);
2525
2526         if (cp->cmd_type == CMD_IOACCEL2)
2527                 return process_ioaccel2_completion(h, cp, cmd, dev);
2528
2529         scsi_set_resid(cmd, ei->ResidualCnt);
2530         if (ei->CommandStatus == 0)
2531                 return hpsa_cmd_free_and_done(h, cp, cmd);
2532
2533         /* For I/O accelerator commands, copy over some fields to the normal
2534          * CISS header used below for error handling.
2535          */
2536         if (cp->cmd_type == CMD_IOACCEL1) {
2537                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2538                 cp->Header.SGList = scsi_sg_count(cmd);
2539                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2540                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2541                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2542                 cp->Header.tag = c->tag;
2543                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2544                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2545
2546                 /* Any RAID offload error results in retry which will use
2547                  * the normal I/O path so the controller can handle whatever's
2548                  * wrong.
2549                  */
2550                 if (is_logical_device(dev)) {
2551                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2552                                 dev->offload_enabled = 0;
2553                         return hpsa_retry_cmd(h, cp);
2554                 }
2555         }
2556
2557         /* an error has occurred */
2558         switch (ei->CommandStatus) {
2559
2560         case CMD_TARGET_STATUS:
2561                 cmd->result |= ei->ScsiStatus;
2562                 /* copy the sense data */
2563                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2564                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2565                 else
2566                         sense_data_size = sizeof(ei->SenseInfo);
2567                 if (ei->SenseLen < sense_data_size)
2568                         sense_data_size = ei->SenseLen;
2569                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2570                 if (ei->ScsiStatus)
2571                         decode_sense_data(ei->SenseInfo, sense_data_size,
2572                                 &sense_key, &asc, &ascq);
2573                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2574                         if (sense_key == ABORTED_COMMAND) {
2575                                 cmd->result |= DID_SOFT_ERROR << 16;
2576                                 break;
2577                         }
2578                         break;
2579                 }
2580                 /* Problem was not a check condition
2581                  * Pass it up to the upper layers...
2582                  */
2583                 if (ei->ScsiStatus) {
2584                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2585                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2586                                 "Returning result: 0x%x\n",
2587                                 cp, ei->ScsiStatus,
2588                                 sense_key, asc, ascq,
2589                                 cmd->result);
2590                 } else {  /* scsi status is zero??? How??? */
2591                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2592                                 "Returning no connection.\n", cp),
2593
2594                         /* Ordinarily, this case should never happen,
2595                          * but there is a bug in some released firmware
2596                          * revisions that allows it to happen if, for
2597                          * example, a 4100 backplane loses power and
2598                          * the tape drive is in it.  We assume that
2599                          * it's a fatal error of some kind because we
2600                          * can't show that it wasn't. We will make it
2601                          * look like selection timeout since that is
2602                          * the most common reason for this to occur,
2603                          * and it's severe enough.
2604                          */
2605
2606                         cmd->result = DID_NO_CONNECT << 16;
2607                 }
2608                 break;
2609
2610         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2611                 break;
2612         case CMD_DATA_OVERRUN:
2613                 dev_warn(&h->pdev->dev,
2614                         "CDB %16phN data overrun\n", cp->Request.CDB);
2615                 break;
2616         case CMD_INVALID: {
2617                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2618                 print_cmd(cp); */
2619                 /* We get CMD_INVALID if you address a non-existent device
2620                  * instead of a selection timeout (no response).  You will
2621                  * see this if you yank out a drive, then try to access it.
2622                  * This is kind of a shame because it means that any other
2623                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2624                  * missing target. */
2625                 cmd->result = DID_NO_CONNECT << 16;
2626         }
2627                 break;
2628         case CMD_PROTOCOL_ERR:
2629                 cmd->result = DID_ERROR << 16;
2630                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2631                                 cp->Request.CDB);
2632                 break;
2633         case CMD_HARDWARE_ERR:
2634                 cmd->result = DID_ERROR << 16;
2635                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2636                         cp->Request.CDB);
2637                 break;
2638         case CMD_CONNECTION_LOST:
2639                 cmd->result = DID_ERROR << 16;
2640                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2641                         cp->Request.CDB);
2642                 break;
2643         case CMD_ABORTED:
2644                 cmd->result = DID_ABORT << 16;
2645                 break;
2646         case CMD_ABORT_FAILED:
2647                 cmd->result = DID_ERROR << 16;
2648                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2649                         cp->Request.CDB);
2650                 break;
2651         case CMD_UNSOLICITED_ABORT:
2652                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2653                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2654                         cp->Request.CDB);
2655                 break;
2656         case CMD_TIMEOUT:
2657                 cmd->result = DID_TIME_OUT << 16;
2658                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2659                         cp->Request.CDB);
2660                 break;
2661         case CMD_UNABORTABLE:
2662                 cmd->result = DID_ERROR << 16;
2663                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2664                 break;
2665         case CMD_TMF_STATUS:
2666                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2667                         cmd->result = DID_ERROR << 16;
2668                 break;
2669         case CMD_IOACCEL_DISABLED:
2670                 /* This only handles the direct pass-through case since RAID
2671                  * offload is handled above.  Just attempt a retry.
2672                  */
2673                 cmd->result = DID_SOFT_ERROR << 16;
2674                 dev_warn(&h->pdev->dev,
2675                                 "cp %p had HP SSD Smart Path error\n", cp);
2676                 break;
2677         default:
2678                 cmd->result = DID_ERROR << 16;
2679                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2680                                 cp, ei->CommandStatus);
2681         }
2682
2683         return hpsa_cmd_free_and_done(h, cp, cmd);
2684 }
2685
2686 static void hpsa_pci_unmap(struct pci_dev *pdev,
2687         struct CommandList *c, int sg_used, int data_direction)
2688 {
2689         int i;
2690
2691         for (i = 0; i < sg_used; i++)
2692                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2693                                 le32_to_cpu(c->SG[i].Len),
2694                                 data_direction);
2695 }
2696
2697 static int hpsa_map_one(struct pci_dev *pdev,
2698                 struct CommandList *cp,
2699                 unsigned char *buf,
2700                 size_t buflen,
2701                 int data_direction)
2702 {
2703         u64 addr64;
2704
2705         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2706                 cp->Header.SGList = 0;
2707                 cp->Header.SGTotal = cpu_to_le16(0);
2708                 return 0;
2709         }
2710
2711         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2712         if (dma_mapping_error(&pdev->dev, addr64)) {
2713                 /* Prevent subsequent unmap of something never mapped */
2714                 cp->Header.SGList = 0;
2715                 cp->Header.SGTotal = cpu_to_le16(0);
2716                 return -1;
2717         }
2718         cp->SG[0].Addr = cpu_to_le64(addr64);
2719         cp->SG[0].Len = cpu_to_le32(buflen);
2720         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2721         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2722         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2723         return 0;
2724 }
2725
2726 #define NO_TIMEOUT ((unsigned long) -1)
2727 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2728 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2729         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2730 {
2731         DECLARE_COMPLETION_ONSTACK(wait);
2732
2733         c->waiting = &wait;
2734         __enqueue_cmd_and_start_io(h, c, reply_queue);
2735         if (timeout_msecs == NO_TIMEOUT) {
2736                 /* TODO: get rid of this no-timeout thing */
2737                 wait_for_completion_io(&wait);
2738                 return IO_OK;
2739         }
2740         if (!wait_for_completion_io_timeout(&wait,
2741                                         msecs_to_jiffies(timeout_msecs))) {
2742                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2743                 return -ETIMEDOUT;
2744         }
2745         return IO_OK;
2746 }
2747
2748 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2749                                    int reply_queue, unsigned long timeout_msecs)
2750 {
2751         if (unlikely(lockup_detected(h))) {
2752                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2753                 return IO_OK;
2754         }
2755         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2756 }
2757
2758 static u32 lockup_detected(struct ctlr_info *h)
2759 {
2760         int cpu;
2761         u32 rc, *lockup_detected;
2762
2763         cpu = get_cpu();
2764         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2765         rc = *lockup_detected;
2766         put_cpu();
2767         return rc;
2768 }
2769
2770 #define MAX_DRIVER_CMD_RETRIES 25
2771 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2772         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2773 {
2774         int backoff_time = 10, retry_count = 0;
2775         int rc;
2776
2777         do {
2778                 memset(c->err_info, 0, sizeof(*c->err_info));
2779                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2780                                                   timeout_msecs);
2781                 if (rc)
2782                         break;
2783                 retry_count++;
2784                 if (retry_count > 3) {
2785                         msleep(backoff_time);
2786                         if (backoff_time < 1000)
2787                                 backoff_time *= 2;
2788                 }
2789         } while ((check_for_unit_attention(h, c) ||
2790                         check_for_busy(h, c)) &&
2791                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2792         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2793         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2794                 rc = -EIO;
2795         return rc;
2796 }
2797
2798 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2799                                 struct CommandList *c)
2800 {
2801         const u8 *cdb = c->Request.CDB;
2802         const u8 *lun = c->Header.LUN.LunAddrBytes;
2803
2804         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2805                  txt, lun, cdb);
2806 }
2807
2808 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2809                         struct CommandList *cp)
2810 {
2811         const struct ErrorInfo *ei = cp->err_info;
2812         struct device *d = &cp->h->pdev->dev;
2813         u8 sense_key, asc, ascq;
2814         int sense_len;
2815
2816         switch (ei->CommandStatus) {
2817         case CMD_TARGET_STATUS:
2818                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2819                         sense_len = sizeof(ei->SenseInfo);
2820                 else
2821                         sense_len = ei->SenseLen;
2822                 decode_sense_data(ei->SenseInfo, sense_len,
2823                                         &sense_key, &asc, &ascq);
2824                 hpsa_print_cmd(h, "SCSI status", cp);
2825                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2826                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2827                                 sense_key, asc, ascq);
2828                 else
2829                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2830                 if (ei->ScsiStatus == 0)
2831                         dev_warn(d, "SCSI status is abnormally zero.  "
2832                         "(probably indicates selection timeout "
2833                         "reported incorrectly due to a known "
2834                         "firmware bug, circa July, 2001.)\n");
2835                 break;
2836         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2837                 break;
2838         case CMD_DATA_OVERRUN:
2839                 hpsa_print_cmd(h, "overrun condition", cp);
2840                 break;
2841         case CMD_INVALID: {
2842                 /* controller unfortunately reports SCSI passthru's
2843                  * to non-existent targets as invalid commands.
2844                  */
2845                 hpsa_print_cmd(h, "invalid command", cp);
2846                 dev_warn(d, "probably means device no longer present\n");
2847                 }
2848                 break;
2849         case CMD_PROTOCOL_ERR:
2850                 hpsa_print_cmd(h, "protocol error", cp);
2851                 break;
2852         case CMD_HARDWARE_ERR:
2853                 hpsa_print_cmd(h, "hardware error", cp);
2854                 break;
2855         case CMD_CONNECTION_LOST:
2856                 hpsa_print_cmd(h, "connection lost", cp);
2857                 break;
2858         case CMD_ABORTED:
2859                 hpsa_print_cmd(h, "aborted", cp);
2860                 break;
2861         case CMD_ABORT_FAILED:
2862                 hpsa_print_cmd(h, "abort failed", cp);
2863                 break;
2864         case CMD_UNSOLICITED_ABORT:
2865                 hpsa_print_cmd(h, "unsolicited abort", cp);
2866                 break;
2867         case CMD_TIMEOUT:
2868                 hpsa_print_cmd(h, "timed out", cp);
2869                 break;
2870         case CMD_UNABORTABLE:
2871                 hpsa_print_cmd(h, "unabortable", cp);
2872                 break;
2873         case CMD_CTLR_LOCKUP:
2874                 hpsa_print_cmd(h, "controller lockup detected", cp);
2875                 break;
2876         default:
2877                 hpsa_print_cmd(h, "unknown status", cp);
2878                 dev_warn(d, "Unknown command status %x\n",
2879                                 ei->CommandStatus);
2880         }
2881 }
2882
2883 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2884                         u16 page, unsigned char *buf,
2885                         unsigned char bufsize)
2886 {
2887         int rc = IO_OK;
2888         struct CommandList *c;
2889         struct ErrorInfo *ei;
2890
2891         c = cmd_alloc(h);
2892
2893         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2894                         page, scsi3addr, TYPE_CMD)) {
2895                 rc = -1;
2896                 goto out;
2897         }
2898         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2899                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2900         if (rc)
2901                 goto out;
2902         ei = c->err_info;
2903         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2904                 hpsa_scsi_interpret_error(h, c);
2905                 rc = -1;
2906         }
2907 out:
2908         cmd_free(h, c);
2909         return rc;
2910 }
2911
2912 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2913         u8 reset_type, int reply_queue)
2914 {
2915         int rc = IO_OK;
2916         struct CommandList *c;
2917         struct ErrorInfo *ei;
2918
2919         c = cmd_alloc(h);
2920
2921
2922         /* fill_cmd can't fail here, no data buffer to map. */
2923         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2924                         scsi3addr, TYPE_MSG);
2925         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2926         if (rc) {
2927                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2928                 goto out;
2929         }
2930         /* no unmap needed here because no data xfer. */
2931
2932         ei = c->err_info;
2933         if (ei->CommandStatus != 0) {
2934                 hpsa_scsi_interpret_error(h, c);
2935                 rc = -1;
2936         }
2937 out:
2938         cmd_free(h, c);
2939         return rc;
2940 }
2941
2942 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2943                                struct hpsa_scsi_dev_t *dev,
2944                                unsigned char *scsi3addr)
2945 {
2946         int i;
2947         bool match = false;
2948         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2949         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2950
2951         if (hpsa_is_cmd_idle(c))
2952                 return false;
2953
2954         switch (c->cmd_type) {
2955         case CMD_SCSI:
2956         case CMD_IOCTL_PEND:
2957                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2958                                 sizeof(c->Header.LUN.LunAddrBytes));
2959                 break;
2960
2961         case CMD_IOACCEL1:
2962         case CMD_IOACCEL2:
2963                 if (c->phys_disk == dev) {
2964                         /* HBA mode match */
2965                         match = true;
2966                 } else {
2967                         /* Possible RAID mode -- check each phys dev. */
2968                         /* FIXME:  Do we need to take out a lock here?  If
2969                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2970                          * instead. */
2971                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2972                                 /* FIXME: an alternate test might be
2973                                  *
2974                                  * match = dev->phys_disk[i]->ioaccel_handle
2975                                  *              == c2->scsi_nexus;      */
2976                                 match = dev->phys_disk[i] == c->phys_disk;
2977                         }
2978                 }
2979                 break;
2980
2981         case IOACCEL2_TMF:
2982                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2983                         match = dev->phys_disk[i]->ioaccel_handle ==
2984                                         le32_to_cpu(ac->it_nexus);
2985                 }
2986                 break;
2987
2988         case 0:         /* The command is in the middle of being initialized. */
2989                 match = false;
2990                 break;
2991
2992         default:
2993                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2994                         c->cmd_type);
2995                 BUG();
2996         }
2997
2998         return match;
2999 }
3000
3001 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3002         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3003 {
3004         int i;
3005         int rc = 0;
3006
3007         /* We can really only handle one reset at a time */
3008         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3009                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3010                 return -EINTR;
3011         }
3012
3013         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3014
3015         for (i = 0; i < h->nr_cmds; i++) {
3016                 struct CommandList *c = h->cmd_pool + i;
3017                 int refcount = atomic_inc_return(&c->refcount);
3018
3019                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3020                         unsigned long flags;
3021
3022                         /*
3023                          * Mark the target command as having a reset pending,
3024                          * then lock a lock so that the command cannot complete
3025                          * while we're considering it.  If the command is not
3026                          * idle then count it; otherwise revoke the event.
3027                          */
3028                         c->reset_pending = dev;
3029                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3030                         if (!hpsa_is_cmd_idle(c))
3031                                 atomic_inc(&dev->reset_cmds_out);
3032                         else
3033                                 c->reset_pending = NULL;
3034                         spin_unlock_irqrestore(&h->lock, flags);
3035                 }
3036
3037                 cmd_free(h, c);
3038         }
3039
3040         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3041         if (!rc)
3042                 wait_event(h->event_sync_wait_queue,
3043                         atomic_read(&dev->reset_cmds_out) == 0 ||
3044                         lockup_detected(h));
3045
3046         if (unlikely(lockup_detected(h))) {
3047                 dev_warn(&h->pdev->dev,
3048                          "Controller lockup detected during reset wait\n");
3049                 rc = -ENODEV;
3050         }
3051
3052         if (unlikely(rc))
3053                 atomic_set(&dev->reset_cmds_out, 0);
3054         else
3055                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3056
3057         mutex_unlock(&h->reset_mutex);
3058         return rc;
3059 }
3060
3061 static void hpsa_get_raid_level(struct ctlr_info *h,
3062         unsigned char *scsi3addr, unsigned char *raid_level)
3063 {
3064         int rc;
3065         unsigned char *buf;
3066
3067         *raid_level = RAID_UNKNOWN;
3068         buf = kzalloc(64, GFP_KERNEL);
3069         if (!buf)
3070                 return;
3071
3072         if (!hpsa_vpd_page_supported(h, scsi3addr,
3073                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3074                 goto exit;
3075
3076         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3077                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3078
3079         if (rc == 0)
3080                 *raid_level = buf[8];
3081         if (*raid_level > RAID_UNKNOWN)
3082                 *raid_level = RAID_UNKNOWN;
3083 exit:
3084         kfree(buf);
3085         return;
3086 }
3087
3088 #define HPSA_MAP_DEBUG
3089 #ifdef HPSA_MAP_DEBUG
3090 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3091                                 struct raid_map_data *map_buff)
3092 {
3093         struct raid_map_disk_data *dd = &map_buff->data[0];
3094         int map, row, col;
3095         u16 map_cnt, row_cnt, disks_per_row;
3096
3097         if (rc != 0)
3098                 return;
3099
3100         /* Show details only if debugging has been activated. */
3101         if (h->raid_offload_debug < 2)
3102                 return;
3103
3104         dev_info(&h->pdev->dev, "structure_size = %u\n",
3105                                 le32_to_cpu(map_buff->structure_size));
3106         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3107                         le32_to_cpu(map_buff->volume_blk_size));
3108         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3109                         le64_to_cpu(map_buff->volume_blk_cnt));
3110         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3111                         map_buff->phys_blk_shift);
3112         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3113                         map_buff->parity_rotation_shift);
3114         dev_info(&h->pdev->dev, "strip_size = %u\n",
3115                         le16_to_cpu(map_buff->strip_size));
3116         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3117                         le64_to_cpu(map_buff->disk_starting_blk));
3118         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3119                         le64_to_cpu(map_buff->disk_blk_cnt));
3120         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3121                         le16_to_cpu(map_buff->data_disks_per_row));
3122         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3123                         le16_to_cpu(map_buff->metadata_disks_per_row));
3124         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3125                         le16_to_cpu(map_buff->row_cnt));
3126         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3127                         le16_to_cpu(map_buff->layout_map_count));
3128         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3129                         le16_to_cpu(map_buff->flags));
3130         dev_info(&h->pdev->dev, "encryption = %s\n",
3131                         le16_to_cpu(map_buff->flags) &
3132                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3133         dev_info(&h->pdev->dev, "dekindex = %u\n",
3134                         le16_to_cpu(map_buff->dekindex));
3135         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3136         for (map = 0; map < map_cnt; map++) {
3137                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3138                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3139                 for (row = 0; row < row_cnt; row++) {
3140                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3141                         disks_per_row =
3142                                 le16_to_cpu(map_buff->data_disks_per_row);
3143                         for (col = 0; col < disks_per_row; col++, dd++)
3144                                 dev_info(&h->pdev->dev,
3145                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3146                                         col, dd->ioaccel_handle,
3147                                         dd->xor_mult[0], dd->xor_mult[1]);
3148                         disks_per_row =
3149                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3150                         for (col = 0; col < disks_per_row; col++, dd++)
3151                                 dev_info(&h->pdev->dev,
3152                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3153                                         col, dd->ioaccel_handle,
3154                                         dd->xor_mult[0], dd->xor_mult[1]);
3155                 }
3156         }
3157 }
3158 #else
3159 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3160                         __attribute__((unused)) int rc,
3161                         __attribute__((unused)) struct raid_map_data *map_buff)
3162 {
3163 }
3164 #endif
3165
3166 static int hpsa_get_raid_map(struct ctlr_info *h,
3167         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3168 {
3169         int rc = 0;
3170         struct CommandList *c;
3171         struct ErrorInfo *ei;
3172
3173         c = cmd_alloc(h);
3174
3175         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3176                         sizeof(this_device->raid_map), 0,
3177                         scsi3addr, TYPE_CMD)) {
3178                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3179                 cmd_free(h, c);
3180                 return -1;
3181         }
3182         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3183                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3184         if (rc)
3185                 goto out;
3186         ei = c->err_info;
3187         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188                 hpsa_scsi_interpret_error(h, c);
3189                 rc = -1;
3190                 goto out;
3191         }
3192         cmd_free(h, c);
3193
3194         /* @todo in the future, dynamically allocate RAID map memory */
3195         if (le32_to_cpu(this_device->raid_map.structure_size) >
3196                                 sizeof(this_device->raid_map)) {
3197                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3198                 rc = -1;
3199         }
3200         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3201         return rc;
3202 out:
3203         cmd_free(h, c);
3204         return rc;
3205 }
3206
3207 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3208                 unsigned char scsi3addr[], u16 bmic_device_index,
3209                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3210 {
3211         int rc = IO_OK;
3212         struct CommandList *c;
3213         struct ErrorInfo *ei;
3214
3215         c = cmd_alloc(h);
3216
3217         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3218                 0, RAID_CTLR_LUNID, TYPE_CMD);
3219         if (rc)
3220                 goto out;
3221
3222         c->Request.CDB[2] = bmic_device_index & 0xff;
3223         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3224
3225         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3226                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3227         if (rc)
3228                 goto out;
3229         ei = c->err_info;
3230         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3231                 hpsa_scsi_interpret_error(h, c);
3232                 rc = -1;
3233         }
3234 out:
3235         cmd_free(h, c);
3236         return rc;
3237 }
3238
3239 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3240         struct bmic_identify_controller *buf, size_t bufsize)
3241 {
3242         int rc = IO_OK;
3243         struct CommandList *c;
3244         struct ErrorInfo *ei;
3245
3246         c = cmd_alloc(h);
3247
3248         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3249                 0, RAID_CTLR_LUNID, TYPE_CMD);
3250         if (rc)
3251                 goto out;
3252
3253         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3254                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3255         if (rc)
3256                 goto out;
3257         ei = c->err_info;
3258         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259                 hpsa_scsi_interpret_error(h, c);
3260                 rc = -1;
3261         }
3262 out:
3263         cmd_free(h, c);
3264         return rc;
3265 }
3266
3267 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3268                 unsigned char scsi3addr[], u16 bmic_device_index,
3269                 struct bmic_identify_physical_device *buf, size_t bufsize)
3270 {
3271         int rc = IO_OK;
3272         struct CommandList *c;
3273         struct ErrorInfo *ei;
3274
3275         c = cmd_alloc(h);
3276         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3277                 0, RAID_CTLR_LUNID, TYPE_CMD);
3278         if (rc)
3279                 goto out;
3280
3281         c->Request.CDB[2] = bmic_device_index & 0xff;
3282         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3283
3284         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3285                                                 DEFAULT_TIMEOUT);
3286         ei = c->err_info;
3287         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3288                 hpsa_scsi_interpret_error(h, c);
3289                 rc = -1;
3290         }
3291 out:
3292         cmd_free(h, c);
3293
3294         return rc;
3295 }
3296
3297 /*
3298  * get enclosure information
3299  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3300  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3301  * Uses id_physical_device to determine the box_index.
