]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/exec.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[karo-tx-linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/pagemap.h>
39 #include <linux/perf_event.h>
40 #include <linux/highmem.h>
41 #include <linux/spinlock.h>
42 #include <linux/key.h>
43 #include <linux/personality.h>
44 #include <linux/binfmts.h>
45 #include <linux/utsname.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/module.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/security.h>
51 #include <linux/syscalls.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
55 #include <linux/tracehook.h>
56 #include <linux/kmod.h>
57 #include <linux/fsnotify.h>
58 #include <linux/fs_struct.h>
59 #include <linux/pipe_fs_i.h>
60 #include <linux/oom.h>
61 #include <linux/compat.h>
62 #include <linux/vmalloc.h>
63
64 #include <linux/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/tlb.h>
67
68 #include <trace/events/task.h>
69 #include "internal.h"
70
71 #include <trace/events/sched.h>
72
73 int suid_dumpable = 0;
74
75 static LIST_HEAD(formats);
76 static DEFINE_RWLOCK(binfmt_lock);
77
78 void __register_binfmt(struct linux_binfmt * fmt, int insert)
79 {
80         BUG_ON(!fmt);
81         if (WARN_ON(!fmt->load_binary))
82                 return;
83         write_lock(&binfmt_lock);
84         insert ? list_add(&fmt->lh, &formats) :
85                  list_add_tail(&fmt->lh, &formats);
86         write_unlock(&binfmt_lock);
87 }
88
89 EXPORT_SYMBOL(__register_binfmt);
90
91 void unregister_binfmt(struct linux_binfmt * fmt)
92 {
93         write_lock(&binfmt_lock);
94         list_del(&fmt->lh);
95         write_unlock(&binfmt_lock);
96 }
97
98 EXPORT_SYMBOL(unregister_binfmt);
99
100 static inline void put_binfmt(struct linux_binfmt * fmt)
101 {
102         module_put(fmt->module);
103 }
104
105 bool path_noexec(const struct path *path)
106 {
107         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
108                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
109 }
110
111 #ifdef CONFIG_USELIB
112 /*
113  * Note that a shared library must be both readable and executable due to
114  * security reasons.
115  *
116  * Also note that we take the address to load from from the file itself.
117  */
118 SYSCALL_DEFINE1(uselib, const char __user *, library)
119 {
120         struct linux_binfmt *fmt;
121         struct file *file;
122         struct filename *tmp = getname(library);
123         int error = PTR_ERR(tmp);
124         static const struct open_flags uselib_flags = {
125                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
126                 .acc_mode = MAY_READ | MAY_EXEC,
127                 .intent = LOOKUP_OPEN,
128                 .lookup_flags = LOOKUP_FOLLOW,
129         };
130
131         if (IS_ERR(tmp))
132                 goto out;
133
134         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
135         putname(tmp);
136         error = PTR_ERR(file);
137         if (IS_ERR(file))
138                 goto out;
139
140         error = -EINVAL;
141         if (!S_ISREG(file_inode(file)->i_mode))
142                 goto exit;
143
144         error = -EACCES;
145         if (path_noexec(&file->f_path))
146                 goto exit;
147
148         fsnotify_open(file);
149
150         error = -ENOEXEC;
151
152         read_lock(&binfmt_lock);
153         list_for_each_entry(fmt, &formats, lh) {
154                 if (!fmt->load_shlib)
155                         continue;
156                 if (!try_module_get(fmt->module))
157                         continue;
158                 read_unlock(&binfmt_lock);
159                 error = fmt->load_shlib(file);
160                 read_lock(&binfmt_lock);
161                 put_binfmt(fmt);
162                 if (error != -ENOEXEC)
163                         break;
164         }
165         read_unlock(&binfmt_lock);
166 exit:
167         fput(file);
168 out:
169         return error;
170 }
171 #endif /* #ifdef CONFIG_USELIB */
172
173 #ifdef CONFIG_MMU
174 /*
175  * The nascent bprm->mm is not visible until exec_mmap() but it can
176  * use a lot of memory, account these pages in current->mm temporary
177  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
178  * change the counter back via acct_arg_size(0).
179  */
180 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
181 {
182         struct mm_struct *mm = current->mm;
183         long diff = (long)(pages - bprm->vma_pages);
184
185         if (!mm || !diff)
186                 return;
187
188         bprm->vma_pages = pages;
189         add_mm_counter(mm, MM_ANONPAGES, diff);
190 }
191
192 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
193                 int write)
194 {
195         struct page *page;
196         int ret;
197         unsigned int gup_flags = FOLL_FORCE;
198
199 #ifdef CONFIG_STACK_GROWSUP
200         if (write) {
201                 ret = expand_downwards(bprm->vma, pos);
202                 if (ret < 0)
203                         return NULL;
204         }
205 #endif
206
207         if (write)
208                 gup_flags |= FOLL_WRITE;
209
210         /*
211          * We are doing an exec().  'current' is the process
212          * doing the exec and bprm->mm is the new process's mm.
213          */
214         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
215                         &page, NULL, NULL);
216         if (ret <= 0)
217                 return NULL;
218
219         if (write) {
220                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
221                 struct rlimit *rlim;
222
223                 acct_arg_size(bprm, size / PAGE_SIZE);
224
225                 /*
226                  * We've historically supported up to 32 pages (ARG_MAX)
227                  * of argument strings even with small stacks
228                  */
229                 if (size <= ARG_MAX)
230                         return page;
231
232                 /*
233                  * Limit to 1/4-th the stack size for the argv+env strings.
234                  * This ensures that:
235                  *  - the remaining binfmt code will not run out of stack space,
236                  *  - the program will have a reasonable amount of stack left
237                  *    to work from.
238                  */
239                 rlim = current->signal->rlim;
240                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
241                         put_page(page);
242                         return NULL;
243                 }
244         }
245
246         return page;
247 }
248
249 static void put_arg_page(struct page *page)
250 {
251         put_page(page);
252 }
253
254 static void free_arg_pages(struct linux_binprm *bprm)
255 {
256 }
257
258 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
259                 struct page *page)
260 {
261         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
262 }
263
264 static int __bprm_mm_init(struct linux_binprm *bprm)
265 {
266         int err;
267         struct vm_area_struct *vma = NULL;
268         struct mm_struct *mm = bprm->mm;
269
270         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
271         if (!vma)
272                 return -ENOMEM;
273
274         if (down_write_killable(&mm->mmap_sem)) {
275                 err = -EINTR;
276                 goto err_free;
277         }
278         vma->vm_mm = mm;
279
280         /*
281          * Place the stack at the largest stack address the architecture
282          * supports. Later, we'll move this to an appropriate place. We don't
283          * use STACK_TOP because that can depend on attributes which aren't
284          * configured yet.
