]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         /*
231          * Protect us against freezing - iput() caller didn't have to have any
232          * protection against it
233          */
234         sb_start_intwrite(inode->i_sb);
235         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236                                     ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 sb_end_intwrite(inode->i_sb);
246                 goto no_delete;
247         }
248
249         if (IS_SYNC(inode))
250                 ext4_handle_sync(handle);
251         inode->i_size = 0;
252         err = ext4_mark_inode_dirty(handle, inode);
253         if (err) {
254                 ext4_warning(inode->i_sb,
255                              "couldn't mark inode dirty (err %d)", err);
256                 goto stop_handle;
257         }
258         if (inode->i_blocks)
259                 ext4_truncate(inode);
260
261         /*
262          * ext4_ext_truncate() doesn't reserve any slop when it
263          * restarts journal transactions; therefore there may not be
264          * enough credits left in the handle to remove the inode from
265          * the orphan list and set the dtime field.
266          */
267         if (!ext4_handle_has_enough_credits(handle, 3)) {
268                 err = ext4_journal_extend(handle, 3);
269                 if (err > 0)
270                         err = ext4_journal_restart(handle, 3);
271                 if (err != 0) {
272                         ext4_warning(inode->i_sb,
273                                      "couldn't extend journal (err %d)", err);
274                 stop_handle:
275                         ext4_journal_stop(handle);
276                         ext4_orphan_del(NULL, inode);
277                         sb_end_intwrite(inode->i_sb);
278                         goto no_delete;
279                 }
280         }
281
282         /*
283          * Kill off the orphan record which ext4_truncate created.
284          * AKPM: I think this can be inside the above `if'.
285          * Note that ext4_orphan_del() has to be able to cope with the
286          * deletion of a non-existent orphan - this is because we don't
287          * know if ext4_truncate() actually created an orphan record.
288          * (Well, we could do this if we need to, but heck - it works)
289          */
290         ext4_orphan_del(handle, inode);
291         EXT4_I(inode)->i_dtime  = get_seconds();
292
293         /*
294          * One subtle ordering requirement: if anything has gone wrong
295          * (transaction abort, IO errors, whatever), then we can still
296          * do these next steps (the fs will already have been marked as
297          * having errors), but we can't free the inode if the mark_dirty
298          * fails.
299          */
300         if (ext4_mark_inode_dirty(handle, inode))
301                 /* If that failed, just do the required in-core inode clear. */
302                 ext4_clear_inode(inode);
303         else
304                 ext4_free_inode(handle, inode);
305         ext4_journal_stop(handle);
306         sb_end_intwrite(inode->i_sb);
307         return;
308 no_delete:
309         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315         return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324                                         int used, int quota_claim)
325 {
326         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327         struct ext4_inode_info *ei = EXT4_I(inode);
328
329         spin_lock(&ei->i_block_reservation_lock);
330         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331         if (unlikely(used > ei->i_reserved_data_blocks)) {
332                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333                          "with only %d reserved data blocks",
334                          __func__, inode->i_ino, used,
335                          ei->i_reserved_data_blocks);
336                 WARN_ON(1);
337                 used = ei->i_reserved_data_blocks;
338         }
339
340         /* Update per-inode reservations */
341         ei->i_reserved_data_blocks -= used;
342         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346         /* Update quota subsystem for data blocks */
347         if (quota_claim)
348                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349         else {
350                 /*
351                  * We did fallocate with an offset that is already delayed
352                  * allocated. So on delayed allocated writeback we should
353                  * not re-claim the quota for fallocated blocks.
354                  */
355                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356         }
357
358         /*
359          * If we have done all the pending block allocations and if
360          * there aren't any writers on the inode, we can discard the
361          * inode's preallocations.
362          */
363         if ((ei->i_reserved_data_blocks == 0) &&
364             (atomic_read(&inode->i_writecount) == 0))
365                 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369                                 unsigned int line,
370                                 struct ext4_map_blocks *map)
371 {
372         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373                                    map->m_len)) {
374                 ext4_error_inode(inode, func, line, map->m_pblk,
375                                  "lblock %lu mapped to illegal pblock "
376                                  "(length %d)", (unsigned long) map->m_lblk,
377                                  map->m_len);
378                 return -EFSCORRUPTED;
379         }
380         return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384                        ext4_lblk_t len)
385 {
386         int ret;
387
388         if (ext4_encrypted_inode(inode))
389                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392         if (ret > 0)
393                 ret = 0;
394
395         return ret;
396 }
397
398 #define check_block_validity(inode, map)        \
399         __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403                                        struct inode *inode,
404                                        struct ext4_map_blocks *es_map,
405                                        struct ext4_map_blocks *map,
406                                        int flags)
407 {
408         int retval;
409
410         map->m_flags = 0;
411         /*
412          * There is a race window that the result is not the same.
413          * e.g. xfstests #223 when dioread_nolock enables.  The reason
414          * is that we lookup a block mapping in extent status tree with
415          * out taking i_data_sem.  So at the time the unwritten extent
416          * could be converted.
417          */
418         down_read(&EXT4_I(inode)->i_data_sem);
419         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421                                              EXT4_GET_BLOCKS_KEEP_SIZE);
422         } else {
423                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         }
426         up_read((&EXT4_I(inode)->i_data_sem));
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EFSCORRUPTED;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498                         map->m_pblk = ext4_es_pblock(&es) +
499                                         map->m_lblk - es.es_lblk;
500                         map->m_flags |= ext4_es_is_written(&es) ?
501                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502                         retval = es.es_len - (map->m_lblk - es.es_lblk);
503                         if (retval > map->m_len)
504                                 retval = map->m_len;
505                         map->m_len = retval;
506                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507                         map->m_pblk = 0;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                         retval = 0;
513                 } else {
514                         BUG_ON(1);
515                 }
516 #ifdef ES_AGGRESSIVE_TEST
517                 ext4_map_blocks_es_recheck(handle, inode, map,
518                                            &orig_map, flags);
519 #endif
520                 goto found;
521         }
522
523         /*
524          * Try to see if we can get the block without requesting a new
525          * file system block.
526          */
527         down_read(&EXT4_I(inode)->i_data_sem);
528         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         } else {
532                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533                                              EXT4_GET_BLOCKS_KEEP_SIZE);
534         }
535         if (retval > 0) {
536                 unsigned int status;
537
538                 if (unlikely(retval != map->m_len)) {
539                         ext4_warning(inode->i_sb,
540                                      "ES len assertion failed for inode "
541                                      "%lu: retval %d != map->m_len %d",
542                                      inode->i_ino, retval, map->m_len);
543                         WARN_ON(1);
544                 }
545
546                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549                     !(status & EXTENT_STATUS_WRITTEN) &&
550                     ext4_find_delalloc_range(inode, map->m_lblk,
551                                              map->m_lblk + map->m_len - 1))
552                         status |= EXTENT_STATUS_DELAYED;
553                 ret = ext4_es_insert_extent(inode, map->m_lblk,
554                                             map->m_len, map->m_pblk, status);
555                 if (ret < 0)
556                         retval = ret;
557         }
558         up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562                 ret = check_block_validity(inode, map);
563                 if (ret != 0)
564                         return ret;
565         }
566
567         /* If it is only a block(s) look up */
568         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569                 return retval;
570
571         /*
572          * Returns if the blocks have already allocated
573          *
574          * Note that if blocks have been preallocated
575          * ext4_ext_get_block() returns the create = 0
576          * with buffer head unmapped.
577          */
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579                 /*
580                  * If we need to convert extent to unwritten
581                  * we continue and do the actual work in
582                  * ext4_ext_map_blocks()
583                  */
584                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585                         return retval;
586
587         /*
588          * Here we clear m_flags because after allocating an new extent,
589          * it will be set again.
590          */
591         map->m_flags &= ~EXT4_MAP_FLAGS;
592
593         /*
594          * New blocks allocate and/or writing to unwritten extent
595          * will possibly result in updating i_data, so we take
596          * the write lock of i_data_sem, and call get_block()
597          * with create == 1 flag.
598          */
599         down_write(&EXT4_I(inode)->i_data_sem);
600
601         /*
602          * We need to check for EXT4 here because migrate
603          * could have changed the inode type in between
604          */
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611                         /*
612                          * We allocated new blocks which will result in
613                          * i_data's format changing.  Force the migrate
614                          * to fail by clearing migrate flags
615                          */
616                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617                 }
618
619                 /*
620                  * Update reserved blocks/metadata blocks after successful
621                  * block allocation which had been deferred till now. We don't
622                  * support fallocate for non extent files. So we can update
623                  * reserve space here.
624                  */
625                 if ((retval > 0) &&
626                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627                         ext4_da_update_reserve_space(inode, retval, 1);
628         }
629
630         if (retval > 0) {
631                 unsigned int status;
632
633                 if (unlikely(retval != map->m_len)) {
634                         ext4_warning(inode->i_sb,
635                                      "ES len assertion failed for inode "
636                                      "%lu: retval %d != map->m_len %d",
637                                      inode->i_ino, retval, map->m_len);
638                         WARN_ON(1);
639                 }
640
641                 /*
642                  * We have to zeroout blocks before inserting them into extent
643                  * status tree. Otherwise someone could look them up there and
644                  * use them before they are really zeroed.
645                  */
646                 if (flags & EXT4_GET_BLOCKS_ZERO &&
647                     map->m_flags & EXT4_MAP_MAPPED &&
648                     map->m_flags & EXT4_MAP_NEW) {
649                         ret = ext4_issue_zeroout(inode, map->m_lblk,
650                                                  map->m_pblk, map->m_len);
651                         if (ret) {
652                                 retval = ret;
653                                 goto out_sem;
654                         }
655                 }
656
657                 /*
658                  * If the extent has been zeroed out, we don't need to update
659                  * extent status tree.
660                  */
661                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663                         if (ext4_es_is_written(&es))
664                                 goto out_sem;
665                 }
666                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669                     !(status & EXTENT_STATUS_WRITTEN) &&
670                     ext4_find_delalloc_range(inode, map->m_lblk,
671                                              map->m_lblk + map->m_len - 1))
672                         status |= EXTENT_STATUS_DELAYED;
673                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674                                             map->m_pblk, status);
675                 if (ret < 0) {
676                         retval = ret;
677                         goto out_sem;
678                 }
679         }
680
681 out_sem:
682         up_write((&EXT4_I(inode)->i_data_sem));
683         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684                 ret = check_block_validity(inode, map);
685                 if (ret != 0)
686                         return ret;
687
688                 /*
689                  * Inodes with freshly allocated blocks where contents will be
690                  * visible after transaction commit must be on transaction's
691                  * ordered data list.
692                  */
693                 if (map->m_flags & EXT4_MAP_NEW &&
694                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
695                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
696                     !IS_NOQUOTA(inode) &&
697                     ext4_should_order_data(inode)) {
698                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
699                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
700                         else
701                                 ret = ext4_jbd2_inode_add_write(handle, inode);
702                         if (ret)
703                                 return ret;
704                 }
705         }
706         return retval;
707 }
708
709 /*
710  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
711  * we have to be careful as someone else may be manipulating b_state as well.
712  */
713 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
714 {
715         unsigned long old_state;
716         unsigned long new_state;
717
718         flags &= EXT4_MAP_FLAGS;
719
720         /* Dummy buffer_head? Set non-atomically. */
721         if (!bh->b_page) {
722                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
723                 return;
724         }
725         /*
726          * Someone else may be modifying b_state. Be careful! This is ugly but
727          * once we get rid of using bh as a container for mapping information
728          * to pass to / from get_block functions, this can go away.
729          */
730         do {
731                 old_state = READ_ONCE(bh->b_state);
732                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
733         } while (unlikely(
734                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
735 }
736
737 static int _ext4_get_block(struct inode *inode, sector_t iblock,
738                            struct buffer_head *bh, int flags)
739 {
740         struct ext4_map_blocks map;
741         int ret = 0;
742
743         if (ext4_has_inline_data(inode))
744                 return -ERANGE;
745
746         map.m_lblk = iblock;
747         map.m_len = bh->b_size >> inode->i_blkbits;
748
749         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
750                               flags);
751         if (ret > 0) {
752                 map_bh(bh, inode->i_sb, map.m_pblk);
753                 ext4_update_bh_state(bh, map.m_flags);
754                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
755                 ret = 0;
756         }
757         return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761                    struct buffer_head *bh, int create)
762 {
763         return _ext4_get_block(inode, iblock, bh,
764                                create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768  * Get block function used when preparing for buffered write if we require
769  * creating an unwritten extent if blocks haven't been allocated.  The extent
770  * will be converted to written after the IO is complete.
771  */
772 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
773                              struct buffer_head *bh_result, int create)
774 {
775         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
776                    inode->i_ino, create);
777         return _ext4_get_block(inode, iblock, bh_result,
778                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
779 }
780
781 /* Maximum number of blocks we map for direct IO at once. */
782 #define DIO_MAX_BLOCKS 4096
783
784 /*
785  * Get blocks function for the cases that need to start a transaction -
786  * generally difference cases of direct IO and DAX IO. It also handles retries
787  * in case of ENOSPC.
788  */
789 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
790                                 struct buffer_head *bh_result, int flags)
791 {
792         int dio_credits;
793         handle_t *handle;
794         int retries = 0;
795         int ret;
796
797         /* Trim mapping request to maximum we can map at once for DIO */
798         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
799                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
800         dio_credits = ext4_chunk_trans_blocks(inode,
801                                       bh_result->b_size >> inode->i_blkbits);
802 retry:
803         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
804         if (IS_ERR(handle))
805                 return PTR_ERR(handle);
806
807         ret = _ext4_get_block(inode, iblock, bh_result, flags);
808         ext4_journal_stop(handle);
809
810         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
811                 goto retry;
812         return ret;
813 }
814
815 /* Get block function for DIO reads and writes to inodes without extents */
816 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
817                        struct buffer_head *bh, int create)
818 {
819         /* We don't expect handle for direct IO */
820         WARN_ON_ONCE(ext4_journal_current_handle());
821
822         if (!create)
823                 return _ext4_get_block(inode, iblock, bh, 0);
824         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
825 }
826
827 /*
828  * Get block function for AIO DIO writes when we create unwritten extent if
829  * blocks are not allocated yet. The extent will be converted to written
830  * after IO is complete.
831  */
832 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
833                 sector_t iblock, struct buffer_head *bh_result, int create)
834 {
835         int ret;
836
837         /* We don't expect handle for direct IO */
838         WARN_ON_ONCE(ext4_journal_current_handle());
839
840         ret = ext4_get_block_trans(inode, iblock, bh_result,
841                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
842
843         /*
844          * When doing DIO using unwritten extents, we need io_end to convert
845          * unwritten extents to written on IO completion. We allocate io_end
846          * once we spot unwritten extent and store it in b_private. Generic
847          * DIO code keeps b_private set and furthermore passes the value to
848          * our completion callback in 'private' argument.
849          */
850         if (!ret && buffer_unwritten(bh_result)) {
851                 if (!bh_result->b_private) {
852                         ext4_io_end_t *io_end;
853
854                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
855                         if (!io_end)
856                                 return -ENOMEM;
857                         bh_result->b_private = io_end;
858                         ext4_set_io_unwritten_flag(inode, io_end);
859                 }
860                 set_buffer_defer_completion(bh_result);
861         }
862
863         return ret;
864 }
865
866 /*
867  * Get block function for non-AIO DIO writes when we create unwritten extent if
868  * blocks are not allocated yet. The extent will be converted to written
869  * after IO is complete from ext4_ext_direct_IO() function.
870  */
871 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
872                 sector_t iblock, struct buffer_head *bh_result, int create)
873 {
874         int ret;
875
876         /* We don't expect handle for direct IO */
877         WARN_ON_ONCE(ext4_journal_current_handle());
878
879         ret = ext4_get_block_trans(inode, iblock, bh_result,
880                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
881
882         /*
883          * Mark inode as having pending DIO writes to unwritten extents.
884          * ext4_ext_direct_IO() checks this flag and converts extents to
885          * written.
886          */
887         if (!ret && buffer_unwritten(bh_result))
888                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
889
890         return ret;
891 }
892
893 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
894                    struct buffer_head *bh_result, int create)
895 {
896         int ret;
897
898         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
899                    inode->i_ino, create);
900         /* We don't expect handle for direct IO */
901         WARN_ON_ONCE(ext4_journal_current_handle());
902
903         ret = _ext4_get_block(inode, iblock, bh_result, 0);
904         /*
905          * Blocks should have been preallocated! ext4_file_write_iter() checks
906          * that.
907          */
908         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
909
910         return ret;
911 }
912
913
914 /*
915  * `handle' can be NULL if create is zero
916  */
917 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
918                                 ext4_lblk_t block, int map_flags)
919 {
920         struct ext4_map_blocks map;
921         struct buffer_head *bh;
922         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
923         int err;
924
925         J_ASSERT(handle != NULL || create == 0);
926
927         map.m_lblk = block;
928         map.m_len = 1;
929         err = ext4_map_blocks(handle, inode, &map, map_flags);
930
931         if (err == 0)
932                 return create ? ERR_PTR(-ENOSPC) : NULL;
933         if (err < 0)
934                 return ERR_PTR(err);
935
936         bh = sb_getblk(inode->i_sb, map.m_pblk);
937         if (unlikely(!bh))
938                 return ERR_PTR(-ENOMEM);
939         if (map.m_flags & EXT4_MAP_NEW) {
940                 J_ASSERT(create != 0);
941                 J_ASSERT(handle != NULL);
942
943                 /*
944                  * Now that we do not always journal data, we should
945                  * keep in mind whether this should always journal the
946                  * new buffer as metadata.  For now, regular file
947                  * writes use ext4_get_block instead, so it's not a
948                  * problem.
949                  */
950                 lock_buffer(bh);
951                 BUFFER_TRACE(bh, "call get_create_access");
952                 err = ext4_journal_get_create_access(handle, bh);
953                 if (unlikely(err)) {
954                         unlock_buffer(bh);
955                         goto errout;
956                 }
957                 if (!buffer_uptodate(bh)) {
958                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
959                         set_buffer_uptodate(bh);
960                 }
961                 unlock_buffer(bh);
962                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
963                 err = ext4_handle_dirty_metadata(handle, inode, bh);
964                 if (unlikely(err))
965                         goto errout;
966         } else
967                 BUFFER_TRACE(bh, "not a new buffer");
968         return bh;
969 errout:
970         brelse(bh);
971         return ERR_PTR(err);
972 }
973
974 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
975                                ext4_lblk_t block, int map_flags)
976 {
977         struct buffer_head *bh;
978
979         bh = ext4_getblk(handle, inode, block, map_flags);
980         if (IS_ERR(bh))
981                 return bh;
982         if (!bh || buffer_uptodate(bh))
983                 return bh;
984         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
985         wait_on_buffer(bh);
986         if (buffer_uptodate(bh))
987                 return bh;
988         put_bh(bh);
989         return ERR_PTR(-EIO);
990 }
991
992 int ext4_walk_page_buffers(handle_t *handle,
993                            struct buffer_head *head,
994                            unsigned from,
995                            unsigned to,
996                            int *partial,
997                            int (*fn)(handle_t *handle,
998                                      struct buffer_head *bh))
999 {
1000         struct buffer_head *bh;
1001         unsigned block_start, block_end;
1002         unsigned blocksize = head->b_size;
1003         int err, ret = 0;
1004         struct buffer_head *next;
1005
1006         for (bh = head, block_start = 0;
1007              ret == 0 && (bh != head || !block_start);
1008              block_start = block_end, bh = next) {
1009                 next = bh->b_this_page;
1010                 block_end = block_start + blocksize;
1011                 if (block_end <= from || block_start >= to) {
1012                         if (partial && !buffer_uptodate(bh))
1013                                 *partial = 1;
1014                         continue;
1015                 }
1016                 err = (*fn)(handle, bh);
1017                 if (!ret)
1018                         ret = err;
1019         }
1020         return ret;
1021 }
1022
1023 /*
1024  * To preserve ordering, it is essential that the hole instantiation and
1025  * the data write be encapsulated in a single transaction.  We cannot
1026  * close off a transaction and start a new one between the ext4_get_block()
1027  * and the commit_write().  So doing the jbd2_journal_start at the start of
1028  * prepare_write() is the right place.
1029  *
1030  * Also, this function can nest inside ext4_writepage().  In that case, we
1031  * *know* that ext4_writepage() has generated enough buffer credits to do the
1032  * whole page.  So we won't block on the journal in that case, which is good,
1033  * because the caller may be PF_MEMALLOC.
1034  *
1035  * By accident, ext4 can be reentered when a transaction is open via
1036  * quota file writes.  If we were to commit the transaction while thus
1037  * reentered, there can be a deadlock - we would be holding a quota
1038  * lock, and the commit would never complete if another thread had a
1039  * transaction open and was blocking on the quota lock - a ranking
1040  * violation.
1041  *
1042  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1043  * will _not_ run commit under these circumstances because handle->h_ref
1044  * is elevated.  We'll still have enough credits for the tiny quotafile
1045  * write.