3302  */
3303 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3304                         unsigned char *scsi3addr,
3305                         struct ReportExtendedLUNdata *rlep, int rle_index,
3306                         struct hpsa_scsi_dev_t *encl_dev)
3307 {
3308         int rc = -1;
3309         struct CommandList *c = NULL;
3310         struct ErrorInfo *ei = NULL;
3311         struct bmic_sense_storage_box_params *bssbp = NULL;
3312         struct bmic_identify_physical_device *id_phys = NULL;
3313         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3314         u16 bmic_device_index = 0;
3315
3316         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3317
3318         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3319                 rc = IO_OK;
3320                 goto out;
3321         }
3322
3323         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3324                 rc = IO_OK;
3325                 goto out;
3326         }
3327
3328         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3329         if (!bssbp)
3330                 goto out;
3331
3332         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3333         if (!id_phys)
3334                 goto out;
3335
3336         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3337                                                 id_phys, sizeof(*id_phys));
3338         if (rc) {
3339                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3340                         __func__, encl_dev->external, bmic_device_index);
3341                 goto out;
3342         }
3343
3344         c = cmd_alloc(h);
3345
3346         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3347                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3348
3349         if (rc)
3350                 goto out;
3351
3352         if (id_phys->phys_connector[1] == 'E')
3353                 c->Request.CDB[5] = id_phys->box_index;
3354         else
3355                 c->Request.CDB[5] = 0;
3356
3357         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3358                                                 DEFAULT_TIMEOUT);
3359         if (rc)
3360                 goto out;
3361
3362         ei = c->err_info;
3363         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3364                 rc = -1;
3365                 goto out;
3366         }
3367
3368         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3369         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3370                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3371
3372         rc = IO_OK;
3373 out:
3374         kfree(bssbp);
3375         kfree(id_phys);
3376
3377         if (c)
3378                 cmd_free(h, c);
3379
3380         if (rc != IO_OK)
3381                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3382                         "Error, could not get enclosure information\n");
3383 }
3384
3385 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3386                                                 unsigned char *scsi3addr)
3387 {
3388         struct ReportExtendedLUNdata *physdev;
3389         u32 nphysicals;
3390         u64 sa = 0;
3391         int i;
3392
3393         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3394         if (!physdev)
3395                 return 0;
3396
3397         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3398                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3399                 kfree(physdev);
3400                 return 0;
3401         }
3402         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3403
3404         for (i = 0; i < nphysicals; i++)
3405                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3406                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3407                         break;
3408                 }
3409
3410         kfree(physdev);
3411
3412         return sa;
3413 }
3414
3415 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3416                                         struct hpsa_scsi_dev_t *dev)
3417 {
3418         int rc;
3419         u64 sa = 0;
3420
3421         if (is_hba_lunid(scsi3addr)) {
3422                 struct bmic_sense_subsystem_info *ssi;
3423
3424                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3425                 if (!ssi)
3426                         return;
3427
3428                 rc = hpsa_bmic_sense_subsystem_information(h,
3429                                         scsi3addr, 0, ssi, sizeof(*ssi));
3430                 if (rc == 0) {
3431                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3432                         h->sas_address = sa;
3433                 }
3434
3435                 kfree(ssi);
3436         } else
3437                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3438
3439         dev->sas_address = sa;
3440 }
3441
3442 /* Get a device id from inquiry page 0x83 */
3443 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3444         unsigned char scsi3addr[], u8 page)
3445 {
3446         int rc;
3447         int i;
3448         int pages;
3449         unsigned char *buf, bufsize;
3450
3451         buf = kzalloc(256, GFP_KERNEL);
3452         if (!buf)
3453                 return false;
3454
3455         /* Get the size of the page list first */
3456         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3457                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3458                                 buf, HPSA_VPD_HEADER_SZ);
3459         if (rc != 0)
3460                 goto exit_unsupported;
3461         pages = buf[3];
3462         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3463                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3464         else
3465                 bufsize = 255;
3466
3467         /* Get the whole VPD page list */
3468         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3469                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3470                                 buf, bufsize);
3471         if (rc != 0)
3472                 goto exit_unsupported;
3473
3474         pages = buf[3];
3475         for (i = 1; i <= pages; i++)
3476                 if (buf[3 + i] == page)
3477                         goto exit_supported;
3478 exit_unsupported:
3479         kfree(buf);
3480         return false;
3481 exit_supported:
3482         kfree(buf);
3483         return true;
3484 }
3485
3486 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3487         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3488 {
3489         int rc;
3490         unsigned char *buf;
3491         u8 ioaccel_status;
3492
3493         this_device->offload_config = 0;
3494         this_device->offload_enabled = 0;
3495         this_device->offload_to_be_enabled = 0;
3496
3497         buf = kzalloc(64, GFP_KERNEL);
3498         if (!buf)
3499                 return;
3500         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3501                 goto out;
3502         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3503                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3504         if (rc != 0)
3505                 goto out;
3506
3507 #define IOACCEL_STATUS_BYTE 4
3508 #define OFFLOAD_CONFIGURED_BIT 0x01
3509 #define OFFLOAD_ENABLED_BIT 0x02
3510         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3511         this_device->offload_config =
3512                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3513         if (this_device->offload_config) {
3514                 this_device->offload_enabled =
3515                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3516                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3517                         this_device->offload_enabled = 0;
3518         }
3519         this_device->offload_to_be_enabled = this_device->offload_enabled;
3520 out:
3521         kfree(buf);
3522         return;
3523 }
3524
3525 /* Get the device id from inquiry page 0x83 */
3526 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3527         unsigned char *device_id, int index, int buflen)
3528 {
3529         int rc;
3530         unsigned char *buf;
3531
3532         /* Does controller have VPD for device id? */
3533         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3534                 return 1; /* not supported */
3535
3536         buf = kzalloc(64, GFP_KERNEL);
3537         if (!buf)
3538                 return -ENOMEM;
3539
3540         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3541                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3542         if (rc == 0) {
3543                 if (buflen > 16)
3544                         buflen = 16;
3545                 memcpy(device_id, &buf[8], buflen);
3546         }
3547
3548         kfree(buf);
3549
3550         return rc; /*0 - got id,  otherwise, didn't */
3551 }
3552
3553 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3554                 void *buf, int bufsize,
3555                 int extended_response)
3556 {
3557         int rc = IO_OK;
3558         struct CommandList *c;
3559         unsigned char scsi3addr[8];
3560         struct ErrorInfo *ei;
3561
3562         c = cmd_alloc(h);
3563
3564         /* address the controller */
3565         memset(scsi3addr, 0, sizeof(scsi3addr));
3566         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3567                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3568                 rc = -1;
3569                 goto out;
3570         }
3571         if (extended_response)
3572                 c->Request.CDB[1] = extended_response;
3573         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3574                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3575         if (rc)
3576                 goto out;
3577         ei = c->err_info;
3578         if (ei->CommandStatus != 0 &&
3579             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3580                 hpsa_scsi_interpret_error(h, c);
3581                 rc = -1;
3582         } else {
3583                 struct ReportLUNdata *rld = buf;
3584
3585                 if (rld->extended_response_flag != extended_response) {
3586                         dev_err(&h->pdev->dev,
3587                                 "report luns requested format %u, got %u\n",
3588                                 extended_response,
3589                                 rld->extended_response_flag);
3590                         rc = -1;
3591                 }
3592         }
3593 out:
3594         cmd_free(h, c);
3595         return rc;
3596 }
3597
3598 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3599                 struct ReportExtendedLUNdata *buf, int bufsize)
3600 {
3601         int rc;
3602         struct ReportLUNdata *lbuf;
3603
3604         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3605                                       HPSA_REPORT_PHYS_EXTENDED);
3606         if (!rc || !hpsa_allow_any)
3607                 return rc;
3608
3609         /* REPORT PHYS EXTENDED is not supported */
3610         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3611         if (!lbuf)
3612                 return -ENOMEM;
3613
3614         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3615         if (!rc) {
3616                 int i;
3617                 u32 nphys;
3618
3619                 /* Copy ReportLUNdata header */
3620                 memcpy(buf, lbuf, 8);
3621                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3622                 for (i = 0; i < nphys; i++)
3623                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3624         }
3625         kfree(lbuf);
3626         return rc;
3627 }
3628
3629 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3630                 struct ReportLUNdata *buf, int bufsize)
3631 {
3632         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3633 }
3634
3635 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3636         int bus, int target, int lun)
3637 {
3638         device->bus = bus;
3639         device->target = target;
3640         device->lun = lun;
3641 }
3642
3643 /* Use VPD inquiry to get details of volume status */
3644 static int hpsa_get_volume_status(struct ctlr_info *h,
3645                                         unsigned char scsi3addr[])
3646 {
3647         int rc;
3648         int status;
3649         int size;
3650         unsigned char *buf;
3651
3652         buf = kzalloc(64, GFP_KERNEL);
3653         if (!buf)
3654                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3655
3656         /* Does controller have VPD for logical volume status? */
3657         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3658                 goto exit_failed;
3659
3660         /* Get the size of the VPD return buffer */
3661         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3662                                         buf, HPSA_VPD_HEADER_SZ);
3663         if (rc != 0)
3664                 goto exit_failed;
3665         size = buf[3];
3666
3667         /* Now get the whole VPD buffer */
3668         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3669                                         buf, size + HPSA_VPD_HEADER_SZ);
3670         if (rc != 0)
3671                 goto exit_failed;
3672         status = buf[4]; /* status byte */
3673
3674         kfree(buf);
3675         return status;
3676 exit_failed:
3677         kfree(buf);
3678         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3679 }
3680
3681 /* Determine offline status of a volume.
3682  * Return either:
3683  *  0 (not offline)
3684  *  0xff (offline for unknown reasons)
3685  *  # (integer code indicating one of several NOT READY states
3686  *     describing why a volume is to be kept offline)
3687  */
3688 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3689                                         unsigned char scsi3addr[])
3690 {
3691         struct CommandList *c;
3692         unsigned char *sense;
3693         u8 sense_key, asc, ascq;
3694         int sense_len;
3695         int rc, ldstat = 0;
3696         u16 cmd_status;
3697         u8 scsi_status;
3698 #define ASC_LUN_NOT_READY 0x04
3699 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3700 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3701
3702         c = cmd_alloc(h);
3703
3704         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3705         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3706                                         DEFAULT_TIMEOUT);
3707         if (rc) {
3708                 cmd_free(h, c);
3709                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3710         }
3711         sense = c->err_info->SenseInfo;
3712         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3713                 sense_len = sizeof(c->err_info->SenseInfo);
3714         else
3715                 sense_len = c->err_info->SenseLen;
3716         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3717         cmd_status = c->err_info->CommandStatus;
3718         scsi_status = c->err_info->ScsiStatus;
3719         cmd_free(h, c);
3720
3721         /* Determine the reason for not ready state */
3722         ldstat = hpsa_get_volume_status(h, scsi3addr);
3723
3724         /* Keep volume offline in certain cases: */
3725         switch (ldstat) {
3726         case HPSA_LV_FAILED:
3727         case HPSA_LV_UNDERGOING_ERASE:
3728         case HPSA_LV_NOT_AVAILABLE:
3729         case HPSA_LV_UNDERGOING_RPI:
3730         case HPSA_LV_PENDING_RPI:
3731         case HPSA_LV_ENCRYPTED_NO_KEY:
3732         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3733         case HPSA_LV_UNDERGOING_ENCRYPTION:
3734         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3735         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3736                 return ldstat;
3737         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3738                 /* If VPD status page isn't available,
3739                  * use ASC/ASCQ to determine state
3740                  */
3741                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3742                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3743                         return ldstat;
3744                 break;
3745         default:
3746                 break;
3747         }
3748         return HPSA_LV_OK;
3749 }
3750
3751 static int hpsa_update_device_info(struct ctlr_info *h,
3752         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3753         unsigned char *is_OBDR_device)
3754 {
3755
3756 #define OBDR_SIG_OFFSET 43
3757 #define OBDR_TAPE_SIG "$DR-10"
3758 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3759 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3760
3761         unsigned char *inq_buff;
3762         unsigned char *obdr_sig;
3763         int rc = 0;
3764
3765         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3766         if (!inq_buff) {
3767                 rc = -ENOMEM;
3768                 goto bail_out;
3769         }
3770
3771         /* Do an inquiry to the device to see what it is. */
3772         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3773                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3774                 dev_err(&h->pdev->dev,
3775                         "%s: inquiry failed, device will be skipped.\n",
3776                         __func__);
3777                 rc = HPSA_INQUIRY_FAILED;
3778                 goto bail_out;
3779         }
3780
3781         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3782         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3783
3784         this_device->devtype = (inq_buff[0] & 0x1f);
3785         memcpy(this_device->scsi3addr, scsi3addr, 8);
3786         memcpy(this_device->vendor, &inq_buff[8],
3787                 sizeof(this_device->vendor));
3788         memcpy(this_device->model, &inq_buff[16],
3789                 sizeof(this_device->model));
3790         this_device->rev = inq_buff[2];
3791         memset(this_device->device_id, 0,
3792                 sizeof(this_device->device_id));
3793         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3794                 sizeof(this_device->device_id)))
3795                 dev_err(&h->pdev->dev,
3796                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3797                         h->ctlr, __func__,
3798                         h->scsi_host->host_no,
3799                         this_device->target, this_device->lun,
3800                         scsi_device_type(this_device->devtype),
3801                         this_device->model);
3802
3803         if ((this_device->devtype == TYPE_DISK ||
3804                 this_device->devtype == TYPE_ZBC) &&
3805                 is_logical_dev_addr_mode(scsi3addr)) {
3806                 unsigned char volume_offline;
3807
3808                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3809                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3810                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3811                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3812                 this_device->volume_offline = volume_offline;
3813                 if (volume_offline == HPSA_LV_FAILED) {
3814                         rc = HPSA_LV_FAILED;
3815                         dev_err(&h->pdev->dev,
3816                                 "%s: LV failed, device will be skipped.\n",
3817                                 __func__);
3818                         goto bail_out;
3819                 }
3820         } else {
3821                 this_device->raid_level = RAID_UNKNOWN;
3822                 this_device->offload_config = 0;
3823                 this_device->offload_enabled = 0;
3824                 this_device->offload_to_be_enabled = 0;
3825                 this_device->hba_ioaccel_enabled = 0;
3826                 this_device->volume_offline = 0;
3827                 this_device->queue_depth = h->nr_cmds;
3828         }
3829
3830         if (this_device->external)
3831                 this_device->queue_depth = EXTERNAL_QD;
3832
3833         if (is_OBDR_device) {
3834                 /* See if this is a One-Button-Disaster-Recovery device
3835                  * by looking for "$DR-10" at offset 43 in inquiry data.
3836                  */
3837                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3838                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3839                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3840                                                 OBDR_SIG_LEN) == 0);
3841         }
3842         kfree(inq_buff);
3843         return 0;
3844
3845 bail_out:
3846         kfree(inq_buff);
3847         return rc;
3848 }
3849
3850 /*
3851  * Helper function to assign bus, target, lun mapping of devices.
3852  * Logical drive target and lun are assigned at this time, but
3853  * physical device lun and target assignment are deferred (assigned
3854  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3855 */
3856 static void figure_bus_target_lun(struct ctlr_info *h,
3857         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3858 {
3859         u32 lunid = get_unaligned_le32(lunaddrbytes);
3860
3861         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3862                 /* physical device, target and lun filled in later */
3863                 if (is_hba_lunid(lunaddrbytes)) {
3864                         int bus = HPSA_HBA_BUS;
3865
3866                         if (!device->rev)
3867                                 bus = HPSA_LEGACY_HBA_BUS;
3868                         hpsa_set_bus_target_lun(device,
3869                                         bus, 0, lunid & 0x3fff);
3870                 } else
3871                         /* defer target, lun assignment for physical devices */
3872                         hpsa_set_bus_target_lun(device,
3873                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3874                 return;
3875         }
3876         /* It's a logical device */
3877         if (device->external) {
3878                 hpsa_set_bus_target_lun(device,
3879                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3880                         lunid & 0x00ff);
3881                 return;
3882         }
3883         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3884                                 0, lunid & 0x3fff);
3885 }
3886
3887 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3888         int i, int nphysicals, int nlocal_logicals)
3889 {
3890         /* In report logicals, local logicals are listed first,
3891         * then any externals.
3892         */
3893         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3894
3895         if (i == raid_ctlr_position)
3896                 return 0;
3897
3898         if (i < logicals_start)
3899                 return 0;
3900
3901         /* i is in logicals range, but still within local logicals */
3902         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3903                 return 0;
3904
3905         return 1; /* it's an external lun */
3906 }
3907
3908 /*
3909  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3910  * logdev.  The number of luns in physdev and logdev are returned in
3911  * *nphysicals and *nlogicals, respectively.
3912  * Returns 0 on success, -1 otherwise.
3913  */
3914 static int hpsa_gather_lun_info(struct ctlr_info *h,
3915         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3916         struct ReportLUNdata *logdev, u32 *nlogicals)
3917 {
3918         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3919                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3920                 return -1;
3921         }
3922         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3923         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3924                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3925                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3926                 *nphysicals = HPSA_MAX_PHYS_LUN;
3927         }
3928         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3929                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3930                 return -1;
3931         }
3932         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3933         /* Reject Logicals in excess of our max capability. */
3934         if (*nlogicals > HPSA_MAX_LUN) {
3935                 dev_warn(&h->pdev->dev,
3936                         "maximum logical LUNs (%d) exceeded.  "
3937                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3938                         *nlogicals - HPSA_MAX_LUN);
3939                         *nlogicals = HPSA_MAX_LUN;
3940         }
3941         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3942                 dev_warn(&h->pdev->dev,
3943                         "maximum logical + physical LUNs (%d) exceeded. "
3944                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3945                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3946                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3947         }
3948         return 0;
3949 }
3950
3951 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3952         int i, int nphysicals, int nlogicals,
3953         struct ReportExtendedLUNdata *physdev_list,
3954         struct ReportLUNdata *logdev_list)
3955 {
3956         /* Helper function, figure out where the LUN ID info is coming from
3957          * given index i, lists of physical and logical devices, where in
3958          * the list the raid controller is supposed to appear (first or last)
3959          */
3960
3961         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3962         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3963
3964         if (i == raid_ctlr_position)
3965                 return RAID_CTLR_LUNID;
3966
3967         if (i < logicals_start)
3968                 return &physdev_list->LUN[i -
3969                                 (raid_ctlr_position == 0)].lunid[0];
3970
3971         if (i < last_device)
3972                 return &logdev_list->LUN[i - nphysicals -
3973                         (raid_ctlr_position == 0)][0];
3974         BUG();
3975         return NULL;
3976 }
3977
3978 /* get physical drive ioaccel handle and queue depth */
3979 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3980                 struct hpsa_scsi_dev_t *dev,
3981                 struct ReportExtendedLUNdata *rlep, int rle_index,
3982                 struct bmic_identify_physical_device *id_phys)
3983 {
3984         int rc;
3985         struct ext_report_lun_entry *rle;
3986
3987         rle = &rlep->LUN[rle_index];
3988
3989         dev->ioaccel_handle = rle->ioaccel_handle;
3990         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3991                 dev->hba_ioaccel_enabled = 1;
3992         memset(id_phys, 0, sizeof(*id_phys));
3993         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3994                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3995                         sizeof(*id_phys));
3996         if (!rc)
3997                 /* Reserve space for FW operations */
3998 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3999 #define DRIVE_QUEUE_DEPTH 7
4000                 dev->queue_depth =
4001                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4002                                 DRIVE_CMDS_RESERVED_FOR_FW;
4003         else
4004                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4005 }
4006
4007 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4008         struct ReportExtendedLUNdata *rlep, int rle_index,
4009         struct bmic_identify_physical_device *id_phys)
4010 {
4011         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4012
4013         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4014                 this_device->hba_ioaccel_enabled = 1;
4015
4016         memcpy(&this_device->active_path_index,
4017                 &id_phys->active_path_number,
4018                 sizeof(this_device->active_path_index));
4019         memcpy(&this_device->path_map,
4020                 &id_phys->redundant_path_present_map,
4021                 sizeof(this_device->path_map));
4022         memcpy(&this_device->box,
4023                 &id_phys->alternate_paths_phys_box_on_port,
4024                 sizeof(this_device->box));
4025         memcpy(&this_device->phys_connector,
4026                 &id_phys->alternate_paths_phys_connector,
4027                 sizeof(this_device->phys_connector));
4028         memcpy(&this_device->bay,
4029                 &id_phys->phys_bay_in_box,
4030                 sizeof(this_device->bay));
4031 }
4032
4033 /* get number of local logical disks. */
4034 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4035         struct bmic_identify_controller *id_ctlr,
4036         u32 *nlocals)
4037 {
4038         int rc;
4039
4040         if (!id_ctlr) {
4041                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4042                         __func__);
4043                 return -ENOMEM;
4044         }
4045         memset(id_ctlr, 0, sizeof(*id_ctlr));
4046         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4047         if (!rc)
4048                 if (id_ctlr->configured_logical_drive_count < 256)
4049                         *nlocals = id_ctlr->configured_logical_drive_count;
4050                 else
4051                         *nlocals = le16_to_cpu(
4052                                         id_ctlr->extended_logical_unit_count);
4053         else
4054                 *nlocals = -1;
4055         return rc;
4056 }
4057
4058 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4059 {
4060         struct bmic_identify_physical_device *id_phys;
4061         bool is_spare = false;
4062         int rc;
4063
4064         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4065         if (!id_phys)
4066                 return false;
4067
4068         rc = hpsa_bmic_id_physical_device(h,
4069                                         lunaddrbytes,
4070                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4071                                         id_phys, sizeof(*id_phys));
4072         if (rc == 0)
4073                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4074
4075         kfree(id_phys);
4076         return is_spare;
4077 }
4078
4079 #define RPL_DEV_FLAG_NON_DISK                           0x1
4080 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4081 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4082
4083 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4084
4085 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4086                                 struct ext_report_lun_entry *rle)
4087 {
4088         u8 device_flags;
4089         u8 device_type;
4090
4091         if (!MASKED_DEVICE(lunaddrbytes))
4092                 return false;
4093
4094         device_flags = rle->device_flags;
4095         device_type = rle->device_type;
4096
4097         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4098                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4099                         return false;
4100                 return true;
4101         }
4102
4103         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4104                 return false;
4105
4106         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4107                 return false;
4108
4109         /*
4110          * Spares may be spun down, we do not want to
4111          * do an Inquiry to a RAID set spare drive as
4112          * that would have them spun up, that is a
4113          * performance hit because I/O to the RAID device
4114          * stops while the spin up occurs which can take
4115          * over 50 seconds.
4116          */
4117         if (hpsa_is_disk_spare(h, lunaddrbytes))
4118                 return true;
4119
4120         return false;
4121 }
4122
4123 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4124 {
4125         /* the idea here is we could get notified
4126          * that some devices have changed, so we do a report
4127          * physical luns and report logical luns cmd, and adjust
4128          * our list of devices accordingly.
4129          *
4130          * The scsi3addr's of devices won't change so long as the
4131          * adapter is not reset.  That means we can rescan and
4132          * tell which devices we already know about, vs. new
4133          * devices, vs.  disappearing devices.
4134          */
4135         struct ReportExtendedLUNdata *physdev_list = NULL;
4136         struct ReportLUNdata *logdev_list = NULL;
4137         struct bmic_identify_physical_device *id_phys = NULL;
4138         struct bmic_identify_controller *id_ctlr = NULL;
4139         u32 nphysicals = 0;
4140         u32 nlogicals = 0;
4141         u32 nlocal_logicals = 0;
4142         u32 ndev_allocated = 0;
4143         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4144         int ncurrent = 0;
4145         int i, n_ext_target_devs, ndevs_to_allocate;
4146         int raid_ctlr_position;
4147         bool physical_device;
4148         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4149
4150         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4151         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4152         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4153         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4154         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4155         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4156
4157         if (!currentsd || !physdev_list || !logdev_list ||
4158                 !tmpdevice || !id_phys || !id_ctlr) {
4159                 dev_err(&h->pdev->dev, "out of memory\n");
4160                 goto out;
4161         }
4162         memset(lunzerobits, 0, sizeof(lunzerobits));
4163
4164         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4165
4166         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4167                         logdev_list, &nlogicals)) {
4168                 h->drv_req_rescan = 1;
4169                 goto out;
4170         }
4171
4172         /* Set number of local logicals (non PTRAID) */
4173         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4174                 dev_warn(&h->pdev->dev,
4175                         "%s: Can't determine number of local logical devices.\n",
4176                         __func__);
4177         }
4178
4179         /* We might see up to the maximum number of logical and physical disks
4180          * plus external target devices, and a device for the local RAID
4181          * controller.
4182          */
4183         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4184
4185         /* Allocate the per device structures */
4186         for (i = 0; i < ndevs_to_allocate; i++) {
4187                 if (i >= HPSA_MAX_DEVICES) {
4188                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4189                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4190                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4191                         break;
4192                 }
4193
4194                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4195                 if (!currentsd[i]) {
4196                         h->drv_req_rescan = 1;
4197                         goto out;
4198                 }
4199                 ndev_allocated++;
4200         }
4201
4202         if (is_scsi_rev_5(h))
4203                 raid_ctlr_position = 0;
4204         else
4205                 raid_ctlr_position = nphysicals + nlogicals;
4206
4207         /* adjust our table of devices */
4208         n_ext_target_devs = 0;
4209         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4210                 u8 *lunaddrbytes, is_OBDR = 0;
4211                 int rc = 0;
4212                 int phys_dev_index = i - (raid_ctlr_position == 0);
4213                 bool skip_device = false;
4214
4215                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4216
4217                 /* Figure out where the LUN ID info is coming from */
4218                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4219                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4220
4221                 /* Determine if this is a lun from an external target array */
4222                 tmpdevice->external =
4223                         figure_external_status(h, raid_ctlr_position, i,
4224                                                 nphysicals, nlocal_logicals);
4225
4226                 /*
4227                  * Skip over some devices such as a spare.
4228                  */
4229                 if (!tmpdevice->external && physical_device) {
4230                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4231                                         &physdev_list->LUN[phys_dev_index]);
4232                         if (skip_device)
4233                                 continue;
4234                 }
4235
4236                 /* Get device type, vendor, model, device id */
4237                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4238                                                         &is_OBDR);
4239                 if (rc == -ENOMEM) {
4240                         dev_warn(&h->pdev->dev,
4241                                 "Out of memory, rescan deferred.\n");
4242                         h->drv_req_rescan = 1;
4243                         goto out;
4244                 }
4245                 if (rc) {
4246                         h->drv_req_rescan = 1;
4247                         continue;
4248                 }
4249
4250                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4251                 this_device = currentsd[ncurrent];
4252
4253                 /* Turn on discovery_polling if there are ext target devices.
4254                  * Event-based change notification is unreliable for those.
4255                  */
4256                 if (!h->discovery_polling) {
4257                         if (tmpdevice->external) {
4258                                 h->discovery_polling = 1;
4259                                 dev_info(&h->pdev->dev,
4260                                         "External target, activate discovery polling.\n");
4261                         }
4262                 }
4263
4264
4265                 *this_device = *tmpdevice;
4266                 this_device->physical_device = physical_device;
4267
4268                 /*
4269                  * Expose all devices except for physical devices that
4270                  * are masked.
4271                  */
4272                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4273                         this_device->expose_device = 0;
4274                 else
4275                         this_device->expose_device = 1;
4276
4277
4278                 /*
4279                  * Get the SAS address for physical devices that are exposed.
4280                  */
4281                 if (this_device->physical_device && this_device->expose_device)
4282                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4283
4284                 switch (this_device->devtype) {
4285                 case TYPE_ROM:
4286                         /* We don't *really* support actual CD-ROM devices,
4287                          * just "One Button Disaster Recovery" tape drive
4288                          * which temporarily pretends to be a CD-ROM drive.
4289                          * So we check that the device is really an OBDR tape
4290                          * device by checking for "$DR-10" in bytes 43-48 of
4291                          * the inquiry data.
4292                          */
4293                         if (is_OBDR)
4294                                 ncurrent++;
4295                         break;
4296                 case TYPE_DISK:
4297                 case TYPE_ZBC:
4298                         if (this_device->physical_device) {
4299                                 /* The disk is in HBA mode. */
4300                                 /* Never use RAID mapper in HBA mode. */
4301                                 this_device->offload_enabled = 0;
4302                                 hpsa_get_ioaccel_drive_info(h, this_device,
4303                                         physdev_list, phys_dev_index, id_phys);
4304                                 hpsa_get_path_info(this_device,
4305                                         physdev_list, phys_dev_index, id_phys);
4306                         }
4307                         ncurrent++;
4308                         break;
4309                 case TYPE_TAPE:
4310                 case TYPE_MEDIUM_CHANGER:
4311                         ncurrent++;
4312                         break;
4313                 case TYPE_ENCLOSURE:
4314                         if (!this_device->external)
4315                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4316                                                 physdev_list, phys_dev_index,
4317                                                 this_device);
4318                         ncurrent++;
4319                         break;
4320                 case TYPE_RAID:
4321                         /* Only present the Smartarray HBA as a RAID controller.
4322                          * If it's a RAID controller other than the HBA itself
4323                          * (an external RAID controller, MSA500 or similar)
4324                          * don't present it.
4325                          */
4326                         if (!is_hba_lunid(lunaddrbytes))
4327                                 break;
4328                         ncurrent++;
4329                         break;
4330                 default:
4331                         break;
4332                 }
4333                 if (ncurrent >= HPSA_MAX_DEVICES)
4334                         break;
4335         }
4336
4337         if (h->sas_host == NULL) {
4338                 int rc = 0;
4339
4340                 rc = hpsa_add_sas_host(h);
4341                 if (rc) {
4342                         dev_warn(&h->pdev->dev,
4343                                 "Could not add sas host %d\n", rc);
4344                         goto out;
4345                 }
4346         }
4347
4348         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4349 out:
4350         kfree(tmpdevice);
4351         for (i = 0; i < ndev_allocated; i++)
4352                 kfree(currentsd[i]);
4353         kfree(currentsd);
4354         kfree(physdev_list);
4355         kfree(logdev_list);
4356         kfree(id_ctlr);
4357         kfree(id_phys);
4358 }
4359
4360 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4361                                    struct scatterlist *sg)
4362 {
4363         u64 addr64 = (u64) sg_dma_address(sg);
4364         unsigned int len = sg_dma_len(sg);
4365
4366         desc->Addr = cpu_to_le64(addr64);
4367         desc->Len = cpu_to_le32(len);
4368         desc->Ext = 0;
4369 }
4370
4371 /*
4372  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4373  * dma mapping  and fills in the scatter gather entries of the
4374  * hpsa command, cp.