285          */
286         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
287         vma->vm_end = STACK_TOP_MAX;
288         vma->vm_start = vma->vm_end - PAGE_SIZE;
289         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
290         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
291         INIT_LIST_HEAD(&vma->anon_vma_chain);
292
293         err = insert_vm_struct(mm, vma);
294         if (err)
295                 goto err;
296
297         mm->stack_vm = mm->total_vm = 1;
298         arch_bprm_mm_init(mm, vma);
299         up_write(&mm->mmap_sem);
300         bprm->p = vma->vm_end - sizeof(void *);
301         return 0;
302 err:
303         up_write(&mm->mmap_sem);
304 err_free:
305         bprm->vma = NULL;
306         kmem_cache_free(vm_area_cachep, vma);
307         return err;
308 }
309
310 static bool valid_arg_len(struct linux_binprm *bprm, long len)
311 {
312         return len <= MAX_ARG_STRLEN;
313 }
314
315 #else
316
317 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
318 {
319 }
320
321 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
322                 int write)
323 {
324         struct page *page;
325
326         page = bprm->page[pos / PAGE_SIZE];
327         if (!page && write) {
328                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
329                 if (!page)
330                         return NULL;
331                 bprm->page[pos / PAGE_SIZE] = page;
332         }
333
334         return page;
335 }
336
337 static void put_arg_page(struct page *page)
338 {
339 }
340
341 static void free_arg_page(struct linux_binprm *bprm, int i)
342 {
343         if (bprm->page[i]) {
344                 __free_page(bprm->page[i]);
345                 bprm->page[i] = NULL;
346         }
347 }
348
349 static void free_arg_pages(struct linux_binprm *bprm)
350 {
351         int i;
352
353         for (i = 0; i < MAX_ARG_PAGES; i++)
354                 free_arg_page(bprm, i);
355 }
356
357 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
358                 struct page *page)
359 {
360 }
361
362 static int __bprm_mm_init(struct linux_binprm *bprm)
363 {
364         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
365         return 0;
366 }
367
368 static bool valid_arg_len(struct linux_binprm *bprm, long len)
369 {
370         return len <= bprm->p;
371 }
372
373 #endif /* CONFIG_MMU */
374
375 /*
376  * Create a new mm_struct and populate it with a temporary stack
377  * vm_area_struct.  We don't have enough context at this point to set the stack
378  * flags, permissions, and offset, so we use temporary values.  We'll update
379  * them later in setup_arg_pages().
380  */
381 static int bprm_mm_init(struct linux_binprm *bprm)
382 {
383         int err;
384         struct mm_struct *mm = NULL;
385
386         bprm->mm = mm = mm_alloc();
387         err = -ENOMEM;
388         if (!mm)
389                 goto err;
390
391         err = __bprm_mm_init(bprm);
392         if (err)
393                 goto err;
394
395         return 0;
396
397 err:
398         if (mm) {
399                 bprm->mm = NULL;
400                 mmdrop(mm);
401         }
402
403         return err;
404 }
405
406 struct user_arg_ptr {
407 #ifdef CONFIG_COMPAT
408         bool is_compat;
409 #endif
410         union {
411                 const char __user *const __user *native;
412 #ifdef CONFIG_COMPAT
413                 const compat_uptr_t __user *compat;
414 #endif
415         } ptr;
416 };
417
418 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
419 {
420         const char __user *native;
421
422 #ifdef CONFIG_COMPAT
423         if (unlikely(argv.is_compat)) {
424                 compat_uptr_t compat;
425
426                 if (get_user(compat, argv.ptr.compat + nr))
427                         return ERR_PTR(-EFAULT);
428
429                 return compat_ptr(compat);
430         }
431 #endif
432
433         if (get_user(native, argv.ptr.native + nr))
434                 return ERR_PTR(-EFAULT);
435
436         return native;
437 }
438
439 /*
440  * count() counts the number of strings in array ARGV.
441  */
442 static int count(struct user_arg_ptr argv, int max)
443 {
444         int i = 0;
445
446         if (argv.ptr.native != NULL) {
447                 for (;;) {
448                         const char __user *p = get_user_arg_ptr(argv, i);
449
450                         if (!p)
451                                 break;
452
453                         if (IS_ERR(p))
454                                 return -EFAULT;
455
456                         if (i >= max)
457                                 return -E2BIG;
458                         ++i;
459
460                         if (fatal_signal_pending(current))
461                                 return -ERESTARTNOHAND;
462                         cond_resched();
463                 }
464         }
465         return i;
466 }
467
468 /*
469  * 'copy_strings()' copies argument/environment strings from the old
470  * processes's memory to the new process's stack.  The call to get_user_pages()
471  * ensures the destination page is created and not swapped out.
472  */
473 static int copy_strings(int argc, struct user_arg_ptr argv,
474                         struct linux_binprm *bprm)
475 {
476         struct page *kmapped_page = NULL;
477         char *kaddr = NULL;
478         unsigned long kpos = 0;
479         int ret;
480
481         while (argc-- > 0) {
482                 const char __user *str;
483                 int len;
484                 unsigned long pos;
485
486                 ret = -EFAULT;
487                 str = get_user_arg_ptr(argv, argc);
488                 if (IS_ERR(str))
489                         goto out;
490
491                 len = strnlen_user(str, MAX_ARG_STRLEN);
492                 if (!len)
493                         goto out;
494
495                 ret = -E2BIG;
496                 if (!valid_arg_len(bprm, len))
497                         goto out;
498
499                 /* We're going to work our way backwords. */
500                 pos = bprm->p;
501                 str += len;
502                 bprm->p -= len;
503
504                 while (len > 0) {
505                         int offset, bytes_to_copy;
506
507                         if (fatal_signal_pending(current)) {
508                                 ret = -ERESTARTNOHAND;
509                                 goto out;
510                         }
511                         cond_resched();
512
513                         offset = pos % PAGE_SIZE;
514                         if (offset == 0)
515                                 offset = PAGE_SIZE;
516
517                         bytes_to_copy = offset;
518                         if (bytes_to_copy > len)
519                                 bytes_to_copy = len;
520
521                         offset -= bytes_to_copy;
522                         pos -= bytes_to_copy;
523                         str -= bytes_to_copy;
524                         len -= bytes_to_copy;
525
526                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
527                                 struct page *page;
528
529                                 page = get_arg_page(bprm, pos, 1);
530                                 if (!page) {
531                                         ret = -E2BIG;
532                                         goto out;
533                                 }
534
535                                 if (kmapped_page) {
536                                         flush_kernel_dcache_page(kmapped_page);
537                                         kunmap(kmapped_page);
538                                         put_arg_page(kmapped_page);
539                                 }
540                                 kmapped_page = page;
541                                 kaddr = kmap(kmapped_page);
542                                 kpos = pos & PAGE_MASK;
543                                 flush_arg_page(bprm, kpos, kmapped_page);
544                         }
545                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
546                                 ret = -EFAULT;
547                                 goto out;
548                         }
549                 }
550         }
551         ret = 0;
552 out:
553         if (kmapped_page) {
554                 flush_kernel_dcache_page(kmapped_page);
555                 kunmap(kmapped_page);
556                 put_arg_page(kmapped_page);
557         }
558         return ret;
559 }
560
561 /*
562  * Like copy_strings, but get argv and its values from kernel memory.