1046  */
1047 int do_journal_get_write_access(handle_t *handle,
1048                                 struct buffer_head *bh)
1049 {
1050         int dirty = buffer_dirty(bh);
1051         int ret;
1052
1053         if (!buffer_mapped(bh) || buffer_freed(bh))
1054                 return 0;
1055         /*
1056          * __block_write_begin() could have dirtied some buffers. Clean
1057          * the dirty bit as jbd2_journal_get_write_access() could complain
1058          * otherwise about fs integrity issues. Setting of the dirty bit
1059          * by __block_write_begin() isn't a real problem here as we clear
1060          * the bit before releasing a page lock and thus writeback cannot
1061          * ever write the buffer.
1062          */
1063         if (dirty)
1064                 clear_buffer_dirty(bh);
1065         BUFFER_TRACE(bh, "get write access");
1066         ret = ext4_journal_get_write_access(handle, bh);
1067         if (!ret && dirty)
1068                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1069         return ret;
1070 }
1071
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1074                                   get_block_t *get_block)
1075 {
1076         unsigned from = pos & (PAGE_SIZE - 1);
1077         unsigned to = from + len;
1078         struct inode *inode = page->mapping->host;
1079         unsigned block_start, block_end;
1080         sector_t block;
1081         int err = 0;
1082         unsigned blocksize = inode->i_sb->s_blocksize;
1083         unsigned bbits;
1084         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1085         bool decrypt = false;
1086
1087         BUG_ON(!PageLocked(page));
1088         BUG_ON(from > PAGE_SIZE);
1089         BUG_ON(to > PAGE_SIZE);
1090         BUG_ON(from > to);
1091
1092         if (!page_has_buffers(page))
1093                 create_empty_buffers(page, blocksize, 0);
1094         head = page_buffers(page);
1095         bbits = ilog2(blocksize);
1096         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1097
1098         for (bh = head, block_start = 0; bh != head || !block_start;
1099             block++, block_start = block_end, bh = bh->b_this_page) {
1100                 block_end = block_start + blocksize;
1101                 if (block_end <= from || block_start >= to) {
1102                         if (PageUptodate(page)) {
1103                                 if (!buffer_uptodate(bh))
1104                                         set_buffer_uptodate(bh);
1105                         }
1106                         continue;
1107                 }
1108                 if (buffer_new(bh))
1109                         clear_buffer_new(bh);
1110                 if (!buffer_mapped(bh)) {
1111                         WARN_ON(bh->b_size != blocksize);
1112                         err = get_block(inode, block, bh, 1);
1113                         if (err)
1114                                 break;
1115                         if (buffer_new(bh)) {
1116                                 unmap_underlying_metadata(bh->b_bdev,
1117                                                           bh->b_blocknr);
1118                                 if (PageUptodate(page)) {
1119                                         clear_buffer_new(bh);
1120                                         set_buffer_uptodate(bh);
1121                                         mark_buffer_dirty(bh);
1122                                         continue;
1123                                 }
1124                                 if (block_end > to || block_start < from)
1125                                         zero_user_segments(page, to, block_end,
1126                                                            block_start, from);
1127                                 continue;
1128                         }
1129                 }
1130                 if (PageUptodate(page)) {
1131                         if (!buffer_uptodate(bh))
1132                                 set_buffer_uptodate(bh);
1133                         continue;
1134                 }
1135                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1136                     !buffer_unwritten(bh) &&
1137                     (block_start < from || block_end > to)) {
1138                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1139                         *wait_bh++ = bh;
1140                         decrypt = ext4_encrypted_inode(inode) &&
1141                                 S_ISREG(inode->i_mode);
1142                 }
1143         }
1144         /*
1145          * If we issued read requests, let them complete.
1146          */
1147         while (wait_bh > wait) {
1148                 wait_on_buffer(*--wait_bh);
1149                 if (!buffer_uptodate(*wait_bh))
1150                         err = -EIO;
1151         }
1152         if (unlikely(err))
1153                 page_zero_new_buffers(page, from, to);
1154         else if (decrypt)
1155                 err = ext4_decrypt(page);
1156         return err;
1157 }
1158 #endif
1159
1160 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1161                             loff_t pos, unsigned len, unsigned flags,
1162                             struct page **pagep, void **fsdata)
1163 {
1164         struct inode *inode = mapping->host;
1165         int ret, needed_blocks;
1166         handle_t *handle;
1167         int retries = 0;
1168         struct page *page;
1169         pgoff_t index;
1170         unsigned from, to;
1171
1172         trace_ext4_write_begin(inode, pos, len, flags);
1173         /*
1174          * Reserve one block more for addition to orphan list in case
1175          * we allocate blocks but write fails for some reason
1176          */
1177         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1178         index = pos >> PAGE_SHIFT;
1179         from = pos & (PAGE_SIZE - 1);
1180         to = from + len;
1181
1182         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1183                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1184                                                     flags, pagep);
1185                 if (ret < 0)
1186                         return ret;
1187                 if (ret == 1)
1188                         return 0;
1189         }
1190
1191         /*
1192          * grab_cache_page_write_begin() can take a long time if the
1193          * system is thrashing due to memory pressure, or if the page
1194          * is being written back.  So grab it first before we start
1195          * the transaction handle.  This also allows us to allocate
1196          * the page (if needed) without using GFP_NOFS.
1197          */
1198 retry_grab:
1199         page = grab_cache_page_write_begin(mapping, index, flags);
1200         if (!page)
1201                 return -ENOMEM;
1202         unlock_page(page);
1203
1204 retry_journal:
1205         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1206         if (IS_ERR(handle)) {
1207                 put_page(page);
1208                 return PTR_ERR(handle);
1209         }
1210
1211         lock_page(page);
1212         if (page->mapping != mapping) {
1213                 /* The page got truncated from under us */
1214                 unlock_page(page);
1215                 put_page(page);
1216                 ext4_journal_stop(handle);
1217                 goto retry_grab;
1218         }
1219         /* In case writeback began while the page was unlocked */
1220         wait_for_stable_page(page);
1221
1222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1223         if (ext4_should_dioread_nolock(inode))
1224                 ret = ext4_block_write_begin(page, pos, len,
1225                                              ext4_get_block_unwritten);
1226         else
1227                 ret = ext4_block_write_begin(page, pos, len,
1228                                              ext4_get_block);
1229 #else
1230         if (ext4_should_dioread_nolock(inode))
1231                 ret = __block_write_begin(page, pos, len,
1232                                           ext4_get_block_unwritten);
1233         else
1234                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1235 #endif
1236         if (!ret && ext4_should_journal_data(inode)) {
1237                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1238                                              from, to, NULL,
1239                                              do_journal_get_write_access);
1240         }
1241
1242         if (ret) {
1243                 unlock_page(page);
1244                 /*
1245                  * __block_write_begin may have instantiated a few blocks
1246                  * outside i_size.  Trim these off again. Don't need
1247                  * i_size_read because we hold i_mutex.
1248                  *
1249                  * Add inode to orphan list in case we crash before
1250                  * truncate finishes
1251                  */
1252                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1253                         ext4_orphan_add(handle, inode);
1254
1255                 ext4_journal_stop(handle);
1256                 if (pos + len > inode->i_size) {
1257                         ext4_truncate_failed_write(inode);
1258                         /*
1259                          * If truncate failed early the inode might
1260                          * still be on the orphan list; we need to
1261                          * make sure the inode is removed from the
1262                          * orphan list in that case.
1263                          */
1264                         if (inode->i_nlink)
1265                                 ext4_orphan_del(NULL, inode);
1266                 }
1267
1268                 if (ret == -ENOSPC &&
1269                     ext4_should_retry_alloc(inode->i_sb, &retries))
1270                         goto retry_journal;
1271                 put_page(page);
1272                 return ret;
1273         }
1274         *pagep = page;
1275         return ret;
1276 }
1277
1278 /* For write_end() in data=journal mode */
1279 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1280 {
1281         int ret;
1282         if (!buffer_mapped(bh) || buffer_freed(bh))
1283                 return 0;
1284         set_buffer_uptodate(bh);
1285         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286         clear_buffer_meta(bh);
1287         clear_buffer_prio(bh);
1288         return ret;
1289 }
1290
1291 /*
1292  * We need to pick up the new inode size which generic_commit_write gave us
1293  * `file' can be NULL - eg, when called from page_symlink().
1294  *
1295  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1296  * buffers are managed internally.
1297  */
1298 static int ext4_write_end(struct file *file,
1299                           struct address_space *mapping,
1300                           loff_t pos, unsigned len, unsigned copied,
1301                           struct page *page, void *fsdata)
1302 {
1303         handle_t *handle = ext4_journal_current_handle();
1304         struct inode *inode = mapping->host;
1305         loff_t old_size = inode->i_size;
1306         int ret = 0, ret2;
1307         int i_size_changed = 0;
1308
1309         trace_ext4_write_end(inode, pos, len, copied);
1310         if (ext4_has_inline_data(inode)) {
1311                 ret = ext4_write_inline_data_end(inode, pos, len,
1312                                                  copied, page);
1313                 if (ret < 0)
1314                         goto errout;
1315                 copied = ret;
1316         } else
1317                 copied = block_write_end(file, mapping, pos,
1318                                          len, copied, page, fsdata);
1319         /*
1320          * it's important to update i_size while still holding page lock:
1321          * page writeout could otherwise come in and zero beyond i_size.
1322          */
1323         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1324         unlock_page(page);
1325         put_page(page);
1326
1327         if (old_size < pos)
1328                 pagecache_isize_extended(inode, old_size, pos);
1329         /*
1330          * Don't mark the inode dirty under page lock. First, it unnecessarily
1331          * makes the holding time of page lock longer. Second, it forces lock
1332          * ordering of page lock and transaction start for journaling
1333          * filesystems.
1334          */
1335         if (i_size_changed)
1336                 ext4_mark_inode_dirty(handle, inode);
1337
1338         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1339                 /* if we have allocated more blocks and copied
1340                  * less. We will have blocks allocated outside
1341                  * inode->i_size. So truncate them
1342                  */
1343                 ext4_orphan_add(handle, inode);
1344 errout:
1345         ret2 = ext4_journal_stop(handle);
1346         if (!ret)
1347                 ret = ret2;
1348
1349         if (pos + len > inode->i_size) {
1350                 ext4_truncate_failed_write(inode);
1351                 /*
1352                  * If truncate failed early the inode might still be
1353                  * on the orphan list; we need to make sure the inode
1354                  * is removed from the orphan list in that case.
1355                  */
1356                 if (inode->i_nlink)
1357                         ext4_orphan_del(NULL, inode);
1358         }
1359
1360         return ret ? ret : copied;
1361 }
1362
1363 /*
1364  * This is a private version of page_zero_new_buffers() which doesn't
1365  * set the buffer to be dirty, since in data=journalled mode we need
1366  * to call ext4_handle_dirty_metadata() instead.
1367  */
1368 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1369 {
1370         unsigned int block_start = 0, block_end;
1371         struct buffer_head *head, *bh;
1372
1373         bh = head = page_buffers(page);
1374         do {
1375                 block_end = block_start + bh->b_size;
1376                 if (buffer_new(bh)) {
1377                         if (block_end > from && block_start < to) {
1378                                 if (!PageUptodate(page)) {
1379                                         unsigned start, size;
1380
1381                                         start = max(from, block_start);
1382                                         size = min(to, block_end) - start;
1383
1384                                         zero_user(page, start, size);
1385                                         set_buffer_uptodate(bh);
1386                                 }
1387                                 clear_buffer_new(bh);
1388                         }
1389                 }
1390                 block_start = block_end;
1391                 bh = bh->b_this_page;
1392         } while (bh != head);
1393 }
1394
1395 static int ext4_journalled_write_end(struct file *file,
1396                                      struct address_space *mapping,
1397                                      loff_t pos, unsigned len, unsigned copied,
1398                                      struct page *page, void *fsdata)
1399 {
1400         handle_t *handle = ext4_journal_current_handle();
1401         struct inode *inode = mapping->host;
1402         loff_t old_size = inode->i_size;
1403         int ret = 0, ret2;
1404         int partial = 0;
1405         unsigned from, to;
1406         int size_changed = 0;
1407
1408         trace_ext4_journalled_write_end(inode, pos, len, copied);
1409         from = pos & (PAGE_SIZE - 1);
1410         to = from + len;
1411
1412         BUG_ON(!ext4_handle_valid(handle));
1413
1414         if (ext4_has_inline_data(inode))
1415                 copied = ext4_write_inline_data_end(inode, pos, len,
1416                                                     copied, page);
1417         else {
1418                 if (copied < len) {
1419                         if (!PageUptodate(page))
1420                                 copied = 0;
1421                         zero_new_buffers(page, from+copied, to);
1422                 }
1423
1424                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1425                                              to, &partial, write_end_fn);
1426                 if (!partial)
1427                         SetPageUptodate(page);
1428         }
1429         size_changed = ext4_update_inode_size(inode, pos + copied);
1430         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432         unlock_page(page);
1433         put_page(page);
1434
1435         if (old_size < pos)
1436                 pagecache_isize_extended(inode, old_size, pos);
1437
1438         if (size_changed) {
1439                 ret2 = ext4_mark_inode_dirty(handle, inode);
1440                 if (!ret)
1441                         ret = ret2;
1442         }
1443
1444         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1445                 /* if we have allocated more blocks and copied
1446                  * less. We will have blocks allocated outside
1447                  * inode->i_size. So truncate them
1448                  */
1449                 ext4_orphan_add(handle, inode);
1450
1451         ret2 = ext4_journal_stop(handle);
1452         if (!ret)
1453                 ret = ret2;
1454         if (pos + len > inode->i_size) {
1455                 ext4_truncate_failed_write(inode);
1456                 /*
1457                  * If truncate failed early the inode might still be
1458                  * on the orphan list; we need to make sure the inode
1459                  * is removed from the orphan list in that case.
1460                  */
1461                 if (inode->i_nlink)
1462                         ext4_orphan_del(NULL, inode);
1463         }
1464
1465         return ret ? ret : copied;
1466 }
1467
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475         int ret;
1476
1477         /*
1478          * We will charge metadata quota at writeout time; this saves
1479          * us from metadata over-estimation, though we may go over by
1480          * a small amount in the end.  Here we just reserve for data.
1481          */
1482         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483         if (ret)
1484                 return ret;
1485
1486         spin_lock(&ei->i_block_reservation_lock);
1487         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488                 spin_unlock(&ei->i_block_reservation_lock);
1489                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490                 return -ENOSPC;
1491         }
1492         ei->i_reserved_data_blocks++;
1493         trace_ext4_da_reserve_space(inode);
1494         spin_unlock(&ei->i_block_reservation_lock);
1495
1496         return 0;       /* success */
1497 }
1498
1499 static void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502         struct ext4_inode_info *ei = EXT4_I(inode);
1503
1504         if (!to_free)
1505                 return;         /* Nothing to release, exit */
1506
1507         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509         trace_ext4_da_release_space(inode, to_free);
1510         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511                 /*
1512                  * if there aren't enough reserved blocks, then the
1513                  * counter is messed up somewhere.  Since this
1514                  * function is called from invalidate page, it's
1515                  * harmless to return without any action.
1516                  */
1517                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518                          "ino %lu, to_free %d with only %d reserved "
1519                          "data blocks", inode->i_ino, to_free,
1520                          ei->i_reserved_data_blocks);
1521                 WARN_ON(1);
1522                 to_free = ei->i_reserved_data_blocks;
1523         }
1524         ei->i_reserved_data_blocks -= to_free;
1525
1526         /* update fs dirty data blocks counter */
1527         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528
1529         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530
1531         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533
1534 static void ext4_da_page_release_reservation(struct page *page,
1535                                              unsigned int offset,
1536                                              unsigned int length)
1537 {
1538         int to_release = 0, contiguous_blks = 0;
1539         struct buffer_head *head, *bh;
1540         unsigned int curr_off = 0;
1541         struct inode *inode = page->mapping->host;
1542         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1543         unsigned int stop = offset + length;
1544         int num_clusters;
1545         ext4_fsblk_t lblk;
1546
1547         BUG_ON(stop > PAGE_SIZE || stop < length);
1548
1549         head = page_buffers(page);
1550         bh = head;
1551         do {
1552                 unsigned int next_off = curr_off + bh->b_size;
1553
1554                 if (next_off > stop)
1555                         break;
1556
1557                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1558                         to_release++;
1559                         contiguous_blks++;
1560                         clear_buffer_delay(bh);
1561                 } else if (contiguous_blks) {
1562                         lblk = page->index <<
1563                                (PAGE_SHIFT - inode->i_blkbits);
1564                         lblk += (curr_off >> inode->i_blkbits) -
1565                                 contiguous_blks;
1566                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567                         contiguous_blks = 0;
1568                 }
1569                 curr_off = next_off;
1570         } while ((bh = bh->b_this_page) != head);
1571
1572         if (contiguous_blks) {
1573                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1574                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1575                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1576         }
1577
1578         /* If we have released all the blocks belonging to a cluster, then we
1579          * need to release the reserved space for that cluster. */
1580         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1581         while (num_clusters > 0) {
1582                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1583                         ((num_clusters - 1) << sbi->s_cluster_bits);
1584                 if (sbi->s_cluster_ratio == 1 ||
1585                     !ext4_find_delalloc_cluster(inode, lblk))
1586                         ext4_da_release_space(inode, 1);
1587
1588                 num_clusters--;
1589         }
1590 }
1591
1592 /*
1593  * Delayed allocation stuff
1594  */
1595
1596 struct mpage_da_data {
1597         struct inode *inode;
1598         struct writeback_control *wbc;
1599
1600         pgoff_t first_page;     /* The first page to write */
1601         pgoff_t next_page;      /* Current page to examine */
1602         pgoff_t last_page;      /* Last page to examine */
1603         /*
1604          * Extent to map - this can be after first_page because that can be
1605          * fully mapped. We somewhat abuse m_flags to store whether the extent
1606          * is delalloc or unwritten.
1607          */
1608         struct ext4_map_blocks map;
1609         struct ext4_io_submit io_submit;        /* IO submission data */
1610 };
1611
1612 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1613                                        bool invalidate)
1614 {
1615         int nr_pages, i;
1616         pgoff_t index, end;
1617         struct pagevec pvec;
1618         struct inode *inode = mpd->inode;
1619         struct address_space *mapping = inode->i_mapping;
1620
1621         /* This is necessary when next_page == 0. */
1622         if (mpd->first_page >= mpd->next_page)
1623                 return;
1624
1625         index = mpd->first_page;
1626         end   = mpd->next_page - 1;
1627         if (invalidate) {
1628                 ext4_lblk_t start, last;
1629                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1630                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1631                 ext4_es_remove_extent(inode, start, last - start + 1);
1632         }
1633
1634         pagevec_init(&pvec, 0);
1635         while (index <= end) {
1636                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1637                 if (nr_pages == 0)
1638                         break;
1639                 for (i = 0; i < nr_pages; i++) {
1640                         struct page *page = pvec.pages[i];
1641                         if (page->index > end)
1642                                 break;
1643                         BUG_ON(!PageLocked(page));
1644                         BUG_ON(PageWriteback(page));
1645                         if (invalidate) {
1646                                 block_invalidatepage(page, 0, PAGE_SIZE);
1647                                 ClearPageUptodate(page);
1648                         }
1649                         unlock_page(page);
1650                 }
1651                 index = pvec.pages[nr_pages - 1]->index + 1;
1652                 pagevec_release(&pvec);
1653         }
1654 }
1655
1656 static void ext4_print_free_blocks(struct inode *inode)
1657 {
1658         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1659         struct super_block *sb = inode->i_sb;
1660         struct ext4_inode_info *ei = EXT4_I(inode);
1661
1662         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1663                EXT4_C2B(EXT4_SB(inode->i_sb),
1664                         ext4_count_free_clusters(sb)));
1665         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1666         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1667                (long long) EXT4_C2B(EXT4_SB(sb),
1668                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1669         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1670                (long long) EXT4_C2B(EXT4_SB(sb),
1671                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1672         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1673         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1674                  ei->i_reserved_data_blocks);
1675         return;
1676 }
1677
1678 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1679 {
1680         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1681 }
1682
1683 /*
1684  * This function is grabs code from the very beginning of
1685  * ext4_map_blocks, but assumes that the caller is from delayed write
1686  * time. This function looks up the requested blocks and sets the
1687  * buffer delay bit under the protection of i_data_sem.
1688  */
1689 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1690                               struct ext4_map_blocks *map,
1691                               struct buffer_head *bh)
1692 {
1693         struct extent_status es;
1694         int retval;
1695         sector_t invalid_block = ~((sector_t) 0xffff);
1696 #ifdef ES_AGGRESSIVE_TEST
1697         struct ext4_map_blocks orig_map;
1698
1699         memcpy(&orig_map, map, sizeof(*map));
1700 #endif
1701
1702         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1703                 invalid_block = ~0;
1704
1705         map->m_flags = 0;
1706         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1707                   "logical block %lu\n", inode->i_ino, map->m_len,
1708                   (unsigned long) map->m_lblk);
1709
1710         /* Lookup extent status tree firstly */
1711         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1712                 if (ext4_es_is_hole(&es)) {
1713                         retval = 0;
1714                         down_read(&EXT4_I(inode)->i_data_sem);
1715                         goto add_delayed;
1716                 }
1717
1718                 /*
1719                  * Delayed extent could be allocated by fallocate.