4375  */
4376 static int hpsa_scatter_gather(struct ctlr_info *h,
4377                 struct CommandList *cp,
4378                 struct scsi_cmnd *cmd)
4379 {
4380         struct scatterlist *sg;
4381         int use_sg, i, sg_limit, chained, last_sg;
4382         struct SGDescriptor *curr_sg;
4383
4384         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4385
4386         use_sg = scsi_dma_map(cmd);
4387         if (use_sg < 0)
4388                 return use_sg;
4389
4390         if (!use_sg)
4391                 goto sglist_finished;
4392
4393         /*
4394          * If the number of entries is greater than the max for a single list,
4395          * then we have a chained list; we will set up all but one entry in the
4396          * first list (the last entry is saved for link information);
4397          * otherwise, we don't have a chained list and we'll set up at each of
4398          * the entries in the one list.
4399          */
4400         curr_sg = cp->SG;
4401         chained = use_sg > h->max_cmd_sg_entries;
4402         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4403         last_sg = scsi_sg_count(cmd) - 1;
4404         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4405                 hpsa_set_sg_descriptor(curr_sg, sg);
4406                 curr_sg++;
4407         }
4408
4409         if (chained) {
4410                 /*
4411                  * Continue with the chained list.  Set curr_sg to the chained
4412                  * list.  Modify the limit to the total count less the entries
4413                  * we've already set up.  Resume the scan at the list entry
4414                  * where the previous loop left off.
4415                  */
4416                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4417                 sg_limit = use_sg - sg_limit;
4418                 for_each_sg(sg, sg, sg_limit, i) {
4419                         hpsa_set_sg_descriptor(curr_sg, sg);
4420                         curr_sg++;
4421                 }
4422         }
4423
4424         /* Back the pointer up to the last entry and mark it as "last". */
4425         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4426
4427         if (use_sg + chained > h->maxSG)
4428                 h->maxSG = use_sg + chained;
4429
4430         if (chained) {
4431                 cp->Header.SGList = h->max_cmd_sg_entries;
4432                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4433                 if (hpsa_map_sg_chain_block(h, cp)) {
4434                         scsi_dma_unmap(cmd);
4435                         return -1;
4436                 }
4437                 return 0;
4438         }
4439
4440 sglist_finished:
4441
4442         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4443         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4444         return 0;
4445 }
4446
4447 #define BUFLEN 128
4448 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4449                                                 u8 *cdb, int cdb_len,
4450                                                 const char *func)
4451 {
4452         char buf[BUFLEN];
4453         int outlen;
4454         int i;
4455
4456         outlen = scnprintf(buf, BUFLEN,
4457                                 "%s: Blocking zero-length request: CDB:", func);
4458         for (i = 0; i < cdb_len; i++)
4459                 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4460                                         "%02hhx", cdb[i]);
4461         dev_warn(&h->pdev->dev, "%s\n", buf);
4462 }
4463
4464 #define IO_ACCEL_INELIGIBLE 1
4465 /* zero-length transfers trigger hardware errors. */
4466 static bool is_zero_length_transfer(u8 *cdb)
4467 {
4468         u32 block_cnt;
4469
4470         /* Block zero-length transfer sizes on certain commands. */
4471         switch (cdb[0]) {
4472         case READ_10:
4473         case WRITE_10:
4474         case VERIFY:            /* 0x2F */
4475         case WRITE_VERIFY:      /* 0x2E */
4476                 block_cnt = get_unaligned_be16(&cdb[7]);
4477                 break;
4478         case READ_12:
4479         case WRITE_12:
4480         case VERIFY_12: /* 0xAF */
4481         case WRITE_VERIFY_12:   /* 0xAE */
4482                 block_cnt = get_unaligned_be32(&cdb[6]);
4483                 break;
4484         case READ_16:
4485         case WRITE_16:
4486         case VERIFY_16:         /* 0x8F */
4487                 block_cnt = get_unaligned_be32(&cdb[10]);
4488                 break;
4489         default:
4490                 return false;
4491         }
4492
4493         return block_cnt == 0;
4494 }
4495
4496 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4497 {
4498         int is_write = 0;
4499         u32 block;
4500         u32 block_cnt;
4501
4502         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4503         switch (cdb[0]) {
4504         case WRITE_6:
4505         case WRITE_12:
4506                 is_write = 1;
4507         case READ_6:
4508         case READ_12:
4509                 if (*cdb_len == 6) {
4510                         block = (((cdb[1] & 0x1F) << 16) |
4511                                 (cdb[2] << 8) |
4512                                 cdb[3]);
4513                         block_cnt = cdb[4];
4514                         if (block_cnt == 0)
4515                                 block_cnt = 256;
4516                 } else {
4517                         BUG_ON(*cdb_len != 12);
4518                         block = get_unaligned_be32(&cdb[2]);
4519                         block_cnt = get_unaligned_be32(&cdb[6]);
4520                 }
4521                 if (block_cnt > 0xffff)
4522                         return IO_ACCEL_INELIGIBLE;
4523
4524                 cdb[0] = is_write ? WRITE_10 : READ_10;
4525                 cdb[1] = 0;
4526                 cdb[2] = (u8) (block >> 24);
4527                 cdb[3] = (u8) (block >> 16);
4528                 cdb[4] = (u8) (block >> 8);
4529                 cdb[5] = (u8) (block);
4530                 cdb[6] = 0;
4531                 cdb[7] = (u8) (block_cnt >> 8);
4532                 cdb[8] = (u8) (block_cnt);
4533                 cdb[9] = 0;
4534                 *cdb_len = 10;
4535                 break;
4536         }
4537         return 0;
4538 }
4539
4540 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4541         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4542         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4543 {
4544         struct scsi_cmnd *cmd = c->scsi_cmd;
4545         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4546         unsigned int len;
4547         unsigned int total_len = 0;
4548         struct scatterlist *sg;
4549         u64 addr64;
4550         int use_sg, i;
4551         struct SGDescriptor *curr_sg;
4552         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4553
4554         /* TODO: implement chaining support */
4555         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4556                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4557                 return IO_ACCEL_INELIGIBLE;
4558         }
4559
4560         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4561
4562         if (is_zero_length_transfer(cdb)) {
4563                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4564                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4565                 return IO_ACCEL_INELIGIBLE;
4566         }
4567
4568         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4569                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4570                 return IO_ACCEL_INELIGIBLE;
4571         }
4572
4573         c->cmd_type = CMD_IOACCEL1;
4574
4575         /* Adjust the DMA address to point to the accelerated command buffer */
4576         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4577                                 (c->cmdindex * sizeof(*cp));
4578         BUG_ON(c->busaddr & 0x0000007F);
4579
4580         use_sg = scsi_dma_map(cmd);
4581         if (use_sg < 0) {
4582                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4583                 return use_sg;
4584         }
4585
4586         if (use_sg) {
4587                 curr_sg = cp->SG;
4588                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4589                         addr64 = (u64) sg_dma_address(sg);
4590                         len  = sg_dma_len(sg);
4591                         total_len += len;
4592                         curr_sg->Addr = cpu_to_le64(addr64);
4593                         curr_sg->Len = cpu_to_le32(len);
4594                         curr_sg->Ext = cpu_to_le32(0);
4595                         curr_sg++;
4596                 }
4597                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4598
4599                 switch (cmd->sc_data_direction) {
4600                 case DMA_TO_DEVICE:
4601                         control |= IOACCEL1_CONTROL_DATA_OUT;
4602                         break;
4603                 case DMA_FROM_DEVICE:
4604                         control |= IOACCEL1_CONTROL_DATA_IN;
4605                         break;
4606                 case DMA_NONE:
4607                         control |= IOACCEL1_CONTROL_NODATAXFER;
4608                         break;
4609                 default:
4610                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4611                         cmd->sc_data_direction);
4612                         BUG();
4613                         break;
4614                 }
4615         } else {
4616                 control |= IOACCEL1_CONTROL_NODATAXFER;
4617         }
4618
4619         c->Header.SGList = use_sg;
4620         /* Fill out the command structure to submit */
4621         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4622         cp->transfer_len = cpu_to_le32(total_len);
4623         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4624                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4625         cp->control = cpu_to_le32(control);
4626         memcpy(cp->CDB, cdb, cdb_len);
4627         memcpy(cp->CISS_LUN, scsi3addr, 8);
4628         /* Tag was already set at init time. */
4629         enqueue_cmd_and_start_io(h, c);
4630         return 0;
4631 }
4632
4633 /*
4634  * Queue a command directly to a device behind the controller using the
4635  * I/O accelerator path.
4636  */
4637 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4638         struct CommandList *c)
4639 {
4640         struct scsi_cmnd *cmd = c->scsi_cmd;
4641         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4642
4643         if (!dev)
4644                 return -1;
4645
4646         c->phys_disk = dev;
4647
4648         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4649                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4650 }
4651
4652 /*
4653  * Set encryption parameters for the ioaccel2 request
4654  */
4655 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4656         struct CommandList *c, struct io_accel2_cmd *cp)
4657 {
4658         struct scsi_cmnd *cmd = c->scsi_cmd;
4659         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4660         struct raid_map_data *map = &dev->raid_map;
4661         u64 first_block;
4662
4663         /* Are we doing encryption on this device */
4664         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4665                 return;
4666         /* Set the data encryption key index. */
4667         cp->dekindex = map->dekindex;
4668
4669         /* Set the encryption enable flag, encoded into direction field. */
4670         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4671
4672         /* Set encryption tweak values based on logical block address
4673          * If block size is 512, tweak value is LBA.
4674          * For other block sizes, tweak is (LBA * block size)/ 512)
4675          */
4676         switch (cmd->cmnd[0]) {
4677         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4678         case READ_6:
4679         case WRITE_6:
4680                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4681                                 (cmd->cmnd[2] << 8) |
4682                                 cmd->cmnd[3]);
4683                 break;
4684         case WRITE_10:
4685         case READ_10:
4686         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4687         case WRITE_12:
4688         case READ_12:
4689                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4690                 break;
4691         case WRITE_16:
4692         case READ_16:
4693                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4694                 break;
4695         default:
4696                 dev_err(&h->pdev->dev,
4697                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4698                         __func__, cmd->cmnd[0]);
4699                 BUG();
4700                 break;
4701         }
4702
4703         if (le32_to_cpu(map->volume_blk_size) != 512)
4704                 first_block = first_block *
4705                                 le32_to_cpu(map->volume_blk_size)/512;
4706
4707         cp->tweak_lower = cpu_to_le32(first_block);
4708         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4709 }
4710
4711 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4712         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4713         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4714 {
4715         struct scsi_cmnd *cmd = c->scsi_cmd;
4716         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4717         struct ioaccel2_sg_element *curr_sg;
4718         int use_sg, i;
4719         struct scatterlist *sg;
4720         u64 addr64;
4721         u32 len;
4722         u32 total_len = 0;
4723
4724         if (!cmd->device)
4725                 return -1;
4726
4727         if (!cmd->device->hostdata)
4728                 return -1;
4729
4730         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4731
4732         if (is_zero_length_transfer(cdb)) {
4733                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4734                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4735                 return IO_ACCEL_INELIGIBLE;
4736         }
4737
4738         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4739                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                 return IO_ACCEL_INELIGIBLE;
4741         }
4742
4743         c->cmd_type = CMD_IOACCEL2;
4744         /* Adjust the DMA address to point to the accelerated command buffer */
4745         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4746                                 (c->cmdindex * sizeof(*cp));
4747         BUG_ON(c->busaddr & 0x0000007F);
4748
4749         memset(cp, 0, sizeof(*cp));
4750         cp->IU_type = IOACCEL2_IU_TYPE;
4751
4752         use_sg = scsi_dma_map(cmd);
4753         if (use_sg < 0) {
4754                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4755                 return use_sg;
4756         }
4757
4758         if (use_sg) {
4759                 curr_sg = cp->sg;
4760                 if (use_sg > h->ioaccel_maxsg) {
4761                         addr64 = le64_to_cpu(
4762                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4763                         curr_sg->address = cpu_to_le64(addr64);
4764                         curr_sg->length = 0;
4765                         curr_sg->reserved[0] = 0;
4766                         curr_sg->reserved[1] = 0;
4767                         curr_sg->reserved[2] = 0;
4768                         curr_sg->chain_indicator = 0x80;
4769
4770                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4771                 }
4772                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4773                         addr64 = (u64) sg_dma_address(sg);
4774                         len  = sg_dma_len(sg);
4775                         total_len += len;
4776                         curr_sg->address = cpu_to_le64(addr64);
4777                         curr_sg->length = cpu_to_le32(len);
4778                         curr_sg->reserved[0] = 0;
4779                         curr_sg->reserved[1] = 0;
4780                         curr_sg->reserved[2] = 0;
4781                         curr_sg->chain_indicator = 0;
4782                         curr_sg++;
4783                 }
4784
4785                 switch (cmd->sc_data_direction) {
4786                 case DMA_TO_DEVICE:
4787                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4788                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4789                         break;
4790                 case DMA_FROM_DEVICE:
4791                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4792                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4793                         break;
4794                 case DMA_NONE:
4795                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4796                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4797                         break;
4798                 default:
4799                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800                                 cmd->sc_data_direction);
4801                         BUG();
4802                         break;
4803                 }
4804         } else {
4805                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4806                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4807         }
4808
4809         /* Set encryption parameters, if necessary */
4810         set_encrypt_ioaccel2(h, c, cp);
4811
4812         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4813         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4814         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4815
4816         cp->data_len = cpu_to_le32(total_len);
4817         cp->err_ptr = cpu_to_le64(c->busaddr +
4818                         offsetof(struct io_accel2_cmd, error_data));
4819         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4820
4821         /* fill in sg elements */
4822         if (use_sg > h->ioaccel_maxsg) {
4823                 cp->sg_count = 1;
4824                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4825                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4826                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4827                         scsi_dma_unmap(cmd);
4828                         return -1;
4829                 }
4830         } else
4831                 cp->sg_count = (u8) use_sg;
4832
4833         enqueue_cmd_and_start_io(h, c);
4834         return 0;
4835 }
4836
4837 /*
4838  * Queue a command to the correct I/O accelerator path.
4839  */
4840 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4841         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4842         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4843 {
4844         if (!c->scsi_cmd->device)
4845                 return -1;
4846
4847         if (!c->scsi_cmd->device->hostdata)
4848                 return -1;
4849
4850         /* Try to honor the device's queue depth */
4851         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4852                                         phys_disk->queue_depth) {
4853                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4854                 return IO_ACCEL_INELIGIBLE;
4855         }
4856         if (h->transMethod & CFGTBL_Trans_io_accel1)
4857                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4858                                                 cdb, cdb_len, scsi3addr,
4859                                                 phys_disk);
4860         else
4861                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4862                                                 cdb, cdb_len, scsi3addr,
4863                                                 phys_disk);
4864 }
4865
4866 static void raid_map_helper(struct raid_map_data *map,
4867                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4868 {
4869         if (offload_to_mirror == 0)  {
4870                 /* use physical disk in the first mirrored group. */
4871                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4872                 return;
4873         }
4874         do {
4875                 /* determine mirror group that *map_index indicates */
4876                 *current_group = *map_index /
4877                         le16_to_cpu(map->data_disks_per_row);
4878                 if (offload_to_mirror == *current_group)
4879                         continue;
4880                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4881                         /* select map index from next group */
4882                         *map_index += le16_to_cpu(map->data_disks_per_row);
4883                         (*current_group)++;
4884                 } else {
4885                         /* select map index from first group */
4886                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4887                         *current_group = 0;
4888                 }
4889         } while (offload_to_mirror != *current_group);
4890 }
4891
4892 /*
4893  * Attempt to perform offload RAID mapping for a logical volume I/O.
4894  */
4895 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4896         struct CommandList *c)
4897 {
4898         struct scsi_cmnd *cmd = c->scsi_cmd;
4899         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4900         struct raid_map_data *map = &dev->raid_map;
4901         struct raid_map_disk_data *dd = &map->data[0];
4902         int is_write = 0;
4903         u32 map_index;
4904         u64 first_block, last_block;
4905         u32 block_cnt;
4906         u32 blocks_per_row;
4907         u64 first_row, last_row;
4908         u32 first_row_offset, last_row_offset;
4909         u32 first_column, last_column;
4910         u64 r0_first_row, r0_last_row;
4911         u32 r5or6_blocks_per_row;
4912         u64 r5or6_first_row, r5or6_last_row;
4913         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4914         u32 r5or6_first_column, r5or6_last_column;
4915         u32 total_disks_per_row;
4916         u32 stripesize;
4917         u32 first_group, last_group, current_group;
4918         u32 map_row;
4919         u32 disk_handle;
4920         u64 disk_block;
4921         u32 disk_block_cnt;
4922         u8 cdb[16];
4923         u8 cdb_len;
4924         u16 strip_size;
4925 #if BITS_PER_LONG == 32
4926         u64 tmpdiv;
4927 #endif
4928         int offload_to_mirror;
4929
4930         if (!dev)
4931                 return -1;
4932
4933         /* check for valid opcode, get LBA and block count */
4934         switch (cmd->cmnd[0]) {
4935         case WRITE_6:
4936                 is_write = 1;
4937         case READ_6:
4938                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4939                                 (cmd->cmnd[2] << 8) |
4940                                 cmd->cmnd[3]);
4941                 block_cnt = cmd->cmnd[4];
4942                 if (block_cnt == 0)
4943                         block_cnt = 256;
4944                 break;
4945         case WRITE_10:
4946                 is_write = 1;
4947         case READ_10:
4948                 first_block =
4949                         (((u64) cmd->cmnd[2]) << 24) |
4950                         (((u64) cmd->cmnd[3]) << 16) |
4951                         (((u64) cmd->cmnd[4]) << 8) |
4952                         cmd->cmnd[5];
4953                 block_cnt =
4954                         (((u32) cmd->cmnd[7]) << 8) |
4955                         cmd->cmnd[8];
4956                 break;
4957         case WRITE_12:
4958                 is_write = 1;
4959         case READ_12:
4960                 first_block =
4961                         (((u64) cmd->cmnd[2]) << 24) |
4962                         (((u64) cmd->cmnd[3]) << 16) |
4963                         (((u64) cmd->cmnd[4]) << 8) |
4964                         cmd->cmnd[5];
4965                 block_cnt =
4966                         (((u32) cmd->cmnd[6]) << 24) |
4967                         (((u32) cmd->cmnd[7]) << 16) |
4968                         (((u32) cmd->cmnd[8]) << 8) |
4969                 cmd->cmnd[9];
4970                 break;
4971         case WRITE_16:
4972                 is_write = 1;
4973         case READ_16:
4974                 first_block =
4975                         (((u64) cmd->cmnd[2]) << 56) |
4976                         (((u64) cmd->cmnd[3]) << 48) |
4977                         (((u64) cmd->cmnd[4]) << 40) |
4978                         (((u64) cmd->cmnd[5]) << 32) |
4979                         (((u64) cmd->cmnd[6]) << 24) |
4980                         (((u64) cmd->cmnd[7]) << 16) |
4981                         (((u64) cmd->cmnd[8]) << 8) |
4982                         cmd->cmnd[9];
4983                 block_cnt =
4984                         (((u32) cmd->cmnd[10]) << 24) |
4985                         (((u32) cmd->cmnd[11]) << 16) |
4986                         (((u32) cmd->cmnd[12]) << 8) |
4987                         cmd->cmnd[13];
4988                 break;
4989         default:
4990                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4991         }
4992         last_block = first_block + block_cnt - 1;
4993
4994         /* check for write to non-RAID-0 */
4995         if (is_write && dev->raid_level != 0)
4996                 return IO_ACCEL_INELIGIBLE;
4997
4998         /* check for invalid block or wraparound */
4999         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5000                 last_block < first_block)
5001                 return IO_ACCEL_INELIGIBLE;
5002
5003         /* calculate stripe information for the request */
5004         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5005                                 le16_to_cpu(map->strip_size);
5006         strip_size = le16_to_cpu(map->strip_size);
5007 #if BITS_PER_LONG == 32
5008         tmpdiv = first_block;
5009         (void) do_div(tmpdiv, blocks_per_row);
5010         first_row = tmpdiv;
5011         tmpdiv = last_block;
5012         (void) do_div(tmpdiv, blocks_per_row);
5013         last_row = tmpdiv;
5014         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5015         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5016         tmpdiv = first_row_offset;
5017         (void) do_div(tmpdiv, strip_size);
5018         first_column = tmpdiv;
5019         tmpdiv = last_row_offset;
5020         (void) do_div(tmpdiv, strip_size);
5021         last_column = tmpdiv;
5022 #else
5023         first_row = first_block / blocks_per_row;
5024         last_row = last_block / blocks_per_row;
5025         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5026         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5027         first_column = first_row_offset / strip_size;
5028         last_column = last_row_offset / strip_size;
5029 #endif
5030
5031         /* if this isn't a single row/column then give to the controller */
5032         if ((first_row != last_row) || (first_column != last_column))
5033                 return IO_ACCEL_INELIGIBLE;
5034
5035         /* proceeding with driver mapping */
5036         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5037                                 le16_to_cpu(map->metadata_disks_per_row);
5038         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5039                                 le16_to_cpu(map->row_cnt);
5040         map_index = (map_row * total_disks_per_row) + first_column;
5041
5042         switch (dev->raid_level) {
5043         case HPSA_RAID_0:
5044                 break; /* nothing special to do */
5045         case HPSA_RAID_1:
5046                 /* Handles load balance across RAID 1 members.
5047                  * (2-drive R1 and R10 with even # of drives.)
5048                  * Appropriate for SSDs, not optimal for HDDs
5049                  */
5050                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5051                 if (dev->offload_to_mirror)
5052                         map_index += le16_to_cpu(map->data_disks_per_row);
5053                 dev->offload_to_mirror = !dev->offload_to_mirror;
5054                 break;
5055         case HPSA_RAID_ADM:
5056                 /* Handles N-way mirrors  (R1-ADM)
5057                  * and R10 with # of drives divisible by 3.)
5058                  */
5059                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5060
5061                 offload_to_mirror = dev->offload_to_mirror;
5062                 raid_map_helper(map, offload_to_mirror,
5063                                 &map_index, &current_group);
5064                 /* set mirror group to use next time */
5065                 offload_to_mirror =
5066                         (offload_to_mirror >=
5067                         le16_to_cpu(map->layout_map_count) - 1)
5068                         ? 0 : offload_to_mirror + 1;
5069                 dev->offload_to_mirror = offload_to_mirror;
5070                 /* Avoid direct use of dev->offload_to_mirror within this
5071                  * function since multiple threads might simultaneously
5072                  * increment it beyond the range of dev->layout_map_count -1.
5073                  */
5074                 break;
5075         case HPSA_RAID_5:
5076         case HPSA_RAID_6:
5077                 if (le16_to_cpu(map->layout_map_count) <= 1)
5078                         break;
5079
5080                 /* Verify first and last block are in same RAID group */
5081                 r5or6_blocks_per_row =
5082                         le16_to_cpu(map->strip_size) *
5083                         le16_to_cpu(map->data_disks_per_row);
5084                 BUG_ON(r5or6_blocks_per_row == 0);
5085                 stripesize = r5or6_blocks_per_row *
5086                         le16_to_cpu(map->layout_map_count);
5087 #if BITS_PER_LONG == 32
5088                 tmpdiv = first_block;
5089                 first_group = do_div(tmpdiv, stripesize);
5090                 tmpdiv = first_group;
5091                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5092                 first_group = tmpdiv;
5093                 tmpdiv = last_block;
5094                 last_group = do_div(tmpdiv, stripesize);
5095                 tmpdiv = last_group;
5096                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5097                 last_group = tmpdiv;
5098 #else
5099                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5100                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5101 #endif
5102                 if (first_group != last_group)
5103                         return IO_ACCEL_INELIGIBLE;
5104
5105                 /* Verify request is in a single row of RAID 5/6 */
5106 #if BITS_PER_LONG == 32
5107                 tmpdiv = first_block;
5108                 (void) do_div(tmpdiv, stripesize);
5109                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5110                 tmpdiv = last_block;
5111                 (void) do_div(tmpdiv, stripesize);
5112                 r5or6_last_row = r0_last_row = tmpdiv;
5113 #else
5114                 first_row = r5or6_first_row = r0_first_row =
5115                                                 first_block / stripesize;
5116                 r5or6_last_row = r0_last_row = last_block / stripesize;
5117 #endif
5118                 if (r5or6_first_row != r5or6_last_row)
5119                         return IO_ACCEL_INELIGIBLE;
5120
5121
5122                 /* Verify request is in a single column */
5123 #if BITS_PER_LONG == 32
5124                 tmpdiv = first_block;
5125                 first_row_offset = do_div(tmpdiv, stripesize);
5126                 tmpdiv = first_row_offset;
5127                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5128                 r5or6_first_row_offset = first_row_offset;
5129                 tmpdiv = last_block;
5130                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5131                 tmpdiv = r5or6_last_row_offset;
5132                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5133                 tmpdiv = r5or6_first_row_offset;
5134                 (void) do_div(tmpdiv, map->strip_size);
5135                 first_column = r5or6_first_column = tmpdiv;
5136                 tmpdiv = r5or6_last_row_offset;
5137                 (void) do_div(tmpdiv, map->strip_size);
5138                 r5or6_last_column = tmpdiv;
5139 #else
5140                 first_row_offset = r5or6_first_row_offset =
5141                         (u32)((first_block % stripesize) %
5142                                                 r5or6_blocks_per_row);
5143
5144                 r5or6_last_row_offset =
5145                         (u32)((last_block % stripesize) %
5146                                                 r5or6_blocks_per_row);
5147
5148                 first_column = r5or6_first_column =
5149                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5150                 r5or6_last_column =
5151                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5152 #endif
5153                 if (r5or6_first_column != r5or6_last_column)
5154                         return IO_ACCEL_INELIGIBLE;
5155
5156                 /* Request is eligible */
5157                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5158                         le16_to_cpu(map->row_cnt);
5159
5160                 map_index = (first_group *
5161                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5162                         (map_row * total_disks_per_row) + first_column;
5163                 break;
5164         default:
5165                 return IO_ACCEL_INELIGIBLE;
5166         }
5167
5168         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5169                 return IO_ACCEL_INELIGIBLE;
5170
5171         c->phys_disk = dev->phys_disk[map_index];
5172         if (!c->phys_disk)
5173                 return IO_ACCEL_INELIGIBLE;
5174
5175         disk_handle = dd[map_index].ioaccel_handle;
5176         disk_block = le64_to_cpu(map->disk_starting_blk) +
5177                         first_row * le16_to_cpu(map->strip_size) +
5178                         (first_row_offset - first_column *
5179                         le16_to_cpu(map->strip_size));
5180         disk_block_cnt = block_cnt;
5181
5182         /* handle differing logical/physical block sizes */
5183         if (map->phys_blk_shift) {
5184                 disk_block <<= map->phys_blk_shift;
5185                 disk_block_cnt <<= map->phys_blk_shift;
5186         }
5187         BUG_ON(disk_block_cnt > 0xffff);
5188
5189         /* build the new CDB for the physical disk I/O */
5190         if (disk_block > 0xffffffff) {
5191                 cdb[0] = is_write ? WRITE_16 : READ_16;
5192                 cdb[1] = 0;
5193                 cdb[2] = (u8) (disk_block >> 56);
5194                 cdb[3] = (u8) (disk_block >> 48);
5195                 cdb[4] = (u8) (disk_block >> 40);
5196                 cdb[5] = (u8) (disk_block >> 32);
5197                 cdb[6] = (u8) (disk_block >> 24);
5198                 cdb[7] = (u8) (disk_block >> 16);
5199                 cdb[8] = (u8) (disk_block >> 8);
5200                 cdb[9] = (u8) (disk_block);
5201                 cdb[10] = (u8) (disk_block_cnt >> 24);
5202                 cdb[11] = (u8) (disk_block_cnt >> 16);
5203                 cdb[12] = (u8) (disk_block_cnt >> 8);
5204                 cdb[13] = (u8) (disk_block_cnt);
5205                 cdb[14] = 0;
5206                 cdb[15] = 0;
5207                 cdb_len = 16;
5208         } else {
5209                 cdb[0] = is_write ? WRITE_10 : READ_10;
5210                 cdb[1] = 0;
5211                 cdb[2] = (u8) (disk_block >> 24);
5212                 cdb[3] = (u8) (disk_block >> 16);
5213                 cdb[4] = (u8) (disk_block >> 8);
5214                 cdb[5] = (u8) (disk_block);
5215                 cdb[6] = 0;
5216                 cdb[7] = (u8) (disk_block_cnt >> 8);
5217                 cdb[8] = (u8) (disk_block_cnt);
5218                 cdb[9] = 0;
5219                 cdb_len = 10;
5220         }
5221         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5222                                                 dev->scsi3addr,
5223                                                 dev->phys_disk[map_index]);
5224 }
5225
5226 /*
5227  * Submit commands down the "normal" RAID stack path
5228  * All callers to hpsa_ciss_submit must check lockup_detected
5229  * beforehand, before (opt.) and after calling cmd_alloc
5230  */
5231 static int hpsa_ciss_submit(struct ctlr_info *h,
5232         struct CommandList *c, struct scsi_cmnd *cmd,
5233         unsigned char scsi3addr[])
5234 {
5235         cmd->host_scribble = (unsigned char *) c;
5236         c->cmd_type = CMD_SCSI;
5237         c->scsi_cmd = cmd;
5238         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5239         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5240         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5241
5242         /* Fill in the request block... */
5243
5244         c->Request.Timeout = 0;
5245         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5246         c->Request.CDBLen = cmd->cmd_len;
5247         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5248         switch (cmd->sc_data_direction) {
5249         case DMA_TO_DEVICE:
5250                 c->Request.type_attr_dir =
5251                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5252                 break;
5253         case DMA_FROM_DEVICE:
5254                 c->Request.type_attr_dir =
5255                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5256                 break;
5257         case DMA_NONE:
5258                 c->Request.type_attr_dir =
5259                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5260                 break;
5261         case DMA_BIDIRECTIONAL:
5262                 /* This can happen if a buggy application does a scsi passthru
5263                  * and sets both inlen and outlen to non-zero. ( see
5264                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5265                  */
5266
5267                 c->Request.type_attr_dir =
5268                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5269                 /* This is technically wrong, and hpsa controllers should
5270                  * reject it with CMD_INVALID, which is the most correct
5271                  * response, but non-fibre backends appear to let it
5272                  * slide by, and give the same results as if this field
5273                  * were set correctly.  Either way is acceptable for
5274                  * our purposes here.