563  */
564 int copy_strings_kernel(int argc, const char *const *__argv,
565                         struct linux_binprm *bprm)
566 {
567         int r;
568         mm_segment_t oldfs = get_fs();
569         struct user_arg_ptr argv = {
570                 .ptr.native = (const char __user *const  __user *)__argv,
571         };
572
573         set_fs(KERNEL_DS);
574         r = copy_strings(argc, argv, bprm);
575         set_fs(oldfs);
576
577         return r;
578 }
579 EXPORT_SYMBOL(copy_strings_kernel);
580
581 #ifdef CONFIG_MMU
582
583 /*
584  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
585  * the binfmt code determines where the new stack should reside, we shift it to
586  * its final location.  The process proceeds as follows:
587  *
588  * 1) Use shift to calculate the new vma endpoints.
589  * 2) Extend vma to cover both the old and new ranges.  This ensures the
590  *    arguments passed to subsequent functions are consistent.
591  * 3) Move vma's page tables to the new range.
592  * 4) Free up any cleared pgd range.
593  * 5) Shrink the vma to cover only the new range.
594  */
595 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
596 {
597         struct mm_struct *mm = vma->vm_mm;
598         unsigned long old_start = vma->vm_start;
599         unsigned long old_end = vma->vm_end;
600         unsigned long length = old_end - old_start;
601         unsigned long new_start = old_start - shift;
602         unsigned long new_end = old_end - shift;
603         struct mmu_gather tlb;
604
605         BUG_ON(new_start > new_end);
606
607         /*
608          * ensure there are no vmas between where we want to go
609          * and where we are
610          */
611         if (vma != find_vma(mm, new_start))
612                 return -EFAULT;
613
614         /*
615          * cover the whole range: [new_start, old_end)
616          */
617         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
618                 return -ENOMEM;
619
620         /*
621          * move the page tables downwards, on failure we rely on
622          * process cleanup to remove whatever mess we made.
623          */
624         if (length != move_page_tables(vma, old_start,
625                                        vma, new_start, length, false))
626                 return -ENOMEM;
627
628         lru_add_drain();
629         tlb_gather_mmu(&tlb, mm, old_start, old_end);
630         if (new_end > old_start) {
631                 /*
632                  * when the old and new regions overlap clear from new_end.
633                  */
634                 free_pgd_range(&tlb, new_end, old_end, new_end,
635                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
636         } else {
637                 /*
638                  * otherwise, clean from old_start; this is done to not touch
639                  * the address space in [new_end, old_start) some architectures
640                  * have constraints on va-space that make this illegal (IA64) -
641                  * for the others its just a little faster.
642                  */
643                 free_pgd_range(&tlb, old_start, old_end, new_end,
644                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
645         }
646         tlb_finish_mmu(&tlb, old_start, old_end);
647
648         /*
649          * Shrink the vma to just the new range.  Always succeeds.
650          */
651         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
652
653         return 0;
654 }
655
656 /*
657  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
658  * the stack is optionally relocated, and some extra space is added.
659  */
660 int setup_arg_pages(struct linux_binprm *bprm,
661                     unsigned long stack_top,
662                     int executable_stack)
663 {
664         unsigned long ret;
665         unsigned long stack_shift;
666         struct mm_struct *mm = current->mm;
667         struct vm_area_struct *vma = bprm->vma;
668         struct vm_area_struct *prev = NULL;
669         unsigned long vm_flags;
670         unsigned long stack_base;
671         unsigned long stack_size;
672         unsigned long stack_expand;
673         unsigned long rlim_stack;
674
675 #ifdef CONFIG_STACK_GROWSUP
676         /* Limit stack size */
677         stack_base = rlimit_max(RLIMIT_STACK);
678         if (stack_base > STACK_SIZE_MAX)
679                 stack_base = STACK_SIZE_MAX;
680
681         /* Add space for stack randomization. */
682         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
683
684         /* Make sure we didn't let the argument array grow too large. */
685         if (vma->vm_end - vma->vm_start > stack_base)
686                 return -ENOMEM;
687
688         stack_base = PAGE_ALIGN(stack_top - stack_base);
689
690         stack_shift = vma->vm_start - stack_base;
691         mm->arg_start = bprm->p - stack_shift;
692         bprm->p = vma->vm_end - stack_shift;
693 #else
694         stack_top = arch_align_stack(stack_top);
695         stack_top = PAGE_ALIGN(stack_top);
696
697         if (unlikely(stack_top < mmap_min_addr) ||
698             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
699                 return -ENOMEM;
700
701         stack_shift = vma->vm_end - stack_top;
702
703         bprm->p -= stack_shift;
704         mm->arg_start = bprm->p;
705 #endif
706
707         if (bprm->loader)
708                 bprm->loader -= stack_shift;
709         bprm->exec -= stack_shift;
710
711         if (down_write_killable(&mm->mmap_sem))
712                 return -EINTR;
713
714         vm_flags = VM_STACK_FLAGS;
715
716         /*
717          * Adjust stack execute permissions; explicitly enable for
718          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
719          * (arch default) otherwise.
720          */
721         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
722                 vm_flags |= VM_EXEC;
723         else if (executable_stack == EXSTACK_DISABLE_X)
724                 vm_flags &= ~VM_EXEC;
725         vm_flags |= mm->def_flags;
726         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
727
728         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
729                         vm_flags);
730         if (ret)
731                 goto out_unlock;
732         BUG_ON(prev != vma);
733
734         /* Move stack pages down in memory. */
735         if (stack_shift) {
736                 ret = shift_arg_pages(vma, stack_shift);
737                 if (ret)
738                         goto out_unlock;
739         }
740
741         /* mprotect_fixup is overkill to remove the temporary stack flags */
742         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
743
744         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
745         stack_size = vma->vm_end - vma->vm_start;
746         /*
747          * Align this down to a page boundary as expand_stack
748          * will align it up.
749          */
750         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
751 #ifdef CONFIG_STACK_GROWSUP
752         if (stack_size + stack_expand > rlim_stack)
753                 stack_base = vma->vm_start + rlim_stack;
754         else
755                 stack_base = vma->vm_end + stack_expand;
756 #else
757         if (stack_size + stack_expand > rlim_stack)
758                 stack_base = vma->vm_end - rlim_stack;
759         else
760                 stack_base = vma->vm_start - stack_expand;
761 #endif
762         current->mm->start_stack = bprm->p;
763         ret = expand_stack(vma, stack_base);
764         if (ret)
765                 ret = -EFAULT;
766
767 out_unlock:
768         up_write(&mm->mmap_sem);
769         return ret;
770 }
771 EXPORT_SYMBOL(setup_arg_pages);
772
773 #else
774
775 /*
776  * Transfer the program arguments and environment from the holding pages
777  * onto the stack. The provided stack pointer is adjusted accordingly.
