]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/thermal/samsung/exynos_tmu.c
xfrm: prevent ipcomp scratch buffer race condition
[karo-tx-linux.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40         driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_common: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @temp_error1: fused value of the first point trim.
51  * @temp_error2: fused value of the second point trim.
52  * @regulator: pointer to the TMU regulator structure.
53  * @reg_conf: pointer to structure to register with core thermal.
54  */
55 struct exynos_tmu_data {
56         int id;
57         struct exynos_tmu_platform_data *pdata;
58         void __iomem *base;
59         void __iomem *base_common;
60         int irq;
61         enum soc_type soc;
62         struct work_struct irq_work;
63         struct mutex lock;
64         struct clk *clk;
65         u8 temp_error1, temp_error2;
66         struct regulator *regulator;
67         struct thermal_sensor_conf *reg_conf;
68 };
69
70 /*
71  * TMU treats temperature as a mapped temperature code.
72  * The temperature is converted differently depending on the calibration type.
73  */
74 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
75 {
76         struct exynos_tmu_platform_data *pdata = data->pdata;
77         int temp_code;
78
79         if (pdata->cal_mode == HW_MODE)
80                 return temp;
81
82         if (data->soc == SOC_ARCH_EXYNOS4210)
83                 /* temp should range between 25 and 125 */
84                 if (temp < 25 || temp > 125) {
85                         temp_code = -EINVAL;
86                         goto out;
87                 }
88
89         switch (pdata->cal_type) {
90         case TYPE_TWO_POINT_TRIMMING:
91                 temp_code = (temp - pdata->first_point_trim) *
92                         (data->temp_error2 - data->temp_error1) /
93                         (pdata->second_point_trim - pdata->first_point_trim) +
94                         data->temp_error1;
95                 break;
96         case TYPE_ONE_POINT_TRIMMING:
97                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
98                 break;
99         default:
100                 temp_code = temp + pdata->default_temp_offset;
101                 break;
102         }
103 out:
104         return temp_code;
105 }
106
107 /*
108  * Calculate a temperature value from a temperature code.
109  * The unit of the temperature is degree Celsius.
110  */
111 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
112 {
113         struct exynos_tmu_platform_data *pdata = data->pdata;
114         int temp;
115
116         if (pdata->cal_mode == HW_MODE)
117                 return temp_code;
118
119         if (data->soc == SOC_ARCH_EXYNOS4210)
120                 /* temp_code should range between 75 and 175 */
121                 if (temp_code < 75 || temp_code > 175) {
122                         temp = -ENODATA;
123                         goto out;
124                 }
125
126         switch (pdata->cal_type) {
127         case TYPE_TWO_POINT_TRIMMING:
128                 temp = (temp_code - data->temp_error1) *
129                         (pdata->second_point_trim - pdata->first_point_trim) /
130                         (data->temp_error2 - data->temp_error1) +
131                         pdata->first_point_trim;
132                 break;
133         case TYPE_ONE_POINT_TRIMMING:
134                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
135                 break;
136         default:
137                 temp = temp_code - pdata->default_temp_offset;
138                 break;
139         }
140 out:
141         return temp;
142 }
143
144 static int exynos_tmu_initialize(struct platform_device *pdev)
145 {
146         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
147         struct exynos_tmu_platform_data *pdata = data->pdata;
148         const struct exynos_tmu_registers *reg = pdata->registers;
149         unsigned int status, trim_info = 0, con;
150         unsigned int rising_threshold = 0, falling_threshold = 0;
151         int ret = 0, threshold_code, i, trigger_levs = 0;
152
153         mutex_lock(&data->lock);
154         clk_enable(data->clk);
155
156         if (TMU_SUPPORTS(pdata, READY_STATUS)) {
157                 status = readb(data->base + reg->tmu_status);
158                 if (!status) {
159                         ret = -EBUSY;
160                         goto out;
161                 }
162         }
163
164         if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
165                 __raw_writel(1, data->base + reg->triminfo_ctrl);
166
167         if (pdata->cal_mode == HW_MODE)
168                 goto skip_calib_data;
169
170         /* Save trimming info in order to perform calibration */
171         if (data->soc == SOC_ARCH_EXYNOS5440) {
172                 /*
173                  * For exynos5440 soc triminfo value is swapped between TMU0 and
174                  * TMU2, so the below logic is needed.