5275                  */
5276
5277                 break;
5278
5279         default:
5280                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5281                         cmd->sc_data_direction);
5282                 BUG();
5283                 break;
5284         }
5285
5286         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5287                 hpsa_cmd_resolve_and_free(h, c);
5288                 return SCSI_MLQUEUE_HOST_BUSY;
5289         }
5290         enqueue_cmd_and_start_io(h, c);
5291         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5292         return 0;
5293 }
5294
5295 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5296                                 struct CommandList *c)
5297 {
5298         dma_addr_t cmd_dma_handle, err_dma_handle;
5299
5300         /* Zero out all of commandlist except the last field, refcount */
5301         memset(c, 0, offsetof(struct CommandList, refcount));
5302         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5303         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5304         c->err_info = h->errinfo_pool + index;
5305         memset(c->err_info, 0, sizeof(*c->err_info));
5306         err_dma_handle = h->errinfo_pool_dhandle
5307             + index * sizeof(*c->err_info);
5308         c->cmdindex = index;
5309         c->busaddr = (u32) cmd_dma_handle;
5310         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5311         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5312         c->h = h;
5313         c->scsi_cmd = SCSI_CMD_IDLE;
5314 }
5315
5316 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5317 {
5318         int i;
5319
5320         for (i = 0; i < h->nr_cmds; i++) {
5321                 struct CommandList *c = h->cmd_pool + i;
5322
5323                 hpsa_cmd_init(h, i, c);
5324                 atomic_set(&c->refcount, 0);
5325         }
5326 }
5327
5328 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5329                                 struct CommandList *c)
5330 {
5331         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5332
5333         BUG_ON(c->cmdindex != index);
5334
5335         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5336         memset(c->err_info, 0, sizeof(*c->err_info));
5337         c->busaddr = (u32) cmd_dma_handle;
5338 }
5339
5340 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5341                 struct CommandList *c, struct scsi_cmnd *cmd,
5342                 unsigned char *scsi3addr)
5343 {
5344         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5345         int rc = IO_ACCEL_INELIGIBLE;
5346
5347         if (!dev)
5348                 return SCSI_MLQUEUE_HOST_BUSY;
5349
5350         cmd->host_scribble = (unsigned char *) c;
5351
5352         if (dev->offload_enabled) {
5353                 hpsa_cmd_init(h, c->cmdindex, c);
5354                 c->cmd_type = CMD_SCSI;
5355                 c->scsi_cmd = cmd;
5356                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5357                 if (rc < 0)     /* scsi_dma_map failed. */
5358                         rc = SCSI_MLQUEUE_HOST_BUSY;
5359         } else if (dev->hba_ioaccel_enabled) {
5360                 hpsa_cmd_init(h, c->cmdindex, c);
5361                 c->cmd_type = CMD_SCSI;
5362                 c->scsi_cmd = cmd;
5363                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5364                 if (rc < 0)     /* scsi_dma_map failed. */
5365                         rc = SCSI_MLQUEUE_HOST_BUSY;
5366         }
5367         return rc;
5368 }
5369
5370 static void hpsa_command_resubmit_worker(struct work_struct *work)
5371 {
5372         struct scsi_cmnd *cmd;
5373         struct hpsa_scsi_dev_t *dev;
5374         struct CommandList *c = container_of(work, struct CommandList, work);
5375
5376         cmd = c->scsi_cmd;
5377         dev = cmd->device->hostdata;
5378         if (!dev) {
5379                 cmd->result = DID_NO_CONNECT << 16;
5380                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5381         }
5382         if (c->reset_pending)
5383                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5384         if (c->cmd_type == CMD_IOACCEL2) {
5385                 struct ctlr_info *h = c->h;
5386                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5387                 int rc;
5388
5389                 if (c2->error_data.serv_response ==
5390                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5391                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5392                         if (rc == 0)
5393                                 return;
5394                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5395                                 /*
5396                                  * If we get here, it means dma mapping failed.
5397                                  * Try again via scsi mid layer, which will
5398                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5399                                  */
5400                                 cmd->result = DID_IMM_RETRY << 16;
5401                                 return hpsa_cmd_free_and_done(h, c, cmd);
5402                         }
5403                         /* else, fall thru and resubmit down CISS path */
5404                 }
5405         }
5406         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5407         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5408                 /*
5409                  * If we get here, it means dma mapping failed. Try
5410                  * again via scsi mid layer, which will then get
5411                  * SCSI_MLQUEUE_HOST_BUSY.
5412                  *
5413                  * hpsa_ciss_submit will have already freed c
5414                  * if it encountered a dma mapping failure.
5415                  */
5416                 cmd->result = DID_IMM_RETRY << 16;
5417                 cmd->scsi_done(cmd);
5418         }
5419 }
5420
5421 /* Running in struct Scsi_Host->host_lock less mode */
5422 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5423 {
5424         struct ctlr_info *h;
5425         struct hpsa_scsi_dev_t *dev;
5426         unsigned char scsi3addr[8];
5427         struct CommandList *c;
5428         int rc = 0;
5429
5430         /* Get the ptr to our adapter structure out of cmd->host. */
5431         h = sdev_to_hba(cmd->device);
5432
5433         BUG_ON(cmd->request->tag < 0);
5434
5435         dev = cmd->device->hostdata;
5436         if (!dev) {
5437                 cmd->result = DID_NO_CONNECT << 16;
5438                 cmd->scsi_done(cmd);
5439                 return 0;
5440         }
5441
5442         if (dev->removed) {
5443                 cmd->result = DID_NO_CONNECT << 16;
5444                 cmd->scsi_done(cmd);
5445                 return 0;
5446         }
5447
5448         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5449
5450         if (unlikely(lockup_detected(h))) {
5451                 cmd->result = DID_NO_CONNECT << 16;
5452                 cmd->scsi_done(cmd);
5453                 return 0;
5454         }
5455         c = cmd_tagged_alloc(h, cmd);
5456
5457         /*
5458          * Call alternate submit routine for I/O accelerated commands.
5459          * Retries always go down the normal I/O path.
5460          */
5461         if (likely(cmd->retries == 0 &&
5462                         !blk_rq_is_passthrough(cmd->request) &&
5463                         h->acciopath_status)) {
5464                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5465                 if (rc == 0)
5466                         return 0;
5467                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5468                         hpsa_cmd_resolve_and_free(h, c);
5469                         return SCSI_MLQUEUE_HOST_BUSY;
5470                 }
5471         }
5472         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5473 }
5474
5475 static void hpsa_scan_complete(struct ctlr_info *h)
5476 {
5477         unsigned long flags;
5478
5479         spin_lock_irqsave(&h->scan_lock, flags);
5480         h->scan_finished = 1;
5481         wake_up(&h->scan_wait_queue);
5482         spin_unlock_irqrestore(&h->scan_lock, flags);
5483 }
5484
5485 static void hpsa_scan_start(struct Scsi_Host *sh)
5486 {
5487         struct ctlr_info *h = shost_to_hba(sh);
5488         unsigned long flags;
5489
5490         /*
5491          * Don't let rescans be initiated on a controller known to be locked
5492          * up.  If the controller locks up *during* a rescan, that thread is
5493          * probably hosed, but at least we can prevent new rescan threads from
5494          * piling up on a locked up controller.
5495          */
5496         if (unlikely(lockup_detected(h)))
5497                 return hpsa_scan_complete(h);
5498
5499         /*
5500          * If a scan is already waiting to run, no need to add another
5501          */
5502         spin_lock_irqsave(&h->scan_lock, flags);
5503         if (h->scan_waiting) {
5504                 spin_unlock_irqrestore(&h->scan_lock, flags);
5505                 return;
5506         }
5507
5508         spin_unlock_irqrestore(&h->scan_lock, flags);
5509
5510         /* wait until any scan already in progress is finished. */
5511         while (1) {
5512                 spin_lock_irqsave(&h->scan_lock, flags);
5513                 if (h->scan_finished)
5514                         break;
5515                 h->scan_waiting = 1;
5516                 spin_unlock_irqrestore(&h->scan_lock, flags);
5517                 wait_event(h->scan_wait_queue, h->scan_finished);
5518                 /* Note: We don't need to worry about a race between this
5519                  * thread and driver unload because the midlayer will
5520                  * have incremented the reference count, so unload won't
5521                  * happen if we're in here.
5522                  */
5523         }
5524         h->scan_finished = 0; /* mark scan as in progress */
5525         h->scan_waiting = 0;
5526         spin_unlock_irqrestore(&h->scan_lock, flags);
5527
5528         if (unlikely(lockup_detected(h)))
5529                 return hpsa_scan_complete(h);
5530
5531         /*
5532          * Do the scan after a reset completion
5533          */
5534         spin_lock_irqsave(&h->reset_lock, flags);
5535         if (h->reset_in_progress) {
5536                 h->drv_req_rescan = 1;
5537                 spin_unlock_irqrestore(&h->reset_lock, flags);
5538                 hpsa_scan_complete(h);
5539                 return;
5540         }
5541         spin_unlock_irqrestore(&h->reset_lock, flags);
5542
5543         hpsa_update_scsi_devices(h);
5544
5545         hpsa_scan_complete(h);
5546 }
5547
5548 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5549 {
5550         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5551
5552         if (!logical_drive)
5553                 return -ENODEV;
5554
5555         if (qdepth < 1)
5556                 qdepth = 1;
5557         else if (qdepth > logical_drive->queue_depth)
5558                 qdepth = logical_drive->queue_depth;
5559
5560         return scsi_change_queue_depth(sdev, qdepth);
5561 }
5562
5563 static int hpsa_scan_finished(struct Scsi_Host *sh,
5564         unsigned long elapsed_time)
5565 {
5566         struct ctlr_info *h = shost_to_hba(sh);
5567         unsigned long flags;
5568         int finished;
5569
5570         spin_lock_irqsave(&h->scan_lock, flags);
5571         finished = h->scan_finished;
5572         spin_unlock_irqrestore(&h->scan_lock, flags);
5573         return finished;
5574 }
5575
5576 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5577 {
5578         struct Scsi_Host *sh;
5579
5580         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5581         if (sh == NULL) {
5582                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5583                 return -ENOMEM;
5584         }
5585
5586         sh->io_port = 0;
5587         sh->n_io_port = 0;
5588         sh->this_id = -1;
5589         sh->max_channel = 3;
5590         sh->max_cmd_len = MAX_COMMAND_SIZE;
5591         sh->max_lun = HPSA_MAX_LUN;
5592         sh->max_id = HPSA_MAX_LUN;
5593         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5594         sh->cmd_per_lun = sh->can_queue;
5595         sh->sg_tablesize = h->maxsgentries;
5596         sh->transportt = hpsa_sas_transport_template;
5597         sh->hostdata[0] = (unsigned long) h;
5598         sh->irq = pci_irq_vector(h->pdev, 0);
5599         sh->unique_id = sh->irq;
5600
5601         h->scsi_host = sh;
5602         return 0;
5603 }
5604
5605 static int hpsa_scsi_add_host(struct ctlr_info *h)
5606 {
5607         int rv;
5608
5609         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5610         if (rv) {
5611                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5612                 return rv;
5613         }
5614         scsi_scan_host(h->scsi_host);
5615         return 0;
5616 }
5617
5618 /*
5619  * The block layer has already gone to the trouble of picking out a unique,
5620  * small-integer tag for this request.  We use an offset from that value as
5621  * an index to select our command block.  (The offset allows us to reserve the
5622  * low-numbered entries for our own uses.)
5623  */
5624 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5625 {
5626         int idx = scmd->request->tag;
5627
5628         if (idx < 0)
5629                 return idx;
5630
5631         /* Offset to leave space for internal cmds. */
5632         return idx += HPSA_NRESERVED_CMDS;
5633 }
5634
5635 /*
5636  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5637  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5638  */
5639 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5640                                 struct CommandList *c, unsigned char lunaddr[],
5641                                 int reply_queue)
5642 {
5643         int rc;
5644
5645         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5646         (void) fill_cmd(c, TEST_UNIT_READY, h,
5647                         NULL, 0, 0, lunaddr, TYPE_CMD);
5648         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5649         if (rc)
5650                 return rc;
5651         /* no unmap needed here because no data xfer. */
5652
5653         /* Check if the unit is already ready. */
5654         if (c->err_info->CommandStatus == CMD_SUCCESS)
5655                 return 0;
5656
5657         /*
5658          * The first command sent after reset will receive "unit attention" to
5659          * indicate that the LUN has been reset...this is actually what we're
5660          * looking for (but, success is good too).
5661          */
5662         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5663                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5664                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5665                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5666                 return 0;
5667
5668         return 1;
5669 }
5670
5671 /*
5672  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5673  * returns zero when the unit is ready, and non-zero when giving up.
5674  */
5675 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5676                                 struct CommandList *c,
5677                                 unsigned char lunaddr[], int reply_queue)
5678 {
5679         int rc;
5680         int count = 0;
5681         int waittime = 1; /* seconds */
5682
5683         /* Send test unit ready until device ready, or give up. */
5684         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5685
5686                 /*
5687                  * Wait for a bit.  do this first, because if we send
5688                  * the TUR right away, the reset will just abort it.
5689                  */
5690                 msleep(1000 * waittime);
5691
5692                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5693                 if (!rc)
5694                         break;
5695
5696                 /* Increase wait time with each try, up to a point. */
5697                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5698                         waittime *= 2;
5699
5700                 dev_warn(&h->pdev->dev,
5701                          "waiting %d secs for device to become ready.\n",
5702                          waittime);
5703         }
5704
5705         return rc;
5706 }
5707
5708 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5709                                            unsigned char lunaddr[],
5710                                            int reply_queue)
5711 {
5712         int first_queue;
5713         int last_queue;
5714         int rq;
5715         int rc = 0;
5716         struct CommandList *c;
5717
5718         c = cmd_alloc(h);
5719
5720         /*
5721          * If no specific reply queue was requested, then send the TUR
5722          * repeatedly, requesting a reply on each reply queue; otherwise execute
5723          * the loop exactly once using only the specified queue.
5724          */
5725         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5726                 first_queue = 0;
5727                 last_queue = h->nreply_queues - 1;
5728         } else {
5729                 first_queue = reply_queue;
5730                 last_queue = reply_queue;
5731         }
5732
5733         for (rq = first_queue; rq <= last_queue; rq++) {
5734                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5735                 if (rc)
5736                         break;
5737         }
5738
5739         if (rc)
5740                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5741         else
5742                 dev_warn(&h->pdev->dev, "device is ready.\n");
5743
5744         cmd_free(h, c);
5745         return rc;
5746 }
5747
5748 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5749  * complaining.  Doing a host- or bus-reset can't do anything good here.
5750  */
5751 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5752 {
5753         int rc = SUCCESS;
5754         struct ctlr_info *h;
5755         struct hpsa_scsi_dev_t *dev;
5756         u8 reset_type;
5757         char msg[48];
5758         unsigned long flags;
5759
5760         /* find the controller to which the command to be aborted was sent */
5761         h = sdev_to_hba(scsicmd->device);
5762         if (h == NULL) /* paranoia */
5763                 return FAILED;
5764
5765         spin_lock_irqsave(&h->reset_lock, flags);
5766         h->reset_in_progress = 1;
5767         spin_unlock_irqrestore(&h->reset_lock, flags);
5768
5769         if (lockup_detected(h)) {
5770                 rc = FAILED;
5771                 goto return_reset_status;
5772         }
5773
5774         dev = scsicmd->device->hostdata;
5775         if (!dev) {
5776                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5777                 rc = FAILED;
5778                 goto return_reset_status;
5779         }
5780
5781         if (dev->devtype == TYPE_ENCLOSURE) {
5782                 rc = SUCCESS;
5783                 goto return_reset_status;
5784         }
5785
5786         /* if controller locked up, we can guarantee command won't complete */
5787         if (lockup_detected(h)) {
5788                 snprintf(msg, sizeof(msg),
5789                          "cmd %d RESET FAILED, lockup detected",
5790                          hpsa_get_cmd_index(scsicmd));
5791                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5792                 rc = FAILED;
5793                 goto return_reset_status;
5794         }
5795
5796         /* this reset request might be the result of a lockup; check */
5797         if (detect_controller_lockup(h)) {
5798                 snprintf(msg, sizeof(msg),
5799                          "cmd %d RESET FAILED, new lockup detected",
5800                          hpsa_get_cmd_index(scsicmd));
5801                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5802                 rc = FAILED;
5803                 goto return_reset_status;
5804         }
5805
5806         /* Do not attempt on controller */
5807         if (is_hba_lunid(dev->scsi3addr)) {
5808                 rc = SUCCESS;
5809                 goto return_reset_status;
5810         }
5811
5812         if (is_logical_dev_addr_mode(dev->scsi3addr))
5813                 reset_type = HPSA_DEVICE_RESET_MSG;
5814         else
5815                 reset_type = HPSA_PHYS_TARGET_RESET;
5816
5817         sprintf(msg, "resetting %s",
5818                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5819         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5820
5821         /* send a reset to the SCSI LUN which the command was sent to */
5822         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5823                            DEFAULT_REPLY_QUEUE);
5824         if (rc == 0)
5825                 rc = SUCCESS;
5826         else
5827                 rc = FAILED;
5828
5829         sprintf(msg, "reset %s %s",
5830                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5831                 rc == SUCCESS ? "completed successfully" : "failed");
5832         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5833
5834 return_reset_status:
5835         spin_lock_irqsave(&h->reset_lock, flags);
5836         h->reset_in_progress = 0;
5837         spin_unlock_irqrestore(&h->reset_lock, flags);
5838         return rc;
5839 }
5840
5841 /*
5842  * For operations with an associated SCSI command, a command block is allocated
5843  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5844  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5845  * the complement, although cmd_free() may be called instead.
5846  */
5847 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5848                                             struct scsi_cmnd *scmd)
5849 {
5850         int idx = hpsa_get_cmd_index(scmd);
5851         struct CommandList *c = h->cmd_pool + idx;
5852
5853         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5854                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5855                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5856                 /* The index value comes from the block layer, so if it's out of
5857                  * bounds, it's probably not our bug.
5858                  */
5859                 BUG();
5860         }
5861
5862         atomic_inc(&c->refcount);
5863         if (unlikely(!hpsa_is_cmd_idle(c))) {
5864                 /*
5865                  * We expect that the SCSI layer will hand us a unique tag
5866                  * value.  Thus, there should never be a collision here between
5867                  * two requests...because if the selected command isn't idle
5868                  * then someone is going to be very disappointed.
5869                  */
5870                 dev_err(&h->pdev->dev,
5871                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5872                         idx);
5873                 if (c->scsi_cmd != NULL)
5874                         scsi_print_command(c->scsi_cmd);
5875                 scsi_print_command(scmd);
5876         }
5877
5878         hpsa_cmd_partial_init(h, idx, c);
5879         return c;
5880 }
5881
5882 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5883 {
5884         /*
5885          * Release our reference to the block.  We don't need to do anything
5886          * else to free it, because it is accessed by index.
5887          */
5888         (void)atomic_dec(&c->refcount);
5889 }
5890
5891 /*
5892  * For operations that cannot sleep, a command block is allocated at init,
5893  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5894  * which ones are free or in use.  Lock must be held when calling this.
5895  * cmd_free() is the complement.
5896  * This function never gives up and returns NULL.  If it hangs,
5897  * another thread must call cmd_free() to free some tags.
5898  */
5899
5900 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5901 {
5902         struct CommandList *c;
5903         int refcount, i;
5904         int offset = 0;
5905
5906         /*
5907          * There is some *extremely* small but non-zero chance that that
5908          * multiple threads could get in here, and one thread could
5909          * be scanning through the list of bits looking for a free
5910          * one, but the free ones are always behind him, and other
5911          * threads sneak in behind him and eat them before he can
5912          * get to them, so that while there is always a free one, a
5913          * very unlucky thread might be starved anyway, never able to
5914          * beat the other threads.  In reality, this happens so
5915          * infrequently as to be indistinguishable from never.
5916          *
5917          * Note that we start allocating commands before the SCSI host structure
5918          * is initialized.  Since the search starts at bit zero, this
5919          * all works, since we have at least one command structure available;
5920          * however, it means that the structures with the low indexes have to be
5921          * reserved for driver-initiated requests, while requests from the block
5922          * layer will use the higher indexes.
5923          */
5924
5925         for (;;) {
5926                 i = find_next_zero_bit(h->cmd_pool_bits,
5927                                         HPSA_NRESERVED_CMDS,
5928                                         offset);
5929                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5930                         offset = 0;
5931                         continue;
5932                 }
5933                 c = h->cmd_pool + i;
5934                 refcount = atomic_inc_return(&c->refcount);
5935                 if (unlikely(refcount > 1)) {
5936                         cmd_free(h, c); /* already in use */
5937                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5938                         continue;
5939                 }
5940                 set_bit(i & (BITS_PER_LONG - 1),
5941                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5942                 break; /* it's ours now. */
5943         }
5944         hpsa_cmd_partial_init(h, i, c);
5945         return c;
5946 }
5947
5948 /*
5949  * This is the complementary operation to cmd_alloc().  Note, however, in some
5950  * corner cases it may also be used to free blocks allocated by
5951  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5952  * the clear-bit is harmless.