1720                  * So we need to check it.
1721                  */
1722                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1723                         map_bh(bh, inode->i_sb, invalid_block);
1724                         set_buffer_new(bh);
1725                         set_buffer_delay(bh);
1726                         return 0;
1727                 }
1728
1729                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1730                 retval = es.es_len - (iblock - es.es_lblk);
1731                 if (retval > map->m_len)
1732                         retval = map->m_len;
1733                 map->m_len = retval;
1734                 if (ext4_es_is_written(&es))
1735                         map->m_flags |= EXT4_MAP_MAPPED;
1736                 else if (ext4_es_is_unwritten(&es))
1737                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1738                 else
1739                         BUG_ON(1);
1740
1741 #ifdef ES_AGGRESSIVE_TEST
1742                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1743 #endif
1744                 return retval;
1745         }
1746
1747         /*
1748          * Try to see if we can get the block without requesting a new
1749          * file system block.
1750          */
1751         down_read(&EXT4_I(inode)->i_data_sem);
1752         if (ext4_has_inline_data(inode))
1753                 retval = 0;
1754         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1755                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1756         else
1757                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1758
1759 add_delayed:
1760         if (retval == 0) {
1761                 int ret;
1762                 /*
1763                  * XXX: __block_prepare_write() unmaps passed block,
1764                  * is it OK?
1765                  */
1766                 /*
1767                  * If the block was allocated from previously allocated cluster,
1768                  * then we don't need to reserve it again. However we still need
1769                  * to reserve metadata for every block we're going to write.
1770                  */
1771                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1772                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1773                         ret = ext4_da_reserve_space(inode);
1774                         if (ret) {
1775                                 /* not enough space to reserve */
1776                                 retval = ret;
1777                                 goto out_unlock;
1778                         }
1779                 }
1780
1781                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1782                                             ~0, EXTENT_STATUS_DELAYED);
1783                 if (ret) {
1784                         retval = ret;
1785                         goto out_unlock;
1786                 }
1787
1788                 map_bh(bh, inode->i_sb, invalid_block);
1789                 set_buffer_new(bh);
1790                 set_buffer_delay(bh);
1791         } else if (retval > 0) {
1792                 int ret;
1793                 unsigned int status;
1794
1795                 if (unlikely(retval != map->m_len)) {
1796                         ext4_warning(inode->i_sb,
1797                                      "ES len assertion failed for inode "
1798                                      "%lu: retval %d != map->m_len %d",
1799                                      inode->i_ino, retval, map->m_len);
1800                         WARN_ON(1);
1801                 }
1802
1803                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1804                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1805                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1806                                             map->m_pblk, status);
1807                 if (ret != 0)
1808                         retval = ret;
1809         }
1810
1811 out_unlock:
1812         up_read((&EXT4_I(inode)->i_data_sem));
1813
1814         return retval;
1815 }
1816
1817 /*
1818  * This is a special get_block_t callback which is used by
1819  * ext4_da_write_begin().  It will either return mapped block or
1820  * reserve space for a single block.
1821  *
1822  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1823  * We also have b_blocknr = -1 and b_bdev initialized properly
1824  *
1825  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1826  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1827  * initialized properly.
1828  */
1829 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1830                            struct buffer_head *bh, int create)
1831 {
1832         struct ext4_map_blocks map;
1833         int ret = 0;
1834
1835         BUG_ON(create == 0);
1836         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1837
1838         map.m_lblk = iblock;
1839         map.m_len = 1;
1840
1841         /*
1842          * first, we need to know whether the block is allocated already
1843          * preallocated blocks are unmapped but should treated
1844          * the same as allocated blocks.
1845          */
1846         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1847         if (ret <= 0)
1848                 return ret;
1849
1850         map_bh(bh, inode->i_sb, map.m_pblk);
1851         ext4_update_bh_state(bh, map.m_flags);
1852
1853         if (buffer_unwritten(bh)) {
1854                 /* A delayed write to unwritten bh should be marked
1855                  * new and mapped.  Mapped ensures that we don't do
1856                  * get_block multiple times when we write to the same
1857                  * offset and new ensures that we do proper zero out
1858                  * for partial write.
1859                  */
1860                 set_buffer_new(bh);
1861                 set_buffer_mapped(bh);
1862         }
1863         return 0;
1864 }
1865
1866 static int bget_one(handle_t *handle, struct buffer_head *bh)
1867 {
1868         get_bh(bh);
1869         return 0;
1870 }
1871
1872 static int bput_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874         put_bh(bh);
1875         return 0;
1876 }
1877
1878 static int __ext4_journalled_writepage(struct page *page,
1879                                        unsigned int len)
1880 {
1881         struct address_space *mapping = page->mapping;
1882         struct inode *inode = mapping->host;
1883         struct buffer_head *page_bufs = NULL;
1884         handle_t *handle = NULL;
1885         int ret = 0, err = 0;
1886         int inline_data = ext4_has_inline_data(inode);
1887         struct buffer_head *inode_bh = NULL;
1888
1889         ClearPageChecked(page);
1890
1891         if (inline_data) {
1892                 BUG_ON(page->index != 0);
1893                 BUG_ON(len > ext4_get_max_inline_size(inode));
1894                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1895                 if (inode_bh == NULL)
1896                         goto out;
1897         } else {
1898                 page_bufs = page_buffers(page);
1899                 if (!page_bufs) {
1900                         BUG();
1901                         goto out;
1902                 }
1903                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1904                                        NULL, bget_one);
1905         }
1906         /*
1907          * We need to release the page lock before we start the
1908          * journal, so grab a reference so the page won't disappear
1909          * out from under us.
1910          */
1911         get_page(page);
1912         unlock_page(page);
1913
1914         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915                                     ext4_writepage_trans_blocks(inode));
1916         if (IS_ERR(handle)) {
1917                 ret = PTR_ERR(handle);
1918                 put_page(page);
1919                 goto out_no_pagelock;
1920         }
1921         BUG_ON(!ext4_handle_valid(handle));
1922
1923         lock_page(page);
1924         put_page(page);
1925         if (page->mapping != mapping) {
1926                 /* The page got truncated from under us */
1927                 ext4_journal_stop(handle);
1928                 ret = 0;
1929                 goto out;
1930         }
1931
1932         if (inline_data) {
1933                 BUFFER_TRACE(inode_bh, "get write access");
1934                 ret = ext4_journal_get_write_access(handle, inode_bh);
1935
1936                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1937
1938         } else {
1939                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940                                              do_journal_get_write_access);
1941
1942                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943                                              write_end_fn);
1944         }
1945         if (ret == 0)
1946                 ret = err;
1947         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1948         err = ext4_journal_stop(handle);
1949         if (!ret)
1950                 ret = err;
1951
1952         if (!ext4_has_inline_data(inode))
1953                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1954                                        NULL, bput_one);
1955         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1956 out:
1957         unlock_page(page);
1958 out_no_pagelock:
1959         brelse(inode_bh);
1960         return ret;
1961 }
1962
1963 /*
1964  * Note that we don't need to start a transaction unless we're journaling data
1965  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1966  * need to file the inode to the transaction's list in ordered mode because if
1967  * we are writing back data added by write(), the inode is already there and if
1968  * we are writing back data modified via mmap(), no one guarantees in which
1969  * transaction the data will hit the disk. In case we are journaling data, we
1970  * cannot start transaction directly because transaction start ranks above page
1971  * lock so we have to do some magic.
1972  *
1973  * This function can get called via...
1974  *   - ext4_writepages after taking page lock (have journal handle)
1975  *   - journal_submit_inode_data_buffers (no journal handle)
1976  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1977  *   - grab_page_cache when doing write_begin (have journal handle)
1978  *
1979  * We don't do any block allocation in this function. If we have page with
1980  * multiple blocks we need to write those buffer_heads that are mapped. This
1981  * is important for mmaped based write. So if we do with blocksize 1K
1982  * truncate(f, 1024);
1983  * a = mmap(f, 0, 4096);
1984  * a[0] = 'a';
1985  * truncate(f, 4096);
1986  * we have in the page first buffer_head mapped via page_mkwrite call back
1987  * but other buffer_heads would be unmapped but dirty (dirty done via the
1988  * do_wp_page). So writepage should write the first block. If we modify
1989  * the mmap area beyond 1024 we will again get a page_fault and the
1990  * page_mkwrite callback will do the block allocation and mark the
1991  * buffer_heads mapped.
1992  *
1993  * We redirty the page if we have any buffer_heads that is either delay or
1994  * unwritten in the page.
1995  *
1996  * We can get recursively called as show below.
1997  *
1998  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1999  *              ext4_writepage()
2000  *
2001  * But since we don't do any block allocation we should not deadlock.
2002  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2003  */
2004 static int ext4_writepage(struct page *page,
2005                           struct writeback_control *wbc)
2006 {
2007         int ret = 0;
2008         loff_t size;
2009         unsigned int len;
2010         struct buffer_head *page_bufs = NULL;
2011         struct inode *inode = page->mapping->host;
2012         struct ext4_io_submit io_submit;
2013         bool keep_towrite = false;
2014
2015         trace_ext4_writepage(page);
2016         size = i_size_read(inode);
2017         if (page->index == size >> PAGE_SHIFT)
2018                 len = size & ~PAGE_MASK;
2019         else
2020                 len = PAGE_SIZE;
2021
2022         page_bufs = page_buffers(page);
2023         /*
2024          * We cannot do block allocation or other extent handling in this
2025          * function. If there are buffers needing that, we have to redirty
2026          * the page. But we may reach here when we do a journal commit via
2027          * journal_submit_inode_data_buffers() and in that case we must write
2028          * allocated buffers to achieve data=ordered mode guarantees.
2029          *
2030          * Also, if there is only one buffer per page (the fs block
2031          * size == the page size), if one buffer needs block
2032          * allocation or needs to modify the extent tree to clear the
2033          * unwritten flag, we know that the page can't be written at
2034          * all, so we might as well refuse the write immediately.
2035          * Unfortunately if the block size != page size, we can't as
2036          * easily detect this case using ext4_walk_page_buffers(), but
2037          * for the extremely common case, this is an optimization that
2038          * skips a useless round trip through ext4_bio_write_page().
2039          */
2040         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2041                                    ext4_bh_delay_or_unwritten)) {
2042                 redirty_page_for_writepage(wbc, page);
2043                 if ((current->flags & PF_MEMALLOC) ||
2044                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2045                         /*
2046                          * For memory cleaning there's no point in writing only
2047                          * some buffers. So just bail out. Warn if we came here
2048                          * from direct reclaim.
2049                          */
2050                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051                                                         == PF_MEMALLOC);
2052                         unlock_page(page);
2053                         return 0;
2054                 }
2055                 keep_towrite = true;
2056         }
2057
2058         if (PageChecked(page) && ext4_should_journal_data(inode))
2059                 /*
2060                  * It's mmapped pagecache.  Add buffers and journal it.  There
2061                  * doesn't seem much point in redirtying the page here.
2062                  */
2063                 return __ext4_journalled_writepage(page, len);
2064
2065         ext4_io_submit_init(&io_submit, wbc);
2066         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067         if (!io_submit.io_end) {
2068                 redirty_page_for_writepage(wbc, page);
2069                 unlock_page(page);
2070                 return -ENOMEM;
2071         }
2072         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2073         ext4_io_submit(&io_submit);
2074         /* Drop io_end reference we got from init */
2075         ext4_put_io_end_defer(io_submit.io_end);
2076         return ret;
2077 }
2078
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080 {
2081         int len;
2082         loff_t size = i_size_read(mpd->inode);
2083         int err;
2084
2085         BUG_ON(page->index != mpd->first_page);
2086         if (page->index == size >> PAGE_SHIFT)
2087                 len = size & ~PAGE_MASK;
2088         else
2089                 len = PAGE_SIZE;
2090         clear_page_dirty_for_io(page);
2091         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2092         if (!err)
2093                 mpd->wbc->nr_to_write--;
2094         mpd->first_page++;
2095
2096         return err;
2097 }
2098
2099 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2100
2101 /*
2102  * mballoc gives us at most this number of blocks...
2103  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2104  * The rest of mballoc seems to handle chunks up to full group size.
2105  */
2106 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2107
2108 /*
2109  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2110  *
2111  * @mpd - extent of blocks
2112  * @lblk - logical number of the block in the file
2113  * @bh - buffer head we want to add to the extent
2114  *
2115  * The function is used to collect contig. blocks in the same state. If the
2116  * buffer doesn't require mapping for writeback and we haven't started the
2117  * extent of buffers to map yet, the function returns 'true' immediately - the
2118  * caller can write the buffer right away. Otherwise the function returns true
2119  * if the block has been added to the extent, false if the block couldn't be
2120  * added.
2121  */
2122 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2123                                    struct buffer_head *bh)
2124 {
2125         struct ext4_map_blocks *map = &mpd->map;
2126
2127         /* Buffer that doesn't need mapping for writeback? */
2128         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2129             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2130                 /* So far no extent to map => we write the buffer right away */
2131                 if (map->m_len == 0)
2132                         return true;
2133                 return false;
2134         }
2135
2136         /* First block in the extent? */
2137         if (map->m_len == 0) {
2138                 map->m_lblk = lblk;
2139                 map->m_len = 1;
2140                 map->m_flags = bh->b_state & BH_FLAGS;
2141                 return true;
2142         }
2143
2144         /* Don't go larger than mballoc is willing to allocate */
2145         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2146                 return false;
2147
2148         /* Can we merge the block to our big extent? */
2149         if (lblk == map->m_lblk + map->m_len &&
2150             (bh->b_state & BH_FLAGS) == map->m_flags) {
2151                 map->m_len++;
2152                 return true;
2153         }
2154         return false;
2155 }
2156
2157 /*
2158  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2159  *
2160  * @mpd - extent of blocks for mapping
2161  * @head - the first buffer in the page
2162  * @bh - buffer we should start processing from
2163  * @lblk - logical number of the block in the file corresponding to @bh
2164  *
2165  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2166  * the page for IO if all buffers in this page were mapped and there's no
2167  * accumulated extent of buffers to map or add buffers in the page to the
2168  * extent of buffers to map. The function returns 1 if the caller can continue
2169  * by processing the next page, 0 if it should stop adding buffers to the
2170  * extent to map because we cannot extend it anymore. It can also return value
2171  * < 0 in case of error during IO submission.
2172  */
2173 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2174                                    struct buffer_head *head,
2175                                    struct buffer_head *bh,
2176                                    ext4_lblk_t lblk)
2177 {
2178         struct inode *inode = mpd->inode;
2179         int err;
2180         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2181                                                         >> inode->i_blkbits;
2182
2183         do {
2184                 BUG_ON(buffer_locked(bh));
2185
2186                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2187                         /* Found extent to map? */
2188                         if (mpd->map.m_len)
2189                                 return 0;
2190                         /* Everything mapped so far and we hit EOF */
2191                         break;
2192                 }
2193         } while (lblk++, (bh = bh->b_this_page) != head);
2194         /* So far everything mapped? Submit the page for IO. */
2195         if (mpd->map.m_len == 0) {
2196                 err = mpage_submit_page(mpd, head->b_page);
2197                 if (err < 0)
2198                         return err;
2199         }
2200         return lblk < blocks;
2201 }
2202
2203 /*
2204  * mpage_map_buffers - update buffers corresponding to changed extent and
2205  *                     submit fully mapped pages for IO
2206  *
2207  * @mpd - description of extent to map, on return next extent to map
2208  *
2209  * Scan buffers corresponding to changed extent (we expect corresponding pages
2210  * to be already locked) and update buffer state according to new extent state.
2211  * We map delalloc buffers to their physical location, clear unwritten bits,
2212  * and mark buffers as uninit when we perform writes to unwritten extents
2213  * and do extent conversion after IO is finished. If the last page is not fully
2214  * mapped, we update @map to the next extent in the last page that needs
2215  * mapping. Otherwise we submit the page for IO.
2216  */
2217 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2218 {
2219         struct pagevec pvec;
2220         int nr_pages, i;
2221         struct inode *inode = mpd->inode;
2222         struct buffer_head *head, *bh;
2223         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2224         pgoff_t start, end;
2225         ext4_lblk_t lblk;
2226         sector_t pblock;
2227         int err;
2228
2229         start = mpd->map.m_lblk >> bpp_bits;
2230         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2231         lblk = start << bpp_bits;
2232         pblock = mpd->map.m_pblk;
2233
2234         pagevec_init(&pvec, 0);
2235         while (start <= end) {
2236                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2237                                           PAGEVEC_SIZE);
2238                 if (nr_pages == 0)
2239                         break;
2240                 for (i = 0; i < nr_pages; i++) {
2241                         struct page *page = pvec.pages[i];
2242
2243                         if (page->index > end)
2244                                 break;
2245                         /* Up to 'end' pages must be contiguous */
2246                         BUG_ON(page->index != start);
2247                         bh = head = page_buffers(page);
2248                         do {
2249                                 if (lblk < mpd->map.m_lblk)
2250                                         continue;
2251                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2252                                         /*
2253                                          * Buffer after end of mapped extent.
2254                                          * Find next buffer in the page to map.
2255                                          */
2256                                         mpd->map.m_len = 0;
2257                                         mpd->map.m_flags = 0;
2258                                         /*
2259                                          * FIXME: If dioread_nolock supports
2260                                          * blocksize < pagesize, we need to make
2261                                          * sure we add size mapped so far to
2262                                          * io_end->size as the following call
2263                                          * can submit the page for IO.
2264                                          */
2265                                         err = mpage_process_page_bufs(mpd, head,
2266                                                                       bh, lblk);
2267                                         pagevec_release(&pvec);
2268                                         if (err > 0)
2269                                                 err = 0;
2270                                         return err;
2271                                 }
2272                                 if (buffer_delay(bh)) {
2273                                         clear_buffer_delay(bh);
2274                                         bh->b_blocknr = pblock++;
2275                                 }
2276                                 clear_buffer_unwritten(bh);
2277                         } while (lblk++, (bh = bh->b_this_page) != head);
2278
2279                         /*
2280                          * FIXME: This is going to break if dioread_nolock
2281                          * supports blocksize < pagesize as we will try to
2282                          * convert potentially unmapped parts of inode.
2283                          */
2284                         mpd->io_submit.io_end->size += PAGE_SIZE;
2285                         /* Page fully mapped - let IO run! */
2286                         err = mpage_submit_page(mpd, page);
2287                         if (err < 0) {
2288                                 pagevec_release(&pvec);
2289                                 return err;
2290                         }
2291                         start++;
2292                 }
2293                 pagevec_release(&pvec);
2294         }
2295         /* Extent fully mapped and matches with page boundary. We are done. */
2296         mpd->map.m_len = 0;
2297         mpd->map.m_flags = 0;
2298         return 0;
2299 }
2300
2301 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2302 {
2303         struct inode *inode = mpd->inode;
2304         struct ext4_map_blocks *map = &mpd->map;
2305         int get_blocks_flags;
2306         int err, dioread_nolock;
2307
2308         trace_ext4_da_write_pages_extent(inode, map);
2309         /*
2310          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2311          * to convert an unwritten extent to be initialized (in the case
2312          * where we have written into one or more preallocated blocks).  It is
2313          * possible that we're going to need more metadata blocks than
2314          * previously reserved. However we must not fail because we're in
2315          * writeback and there is nothing we can do about it so it might result
2316          * in data loss.  So use reserved blocks to allocate metadata if
2317          * possible.
2318          *
2319          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2320          * the blocks in question are delalloc blocks.  This indicates
2321          * that the blocks and quotas has already been checked when
2322          * the data was copied into the page cache.
2323          */
2324         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2325                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2326                            EXT4_GET_BLOCKS_IO_SUBMIT;
2327         dioread_nolock = ext4_should_dioread_nolock(inode);
2328         if (dioread_nolock)
2329                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2330         if (map->m_flags & (1 << BH_Delay))
2331                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2332
2333         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2334         if (err < 0)
2335                 return err;
2336         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2337                 if (!mpd->io_submit.io_end->handle &&
2338                     ext4_handle_valid(handle)) {
2339                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2340                         handle->h_rsv_handle = NULL;
2341                 }
2342                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2343         }
2344
2345         BUG_ON(map->m_len == 0);
2346         if (map->m_flags & EXT4_MAP_NEW) {
2347                 struct block_device *bdev = inode->i_sb->s_bdev;
2348                 int i;
2349
2350                 for (i = 0; i < map->m_len; i++)
2351                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2352         }
2353         return 0;
2354 }
2355
2356 /*
2357  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2358  *                               mpd->len and submit pages underlying it for IO
2359  *
2360  * @handle - handle for journal operations
2361  * @mpd - extent to map
2362  * @give_up_on_write - we set this to true iff there is a fatal error and there
2363  *                     is no hope of writing the data. The caller should discard
2364  *                     dirty pages to avoid infinite loops.