175                  */
176                 switch (data->id) {
177                 case 0:
178                         trim_info = readl(data->base +
179                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
180                         break;
181                 case 1:
182                         trim_info = readl(data->base + reg->triminfo_data);
183                         break;
184                 case 2:
185                         trim_info = readl(data->base -
186                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
187                 }
188         } else {
189                 trim_info = readl(data->base + reg->triminfo_data);
190         }
191         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
192         data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
193                                 EXYNOS_TMU_TEMP_MASK);
194
195         if (!data->temp_error1 ||
196                 (pdata->min_efuse_value > data->temp_error1) ||
197                 (data->temp_error1 > pdata->max_efuse_value))
198                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
199
200         if (!data->temp_error2)
201                 data->temp_error2 =
202                         (pdata->efuse_value >> reg->triminfo_85_shift) &
203                         EXYNOS_TMU_TEMP_MASK;
204
205 skip_calib_data:
206         if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) {
207                 dev_err(&pdev->dev, "Invalid max trigger level\n");
208                 goto out;
209         }
210
211         for (i = 0; i < pdata->max_trigger_level; i++) {
212                 if (!pdata->trigger_levels[i])
213                         continue;
214
215                 if ((pdata->trigger_type[i] == HW_TRIP) &&
216                 (!pdata->trigger_levels[pdata->max_trigger_level - 1])) {
217                         dev_err(&pdev->dev, "Invalid hw trigger level\n");
218                         ret = -EINVAL;
219                         goto out;
220                 }
221
222                 /* Count trigger levels except the HW trip*/
223                 if (!(pdata->trigger_type[i] == HW_TRIP))
224                         trigger_levs++;
225         }
226
227         if (data->soc == SOC_ARCH_EXYNOS4210) {
228                 /* Write temperature code for threshold */
229                 threshold_code = temp_to_code(data, pdata->threshold);
230                 if (threshold_code < 0) {
231                         ret = threshold_code;
232                         goto out;
233                 }
234                 writeb(threshold_code,
235                         data->base + reg->threshold_temp);
236                 for (i = 0; i < trigger_levs; i++)
237                         writeb(pdata->trigger_levels[i], data->base +
238                         reg->threshold_th0 + i * sizeof(reg->threshold_th0));
239
240                 writel(reg->inten_rise_mask, data->base + reg->tmu_intclear);
241         } else {
242                 /* Write temperature code for rising and falling threshold */
243                 for (i = 0;
244                 i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
245                         threshold_code = temp_to_code(data,
246                                                 pdata->trigger_levels[i]);
247                         if (threshold_code < 0) {
248                                 ret = threshold_code;
249                                 goto out;
250                         }
251                         rising_threshold |= threshold_code << 8 * i;
252                         if (pdata->threshold_falling) {
253                                 threshold_code = temp_to_code(data,
254                                                 pdata->trigger_levels[i] -
255                                                 pdata->threshold_falling);
256                                 if (threshold_code > 0)
257                                         falling_threshold |=
258                                                 threshold_code << 8 * i;
259                         }
260                 }
261
262                 writel(rising_threshold,
263                                 data->base + reg->threshold_th0);
264                 writel(falling_threshold,
265                                 data->base + reg->threshold_th1);
266
267                 writel((reg->inten_rise_mask << reg->inten_rise_shift) |
268                         (reg->inten_fall_mask << reg->inten_fall_shift),
269                                 data->base + reg->tmu_intclear);
270
271                 /* if last threshold limit is also present */
272                 i = pdata->max_trigger_level - 1;
273                 if (pdata->trigger_levels[i] &&
274                                 (pdata->trigger_type[i] == HW_TRIP)) {
275                         threshold_code = temp_to_code(data,
276                                                 pdata->trigger_levels[i]);
277                         if (threshold_code < 0) {