5953  */
5954 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5955 {
5956         if (atomic_dec_and_test(&c->refcount)) {
5957                 int i;
5958
5959                 i = c - h->cmd_pool;
5960                 clear_bit(i & (BITS_PER_LONG - 1),
5961                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5962         }
5963 }
5964
5965 #ifdef CONFIG_COMPAT
5966
5967 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5968         void __user *arg)
5969 {
5970         IOCTL32_Command_struct __user *arg32 =
5971             (IOCTL32_Command_struct __user *) arg;
5972         IOCTL_Command_struct arg64;
5973         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5974         int err;
5975         u32 cp;
5976
5977         memset(&arg64, 0, sizeof(arg64));
5978         err = 0;
5979         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5980                            sizeof(arg64.LUN_info));
5981         err |= copy_from_user(&arg64.Request, &arg32->Request,
5982                            sizeof(arg64.Request));
5983         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5984                            sizeof(arg64.error_info));
5985         err |= get_user(arg64.buf_size, &arg32->buf_size);
5986         err |= get_user(cp, &arg32->buf);
5987         arg64.buf = compat_ptr(cp);
5988         err |= copy_to_user(p, &arg64, sizeof(arg64));
5989
5990         if (err)
5991                 return -EFAULT;
5992
5993         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5994         if (err)
5995                 return err;
5996         err |= copy_in_user(&arg32->error_info, &p->error_info,
5997                          sizeof(arg32->error_info));
5998         if (err)
5999                 return -EFAULT;
6000         return err;
6001 }
6002
6003 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6004         int cmd, void __user *arg)
6005 {
6006         BIG_IOCTL32_Command_struct __user *arg32 =
6007             (BIG_IOCTL32_Command_struct __user *) arg;
6008         BIG_IOCTL_Command_struct arg64;
6009         BIG_IOCTL_Command_struct __user *p =
6010             compat_alloc_user_space(sizeof(arg64));
6011         int err;
6012         u32 cp;
6013
6014         memset(&arg64, 0, sizeof(arg64));
6015         err = 0;
6016         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6017                            sizeof(arg64.LUN_info));
6018         err |= copy_from_user(&arg64.Request, &arg32->Request,
6019                            sizeof(arg64.Request));
6020         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6021                            sizeof(arg64.error_info));
6022         err |= get_user(arg64.buf_size, &arg32->buf_size);
6023         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6024         err |= get_user(cp, &arg32->buf);
6025         arg64.buf = compat_ptr(cp);
6026         err |= copy_to_user(p, &arg64, sizeof(arg64));
6027
6028         if (err)
6029                 return -EFAULT;
6030
6031         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6032         if (err)
6033                 return err;
6034         err |= copy_in_user(&arg32->error_info, &p->error_info,
6035                          sizeof(arg32->error_info));
6036         if (err)
6037                 return -EFAULT;
6038         return err;
6039 }
6040
6041 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6042 {
6043         switch (cmd) {
6044         case CCISS_GETPCIINFO:
6045         case CCISS_GETINTINFO:
6046         case CCISS_SETINTINFO:
6047         case CCISS_GETNODENAME:
6048         case CCISS_SETNODENAME:
6049         case CCISS_GETHEARTBEAT:
6050         case CCISS_GETBUSTYPES:
6051         case CCISS_GETFIRMVER:
6052         case CCISS_GETDRIVVER:
6053         case CCISS_REVALIDVOLS:
6054         case CCISS_DEREGDISK:
6055         case CCISS_REGNEWDISK:
6056         case CCISS_REGNEWD:
6057         case CCISS_RESCANDISK:
6058         case CCISS_GETLUNINFO:
6059                 return hpsa_ioctl(dev, cmd, arg);
6060
6061         case CCISS_PASSTHRU32:
6062                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6063         case CCISS_BIG_PASSTHRU32:
6064                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6065
6066         default:
6067                 return -ENOIOCTLCMD;
6068         }
6069 }
6070 #endif
6071
6072 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6073 {
6074         struct hpsa_pci_info pciinfo;
6075
6076         if (!argp)
6077                 return -EINVAL;
6078         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6079         pciinfo.bus = h->pdev->bus->number;
6080         pciinfo.dev_fn = h->pdev->devfn;
6081         pciinfo.board_id = h->board_id;
6082         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6083                 return -EFAULT;
6084         return 0;
6085 }
6086
6087 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6088 {
6089         DriverVer_type DriverVer;
6090         unsigned char vmaj, vmin, vsubmin;
6091         int rc;
6092
6093         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6094                 &vmaj, &vmin, &vsubmin);
6095         if (rc != 3) {
6096                 dev_info(&h->pdev->dev, "driver version string '%s' "
6097                         "unrecognized.", HPSA_DRIVER_VERSION);
6098                 vmaj = 0;
6099                 vmin = 0;
6100                 vsubmin = 0;
6101         }
6102         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6103         if (!argp)
6104                 return -EINVAL;
6105         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6106                 return -EFAULT;
6107         return 0;
6108 }
6109
6110 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6111 {
6112         IOCTL_Command_struct iocommand;
6113         struct CommandList *c;
6114         char *buff = NULL;
6115         u64 temp64;
6116         int rc = 0;
6117
6118         if (!argp)
6119                 return -EINVAL;
6120         if (!capable(CAP_SYS_RAWIO))
6121                 return -EPERM;
6122         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6123                 return -EFAULT;
6124         if ((iocommand.buf_size < 1) &&
6125             (iocommand.Request.Type.Direction != XFER_NONE)) {
6126                 return -EINVAL;
6127         }
6128         if (iocommand.buf_size > 0) {
6129                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6130                 if (buff == NULL)
6131                         return -ENOMEM;
6132                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6133                         /* Copy the data into the buffer we created */
6134                         if (copy_from_user(buff, iocommand.buf,
6135                                 iocommand.buf_size)) {
6136                                 rc = -EFAULT;
6137                                 goto out_kfree;
6138                         }
6139                 } else {
6140                         memset(buff, 0, iocommand.buf_size);
6141                 }
6142         }
6143         c = cmd_alloc(h);
6144
6145         /* Fill in the command type */
6146         c->cmd_type = CMD_IOCTL_PEND;
6147         c->scsi_cmd = SCSI_CMD_BUSY;
6148         /* Fill in Command Header */
6149         c->Header.ReplyQueue = 0; /* unused in simple mode */
6150         if (iocommand.buf_size > 0) {   /* buffer to fill */
6151                 c->Header.SGList = 1;
6152                 c->Header.SGTotal = cpu_to_le16(1);
6153         } else  { /* no buffers to fill */
6154                 c->Header.SGList = 0;
6155                 c->Header.SGTotal = cpu_to_le16(0);
6156         }
6157         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6158
6159         /* Fill in Request block */
6160         memcpy(&c->Request, &iocommand.Request,
6161                 sizeof(c->Request));
6162
6163         /* Fill in the scatter gather information */
6164         if (iocommand.buf_size > 0) {
6165                 temp64 = pci_map_single(h->pdev, buff,
6166                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6167                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6168                         c->SG[0].Addr = cpu_to_le64(0);
6169                         c->SG[0].Len = cpu_to_le32(0);
6170                         rc = -ENOMEM;
6171                         goto out;
6172                 }
6173                 c->SG[0].Addr = cpu_to_le64(temp64);
6174                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6175                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6176         }
6177         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6178                                         NO_TIMEOUT);
6179         if (iocommand.buf_size > 0)
6180                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6181         check_ioctl_unit_attention(h, c);
6182         if (rc) {
6183                 rc = -EIO;
6184                 goto out;
6185         }
6186
6187         /* Copy the error information out */
6188         memcpy(&iocommand.error_info, c->err_info,
6189                 sizeof(iocommand.error_info));
6190         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6191                 rc = -EFAULT;
6192                 goto out;
6193         }
6194         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6195                 iocommand.buf_size > 0) {
6196                 /* Copy the data out of the buffer we created */
6197                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6198                         rc = -EFAULT;
6199                         goto out;
6200                 }
6201         }
6202 out:
6203         cmd_free(h, c);
6204 out_kfree:
6205         kfree(buff);
6206         return rc;
6207 }
6208
6209 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6210 {
6211         BIG_IOCTL_Command_struct *ioc;
6212         struct CommandList *c;
6213         unsigned char **buff = NULL;
6214         int *buff_size = NULL;
6215         u64 temp64;
6216         BYTE sg_used = 0;
6217         int status = 0;
6218         u32 left;
6219         u32 sz;
6220         BYTE __user *data_ptr;
6221
6222         if (!argp)
6223                 return -EINVAL;
6224         if (!capable(CAP_SYS_RAWIO))
6225                 return -EPERM;
6226         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6227         if (!ioc) {
6228                 status = -ENOMEM;
6229                 goto cleanup1;
6230         }
6231         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6232                 status = -EFAULT;
6233                 goto cleanup1;
6234         }
6235         if ((ioc->buf_size < 1) &&
6236             (ioc->Request.Type.Direction != XFER_NONE)) {
6237                 status = -EINVAL;
6238                 goto cleanup1;
6239         }
6240         /* Check kmalloc limits  using all SGs */
6241         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6242                 status = -EINVAL;
6243                 goto cleanup1;
6244         }
6245         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6246                 status = -EINVAL;
6247                 goto cleanup1;
6248         }
6249         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6250         if (!buff) {
6251                 status = -ENOMEM;
6252                 goto cleanup1;
6253         }
6254         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6255         if (!buff_size) {
6256                 status = -ENOMEM;
6257                 goto cleanup1;
6258         }
6259         left = ioc->buf_size;
6260         data_ptr = ioc->buf;
6261         while (left) {
6262                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6263                 buff_size[sg_used] = sz;
6264                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6265                 if (buff[sg_used] == NULL) {
6266                         status = -ENOMEM;
6267                         goto cleanup1;
6268                 }
6269                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6270                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6271                                 status = -EFAULT;
6272                                 goto cleanup1;
6273                         }
6274                 } else
6275                         memset(buff[sg_used], 0, sz);
6276                 left -= sz;
6277                 data_ptr += sz;
6278                 sg_used++;
6279         }
6280         c = cmd_alloc(h);
6281
6282         c->cmd_type = CMD_IOCTL_PEND;
6283         c->scsi_cmd = SCSI_CMD_BUSY;
6284         c->Header.ReplyQueue = 0;
6285         c->Header.SGList = (u8) sg_used;
6286         c->Header.SGTotal = cpu_to_le16(sg_used);
6287         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6288         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6289         if (ioc->buf_size > 0) {
6290                 int i;
6291                 for (i = 0; i < sg_used; i++) {
6292                         temp64 = pci_map_single(h->pdev, buff[i],
6293                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6294                         if (dma_mapping_error(&h->pdev->dev,
6295                                                         (dma_addr_t) temp64)) {
6296                                 c->SG[i].Addr = cpu_to_le64(0);
6297                                 c->SG[i].Len = cpu_to_le32(0);
6298                                 hpsa_pci_unmap(h->pdev, c, i,
6299                                         PCI_DMA_BIDIRECTIONAL);
6300                                 status = -ENOMEM;
6301                                 goto cleanup0;
6302                         }
6303                         c->SG[i].Addr = cpu_to_le64(temp64);
6304                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6305                         c->SG[i].Ext = cpu_to_le32(0);
6306                 }
6307                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6308         }
6309         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6310                                                 NO_TIMEOUT);
6311         if (sg_used)
6312                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6313         check_ioctl_unit_attention(h, c);
6314         if (status) {
6315                 status = -EIO;
6316                 goto cleanup0;
6317         }
6318
6319         /* Copy the error information out */
6320         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6321         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6322                 status = -EFAULT;
6323                 goto cleanup0;
6324         }
6325         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6326                 int i;
6327
6328                 /* Copy the data out of the buffer we created */
6329                 BYTE __user *ptr = ioc->buf;
6330                 for (i = 0; i < sg_used; i++) {
6331                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6332                                 status = -EFAULT;
6333                                 goto cleanup0;
6334                         }
6335                         ptr += buff_size[i];
6336                 }
6337         }
6338         status = 0;
6339 cleanup0:
6340         cmd_free(h, c);
6341 cleanup1:
6342         if (buff) {
6343                 int i;
6344
6345                 for (i = 0; i < sg_used; i++)
6346                         kfree(buff[i]);
6347                 kfree(buff);
6348         }
6349         kfree(buff_size);
6350         kfree(ioc);
6351         return status;
6352 }
6353
6354 static void check_ioctl_unit_attention(struct ctlr_info *h,
6355         struct CommandList *c)
6356 {
6357         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6358                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6359                 (void) check_for_unit_attention(h, c);
6360 }
6361
6362 /*
6363  * ioctl
6364  */
6365 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6366 {
6367         struct ctlr_info *h;
6368         void __user *argp = (void __user *)arg;
6369         int rc;
6370
6371         h = sdev_to_hba(dev);
6372
6373         switch (cmd) {
6374         case CCISS_DEREGDISK:
6375         case CCISS_REGNEWDISK:
6376         case CCISS_REGNEWD:
6377                 hpsa_scan_start(h->scsi_host);
6378                 return 0;
6379         case CCISS_GETPCIINFO:
6380                 return hpsa_getpciinfo_ioctl(h, argp);
6381         case CCISS_GETDRIVVER:
6382                 return hpsa_getdrivver_ioctl(h, argp);
6383         case CCISS_PASSTHRU:
6384                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6385                         return -EAGAIN;
6386                 rc = hpsa_passthru_ioctl(h, argp);
6387                 atomic_inc(&h->passthru_cmds_avail);
6388                 return rc;
6389         case CCISS_BIG_PASSTHRU:
6390                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6391                         return -EAGAIN;
6392                 rc = hpsa_big_passthru_ioctl(h, argp);
6393                 atomic_inc(&h->passthru_cmds_avail);
6394                 return rc;
6395         default:
6396                 return -ENOTTY;
6397         }
6398 }
6399
6400 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6401                                 u8 reset_type)
6402 {
6403         struct CommandList *c;
6404
6405         c = cmd_alloc(h);
6406
6407         /* fill_cmd can't fail here, no data buffer to map */
6408         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6409                 RAID_CTLR_LUNID, TYPE_MSG);
6410         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6411         c->waiting = NULL;
6412         enqueue_cmd_and_start_io(h, c);
6413         /* Don't wait for completion, the reset won't complete.  Don't free
6414          * the command either.  This is the last command we will send before
6415          * re-initializing everything, so it doesn't matter and won't leak.
6416          */
6417         return;
6418 }
6419
6420 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6421         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6422         int cmd_type)
6423 {
6424         int pci_dir = XFER_NONE;
6425
6426         c->cmd_type = CMD_IOCTL_PEND;
6427         c->scsi_cmd = SCSI_CMD_BUSY;
6428         c->Header.ReplyQueue = 0;
6429         if (buff != NULL && size > 0) {
6430                 c->Header.SGList = 1;
6431                 c->Header.SGTotal = cpu_to_le16(1);
6432         } else {
6433                 c->Header.SGList = 0;
6434                 c->Header.SGTotal = cpu_to_le16(0);
6435         }
6436         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6437
6438         if (cmd_type == TYPE_CMD) {
6439                 switch (cmd) {
6440                 case HPSA_INQUIRY:
6441                         /* are we trying to read a vital product page */
6442                         if (page_code & VPD_PAGE) {
6443                                 c->Request.CDB[1] = 0x01;
6444                                 c->Request.CDB[2] = (page_code & 0xff);
6445                         }
6446                         c->Request.CDBLen = 6;
6447                         c->Request.type_attr_dir =
6448                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6449                         c->Request.Timeout = 0;
6450                         c->Request.CDB[0] = HPSA_INQUIRY;
6451                         c->Request.CDB[4] = size & 0xFF;
6452                         break;
6453                 case HPSA_REPORT_LOG:
6454                 case HPSA_REPORT_PHYS:
6455                         /* Talking to controller so It's a physical command
6456                            mode = 00 target = 0.  Nothing to write.
6457                          */
6458                         c->Request.CDBLen = 12;
6459                         c->Request.type_attr_dir =
6460                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6461                         c->Request.Timeout = 0;
6462                         c->Request.CDB[0] = cmd;
6463                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6464                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6465                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6466                         c->Request.CDB[9] = size & 0xFF;
6467                         break;
6468                 case BMIC_SENSE_DIAG_OPTIONS:
6469                         c->Request.CDBLen = 16;
6470                         c->Request.type_attr_dir =
6471                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6472                         c->Request.Timeout = 0;
6473                         /* Spec says this should be BMIC_WRITE */
6474                         c->Request.CDB[0] = BMIC_READ;
6475                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6476                         break;
6477                 case BMIC_SET_DIAG_OPTIONS:
6478                         c->Request.CDBLen = 16;
6479                         c->Request.type_attr_dir =
6480                                         TYPE_ATTR_DIR(cmd_type,
6481                                                 ATTR_SIMPLE, XFER_WRITE);
6482                         c->Request.Timeout = 0;
6483                         c->Request.CDB[0] = BMIC_WRITE;
6484                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6485                         break;
6486                 case HPSA_CACHE_FLUSH:
6487                         c->Request.CDBLen = 12;
6488                         c->Request.type_attr_dir =
6489                                         TYPE_ATTR_DIR(cmd_type,
6490                                                 ATTR_SIMPLE, XFER_WRITE);
6491                         c->Request.Timeout = 0;
6492                         c->Request.CDB[0] = BMIC_WRITE;
6493                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6494                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6495                         c->Request.CDB[8] = size & 0xFF;
6496                         break;
6497                 case TEST_UNIT_READY:
6498                         c->Request.CDBLen = 6;
6499                         c->Request.type_attr_dir =
6500                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6501                         c->Request.Timeout = 0;
6502                         break;
6503                 case HPSA_GET_RAID_MAP:
6504                         c->Request.CDBLen = 12;
6505                         c->Request.type_attr_dir =
6506                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6507                         c->Request.Timeout = 0;
6508                         c->Request.CDB[0] = HPSA_CISS_READ;
6509                         c->Request.CDB[1] = cmd;
6510                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6511                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6512                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6513                         c->Request.CDB[9] = size & 0xFF;
6514                         break;
6515                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6516                         c->Request.CDBLen = 10;
6517                         c->Request.type_attr_dir =
6518                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6519                         c->Request.Timeout = 0;
6520                         c->Request.CDB[0] = BMIC_READ;
6521                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6522                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6523                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6524                         break;
6525                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6526                         c->Request.CDBLen = 10;
6527                         c->Request.type_attr_dir =
6528                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6529                         c->Request.Timeout = 0;
6530                         c->Request.CDB[0] = BMIC_READ;
6531                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6532                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6533                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6534                         break;
6535                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6536                         c->Request.CDBLen = 10;
6537                         c->Request.type_attr_dir =
6538                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6539                         c->Request.Timeout = 0;
6540                         c->Request.CDB[0] = BMIC_READ;
6541                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6542                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6543                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6544                         break;
6545                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6546                         c->Request.CDBLen = 10;
6547                         c->Request.type_attr_dir =
6548                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6549                         c->Request.Timeout = 0;
6550                         c->Request.CDB[0] = BMIC_READ;
6551                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6552                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6553                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6554                         break;
6555                 case BMIC_IDENTIFY_CONTROLLER:
6556                         c->Request.CDBLen = 10;
6557                         c->Request.type_attr_dir =
6558                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6559                         c->Request.Timeout = 0;
6560                         c->Request.CDB[0] = BMIC_READ;
6561                         c->Request.CDB[1] = 0;
6562                         c->Request.CDB[2] = 0;
6563                         c->Request.CDB[3] = 0;
6564                         c->Request.CDB[4] = 0;
6565                         c->Request.CDB[5] = 0;
6566                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6567                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6568                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6569                         c->Request.CDB[9] = 0;
6570                         break;
6571                 default:
6572                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6573                         BUG();
6574                         return -1;
6575                 }
6576         } else if (cmd_type == TYPE_MSG) {
6577                 switch (cmd) {
6578
6579                 case  HPSA_PHYS_TARGET_RESET:
6580                         c->Request.CDBLen = 16;
6581                         c->Request.type_attr_dir =
6582                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6583                         c->Request.Timeout = 0; /* Don't time out */
6584                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6585                         c->Request.CDB[0] = HPSA_RESET;
6586                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6587                         /* Physical target reset needs no control bytes 4-7*/
6588                         c->Request.CDB[4] = 0x00;
6589                         c->Request.CDB[5] = 0x00;
6590                         c->Request.CDB[6] = 0x00;
6591                         c->Request.CDB[7] = 0x00;
6592                         break;
6593                 case  HPSA_DEVICE_RESET_MSG:
6594                         c->Request.CDBLen = 16;
6595                         c->Request.type_attr_dir =
6596                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6597                         c->Request.Timeout = 0; /* Don't time out */
6598                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6599                         c->Request.CDB[0] =  cmd;
6600                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6601                         /* If bytes 4-7 are zero, it means reset the */
6602                         /* LunID device */
6603                         c->Request.CDB[4] = 0x00;
6604                         c->Request.CDB[5] = 0x00;
6605                         c->Request.CDB[6] = 0x00;
6606                         c->Request.CDB[7] = 0x00;
6607                         break;
6608                 default:
6609                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6610                                 cmd);
6611                         BUG();
6612                 }
6613         } else {
6614                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6615                 BUG();
6616         }
6617
6618         switch (GET_DIR(c->Request.type_attr_dir)) {
6619         case XFER_READ:
6620                 pci_dir = PCI_DMA_FROMDEVICE;
6621                 break;
6622         case XFER_WRITE:
6623                 pci_dir = PCI_DMA_TODEVICE;
6624                 break;
6625         case XFER_NONE:
6626                 pci_dir = PCI_DMA_NONE;
6627                 break;
6628         default:
6629                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6630         }
6631         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6632                 return -1;
6633         return 0;
6634 }
6635
6636 /*
6637  * Map (physical) PCI mem into (virtual) kernel space
6638  */
6639 static void __iomem *remap_pci_mem(ulong base, ulong size)
6640 {
6641         ulong page_base = ((ulong) base) & PAGE_MASK;
6642         ulong page_offs = ((ulong) base) - page_base;
6643         void __iomem *page_remapped = ioremap_nocache(page_base,
6644                 page_offs + size);
6645
6646         return page_remapped ? (page_remapped + page_offs) : NULL;
6647 }
6648
6649 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6650 {
6651         return h->access.command_completed(h, q);
6652 }
6653
6654 static inline bool interrupt_pending(struct ctlr_info *h)
6655 {
6656         return h->access.intr_pending(h);
6657 }
6658
6659 static inline long interrupt_not_for_us(struct ctlr_info *h)
6660 {
6661         return (h->access.intr_pending(h) == 0) ||
6662                 (h->interrupts_enabled == 0);
6663 }
6664
6665 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6666         u32 raw_tag)
6667 {
6668         if (unlikely(tag_index >= h->nr_cmds)) {
6669                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6670                 return 1;
6671         }
6672         return 0;
6673 }
6674
6675 static inline void finish_cmd(struct CommandList *c)
6676 {
6677         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6678         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6679                         || c->cmd_type == CMD_IOACCEL2))
6680                 complete_scsi_command(c);
6681         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6682                 complete(c->waiting);
6683 }
6684
6685 /* process completion of an indexed ("direct lookup") command */
6686 static inline void process_indexed_cmd(struct ctlr_info *h,
6687         u32 raw_tag)
6688 {
6689         u32 tag_index;
6690         struct CommandList *c;
6691
6692         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6693         if (!bad_tag(h, tag_index, raw_tag)) {
6694                 c = h->cmd_pool + tag_index;
6695                 finish_cmd(c);
6696         }
6697 }
6698
6699 /* Some controllers, like p400, will give us one interrupt
6700  * after a soft reset, even if we turned interrupts off.
6701  * Only need to check for this in the hpsa_xxx_discard_completions
6702  * functions.
6703  */
6704 static int ignore_bogus_interrupt(struct ctlr_info *h)
6705 {
6706         if (likely(!reset_devices))
6707                 return 0;
6708
6709         if (likely(h->interrupts_enabled))
6710                 return 0;
6711
6712         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6713                 "(known firmware bug.)  Ignoring.\n");
6714
6715         return 1;
6716 }
6717
6718 /*
6719  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6720  * Relies on (h-q[x] == x) being true for x such that
6721  * 0 <= x < MAX_REPLY_QUEUES.
6722  */
6723 static struct ctlr_info *queue_to_hba(u8 *queue)
6724 {
6725         return container_of((queue - *queue), struct ctlr_info, q[0]);
6726 }
6727
6728 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6729 {
6730         struct ctlr_info *h = queue_to_hba(queue);
6731         u8 q = *(u8 *) queue;
6732         u32 raw_tag;
6733
6734         if (ignore_bogus_interrupt(h))
6735                 return IRQ_NONE;
6736
6737         if (interrupt_not_for_us(h))
6738                 return IRQ_NONE;
6739         h->last_intr_timestamp = get_jiffies_64();
6740         while (interrupt_pending(h)) {
6741                 raw_tag = get_next_completion(h, q);
6742                 while (raw_tag != FIFO_EMPTY)
6743                         raw_tag = next_command(h, q);
6744         }
6745         return IRQ_HANDLED;
6746 }
6747
6748 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6749 {
6750         struct ctlr_info *h = queue_to_hba(queue);
6751         u32 raw_tag;
6752         u8 q = *(u8 *) queue;
6753
6754         if (ignore_bogus_interrupt(h))
6755                 return IRQ_NONE;
6756
6757         h->last_intr_timestamp = get_jiffies_64();
6758         raw_tag = get_next_completion(h, q);
6759         while (raw_tag != FIFO_EMPTY)
6760                 raw_tag = next_command(h, q);
6761         return IRQ_HANDLED;
6762 }
6763
6764 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6765 {
6766         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6767         u32 raw_tag;
6768         u8 q = *(u8 *) queue;
6769
6770         if (interrupt_not_for_us(h))
6771                 return IRQ_NONE;
6772         h->last_intr_timestamp = get_jiffies_64();
6773         while (interrupt_pending(h)) {
6774                 raw_tag = get_next_completion(h, q);
6775                 while (raw_tag != FIFO_EMPTY) {
6776                         process_indexed_cmd(h, raw_tag);
6777                         raw_tag = next_command(h, q);
6778                 }
6779         }
6780         return IRQ_HANDLED;
6781 }
6782
6783 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6784 {
6785         struct ctlr_info *h = queue_to_hba(queue);
6786         u32 raw_tag;
6787         u8 q = *(u8 *) queue;
6788
6789         h->last_intr_timestamp = get_jiffies_64();
6790         raw_tag = get_next_completion(h, q);
6791         while (raw_tag != FIFO_EMPTY) {
6792                 process_indexed_cmd(h, raw_tag);
6793                 raw_tag = next_command(h, q);
6794         }
6795         return IRQ_HANDLED;
6796 }
6797
6798 /* Send a message CDB to the firmware. Careful, this only works
6799  * in simple mode, not performant mode due to the tag lookup.
6800  * We only ever use this immediately after a controller reset.
6801  */
6802 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6803                         unsigned char type)
6804 {
6805         struct Command {
6806                 struct CommandListHeader CommandHeader;
6807                 struct RequestBlock Request;
6808                 struct ErrDescriptor ErrorDescriptor;
6809         };
6810         struct Command *cmd;
6811         static const size_t cmd_sz = sizeof(*cmd) +
6812                                         sizeof(cmd->ErrorDescriptor);
6813         dma_addr_t paddr64;
6814         __le32 paddr32;
6815         u32 tag;
6816         void __iomem *vaddr;
6817         int i, err;
6818
6819         vaddr = pci_ioremap_bar(pdev, 0);
6820         if (vaddr == NULL)
6821                 return -ENOMEM;
6822
6823         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6824          * CCISS commands, so they must be allocated from the lower 4GiB of
6825          * memory.
6826          */
6827         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6828         if (err) {
6829                 iounmap(vaddr);
6830                 return err;
6831         }
6832
6833         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6834         if (cmd == NULL) {
6835                 iounmap(vaddr);
6836                 return -ENOMEM;
6837         }
6838
6839         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6840          * although there's no guarantee, we assume that the address is at
6841          * least 4-byte aligned (most likely, it's page-aligned).
6842          */
6843         paddr32 = cpu_to_le32(paddr64);
6844
6845         cmd->CommandHeader.ReplyQueue = 0;
6846         cmd->CommandHeader.SGList = 0;
6847         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6848         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6849         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6850
6851         cmd->Request.CDBLen = 16;
6852         cmd->Request.type_attr_dir =
6853                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6854         cmd->Request.Timeout = 0; /* Don't time out */
6855         cmd->Request.CDB[0] = opcode;
6856         cmd->Request.CDB[1] = type;
6857         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6858         cmd->ErrorDescriptor.Addr =
6859                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6860         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6861
6862         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6863
6864         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6865                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6866                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6867                         break;
6868                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6869         }
6870
6871         iounmap(vaddr);
6872
6873         /* we leak the DMA buffer here ... no choice since the controller could
6874          *  still complete the command.
6875          */
6876         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6877                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6878                         opcode, type);
6879                 return -ETIMEDOUT;
6880         }
6881
6882         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6883
6884         if (tag & HPSA_ERROR_BIT) {
6885                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6886                         opcode, type);
6887                 return -EIO;
6888         }
6889
6890         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6891                 opcode, type);
6892         return 0;
6893 }
6894
6895 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6896
6897 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6898         void __iomem *vaddr, u32 use_doorbell)
6899 {
6900
6901         if (use_doorbell) {
6902                 /* For everything after the P600, the PCI power state method
6903                  * of resetting the controller doesn't work, so we have this
6904                  * other way using the doorbell register.
6905                  */
6906                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6907                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6908
6909                 /* PMC hardware guys tell us we need a 10 second delay after
6910                  * doorbell reset and before any attempt to talk to the board
6911                  * at all to ensure that this actually works and doesn't fall
6912                  * over in some weird corner cases.
6913                  */
6914                 msleep(10000);
6915         } else { /* Try to do it the PCI power state way */
6916
6917                 /* Quoting from the Open CISS Specification: "The Power
6918                  * Management Control/Status Register (CSR) controls the power
6919                  * state of the device.  The normal operating state is D0,
6920                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6921                  * the controller, place the interface device in D3 then to D0,
6922                  * this causes a secondary PCI reset which will reset the
6923                  * controller." */
6924
6925                 int rc = 0;
6926
6927                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6928
6929                 /* enter the D3hot power management state */
6930                 rc = pci_set_power_state(pdev, PCI_D3hot);
6931                 if (rc)
6932                         return rc;
6933
6934                 msleep(500);
6935
6936                 /* enter the D0 power management state */
6937                 rc = pci_set_power_state(pdev, PCI_D0);
6938                 if (rc)
6939                         return rc;
6940
6941                 /*
6942                  * The P600 requires a small delay when changing states.
6943                  * Otherwise we may think the board did not reset and we bail.