2365  *
2366  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2367  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2368  * them to initialized or split the described range from larger unwritten
2369  * extent. Note that we need not map all the described range since allocation
2370  * can return less blocks or the range is covered by more unwritten extents. We
2371  * cannot map more because we are limited by reserved transaction credits. On
2372  * the other hand we always make sure that the last touched page is fully
2373  * mapped so that it can be written out (and thus forward progress is
2374  * guaranteed). After mapping we submit all mapped pages for IO.
2375  */
2376 static int mpage_map_and_submit_extent(handle_t *handle,
2377                                        struct mpage_da_data *mpd,
2378                                        bool *give_up_on_write)
2379 {
2380         struct inode *inode = mpd->inode;
2381         struct ext4_map_blocks *map = &mpd->map;
2382         int err;
2383         loff_t disksize;
2384         int progress = 0;
2385
2386         mpd->io_submit.io_end->offset =
2387                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2388         do {
2389                 err = mpage_map_one_extent(handle, mpd);
2390                 if (err < 0) {
2391                         struct super_block *sb = inode->i_sb;
2392
2393                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2394                                 goto invalidate_dirty_pages;
2395                         /*
2396                          * Let the uper layers retry transient errors.
2397                          * In the case of ENOSPC, if ext4_count_free_blocks()
2398                          * is non-zero, a commit should free up blocks.
2399                          */
2400                         if ((err == -ENOMEM) ||
2401                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2402                                 if (progress)
2403                                         goto update_disksize;
2404                                 return err;
2405                         }
2406                         ext4_msg(sb, KERN_CRIT,
2407                                  "Delayed block allocation failed for "
2408                                  "inode %lu at logical offset %llu with"
2409                                  " max blocks %u with error %d",
2410                                  inode->i_ino,
2411                                  (unsigned long long)map->m_lblk,
2412                                  (unsigned)map->m_len, -err);
2413                         ext4_msg(sb, KERN_CRIT,
2414                                  "This should not happen!! Data will "
2415                                  "be lost\n");
2416                         if (err == -ENOSPC)
2417                                 ext4_print_free_blocks(inode);
2418                 invalidate_dirty_pages:
2419                         *give_up_on_write = true;
2420                         return err;
2421                 }
2422                 progress = 1;
2423                 /*
2424                  * Update buffer state, submit mapped pages, and get us new
2425                  * extent to map
2426                  */
2427                 err = mpage_map_and_submit_buffers(mpd);
2428                 if (err < 0)
2429                         goto update_disksize;
2430         } while (map->m_len);
2431
2432 update_disksize:
2433         /*
2434          * Update on-disk size after IO is submitted.  Races with
2435          * truncate are avoided by checking i_size under i_data_sem.
2436          */
2437         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2438         if (disksize > EXT4_I(inode)->i_disksize) {
2439                 int err2;
2440                 loff_t i_size;
2441
2442                 down_write(&EXT4_I(inode)->i_data_sem);
2443                 i_size = i_size_read(inode);
2444                 if (disksize > i_size)
2445                         disksize = i_size;
2446                 if (disksize > EXT4_I(inode)->i_disksize)
2447                         EXT4_I(inode)->i_disksize = disksize;
2448                 err2 = ext4_mark_inode_dirty(handle, inode);
2449                 up_write(&EXT4_I(inode)->i_data_sem);
2450                 if (err2)
2451                         ext4_error(inode->i_sb,
2452                                    "Failed to mark inode %lu dirty",
2453                                    inode->i_ino);
2454                 if (!err)
2455                         err = err2;
2456         }
2457         return err;
2458 }
2459
2460 /*
2461  * Calculate the total number of credits to reserve for one writepages
2462  * iteration. This is called from ext4_writepages(). We map an extent of
2463  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2464  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2465  * bpp - 1 blocks in bpp different extents.
2466  */
2467 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2468 {
2469         int bpp = ext4_journal_blocks_per_page(inode);
2470
2471         return ext4_meta_trans_blocks(inode,
2472                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2473 }
2474
2475 /*
2476  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2477  *                               and underlying extent to map
2478  *
2479  * @mpd - where to look for pages
2480  *
2481  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2482  * IO immediately. When we find a page which isn't mapped we start accumulating
2483  * extent of buffers underlying these pages that needs mapping (formed by
2484  * either delayed or unwritten buffers). We also lock the pages containing
2485  * these buffers. The extent found is returned in @mpd structure (starting at
2486  * mpd->lblk with length mpd->len blocks).
2487  *
2488  * Note that this function can attach bios to one io_end structure which are
2489  * neither logically nor physically contiguous. Although it may seem as an
2490  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2491  * case as we need to track IO to all buffers underlying a page in one io_end.
2492  */
2493 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2494 {
2495         struct address_space *mapping = mpd->inode->i_mapping;
2496         struct pagevec pvec;
2497         unsigned int nr_pages;
2498         long left = mpd->wbc->nr_to_write;
2499         pgoff_t index = mpd->first_page;
2500         pgoff_t end = mpd->last_page;
2501         int tag;
2502         int i, err = 0;
2503         int blkbits = mpd->inode->i_blkbits;
2504         ext4_lblk_t lblk;
2505         struct buffer_head *head;
2506
2507         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2508                 tag = PAGECACHE_TAG_TOWRITE;
2509         else
2510                 tag = PAGECACHE_TAG_DIRTY;
2511
2512         pagevec_init(&pvec, 0);
2513         mpd->map.m_len = 0;
2514         mpd->next_page = index;
2515         while (index <= end) {
2516                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2517                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2518                 if (nr_pages == 0)
2519                         goto out;
2520
2521                 for (i = 0; i < nr_pages; i++) {
2522                         struct page *page = pvec.pages[i];
2523
2524                         /*
2525                          * At this point, the page may be truncated or
2526                          * invalidated (changing page->mapping to NULL), or
2527                          * even swizzled back from swapper_space to tmpfs file
2528                          * mapping. However, page->index will not change
2529                          * because we have a reference on the page.
2530                          */
2531                         if (page->index > end)
2532                                 goto out;
2533
2534                         /*
2535                          * Accumulated enough dirty pages? This doesn't apply
2536                          * to WB_SYNC_ALL mode. For integrity sync we have to
2537                          * keep going because someone may be concurrently
2538                          * dirtying pages, and we might have synced a lot of
2539                          * newly appeared dirty pages, but have not synced all
2540                          * of the old dirty pages.
2541                          */
2542                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2543                                 goto out;
2544
2545                         /* If we can't merge this page, we are done. */
2546                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2547                                 goto out;
2548
2549                         lock_page(page);
2550                         /*
2551                          * If the page is no longer dirty, or its mapping no
2552                          * longer corresponds to inode we are writing (which
2553                          * means it has been truncated or invalidated), or the
2554                          * page is already under writeback and we are not doing
2555                          * a data integrity writeback, skip the page
2556                          */
2557                         if (!PageDirty(page) ||
2558                             (PageWriteback(page) &&
2559                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2560                             unlikely(page->mapping != mapping)) {
2561                                 unlock_page(page);
2562                                 continue;
2563                         }
2564
2565                         wait_on_page_writeback(page);
2566                         BUG_ON(PageWriteback(page));
2567
2568                         if (mpd->map.m_len == 0)
2569                                 mpd->first_page = page->index;
2570                         mpd->next_page = page->index + 1;
2571                         /* Add all dirty buffers to mpd */
2572                         lblk = ((ext4_lblk_t)page->index) <<
2573                                 (PAGE_SHIFT - blkbits);
2574                         head = page_buffers(page);
2575                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2576                         if (err <= 0)
2577                                 goto out;
2578                         err = 0;
2579                         left--;
2580                 }
2581                 pagevec_release(&pvec);
2582                 cond_resched();
2583         }
2584         return 0;
2585 out:
2586         pagevec_release(&pvec);
2587         return err;
2588 }
2589
2590 static int __writepage(struct page *page, struct writeback_control *wbc,
2591                        void *data)
2592 {
2593         struct address_space *mapping = data;
2594         int ret = ext4_writepage(page, wbc);
2595         mapping_set_error(mapping, ret);
2596         return ret;
2597 }
2598
2599 static int ext4_writepages(struct address_space *mapping,
2600                            struct writeback_control *wbc)
2601 {
2602         pgoff_t writeback_index = 0;
2603         long nr_to_write = wbc->nr_to_write;
2604         int range_whole = 0;
2605         int cycled = 1;
2606         handle_t *handle = NULL;
2607         struct mpage_da_data mpd;
2608         struct inode *inode = mapping->host;
2609         int needed_blocks, rsv_blocks = 0, ret = 0;
2610         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2611         bool done;
2612         struct blk_plug plug;
2613         bool give_up_on_write = false;
2614
2615         percpu_down_read(&sbi->s_journal_flag_rwsem);
2616         trace_ext4_writepages(inode, wbc);
2617
2618         if (dax_mapping(mapping)) {
2619                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2620                                                   wbc);
2621                 goto out_writepages;
2622         }
2623
2624         /*
2625          * No pages to write? This is mainly a kludge to avoid starting
2626          * a transaction for special inodes like journal inode on last iput()
2627          * because that could violate lock ordering on umount
2628          */
2629         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2630                 goto out_writepages;
2631
2632         if (ext4_should_journal_data(inode)) {
2633                 struct blk_plug plug;
2634
2635                 blk_start_plug(&plug);
2636                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2637                 blk_finish_plug(&plug);
2638                 goto out_writepages;
2639         }
2640
2641         /*
2642          * If the filesystem has aborted, it is read-only, so return
2643          * right away instead of dumping stack traces later on that
2644          * will obscure the real source of the problem.  We test
2645          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2646          * the latter could be true if the filesystem is mounted
2647          * read-only, and in that case, ext4_writepages should
2648          * *never* be called, so if that ever happens, we would want
2649          * the stack trace.
2650          */
2651         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2652                 ret = -EROFS;
2653                 goto out_writepages;
2654         }
2655
2656         if (ext4_should_dioread_nolock(inode)) {
2657                 /*
2658                  * We may need to convert up to one extent per block in
2659                  * the page and we may dirty the inode.
2660                  */
2661                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2662         }
2663
2664         /*
2665          * If we have inline data and arrive here, it means that
2666          * we will soon create the block for the 1st page, so
2667          * we'd better clear the inline data here.
2668          */
2669         if (ext4_has_inline_data(inode)) {
2670                 /* Just inode will be modified... */
2671                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2672                 if (IS_ERR(handle)) {
2673                         ret = PTR_ERR(handle);
2674                         goto out_writepages;
2675                 }
2676                 BUG_ON(ext4_test_inode_state(inode,
2677                                 EXT4_STATE_MAY_INLINE_DATA));
2678                 ext4_destroy_inline_data(handle, inode);
2679                 ext4_journal_stop(handle);
2680         }
2681
2682         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2683                 range_whole = 1;
2684
2685         if (wbc->range_cyclic) {
2686                 writeback_index = mapping->writeback_index;
2687                 if (writeback_index)
2688                         cycled = 0;
2689                 mpd.first_page = writeback_index;
2690                 mpd.last_page = -1;
2691         } else {
2692                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2693                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2694         }
2695
2696         mpd.inode = inode;
2697         mpd.wbc = wbc;
2698         ext4_io_submit_init(&mpd.io_submit, wbc);
2699 retry:
2700         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2701                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2702         done = false;
2703         blk_start_plug(&plug);
2704         while (!done && mpd.first_page <= mpd.last_page) {
2705                 /* For each extent of pages we use new io_end */
2706                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2707                 if (!mpd.io_submit.io_end) {
2708                         ret = -ENOMEM;
2709                         break;
2710                 }
2711
2712                 /*
2713                  * We have two constraints: We find one extent to map and we
2714                  * must always write out whole page (makes a difference when
2715                  * blocksize < pagesize) so that we don't block on IO when we
2716                  * try to write out the rest of the page. Journalled mode is
2717                  * not supported by delalloc.
2718                  */
2719                 BUG_ON(ext4_should_journal_data(inode));
2720                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2721
2722                 /* start a new transaction */
2723                 handle = ext4_journal_start_with_reserve(inode,
2724                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2725                 if (IS_ERR(handle)) {
2726                         ret = PTR_ERR(handle);
2727                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2728                                "%ld pages, ino %lu; err %d", __func__,
2729                                 wbc->nr_to_write, inode->i_ino, ret);
2730                         /* Release allocated io_end */
2731                         ext4_put_io_end(mpd.io_submit.io_end);
2732                         break;
2733                 }
2734
2735                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2736                 ret = mpage_prepare_extent_to_map(&mpd);
2737                 if (!ret) {
2738                         if (mpd.map.m_len)
2739                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2740                                         &give_up_on_write);
2741                         else {
2742                                 /*
2743                                  * We scanned the whole range (or exhausted
2744                                  * nr_to_write), submitted what was mapped and
2745                                  * didn't find anything needing mapping. We are
2746                                  * done.
2747                                  */
2748                                 done = true;
2749                         }
2750                 }
2751                 ext4_journal_stop(handle);
2752                 /* Submit prepared bio */
2753                 ext4_io_submit(&mpd.io_submit);
2754                 /* Unlock pages we didn't use */
2755                 mpage_release_unused_pages(&mpd, give_up_on_write);
2756                 /* Drop our io_end reference we got from init */
2757                 ext4_put_io_end(mpd.io_submit.io_end);
2758
2759                 if (ret == -ENOSPC && sbi->s_journal) {
2760                         /*
2761                          * Commit the transaction which would
2762                          * free blocks released in the transaction
2763                          * and try again
2764                          */
2765                         jbd2_journal_force_commit_nested(sbi->s_journal);
2766                         ret = 0;
2767                         continue;
2768                 }
2769                 /* Fatal error - ENOMEM, EIO... */
2770                 if (ret)
2771                         break;
2772         }
2773         blk_finish_plug(&plug);
2774         if (!ret && !cycled && wbc->nr_to_write > 0) {
2775                 cycled = 1;
2776                 mpd.last_page = writeback_index - 1;
2777                 mpd.first_page = 0;
2778                 goto retry;
2779         }
2780
2781         /* Update index */
2782         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2783                 /*
2784                  * Set the writeback_index so that range_cyclic
2785                  * mode will write it back later
2786                  */
2787                 mapping->writeback_index = mpd.first_page;
2788
2789 out_writepages:
2790         trace_ext4_writepages_result(inode, wbc, ret,
2791                                      nr_to_write - wbc->nr_to_write);
2792         percpu_up_read(&sbi->s_journal_flag_rwsem);
2793         return ret;
2794 }
2795
2796 static int ext4_nonda_switch(struct super_block *sb)
2797 {
2798         s64 free_clusters, dirty_clusters;
2799         struct ext4_sb_info *sbi = EXT4_SB(sb);
2800
2801         /*
2802          * switch to non delalloc mode if we are running low
2803          * on free block. The free block accounting via percpu
2804          * counters can get slightly wrong with percpu_counter_batch getting
2805          * accumulated on each CPU without updating global counters
2806          * Delalloc need an accurate free block accounting. So switch
2807          * to non delalloc when we are near to error range.
2808          */
2809         free_clusters =
2810                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2811         dirty_clusters =
2812                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2813         /*
2814          * Start pushing delalloc when 1/2 of free blocks are dirty.
2815          */
2816         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2817                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2818
2819         if (2 * free_clusters < 3 * dirty_clusters ||
2820             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2821                 /*
2822                  * free block count is less than 150% of dirty blocks
2823                  * or free blocks is less than watermark
2824                  */
2825                 return 1;
2826         }
2827         return 0;
2828 }
2829
2830 /* We always reserve for an inode update; the superblock could be there too */
2831 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2832 {
2833         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2834                 return 1;
2835
2836         if (pos + len <= 0x7fffffffULL)
2837                 return 1;
2838
2839         /* We might need to update the superblock to set LARGE_FILE */
2840         return 2;
2841 }
2842
2843 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2844                                loff_t pos, unsigned len, unsigned flags,
2845                                struct page **pagep, void **fsdata)
2846 {
2847         int ret, retries = 0;
2848         struct page *page;
2849         pgoff_t index;
2850         struct inode *inode = mapping->host;
2851         handle_t *handle;
2852
2853         index = pos >> PAGE_SHIFT;
2854
2855         if (ext4_nonda_switch(inode->i_sb)) {
2856                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2857                 return ext4_write_begin(file, mapping, pos,
2858                                         len, flags, pagep, fsdata);
2859         }
2860         *fsdata = (void *)0;
2861         trace_ext4_da_write_begin(inode, pos, len, flags);
2862
2863         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2864                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2865                                                       pos, len, flags,
2866                                                       pagep, fsdata);
2867                 if (ret < 0)
2868                         return ret;
2869                 if (ret == 1)
2870                         return 0;
2871         }
2872
2873         /*
2874          * grab_cache_page_write_begin() can take a long time if the
2875          * system is thrashing due to memory pressure, or if the page
2876          * is being written back.  So grab it first before we start
2877          * the transaction handle.  This also allows us to allocate
2878          * the page (if needed) without using GFP_NOFS.
2879          */
2880 retry_grab:
2881         page = grab_cache_page_write_begin(mapping, index, flags);
2882         if (!page)
2883                 return -ENOMEM;
2884         unlock_page(page);
2885
2886         /*
2887          * With delayed allocation, we don't log the i_disksize update
2888          * if there is delayed block allocation. But we still need
2889          * to journalling the i_disksize update if writes to the end
2890          * of file which has an already mapped buffer.
2891          */
2892 retry_journal:
2893         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2894                                 ext4_da_write_credits(inode, pos, len));
2895         if (IS_ERR(handle)) {
2896                 put_page(page);
2897                 return PTR_ERR(handle);
2898         }
2899
2900         lock_page(page);
2901         if (page->mapping != mapping) {
2902                 /* The page got truncated from under us */
2903                 unlock_page(page);
2904                 put_page(page);
2905                 ext4_journal_stop(handle);
2906                 goto retry_grab;
2907         }
2908         /* In case writeback began while the page was unlocked */
2909         wait_for_stable_page(page);
2910
2911 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2912         ret = ext4_block_write_begin(page, pos, len,
2913                                      ext4_da_get_block_prep);
2914 #else
2915         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2916 #endif
2917         if (ret < 0) {
2918                 unlock_page(page);
2919                 ext4_journal_stop(handle);
2920                 /*
2921                  * block_write_begin may have instantiated a few blocks
2922                  * outside i_size.  Trim these off again. Don't need
2923                  * i_size_read because we hold i_mutex.
2924                  */
2925                 if (pos + len > inode->i_size)
2926                         ext4_truncate_failed_write(inode);
2927
2928                 if (ret == -ENOSPC &&
2929                     ext4_should_retry_alloc(inode->i_sb, &retries))
2930                         goto retry_journal;
2931
2932                 put_page(page);
2933                 return ret;
2934         }
2935
2936         *pagep = page;
2937         return ret;
2938 }
2939
2940 /*
2941  * Check if we should update i_disksize
2942  * when write to the end of file but not require block allocation
2943  */
2944 static int ext4_da_should_update_i_disksize(struct page *page,
2945                                             unsigned long offset)
2946 {
2947         struct buffer_head *bh;
2948         struct inode *inode = page->mapping->host;
2949         unsigned int idx;
2950         int i;
2951
2952         bh = page_buffers(page);
2953         idx = offset >> inode->i_blkbits;
2954
2955         for (i = 0; i < idx; i++)
2956                 bh = bh->b_this_page;
2957
2958         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2959                 return 0;
2960         return 1;
2961 }
2962
2963 static int ext4_da_write_end(struct file *file,
2964                              struct address_space *mapping,
2965                              loff_t pos, unsigned len, unsigned copied,
2966                              struct page *page, void *fsdata)
2967 {
2968         struct inode *inode = mapping->host;
2969         int ret = 0, ret2;
2970         handle_t *handle = ext4_journal_current_handle();
2971         loff_t new_i_size;
2972         unsigned long start, end;
2973         int write_mode = (int)(unsigned long)fsdata;
2974
2975         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2976                 return ext4_write_end(file, mapping, pos,
2977                                       len, copied, page, fsdata);
2978
2979         trace_ext4_da_write_end(inode, pos, len, copied);
2980         start = pos & (PAGE_SIZE - 1);
2981         end = start + copied - 1;
2982
2983         /*
2984          * generic_write_end() will run mark_inode_dirty() if i_size
2985          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2986          * into that.
2987          */
2988         new_i_size = pos + copied;
2989         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2990                 if (ext4_has_inline_data(inode) ||
2991                     ext4_da_should_update_i_disksize(page, end)) {
2992                         ext4_update_i_disksize(inode, new_i_size);
2993                         /* We need to mark inode dirty even if
2994                          * new_i_size is less that inode->i_size
2995                          * bu greater than i_disksize.(hint delalloc)
2996                          */
2997                         ext4_mark_inode_dirty(handle, inode);
2998                 }
2999         }
3000
3001         if (write_mode != CONVERT_INLINE_DATA &&
3002             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3003             ext4_has_inline_data(inode))
3004                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3005                                                      page);
3006         else
3007                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3008                                                         page, fsdata);
3009
3010         copied = ret2;
3011         if (ret2 < 0)
3012                 ret = ret2;
3013         ret2 = ext4_journal_stop(handle);
3014         if (!ret)
3015                 ret = ret2;
3016
3017         return ret ? ret : copied;
3018 }
3019
3020 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3021                                    unsigned int length)
3022 {
3023         /*
3024          * Drop reserved blocks
3025          */
3026         BUG_ON(!PageLocked(page));
3027         if (!page_has_buffers(page))
3028                 goto out;
3029
3030         ext4_da_page_release_reservation(page, offset, length);
3031
3032 out:
3033         ext4_invalidatepage(page, offset, length);
3034
3035         return;
3036 }
3037
3038 /*
3039  * Force all delayed allocation blocks to be allocated for a given inode.