278                                 ret = threshold_code;
279                                 goto out;
280                         }
281                         if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
282                                 /* 1-4 level to be assigned in th0 reg */
283                                 rising_threshold |= threshold_code << 8 * i;
284                                 writel(rising_threshold,
285                                         data->base + reg->threshold_th0);
286                         } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
287                                 /* 5th level to be assigned in th2 reg */
288                                 rising_threshold =
289                                 threshold_code << reg->threshold_th3_l0_shift;
290                                 writel(rising_threshold,
291                                         data->base + reg->threshold_th2);
292                         }
293                         con = readl(data->base + reg->tmu_ctrl);
294                         con |= (1 << reg->therm_trip_en_shift);
295                         writel(con, data->base + reg->tmu_ctrl);
296                 }
297         }
298         /*Clear the PMIN in the common TMU register*/
299         if (reg->tmu_pmin && !data->id)
300                 writel(0, data->base_common + reg->tmu_pmin);
301 out:
302         clk_disable(data->clk);
303         mutex_unlock(&data->lock);
304
305         return ret;
306 }
307
308 static void exynos_tmu_control(struct platform_device *pdev, bool on)
309 {
310         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
311         struct exynos_tmu_platform_data *pdata = data->pdata;
312         const struct exynos_tmu_registers *reg = pdata->registers;
313         unsigned int con, interrupt_en, cal_val;
314
315         mutex_lock(&data->lock);
316         clk_enable(data->clk);
317
318         con = readl(data->base + reg->tmu_ctrl);
319
320         if (pdata->reference_voltage) {
321                 con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
322                 con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
323         }
324
325         if (pdata->gain) {
326                 con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
327                 con |= (pdata->gain << reg->buf_slope_sel_shift);
328         }
329
330         if (pdata->noise_cancel_mode) {
331                 con &= ~(reg->therm_trip_mode_mask <<
332                                         reg->therm_trip_mode_shift);
333                 con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
334         }
335
336         if (pdata->cal_mode == HW_MODE) {
337                 con &= ~(reg->calib_mode_mask << reg->calib_mode_shift);
338                 cal_val = 0;
339                 switch (pdata->cal_type) {
340                 case TYPE_TWO_POINT_TRIMMING:
341                         cal_val = 3;
342                         break;
343                 case TYPE_ONE_POINT_TRIMMING_85:
344                         cal_val = 2;
345                         break;
346                 case TYPE_ONE_POINT_TRIMMING_25:
347                         cal_val = 1;
348                         break;
349                 case TYPE_NONE:
350                         break;
351                 default:
352                         dev_err(&pdev->dev, "Invalid calibration type, using none\n");
353                 }
354                 con |= cal_val << reg->calib_mode_shift;
355         }
356
357         if (on) {
358                 con |= (1 << reg->core_en_shift);
359                 interrupt_en =
360                         pdata->trigger_enable[3] << reg->inten_rise3_shift |
361                         pdata->trigger_enable[2] << reg->inten_rise2_shift |
362                         pdata->trigger_enable[1] << reg->inten_rise1_shift |
363                         pdata->trigger_enable[0] << reg->inten_rise0_shift;
364                 if (TMU_SUPPORTS(pdata, FALLING_TRIP))
365                         interrupt_en |=
366                                 interrupt_en << reg->inten_fall0_shift;
367         } else {
368                 con &= ~(1 << reg->core_en_shift);
369                 interrupt_en = 0; /* Disable all interrupts */
370         }
371         writel(interrupt_en, data->base + reg->tmu_inten);
372         writel(con, data->base + reg->tmu_ctrl);
373
374         clk_disable(data->clk);
375         mutex_unlock(&data->lock);
376 }
377
378 static int exynos_tmu_read(struct exynos_tmu_data *data)
379 {
380         struct exynos_tmu_platform_data *pdata = data->pdata;
381         const struct exynos_tmu_registers *reg = pdata->registers;
382         u8 temp_code;
383         int temp;
384
385         mutex_lock(&data->lock);
386         clk_enable(data->clk);
387
388         temp_code = readb(data->base + reg->tmu_cur_temp);
389         temp = code_to_temp(data, temp_code);
390
391         clk_disable(data->clk);
392         mutex_unlock(&data->lock);