6944                  * This for kdump only and is particular to the P600.
6945                  */
6946                 msleep(500);
6947         }
6948         return 0;
6949 }
6950
6951 static void init_driver_version(char *driver_version, int len)
6952 {
6953         memset(driver_version, 0, len);
6954         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6955 }
6956
6957 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6958 {
6959         char *driver_version;
6960         int i, size = sizeof(cfgtable->driver_version);
6961
6962         driver_version = kmalloc(size, GFP_KERNEL);
6963         if (!driver_version)
6964                 return -ENOMEM;
6965
6966         init_driver_version(driver_version, size);
6967         for (i = 0; i < size; i++)
6968                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6969         kfree(driver_version);
6970         return 0;
6971 }
6972
6973 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6974                                           unsigned char *driver_ver)
6975 {
6976         int i;
6977
6978         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6979                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6980 }
6981
6982 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6983 {
6984
6985         char *driver_ver, *old_driver_ver;
6986         int rc, size = sizeof(cfgtable->driver_version);
6987
6988         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6989         if (!old_driver_ver)
6990                 return -ENOMEM;
6991         driver_ver = old_driver_ver + size;
6992
6993         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6994          * should have been changed, otherwise we know the reset failed.
6995          */
6996         init_driver_version(old_driver_ver, size);
6997         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6998         rc = !memcmp(driver_ver, old_driver_ver, size);
6999         kfree(old_driver_ver);
7000         return rc;
7001 }
7002 /* This does a hard reset of the controller using PCI power management
7003  * states or the using the doorbell register.
7004  */
7005 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7006 {
7007         u64 cfg_offset;
7008         u32 cfg_base_addr;
7009         u64 cfg_base_addr_index;
7010         void __iomem *vaddr;
7011         unsigned long paddr;
7012         u32 misc_fw_support;
7013         int rc;
7014         struct CfgTable __iomem *cfgtable;
7015         u32 use_doorbell;
7016         u16 command_register;
7017
7018         /* For controllers as old as the P600, this is very nearly
7019          * the same thing as
7020          *
7021          * pci_save_state(pci_dev);
7022          * pci_set_power_state(pci_dev, PCI_D3hot);
7023          * pci_set_power_state(pci_dev, PCI_D0);
7024          * pci_restore_state(pci_dev);
7025          *
7026          * For controllers newer than the P600, the pci power state
7027          * method of resetting doesn't work so we have another way
7028          * using the doorbell register.
7029          */
7030
7031         if (!ctlr_is_resettable(board_id)) {
7032                 dev_warn(&pdev->dev, "Controller not resettable\n");
7033                 return -ENODEV;
7034         }
7035
7036         /* if controller is soft- but not hard resettable... */
7037         if (!ctlr_is_hard_resettable(board_id))
7038                 return -ENOTSUPP; /* try soft reset later. */
7039
7040         /* Save the PCI command register */
7041         pci_read_config_word(pdev, 4, &command_register);
7042         pci_save_state(pdev);
7043
7044         /* find the first memory BAR, so we can find the cfg table */
7045         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7046         if (rc)
7047                 return rc;
7048         vaddr = remap_pci_mem(paddr, 0x250);
7049         if (!vaddr)
7050                 return -ENOMEM;
7051
7052         /* find cfgtable in order to check if reset via doorbell is supported */
7053         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7054                                         &cfg_base_addr_index, &cfg_offset);
7055         if (rc)
7056                 goto unmap_vaddr;
7057         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7058                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7059         if (!cfgtable) {
7060                 rc = -ENOMEM;
7061                 goto unmap_vaddr;
7062         }
7063         rc = write_driver_ver_to_cfgtable(cfgtable);
7064         if (rc)
7065                 goto unmap_cfgtable;
7066
7067         /* If reset via doorbell register is supported, use that.
7068          * There are two such methods.  Favor the newest method.
7069          */
7070         misc_fw_support = readl(&cfgtable->misc_fw_support);
7071         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7072         if (use_doorbell) {
7073                 use_doorbell = DOORBELL_CTLR_RESET2;
7074         } else {
7075                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7076                 if (use_doorbell) {
7077                         dev_warn(&pdev->dev,
7078                                 "Soft reset not supported. Firmware update is required.\n");
7079                         rc = -ENOTSUPP; /* try soft reset */
7080                         goto unmap_cfgtable;
7081                 }
7082         }
7083
7084         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7085         if (rc)
7086                 goto unmap_cfgtable;
7087
7088         pci_restore_state(pdev);
7089         pci_write_config_word(pdev, 4, command_register);
7090
7091         /* Some devices (notably the HP Smart Array 5i Controller)
7092            need a little pause here */
7093         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7094
7095         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7096         if (rc) {
7097                 dev_warn(&pdev->dev,
7098                         "Failed waiting for board to become ready after hard reset\n");
7099                 goto unmap_cfgtable;
7100         }
7101
7102         rc = controller_reset_failed(vaddr);
7103         if (rc < 0)
7104                 goto unmap_cfgtable;
7105         if (rc) {
7106                 dev_warn(&pdev->dev, "Unable to successfully reset "
7107                         "controller. Will try soft reset.\n");
7108                 rc = -ENOTSUPP;
7109         } else {
7110                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7111         }
7112
7113 unmap_cfgtable:
7114         iounmap(cfgtable);
7115
7116 unmap_vaddr:
7117         iounmap(vaddr);
7118         return rc;
7119 }
7120
7121 /*
7122  *  We cannot read the structure directly, for portability we must use
7123  *   the io functions.
7124  *   This is for debug only.
7125  */
7126 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7127 {
7128 #ifdef HPSA_DEBUG
7129         int i;
7130         char temp_name[17];
7131
7132         dev_info(dev, "Controller Configuration information\n");
7133         dev_info(dev, "------------------------------------\n");
7134         for (i = 0; i < 4; i++)
7135                 temp_name[i] = readb(&(tb->Signature[i]));
7136         temp_name[4] = '\0';
7137         dev_info(dev, "   Signature = %s\n", temp_name);
7138         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7139         dev_info(dev, "   Transport methods supported = 0x%x\n",
7140                readl(&(tb->TransportSupport)));
7141         dev_info(dev, "   Transport methods active = 0x%x\n",
7142                readl(&(tb->TransportActive)));
7143         dev_info(dev, "   Requested transport Method = 0x%x\n",
7144                readl(&(tb->HostWrite.TransportRequest)));
7145         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7146                readl(&(tb->HostWrite.CoalIntDelay)));
7147         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7148                readl(&(tb->HostWrite.CoalIntCount)));
7149         dev_info(dev, "   Max outstanding commands = %d\n",
7150                readl(&(tb->CmdsOutMax)));
7151         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7152         for (i = 0; i < 16; i++)
7153                 temp_name[i] = readb(&(tb->ServerName[i]));
7154         temp_name[16] = '\0';
7155         dev_info(dev, "   Server Name = %s\n", temp_name);
7156         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7157                 readl(&(tb->HeartBeat)));
7158 #endif                          /* HPSA_DEBUG */
7159 }
7160
7161 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7162 {
7163         int i, offset, mem_type, bar_type;
7164
7165         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7166                 return 0;
7167         offset = 0;
7168         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7169                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7170                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7171                         offset += 4;
7172                 else {
7173                         mem_type = pci_resource_flags(pdev, i) &
7174                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7175                         switch (mem_type) {
7176                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7177                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7178                                 offset += 4;    /* 32 bit */
7179                                 break;
7180                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7181                                 offset += 8;
7182                                 break;
7183                         default:        /* reserved in PCI 2.2 */
7184                                 dev_warn(&pdev->dev,
7185                                        "base address is invalid\n");
7186                                 return -1;
7187                                 break;
7188                         }
7189                 }
7190                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7191                         return i + 1;
7192         }
7193         return -1;
7194 }
7195
7196 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7197 {
7198         pci_free_irq_vectors(h->pdev);
7199         h->msix_vectors = 0;
7200 }
7201
7202 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7203  * controllers that are capable. If not, we use legacy INTx mode.
7204  */
7205 static int hpsa_interrupt_mode(struct ctlr_info *h)
7206 {
7207         unsigned int flags = PCI_IRQ_LEGACY;
7208         int ret;
7209
7210         /* Some boards advertise MSI but don't really support it */
7211         switch (h->board_id) {
7212         case 0x40700E11:
7213         case 0x40800E11:
7214         case 0x40820E11:
7215         case 0x40830E11:
7216                 break;
7217         default:
7218                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7219                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7220                 if (ret > 0) {
7221                         h->msix_vectors = ret;
7222                         return 0;
7223                 }
7224
7225                 flags |= PCI_IRQ_MSI;
7226                 break;
7227         }
7228
7229         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7230         if (ret < 0)
7231                 return ret;
7232         return 0;
7233 }
7234
7235 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7236 {
7237         int i;
7238         u32 subsystem_vendor_id, subsystem_device_id;
7239
7240         subsystem_vendor_id = pdev->subsystem_vendor;
7241         subsystem_device_id = pdev->subsystem_device;
7242         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7243                     subsystem_vendor_id;
7244
7245         for (i = 0; i < ARRAY_SIZE(products); i++)
7246                 if (*board_id == products[i].board_id)
7247                         return i;
7248
7249         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7250                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7251                 !hpsa_allow_any) {
7252                 dev_warn(&pdev->dev, "unrecognized board ID: "
7253                         "0x%08x, ignoring.\n", *board_id);
7254                         return -ENODEV;
7255         }
7256         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7257 }
7258
7259 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7260                                     unsigned long *memory_bar)
7261 {
7262         int i;
7263
7264         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7265                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7266                         /* addressing mode bits already removed */
7267                         *memory_bar = pci_resource_start(pdev, i);
7268                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7269                                 *memory_bar);
7270                         return 0;
7271                 }
7272         dev_warn(&pdev->dev, "no memory BAR found\n");
7273         return -ENODEV;
7274 }
7275
7276 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7277                                      int wait_for_ready)
7278 {
7279         int i, iterations;
7280         u32 scratchpad;
7281         if (wait_for_ready)
7282                 iterations = HPSA_BOARD_READY_ITERATIONS;
7283         else
7284                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7285
7286         for (i = 0; i < iterations; i++) {
7287                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7288                 if (wait_for_ready) {
7289                         if (scratchpad == HPSA_FIRMWARE_READY)
7290                                 return 0;
7291                 } else {
7292                         if (scratchpad != HPSA_FIRMWARE_READY)
7293                                 return 0;
7294                 }
7295                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7296         }
7297         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7298         return -ENODEV;
7299 }
7300
7301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7302                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7303                                u64 *cfg_offset)
7304 {
7305         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7306         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7307         *cfg_base_addr &= (u32) 0x0000ffff;
7308         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7309         if (*cfg_base_addr_index == -1) {
7310                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7311                 return -ENODEV;
7312         }
7313         return 0;
7314 }
7315
7316 static void hpsa_free_cfgtables(struct ctlr_info *h)
7317 {
7318         if (h->transtable) {
7319                 iounmap(h->transtable);
7320                 h->transtable = NULL;
7321         }
7322         if (h->cfgtable) {
7323                 iounmap(h->cfgtable);
7324                 h->cfgtable = NULL;
7325         }
7326 }
7327
7328 /* Find and map CISS config table and transfer table
7329 + * several items must be unmapped (freed) later
7330 + * */
7331 static int hpsa_find_cfgtables(struct ctlr_info *h)
7332 {
7333         u64 cfg_offset;
7334         u32 cfg_base_addr;
7335         u64 cfg_base_addr_index;
7336         u32 trans_offset;
7337         int rc;
7338
7339         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7340                 &cfg_base_addr_index, &cfg_offset);
7341         if (rc)
7342                 return rc;
7343         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7344                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7345         if (!h->cfgtable) {
7346                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7347                 return -ENOMEM;
7348         }
7349         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7350         if (rc)
7351                 return rc;
7352         /* Find performant mode table. */
7353         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7354         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7355                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7356                                 sizeof(*h->transtable));
7357         if (!h->transtable) {
7358                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7359                 hpsa_free_cfgtables(h);
7360                 return -ENOMEM;
7361         }
7362         return 0;
7363 }
7364
7365 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7366 {
7367 #define MIN_MAX_COMMANDS 16
7368         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7369
7370         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7371
7372         /* Limit commands in memory limited kdump scenario. */
7373         if (reset_devices && h->max_commands > 32)
7374                 h->max_commands = 32;
7375
7376         if (h->max_commands < MIN_MAX_COMMANDS) {
7377                 dev_warn(&h->pdev->dev,
7378                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7379                         h->max_commands,
7380                         MIN_MAX_COMMANDS);
7381                 h->max_commands = MIN_MAX_COMMANDS;
7382         }
7383 }
7384
7385 /* If the controller reports that the total max sg entries is greater than 512,
7386  * then we know that chained SG blocks work.  (Original smart arrays did not
7387  * support chained SG blocks and would return zero for max sg entries.)
7388  */
7389 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7390 {
7391         return h->maxsgentries > 512;
7392 }
7393
7394 /* Interrogate the hardware for some limits:
7395  * max commands, max SG elements without chaining, and with chaining,
7396  * SG chain block size, etc.
7397  */
7398 static void hpsa_find_board_params(struct ctlr_info *h)
7399 {
7400         hpsa_get_max_perf_mode_cmds(h);
7401         h->nr_cmds = h->max_commands;
7402         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7403         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7404         if (hpsa_supports_chained_sg_blocks(h)) {
7405                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7406                 h->max_cmd_sg_entries = 32;
7407                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7408                 h->maxsgentries--; /* save one for chain pointer */
7409         } else {
7410                 /*
7411                  * Original smart arrays supported at most 31 s/g entries
7412                  * embedded inline in the command (trying to use more
7413                  * would lock up the controller)
7414                  */
7415                 h->max_cmd_sg_entries = 31;
7416                 h->maxsgentries = 31; /* default to traditional values */
7417                 h->chainsize = 0;
7418         }
7419
7420         /* Find out what task management functions are supported and cache */
7421         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7422         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7423                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7424         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7425                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7426         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7427                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7428 }
7429
7430 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7431 {
7432         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7433                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7434                 return false;
7435         }
7436         return true;
7437 }
7438
7439 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7440 {
7441         u32 driver_support;
7442
7443         driver_support = readl(&(h->cfgtable->driver_support));
7444         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7445 #ifdef CONFIG_X86
7446         driver_support |= ENABLE_SCSI_PREFETCH;
7447 #endif
7448         driver_support |= ENABLE_UNIT_ATTN;
7449         writel(driver_support, &(h->cfgtable->driver_support));
7450 }
7451
7452 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7453  * in a prefetch beyond physical memory.
7454  */
7455 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7456 {
7457         u32 dma_prefetch;
7458
7459         if (h->board_id != 0x3225103C)
7460                 return;
7461         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7462         dma_prefetch |= 0x8000;
7463         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7464 }
7465
7466 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7467 {
7468         int i;
7469         u32 doorbell_value;
7470         unsigned long flags;
7471         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7472         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7473                 spin_lock_irqsave(&h->lock, flags);
7474                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7475                 spin_unlock_irqrestore(&h->lock, flags);
7476                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7477                         goto done;
7478                 /* delay and try again */
7479                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7480         }
7481         return -ENODEV;
7482 done:
7483         return 0;
7484 }
7485
7486 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7487 {
7488         int i;
7489         u32 doorbell_value;
7490         unsigned long flags;
7491
7492         /* under certain very rare conditions, this can take awhile.
7493          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7494          * as we enter this code.)
7495          */
7496         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7497                 if (h->remove_in_progress)
7498                         goto done;
7499                 spin_lock_irqsave(&h->lock, flags);
7500                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7501                 spin_unlock_irqrestore(&h->lock, flags);
7502                 if (!(doorbell_value & CFGTBL_ChangeReq))
7503                         goto done;
7504                 /* delay and try again */
7505                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7506         }
7507         return -ENODEV;
7508 done:
7509         return 0;
7510 }
7511
7512 /* return -ENODEV or other reason on error, 0 on success */
7513 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7514 {
7515         u32 trans_support;
7516
7517         trans_support = readl(&(h->cfgtable->TransportSupport));
7518         if (!(trans_support & SIMPLE_MODE))
7519                 return -ENOTSUPP;
7520
7521         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7522
7523         /* Update the field, and then ring the doorbell */
7524         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7525         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7526         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7527         if (hpsa_wait_for_mode_change_ack(h))
7528                 goto error;
7529         print_cfg_table(&h->pdev->dev, h->cfgtable);
7530         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7531                 goto error;
7532         h->transMethod = CFGTBL_Trans_Simple;
7533         return 0;
7534 error:
7535         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7536         return -ENODEV;
7537 }
7538
7539 /* free items allocated or mapped by hpsa_pci_init */
7540 static void hpsa_free_pci_init(struct ctlr_info *h)
7541 {
7542         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7543         iounmap(h->vaddr);                      /* pci_init 3 */
7544         h->vaddr = NULL;
7545         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7546         /*
7547          * call pci_disable_device before pci_release_regions per
7548          * Documentation/PCI/pci.txt
7549          */
7550         pci_disable_device(h->pdev);            /* pci_init 1 */
7551         pci_release_regions(h->pdev);           /* pci_init 2 */
7552 }
7553
7554 /* several items must be freed later */
7555 static int hpsa_pci_init(struct ctlr_info *h)
7556 {
7557         int prod_index, err;
7558
7559         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7560         if (prod_index < 0)
7561                 return prod_index;
7562         h->product_name = products[prod_index].product_name;
7563         h->access = *(products[prod_index].access);
7564
7565         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7566                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7567
7568         err = pci_enable_device(h->pdev);
7569         if (err) {
7570                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7571                 pci_disable_device(h->pdev);
7572                 return err;
7573         }
7574
7575         err = pci_request_regions(h->pdev, HPSA);
7576         if (err) {
7577                 dev_err(&h->pdev->dev,
7578                         "failed to obtain PCI resources\n");
7579                 pci_disable_device(h->pdev);
7580                 return err;
7581         }
7582
7583         pci_set_master(h->pdev);
7584
7585         err = hpsa_interrupt_mode(h);
7586         if (err)
7587                 goto clean1;
7588         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7589         if (err)
7590                 goto clean2;    /* intmode+region, pci */
7591         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7592         if (!h->vaddr) {
7593                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7594                 err = -ENOMEM;
7595                 goto clean2;    /* intmode+region, pci */
7596         }
7597         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7598         if (err)
7599                 goto clean3;    /* vaddr, intmode+region, pci */
7600         err = hpsa_find_cfgtables(h);
7601         if (err)
7602                 goto clean3;    /* vaddr, intmode+region, pci */
7603         hpsa_find_board_params(h);
7604
7605         if (!hpsa_CISS_signature_present(h)) {
7606                 err = -ENODEV;
7607                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7608         }
7609         hpsa_set_driver_support_bits(h);
7610         hpsa_p600_dma_prefetch_quirk(h);
7611         err = hpsa_enter_simple_mode(h);
7612         if (err)
7613                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7614         return 0;
7615
7616 clean4: /* cfgtables, vaddr, intmode+region, pci */
7617         hpsa_free_cfgtables(h);
7618 clean3: /* vaddr, intmode+region, pci */
7619         iounmap(h->vaddr);
7620         h->vaddr = NULL;
7621 clean2: /* intmode+region, pci */
7622         hpsa_disable_interrupt_mode(h);
7623 clean1:
7624         /*
7625          * call pci_disable_device before pci_release_regions per
7626          * Documentation/PCI/pci.txt
7627          */
7628         pci_disable_device(h->pdev);
7629         pci_release_regions(h->pdev);
7630         return err;
7631 }
7632
7633 static void hpsa_hba_inquiry(struct ctlr_info *h)
7634 {
7635         int rc;
7636
7637 #define HBA_INQUIRY_BYTE_COUNT 64
7638         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7639         if (!h->hba_inquiry_data)
7640                 return;
7641         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7642                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7643         if (rc != 0) {
7644                 kfree(h->hba_inquiry_data);
7645                 h->hba_inquiry_data = NULL;
7646         }
7647 }
7648
7649 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7650 {
7651         int rc, i;
7652         void __iomem *vaddr;
7653
7654         if (!reset_devices)
7655                 return 0;
7656
7657         /* kdump kernel is loading, we don't know in which state is
7658          * the pci interface. The dev->enable_cnt is equal zero
7659          * so we call enable+disable, wait a while and switch it on.
7660          */
7661         rc = pci_enable_device(pdev);
7662         if (rc) {
7663                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7664                 return -ENODEV;
7665         }
7666         pci_disable_device(pdev);
7667         msleep(260);                    /* a randomly chosen number */
7668         rc = pci_enable_device(pdev);
7669         if (rc) {
7670                 dev_warn(&pdev->dev, "failed to enable device.\n");
7671                 return -ENODEV;
7672         }
7673
7674         pci_set_master(pdev);
7675
7676         vaddr = pci_ioremap_bar(pdev, 0);
7677         if (vaddr == NULL) {
7678                 rc = -ENOMEM;
7679                 goto out_disable;
7680         }
7681         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7682         iounmap(vaddr);
7683
7684         /* Reset the controller with a PCI power-cycle or via doorbell */
7685         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7686
7687         /* -ENOTSUPP here means we cannot reset the controller
7688          * but it's already (and still) up and running in
7689          * "performant mode".  Or, it might be 640x, which can't reset
7690          * due to concerns about shared bbwc between 6402/6404 pair.
7691          */
7692         if (rc)
7693                 goto out_disable;
7694
7695         /* Now try to get the controller to respond to a no-op */
7696         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7697         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7698                 if (hpsa_noop(pdev) == 0)
7699                         break;
7700                 else
7701                         dev_warn(&pdev->dev, "no-op failed%s\n",
7702                                         (i < 11 ? "; re-trying" : ""));
7703         }
7704
7705 out_disable:
7706
7707         pci_disable_device(pdev);
7708         return rc;
7709 }
7710
7711 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7712 {
7713         kfree(h->cmd_pool_bits);
7714         h->cmd_pool_bits = NULL;
7715         if (h->cmd_pool) {
7716                 pci_free_consistent(h->pdev,
7717                                 h->nr_cmds * sizeof(struct CommandList),
7718                                 h->cmd_pool,
7719                                 h->cmd_pool_dhandle);
7720                 h->cmd_pool = NULL;
7721                 h->cmd_pool_dhandle = 0;
7722         }
7723         if (h->errinfo_pool) {
7724                 pci_free_consistent(h->pdev,
7725                                 h->nr_cmds * sizeof(struct ErrorInfo),
7726                                 h->errinfo_pool,
7727                                 h->errinfo_pool_dhandle);
7728                 h->errinfo_pool = NULL;
7729                 h->errinfo_pool_dhandle = 0;
7730         }
7731 }
7732
7733 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7734 {
7735         h->cmd_pool_bits = kzalloc(
7736                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7737                 sizeof(unsigned long), GFP_KERNEL);
7738         h->cmd_pool = pci_alloc_consistent(h->pdev,
7739                     h->nr_cmds * sizeof(*h->cmd_pool),
7740                     &(h->cmd_pool_dhandle));
7741         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7742                     h->nr_cmds * sizeof(*h->errinfo_pool),
7743                     &(h->errinfo_pool_dhandle));
7744         if ((h->cmd_pool_bits == NULL)
7745             || (h->cmd_pool == NULL)
7746             || (h->errinfo_pool == NULL)) {
7747                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7748                 goto clean_up;
7749         }
7750         hpsa_preinitialize_commands(h);
7751         return 0;
7752 clean_up:
7753         hpsa_free_cmd_pool(h);
7754         return -ENOMEM;
7755 }
7756
7757 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7758 static void hpsa_free_irqs(struct ctlr_info *h)
7759 {
7760         int i;
7761
7762         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7763                 /* Single reply queue, only one irq to free */
7764                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7765                 h->q[h->intr_mode] = 0;
7766                 return;
7767         }
7768
7769         for (i = 0; i < h->msix_vectors; i++) {
7770                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7771                 h->q[i] = 0;
7772         }
7773         for (; i < MAX_REPLY_QUEUES; i++)
7774                 h->q[i] = 0;
7775 }
7776
7777 /* returns 0 on success; cleans up and returns -Enn on error */
7778 static int hpsa_request_irqs(struct ctlr_info *h,
7779         irqreturn_t (*msixhandler)(int, void *),
7780         irqreturn_t (*intxhandler)(int, void *))
7781 {
7782         int rc, i;
7783
7784         /*
7785          * initialize h->q[x] = x so that interrupt handlers know which
7786          * queue to process.
7787          */
7788         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7789                 h->q[i] = (u8) i;
7790
7791         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7792                 /* If performant mode and MSI-X, use multiple reply queues */
7793                 for (i = 0; i < h->msix_vectors; i++) {
7794                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7795                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7796                                         0, h->intrname[i],
7797                                         &h->q[i]);
7798                         if (rc) {
7799                                 int j;
7800
7801                                 dev_err(&h->pdev->dev,
7802                                         "failed to get irq %d for %s\n",
7803                                        pci_irq_vector(h->pdev, i), h->devname);
7804                                 for (j = 0; j < i; j++) {
7805                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7806                                         h->q[j] = 0;
7807                                 }
7808                                 for (; j < MAX_REPLY_QUEUES; j++)
7809                                         h->q[j] = 0;
7810                                 return rc;
7811                         }
7812                 }
7813         } else {
7814                 /* Use single reply pool */
7815                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7816                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
7817                                 h->msix_vectors ? "x" : "");
7818                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7819                                 msixhandler, 0,
7820                                 h->intrname[0],
7821                                 &h->q[h->intr_mode]);
7822                 } else {
7823                         sprintf(h->intrname[h->intr_mode],
7824                                 "%s-intx", h->devname);
7825                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7826                                 intxhandler, IRQF_SHARED,
7827                                 h->intrname[0],
7828                                 &h->q[h->intr_mode]);
7829                 }
7830         }
7831         if (rc) {
7832                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7833                        pci_irq_vector(h->pdev, 0), h->devname);
7834                 hpsa_free_irqs(h);
7835                 return -ENODEV;
7836         }
7837         return 0;
7838 }
7839
7840 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7841 {
7842         int rc;
7843         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7844
7845         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7846         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7847         if (rc) {
7848                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7849                 return rc;
7850         }
7851
7852         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7853         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7854         if (rc) {
7855                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7856                         "after soft reset.\n");
7857                 return rc;
7858         }
7859
7860         return 0;
7861 }
7862
7863 static void hpsa_free_reply_queues(struct ctlr_info *h)
7864 {
7865         int i;
7866
7867         for (i = 0; i < h->nreply_queues; i++) {
7868                 if (!h->reply_queue[i].head)
7869                         continue;
7870                 pci_free_consistent(h->pdev,
7871                                         h->reply_queue_size,
7872                                         h->reply_queue[i].head,
7873                                         h->reply_queue[i].busaddr);
7874                 h->reply_queue[i].head = NULL;
7875                 h->reply_queue[i].busaddr = 0;
7876         }
7877         h->reply_queue_size = 0;
7878 }
7879
7880 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7881 {
7882         hpsa_free_performant_mode(h);           /* init_one 7 */
7883         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7884         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7885         hpsa_free_irqs(h);                      /* init_one 4 */
7886         scsi_host_put(h->scsi_host);            /* init_one 3 */
7887         h->scsi_host = NULL;                    /* init_one 3 */
7888         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7889         free_percpu(h->lockup_detected);        /* init_one 2 */
7890         h->lockup_detected = NULL;              /* init_one 2 */
7891         if (h->resubmit_wq) {
7892                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7893                 h->resubmit_wq = NULL;
7894         }
7895         if (h->rescan_ctlr_wq) {
7896                 destroy_workqueue(h->rescan_ctlr_wq);
7897                 h->rescan_ctlr_wq = NULL;
7898         }
7899         kfree(h);                               /* init_one 1 */
7900 }
7901
7902 /* Called when controller lockup detected. */
7903 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7904 {
7905         int i, refcount;
7906         struct CommandList *c;
7907         int failcount = 0;
7908
7909         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7910         for (i = 0; i < h->nr_cmds; i++) {
7911                 c = h->cmd_pool + i;
7912                 refcount = atomic_inc_return(&c->refcount);
7913                 if (refcount > 1) {
7914                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7915                         finish_cmd(c);
7916                         atomic_dec(&h->commands_outstanding);
7917                         failcount++;
7918                 }
7919                 cmd_free(h, c);
7920         }
7921         dev_warn(&h->pdev->dev,
7922                 "failed %d commands in fail_all\n", failcount);
7923 }
7924
7925 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7926 {
7927         int cpu;
7928
7929         for_each_online_cpu(cpu) {
7930                 u32 *lockup_detected;
7931                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7932                 *lockup_detected = value;
7933         }
7934         wmb(); /* be sure the per-cpu variables are out to memory */
7935 }
7936
7937 static void controller_lockup_detected(struct ctlr_info *h)
7938 {
7939         unsigned long flags;
7940         u32 lockup_detected;
7941
7942         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7943         spin_lock_irqsave(&h->lock, flags);
7944         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7945         if (!lockup_detected) {
7946                 /* no heartbeat, but controller gave us a zero. */
7947                 dev_warn(&h->pdev->dev,
7948                         "lockup detected after %d but scratchpad register is zero\n",
7949                         h->heartbeat_sample_interval / HZ);
7950                 lockup_detected = 0xffffffff;
7951         }
7952         set_lockup_detected_for_all_cpus(h, lockup_detected);
7953         spin_unlock_irqrestore(&h->lock, flags);
7954         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7955                         lockup_detected, h->heartbeat_sample_interval / HZ);
7956         pci_disable_device(h->pdev);
7957         fail_all_outstanding_cmds(h);
7958 }
7959
7960 static int detect_controller_lockup(struct ctlr_info *h)
7961 {
7962         u64 now;
7963         u32 heartbeat;
7964         unsigned long flags;
7965
7966         now = get_jiffies_64();
7967         /* If we've received an interrupt recently, we're ok. */
7968         if (time_after64(h->last_intr_timestamp +
7969                                 (h->heartbeat_sample_interval), now))
7970                 return false;
7971
7972         /*
7973          * If we've already checked the heartbeat recently, we're ok.
