]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-sun4i.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / spi / spi-sun4i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN4I_FIFO_DEPTH                64
26
27 #define SUN4I_RXDATA_REG                0x00
28
29 #define SUN4I_TXDATA_REG                0x04
30
31 #define SUN4I_CTL_REG                   0x08
32 #define SUN4I_CTL_ENABLE                        BIT(0)
33 #define SUN4I_CTL_MASTER                        BIT(1)
34 #define SUN4I_CTL_CPHA                          BIT(2)
35 #define SUN4I_CTL_CPOL                          BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
37 #define SUN4I_CTL_LMTF                          BIT(6)
38 #define SUN4I_CTL_TF_RST                        BIT(8)
39 #define SUN4I_CTL_RF_RST                        BIT(9)
40 #define SUN4I_CTL_XCH                           BIT(10)
41 #define SUN4I_CTL_CS_MASK                       0x3000
42 #define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB                           BIT(15)
44 #define SUN4I_CTL_CS_MANUAL                     BIT(16)
45 #define SUN4I_CTL_CS_LEVEL                      BIT(17)
46 #define SUN4I_CTL_TP                            BIT(18)
47
48 #define SUN4I_INT_CTL_REG               0x0c
49 #define SUN4I_INT_CTL_TC                        BIT(16)
50
51 #define SUN4I_INT_STA_REG               0x10
52
53 #define SUN4I_DMA_CTL_REG               0x14
54
55 #define SUN4I_WAIT_REG                  0x18
56
57 #define SUN4I_CLK_CTL_REG               0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK                 0xff
59 #define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK                 0xf
61 #define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS                       BIT(12)
63
64 #define SUN4I_BURST_CNT_REG             0x20
65 #define SUN4I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
66
67 #define SUN4I_XMIT_CNT_REG              0x24
68 #define SUN4I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
69
70 #define SUN4I_FIFO_STA_REG              0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS              0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS              16
75
76 struct sun4i_spi {
77         struct spi_master       *master;
78         void __iomem            *base_addr;
79         struct clk              *hclk;
80         struct clk              *mclk;
81
82         struct completion       done;
83
84         const u8                *tx_buf;
85         u8                      *rx_buf;
86         int                     len;
87 };
88
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91         return readl(sspi->base_addr + reg);
92 }
93
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96         writel(value, sspi->base_addr + reg);
97 }
98
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101         u32 reg, cnt;
102         u8 byte;
103
104         /* See how much data is available */
105         reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106         reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107         cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108
109         if (len > cnt)
110                 len = cnt;
111
112         while (len--) {
113                 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114                 if (sspi->rx_buf)
115                         *sspi->rx_buf++ = byte;
116         }
117 }
118
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121         u8 byte;
122
123         if (len > sspi->len)
124                 len = sspi->len;
125
126         while (len--) {
127                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128                 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129                 sspi->len--;
130         }
131 }
132
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135         struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136         u32 reg;
137
138         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139
140         reg &= ~SUN4I_CTL_CS_MASK;
141         reg |= SUN4I_CTL_CS(spi->chip_select);
142
143         /* We want to control the chip select manually */
144         reg |= SUN4I_CTL_CS_MANUAL;
145
146         if (enable)
147                 reg |= SUN4I_CTL_CS_LEVEL;
148         else
149                 reg &= ~SUN4I_CTL_CS_LEVEL;
150
151         /*
152          * Even though this looks irrelevant since we are supposed to
153          * be controlling the chip select manually, this bit also
154          * controls the levels of the chip select for inactive
155          * devices.
156          *
157          * If we don't set it, the chip select level will go low by
158          * default when the device is idle, which is not really
159          * expected in the common case where the chip select is active
160          * low.
161          */
162         if (spi->mode & SPI_CS_HIGH)
163                 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164         else
165                 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166
167         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168 }
169
170 static int sun4i_spi_transfer_one(struct spi_master *master,
171                                   struct spi_device *spi,
172                                   struct spi_transfer *tfr)
173 {
174         struct sun4i_spi *sspi = spi_master_get_devdata(master);
175         unsigned int mclk_rate, div, timeout;
176         unsigned int start, end, tx_time;
177         unsigned int tx_len = 0;
178         int ret = 0;
179         u32 reg;
180
181         /* We don't support transfer larger than the FIFO */
182         if (tfr->len > SUN4I_FIFO_DEPTH)
183                 return -EMSGSIZE;
184
185         if (tfr->tx_buf && tfr->len >= SUN4I_FIFO_DEPTH)
186                 return -EMSGSIZE;
187
188         reinit_completion(&sspi->done);
189         sspi->tx_buf = tfr->tx_buf;
190         sspi->rx_buf = tfr->rx_buf;
191         sspi->len = tfr->len;
192
193         /* Clear pending interrupts */
194         sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
195
196
197         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
198
199         /* Reset FIFOs */
200         sun4i_spi_write(sspi, SUN4I_CTL_REG,
201                         reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
202
203         /*
204          * Setup the transfer control register: Chip Select,
205          * polarities, etc.