3040  */
3041 int ext4_alloc_da_blocks(struct inode *inode)
3042 {
3043         trace_ext4_alloc_da_blocks(inode);
3044
3045         if (!EXT4_I(inode)->i_reserved_data_blocks)
3046                 return 0;
3047
3048         /*
3049          * We do something simple for now.  The filemap_flush() will
3050          * also start triggering a write of the data blocks, which is
3051          * not strictly speaking necessary (and for users of
3052          * laptop_mode, not even desirable).  However, to do otherwise
3053          * would require replicating code paths in:
3054          *
3055          * ext4_writepages() ->
3056          *    write_cache_pages() ---> (via passed in callback function)
3057          *        __mpage_da_writepage() -->
3058          *           mpage_add_bh_to_extent()
3059          *           mpage_da_map_blocks()
3060          *
3061          * The problem is that write_cache_pages(), located in
3062          * mm/page-writeback.c, marks pages clean in preparation for
3063          * doing I/O, which is not desirable if we're not planning on
3064          * doing I/O at all.
3065          *
3066          * We could call write_cache_pages(), and then redirty all of
3067          * the pages by calling redirty_page_for_writepage() but that
3068          * would be ugly in the extreme.  So instead we would need to
3069          * replicate parts of the code in the above functions,
3070          * simplifying them because we wouldn't actually intend to
3071          * write out the pages, but rather only collect contiguous
3072          * logical block extents, call the multi-block allocator, and
3073          * then update the buffer heads with the block allocations.
3074          *
3075          * For now, though, we'll cheat by calling filemap_flush(),
3076          * which will map the blocks, and start the I/O, but not
3077          * actually wait for the I/O to complete.
3078          */
3079         return filemap_flush(inode->i_mapping);
3080 }
3081
3082 /*
3083  * bmap() is special.  It gets used by applications such as lilo and by
3084  * the swapper to find the on-disk block of a specific piece of data.
3085  *
3086  * Naturally, this is dangerous if the block concerned is still in the
3087  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3088  * filesystem and enables swap, then they may get a nasty shock when the
3089  * data getting swapped to that swapfile suddenly gets overwritten by
3090  * the original zero's written out previously to the journal and
3091  * awaiting writeback in the kernel's buffer cache.
3092  *
3093  * So, if we see any bmap calls here on a modified, data-journaled file,
3094  * take extra steps to flush any blocks which might be in the cache.
3095  */
3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3097 {
3098         struct inode *inode = mapping->host;
3099         journal_t *journal;
3100         int err;
3101
3102         /*
3103          * We can get here for an inline file via the FIBMAP ioctl
3104          */
3105         if (ext4_has_inline_data(inode))
3106                 return 0;
3107
3108         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109                         test_opt(inode->i_sb, DELALLOC)) {
3110                 /*
3111                  * With delalloc we want to sync the file
3112                  * so that we can make sure we allocate
3113                  * blocks for file
3114                  */
3115                 filemap_write_and_wait(mapping);
3116         }
3117
3118         if (EXT4_JOURNAL(inode) &&
3119             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3120                 /*
3121                  * This is a REALLY heavyweight approach, but the use of
3122                  * bmap on dirty files is expected to be extremely rare:
3123                  * only if we run lilo or swapon on a freshly made file
3124                  * do we expect this to happen.
3125                  *
3126                  * (bmap requires CAP_SYS_RAWIO so this does not
3127                  * represent an unprivileged user DOS attack --- we'd be
3128                  * in trouble if mortal users could trigger this path at
3129                  * will.)
3130                  *
3131                  * NB. EXT4_STATE_JDATA is not set on files other than
3132                  * regular files.  If somebody wants to bmap a directory
3133                  * or symlink and gets confused because the buffer
3134                  * hasn't yet been flushed to disk, they deserve
3135                  * everything they get.
3136                  */
3137
3138                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3139                 journal = EXT4_JOURNAL(inode);
3140                 jbd2_journal_lock_updates(journal);
3141                 err = jbd2_journal_flush(journal);
3142                 jbd2_journal_unlock_updates(journal);
3143
3144                 if (err)
3145                         return 0;
3146         }
3147
3148         return generic_block_bmap(mapping, block, ext4_get_block);
3149 }
3150
3151 static int ext4_readpage(struct file *file, struct page *page)
3152 {
3153         int ret = -EAGAIN;
3154         struct inode *inode = page->mapping->host;
3155
3156         trace_ext4_readpage(page);
3157
3158         if (ext4_has_inline_data(inode))
3159                 ret = ext4_readpage_inline(inode, page);
3160
3161         if (ret == -EAGAIN)
3162                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3163
3164         return ret;
3165 }
3166
3167 static int
3168 ext4_readpages(struct file *file, struct address_space *mapping,
3169                 struct list_head *pages, unsigned nr_pages)
3170 {
3171         struct inode *inode = mapping->host;
3172
3173         /* If the file has inline data, no need to do readpages. */
3174         if (ext4_has_inline_data(inode))
3175                 return 0;
3176
3177         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3178 }
3179
3180 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3181                                 unsigned int length)
3182 {
3183         trace_ext4_invalidatepage(page, offset, length);
3184
3185         /* No journalling happens on data buffers when this function is used */
3186         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3187
3188         block_invalidatepage(page, offset, length);
3189 }
3190
3191 static int __ext4_journalled_invalidatepage(struct page *page,
3192                                             unsigned int offset,
3193                                             unsigned int length)
3194 {
3195         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3196
3197         trace_ext4_journalled_invalidatepage(page, offset, length);
3198
3199         /*
3200          * If it's a full truncate we just forget about the pending dirtying
3201          */
3202         if (offset == 0 && length == PAGE_SIZE)
3203                 ClearPageChecked(page);
3204
3205         return jbd2_journal_invalidatepage(journal, page, offset, length);
3206 }
3207
3208 /* Wrapper for aops... */
3209 static void ext4_journalled_invalidatepage(struct page *page,
3210                                            unsigned int offset,
3211                                            unsigned int length)
3212 {
3213         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3214 }
3215
3216 static int ext4_releasepage(struct page *page, gfp_t wait)
3217 {
3218         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3219
3220         trace_ext4_releasepage(page);
3221
3222         /* Page has dirty journalled data -> cannot release */
3223         if (PageChecked(page))
3224                 return 0;
3225         if (journal)
3226                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3227         else
3228                 return try_to_free_buffers(page);
3229 }
3230
3231 #ifdef CONFIG_FS_DAX
3232 /*
3233  * Get block function for DAX IO and mmap faults. It takes care of converting
3234  * unwritten extents to written ones and initializes new / converted blocks
3235  * to zeros.
3236  */
3237 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3238                        struct buffer_head *bh_result, int create)
3239 {
3240         int ret;
3241
3242         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3243         if (!create)
3244                 return _ext4_get_block(inode, iblock, bh_result, 0);
3245
3246         ret = ext4_get_block_trans(inode, iblock, bh_result,
3247                                    EXT4_GET_BLOCKS_PRE_IO |
3248                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3249         if (ret < 0)
3250                 return ret;
3251
3252         if (buffer_unwritten(bh_result)) {
3253                 /*
3254                  * We are protected by i_mmap_sem or i_mutex so we know block
3255                  * cannot go away from under us even though we dropped
3256                  * i_data_sem. Convert extent to written and write zeros there.
3257                  */
3258                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3259                                            EXT4_GET_BLOCKS_CONVERT |
3260                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3261                 if (ret < 0)
3262                         return ret;
3263         }
3264         /*
3265          * At least for now we have to clear BH_New so that DAX code
3266          * doesn't attempt to zero blocks again in a racy way.
3267          */
3268         clear_buffer_new(bh_result);
3269         return 0;
3270 }
3271 #else
3272 /* Just define empty function, it will never get called. */
3273 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3274                        struct buffer_head *bh_result, int create)
3275 {
3276         BUG();
3277         return 0;
3278 }
3279 #endif
3280
3281 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3282                             ssize_t size, void *private)
3283 {
3284         ext4_io_end_t *io_end = private;
3285
3286         /* if not async direct IO just return */
3287         if (!io_end)
3288                 return 0;
3289
3290         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3291                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3292                   io_end, io_end->inode->i_ino, iocb, offset, size);
3293
3294         /*
3295          * Error during AIO DIO. We cannot convert unwritten extents as the
3296          * data was not written. Just clear the unwritten flag and drop io_end.
3297          */
3298         if (size <= 0) {
3299                 ext4_clear_io_unwritten_flag(io_end);
3300                 size = 0;
3301         }
3302         io_end->offset = offset;
3303         io_end->size = size;
3304         ext4_put_io_end(io_end);
3305
3306         return 0;
3307 }
3308
3309 /*
3310  * Handling of direct IO writes.
3311  *
3312  * For ext4 extent files, ext4 will do direct-io write even to holes,
3313  * preallocated extents, and those write extend the file, no need to
3314  * fall back to buffered IO.
3315  *
3316  * For holes, we fallocate those blocks, mark them as unwritten
3317  * If those blocks were preallocated, we mark sure they are split, but
3318  * still keep the range to write as unwritten.
3319  *
3320  * The unwritten extents will be converted to written when DIO is completed.
3321  * For async direct IO, since the IO may still pending when return, we
3322  * set up an end_io call back function, which will do the conversion
3323  * when async direct IO completed.
3324  *
3325  * If the O_DIRECT write will extend the file then add this inode to the
3326  * orphan list.  So recovery will truncate it back to the original size
3327  * if the machine crashes during the write.
3328  *
3329  */
3330 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3331 {
3332         struct file *file = iocb->ki_filp;
3333         struct inode *inode = file->f_mapping->host;
3334         struct ext4_inode_info *ei = EXT4_I(inode);
3335         ssize_t ret;
3336         loff_t offset = iocb->ki_pos;
3337         size_t count = iov_iter_count(iter);
3338         int overwrite = 0;
3339         get_block_t *get_block_func = NULL;
3340         int dio_flags = 0;
3341         loff_t final_size = offset + count;
3342         int orphan = 0;
3343         handle_t *handle;
3344
3345         if (final_size > inode->i_size) {
3346                 /* Credits for sb + inode write */
3347                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3348                 if (IS_ERR(handle)) {
3349                         ret = PTR_ERR(handle);
3350                         goto out;
3351                 }
3352                 ret = ext4_orphan_add(handle, inode);
3353                 if (ret) {
3354                         ext4_journal_stop(handle);
3355                         goto out;
3356                 }
3357                 orphan = 1;
3358                 ei->i_disksize = inode->i_size;
3359                 ext4_journal_stop(handle);
3360         }
3361
3362         BUG_ON(iocb->private == NULL);
3363
3364         /*
3365          * Make all waiters for direct IO properly wait also for extent
3366          * conversion. This also disallows race between truncate() and
3367          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3368          */
3369         inode_dio_begin(inode);
3370
3371         /* If we do a overwrite dio, i_mutex locking can be released */
3372         overwrite = *((int *)iocb->private);
3373
3374         if (overwrite)
3375                 inode_unlock(inode);
3376
3377         /*
3378          * For extent mapped files we could direct write to holes and fallocate.
3379          *
3380          * Allocated blocks to fill the hole are marked as unwritten to prevent
3381          * parallel buffered read to expose the stale data before DIO complete
3382          * the data IO.
3383          *
3384          * As to previously fallocated extents, ext4 get_block will just simply
3385          * mark the buffer mapped but still keep the extents unwritten.
3386          *
3387          * For non AIO case, we will convert those unwritten extents to written
3388          * after return back from blockdev_direct_IO. That way we save us from
3389          * allocating io_end structure and also the overhead of offloading
3390          * the extent convertion to a workqueue.
3391          *
3392          * For async DIO, the conversion needs to be deferred when the
3393          * IO is completed. The ext4 end_io callback function will be
3394          * called to take care of the conversion work.  Here for async
3395          * case, we allocate an io_end structure to hook to the iocb.
3396          */
3397         iocb->private = NULL;
3398         if (overwrite)
3399                 get_block_func = ext4_dio_get_block_overwrite;
3400         else if (IS_DAX(inode)) {
3401                 /*
3402                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3403                  * writes need zeroing either because they can race with page
3404                  * faults or because they use partial blocks.
3405                  */
3406                 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3407                     ext4_aligned_io(inode, offset, count))
3408                         get_block_func = ext4_dio_get_block;
3409                 else
3410                         get_block_func = ext4_dax_get_block;
3411                 dio_flags = DIO_LOCKING;
3412         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3413                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3414                 get_block_func = ext4_dio_get_block;
3415                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3416         } else if (is_sync_kiocb(iocb)) {
3417                 get_block_func = ext4_dio_get_block_unwritten_sync;
3418                 dio_flags = DIO_LOCKING;
3419         } else {
3420                 get_block_func = ext4_dio_get_block_unwritten_async;
3421                 dio_flags = DIO_LOCKING;
3422         }
3423 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3424         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3425 #endif
3426         if (IS_DAX(inode)) {
3427                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3428                                 ext4_end_io_dio, dio_flags);
3429         } else
3430                 ret = __blockdev_direct_IO(iocb, inode,
3431                                            inode->i_sb->s_bdev, iter,
3432                                            get_block_func,
3433                                            ext4_end_io_dio, NULL, dio_flags);
3434
3435         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3436                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3437                 int err;
3438                 /*
3439                  * for non AIO case, since the IO is already
3440                  * completed, we could do the conversion right here
3441                  */
3442                 err = ext4_convert_unwritten_extents(NULL, inode,
3443                                                      offset, ret);
3444                 if (err < 0)
3445                         ret = err;
3446                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3447         }
3448
3449         inode_dio_end(inode);
3450         /* take i_mutex locking again if we do a ovewrite dio */
3451         if (overwrite)
3452                 inode_lock(inode);
3453
3454         if (ret < 0 && final_size > inode->i_size)
3455                 ext4_truncate_failed_write(inode);
3456
3457         /* Handle extending of i_size after direct IO write */
3458         if (orphan) {
3459                 int err;
3460
3461                 /* Credits for sb + inode write */
3462                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3463                 if (IS_ERR(handle)) {
3464                         /* This is really bad luck. We've written the data
3465                          * but cannot extend i_size. Bail out and pretend
3466                          * the write failed... */
3467                         ret = PTR_ERR(handle);
3468                         if (inode->i_nlink)
3469                                 ext4_orphan_del(NULL, inode);
3470
3471                         goto out;
3472                 }
3473                 if (inode->i_nlink)
3474                         ext4_orphan_del(handle, inode);
3475                 if (ret > 0) {
3476                         loff_t end = offset + ret;
3477                         if (end > inode->i_size) {
3478                                 ei->i_disksize = end;
3479                                 i_size_write(inode, end);
3480                                 /*
3481                                  * We're going to return a positive `ret'
3482                                  * here due to non-zero-length I/O, so there's
3483                                  * no way of reporting error returns from
3484                                  * ext4_mark_inode_dirty() to userspace.  So
3485                                  * ignore it.
3486                                  */
3487                                 ext4_mark_inode_dirty(handle, inode);
3488                         }
3489                 }
3490                 err = ext4_journal_stop(handle);
3491                 if (ret == 0)
3492                         ret = err;
3493         }
3494 out:
3495         return ret;
3496 }
3497
3498 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3499 {
3500         int unlocked = 0;
3501         struct inode *inode = iocb->ki_filp->f_mapping->host;
3502         ssize_t ret;
3503
3504         if (ext4_should_dioread_nolock(inode)) {
3505                 /*
3506                  * Nolock dioread optimization may be dynamically disabled
3507                  * via ext4_inode_block_unlocked_dio(). Check inode's state
3508                  * while holding extra i_dio_count ref.
3509                  */
3510                 inode_dio_begin(inode);
3511                 smp_mb();
3512                 if (unlikely(ext4_test_inode_state(inode,
3513                                                     EXT4_STATE_DIOREAD_LOCK)))
3514                         inode_dio_end(inode);
3515                 else
3516                         unlocked = 1;
3517         }
3518         if (IS_DAX(inode)) {
3519                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3520                                 NULL, unlocked ? 0 : DIO_LOCKING);
3521         } else {
3522                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3523                                            iter, ext4_dio_get_block,
3524                                            NULL, NULL,
3525                                            unlocked ? 0 : DIO_LOCKING);
3526         }
3527         if (unlocked)
3528                 inode_dio_end(inode);
3529         return ret;
3530 }
3531
3532 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3533 {
3534         struct file *file = iocb->ki_filp;
3535         struct inode *inode = file->f_mapping->host;
3536         size_t count = iov_iter_count(iter);
3537         loff_t offset = iocb->ki_pos;
3538         ssize_t ret;
3539
3540 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3541         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3542                 return 0;
3543 #endif
3544
3545         /*
3546          * If we are doing data journalling we don't support O_DIRECT
3547          */
3548         if (ext4_should_journal_data(inode))
3549                 return 0;
3550
3551         /* Let buffer I/O handle the inline data case. */
3552         if (ext4_has_inline_data(inode))
3553                 return 0;
3554
3555         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3556         if (iov_iter_rw(iter) == READ)
3557                 ret = ext4_direct_IO_read(iocb, iter);
3558         else
3559                 ret = ext4_direct_IO_write(iocb, iter);
3560         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3561         return ret;
3562 }
3563
3564 /*
3565  * Pages can be marked dirty completely asynchronously from ext4's journalling
3566  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3567  * much here because ->set_page_dirty is called under VFS locks.  The page is
3568  * not necessarily locked.
3569  *
3570  * We cannot just dirty the page and leave attached buffers clean, because the
3571  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3572  * or jbddirty because all the journalling code will explode.
3573  *
3574  * So what we do is to mark the page "pending dirty" and next time writepage
3575  * is called, propagate that into the buffers appropriately.