778  */
779 int transfer_args_to_stack(struct linux_binprm *bprm,
780                            unsigned long *sp_location)
781 {
782         unsigned long index, stop, sp;
783         int ret = 0;
784
785         stop = bprm->p >> PAGE_SHIFT;
786         sp = *sp_location;
787
788         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
789                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
790                 char *src = kmap(bprm->page[index]) + offset;
791                 sp -= PAGE_SIZE - offset;
792                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
793                         ret = -EFAULT;
794                 kunmap(bprm->page[index]);
795                 if (ret)
796                         goto out;
797         }
798
799         *sp_location = sp;
800
801 out:
802         return ret;
803 }
804 EXPORT_SYMBOL(transfer_args_to_stack);
805
806 #endif /* CONFIG_MMU */
807
808 static struct file *do_open_execat(int fd, struct filename *name, int flags)
809 {
810         struct file *file;
811         int err;
812         struct open_flags open_exec_flags = {
813                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
814                 .acc_mode = MAY_EXEC,
815                 .intent = LOOKUP_OPEN,
816                 .lookup_flags = LOOKUP_FOLLOW,
817         };
818
819         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
820                 return ERR_PTR(-EINVAL);
821         if (flags & AT_SYMLINK_NOFOLLOW)
822                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
823         if (flags & AT_EMPTY_PATH)
824                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
825
826         file = do_filp_open(fd, name, &open_exec_flags);
827         if (IS_ERR(file))
828                 goto out;
829
830         err = -EACCES;
831         if (!S_ISREG(file_inode(file)->i_mode))
832                 goto exit;
833
834         if (path_noexec(&file->f_path))
835                 goto exit;
836
837         err = deny_write_access(file);
838         if (err)
839                 goto exit;
840
841         if (name->name[0] != '\0')
842                 fsnotify_open(file);
843
844 out:
845         return file;
846
847 exit:
848         fput(file);
849         return ERR_PTR(err);
850 }
851
852 struct file *open_exec(const char *name)
853 {
854         struct filename *filename = getname_kernel(name);
855         struct file *f = ERR_CAST(filename);
856
857         if (!IS_ERR(filename)) {
858                 f = do_open_execat(AT_FDCWD, filename, 0);
859                 putname(filename);
860         }
861         return f;
862 }
863 EXPORT_SYMBOL(open_exec);
864
865 int kernel_read(struct file *file, loff_t offset,
866                 char *addr, unsigned long count)
867 {
868         mm_segment_t old_fs;
869         loff_t pos = offset;
870         int result;
871
872         old_fs = get_fs();
873         set_fs(get_ds());
874         /* The cast to a user pointer is valid due to the set_fs() */
875         result = vfs_read(file, (void __user *)addr, count, &pos);
876         set_fs(old_fs);
877         return result;
878 }
879
880 EXPORT_SYMBOL(kernel_read);
881
882 int kernel_read_file(struct file *file, void **buf, loff_t *size,
883                      loff_t max_size, enum kernel_read_file_id id)
884 {
885         loff_t i_size, pos;
886         ssize_t bytes = 0;
887         int ret;
888
889         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
890                 return -EINVAL;
891
892         ret = security_kernel_read_file(file, id);
893         if (ret)
894                 return ret;
895
896         ret = deny_write_access(file);
897         if (ret)
898                 return ret;
899
900         i_size = i_size_read(file_inode(file));
901         if (max_size > 0 && i_size > max_size) {
902                 ret = -EFBIG;
903                 goto out;
904         }
905         if (i_size <= 0) {
906                 ret = -EINVAL;
907                 goto out;
908         }
909
910         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
911                 *buf = vmalloc(i_size);
912         if (!*buf) {
913                 ret = -ENOMEM;
914                 goto out;
915         }
916
917         pos = 0;
918         while (pos < i_size) {
919                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
920                                     i_size - pos);
921                 if (bytes < 0) {
922                         ret = bytes;
923                         goto out;
924                 }
925
926                 if (bytes == 0)
927                         break;
928                 pos += bytes;
929         }
930
931         if (pos != i_size) {
932                 ret = -EIO;
933                 goto out_free;
934         }
935
936         ret = security_kernel_post_read_file(file, *buf, i_size, id);
937         if (!ret)
938                 *size = pos;
939
940 out_free:
941         if (ret < 0) {
942                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
943                         vfree(*buf);
944                         *buf = NULL;
945                 }
946         }
947
948 out:
949         allow_write_access(file);
950         return ret;
951 }
952 EXPORT_SYMBOL_GPL(kernel_read_file);
953
954 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
955                                loff_t max_size, enum kernel_read_file_id id)
956 {
957         struct file *file;
958         int ret;
959
960         if (!path || !*path)
961                 return -EINVAL;
962
963         file = filp_open(path, O_RDONLY, 0);
964         if (IS_ERR(file))
965                 return PTR_ERR(file);
966
967         ret = kernel_read_file(file, buf, size, max_size, id);
968         fput(file);
969         return ret;
970 }
971 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
972
973 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
974                              enum kernel_read_file_id id)
975 {
976         struct fd f = fdget(fd);
977         int ret = -EBADF;
978
979         if (!f.file)
980                 goto out;
981
982         ret = kernel_read_file(f.file, buf, size, max_size, id);
983 out:
984         fdput(f);
985         return ret;
986 }
987 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
988
989 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
990 {
991         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
992         if (res > 0)
993                 flush_icache_range(addr, addr + len);
994         return res;
995 }
996 EXPORT_SYMBOL(read_code);
997
998 static int exec_mmap(struct mm_struct *mm)
999 {
1000         struct task_struct *tsk;
1001         struct mm_struct *old_mm, *active_mm;
1002
1003         /* Notify parent that we're no longer interested in the old VM */
1004         tsk = current;
1005         old_mm = current->mm;
1006         mm_release(tsk, old_mm);
1007
1008         if (old_mm) {
1009                 sync_mm_rss(old_mm);
1010                 /*
1011                  * Make sure that if there is a core dump in progress
1012                  * for the old mm, we get out and die instead of going
1013                  * through with the exec.  We must hold mmap_sem around
1014                  * checking core_state and changing tsk->mm.
1015                  */
1016                 down_read(&old_mm->mmap_sem);
1017                 if (unlikely(old_mm->core_state)) {
1018                         up_read(&old_mm->mmap_sem);
1019                         return -EINTR;
1020                 }
1021         }
1022         task_lock(tsk);
1023         active_mm = tsk->active_mm;
1024         tsk->mm = mm;
1025         tsk->active_mm = mm;
1026         activate_mm(active_mm, mm);
1027         tsk->mm->vmacache_seqnum = 0;
1028         vmacache_flush(tsk);
1029         task_unlock(tsk);
1030         if (old_mm) {
1031                 up_read(&old_mm->mmap_sem);
1032                 BUG_ON(active_mm != old_mm);
1033                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1034                 mm_update_next_owner(old_mm);
1035                 mmput(old_mm);
1036                 return 0;
1037         }
1038         mmdrop(active_mm);
1039         return 0;
1040 }
1041
1042 /*
1043  * This function makes sure the current process has its own signal table,
1044  * so that flush_signal_handlers can later reset the handlers without
1045  * disturbing other processes.  (Other processes might share the signal
1046  * table via the CLONE_SIGHAND option to clone().)