206          */
207         if (spi->mode & SPI_CPOL)
208                 reg |= SUN4I_CTL_CPOL;
209         else
210                 reg &= ~SUN4I_CTL_CPOL;
211
212         if (spi->mode & SPI_CPHA)
213                 reg |= SUN4I_CTL_CPHA;
214         else
215                 reg &= ~SUN4I_CTL_CPHA;
216
217         if (spi->mode & SPI_LSB_FIRST)
218                 reg |= SUN4I_CTL_LMTF;
219         else
220                 reg &= ~SUN4I_CTL_LMTF;
221
222
223         /*
224          * If it's a TX only transfer, we don't want to fill the RX
225          * FIFO with bogus data
226          */
227         if (sspi->rx_buf)
228                 reg &= ~SUN4I_CTL_DHB;
229         else
230                 reg |= SUN4I_CTL_DHB;
231
232         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
233
234         /* Ensure that we have a parent clock fast enough */
235         mclk_rate = clk_get_rate(sspi->mclk);
236         if (mclk_rate < (2 * tfr->speed_hz)) {
237                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
238                 mclk_rate = clk_get_rate(sspi->mclk);
239         }
240
241         /*
242          * Setup clock divider.
243          *
244          * We have two choices there. Either we can use the clock
245          * divide rate 1, which is calculated thanks to this formula:
246          * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
247          * Or we can use CDR2, which is calculated with the formula:
248          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
249          * Wether we use the former or the latter is set through the
250          * DRS bit.
251          *
252          * First try CDR2, and if we can't reach the expected
253          * frequency, fall back to CDR1.
254          */
255         div = mclk_rate / (2 * tfr->speed_hz);
256         if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
257                 if (div > 0)
258                         div--;
259
260                 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
261         } else {
262                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
263                 reg = SUN4I_CLK_CTL_CDR1(div);
264         }
265
266         sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
267
268         /* Setup the transfer now... */
269         if (sspi->tx_buf)
270                 tx_len = tfr->len;
271
272         /* Setup the counters */
273         sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
274         sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
275
276         /*
277          * Fill the TX FIFO
278          * Filling the FIFO fully causes timeout for some reason
279          * at least on spi2 on A10s
280          */
281         sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
282
283         /* Enable the interrupts */
284         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
285
286         /* Start the transfer */
287         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
288         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
289
290         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
291         start = jiffies;
292         timeout = wait_for_completion_timeout(&sspi->done,
293                                               msecs_to_jiffies(tx_time));
294         end = jiffies;
295         if (!timeout) {
296                 dev_warn(&master->dev,
297                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
298                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
299                          jiffies_to_msecs(end - start), tx_time);
300                 ret = -ETIMEDOUT;
301                 goto out;
302         }
303
304         sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
305
306 out:
307         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
308
309         return ret;
310 }
311
312 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
313 {
314         struct sun4i_spi *sspi = dev_id;
315         u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
316
317         /* Transfer complete */
318         if (status & SUN4I_INT_CTL_TC) {
319                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
320                 complete(&sspi->done);
321                 return IRQ_HANDLED;
322         }
323
324         return IRQ_NONE;
325 }
326
327 static int sun4i_spi_runtime_resume(struct device *dev)
328 {
329         struct spi_master *master = dev_get_drvdata(dev);
330         struct sun4i_spi *sspi = spi_master_get_devdata(master);
331         int ret;
332
333         ret = clk_prepare_enable(sspi->hclk);
334         if (ret) {
335                 dev_err(dev, "Couldn't enable AHB clock\n");
336                 goto out;
337         }
338
339         ret = clk_prepare_enable(sspi->mclk);
340         if (ret) {
341                 dev_err(dev, "Couldn't enable module clock\n");
342                 goto err;
343         }
344
345         sun4i_spi_write(sspi, SUN4I_CTL_REG,