393
394         return temp;
395 }
396
397 #ifdef CONFIG_THERMAL_EMULATION
398 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
399 {
400         struct exynos_tmu_data *data = drv_data;
401         struct exynos_tmu_platform_data *pdata = data->pdata;
402         const struct exynos_tmu_registers *reg = pdata->registers;
403         unsigned int val;
404         int ret = -EINVAL;
405
406         if (!TMU_SUPPORTS(pdata, EMULATION))
407                 goto out;
408
409         if (temp && temp < MCELSIUS)
410                 goto out;
411
412         mutex_lock(&data->lock);
413         clk_enable(data->clk);
414
415         val = readl(data->base + reg->emul_con);
416
417         if (temp) {
418                 temp /= MCELSIUS;
419
420                 if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
421                         val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
422                         val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
423                 }
424                 val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
425                 val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
426                         EXYNOS_EMUL_ENABLE;
427         } else {
428                 val &= ~EXYNOS_EMUL_ENABLE;
429         }
430
431         writel(val, data->base + reg->emul_con);
432
433         clk_disable(data->clk);
434         mutex_unlock(&data->lock);
435         return 0;
436 out:
437         return ret;
438 }
439 #else
440 static int exynos_tmu_set_emulation(void *drv_data,     unsigned long temp)
441         { return -EINVAL; }
442 #endif/*CONFIG_THERMAL_EMULATION*/
443
444 static void exynos_tmu_work(struct work_struct *work)
445 {
446         struct exynos_tmu_data *data = container_of(work,
447                         struct exynos_tmu_data, irq_work);
448         struct exynos_tmu_platform_data *pdata = data->pdata;
449         const struct exynos_tmu_registers *reg = pdata->registers;
450         unsigned int val_irq, val_type;
451
452         /* Find which sensor generated this interrupt */
453         if (reg->tmu_irqstatus) {
454                 val_type = readl(data->base_common + reg->tmu_irqstatus);
455                 if (!((val_type >> data->id) & 0x1))
456                         goto out;
457         }
458
459         exynos_report_trigger(data->reg_conf);
460         mutex_lock(&data->lock);
461         clk_enable(data->clk);
462
463         /* TODO: take action based on particular interrupt */
464         val_irq = readl(data->base + reg->tmu_intstat);
465         /* clear the interrupts */
466         writel(val_irq, data->base + reg->tmu_intclear);
467
468         clk_disable(data->clk);
469         mutex_unlock(&data->lock);
470 out:
471         enable_irq(data->irq);
472 }
473
474 static irqreturn_t exynos_tmu_irq(int irq, void *id)
475 {
476         struct exynos_tmu_data *data = id;
477
478         disable_irq_nosync(irq);
479         schedule_work(&data->irq_work);
480
481         return IRQ_HANDLED;
482 }
483
484 static const struct of_device_id exynos_tmu_match[] = {
485         {
486                 .compatible = "samsung,exynos4210-tmu",
487                 .data = (void *)EXYNOS4210_TMU_DRV_DATA,
488         },
489         {
490                 .compatible = "samsung,exynos4412-tmu",
491                 .data = (void *)EXYNOS5250_TMU_DRV_DATA,
492         },
493         {
494                 .compatible = "samsung,exynos5250-tmu",
495                 .data = (void *)EXYNOS5250_TMU_DRV_DATA,
496         },
497         {
498                 .compatible = "samsung,exynos5440-tmu",
499                 .data = (void *)EXYNOS5440_TMU_DRV_DATA,
500         },
501         {},
502 };
503 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
504
505 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
506                         struct platform_device *pdev, int id)
507 {
508         struct  exynos_tmu_init_data *data_table;
509         struct exynos_tmu_platform_data *tmu_data;
510         const struct of_device_id *match;
511
512         match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
513         if (!match)
514                 return NULL;
515         data_table = (struct exynos_tmu_init_data *) match->data;
516         if (!data_table || id >= data_table->tmu_count)
517                 return NULL;
518         tmu_data = data_table->tmu_data;
519         return (struct exynos_tmu_platform_data *) (tmu_data + id);
520 }
521
522 static int exynos_map_dt_data(struct platform_device *pdev)
523 {
524         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
525         struct exynos_tmu_platform_data *pdata;
526         struct resource res;
527         int ret;
528
529         if (!data || !pdev->dev.of_node)
530                 return -ENODEV;
531
532         /*
533          * Try enabling the regulator if found
534          * TODO: Add regulator as an SOC feature, so that regulator enable
535          * is a compulsory call.