7974          * This could happen if someone sends us a signal. We
7975          * otherwise don't care about signals in this thread.
7976          */
7977         if (time_after64(h->last_heartbeat_timestamp +
7978                                 (h->heartbeat_sample_interval), now))
7979                 return false;
7980
7981         /* If heartbeat has not changed since we last looked, we're not ok. */
7982         spin_lock_irqsave(&h->lock, flags);
7983         heartbeat = readl(&h->cfgtable->HeartBeat);
7984         spin_unlock_irqrestore(&h->lock, flags);
7985         if (h->last_heartbeat == heartbeat) {
7986                 controller_lockup_detected(h);
7987                 return true;
7988         }
7989
7990         /* We're ok. */
7991         h->last_heartbeat = heartbeat;
7992         h->last_heartbeat_timestamp = now;
7993         return false;
7994 }
7995
7996 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7997 {
7998         int i;
7999         char *event_type;
8000
8001         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8002                 return;
8003
8004         /* Ask the controller to clear the events we're handling. */
8005         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8006                         | CFGTBL_Trans_io_accel2)) &&
8007                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8008                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8009
8010                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8011                         event_type = "state change";
8012                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8013                         event_type = "configuration change";
8014                 /* Stop sending new RAID offload reqs via the IO accelerator */
8015                 scsi_block_requests(h->scsi_host);
8016                 for (i = 0; i < h->ndevices; i++) {
8017                         h->dev[i]->offload_enabled = 0;
8018                         h->dev[i]->offload_to_be_enabled = 0;
8019                 }
8020                 hpsa_drain_accel_commands(h);
8021                 /* Set 'accelerator path config change' bit */
8022                 dev_warn(&h->pdev->dev,
8023                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8024                         h->events, event_type);
8025                 writel(h->events, &(h->cfgtable->clear_event_notify));
8026                 /* Set the "clear event notify field update" bit 6 */
8027                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8028                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8029                 hpsa_wait_for_clear_event_notify_ack(h);
8030                 scsi_unblock_requests(h->scsi_host);
8031         } else {
8032                 /* Acknowledge controller notification events. */
8033                 writel(h->events, &(h->cfgtable->clear_event_notify));
8034                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8035                 hpsa_wait_for_clear_event_notify_ack(h);
8036 #if 0
8037                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8038                 hpsa_wait_for_mode_change_ack(h);
8039 #endif
8040         }
8041         return;
8042 }
8043
8044 /* Check a register on the controller to see if there are configuration
8045  * changes (added/changed/removed logical drives, etc.) which mean that
8046  * we should rescan the controller for devices.
8047  * Also check flag for driver-initiated rescan.
8048  */
8049 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8050 {
8051         if (h->drv_req_rescan) {
8052                 h->drv_req_rescan = 0;
8053                 return 1;
8054         }
8055
8056         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8057                 return 0;
8058
8059         h->events = readl(&(h->cfgtable->event_notify));
8060         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8061 }
8062
8063 /*
8064  * Check if any of the offline devices have become ready
8065  */
8066 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8067 {
8068         unsigned long flags;
8069         struct offline_device_entry *d;
8070         struct list_head *this, *tmp;
8071
8072         spin_lock_irqsave(&h->offline_device_lock, flags);
8073         list_for_each_safe(this, tmp, &h->offline_device_list) {
8074                 d = list_entry(this, struct offline_device_entry,
8075                                 offline_list);
8076                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8077                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8078                         spin_lock_irqsave(&h->offline_device_lock, flags);
8079                         list_del(&d->offline_list);
8080                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8081                         return 1;
8082                 }
8083                 spin_lock_irqsave(&h->offline_device_lock, flags);
8084         }
8085         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8086         return 0;
8087 }
8088
8089 static int hpsa_luns_changed(struct ctlr_info *h)
8090 {
8091         int rc = 1; /* assume there are changes */
8092         struct ReportLUNdata *logdev = NULL;
8093
8094         /* if we can't find out if lun data has changed,
8095          * assume that it has.
8096          */
8097
8098         if (!h->lastlogicals)
8099                 return rc;
8100
8101         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8102         if (!logdev)
8103                 return rc;
8104
8105         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8106                 dev_warn(&h->pdev->dev,
8107                         "report luns failed, can't track lun changes.\n");
8108                 goto out;
8109         }
8110         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8111                 dev_info(&h->pdev->dev,
8112                         "Lun changes detected.\n");
8113                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8114                 goto out;
8115         } else
8116                 rc = 0; /* no changes detected. */
8117 out:
8118         kfree(logdev);
8119         return rc;
8120 }
8121
8122 static void hpsa_perform_rescan(struct ctlr_info *h)
8123 {
8124         struct Scsi_Host *sh = NULL;
8125         unsigned long flags;
8126
8127         /*
8128          * Do the scan after the reset
8129          */
8130         spin_lock_irqsave(&h->reset_lock, flags);
8131         if (h->reset_in_progress) {
8132                 h->drv_req_rescan = 1;
8133                 spin_unlock_irqrestore(&h->reset_lock, flags);
8134                 return;
8135         }
8136         spin_unlock_irqrestore(&h->reset_lock, flags);
8137
8138         sh = scsi_host_get(h->scsi_host);
8139         if (sh != NULL) {
8140                 hpsa_scan_start(sh);
8141                 scsi_host_put(sh);
8142                 h->drv_req_rescan = 0;
8143         }
8144 }
8145
8146 /*
8147  * watch for controller events
8148  */
8149 static void hpsa_event_monitor_worker(struct work_struct *work)
8150 {
8151         struct ctlr_info *h = container_of(to_delayed_work(work),
8152                                         struct ctlr_info, event_monitor_work);
8153         unsigned long flags;
8154
8155         spin_lock_irqsave(&h->lock, flags);
8156         if (h->remove_in_progress) {
8157                 spin_unlock_irqrestore(&h->lock, flags);
8158                 return;
8159         }
8160         spin_unlock_irqrestore(&h->lock, flags);
8161
8162         if (hpsa_ctlr_needs_rescan(h)) {
8163                 hpsa_ack_ctlr_events(h);
8164                 hpsa_perform_rescan(h);
8165         }
8166
8167         spin_lock_irqsave(&h->lock, flags);
8168         if (!h->remove_in_progress)
8169                 schedule_delayed_work(&h->event_monitor_work,
8170                                         HPSA_EVENT_MONITOR_INTERVAL);
8171         spin_unlock_irqrestore(&h->lock, flags);
8172 }
8173
8174 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8175 {
8176         unsigned long flags;
8177         struct ctlr_info *h = container_of(to_delayed_work(work),
8178                                         struct ctlr_info, rescan_ctlr_work);
8179
8180         spin_lock_irqsave(&h->lock, flags);
8181         if (h->remove_in_progress) {
8182                 spin_unlock_irqrestore(&h->lock, flags);
8183                 return;
8184         }
8185         spin_unlock_irqrestore(&h->lock, flags);
8186
8187         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8188                 hpsa_perform_rescan(h);
8189         } else if (h->discovery_polling) {
8190                 hpsa_disable_rld_caching(h);
8191                 if (hpsa_luns_changed(h)) {
8192                         dev_info(&h->pdev->dev,
8193                                 "driver discovery polling rescan.\n");
8194                         hpsa_perform_rescan(h);
8195                 }
8196         }
8197         spin_lock_irqsave(&h->lock, flags);
8198         if (!h->remove_in_progress)
8199                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8200                                 h->heartbeat_sample_interval);
8201         spin_unlock_irqrestore(&h->lock, flags);
8202 }
8203
8204 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8205 {
8206         unsigned long flags;
8207         struct ctlr_info *h = container_of(to_delayed_work(work),
8208                                         struct ctlr_info, monitor_ctlr_work);
8209
8210         detect_controller_lockup(h);
8211         if (lockup_detected(h))
8212                 return;
8213
8214         spin_lock_irqsave(&h->lock, flags);
8215         if (!h->remove_in_progress)
8216                 schedule_delayed_work(&h->monitor_ctlr_work,
8217                                 h->heartbeat_sample_interval);
8218         spin_unlock_irqrestore(&h->lock, flags);
8219 }
8220
8221 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8222                                                 char *name)
8223 {
8224         struct workqueue_struct *wq = NULL;
8225
8226         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8227         if (!wq)
8228                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8229
8230         return wq;
8231 }
8232
8233 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8234 {
8235         int dac, rc;
8236         struct ctlr_info *h;
8237         int try_soft_reset = 0;
8238         unsigned long flags;
8239         u32 board_id;
8240
8241         if (number_of_controllers == 0)
8242                 printk(KERN_INFO DRIVER_NAME "\n");
8243
8244         rc = hpsa_lookup_board_id(pdev, &board_id);
8245         if (rc < 0) {
8246                 dev_warn(&pdev->dev, "Board ID not found\n");
8247                 return rc;
8248         }
8249
8250         rc = hpsa_init_reset_devices(pdev, board_id);
8251         if (rc) {
8252                 if (rc != -ENOTSUPP)
8253                         return rc;
8254                 /* If the reset fails in a particular way (it has no way to do
8255                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8256                  * a soft reset once we get the controller configured up to the
8257                  * point that it can accept a command.
8258                  */
8259                 try_soft_reset = 1;
8260                 rc = 0;
8261         }
8262
8263 reinit_after_soft_reset:
8264
8265         /* Command structures must be aligned on a 32-byte boundary because
8266          * the 5 lower bits of the address are used by the hardware. and by
8267          * the driver.  See comments in hpsa.h for more info.
8268          */
8269         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8270         h = kzalloc(sizeof(*h), GFP_KERNEL);
8271         if (!h) {
8272                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8273                 return -ENOMEM;
8274         }
8275
8276         h->pdev = pdev;
8277
8278         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8279         INIT_LIST_HEAD(&h->offline_device_list);
8280         spin_lock_init(&h->lock);
8281         spin_lock_init(&h->offline_device_lock);
8282         spin_lock_init(&h->scan_lock);
8283         spin_lock_init(&h->reset_lock);
8284         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8285
8286         /* Allocate and clear per-cpu variable lockup_detected */
8287         h->lockup_detected = alloc_percpu(u32);
8288         if (!h->lockup_detected) {
8289                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8290                 rc = -ENOMEM;
8291                 goto clean1;    /* aer/h */
8292         }
8293         set_lockup_detected_for_all_cpus(h, 0);
8294
8295         rc = hpsa_pci_init(h);
8296         if (rc)
8297                 goto clean2;    /* lu, aer/h */
8298
8299         /* relies on h-> settings made by hpsa_pci_init, including
8300          * interrupt_mode h->intr */
8301         rc = hpsa_scsi_host_alloc(h);
8302         if (rc)
8303                 goto clean2_5;  /* pci, lu, aer/h */
8304
8305         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8306         h->ctlr = number_of_controllers;
8307         number_of_controllers++;
8308
8309         /* configure PCI DMA stuff */
8310         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8311         if (rc == 0) {
8312                 dac = 1;
8313         } else {
8314                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8315                 if (rc == 0) {
8316                         dac = 0;
8317                 } else {
8318                         dev_err(&pdev->dev, "no suitable DMA available\n");
8319                         goto clean3;    /* shost, pci, lu, aer/h */
8320                 }
8321         }
8322
8323         /* make sure the board interrupts are off */
8324         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8325
8326         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8327         if (rc)
8328                 goto clean3;    /* shost, pci, lu, aer/h */
8329         rc = hpsa_alloc_cmd_pool(h);
8330         if (rc)
8331                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8332         rc = hpsa_alloc_sg_chain_blocks(h);
8333         if (rc)
8334                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8335         init_waitqueue_head(&h->scan_wait_queue);
8336         init_waitqueue_head(&h->event_sync_wait_queue);
8337         mutex_init(&h->reset_mutex);
8338         h->scan_finished = 1; /* no scan currently in progress */
8339         h->scan_waiting = 0;
8340
8341         pci_set_drvdata(pdev, h);
8342         h->ndevices = 0;
8343
8344         spin_lock_init(&h->devlock);
8345         rc = hpsa_put_ctlr_into_performant_mode(h);
8346         if (rc)
8347                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8348
8349         /* create the resubmit workqueue */
8350         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8351         if (!h->rescan_ctlr_wq) {
8352                 rc = -ENOMEM;
8353                 goto clean7;
8354         }
8355
8356         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8357         if (!h->resubmit_wq) {
8358                 rc = -ENOMEM;
8359                 goto clean7;    /* aer/h */
8360         }
8361
8362         /*
8363          * At this point, the controller is ready to take commands.
8364          * Now, if reset_devices and the hard reset didn't work, try
8365          * the soft reset and see if that works.
8366          */
8367         if (try_soft_reset) {
8368
8369                 /* This is kind of gross.  We may or may not get a completion
8370                  * from the soft reset command, and if we do, then the value
8371                  * from the fifo may or may not be valid.  So, we wait 10 secs
8372                  * after the reset throwing away any completions we get during
8373                  * that time.  Unregister the interrupt handler and register
8374                  * fake ones to scoop up any residual completions.
8375                  */
8376                 spin_lock_irqsave(&h->lock, flags);
8377                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8378                 spin_unlock_irqrestore(&h->lock, flags);
8379                 hpsa_free_irqs(h);
8380                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8381                                         hpsa_intx_discard_completions);
8382                 if (rc) {
8383                         dev_warn(&h->pdev->dev,
8384                                 "Failed to request_irq after soft reset.\n");
8385                         /*
8386                          * cannot goto clean7 or free_irqs will be called
8387                          * again. Instead, do its work
8388                          */
8389                         hpsa_free_performant_mode(h);   /* clean7 */
8390                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8391                         hpsa_free_cmd_pool(h);          /* clean5 */
8392                         /*
8393                          * skip hpsa_free_irqs(h) clean4 since that
8394                          * was just called before request_irqs failed
8395                          */
8396                         goto clean3;
8397                 }
8398
8399                 rc = hpsa_kdump_soft_reset(h);
8400                 if (rc)
8401                         /* Neither hard nor soft reset worked, we're hosed. */
8402                         goto clean7;
8403
8404                 dev_info(&h->pdev->dev, "Board READY.\n");
8405                 dev_info(&h->pdev->dev,
8406                         "Waiting for stale completions to drain.\n");
8407                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8408                 msleep(10000);
8409                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8410
8411                 rc = controller_reset_failed(h->cfgtable);
8412                 if (rc)
8413                         dev_info(&h->pdev->dev,
8414                                 "Soft reset appears to have failed.\n");
8415
8416                 /* since the controller's reset, we have to go back and re-init
8417                  * everything.  Easiest to just forget what we've done and do it
8418                  * all over again.
8419                  */
8420                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8421                 try_soft_reset = 0;
8422                 if (rc)
8423                         /* don't goto clean, we already unallocated */
8424                         return -ENODEV;
8425
8426                 goto reinit_after_soft_reset;
8427         }
8428
8429         /* Enable Accelerated IO path at driver layer */
8430         h->acciopath_status = 1;
8431         /* Disable discovery polling.*/
8432         h->discovery_polling = 0;
8433
8434
8435         /* Turn the interrupts on so we can service requests */
8436         h->access.set_intr_mask(h, HPSA_INTR_ON);
8437
8438         hpsa_hba_inquiry(h);
8439
8440         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8441         if (!h->lastlogicals)
8442                 dev_info(&h->pdev->dev,
8443                         "Can't track change to report lun data\n");
8444
8445         /* hook into SCSI subsystem */
8446         rc = hpsa_scsi_add_host(h);
8447         if (rc)
8448                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8449
8450         /* Monitor the controller for firmware lockups */
8451         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8452         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8453         schedule_delayed_work(&h->monitor_ctlr_work,
8454                                 h->heartbeat_sample_interval);
8455         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8456         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8457                                 h->heartbeat_sample_interval);
8458         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8459         schedule_delayed_work(&h->event_monitor_work,
8460                                 HPSA_EVENT_MONITOR_INTERVAL);
8461         return 0;
8462
8463 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8464         hpsa_free_performant_mode(h);
8465         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8466 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8467         hpsa_free_sg_chain_blocks(h);
8468 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8469         hpsa_free_cmd_pool(h);
8470 clean4: /* irq, shost, pci, lu, aer/h */
8471         hpsa_free_irqs(h);
8472 clean3: /* shost, pci, lu, aer/h */
8473         scsi_host_put(h->scsi_host);
8474         h->scsi_host = NULL;
8475 clean2_5: /* pci, lu, aer/h */
8476         hpsa_free_pci_init(h);
8477 clean2: /* lu, aer/h */
8478         if (h->lockup_detected) {
8479                 free_percpu(h->lockup_detected);
8480                 h->lockup_detected = NULL;
8481         }
8482 clean1: /* wq/aer/h */
8483         if (h->resubmit_wq) {
8484                 destroy_workqueue(h->resubmit_wq);
8485                 h->resubmit_wq = NULL;
8486         }
8487         if (h->rescan_ctlr_wq) {
8488                 destroy_workqueue(h->rescan_ctlr_wq);
8489                 h->rescan_ctlr_wq = NULL;
8490         }
8491         kfree(h);
8492         return rc;
8493 }
8494
8495 static void hpsa_flush_cache(struct ctlr_info *h)
8496 {
8497         char *flush_buf;
8498         struct CommandList *c;
8499         int rc;
8500
8501         if (unlikely(lockup_detected(h)))
8502                 return;
8503         flush_buf = kzalloc(4, GFP_KERNEL);
8504         if (!flush_buf)
8505                 return;
8506
8507         c = cmd_alloc(h);
8508
8509         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8510                 RAID_CTLR_LUNID, TYPE_CMD)) {
8511                 goto out;
8512         }
8513         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8514                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8515         if (rc)
8516                 goto out;
8517         if (c->err_info->CommandStatus != 0)
8518 out:
8519                 dev_warn(&h->pdev->dev,
8520                         "error flushing cache on controller\n");
8521         cmd_free(h, c);
8522         kfree(flush_buf);
8523 }
8524
8525 /* Make controller gather fresh report lun data each time we
8526  * send down a report luns request
8527  */
8528 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8529 {
8530         u32 *options;
8531         struct CommandList *c;
8532         int rc;
8533
8534         /* Don't bother trying to set diag options if locked up */
8535         if (unlikely(h->lockup_detected))
8536                 return;
8537
8538         options = kzalloc(sizeof(*options), GFP_KERNEL);
8539         if (!options)
8540                 return;
8541
8542         c = cmd_alloc(h);
8543
8544         /* first, get the current diag options settings */
8545         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8546                 RAID_CTLR_LUNID, TYPE_CMD))
8547                 goto errout;
8548
8549         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8550                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8551         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8552                 goto errout;
8553
8554         /* Now, set the bit for disabling the RLD caching */
8555         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8556
8557         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8558                 RAID_CTLR_LUNID, TYPE_CMD))
8559                 goto errout;
8560
8561         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8562                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8563         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8564                 goto errout;
8565
8566         /* Now verify that it got set: */
8567         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8568                 RAID_CTLR_LUNID, TYPE_CMD))
8569                 goto errout;
8570
8571         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8572                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8573         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8574                 goto errout;
8575
8576         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8577                 goto out;
8578
8579 errout:
8580         dev_err(&h->pdev->dev,
8581                         "Error: failed to disable report lun data caching.\n");
8582 out:
8583         cmd_free(h, c);
8584         kfree(options);
8585 }
8586
8587 static void hpsa_shutdown(struct pci_dev *pdev)
8588 {
8589         struct ctlr_info *h;
8590
8591         h = pci_get_drvdata(pdev);
8592         /* Turn board interrupts off  and send the flush cache command
8593          * sendcmd will turn off interrupt, and send the flush...
8594          * To write all data in the battery backed cache to disks
8595          */
8596         hpsa_flush_cache(h);
8597         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8598         hpsa_free_irqs(h);                      /* init_one 4 */
8599         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8600 }
8601
8602 static void hpsa_free_device_info(struct ctlr_info *h)
8603 {
8604         int i;
8605
8606         for (i = 0; i < h->ndevices; i++) {
8607                 kfree(h->dev[i]);
8608                 h->dev[i] = NULL;
8609         }
8610 }
8611
8612 static void hpsa_remove_one(struct pci_dev *pdev)
8613 {
8614         struct ctlr_info *h;
8615         unsigned long flags;
8616
8617         if (pci_get_drvdata(pdev) == NULL) {
8618                 dev_err(&pdev->dev, "unable to remove device\n");
8619                 return;
8620         }
8621         h = pci_get_drvdata(pdev);
8622
8623         /* Get rid of any controller monitoring work items */
8624         spin_lock_irqsave(&h->lock, flags);
8625         h->remove_in_progress = 1;
8626         spin_unlock_irqrestore(&h->lock, flags);
8627         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8628         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8629         cancel_delayed_work_sync(&h->event_monitor_work);
8630         destroy_workqueue(h->rescan_ctlr_wq);
8631         destroy_workqueue(h->resubmit_wq);
8632
8633         /*
8634          * Call before disabling interrupts.
8635          * scsi_remove_host can trigger I/O operations especially
8636          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8637          * operations which cannot complete and will hang the system.
8638          */
8639         if (h->scsi_host)
8640                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8641         /* includes hpsa_free_irqs - init_one 4 */
8642         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8643         hpsa_shutdown(pdev);
8644
8645         hpsa_free_device_info(h);               /* scan */
8646
8647         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8648         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8649         hpsa_free_ioaccel2_sg_chain_blocks(h);
8650         hpsa_free_performant_mode(h);                   /* init_one 7 */
8651         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8652         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8653         kfree(h->lastlogicals);
8654
8655         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8656
8657         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8658         h->scsi_host = NULL;                            /* init_one 3 */
8659
8660         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8661         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8662
8663         free_percpu(h->lockup_detected);                /* init_one 2 */
8664         h->lockup_detected = NULL;                      /* init_one 2 */
8665         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8666
8667         hpsa_delete_sas_host(h);
8668
8669         kfree(h);                                       /* init_one 1 */
8670 }
8671
8672 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8673         __attribute__((unused)) pm_message_t state)
8674 {
8675         return -ENOSYS;
8676 }
8677
8678 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8679 {
8680         return -ENOSYS;
8681 }
8682
8683 static struct pci_driver hpsa_pci_driver = {
8684         .name = HPSA,
8685         .probe = hpsa_init_one,
8686         .remove = hpsa_remove_one,
8687         .id_table = hpsa_pci_device_id, /* id_table */
8688         .shutdown = hpsa_shutdown,
8689         .suspend = hpsa_suspend,
8690         .resume = hpsa_resume,
8691 };
8692
8693 /* Fill in bucket_map[], given nsgs (the max number of
8694  * scatter gather elements supported) and bucket[],
8695  * which is an array of 8 integers.  The bucket[] array
8696  * contains 8 different DMA transfer sizes (in 16
8697  * byte increments) which the controller uses to fetch
8698  * commands.  This function fills in bucket_map[], which
8699  * maps a given number of scatter gather elements to one of
8700  * the 8 DMA transfer sizes.  The point of it is to allow the
8701  * controller to only do as much DMA as needed to fetch the
8702  * command, with the DMA transfer size encoded in the lower
8703  * bits of the command address.
8704  */
8705 static void  calc_bucket_map(int bucket[], int num_buckets,
8706         int nsgs, int min_blocks, u32 *bucket_map)
8707 {
8708         int i, j, b, size;
8709
8710         /* Note, bucket_map must have nsgs+1 entries. */
8711         for (i = 0; i <= nsgs; i++) {
8712                 /* Compute size of a command with i SG entries */
8713                 size = i + min_blocks;
8714                 b = num_buckets; /* Assume the biggest bucket */
8715                 /* Find the bucket that is just big enough */
8716                 for (j = 0; j < num_buckets; j++) {
8717                         if (bucket[j] >= size) {
8718                                 b = j;
8719                                 break;
8720                         }
8721                 }
8722                 /* for a command with i SG entries, use bucket b. */
8723                 bucket_map[i] = b;
8724         }
8725 }
8726
8727 /*
8728  * return -ENODEV on err, 0 on success (or no action)
8729  * allocates numerous items that must be freed later
8730  */
8731 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8732 {
8733         int i;
8734         unsigned long register_value;
8735         unsigned long transMethod = CFGTBL_Trans_Performant |
8736                         (trans_support & CFGTBL_Trans_use_short_tags) |
8737                                 CFGTBL_Trans_enable_directed_msix |
8738                         (trans_support & (CFGTBL_Trans_io_accel1 |
8739                                 CFGTBL_Trans_io_accel2));
8740         struct access_method access = SA5_performant_access;
8741
8742         /* This is a bit complicated.  There are 8 registers on
8743          * the controller which we write to to tell it 8 different
8744          * sizes of commands which there may be.  It's a way of
8745          * reducing the DMA done to fetch each command.  Encoded into
8746          * each command's tag are 3 bits which communicate to the controller
8747          * which of the eight sizes that command fits within.  The size of
8748          * each command depends on how many scatter gather entries there are.