1047  */
1048 static int de_thread(struct task_struct *tsk)
1049 {
1050         struct signal_struct *sig = tsk->signal;
1051         struct sighand_struct *oldsighand = tsk->sighand;
1052         spinlock_t *lock = &oldsighand->siglock;
1053
1054         if (thread_group_empty(tsk))
1055                 goto no_thread_group;
1056
1057         /*
1058          * Kill all other threads in the thread group.
1059          */
1060         spin_lock_irq(lock);
1061         if (signal_group_exit(sig)) {
1062                 /*
1063                  * Another group action in progress, just
1064                  * return so that the signal is processed.
1065                  */
1066                 spin_unlock_irq(lock);
1067                 return -EAGAIN;
1068         }
1069
1070         sig->group_exit_task = tsk;
1071         sig->notify_count = zap_other_threads(tsk);
1072         if (!thread_group_leader(tsk))
1073                 sig->notify_count--;
1074
1075         while (sig->notify_count) {
1076                 __set_current_state(TASK_KILLABLE);
1077                 spin_unlock_irq(lock);
1078                 schedule();
1079                 if (unlikely(__fatal_signal_pending(tsk)))
1080                         goto killed;
1081                 spin_lock_irq(lock);
1082         }
1083         spin_unlock_irq(lock);
1084
1085         /*
1086          * At this point all other threads have exited, all we have to
1087          * do is to wait for the thread group leader to become inactive,
1088          * and to assume its PID:
1089          */
1090         if (!thread_group_leader(tsk)) {
1091                 struct task_struct *leader = tsk->group_leader;
1092
1093                 for (;;) {
1094                         cgroup_threadgroup_change_begin(tsk);
1095                         write_lock_irq(&tasklist_lock);
1096                         /*
1097                          * Do this under tasklist_lock to ensure that
1098                          * exit_notify() can't miss ->group_exit_task
1099                          */
1100                         sig->notify_count = -1;
1101                         if (likely(leader->exit_state))
1102                                 break;
1103                         __set_current_state(TASK_KILLABLE);
1104                         write_unlock_irq(&tasklist_lock);
1105                         cgroup_threadgroup_change_end(tsk);
1106                         schedule();
1107                         if (unlikely(__fatal_signal_pending(tsk)))
1108                                 goto killed;
1109                 }
1110
1111                 /*
1112                  * The only record we have of the real-time age of a
1113                  * process, regardless of execs it's done, is start_time.
1114                  * All the past CPU time is accumulated in signal_struct
1115                  * from sister threads now dead.  But in this non-leader
1116                  * exec, nothing survives from the original leader thread,
1117                  * whose birth marks the true age of this process now.
1118                  * When we take on its identity by switching to its PID, we
1119                  * also take its birthdate (always earlier than our own).
1120                  */
1121                 tsk->start_time = leader->start_time;
1122                 tsk->real_start_time = leader->real_start_time;
1123
1124                 BUG_ON(!same_thread_group(leader, tsk));
1125                 BUG_ON(has_group_leader_pid(tsk));
1126                 /*
1127                  * An exec() starts a new thread group with the
1128                  * TGID of the previous thread group. Rehash the
1129                  * two threads with a switched PID, and release
1130                  * the former thread group leader:
1131                  */
1132
1133                 /* Become a process group leader with the old leader's pid.
1134                  * The old leader becomes a thread of the this thread group.
1135                  * Note: The old leader also uses this pid until release_task
1136                  *       is called.  Odd but simple and correct.
1137                  */
1138                 tsk->pid = leader->pid;
1139                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1140                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1141                 transfer_pid(leader, tsk, PIDTYPE_SID);
1142
1143                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1144                 list_replace_init(&leader->sibling, &tsk->sibling);
1145
1146                 tsk->group_leader = tsk;
1147                 leader->group_leader = tsk;
1148
1149                 tsk->exit_signal = SIGCHLD;
1150                 leader->exit_signal = -1;
1151
1152                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1153                 leader->exit_state = EXIT_DEAD;
1154
1155                 /*
1156                  * We are going to release_task()->ptrace_unlink() silently,
1157                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1158                  * the tracer wont't block again waiting for this thread.
1159                  */
1160                 if (unlikely(leader->ptrace))
1161                         __wake_up_parent(leader, leader->parent);
1162                 write_unlock_irq(&tasklist_lock);
1163                 cgroup_threadgroup_change_end(tsk);
1164
1165                 release_task(leader);
1166         }
1167
1168         sig->group_exit_task = NULL;
1169         sig->notify_count = 0;
1170
1171 no_thread_group:
1172         /* we have changed execution domain */
1173         tsk->exit_signal = SIGCHLD;
1174
1175 #ifdef CONFIG_POSIX_TIMERS
1176         exit_itimers(sig);
1177         flush_itimer_signals();
1178 #endif
1179
1180         if (atomic_read(&oldsighand->count) != 1) {
1181                 struct sighand_struct *newsighand;
1182                 /*
1183                  * This ->sighand is shared with the CLONE_SIGHAND
1184                  * but not CLONE_THREAD task, switch to the new one.
1185                  */
1186                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1187                 if (!newsighand)
1188                         return -ENOMEM;
1189
1190                 atomic_set(&newsighand->count, 1);
1191                 memcpy(newsighand->action, oldsighand->action,
1192                        sizeof(newsighand->action));
1193
1194                 write_lock_irq(&tasklist_lock);
1195                 spin_lock(&oldsighand->siglock);
1196                 rcu_assign_pointer(tsk->sighand, newsighand);
1197                 spin_unlock(&oldsighand->siglock);
1198                 write_unlock_irq(&tasklist_lock);
1199
1200                 __cleanup_sighand(oldsighand);
1201         }
1202
1203         BUG_ON(!thread_group_leader(tsk));
1204         return 0;
1205
1206 killed:
1207         /* protects against exit_notify() and __exit_signal() */
1208         read_lock(&tasklist_lock);
1209         sig->group_exit_task = NULL;
1210         sig->notify_count = 0;
1211         read_unlock(&tasklist_lock);
1212         return -EAGAIN;
1213 }
1214
1215 char *get_task_comm(char *buf, struct task_struct *tsk)
1216 {
1217         /* buf must be at least sizeof(tsk->comm) in size */
1218         task_lock(tsk);
1219         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1220         task_unlock(tsk);
1221         return buf;
1222 }
1223 EXPORT_SYMBOL_GPL(get_task_comm);
1224
1225 /*
1226  * These functions flushes out all traces of the currently running executable
1227  * so that a new one can be started
1228  */
1229
1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231 {
1232         task_lock(tsk);
1233         trace_task_rename(tsk, buf);
1234         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1235         task_unlock(tsk);
1236         perf_event_comm(tsk, exec);
1237 }
1238
1239 int flush_old_exec(struct linux_binprm * bprm)
1240 {
1241         int retval;
1242
1243         /*
1244          * Make sure we have a private signal table and that
1245          * we are unassociated from the previous thread group.