3576  */
3577 static int ext4_journalled_set_page_dirty(struct page *page)
3578 {
3579         SetPageChecked(page);
3580         return __set_page_dirty_nobuffers(page);
3581 }
3582
3583 static const struct address_space_operations ext4_aops = {
3584         .readpage               = ext4_readpage,
3585         .readpages              = ext4_readpages,
3586         .writepage              = ext4_writepage,
3587         .writepages             = ext4_writepages,
3588         .write_begin            = ext4_write_begin,
3589         .write_end              = ext4_write_end,
3590         .bmap                   = ext4_bmap,
3591         .invalidatepage         = ext4_invalidatepage,
3592         .releasepage            = ext4_releasepage,
3593         .direct_IO              = ext4_direct_IO,
3594         .migratepage            = buffer_migrate_page,
3595         .is_partially_uptodate  = block_is_partially_uptodate,
3596         .error_remove_page      = generic_error_remove_page,
3597 };
3598
3599 static const struct address_space_operations ext4_journalled_aops = {
3600         .readpage               = ext4_readpage,
3601         .readpages              = ext4_readpages,
3602         .writepage              = ext4_writepage,
3603         .writepages             = ext4_writepages,
3604         .write_begin            = ext4_write_begin,
3605         .write_end              = ext4_journalled_write_end,
3606         .set_page_dirty         = ext4_journalled_set_page_dirty,
3607         .bmap                   = ext4_bmap,
3608         .invalidatepage         = ext4_journalled_invalidatepage,
3609         .releasepage            = ext4_releasepage,
3610         .direct_IO              = ext4_direct_IO,
3611         .is_partially_uptodate  = block_is_partially_uptodate,
3612         .error_remove_page      = generic_error_remove_page,
3613 };
3614
3615 static const struct address_space_operations ext4_da_aops = {
3616         .readpage               = ext4_readpage,
3617         .readpages              = ext4_readpages,
3618         .writepage              = ext4_writepage,
3619         .writepages             = ext4_writepages,
3620         .write_begin            = ext4_da_write_begin,
3621         .write_end              = ext4_da_write_end,
3622         .bmap                   = ext4_bmap,
3623         .invalidatepage         = ext4_da_invalidatepage,
3624         .releasepage            = ext4_releasepage,
3625         .direct_IO              = ext4_direct_IO,
3626         .migratepage            = buffer_migrate_page,
3627         .is_partially_uptodate  = block_is_partially_uptodate,
3628         .error_remove_page      = generic_error_remove_page,
3629 };
3630
3631 void ext4_set_aops(struct inode *inode)
3632 {
3633         switch (ext4_inode_journal_mode(inode)) {
3634         case EXT4_INODE_ORDERED_DATA_MODE:
3635         case EXT4_INODE_WRITEBACK_DATA_MODE:
3636                 break;
3637         case EXT4_INODE_JOURNAL_DATA_MODE:
3638                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3639                 return;
3640         default:
3641                 BUG();
3642         }
3643         if (test_opt(inode->i_sb, DELALLOC))
3644                 inode->i_mapping->a_ops = &ext4_da_aops;
3645         else
3646                 inode->i_mapping->a_ops = &ext4_aops;
3647 }
3648
3649 static int __ext4_block_zero_page_range(handle_t *handle,
3650                 struct address_space *mapping, loff_t from, loff_t length)
3651 {
3652         ext4_fsblk_t index = from >> PAGE_SHIFT;
3653         unsigned offset = from & (PAGE_SIZE-1);
3654         unsigned blocksize, pos;
3655         ext4_lblk_t iblock;
3656         struct inode *inode = mapping->host;
3657         struct buffer_head *bh;
3658         struct page *page;
3659         int err = 0;
3660
3661         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3662                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3663         if (!page)
3664                 return -ENOMEM;
3665
3666         blocksize = inode->i_sb->s_blocksize;
3667
3668         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3669
3670         if (!page_has_buffers(page))
3671                 create_empty_buffers(page, blocksize, 0);
3672
3673         /* Find the buffer that contains "offset" */
3674         bh = page_buffers(page);
3675         pos = blocksize;
3676         while (offset >= pos) {
3677                 bh = bh->b_this_page;
3678                 iblock++;
3679                 pos += blocksize;
3680         }
3681         if (buffer_freed(bh)) {
3682                 BUFFER_TRACE(bh, "freed: skip");
3683                 goto unlock;
3684         }
3685         if (!buffer_mapped(bh)) {
3686                 BUFFER_TRACE(bh, "unmapped");
3687                 ext4_get_block(inode, iblock, bh, 0);
3688                 /* unmapped? It's a hole - nothing to do */
3689                 if (!buffer_mapped(bh)) {
3690                         BUFFER_TRACE(bh, "still unmapped");
3691                         goto unlock;
3692                 }
3693         }
3694
3695         /* Ok, it's mapped. Make sure it's up-to-date */
3696         if (PageUptodate(page))
3697                 set_buffer_uptodate(bh);
3698
3699         if (!buffer_uptodate(bh)) {
3700                 err = -EIO;
3701                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3702                 wait_on_buffer(bh);
3703                 /* Uhhuh. Read error. Complain and punt. */
3704                 if (!buffer_uptodate(bh))
3705                         goto unlock;
3706                 if (S_ISREG(inode->i_mode) &&
3707                     ext4_encrypted_inode(inode)) {
3708                         /* We expect the key to be set. */
3709                         BUG_ON(!ext4_has_encryption_key(inode));
3710                         BUG_ON(blocksize != PAGE_SIZE);
3711                         WARN_ON_ONCE(ext4_decrypt(page));
3712                 }
3713         }
3714         if (ext4_should_journal_data(inode)) {
3715                 BUFFER_TRACE(bh, "get write access");
3716                 err = ext4_journal_get_write_access(handle, bh);
3717                 if (err)
3718                         goto unlock;
3719         }
3720         zero_user(page, offset, length);
3721         BUFFER_TRACE(bh, "zeroed end of block");
3722
3723         if (ext4_should_journal_data(inode)) {
3724                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3725         } else {
3726                 err = 0;
3727                 mark_buffer_dirty(bh);
3728                 if (ext4_should_order_data(inode))
3729                         err = ext4_jbd2_inode_add_write(handle, inode);
3730         }
3731
3732 unlock:
3733         unlock_page(page);
3734         put_page(page);
3735         return err;
3736 }
3737
3738 /*
3739  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3740  * starting from file offset 'from'.  The range to be zero'd must
3741  * be contained with in one block.  If the specified range exceeds
3742  * the end of the block it will be shortened to end of the block
3743  * that cooresponds to 'from'
3744  */
3745 static int ext4_block_zero_page_range(handle_t *handle,
3746                 struct address_space *mapping, loff_t from, loff_t length)
3747 {
3748         struct inode *inode = mapping->host;
3749         unsigned offset = from & (PAGE_SIZE-1);
3750         unsigned blocksize = inode->i_sb->s_blocksize;
3751         unsigned max = blocksize - (offset & (blocksize - 1));
3752
3753         /*
3754          * correct length if it does not fall between
3755          * 'from' and the end of the block
3756          */
3757         if (length > max || length < 0)
3758                 length = max;
3759
3760         if (IS_DAX(inode))
3761                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3762         return __ext4_block_zero_page_range(handle, mapping, from, length);
3763 }
3764
3765 /*
3766  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3767  * up to the end of the block which corresponds to `from'.
3768  * This required during truncate. We need to physically zero the tail end
3769  * of that block so it doesn't yield old data if the file is later grown.
3770  */
3771 static int ext4_block_truncate_page(handle_t *handle,
3772                 struct address_space *mapping, loff_t from)
3773 {
3774         unsigned offset = from & (PAGE_SIZE-1);
3775         unsigned length;
3776         unsigned blocksize;
3777         struct inode *inode = mapping->host;
3778
3779         blocksize = inode->i_sb->s_blocksize;
3780         length = blocksize - (offset & (blocksize - 1));
3781
3782         return ext4_block_zero_page_range(handle, mapping, from, length);
3783 }
3784
3785 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3786                              loff_t lstart, loff_t length)
3787 {
3788         struct super_block *sb = inode->i_sb;
3789         struct address_space *mapping = inode->i_mapping;
3790         unsigned partial_start, partial_end;
3791         ext4_fsblk_t start, end;
3792         loff_t byte_end = (lstart + length - 1);
3793         int err = 0;
3794
3795         partial_start = lstart & (sb->s_blocksize - 1);
3796         partial_end = byte_end & (sb->s_blocksize - 1);
3797
3798         start = lstart >> sb->s_blocksize_bits;
3799         end = byte_end >> sb->s_blocksize_bits;
3800
3801         /* Handle partial zero within the single block */
3802         if (start == end &&
3803             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3804                 err = ext4_block_zero_page_range(handle, mapping,
3805                                                  lstart, length);
3806                 return err;
3807         }
3808         /* Handle partial zero out on the start of the range */
3809         if (partial_start) {
3810                 err = ext4_block_zero_page_range(handle, mapping,
3811                                                  lstart, sb->s_blocksize);
3812                 if (err)
3813                         return err;
3814         }
3815         /* Handle partial zero out on the end of the range */
3816         if (partial_end != sb->s_blocksize - 1)
3817                 err = ext4_block_zero_page_range(handle, mapping,
3818                                                  byte_end - partial_end,
3819                                                  partial_end + 1);
3820         return err;
3821 }
3822
3823 int ext4_can_truncate(struct inode *inode)
3824 {
3825         if (S_ISREG(inode->i_mode))
3826                 return 1;
3827         if (S_ISDIR(inode->i_mode))
3828                 return 1;
3829         if (S_ISLNK(inode->i_mode))
3830                 return !ext4_inode_is_fast_symlink(inode);
3831         return 0;
3832 }
3833
3834 /*
3835  * We have to make sure i_disksize gets properly updated before we truncate
3836  * page cache due to hole punching or zero range. Otherwise i_disksize update
3837  * can get lost as it may have been postponed to submission of writeback but
3838  * that will never happen after we truncate page cache.
3839  */
3840 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3841                                       loff_t len)
3842 {
3843         handle_t *handle;
3844         loff_t size = i_size_read(inode);
3845
3846         WARN_ON(!inode_is_locked(inode));
3847         if (offset > size || offset + len < size)
3848                 return 0;
3849
3850         if (EXT4_I(inode)->i_disksize >= size)
3851                 return 0;
3852
3853         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3854         if (IS_ERR(handle))
3855                 return PTR_ERR(handle);
3856         ext4_update_i_disksize(inode, size);
3857         ext4_mark_inode_dirty(handle, inode);
3858         ext4_journal_stop(handle);
3859
3860         return 0;
3861 }
3862
3863 /*
3864  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3865  * associated with the given offset and length
3866  *
3867  * @inode:  File inode
3868  * @offset: The offset where the hole will begin
3869  * @len:    The length of the hole
3870  *
3871  * Returns: 0 on success or negative on failure
3872  */
3873
3874 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3875 {
3876         struct super_block *sb = inode->i_sb;
3877         ext4_lblk_t first_block, stop_block;
3878         struct address_space *mapping = inode->i_mapping;
3879         loff_t first_block_offset, last_block_offset;
3880         handle_t *handle;
3881         unsigned int credits;
3882         int ret = 0;
3883
3884         if (!S_ISREG(inode->i_mode))
3885                 return -EOPNOTSUPP;
3886
3887         trace_ext4_punch_hole(inode, offset, length, 0);
3888
3889         /*
3890          * Write out all dirty pages to avoid race conditions
3891          * Then release them.
3892          */
3893         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3894                 ret = filemap_write_and_wait_range(mapping, offset,
3895                                                    offset + length - 1);
3896                 if (ret)
3897                         return ret;
3898         }
3899
3900         inode_lock(inode);
3901
3902         /* No need to punch hole beyond i_size */
3903         if (offset >= inode->i_size)
3904                 goto out_mutex;
3905
3906         /*
3907          * If the hole extends beyond i_size, set the hole
3908          * to end after the page that contains i_size
3909          */
3910         if (offset + length > inode->i_size) {
3911                 length = inode->i_size +
3912                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3913                    offset;
3914         }
3915
3916         if (offset & (sb->s_blocksize - 1) ||
3917             (offset + length) & (sb->s_blocksize - 1)) {
3918                 /*
3919                  * Attach jinode to inode for jbd2 if we do any zeroing of
3920                  * partial block
3921                  */
3922                 ret = ext4_inode_attach_jinode(inode);
3923                 if (ret < 0)
3924                         goto out_mutex;
3925
3926         }
3927
3928         /* Wait all existing dio workers, newcomers will block on i_mutex */
3929         ext4_inode_block_unlocked_dio(inode);
3930         inode_dio_wait(inode);
3931
3932         /*
3933          * Prevent page faults from reinstantiating pages we have released from
3934          * page cache.
3935          */
3936         down_write(&EXT4_I(inode)->i_mmap_sem);
3937         first_block_offset = round_up(offset, sb->s_blocksize);
3938         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3939
3940         /* Now release the pages and zero block aligned part of pages*/
3941         if (last_block_offset > first_block_offset) {
3942                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3943                 if (ret)
3944                         goto out_dio;
3945                 truncate_pagecache_range(inode, first_block_offset,
3946                                          last_block_offset);
3947         }
3948
3949         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3950                 credits = ext4_writepage_trans_blocks(inode);
3951         else
3952                 credits = ext4_blocks_for_truncate(inode);
3953         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3954         if (IS_ERR(handle)) {
3955                 ret = PTR_ERR(handle);
3956                 ext4_std_error(sb, ret);
3957                 goto out_dio;
3958         }
3959
3960         ret = ext4_zero_partial_blocks(handle, inode, offset,
3961                                        length);
3962         if (ret)
3963                 goto out_stop;
3964
3965         first_block = (offset + sb->s_blocksize - 1) >>
3966                 EXT4_BLOCK_SIZE_BITS(sb);
3967         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3968
3969         /* If there are no blocks to remove, return now */
3970         if (first_block >= stop_block)
3971                 goto out_stop;
3972
3973         down_write(&EXT4_I(inode)->i_data_sem);
3974         ext4_discard_preallocations(inode);
3975
3976         ret = ext4_es_remove_extent(inode, first_block,
3977                                     stop_block - first_block);
3978         if (ret) {
3979                 up_write(&EXT4_I(inode)->i_data_sem);
3980                 goto out_stop;
3981         }
3982
3983         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3984                 ret = ext4_ext_remove_space(inode, first_block,
3985                                             stop_block - 1);
3986         else
3987                 ret = ext4_ind_remove_space(handle, inode, first_block,
3988                                             stop_block);
3989
3990         up_write(&EXT4_I(inode)->i_data_sem);
3991         if (IS_SYNC(inode))
3992                 ext4_handle_sync(handle);
3993
3994         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3995         ext4_mark_inode_dirty(handle, inode);
3996 out_stop:
3997         ext4_journal_stop(handle);
3998 out_dio:
3999         up_write(&EXT4_I(inode)->i_mmap_sem);
4000         ext4_inode_resume_unlocked_dio(inode);
4001 out_mutex:
4002         inode_unlock(inode);
4003         return ret;
4004 }
4005
4006 int ext4_inode_attach_jinode(struct inode *inode)
4007 {
4008         struct ext4_inode_info *ei = EXT4_I(inode);
4009         struct jbd2_inode *jinode;
4010
4011         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4012                 return 0;
4013
4014         jinode = jbd2_alloc_inode(GFP_KERNEL);
4015         spin_lock(&inode->i_lock);
4016         if (!ei->jinode) {
4017                 if (!jinode) {
4018                         spin_unlock(&inode->i_lock);
4019                         return -ENOMEM;
4020                 }
4021                 ei->jinode = jinode;
4022                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4023                 jinode = NULL;
4024         }
4025         spin_unlock(&inode->i_lock);
4026         if (unlikely(jinode != NULL))
4027                 jbd2_free_inode(jinode);
4028         return 0;
4029 }
4030
4031 /*
4032  * ext4_truncate()
4033  *
4034  * We block out ext4_get_block() block instantiations across the entire
4035  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4036  * simultaneously on behalf of the same inode.
4037  *
4038  * As we work through the truncate and commit bits of it to the journal there
4039  * is one core, guiding principle: the file's tree must always be consistent on
4040  * disk.  We must be able to restart the truncate after a crash.
4041  *
4042  * The file's tree may be transiently inconsistent in memory (although it
4043  * probably isn't), but whenever we close off and commit a journal transaction,
4044  * the contents of (the filesystem + the journal) must be consistent and
4045  * restartable.  It's pretty simple, really: bottom up, right to left (although
4046  * left-to-right works OK too).
4047  *
4048  * Note that at recovery time, journal replay occurs *before* the restart of
4049  * truncate against the orphan inode list.
4050  *
4051  * The committed inode has the new, desired i_size (which is the same as
4052  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4053  * that this inode's truncate did not complete and it will again call
4054  * ext4_truncate() to have another go.  So there will be instantiated blocks
4055  * to the right of the truncation point in a crashed ext4 filesystem.  But
4056  * that's fine - as long as they are linked from the inode, the post-crash
4057  * ext4_truncate() run will find them and release them.
4058  */
4059 void ext4_truncate(struct inode *inode)
4060 {
4061         struct ext4_inode_info *ei = EXT4_I(inode);
4062         unsigned int credits;
4063         handle_t *handle;
4064         struct address_space *mapping = inode->i_mapping;
4065
4066         /*
4067          * There is a possibility that we're either freeing the inode
4068          * or it's a completely new inode. In those cases we might not
4069          * have i_mutex locked because it's not necessary.
4070          */
4071         if (!(inode->i_state & (I_NEW|I_FREEING)))
4072                 WARN_ON(!inode_is_locked(inode));
4073         trace_ext4_truncate_enter(inode);
4074
4075         if (!ext4_can_truncate(inode))
4076                 return;
4077
4078         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4079
4080         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4081                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4082
4083         if (ext4_has_inline_data(inode)) {
4084                 int has_inline = 1;
4085
4086                 ext4_inline_data_truncate(inode, &has_inline);
4087                 if (has_inline)
4088                         return;
4089         }
4090
4091         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4092         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4093                 if (ext4_inode_attach_jinode(inode) < 0)
4094                         return;
4095         }
4096
4097         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4098                 credits = ext4_writepage_trans_blocks(inode);
4099         else
4100                 credits = ext4_blocks_for_truncate(inode);
4101
4102         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4103         if (IS_ERR(handle)) {
4104                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4105                 return;
4106         }
4107
4108         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4109                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4110
4111         /*
4112          * We add the inode to the orphan list, so that if this
4113          * truncate spans multiple transactions, and we crash, we will
4114          * resume the truncate when the filesystem recovers.  It also
4115          * marks the inode dirty, to catch the new size.
4116          *
4117          * Implication: the file must always be in a sane, consistent
4118          * truncatable state while each transaction commits.
4119          */
4120         if (ext4_orphan_add(handle, inode))
4121                 goto out_stop;
4122
4123         down_write(&EXT4_I(inode)->i_data_sem);
4124
4125         ext4_discard_preallocations(inode);
4126
4127         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4128                 ext4_ext_truncate(handle, inode);
4129         else
4130                 ext4_ind_truncate(handle, inode);
4131
4132         up_write(&ei->i_data_sem);
4133
4134         if (IS_SYNC(inode))
4135                 ext4_handle_sync(handle);
4136
4137 out_stop:
4138         /*
4139          * If this was a simple ftruncate() and the file will remain alive,
4140          * then we need to clear up the orphan record which we created above.
4141          * However, if this was a real unlink then we were called by
4142          * ext4_evict_inode(), and we allow that function to clean up the
4143          * orphan info for us.
4144          */
4145         if (inode->i_nlink)
4146                 ext4_orphan_del(handle, inode);
4147
4148         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4149         ext4_mark_inode_dirty(handle, inode);
4150         ext4_journal_stop(handle);
4151
4152         trace_ext4_truncate_exit(inode);
4153 }
4154
4155 /*
4156  * ext4_get_inode_loc returns with an extra refcount against the inode's
4157  * underlying buffer_head on success. If 'in_mem' is true, we have all
4158  * data in memory that is needed to recreate the on-disk version of this
4159  * inode.
4160  */
4161 static int __ext4_get_inode_loc(struct inode *inode,
4162                                 struct ext4_iloc *iloc, int in_mem)
4163 {
4164         struct ext4_group_desc  *gdp;
4165         struct buffer_head      *bh;
4166         struct super_block      *sb = inode->i_sb;
4167         ext4_fsblk_t            block;
4168         int                     inodes_per_block, inode_offset;
4169
4170         iloc->bh = NULL;
4171         if (!ext4_valid_inum(sb, inode->i_ino))
4172                 return -EFSCORRUPTED;
4173
4174         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4175         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4176         if (!gdp)
4177                 return -EIO;
4178
4179         /*
4180          * Figure out the offset within the block group inode table
4181          */
4182         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4183         inode_offset = ((inode->i_ino - 1) %
4184                         EXT4_INODES_PER_GROUP(sb));
4185         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4186         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4187
4188         bh = sb_getblk(sb, block);
4189         if (unlikely(!bh))
4190                 return -ENOMEM;
4191         if (!buffer_uptodate(bh)) {
4192                 lock_buffer(bh);
4193
4194                 /*
4195                  * If the buffer has the write error flag, we have failed
4196                  * to write out another inode in the same block.  In this
4197                  * case, we don't have to read the block because we may
4198                  * read the old inode data successfully.
4199                  */
4200                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4201                         set_buffer_uptodate(bh);
4202
4203                 if (buffer_uptodate(bh)) {
4204                         /* someone brought it uptodate while we waited */
4205                         unlock_buffer(bh);
4206                         goto has_buffer;
4207                 }
4208
4209                 /*
4210                  * If we have all information of the inode in memory and this
4211                  * is the only valid inode in the block, we need not read the
4212                  * block.
4213                  */
4214                 if (in_mem) {
4215                         struct buffer_head *bitmap_bh;
4216                         int i, start;
4217
4218                         start = inode_offset & ~(inodes_per_block - 1);
4219
4220                         /* Is the inode bitmap in cache? */
4221                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4222                         if (unlikely(!bitmap_bh))
4223                                 goto make_io;
4224
4225                         /*
4226                          * If the inode bitmap isn't in cache then the
4227                          * optimisation may end up performing two reads instead
4228                          * of one, so skip it.
4229                          */
4230                         if (!buffer_uptodate(bitmap_bh)) {
4231                                 brelse(bitmap_bh);
4232                                 goto make_io;
4233                         }
4234                         for (i = start; i < start + inodes_per_block; i++) {
4235                                 if (i == inode_offset)
4236                                         continue;
4237                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4238                                         break;
4239                         }
4240                         brelse(bitmap_bh);
4241                         if (i == start + inodes_per_block) {
4242                                 /* all other inodes are free, so skip I/O */
4243                                 memset(bh->b_data, 0, bh->b_size);
4244                                 set_buffer_uptodate(bh);
4245                                 unlock_buffer(bh);
4246                                 goto has_buffer;
4247                         }
4248                 }
4249
4250 make_io:
4251                 /*
4252                  * If we need to do any I/O, try to pre-readahead extra
4253                  * blocks from the inode table.
4254                  */
4255                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4256                         ext4_fsblk_t b, end, table;
4257                         unsigned num;
4258                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4259
4260                         table = ext4_inode_table(sb, gdp);
4261                         /* s_inode_readahead_blks is always a power of 2 */
4262                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4263                         if (table > b)
4264                                 b = table;
4265                         end = b + ra_blks;
4266                         num = EXT4_INODES_PER_GROUP(sb);
4267                         if (ext4_has_group_desc_csum(sb))
4268                                 num -= ext4_itable_unused_count(sb, gdp);
4269                         table += num / inodes_per_block;
4270                         if (end > table)
4271                                 end = table;
4272                         while (b <= end)
4273                                 sb_breadahead(sb, b++);
4274                 }
4275
4276                 /*
4277                  * There are other valid inodes in the buffer, this inode
4278                  * has in-inode xattrs, or we don't have this inode in memory.