536          */
537         data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
538         if (!IS_ERR(data->regulator)) {
539                 ret = regulator_enable(data->regulator);
540                 if (ret) {
541                         dev_err(&pdev->dev, "failed to enable vtmu\n");
542                         return ret;
543                 }
544         } else {
545                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
546         }
547
548         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
549         if (data->id < 0)
550                 data->id = 0;
551
552         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
553         if (data->irq <= 0) {
554                 dev_err(&pdev->dev, "failed to get IRQ\n");
555                 return -ENODEV;
556         }
557
558         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
559                 dev_err(&pdev->dev, "failed to get Resource 0\n");
560                 return -ENODEV;
561         }
562
563         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
564         if (!data->base) {
565                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
566                 return -EADDRNOTAVAIL;
567         }
568
569         pdata = exynos_get_driver_data(pdev, data->id);
570         if (!pdata) {
571                 dev_err(&pdev->dev, "No platform init data supplied.\n");
572                 return -ENODEV;
573         }
574         data->pdata = pdata;
575         /*
576          * Check if the TMU shares some registers and then try to map the
577          * memory of common registers.
578          */
579         if (!TMU_SUPPORTS(pdata, SHARED_MEMORY))
580                 return 0;
581
582         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
583                 dev_err(&pdev->dev, "failed to get Resource 1\n");
584                 return -ENODEV;
585         }
586
587         data->base_common = devm_ioremap(&pdev->dev, res.start,
588                                         resource_size(&res));
589         if (!data->base_common) {
590                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
591                 return -ENOMEM;
592         }
593
594         return 0;
595 }
596
597 static int exynos_tmu_probe(struct platform_device *pdev)
598 {
599         struct exynos_tmu_data *data;
600         struct exynos_tmu_platform_data *pdata;
601         struct thermal_sensor_conf *sensor_conf;
602         int ret, i;
603
604         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
605                                         GFP_KERNEL);
606         if (!data) {
607                 dev_err(&pdev->dev, "Failed to allocate driver structure\n");
608                 return -ENOMEM;
609         }
610
611         platform_set_drvdata(pdev, data);
612         mutex_init(&data->lock);
613
614         ret = exynos_map_dt_data(pdev);
615         if (ret)
616                 return ret;
617
618         pdata = data->pdata;
619
620         INIT_WORK(&data->irq_work, exynos_tmu_work);
621
622         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
623         if (IS_ERR(data->clk)) {
624                 dev_err(&pdev->dev, "Failed to get clock\n");
625                 return  PTR_ERR(data->clk);
626         }
627
628         ret = clk_prepare(data->clk);
629         if (ret)
630                 return ret;
631
632         if (pdata->type == SOC_ARCH_EXYNOS ||
633                 pdata->type == SOC_ARCH_EXYNOS4210 ||
634                                 pdata->type == SOC_ARCH_EXYNOS5440)
635                 data->soc = pdata->type;
636         else {
637                 ret = -EINVAL;
638                 dev_err(&pdev->dev, "Platform not supported\n");
639                 goto err_clk;
640         }
641
642         ret = exynos_tmu_initialize(pdev);
643         if (ret) {
644                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
645                 goto err_clk;
646         }
647
648         exynos_tmu_control(pdev, true);
649
650         /* Allocate a structure to register with the exynos core thermal */