1246          */
1247         retval = de_thread(current);
1248         if (retval)
1249                 goto out;
1250
1251         /*
1252          * Must be called _before_ exec_mmap() as bprm->mm is
1253          * not visibile until then. This also enables the update
1254          * to be lockless.
1255          */
1256         set_mm_exe_file(bprm->mm, bprm->file);
1257
1258         /*
1259          * Release all of the old mmap stuff
1260          */
1261         acct_arg_size(bprm, 0);
1262         retval = exec_mmap(bprm->mm);
1263         if (retval)
1264                 goto out;
1265
1266         bprm->mm = NULL;                /* We're using it now */
1267
1268         set_fs(USER_DS);
1269         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1270                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1271         flush_thread();
1272         current->personality &= ~bprm->per_clear;
1273
1274         /*
1275          * We have to apply CLOEXEC before we change whether the process is
1276          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1277          * trying to access the should-be-closed file descriptors of a process
1278          * undergoing exec(2).
1279          */
1280         do_close_on_exec(current->files);
1281         return 0;
1282
1283 out:
1284         return retval;
1285 }
1286 EXPORT_SYMBOL(flush_old_exec);
1287
1288 void would_dump(struct linux_binprm *bprm, struct file *file)
1289 {
1290         struct inode *inode = file_inode(file);
1291         if (inode_permission(inode, MAY_READ) < 0) {
1292                 struct user_namespace *old, *user_ns;
1293                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1294
1295                 /* Ensure mm->user_ns contains the executable */
1296                 user_ns = old = bprm->mm->user_ns;
1297                 while ((user_ns != &init_user_ns) &&
1298                        !privileged_wrt_inode_uidgid(user_ns, inode))
1299                         user_ns = user_ns->parent;
1300
1301                 if (old != user_ns) {
1302                         bprm->mm->user_ns = get_user_ns(user_ns);
1303                         put_user_ns(old);
1304                 }
1305         }
1306 }
1307 EXPORT_SYMBOL(would_dump);
1308
1309 void setup_new_exec(struct linux_binprm * bprm)
1310 {
1311         arch_pick_mmap_layout(current->mm);
1312
1313         /* This is the point of no return */
1314         current->sas_ss_sp = current->sas_ss_size = 0;
1315
1316         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1317                 set_dumpable(current->mm, SUID_DUMP_USER);
1318         else
1319                 set_dumpable(current->mm, suid_dumpable);
1320
1321         perf_event_exec();
1322         __set_task_comm(current, kbasename(bprm->filename), true);
1323
1324         /* Set the new mm task size. We have to do that late because it may
1325          * depend on TIF_32BIT which is only updated in flush_thread() on
1326          * some architectures like powerpc
1327          */
1328         current->mm->task_size = TASK_SIZE;
1329
1330         /* install the new credentials */
1331         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1332             !gid_eq(bprm->cred->gid, current_egid())) {
1333                 current->pdeath_signal = 0;
1334         } else {
1335                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1336                         set_dumpable(current->mm, suid_dumpable);
1337         }
1338
1339         /* An exec changes our domain. We are no longer part of the thread
1340            group */
1341         current->self_exec_id++;
1342         flush_signal_handlers(current, 0);
1343 }
1344 EXPORT_SYMBOL(setup_new_exec);
1345
1346 /*
1347  * Prepare credentials and lock ->cred_guard_mutex.
1348  * install_exec_creds() commits the new creds and drops the lock.
1349  * Or, if exec fails before, free_bprm() should release ->cred and
1350  * and unlock.
1351  */
1352 int prepare_bprm_creds(struct linux_binprm *bprm)
1353 {
1354         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1355                 return -ERESTARTNOINTR;
1356
1357         bprm->cred = prepare_exec_creds();
1358         if (likely(bprm->cred))
1359                 return 0;
1360
1361         mutex_unlock(&current->signal->cred_guard_mutex);
1362         return -ENOMEM;
1363 }
1364
1365 static void free_bprm(struct linux_binprm *bprm)
1366 {
1367         free_arg_pages(bprm);
1368         if (bprm->cred) {
1369                 mutex_unlock(&current->signal->cred_guard_mutex);
1370                 abort_creds(bprm->cred);
1371         }
1372         if (bprm->file) {
1373                 allow_write_access(bprm->file);
1374                 fput(bprm->file);
1375         }
1376         /* If a binfmt changed the interp, free it. */
1377         if (bprm->interp != bprm->filename)
1378                 kfree(bprm->interp);
1379         kfree(bprm);
1380 }
1381
1382 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1383 {
1384         /* If a binfmt changed the interp, free it first. */
1385         if (bprm->interp != bprm->filename)
1386                 kfree(bprm->interp);
1387         bprm->interp = kstrdup(interp, GFP_KERNEL);
1388         if (!bprm->interp)
1389                 return -ENOMEM;
1390         return 0;
1391 }
1392 EXPORT_SYMBOL(bprm_change_interp);
1393
1394 /*
1395  * install the new credentials for this executable
1396  */
1397 void install_exec_creds(struct linux_binprm *bprm)
1398 {
1399         security_bprm_committing_creds(bprm);
1400
1401         commit_creds(bprm->cred);
1402         bprm->cred = NULL;
1403
1404         /*
1405          * Disable monitoring for regular users
1406          * when executing setuid binaries. Must
1407          * wait until new credentials are committed
1408          * by commit_creds() above
1409          */
1410         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1411                 perf_event_exit_task(current);
1412         /*
1413          * cred_guard_mutex must be held at least to this point to prevent
1414          * ptrace_attach() from altering our determination of the task's
1415          * credentials; any time after this it may be unlocked.
1416          */
1417         security_bprm_committed_creds(bprm);
1418         mutex_unlock(&current->signal->cred_guard_mutex);
1419 }
1420 EXPORT_SYMBOL(install_exec_creds);
1421
1422 /*
1423  * determine how safe it is to execute the proposed program
1424  * - the caller must hold ->cred_guard_mutex to protect against
1425  *   PTRACE_ATTACH or seccomp thread-sync
1426  */
1427 static void check_unsafe_exec(struct linux_binprm *bprm)
1428 {
1429         struct task_struct *p = current, *t;
1430         unsigned n_fs;
1431
1432         if (p->ptrace)
1433                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1434
1435         /*
1436          * This isn't strictly necessary, but it makes it harder for LSMs to
1437          * mess up.
1438          */
1439         if (task_no_new_privs(current))
1440                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1441
1442         t = p;
1443         n_fs = 1;
1444         spin_lock(&p->fs->lock);
1445         rcu_read_lock();
1446         while_each_thread(p, t) {
1447                 if (t->fs == p->fs)
1448                         n_fs++;
1449         }
1450         rcu_read_unlock();
1451
1452         if (p->fs->users > n_fs)
1453                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1454         else
1455                 p->fs->in_exec = 1;
1456         spin_unlock(&p->fs->lock);
1457 }
1458
1459 static void bprm_fill_uid(struct linux_binprm *bprm)
1460 {
1461         struct inode *inode;
1462         unsigned int mode;
1463         kuid_t uid;
1464         kgid_t gid;
1465
1466         /*
1467          * Since this can be called multiple times (via prepare_binprm),
1468          * we must clear any previous work done when setting set[ug]id
1469          * bits from any earlier bprm->file uses (for example when run
1470          * first for a setuid script then again for its interpreter).