346                         SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
347
348         return 0;
349
350 err:
351         clk_disable_unprepare(sspi->hclk);
352 out:
353         return ret;
354 }
355
356 static int sun4i_spi_runtime_suspend(struct device *dev)
357 {
358         struct spi_master *master = dev_get_drvdata(dev);
359         struct sun4i_spi *sspi = spi_master_get_devdata(master);
360
361         clk_disable_unprepare(sspi->mclk);
362         clk_disable_unprepare(sspi->hclk);
363
364         return 0;
365 }
366
367 static int sun4i_spi_probe(struct platform_device *pdev)
368 {
369         struct spi_master *master;
370         struct sun4i_spi *sspi;
371         struct resource *res;
372         int ret = 0, irq;
373
374         master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
375         if (!master) {
376                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
377                 return -ENOMEM;
378         }
379
380         platform_set_drvdata(pdev, master);
381         sspi = spi_master_get_devdata(master);
382
383         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
384         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
385         if (IS_ERR(sspi->base_addr)) {
386                 ret = PTR_ERR(sspi->base_addr);
387                 goto err_free_master;
388         }
389
390         irq = platform_get_irq(pdev, 0);
391         if (irq < 0) {
392                 dev_err(&pdev->dev, "No spi IRQ specified\n");
393                 ret = -ENXIO;
394                 goto err_free_master;
395         }
396
397         ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
398                                0, "sun4i-spi", sspi);
399         if (ret) {
400                 dev_err(&pdev->dev, "Cannot request IRQ\n");
401                 goto err_free_master;
402         }
403
404         sspi->master = master;
405         master->set_cs = sun4i_spi_set_cs;
406         master->transfer_one = sun4i_spi_transfer_one;
407         master->num_chipselect = 4;
408         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
409         master->bits_per_word_mask = SPI_BPW_MASK(8);
410         master->dev.of_node = pdev->dev.of_node;
411         master->auto_runtime_pm = true;
412
413         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
414         if (IS_ERR(sspi->hclk)) {
415                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
416                 ret = PTR_ERR(sspi->hclk);
417                 goto err_free_master;
418         }
419
420         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
421         if (IS_ERR(sspi->mclk)) {
422                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
423                 ret = PTR_ERR(sspi->mclk);
424                 goto err_free_master;
425         }
426
427         init_completion(&sspi->done);
428
429         /*
430          * This wake-up/shutdown pattern is to be able to have the
431          * device woken up, even if runtime_pm is disabled
432          */
433         ret = sun4i_spi_runtime_resume(&pdev->dev);
434         if (ret) {
435                 dev_err(&pdev->dev, "Couldn't resume the device\n");
436                 goto err_free_master;
437         }
438
439         pm_runtime_set_active(&pdev->dev);
440         pm_runtime_enable(&pdev->dev);
441         pm_runtime_idle(&pdev->dev);
442
443         ret = devm_spi_register_master(&pdev->dev, master);
444         if (ret) {
445                 dev_err(&pdev->dev, "cannot register SPI master\n");
446                 goto err_pm_disable;
447         }
448
449         return 0;
450
451 err_pm_disable:
452         pm_runtime_disable(&pdev->dev);
453         sun4i_spi_runtime_suspend(&pdev->dev);
454 err_free_master:
455         spi_master_put(master);
456         return ret;
457 }
458
459 static int sun4i_spi_remove(struct platform_device *pdev)
460 {
461         pm_runtime_disable(&pdev->dev);
462
463         return 0;
464 }
465
466 static const struct of_device_id sun4i_spi_match[] = {
467         { .compatible = "allwinner,sun4i-a10-spi", },
468         {}
469 };
470 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
471
472 static const struct dev_pm_ops sun4i_spi_pm_ops = {
473         .runtime_resume         = sun4i_spi_runtime_resume,
474         .runtime_suspend        = sun4i_spi_runtime_suspend,
475 };
476
477 static struct platform_driver sun4i_spi_driver = {
478         .probe  = sun4i_spi_probe,
479         .remove = sun4i_spi_remove,
480         .driver = {
481                 .name           = "sun4i-spi",
482                 .of_match_table = sun4i_spi_match,
483                 .pm             = &sun4i_spi_pm_ops,
484         },
485 };
486 module_platform_driver(sun4i_spi_driver);
487
488 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
489 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
490 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
491 MODULE_LICENSE("GPL");