8749          * Each SG entry requires 16 bytes.  The eight registers are programmed
8750          * with the number of 16-byte blocks a command of that size requires.
8751          * The smallest command possible requires 5 such 16 byte blocks.
8752          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8753          * blocks.  Note, this only extends to the SG entries contained
8754          * within the command block, and does not extend to chained blocks
8755          * of SG elements.   bft[] contains the eight values we write to
8756          * the registers.  They are not evenly distributed, but have more
8757          * sizes for small commands, and fewer sizes for larger commands.
8758          */
8759         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8760 #define MIN_IOACCEL2_BFT_ENTRY 5
8761 #define HPSA_IOACCEL2_HEADER_SZ 4
8762         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8763                         13, 14, 15, 16, 17, 18, 19,
8764                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8765         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8766         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8767         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8768                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8769         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8770         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8771         /*  5 = 1 s/g entry or 4k
8772          *  6 = 2 s/g entry or 8k
8773          *  8 = 4 s/g entry or 16k
8774          * 10 = 6 s/g entry or 24k
8775          */
8776
8777         /* If the controller supports either ioaccel method then
8778          * we can also use the RAID stack submit path that does not
8779          * perform the superfluous readl() after each command submission.
8780          */
8781         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8782                 access = SA5_performant_access_no_read;
8783
8784         /* Controller spec: zero out this buffer. */
8785         for (i = 0; i < h->nreply_queues; i++)
8786                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8787
8788         bft[7] = SG_ENTRIES_IN_CMD + 4;
8789         calc_bucket_map(bft, ARRAY_SIZE(bft),
8790                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8791         for (i = 0; i < 8; i++)
8792                 writel(bft[i], &h->transtable->BlockFetch[i]);
8793
8794         /* size of controller ring buffer */
8795         writel(h->max_commands, &h->transtable->RepQSize);
8796         writel(h->nreply_queues, &h->transtable->RepQCount);
8797         writel(0, &h->transtable->RepQCtrAddrLow32);
8798         writel(0, &h->transtable->RepQCtrAddrHigh32);
8799
8800         for (i = 0; i < h->nreply_queues; i++) {
8801                 writel(0, &h->transtable->RepQAddr[i].upper);
8802                 writel(h->reply_queue[i].busaddr,
8803                         &h->transtable->RepQAddr[i].lower);
8804         }
8805
8806         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8807         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8808         /*
8809          * enable outbound interrupt coalescing in accelerator mode;
8810          */
8811         if (trans_support & CFGTBL_Trans_io_accel1) {
8812                 access = SA5_ioaccel_mode1_access;
8813                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8814                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8815         } else
8816                 if (trans_support & CFGTBL_Trans_io_accel2)
8817                         access = SA5_ioaccel_mode2_access;
8818         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8819         if (hpsa_wait_for_mode_change_ack(h)) {
8820                 dev_err(&h->pdev->dev,
8821                         "performant mode problem - doorbell timeout\n");
8822                 return -ENODEV;
8823         }
8824         register_value = readl(&(h->cfgtable->TransportActive));
8825         if (!(register_value & CFGTBL_Trans_Performant)) {
8826                 dev_err(&h->pdev->dev,
8827                         "performant mode problem - transport not active\n");
8828                 return -ENODEV;
8829         }
8830         /* Change the access methods to the performant access methods */
8831         h->access = access;
8832         h->transMethod = transMethod;
8833
8834         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8835                 (trans_support & CFGTBL_Trans_io_accel2)))
8836                 return 0;
8837
8838         if (trans_support & CFGTBL_Trans_io_accel1) {
8839                 /* Set up I/O accelerator mode */
8840                 for (i = 0; i < h->nreply_queues; i++) {
8841                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8842                         h->reply_queue[i].current_entry =
8843                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8844                 }
8845                 bft[7] = h->ioaccel_maxsg + 8;
8846                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8847                                 h->ioaccel1_blockFetchTable);
8848
8849                 /* initialize all reply queue entries to unused */
8850                 for (i = 0; i < h->nreply_queues; i++)
8851                         memset(h->reply_queue[i].head,
8852                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8853                                 h->reply_queue_size);
8854
8855                 /* set all the constant fields in the accelerator command
8856                  * frames once at init time to save CPU cycles later.
8857                  */
8858                 for (i = 0; i < h->nr_cmds; i++) {
8859                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8860
8861                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8862                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8863                                         (i * sizeof(struct ErrorInfo)));
8864                         cp->err_info_len = sizeof(struct ErrorInfo);
8865                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8866                         cp->host_context_flags =
8867                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8868                         cp->timeout_sec = 0;
8869                         cp->ReplyQueue = 0;
8870                         cp->tag =
8871                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8872                         cp->host_addr =
8873                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8874                                         (i * sizeof(struct io_accel1_cmd)));
8875                 }
8876         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8877                 u64 cfg_offset, cfg_base_addr_index;
8878                 u32 bft2_offset, cfg_base_addr;
8879                 int rc;
8880
8881                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8882                         &cfg_base_addr_index, &cfg_offset);
8883                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8884                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8885                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8886                                 4, h->ioaccel2_blockFetchTable);
8887                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8888                 BUILD_BUG_ON(offsetof(struct CfgTable,
8889                                 io_accel_request_size_offset) != 0xb8);
8890                 h->ioaccel2_bft2_regs =
8891                         remap_pci_mem(pci_resource_start(h->pdev,
8892                                         cfg_base_addr_index) +
8893                                         cfg_offset + bft2_offset,
8894                                         ARRAY_SIZE(bft2) *
8895                                         sizeof(*h->ioaccel2_bft2_regs));
8896                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8897                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8898         }
8899         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8900         if (hpsa_wait_for_mode_change_ack(h)) {
8901                 dev_err(&h->pdev->dev,
8902                         "performant mode problem - enabling ioaccel mode\n");
8903                 return -ENODEV;
8904         }
8905         return 0;
8906 }
8907
8908 /* Free ioaccel1 mode command blocks and block fetch table */
8909 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8910 {
8911         if (h->ioaccel_cmd_pool) {
8912                 pci_free_consistent(h->pdev,
8913                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8914                         h->ioaccel_cmd_pool,
8915                         h->ioaccel_cmd_pool_dhandle);
8916                 h->ioaccel_cmd_pool = NULL;
8917                 h->ioaccel_cmd_pool_dhandle = 0;
8918         }
8919         kfree(h->ioaccel1_blockFetchTable);
8920         h->ioaccel1_blockFetchTable = NULL;
8921 }
8922
8923 /* Allocate ioaccel1 mode command blocks and block fetch table */
8924 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8925 {
8926         h->ioaccel_maxsg =
8927                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8928         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8929                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8930
8931         /* Command structures must be aligned on a 128-byte boundary
8932          * because the 7 lower bits of the address are used by the
8933          * hardware.
8934          */
8935         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8936                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8937         h->ioaccel_cmd_pool =
8938                 pci_alloc_consistent(h->pdev,
8939                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8940                         &(h->ioaccel_cmd_pool_dhandle));
8941
8942         h->ioaccel1_blockFetchTable =
8943                 kmalloc(((h->ioaccel_maxsg + 1) *
8944                                 sizeof(u32)), GFP_KERNEL);
8945
8946         if ((h->ioaccel_cmd_pool == NULL) ||
8947                 (h->ioaccel1_blockFetchTable == NULL))
8948                 goto clean_up;
8949
8950         memset(h->ioaccel_cmd_pool, 0,
8951                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8952         return 0;
8953
8954 clean_up:
8955         hpsa_free_ioaccel1_cmd_and_bft(h);
8956         return -ENOMEM;
8957 }
8958
8959 /* Free ioaccel2 mode command blocks and block fetch table */
8960 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8961 {
8962         hpsa_free_ioaccel2_sg_chain_blocks(h);
8963
8964         if (h->ioaccel2_cmd_pool) {
8965                 pci_free_consistent(h->pdev,
8966                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8967                         h->ioaccel2_cmd_pool,
8968                         h->ioaccel2_cmd_pool_dhandle);
8969                 h->ioaccel2_cmd_pool = NULL;
8970                 h->ioaccel2_cmd_pool_dhandle = 0;
8971         }
8972         kfree(h->ioaccel2_blockFetchTable);
8973         h->ioaccel2_blockFetchTable = NULL;
8974 }
8975
8976 /* Allocate ioaccel2 mode command blocks and block fetch table */
8977 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8978 {
8979         int rc;
8980
8981         /* Allocate ioaccel2 mode command blocks and block fetch table */
8982
8983         h->ioaccel_maxsg =
8984                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8985         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8986                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8987
8988         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8989                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8990         h->ioaccel2_cmd_pool =
8991                 pci_alloc_consistent(h->pdev,
8992                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8993                         &(h->ioaccel2_cmd_pool_dhandle));
8994
8995         h->ioaccel2_blockFetchTable =
8996                 kmalloc(((h->ioaccel_maxsg + 1) *
8997                                 sizeof(u32)), GFP_KERNEL);
8998
8999         if ((h->ioaccel2_cmd_pool == NULL) ||
9000                 (h->ioaccel2_blockFetchTable == NULL)) {
9001                 rc = -ENOMEM;
9002                 goto clean_up;
9003         }
9004
9005         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9006         if (rc)
9007                 goto clean_up;
9008
9009         memset(h->ioaccel2_cmd_pool, 0,
9010                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9011         return 0;
9012
9013 clean_up:
9014         hpsa_free_ioaccel2_cmd_and_bft(h);
9015         return rc;
9016 }
9017
9018 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9019 static void hpsa_free_performant_mode(struct ctlr_info *h)
9020 {
9021         kfree(h->blockFetchTable);
9022         h->blockFetchTable = NULL;
9023         hpsa_free_reply_queues(h);
9024         hpsa_free_ioaccel1_cmd_and_bft(h);
9025         hpsa_free_ioaccel2_cmd_and_bft(h);
9026 }
9027
9028 /* return -ENODEV on error, 0 on success (or no action)
9029  * allocates numerous items that must be freed later
9030  */
9031 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9032 {
9033         u32 trans_support;
9034         unsigned long transMethod = CFGTBL_Trans_Performant |
9035                                         CFGTBL_Trans_use_short_tags;
9036         int i, rc;
9037
9038         if (hpsa_simple_mode)
9039                 return 0;
9040
9041         trans_support = readl(&(h->cfgtable->TransportSupport));
9042         if (!(trans_support & PERFORMANT_MODE))
9043                 return 0;
9044
9045         /* Check for I/O accelerator mode support */
9046         if (trans_support & CFGTBL_Trans_io_accel1) {
9047                 transMethod |= CFGTBL_Trans_io_accel1 |
9048                                 CFGTBL_Trans_enable_directed_msix;
9049                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9050                 if (rc)
9051                         return rc;
9052         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9053                 transMethod |= CFGTBL_Trans_io_accel2 |
9054                                 CFGTBL_Trans_enable_directed_msix;
9055                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9056                 if (rc)
9057                         return rc;
9058         }
9059
9060         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9061         hpsa_get_max_perf_mode_cmds(h);
9062         /* Performant mode ring buffer and supporting data structures */
9063         h->reply_queue_size = h->max_commands * sizeof(u64);
9064
9065         for (i = 0; i < h->nreply_queues; i++) {
9066                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9067                                                 h->reply_queue_size,
9068                                                 &(h->reply_queue[i].busaddr));
9069                 if (!h->reply_queue[i].head) {
9070                         rc = -ENOMEM;
9071                         goto clean1;    /* rq, ioaccel */
9072                 }
9073                 h->reply_queue[i].size = h->max_commands;
9074                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9075                 h->reply_queue[i].current_entry = 0;
9076         }
9077
9078         /* Need a block fetch table for performant mode */
9079         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9080                                 sizeof(u32)), GFP_KERNEL);
9081         if (!h->blockFetchTable) {
9082                 rc = -ENOMEM;
9083                 goto clean1;    /* rq, ioaccel */
9084         }
9085
9086         rc = hpsa_enter_performant_mode(h, trans_support);
9087         if (rc)
9088                 goto clean2;    /* bft, rq, ioaccel */
9089         return 0;
9090
9091 clean2: /* bft, rq, ioaccel */
9092         kfree(h->blockFetchTable);
9093         h->blockFetchTable = NULL;
9094 clean1: /* rq, ioaccel */
9095         hpsa_free_reply_queues(h);
9096         hpsa_free_ioaccel1_cmd_and_bft(h);
9097         hpsa_free_ioaccel2_cmd_and_bft(h);
9098         return rc;
9099 }
9100
9101 static int is_accelerated_cmd(struct CommandList *c)
9102 {
9103         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9104 }
9105
9106 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9107 {
9108         struct CommandList *c = NULL;
9109         int i, accel_cmds_out;
9110         int refcount;
9111
9112         do { /* wait for all outstanding ioaccel commands to drain out */
9113                 accel_cmds_out = 0;
9114                 for (i = 0; i < h->nr_cmds; i++) {
9115                         c = h->cmd_pool + i;
9116                         refcount = atomic_inc_return(&c->refcount);
9117                         if (refcount > 1) /* Command is allocated */
9118                                 accel_cmds_out += is_accelerated_cmd(c);
9119                         cmd_free(h, c);
9120                 }
9121                 if (accel_cmds_out <= 0)
9122                         break;
9123                 msleep(100);
9124         } while (1);
9125 }
9126
9127 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9128                                 struct hpsa_sas_port *hpsa_sas_port)
9129 {
9130         struct hpsa_sas_phy *hpsa_sas_phy;
9131         struct sas_phy *phy;
9132
9133         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9134         if (!hpsa_sas_phy)
9135                 return NULL;
9136
9137         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9138                 hpsa_sas_port->next_phy_index);
9139         if (!phy) {
9140                 kfree(hpsa_sas_phy);
9141                 return NULL;
9142         }
9143
9144         hpsa_sas_port->next_phy_index++;
9145         hpsa_sas_phy->phy = phy;
9146         hpsa_sas_phy->parent_port = hpsa_sas_port;
9147
9148         return hpsa_sas_phy;
9149 }
9150
9151 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9152 {
9153         struct sas_phy *phy = hpsa_sas_phy->phy;
9154
9155         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9156         sas_phy_free(phy);
9157         if (hpsa_sas_phy->added_to_port)
9158                 list_del(&hpsa_sas_phy->phy_list_entry);
9159         kfree(hpsa_sas_phy);
9160 }
9161
9162 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9163 {
9164         int rc;
9165         struct hpsa_sas_port *hpsa_sas_port;
9166         struct sas_phy *phy;
9167         struct sas_identify *identify;
9168
9169         hpsa_sas_port = hpsa_sas_phy->parent_port;
9170         phy = hpsa_sas_phy->phy;
9171
9172         identify = &phy->identify;
9173         memset(identify, 0, sizeof(*identify));
9174         identify->sas_address = hpsa_sas_port->sas_address;
9175         identify->device_type = SAS_END_DEVICE;
9176         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9177         identify->target_port_protocols = SAS_PROTOCOL_STP;
9178         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9179         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9180         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9181         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9182         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9183
9184         rc = sas_phy_add(hpsa_sas_phy->phy);
9185         if (rc)
9186                 return rc;
9187
9188         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9189         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9190                         &hpsa_sas_port->phy_list_head);
9191         hpsa_sas_phy->added_to_port = true;
9192
9193         return 0;
9194 }
9195
9196 static int
9197         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9198                                 struct sas_rphy *rphy)
9199 {
9200         struct sas_identify *identify;
9201
9202         identify = &rphy->identify;
9203         identify->sas_address = hpsa_sas_port->sas_address;
9204         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9205         identify->target_port_protocols = SAS_PROTOCOL_STP;
9206
9207         return sas_rphy_add(rphy);
9208 }
9209
9210 static struct hpsa_sas_port
9211         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9212                                 u64 sas_address)
9213 {
9214         int rc;
9215         struct hpsa_sas_port *hpsa_sas_port;
9216         struct sas_port *port;
9217
9218         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9219         if (!hpsa_sas_port)
9220                 return NULL;
9221
9222         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9223         hpsa_sas_port->parent_node = hpsa_sas_node;
9224
9225         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9226         if (!port)
9227                 goto free_hpsa_port;
9228
9229         rc = sas_port_add(port);
9230         if (rc)
9231                 goto free_sas_port;
9232
9233         hpsa_sas_port->port = port;
9234         hpsa_sas_port->sas_address = sas_address;
9235         list_add_tail(&hpsa_sas_port->port_list_entry,
9236                         &hpsa_sas_node->port_list_head);
9237
9238         return hpsa_sas_port;
9239
9240 free_sas_port:
9241         sas_port_free(port);
9242 free_hpsa_port:
9243         kfree(hpsa_sas_port);
9244
9245         return NULL;
9246 }
9247
9248 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9249 {
9250         struct hpsa_sas_phy *hpsa_sas_phy;
9251         struct hpsa_sas_phy *next;
9252
9253         list_for_each_entry_safe(hpsa_sas_phy, next,
9254                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9255                 hpsa_free_sas_phy(hpsa_sas_phy);
9256
9257         sas_port_delete(hpsa_sas_port->port);
9258         list_del(&hpsa_sas_port->port_list_entry);
9259         kfree(hpsa_sas_port);
9260 }
9261
9262 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9263 {
9264         struct hpsa_sas_node *hpsa_sas_node;
9265
9266         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9267         if (hpsa_sas_node) {
9268                 hpsa_sas_node->parent_dev = parent_dev;
9269                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9270         }
9271
9272         return hpsa_sas_node;
9273 }
9274
9275 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9276 {
9277         struct hpsa_sas_port *hpsa_sas_port;
9278         struct hpsa_sas_port *next;
9279
9280         if (!hpsa_sas_node)
9281                 return;
9282
9283         list_for_each_entry_safe(hpsa_sas_port, next,
9284                         &hpsa_sas_node->port_list_head, port_list_entry)
9285                 hpsa_free_sas_port(hpsa_sas_port);
9286
9287         kfree(hpsa_sas_node);
9288 }
9289
9290 static struct hpsa_scsi_dev_t
9291         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9292                                         struct sas_rphy *rphy)
9293 {
9294         int i;
9295         struct hpsa_scsi_dev_t *device;
9296
9297         for (i = 0; i < h->ndevices; i++) {
9298                 device = h->dev[i];
9299                 if (!device->sas_port)
9300                         continue;
9301                 if (device->sas_port->rphy == rphy)
9302                         return device;
9303         }
9304
9305         return NULL;
9306 }
9307
9308 static int hpsa_add_sas_host(struct ctlr_info *h)
9309 {
9310         int rc;
9311         struct device *parent_dev;
9312         struct hpsa_sas_node *hpsa_sas_node;
9313         struct hpsa_sas_port *hpsa_sas_port;
9314         struct hpsa_sas_phy *hpsa_sas_phy;
9315
9316         parent_dev = &h->scsi_host->shost_gendev;
9317
9318         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9319         if (!hpsa_sas_node)
9320                 return -ENOMEM;
9321
9322         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9323         if (!hpsa_sas_port) {
9324                 rc = -ENODEV;
9325                 goto free_sas_node;
9326         }
9327
9328         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9329         if (!hpsa_sas_phy) {
9330                 rc = -ENODEV;
9331                 goto free_sas_port;
9332         }
9333
9334         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9335         if (rc)
9336                 goto free_sas_phy;
9337
9338         h->sas_host = hpsa_sas_node;
9339
9340         return 0;
9341
9342 free_sas_phy:
9343         hpsa_free_sas_phy(hpsa_sas_phy);
9344 free_sas_port:
9345         hpsa_free_sas_port(hpsa_sas_port);
9346 free_sas_node:
9347         hpsa_free_sas_node(hpsa_sas_node);
9348
9349         return rc;
9350 }
9351
9352 static void hpsa_delete_sas_host(struct ctlr_info *h)
9353 {
9354         hpsa_free_sas_node(h->sas_host);
9355 }
9356
9357 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9358                                 struct hpsa_scsi_dev_t *device)
9359 {
9360         int rc;
9361         struct hpsa_sas_port *hpsa_sas_port;
9362         struct sas_rphy *rphy;
9363
9364         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9365         if (!hpsa_sas_port)
9366                 return -ENOMEM;
9367
9368         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9369         if (!rphy) {
9370                 rc = -ENODEV;
9371                 goto free_sas_port;
9372         }
9373
9374         hpsa_sas_port->rphy = rphy;
9375         device->sas_port = hpsa_sas_port;
9376
9377         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9378         if (rc)
9379                 goto free_sas_port;
9380
9381         return 0;
9382
9383 free_sas_port:
9384         hpsa_free_sas_port(hpsa_sas_port);
9385         device->sas_port = NULL;
9386
9387         return rc;
9388 }
9389
9390 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9391 {
9392         if (device->sas_port) {
9393                 hpsa_free_sas_port(device->sas_port);
9394                 device->sas_port = NULL;
9395         }
9396 }
9397
9398 static int
9399 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9400 {
9401         return 0;
9402 }
9403
9404 static int
9405 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9406 {
9407         *identifier = 0;
9408         return 0;
9409 }
9410
9411 static int
9412 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9413 {
9414         return -ENXIO;
9415 }
9416
9417 static int
9418 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9419 {
9420         return 0;
9421 }
9422
9423 static int
9424 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9425 {
9426         return 0;
9427 }
9428
9429 static int
9430 hpsa_sas_phy_setup(struct sas_phy *phy)
9431 {
9432         return 0;
9433 }
9434
9435 static void
9436 hpsa_sas_phy_release(struct sas_phy *phy)
9437 {
9438 }
9439
9440 static int
9441 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9442 {
9443         return -EINVAL;
9444 }
9445
9446 /* SMP = Serial Management Protocol */
9447 static int
9448 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9449 struct request *req)
9450 {
9451         return -EINVAL;
9452 }
9453
9454 static struct sas_function_template hpsa_sas_transport_functions = {
9455         .get_linkerrors = hpsa_sas_get_linkerrors,
9456         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9457         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9458         .phy_reset = hpsa_sas_phy_reset,
9459         .phy_enable = hpsa_sas_phy_enable,
9460         .phy_setup = hpsa_sas_phy_setup,
9461         .phy_release = hpsa_sas_phy_release,
9462         .set_phy_speed = hpsa_sas_phy_speed,
9463         .smp_handler = hpsa_sas_smp_handler,
9464 };
9465
9466 /*
9467  *  This is it.  Register the PCI driver information for the cards we control
9468  *  the OS will call our registered routines when it finds one of our cards.
9469  */
9470 static int __init hpsa_init(void)
9471 {
9472         int rc;
9473
9474         hpsa_sas_transport_template =
9475                 sas_attach_transport(&hpsa_sas_transport_functions);
9476         if (!hpsa_sas_transport_template)
9477                 return -ENODEV;
9478
9479         rc = pci_register_driver(&hpsa_pci_driver);
9480
9481         if (rc)
9482                 sas_release_transport(hpsa_sas_transport_template);
9483
9484         return rc;
9485 }
9486
9487 static void __exit hpsa_cleanup(void)
9488 {
9489         pci_unregister_driver(&hpsa_pci_driver);
9490         sas_release_transport(hpsa_sas_transport_template);
9491 }
9492
9493 static void __attribute__((unused)) verify_offsets(void)
9494 {
9495 #define VERIFY_OFFSET(member, offset) \
9496         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9497
9498         VERIFY_OFFSET(structure_size, 0);
9499         VERIFY_OFFSET(volume_blk_size, 4);
9500         VERIFY_OFFSET(volume_blk_cnt, 8);
9501         VERIFY_OFFSET(phys_blk_shift, 16);
9502         VERIFY_OFFSET(parity_rotation_shift, 17);
9503         VERIFY_OFFSET(strip_size, 18);
9504         VERIFY_OFFSET(disk_starting_blk, 20);
9505         VERIFY_OFFSET(disk_blk_cnt, 28);
9506         VERIFY_OFFSET(data_disks_per_row, 36);
9507         VERIFY_OFFSET(metadata_disks_per_row, 38);
9508         VERIFY_OFFSET(row_cnt, 40);
9509         VERIFY_OFFSET(layout_map_count, 42);
9510         VERIFY_OFFSET(flags, 44);
9511         VERIFY_OFFSET(dekindex, 46);
9512         /* VERIFY_OFFSET(reserved, 48 */
9513         VERIFY_OFFSET(data, 64);
9514
9515 #undef VERIFY_OFFSET
9516
9517 #define VERIFY_OFFSET(member, offset) \
9518         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9519
9520         VERIFY_OFFSET(IU_type, 0);
9521         VERIFY_OFFSET(direction, 1);
9522         VERIFY_OFFSET(reply_queue, 2);
9523         /* VERIFY_OFFSET(reserved1, 3);  */
9524         VERIFY_OFFSET(scsi_nexus, 4);
9525         VERIFY_OFFSET(Tag, 8);
9526         VERIFY_OFFSET(cdb, 16);
9527         VERIFY_OFFSET(cciss_lun, 32);
9528         VERIFY_OFFSET(data_len, 40);
9529         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9530         VERIFY_OFFSET(sg_count, 45);
9531         /* VERIFY_OFFSET(reserved3 */
9532         VERIFY_OFFSET(err_ptr, 48);
9533         VERIFY_OFFSET(err_len, 56);
9534         /* VERIFY_OFFSET(reserved4  */
9535         VERIFY_OFFSET(sg, 64);
9536
9537 #undef VERIFY_OFFSET
9538
9539 #define VERIFY_OFFSET(member, offset) \
9540         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9541
9542         VERIFY_OFFSET(dev_handle, 0x00);
9543         VERIFY_OFFSET(reserved1, 0x02);
9544         VERIFY_OFFSET(function, 0x03);
9545         VERIFY_OFFSET(reserved2, 0x04);
9546         VERIFY_OFFSET(err_info, 0x0C);
9547         VERIFY_OFFSET(reserved3, 0x10);
9548         VERIFY_OFFSET(err_info_len, 0x12);
9549         VERIFY_OFFSET(reserved4, 0x13);
9550         VERIFY_OFFSET(sgl_offset, 0x14);
9551         VERIFY_OFFSET(reserved5, 0x15);
9552         VERIFY_OFFSET(transfer_len, 0x1C);
9553         VERIFY_OFFSET(reserved6, 0x20);
9554         VERIFY_OFFSET(io_flags, 0x24);
9555         VERIFY_OFFSET(reserved7, 0x26);
9556         VERIFY_OFFSET(LUN, 0x34);
9557         VERIFY_OFFSET(control, 0x3C);
9558         VERIFY_OFFSET(CDB, 0x40);
9559         VERIFY_OFFSET(reserved8, 0x50);
9560         VERIFY_OFFSET(host_context_flags, 0x60);
9561         VERIFY_OFFSET(timeout_sec, 0x62);
9562         VERIFY_OFFSET(ReplyQueue, 0x64);
9563         VERIFY_OFFSET(reserved9, 0x65);
9564         VERIFY_OFFSET(tag, 0x68);
9565         VERIFY_OFFSET(host_addr, 0x70);
9566         VERIFY_OFFSET(CISS_LUN, 0x78);
9567         VERIFY_OFFSET(SG, 0x78 + 8);
9568 #undef VERIFY_OFFSET
9569 }
9570
9571 module_init(hpsa_init);
9572 module_exit(hpsa_cleanup);