1471          */
1472         bprm->cred->euid = current_euid();
1473         bprm->cred->egid = current_egid();
1474
1475         if (!mnt_may_suid(bprm->file->f_path.mnt))
1476                 return;
1477
1478         if (task_no_new_privs(current))
1479                 return;
1480
1481         inode = bprm->file->f_path.dentry->d_inode;
1482         mode = READ_ONCE(inode->i_mode);
1483         if (!(mode & (S_ISUID|S_ISGID)))
1484                 return;
1485
1486         /* Be careful if suid/sgid is set */
1487         inode_lock(inode);
1488
1489         /* reload atomically mode/uid/gid now that lock held */
1490         mode = inode->i_mode;
1491         uid = inode->i_uid;
1492         gid = inode->i_gid;
1493         inode_unlock(inode);
1494
1495         /* We ignore suid/sgid if there are no mappings for them in the ns */
1496         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1497                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1498                 return;
1499
1500         if (mode & S_ISUID) {
1501                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1502                 bprm->cred->euid = uid;
1503         }
1504
1505         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1506                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1507                 bprm->cred->egid = gid;
1508         }
1509 }
1510
1511 /*
1512  * Fill the binprm structure from the inode.
1513  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1514  *
1515  * This may be called multiple times for binary chains (scripts for example).
1516  */
1517 int prepare_binprm(struct linux_binprm *bprm)
1518 {
1519         int retval;
1520
1521         bprm_fill_uid(bprm);
1522
1523         /* fill in binprm security blob */
1524         retval = security_bprm_set_creds(bprm);
1525         if (retval)
1526                 return retval;
1527         bprm->cred_prepared = 1;
1528
1529         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1530         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1531 }
1532
1533 EXPORT_SYMBOL(prepare_binprm);
1534
1535 /*
1536  * Arguments are '\0' separated strings found at the location bprm->p
1537  * points to; chop off the first by relocating brpm->p to right after
1538  * the first '\0' encountered.
1539  */
1540 int remove_arg_zero(struct linux_binprm *bprm)
1541 {
1542         int ret = 0;
1543         unsigned long offset;
1544         char *kaddr;
1545         struct page *page;
1546
1547         if (!bprm->argc)
1548                 return 0;
1549
1550         do {
1551                 offset = bprm->p & ~PAGE_MASK;
1552                 page = get_arg_page(bprm, bprm->p, 0);
1553                 if (!page) {
1554                         ret = -EFAULT;
1555                         goto out;
1556                 }
1557                 kaddr = kmap_atomic(page);
1558
1559                 for (; offset < PAGE_SIZE && kaddr[offset];
1560                                 offset++, bprm->p++)
1561                         ;
1562
1563                 kunmap_atomic(kaddr);
1564                 put_arg_page(page);
1565         } while (offset == PAGE_SIZE);
1566
1567         bprm->p++;
1568         bprm->argc--;
1569         ret = 0;
1570
1571 out:
1572         return ret;
1573 }
1574 EXPORT_SYMBOL(remove_arg_zero);
1575
1576 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1577 /*
1578  * cycle the list of binary formats handler, until one recognizes the image
1579  */
1580 int search_binary_handler(struct linux_binprm *bprm)
1581 {
1582         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1583         struct linux_binfmt *fmt;
1584         int retval;
1585
1586         /* This allows 4 levels of binfmt rewrites before failing hard. */
1587         if (bprm->recursion_depth > 5)
1588                 return -ELOOP;
1589
1590         retval = security_bprm_check(bprm);
1591         if (retval)
1592                 return retval;
1593
1594         retval = -ENOENT;
1595  retry:
1596         read_lock(&binfmt_lock);
1597         list_for_each_entry(fmt, &formats, lh) {
1598                 if (!try_module_get(fmt->module))
1599                         continue;
1600                 read_unlock(&binfmt_lock);
1601                 bprm->recursion_depth++;
1602                 retval = fmt->load_binary(bprm);
1603                 read_lock(&binfmt_lock);
1604                 put_binfmt(fmt);
1605                 bprm->recursion_depth--;
1606                 if (retval < 0 && !bprm->mm) {
1607                         /* we got to flush_old_exec() and failed after it */
1608                         read_unlock(&binfmt_lock);
1609                         force_sigsegv(SIGSEGV, current);
1610                         return retval;
1611                 }
1612                 if (retval != -ENOEXEC || !bprm->file) {
1613                         read_unlock(&binfmt_lock);
1614                         return retval;
1615                 }
1616         }
1617         read_unlock(&binfmt_lock);
1618
1619         if (need_retry) {
1620                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1621                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1622                         return retval;
1623                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1624                         return retval;
1625                 need_retry = false;
1626                 goto retry;
1627         }
1628
1629         return retval;
1630 }
1631 EXPORT_SYMBOL(search_binary_handler);
1632
1633 static int exec_binprm(struct linux_binprm *bprm)
1634 {
1635         pid_t old_pid, old_vpid;
1636         int ret;
1637
1638         /* Need to fetch pid before load_binary changes it */
1639         old_pid = current->pid;
1640         rcu_read_lock();
1641         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1642         rcu_read_unlock();
1643
1644         ret = search_binary_handler(bprm);
1645         if (ret >= 0) {
1646                 audit_bprm(bprm);
1647                 trace_sched_process_exec(current, old_pid, bprm);
1648                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1649                 proc_exec_connector(current);
1650         }
1651
1652         return ret;
1653 }
1654
1655 /*
1656  * sys_execve() executes a new program.
1657  */
1658 static int do_execveat_common(int fd, struct filename *filename,
1659                               struct user_arg_ptr argv,
1660                               struct user_arg_ptr envp,
1661                               int flags)
1662 {
1663         char *pathbuf = NULL;
1664         struct linux_binprm *bprm;
1665         struct file *file;
1666         struct files_struct *displaced;
1667         int retval;
1668
1669         if (IS_ERR(filename))
1670                 return PTR_ERR(filename);
1671
1672         /*
1673          * We move the actual failure in case of RLIMIT_NPROC excess from
1674          * set*uid() to execve() because too many poorly written programs
1675          * don't check setuid() return code.  Here we additionally recheck
1676          * whether NPROC limit is still exceeded.