651         sensor_conf = devm_kzalloc(&pdev->dev,
652                                 sizeof(struct thermal_sensor_conf), GFP_KERNEL);
653         if (!sensor_conf) {
654                 dev_err(&pdev->dev, "Failed to allocate registration struct\n");
655                 ret = -ENOMEM;
656                 goto err_clk;
657         }
658         sprintf(sensor_conf->name, "therm_zone%d", data->id);
659         sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
660         sensor_conf->write_emul_temp =
661                 (int (*)(void *, unsigned long))exynos_tmu_set_emulation;
662         sensor_conf->driver_data = data;
663         sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
664                         pdata->trigger_enable[1] + pdata->trigger_enable[2]+
665                         pdata->trigger_enable[3];
666
667         for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
668                 sensor_conf->trip_data.trip_val[i] =
669                         pdata->threshold + pdata->trigger_levels[i];
670                 sensor_conf->trip_data.trip_type[i] =
671                                         pdata->trigger_type[i];
672         }
673
674         sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
675
676         sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
677         for (i = 0; i < pdata->freq_tab_count; i++) {
678                 sensor_conf->cooling_data.freq_data[i].freq_clip_max =
679                                         pdata->freq_tab[i].freq_clip_max;
680                 sensor_conf->cooling_data.freq_data[i].temp_level =
681                                         pdata->freq_tab[i].temp_level;
682         }
683         sensor_conf->dev = &pdev->dev;
684         /* Register the sensor with thermal management interface */
685         ret = exynos_register_thermal(sensor_conf);
686         if (ret) {
687                 dev_err(&pdev->dev, "Failed to register thermal interface\n");
688                 goto err_clk;
689         }
690         data->reg_conf = sensor_conf;
691
692         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
693                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
694         if (ret) {
695                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
696                 goto err_clk;
697         }
698
699         return 0;
700 err_clk:
701         clk_unprepare(data->clk);
702         return ret;
703 }
704
705 static int exynos_tmu_remove(struct platform_device *pdev)
706 {
707         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
708
709         exynos_tmu_control(pdev, false);
710
711         exynos_unregister_thermal(data->reg_conf);
712
713         clk_unprepare(data->clk);
714
715         if (!IS_ERR(data->regulator))
716                 regulator_disable(data->regulator);
717
718         return 0;
719 }
720
721 #ifdef CONFIG_PM_SLEEP
722 static int exynos_tmu_suspend(struct device *dev)
723 {
724         exynos_tmu_control(to_platform_device(dev), false);
725
726         return 0;
727 }
728
729 static int exynos_tmu_resume(struct device *dev)
730 {
731         struct platform_device *pdev = to_platform_device(dev);
732
733         exynos_tmu_initialize(pdev);
734         exynos_tmu_control(pdev, true);
735
736         return 0;
737 }
738
739 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
740                          exynos_tmu_suspend, exynos_tmu_resume);
741 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
742 #else
743 #define EXYNOS_TMU_PM   NULL
744 #endif
745
746 static struct platform_driver exynos_tmu_driver = {
747         .driver = {
748                 .name   = "exynos-tmu",
749                 .owner  = THIS_MODULE,
750                 .pm     = EXYNOS_TMU_PM,
751                 .of_match_table = exynos_tmu_match,
752         },
753         .probe = exynos_tmu_probe,
754         .remove = exynos_tmu_remove,
755 };
756
757 module_platform_driver(exynos_tmu_driver);
758
759 MODULE_DESCRIPTION("EXYNOS TMU Driver");
760 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
761 MODULE_LICENSE("GPL");
762 MODULE_ALIAS("platform:exynos-tmu");