4279                  * Read the block from disk.
4280                  */
4281                 trace_ext4_load_inode(inode);
4282                 get_bh(bh);
4283                 bh->b_end_io = end_buffer_read_sync;
4284                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4285                 wait_on_buffer(bh);
4286                 if (!buffer_uptodate(bh)) {
4287                         EXT4_ERROR_INODE_BLOCK(inode, block,
4288                                                "unable to read itable block");
4289                         brelse(bh);
4290                         return -EIO;
4291                 }
4292         }
4293 has_buffer:
4294         iloc->bh = bh;
4295         return 0;
4296 }
4297
4298 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4299 {
4300         /* We have all inode data except xattrs in memory here. */
4301         return __ext4_get_inode_loc(inode, iloc,
4302                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4303 }
4304
4305 void ext4_set_inode_flags(struct inode *inode)
4306 {
4307         unsigned int flags = EXT4_I(inode)->i_flags;
4308         unsigned int new_fl = 0;
4309
4310         if (flags & EXT4_SYNC_FL)
4311                 new_fl |= S_SYNC;
4312         if (flags & EXT4_APPEND_FL)
4313                 new_fl |= S_APPEND;
4314         if (flags & EXT4_IMMUTABLE_FL)
4315                 new_fl |= S_IMMUTABLE;
4316         if (flags & EXT4_NOATIME_FL)
4317                 new_fl |= S_NOATIME;
4318         if (flags & EXT4_DIRSYNC_FL)
4319                 new_fl |= S_DIRSYNC;
4320         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4321                 new_fl |= S_DAX;
4322         inode_set_flags(inode, new_fl,
4323                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4324 }
4325
4326 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4327 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4328 {
4329         unsigned int vfs_fl;
4330         unsigned long old_fl, new_fl;
4331
4332         do {
4333                 vfs_fl = ei->vfs_inode.i_flags;
4334                 old_fl = ei->i_flags;
4335                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4336                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4337                                 EXT4_DIRSYNC_FL);
4338                 if (vfs_fl & S_SYNC)
4339                         new_fl |= EXT4_SYNC_FL;
4340                 if (vfs_fl & S_APPEND)
4341                         new_fl |= EXT4_APPEND_FL;
4342                 if (vfs_fl & S_IMMUTABLE)
4343                         new_fl |= EXT4_IMMUTABLE_FL;
4344                 if (vfs_fl & S_NOATIME)
4345                         new_fl |= EXT4_NOATIME_FL;
4346                 if (vfs_fl & S_DIRSYNC)
4347                         new_fl |= EXT4_DIRSYNC_FL;
4348         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4349 }
4350
4351 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4352                                   struct ext4_inode_info *ei)
4353 {
4354         blkcnt_t i_blocks ;
4355         struct inode *inode = &(ei->vfs_inode);
4356         struct super_block *sb = inode->i_sb;
4357
4358         if (ext4_has_feature_huge_file(sb)) {
4359                 /* we are using combined 48 bit field */
4360                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4361                                         le32_to_cpu(raw_inode->i_blocks_lo);
4362                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4363                         /* i_blocks represent file system block size */
4364                         return i_blocks  << (inode->i_blkbits - 9);
4365                 } else {
4366                         return i_blocks;
4367                 }
4368         } else {
4369                 return le32_to_cpu(raw_inode->i_blocks_lo);
4370         }
4371 }
4372
4373 static inline void ext4_iget_extra_inode(struct inode *inode,
4374                                          struct ext4_inode *raw_inode,
4375                                          struct ext4_inode_info *ei)
4376 {
4377         __le32 *magic = (void *)raw_inode +
4378                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4379         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4380                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4381                 ext4_find_inline_data_nolock(inode);
4382         } else
4383                 EXT4_I(inode)->i_inline_off = 0;
4384 }
4385
4386 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4387 {
4388         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4389                 return -EOPNOTSUPP;
4390         *projid = EXT4_I(inode)->i_projid;
4391         return 0;
4392 }
4393
4394 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4395 {
4396         struct ext4_iloc iloc;
4397         struct ext4_inode *raw_inode;
4398         struct ext4_inode_info *ei;
4399         struct inode *inode;
4400         journal_t *journal = EXT4_SB(sb)->s_journal;
4401         long ret;
4402         int block;
4403         uid_t i_uid;
4404         gid_t i_gid;
4405         projid_t i_projid;
4406
4407         inode = iget_locked(sb, ino);
4408         if (!inode)
4409                 return ERR_PTR(-ENOMEM);
4410         if (!(inode->i_state & I_NEW))
4411                 return inode;
4412
4413         ei = EXT4_I(inode);
4414         iloc.bh = NULL;
4415
4416         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4417         if (ret < 0)
4418                 goto bad_inode;
4419         raw_inode = ext4_raw_inode(&iloc);
4420
4421         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4422                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4423                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4424                     EXT4_INODE_SIZE(inode->i_sb)) {
4425                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4426                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4427                                 EXT4_INODE_SIZE(inode->i_sb));
4428                         ret = -EFSCORRUPTED;
4429                         goto bad_inode;
4430                 }
4431         } else
4432                 ei->i_extra_isize = 0;
4433
4434         /* Precompute checksum seed for inode metadata */
4435         if (ext4_has_metadata_csum(sb)) {
4436                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4437                 __u32 csum;
4438                 __le32 inum = cpu_to_le32(inode->i_ino);
4439                 __le32 gen = raw_inode->i_generation;
4440                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4441                                    sizeof(inum));
4442                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4443                                               sizeof(gen));
4444         }
4445
4446         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4447                 EXT4_ERROR_INODE(inode, "checksum invalid");
4448                 ret = -EFSBADCRC;
4449                 goto bad_inode;
4450         }
4451
4452         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4453         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4454         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4455         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4456             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4457             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4458                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4459         else
4460                 i_projid = EXT4_DEF_PROJID;
4461
4462         if (!(test_opt(inode->i_sb, NO_UID32))) {
4463                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4464                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4465         }
4466         i_uid_write(inode, i_uid);
4467         i_gid_write(inode, i_gid);
4468         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4469         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4470
4471         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4472         ei->i_inline_off = 0;
4473         ei->i_dir_start_lookup = 0;
4474         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4475         /* We now have enough fields to check if the inode was active or not.
4476          * This is needed because nfsd might try to access dead inodes
4477          * the test is that same one that e2fsck uses
4478          * NeilBrown 1999oct15
4479          */
4480         if (inode->i_nlink == 0) {
4481                 if ((inode->i_mode == 0 ||
4482                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4483                     ino != EXT4_BOOT_LOADER_INO) {
4484                         /* this inode is deleted */
4485                         ret = -ESTALE;
4486                         goto bad_inode;
4487                 }
4488                 /* The only unlinked inodes we let through here have
4489                  * valid i_mode and are being read by the orphan
4490                  * recovery code: that's fine, we're about to complete
4491                  * the process of deleting those.
4492                  * OR it is the EXT4_BOOT_LOADER_INO which is
4493                  * not initialized on a new filesystem. */
4494         }
4495         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498         if (ext4_has_feature_64bit(sb))
4499                 ei->i_file_acl |=
4500                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501         inode->i_size = ext4_isize(raw_inode);
4502         ei->i_disksize = inode->i_size;
4503 #ifdef CONFIG_QUOTA
4504         ei->i_reserved_quota = 0;
4505 #endif
4506         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4507         ei->i_block_group = iloc.block_group;
4508         ei->i_last_alloc_group = ~0;
4509         /*
4510          * NOTE! The in-memory inode i_data array is in little-endian order
4511          * even on big-endian machines: we do NOT byteswap the block numbers!
4512          */
4513         for (block = 0; block < EXT4_N_BLOCKS; block++)
4514                 ei->i_data[block] = raw_inode->i_block[block];
4515         INIT_LIST_HEAD(&ei->i_orphan);
4516
4517         /*
4518          * Set transaction id's of transactions that have to be committed
4519          * to finish f[data]sync. We set them to currently running transaction
4520          * as we cannot be sure that the inode or some of its metadata isn't
4521          * part of the transaction - the inode could have been reclaimed and
4522          * now it is reread from disk.
4523          */
4524         if (journal) {
4525                 transaction_t *transaction;
4526                 tid_t tid;
4527
4528                 read_lock(&journal->j_state_lock);
4529                 if (journal->j_running_transaction)
4530                         transaction = journal->j_running_transaction;
4531                 else
4532                         transaction = journal->j_committing_transaction;
4533                 if (transaction)
4534                         tid = transaction->t_tid;
4535                 else
4536                         tid = journal->j_commit_sequence;
4537                 read_unlock(&journal->j_state_lock);
4538                 ei->i_sync_tid = tid;
4539                 ei->i_datasync_tid = tid;
4540         }
4541
4542         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543                 if (ei->i_extra_isize == 0) {
4544                         /* The extra space is currently unused. Use it. */
4545                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4546                                             EXT4_GOOD_OLD_INODE_SIZE;
4547                 } else {
4548                         ext4_iget_extra_inode(inode, raw_inode, ei);
4549                 }
4550         }
4551
4552         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4553         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4554         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4555         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4556
4557         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4558                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4559                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4560                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4561                                 inode->i_version |=
4562                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4563                 }
4564         }
4565
4566         ret = 0;
4567         if (ei->i_file_acl &&
4568             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4569                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4570                                  ei->i_file_acl);
4571                 ret = -EFSCORRUPTED;
4572                 goto bad_inode;
4573         } else if (!ext4_has_inline_data(inode)) {
4574                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4575                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4576                             (S_ISLNK(inode->i_mode) &&
4577                              !ext4_inode_is_fast_symlink(inode))))
4578                                 /* Validate extent which is part of inode */
4579                                 ret = ext4_ext_check_inode(inode);
4580                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4581                            (S_ISLNK(inode->i_mode) &&
4582                             !ext4_inode_is_fast_symlink(inode))) {
4583                         /* Validate block references which are part of inode */
4584                         ret = ext4_ind_check_inode(inode);
4585                 }
4586         }
4587         if (ret)
4588                 goto bad_inode;
4589
4590         if (S_ISREG(inode->i_mode)) {
4591                 inode->i_op = &ext4_file_inode_operations;
4592                 inode->i_fop = &ext4_file_operations;
4593                 ext4_set_aops(inode);
4594         } else if (S_ISDIR(inode->i_mode)) {
4595                 inode->i_op = &ext4_dir_inode_operations;
4596                 inode->i_fop = &ext4_dir_operations;
4597         } else if (S_ISLNK(inode->i_mode)) {
4598                 if (ext4_encrypted_inode(inode)) {
4599                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4600                         ext4_set_aops(inode);
4601                 } else if (ext4_inode_is_fast_symlink(inode)) {
4602                         inode->i_link = (char *)ei->i_data;
4603                         inode->i_op = &ext4_fast_symlink_inode_operations;
4604                         nd_terminate_link(ei->i_data, inode->i_size,
4605                                 sizeof(ei->i_data) - 1);
4606                 } else {
4607                         inode->i_op = &ext4_symlink_inode_operations;
4608                         ext4_set_aops(inode);
4609                 }
4610                 inode_nohighmem(inode);
4611         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4612               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4613                 inode->i_op = &ext4_special_inode_operations;
4614                 if (raw_inode->i_block[0])
4615                         init_special_inode(inode, inode->i_mode,
4616                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4617                 else
4618                         init_special_inode(inode, inode->i_mode,
4619                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4620         } else if (ino == EXT4_BOOT_LOADER_INO) {
4621                 make_bad_inode(inode);
4622         } else {
4623                 ret = -EFSCORRUPTED;
4624                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4625                 goto bad_inode;
4626         }
4627         brelse(iloc.bh);
4628         ext4_set_inode_flags(inode);
4629         unlock_new_inode(inode);
4630         return inode;
4631
4632 bad_inode:
4633         brelse(iloc.bh);
4634         iget_failed(inode);
4635         return ERR_PTR(ret);
4636 }
4637
4638 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4639 {
4640         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4641                 return ERR_PTR(-EFSCORRUPTED);
4642         return ext4_iget(sb, ino);
4643 }
4644
4645 static int ext4_inode_blocks_set(handle_t *handle,
4646                                 struct ext4_inode *raw_inode,
4647                                 struct ext4_inode_info *ei)
4648 {
4649         struct inode *inode = &(ei->vfs_inode);
4650         u64 i_blocks = inode->i_blocks;
4651         struct super_block *sb = inode->i_sb;
4652
4653         if (i_blocks <= ~0U) {
4654                 /*
4655                  * i_blocks can be represented in a 32 bit variable
4656                  * as multiple of 512 bytes
4657                  */
4658                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4659                 raw_inode->i_blocks_high = 0;
4660                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4661                 return 0;
4662         }
4663         if (!ext4_has_feature_huge_file(sb))
4664                 return -EFBIG;
4665
4666         if (i_blocks <= 0xffffffffffffULL) {
4667                 /*
4668                  * i_blocks can be represented in a 48 bit variable
4669                  * as multiple of 512 bytes
4670                  */
4671                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4672                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4673                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4674         } else {
4675                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4676                 /* i_block is stored in file system block size */
4677                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4678                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4679                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4680         }
4681         return 0;
4682 }
4683
4684 struct other_inode {
4685         unsigned long           orig_ino;
4686         struct ext4_inode       *raw_inode;
4687 };
4688
4689 static int other_inode_match(struct inode * inode, unsigned long ino,
4690                              void *data)
4691 {
4692         struct other_inode *oi = (struct other_inode *) data;
4693
4694         if ((inode->i_ino != ino) ||
4695             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4696                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4697             ((inode->i_state & I_DIRTY_TIME) == 0))
4698                 return 0;
4699         spin_lock(&inode->i_lock);
4700         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4701                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4702             (inode->i_state & I_DIRTY_TIME)) {
4703                 struct ext4_inode_info  *ei = EXT4_I(inode);
4704
4705                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4706                 spin_unlock(&inode->i_lock);
4707
4708                 spin_lock(&ei->i_raw_lock);
4709                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4710                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4711                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4712                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4713                 spin_unlock(&ei->i_raw_lock);
4714                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4715                 return -1;
4716         }
4717         spin_unlock(&inode->i_lock);
4718         return -1;
4719 }
4720
4721 /*
4722  * Opportunistically update the other time fields for other inodes in
4723  * the same inode table block.
4724  */
4725 static void ext4_update_other_inodes_time(struct super_block *sb,
4726                                           unsigned long orig_ino, char *buf)
4727 {
4728         struct other_inode oi;
4729         unsigned long ino;
4730         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4731         int inode_size = EXT4_INODE_SIZE(sb);
4732
4733         oi.orig_ino = orig_ino;
4734         /*
4735          * Calculate the first inode in the inode table block.  Inode
4736          * numbers are one-based.  That is, the first inode in a block
4737          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4738          */
4739         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4740         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4741                 if (ino == orig_ino)
4742                         continue;
4743                 oi.raw_inode = (struct ext4_inode *) buf;
4744                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4745         }
4746 }
4747
4748 /*
4749  * Post the struct inode info into an on-disk inode location in the
4750  * buffer-cache.  This gobbles the caller's reference to the
4751  * buffer_head in the inode location struct.
4752  *
4753  * The caller must have write access to iloc->bh.
4754  */
4755 static int ext4_do_update_inode(handle_t *handle,
4756                                 struct inode *inode,
4757                                 struct ext4_iloc *iloc)
4758 {
4759         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4760         struct ext4_inode_info *ei = EXT4_I(inode);
4761         struct buffer_head *bh = iloc->bh;
4762         struct super_block *sb = inode->i_sb;
4763         int err = 0, rc, block;
4764         int need_datasync = 0, set_large_file = 0;
4765         uid_t i_uid;
4766         gid_t i_gid;
4767         projid_t i_projid;
4768
4769         spin_lock(&ei->i_raw_lock);
4770
4771         /* For fields not tracked in the in-memory inode,
4772          * initialise them to zero for new inodes. */
4773         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4774                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4775
4776         ext4_get_inode_flags(ei);
4777         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4778         i_uid = i_uid_read(inode);
4779         i_gid = i_gid_read(inode);
4780         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4781         if (!(test_opt(inode->i_sb, NO_UID32))) {
4782                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4783                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4784 /*
4785  * Fix up interoperability with old kernels. Otherwise, old inodes get
4786  * re-used with the upper 16 bits of the uid/gid intact
4787  */
4788                 if (!ei->i_dtime) {
4789                         raw_inode->i_uid_high =
4790                                 cpu_to_le16(high_16_bits(i_uid));
4791                         raw_inode->i_gid_high =
4792                                 cpu_to_le16(high_16_bits(i_gid));
4793                 } else {
4794                         raw_inode->i_uid_high = 0;
4795                         raw_inode->i_gid_high = 0;
4796                 }
4797         } else {
4798                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4799                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4800                 raw_inode->i_uid_high = 0;
4801                 raw_inode->i_gid_high = 0;
4802         }
4803         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4804
4805         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4806         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4807         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4808         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4809
4810         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4811         if (err) {
4812                 spin_unlock(&ei->i_raw_lock);
4813                 goto out_brelse;
4814         }
4815         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4816         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4817         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4818                 raw_inode->i_file_acl_high =
4819                         cpu_to_le16(ei->i_file_acl >> 32);
4820         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4821         if (ei->i_disksize != ext4_isize(raw_inode)) {
4822                 ext4_isize_set(raw_inode, ei->i_disksize);
4823                 need_datasync = 1;
4824         }
4825         if (ei->i_disksize > 0x7fffffffULL) {
4826                 if (!ext4_has_feature_large_file(sb) ||
4827                                 EXT4_SB(sb)->s_es->s_rev_level ==
4828                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4829                         set_large_file = 1;
4830         }
4831         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4832         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4833                 if (old_valid_dev(inode->i_rdev)) {
4834                         raw_inode->i_block[0] =
4835                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4836                         raw_inode->i_block[1] = 0;
4837                 } else {
4838                         raw_inode->i_block[0] = 0;
4839                         raw_inode->i_block[1] =
4840                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4841                         raw_inode->i_block[2] = 0;
4842                 }
4843         } else if (!ext4_has_inline_data(inode)) {
4844                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4845                         raw_inode->i_block[block] = ei->i_data[block];
4846         }
4847
4848         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4849                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4850                 if (ei->i_extra_isize) {
4851                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4852                                 raw_inode->i_version_hi =
4853                                         cpu_to_le32(inode->i_version >> 32);
4854                         raw_inode->i_extra_isize =
4855                                 cpu_to_le16(ei->i_extra_isize);
4856                 }
4857         }
4858
4859         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4860                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4861                i_projid != EXT4_DEF_PROJID);
4862
4863         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4864             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4865                 raw_inode->i_projid = cpu_to_le32(i_projid);
4866
4867         ext4_inode_csum_set(inode, raw_inode, ei);
4868         spin_unlock(&ei->i_raw_lock);
4869         if (inode->i_sb->s_flags & MS_LAZYTIME)
4870                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4871                                               bh->b_data);
4872
4873         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4874         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4875         if (!err)
4876                 err = rc;
4877         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4878         if (set_large_file) {
4879                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4880                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4881                 if (err)
4882                         goto out_brelse;
4883                 ext4_update_dynamic_rev(sb);
4884                 ext4_set_feature_large_file(sb);
4885                 ext4_handle_sync(handle);
4886                 err = ext4_handle_dirty_super(handle, sb);
4887         }
4888         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4889 out_brelse:
4890         brelse(bh);
4891         ext4_std_error(inode->i_sb, err);
4892         return err;
4893 }
4894
4895 /*
4896  * ext4_write_inode()
4897  *
4898  * We are called from a few places:
4899  *
4900  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4901  *   Here, there will be no transaction running. We wait for any running
4902  *   transaction to commit.
4903  *
4904  * - Within flush work (sys_sync(), kupdate and such).
4905  *   We wait on commit, if told to.
4906  *
4907  * - Within iput_final() -> write_inode_now()
4908  *   We wait on commit, if told to.
4909  *
4910  * In all cases it is actually safe for us to return without doing anything,
4911  * because the inode has been copied into a raw inode buffer in
4912  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4913  * writeback.
4914  *
4915  * Note that we are absolutely dependent upon all inode dirtiers doing the
4916  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4917  * which we are interested.
4918  *
4919  * It would be a bug for them to not do this.  The code:
4920  *
4921  *      mark_inode_dirty(inode)
4922  *      stuff();
4923  *      inode->i_size = expr;
4924  *
4925  * is in error because write_inode() could occur while `stuff()' is running,
4926  * and the new i_size will be lost.  Plus the inode will no longer be on the
4927  * superblock's dirty inode list.
4928  */
4929 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4930 {
4931         int err;
4932
4933         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4934                 return 0;
4935
4936         if (EXT4_SB(inode->i_sb)->s_journal) {
4937                 if (ext4_journal_current_handle()) {
4938                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4939                         dump_stack();
4940                         return -EIO;
4941                 }
4942
4943                 /*
4944                  * No need to force transaction in WB_SYNC_NONE mode. Also
4945                  * ext4_sync_fs() will force the commit after everything is
4946                  * written.