1677          */
1678         if ((current->flags & PF_NPROC_EXCEEDED) &&
1679             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1680                 retval = -EAGAIN;
1681                 goto out_ret;
1682         }
1683
1684         /* We're below the limit (still or again), so we don't want to make
1685          * further execve() calls fail. */
1686         current->flags &= ~PF_NPROC_EXCEEDED;
1687
1688         retval = unshare_files(&displaced);
1689         if (retval)
1690                 goto out_ret;
1691
1692         retval = -ENOMEM;
1693         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1694         if (!bprm)
1695                 goto out_files;
1696
1697         retval = prepare_bprm_creds(bprm);
1698         if (retval)
1699                 goto out_free;
1700
1701         check_unsafe_exec(bprm);
1702         current->in_execve = 1;
1703
1704         file = do_open_execat(fd, filename, flags);
1705         retval = PTR_ERR(file);
1706         if (IS_ERR(file))
1707                 goto out_unmark;
1708
1709         sched_exec();
1710
1711         bprm->file = file;
1712         if (fd == AT_FDCWD || filename->name[0] == '/') {
1713                 bprm->filename = filename->name;
1714         } else {
1715                 if (filename->name[0] == '\0')
1716                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1717                 else
1718                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1719                                             fd, filename->name);
1720                 if (!pathbuf) {
1721                         retval = -ENOMEM;
1722                         goto out_unmark;
1723                 }
1724                 /*
1725                  * Record that a name derived from an O_CLOEXEC fd will be
1726                  * inaccessible after exec. Relies on having exclusive access to
1727                  * current->files (due to unshare_files above).
1728                  */
1729                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1730                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1731                 bprm->filename = pathbuf;
1732         }
1733         bprm->interp = bprm->filename;
1734
1735         retval = bprm_mm_init(bprm);
1736         if (retval)
1737                 goto out_unmark;
1738
1739         bprm->argc = count(argv, MAX_ARG_STRINGS);
1740         if ((retval = bprm->argc) < 0)
1741                 goto out;
1742
1743         bprm->envc = count(envp, MAX_ARG_STRINGS);
1744         if ((retval = bprm->envc) < 0)
1745                 goto out;
1746
1747         retval = prepare_binprm(bprm);
1748         if (retval < 0)
1749                 goto out;
1750
1751         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1752         if (retval < 0)
1753                 goto out;
1754
1755         bprm->exec = bprm->p;
1756         retval = copy_strings(bprm->envc, envp, bprm);
1757         if (retval < 0)
1758                 goto out;
1759
1760         retval = copy_strings(bprm->argc, argv, bprm);
1761         if (retval < 0)
1762                 goto out;
1763
1764         would_dump(bprm, bprm->file);
1765
1766         retval = exec_binprm(bprm);
1767         if (retval < 0)
1768                 goto out;
1769
1770         /* execve succeeded */
1771         current->fs->in_exec = 0;
1772         current->in_execve = 0;
1773         acct_update_integrals(current);
1774         task_numa_free(current);
1775         free_bprm(bprm);
1776         kfree(pathbuf);
1777         putname(filename);
1778         if (displaced)
1779                 put_files_struct(displaced);
1780         return retval;
1781
1782 out:
1783         if (bprm->mm) {
1784                 acct_arg_size(bprm, 0);
1785                 mmput(bprm->mm);
1786         }
1787
1788 out_unmark:
1789         current->fs->in_exec = 0;
1790         current->in_execve = 0;
1791
1792 out_free:
1793         free_bprm(bprm);
1794         kfree(pathbuf);
1795
1796 out_files:
1797         if (displaced)
1798                 reset_files_struct(displaced);
1799 out_ret:
1800         putname(filename);
1801         return retval;
1802 }
1803
1804 int do_execve(struct filename *filename,
1805         const char __user *const __user *__argv,
1806         const char __user *const __user *__envp)
1807 {
1808         struct user_arg_ptr argv = { .ptr.native = __argv };
1809         struct user_arg_ptr envp = { .ptr.native = __envp };
1810         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1811 }
1812
1813 int do_execveat(int fd, struct filename *filename,
1814                 const char __user *const __user *__argv,
1815                 const char __user *const __user *__envp,
1816                 int flags)
1817 {
1818         struct user_arg_ptr argv = { .ptr.native = __argv };
1819         struct user_arg_ptr envp = { .ptr.native = __envp };
1820
1821         return do_execveat_common(fd, filename, argv, envp, flags);
1822 }
1823
1824 #ifdef CONFIG_COMPAT
1825 static int compat_do_execve(struct filename *filename,
1826         const compat_uptr_t __user *__argv,
1827         const compat_uptr_t __user *__envp)
1828 {
1829         struct user_arg_ptr argv = {
1830                 .is_compat = true,
1831                 .ptr.compat = __argv,
1832         };
1833         struct user_arg_ptr envp = {
1834                 .is_compat = true,
1835                 .ptr.compat = __envp,
1836         };
1837         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1838 }
1839
1840 static int compat_do_execveat(int fd, struct filename *filename,
1841                               const compat_uptr_t __user *__argv,
1842                               const compat_uptr_t __user *__envp,
1843                               int flags)
1844 {
1845         struct user_arg_ptr argv = {
1846                 .is_compat = true,
1847                 .ptr.compat = __argv,
1848         };
1849         struct user_arg_ptr envp = {
1850                 .is_compat = true,
1851                 .ptr.compat = __envp,
1852         };
1853         return do_execveat_common(fd, filename, argv, envp, flags);
1854 }
1855 #endif
1856
1857 void set_binfmt(struct linux_binfmt *new)
1858 {
1859         struct mm_struct *mm = current->mm;
1860
1861         if (mm->binfmt)
1862                 module_put(mm->binfmt->module);
1863
1864         mm->binfmt = new;
1865         if (new)
1866                 __module_get(new->module);
1867 }
1868 EXPORT_SYMBOL(set_binfmt);
1869
1870 /*
1871  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1872  */
1873 void set_dumpable(struct mm_struct *mm, int value)
1874 {
1875         unsigned long old, new;
1876
1877         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1878                 return;
1879
1880         do {
1881                 old = ACCESS_ONCE(mm->flags);
1882                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1883         } while (cmpxchg(&mm->flags, old, new) != old);
1884 }
1885
1886 SYSCALL_DEFINE3(execve,
1887                 const char __user *, filename,
1888                 const char __user *const __user *, argv,
1889                 const char __user *const __user *, envp)
1890 {
1891         return do_execve(getname(filename), argv, envp);
1892 }
1893
1894 SYSCALL_DEFINE5(execveat,
1895                 int, fd, const char __user *, filename,
1896                 const char __user *const __user *, argv,
1897                 const char __user *const __user *, envp,
1898                 int, flags)
1899 {
1900         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1901
1902         return do_execveat(fd,
1903                            getname_flags(filename, lookup_flags, NULL),
1904                            argv, envp, flags);
1905 }
1906
1907 #ifdef CONFIG_COMPAT
1908 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1909         const compat_uptr_t __user *, argv,
1910         const compat_uptr_t __user *, envp)
1911 {
1912         return compat_do_execve(getname(filename), argv, envp);
1913 }
1914
1915 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1916                        const char __user *, filename,
1917                        const compat_uptr_t __user *, argv,
1918                        const compat_uptr_t __user *, envp,
1919                        int,  flags)
1920 {
1921         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1922
1923         return compat_do_execveat(fd,
1924                                   getname_flags(filename, lookup_flags, NULL),
1925                                   argv, envp, flags);
1926 }
1927 #endif