4947                  */
4948                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4949                         return 0;
4950
4951                 err = ext4_force_commit(inode->i_sb);
4952         } else {
4953                 struct ext4_iloc iloc;
4954
4955                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4956                 if (err)
4957                         return err;
4958                 /*
4959                  * sync(2) will flush the whole buffer cache. No need to do
4960                  * it here separately for each inode.
4961                  */
4962                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4963                         sync_dirty_buffer(iloc.bh);
4964                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4965                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4966                                          "IO error syncing inode");
4967                         err = -EIO;
4968                 }
4969                 brelse(iloc.bh);
4970         }
4971         return err;
4972 }
4973
4974 /*
4975  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4976  * buffers that are attached to a page stradding i_size and are undergoing
4977  * commit. In that case we have to wait for commit to finish and try again.
4978  */
4979 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4980 {
4981         struct page *page;
4982         unsigned offset;
4983         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4984         tid_t commit_tid = 0;
4985         int ret;
4986
4987         offset = inode->i_size & (PAGE_SIZE - 1);
4988         /*
4989          * All buffers in the last page remain valid? Then there's nothing to
4990          * do. We do the check mainly to optimize the common PAGE_SIZE ==
4991          * blocksize case
4992          */
4993         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4994                 return;
4995         while (1) {
4996                 page = find_lock_page(inode->i_mapping,
4997                                       inode->i_size >> PAGE_SHIFT);
4998                 if (!page)
4999                         return;
5000                 ret = __ext4_journalled_invalidatepage(page, offset,
5001                                                 PAGE_SIZE - offset);
5002                 unlock_page(page);
5003                 put_page(page);
5004                 if (ret != -EBUSY)
5005                         return;
5006                 commit_tid = 0;
5007                 read_lock(&journal->j_state_lock);
5008                 if (journal->j_committing_transaction)
5009                         commit_tid = journal->j_committing_transaction->t_tid;
5010                 read_unlock(&journal->j_state_lock);
5011                 if (commit_tid)
5012                         jbd2_log_wait_commit(journal, commit_tid);
5013         }
5014 }
5015
5016 /*
5017  * ext4_setattr()
5018  *
5019  * Called from notify_change.
5020  *
5021  * We want to trap VFS attempts to truncate the file as soon as
5022  * possible.  In particular, we want to make sure that when the VFS
5023  * shrinks i_size, we put the inode on the orphan list and modify
5024  * i_disksize immediately, so that during the subsequent flushing of
5025  * dirty pages and freeing of disk blocks, we can guarantee that any
5026  * commit will leave the blocks being flushed in an unused state on
5027  * disk.  (On recovery, the inode will get truncated and the blocks will
5028  * be freed, so we have a strong guarantee that no future commit will
5029  * leave these blocks visible to the user.)
5030  *
5031  * Another thing we have to assure is that if we are in ordered mode
5032  * and inode is still attached to the committing transaction, we must
5033  * we start writeout of all the dirty pages which are being truncated.
5034  * This way we are sure that all the data written in the previous
5035  * transaction are already on disk (truncate waits for pages under
5036  * writeback).
5037  *
5038  * Called with inode->i_mutex down.
5039  */
5040 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5041 {
5042         struct inode *inode = d_inode(dentry);
5043         int error, rc = 0;
5044         int orphan = 0;
5045         const unsigned int ia_valid = attr->ia_valid;
5046
5047         error = inode_change_ok(inode, attr);
5048         if (error)
5049                 return error;
5050
5051         if (is_quota_modification(inode, attr)) {
5052                 error = dquot_initialize(inode);
5053                 if (error)
5054                         return error;
5055         }
5056         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5057             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5058                 handle_t *handle;
5059
5060                 /* (user+group)*(old+new) structure, inode write (sb,
5061                  * inode block, ? - but truncate inode update has it) */
5062                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5063                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5064                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5065                 if (IS_ERR(handle)) {
5066                         error = PTR_ERR(handle);
5067                         goto err_out;
5068                 }
5069                 error = dquot_transfer(inode, attr);
5070                 if (error) {
5071                         ext4_journal_stop(handle);
5072                         return error;
5073                 }
5074                 /* Update corresponding info in inode so that everything is in
5075                  * one transaction */
5076                 if (attr->ia_valid & ATTR_UID)
5077                         inode->i_uid = attr->ia_uid;
5078                 if (attr->ia_valid & ATTR_GID)
5079                         inode->i_gid = attr->ia_gid;
5080                 error = ext4_mark_inode_dirty(handle, inode);
5081                 ext4_journal_stop(handle);
5082         }
5083
5084         if (attr->ia_valid & ATTR_SIZE) {
5085                 handle_t *handle;
5086                 loff_t oldsize = inode->i_size;
5087                 int shrink = (attr->ia_size <= inode->i_size);
5088
5089                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5090                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5091
5092                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5093                                 return -EFBIG;
5094                 }
5095                 if (!S_ISREG(inode->i_mode))
5096                         return -EINVAL;
5097
5098                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5099                         inode_inc_iversion(inode);
5100
5101                 if (ext4_should_order_data(inode) &&
5102                     (attr->ia_size < inode->i_size)) {
5103                         error = ext4_begin_ordered_truncate(inode,
5104                                                             attr->ia_size);
5105                         if (error)
5106                                 goto err_out;
5107                 }
5108                 if (attr->ia_size != inode->i_size) {
5109                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5110                         if (IS_ERR(handle)) {
5111                                 error = PTR_ERR(handle);
5112                                 goto err_out;
5113                         }
5114                         if (ext4_handle_valid(handle) && shrink) {
5115                                 error = ext4_orphan_add(handle, inode);
5116                                 orphan = 1;
5117                         }
5118                         /*
5119                          * Update c/mtime on truncate up, ext4_truncate() will
5120                          * update c/mtime in shrink case below
5121                          */
5122                         if (!shrink) {
5123                                 inode->i_mtime = ext4_current_time(inode);
5124                                 inode->i_ctime = inode->i_mtime;
5125                         }
5126                         down_write(&EXT4_I(inode)->i_data_sem);
5127                         EXT4_I(inode)->i_disksize = attr->ia_size;
5128                         rc = ext4_mark_inode_dirty(handle, inode);
5129                         if (!error)
5130                                 error = rc;
5131                         /*
5132                          * We have to update i_size under i_data_sem together
5133                          * with i_disksize to avoid races with writeback code
5134                          * running ext4_wb_update_i_disksize().
5135                          */
5136                         if (!error)
5137                                 i_size_write(inode, attr->ia_size);
5138                         up_write(&EXT4_I(inode)->i_data_sem);
5139                         ext4_journal_stop(handle);
5140                         if (error) {
5141                                 if (orphan)
5142                                         ext4_orphan_del(NULL, inode);
5143                                 goto err_out;
5144                         }
5145                 }
5146                 if (!shrink)
5147                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5148
5149                 /*
5150                  * Blocks are going to be removed from the inode. Wait
5151                  * for dio in flight.  Temporarily disable
5152                  * dioread_nolock to prevent livelock.
5153                  */
5154                 if (orphan) {
5155                         if (!ext4_should_journal_data(inode)) {
5156                                 ext4_inode_block_unlocked_dio(inode);
5157                                 inode_dio_wait(inode);
5158                                 ext4_inode_resume_unlocked_dio(inode);
5159                         } else
5160                                 ext4_wait_for_tail_page_commit(inode);
5161                 }
5162                 down_write(&EXT4_I(inode)->i_mmap_sem);
5163                 /*
5164                  * Truncate pagecache after we've waited for commit
5165                  * in data=journal mode to make pages freeable.
5166                  */
5167                 truncate_pagecache(inode, inode->i_size);
5168                 if (shrink)
5169                         ext4_truncate(inode);
5170                 up_write(&EXT4_I(inode)->i_mmap_sem);
5171         }
5172
5173         if (!rc) {
5174                 setattr_copy(inode, attr);
5175                 mark_inode_dirty(inode);
5176         }
5177
5178         /*
5179          * If the call to ext4_truncate failed to get a transaction handle at
5180          * all, we need to clean up the in-core orphan list manually.
5181          */
5182         if (orphan && inode->i_nlink)
5183                 ext4_orphan_del(NULL, inode);
5184
5185         if (!rc && (ia_valid & ATTR_MODE))
5186                 rc = posix_acl_chmod(inode, inode->i_mode);
5187
5188 err_out:
5189         ext4_std_error(inode->i_sb, error);
5190         if (!error)
5191                 error = rc;
5192         return error;
5193 }
5194
5195 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5196                  struct kstat *stat)
5197 {
5198         struct inode *inode;
5199         unsigned long long delalloc_blocks;
5200
5201         inode = d_inode(dentry);
5202         generic_fillattr(inode, stat);
5203
5204         /*
5205          * If there is inline data in the inode, the inode will normally not
5206          * have data blocks allocated (it may have an external xattr block).
5207          * Report at least one sector for such files, so tools like tar, rsync,
5208          * others doen't incorrectly think the file is completely sparse.
5209          */
5210         if (unlikely(ext4_has_inline_data(inode)))
5211                 stat->blocks += (stat->size + 511) >> 9;
5212
5213         /*
5214          * We can't update i_blocks if the block allocation is delayed
5215          * otherwise in the case of system crash before the real block
5216          * allocation is done, we will have i_blocks inconsistent with
5217          * on-disk file blocks.
5218          * We always keep i_blocks updated together with real
5219          * allocation. But to not confuse with user, stat
5220          * will return the blocks that include the delayed allocation
5221          * blocks for this file.
5222          */
5223         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5224                                    EXT4_I(inode)->i_reserved_data_blocks);
5225         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5226         return 0;
5227 }
5228
5229 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5230                                    int pextents)
5231 {
5232         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5233                 return ext4_ind_trans_blocks(inode, lblocks);
5234         return ext4_ext_index_trans_blocks(inode, pextents);
5235 }
5236
5237 /*
5238  * Account for index blocks, block groups bitmaps and block group
5239  * descriptor blocks if modify datablocks and index blocks
5240  * worse case, the indexs blocks spread over different block groups
5241  *
5242  * If datablocks are discontiguous, they are possible to spread over
5243  * different block groups too. If they are contiguous, with flexbg,
5244  * they could still across block group boundary.
5245  *
5246  * Also account for superblock, inode, quota and xattr blocks
5247  */
5248 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5249                                   int pextents)
5250 {
5251         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5252         int gdpblocks;
5253         int idxblocks;
5254         int ret = 0;
5255
5256         /*
5257          * How many index blocks need to touch to map @lblocks logical blocks
5258          * to @pextents physical extents?
5259          */
5260         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5261
5262         ret = idxblocks;
5263
5264         /*
5265          * Now let's see how many group bitmaps and group descriptors need
5266          * to account
5267          */
5268         groups = idxblocks + pextents;
5269         gdpblocks = groups;
5270         if (groups > ngroups)
5271                 groups = ngroups;
5272         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5273                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5274
5275         /* bitmaps and block group descriptor blocks */
5276         ret += groups + gdpblocks;
5277
5278         /* Blocks for super block, inode, quota and xattr blocks */
5279         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5280
5281         return ret;
5282 }
5283
5284 /*
5285  * Calculate the total number of credits to reserve to fit
5286  * the modification of a single pages into a single transaction,
5287  * which may include multiple chunks of block allocations.
5288  *
5289  * This could be called via ext4_write_begin()
5290  *
5291  * We need to consider the worse case, when
5292  * one new block per extent.
5293  */
5294 int ext4_writepage_trans_blocks(struct inode *inode)
5295 {
5296         int bpp = ext4_journal_blocks_per_page(inode);
5297         int ret;
5298
5299         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5300
5301         /* Account for data blocks for journalled mode */
5302         if (ext4_should_journal_data(inode))
5303                 ret += bpp;
5304         return ret;
5305 }
5306
5307 /*
5308  * Calculate the journal credits for a chunk of data modification.
5309  *
5310  * This is called from DIO, fallocate or whoever calling
5311  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5312  *
5313  * journal buffers for data blocks are not included here, as DIO
5314  * and fallocate do no need to journal data buffers.
5315  */
5316 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5317 {
5318         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5319 }
5320
5321 /*
5322  * The caller must have previously called ext4_reserve_inode_write().
5323  * Give this, we know that the caller already has write access to iloc->bh.
5324  */
5325 int ext4_mark_iloc_dirty(handle_t *handle,
5326                          struct inode *inode, struct ext4_iloc *iloc)
5327 {
5328         int err = 0;
5329
5330         if (IS_I_VERSION(inode))
5331                 inode_inc_iversion(inode);
5332
5333         /* the do_update_inode consumes one bh->b_count */
5334         get_bh(iloc->bh);
5335
5336         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5337         err = ext4_do_update_inode(handle, inode, iloc);
5338         put_bh(iloc->bh);
5339         return err;
5340 }
5341
5342 /*
5343  * On success, We end up with an outstanding reference count against
5344  * iloc->bh.  This _must_ be cleaned up later.
5345  */
5346
5347 int
5348 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5349                          struct ext4_iloc *iloc)
5350 {
5351         int err;
5352
5353         err = ext4_get_inode_loc(inode, iloc);
5354         if (!err) {
5355                 BUFFER_TRACE(iloc->bh, "get_write_access");
5356                 err = ext4_journal_get_write_access(handle, iloc->bh);
5357                 if (err) {
5358                         brelse(iloc->bh);
5359                         iloc->bh = NULL;
5360                 }
5361         }
5362         ext4_std_error(inode->i_sb, err);
5363         return err;
5364 }
5365
5366 /*
5367  * Expand an inode by new_extra_isize bytes.
5368  * Returns 0 on success or negative error number on failure.
5369  */
5370 static int ext4_expand_extra_isize(struct inode *inode,
5371                                    unsigned int new_extra_isize,
5372                                    struct ext4_iloc iloc,
5373                                    handle_t *handle)
5374 {
5375         struct ext4_inode *raw_inode;
5376         struct ext4_xattr_ibody_header *header;
5377
5378         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5379                 return 0;
5380
5381         raw_inode = ext4_raw_inode(&iloc);
5382
5383         header = IHDR(inode, raw_inode);
5384
5385         /* No extended attributes present */
5386         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5387             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5388                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5389                         new_extra_isize);
5390                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5391                 return 0;
5392         }
5393
5394         /* try to expand with EAs present */
5395         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5396                                           raw_inode, handle);
5397 }
5398
5399 /*
5400  * What we do here is to mark the in-core inode as clean with respect to inode
5401  * dirtiness (it may still be data-dirty).
5402  * This means that the in-core inode may be reaped by prune_icache
5403  * without having to perform any I/O.  This is a very good thing,
5404  * because *any* task may call prune_icache - even ones which
5405  * have a transaction open against a different journal.
5406  *
5407  * Is this cheating?  Not really.  Sure, we haven't written the
5408  * inode out, but prune_icache isn't a user-visible syncing function.
5409  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5410  * we start and wait on commits.
5411  */
5412 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5413 {
5414         struct ext4_iloc iloc;
5415         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5416         static unsigned int mnt_count;
5417         int err, ret;
5418
5419         might_sleep();
5420         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5421         err = ext4_reserve_inode_write(handle, inode, &iloc);
5422         if (err)
5423                 return err;
5424         if (ext4_handle_valid(handle) &&
5425             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5426             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5427                 /*
5428                  * We need extra buffer credits since we may write into EA block
5429                  * with this same handle. If journal_extend fails, then it will
5430                  * only result in a minor loss of functionality for that inode.
5431                  * If this is felt to be critical, then e2fsck should be run to
5432                  * force a large enough s_min_extra_isize.
5433                  */
5434                 if ((jbd2_journal_extend(handle,
5435                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5436                         ret = ext4_expand_extra_isize(inode,
5437                                                       sbi->s_want_extra_isize,
5438                                                       iloc, handle);
5439                         if (ret) {
5440                                 ext4_set_inode_state(inode,
5441                                                      EXT4_STATE_NO_EXPAND);
5442                                 if (mnt_count !=
5443                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5444                                         ext4_warning(inode->i_sb,
5445                                         "Unable to expand inode %lu. Delete"
5446                                         " some EAs or run e2fsck.",
5447                                         inode->i_ino);
5448                                         mnt_count =
5449                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5450                                 }
5451                         }
5452                 }
5453         }
5454         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5455 }
5456
5457 /*
5458  * ext4_dirty_inode() is called from __mark_inode_dirty()
5459  *
5460  * We're really interested in the case where a file is being extended.
5461  * i_size has been changed by generic_commit_write() and we thus need
5462  * to include the updated inode in the current transaction.
5463  *
5464  * Also, dquot_alloc_block() will always dirty the inode when blocks
5465  * are allocated to the file.
5466  *
5467  * If the inode is marked synchronous, we don't honour that here - doing
5468  * so would cause a commit on atime updates, which we don't bother doing.
5469  * We handle synchronous inodes at the highest possible level.
5470  *
5471  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5472  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5473  * to copy into the on-disk inode structure are the timestamp files.
5474  */
5475 void ext4_dirty_inode(struct inode *inode, int flags)
5476 {
5477         handle_t *handle;
5478
5479         if (flags == I_DIRTY_TIME)
5480                 return;
5481         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5482         if (IS_ERR(handle))
5483                 goto out;
5484
5485         ext4_mark_inode_dirty(handle, inode);
5486
5487         ext4_journal_stop(handle);
5488 out:
5489         return;
5490 }
5491
5492 #if 0
5493 /*
5494  * Bind an inode's backing buffer_head into this transaction, to prevent
5495  * it from being flushed to disk early.  Unlike
5496  * ext4_reserve_inode_write, this leaves behind no bh reference and
5497  * returns no iloc structure, so the caller needs to repeat the iloc
5498  * lookup to mark the inode dirty later.
5499  */
5500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5501 {
5502         struct ext4_iloc iloc;
5503
5504         int err = 0;
5505         if (handle) {
5506                 err = ext4_get_inode_loc(inode, &iloc);
5507                 if (!err) {
5508                         BUFFER_TRACE(iloc.bh, "get_write_access");
5509                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5510                         if (!err)
5511                                 err = ext4_handle_dirty_metadata(handle,
5512                                                                  NULL,
5513                                                                  iloc.bh);
5514                         brelse(iloc.bh);
5515                 }
5516         }
5517         ext4_std_error(inode->i_sb, err);
5518         return err;
5519 }
5520 #endif
5521
5522 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5523 {
5524         journal_t *journal;
5525         handle_t *handle;
5526         int err;
5527         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5528
5529         /*
5530          * We have to be very careful here: changing a data block's
5531          * journaling status dynamically is dangerous.  If we write a
5532          * data block to the journal, change the status and then delete
5533          * that block, we risk forgetting to revoke the old log record
5534          * from the journal and so a subsequent replay can corrupt data.
5535          * So, first we make sure that the journal is empty and that
5536          * nobody is changing anything.
5537          */
5538
5539         journal = EXT4_JOURNAL(inode);
5540         if (!journal)
5541                 return 0;
5542         if (is_journal_aborted(journal))
5543                 return -EROFS;
5544
5545         /* Wait for all existing dio workers */
5546         ext4_inode_block_unlocked_dio(inode);
5547         inode_dio_wait(inode);
5548
5549         /*
5550          * Before flushing the journal and switching inode's aops, we have
5551          * to flush all dirty data the inode has. There can be outstanding
5552          * delayed allocations, there can be unwritten extents created by
5553          * fallocate or buffered writes in dioread_nolock mode covered by
5554          * dirty data which can be converted only after flushing the dirty
5555          * data (and journalled aops don't know how to handle these cases).
5556          */
5557         if (val) {
5558                 down_write(&EXT4_I(inode)->i_mmap_sem);
5559                 err = filemap_write_and_wait(inode->i_mapping);
5560                 if (err < 0) {
5561                         up_write(&EXT4_I(inode)->i_mmap_sem);
5562                         ext4_inode_resume_unlocked_dio(inode);
5563                         return err;
5564                 }
5565         }
5566
5567         percpu_down_write(&sbi->s_journal_flag_rwsem);
5568         jbd2_journal_lock_updates(journal);
5569
5570         /*
5571          * OK, there are no updates running now, and all cached data is
5572          * synced to disk.  We are now in a completely consistent state
5573          * which doesn't have anything in the journal, and we know that
5574          * no filesystem updates are running, so it is safe to modify
5575          * the inode's in-core data-journaling state flag now.
5576          */
5577
5578         if (val)
5579                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5580         else {
5581                 err = jbd2_journal_flush(journal);
5582                 if (err < 0) {
5583                         jbd2_journal_unlock_updates(journal);
5584                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5585                         ext4_inode_resume_unlocked_dio(inode);
5586                         return err;
5587                 }
5588                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5589         }
5590         ext4_set_aops(inode);
5591
5592         jbd2_journal_unlock_updates(journal);
5593         percpu_up_write(&sbi->s_journal_flag_rwsem);
5594
5595         if (val)
5596                 up_write(&EXT4_I(inode)->i_mmap_sem);
5597         ext4_inode_resume_unlocked_dio(inode);
5598
5599         /* Finally we can mark the inode as dirty. */
5600
5601         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5602         if (IS_ERR(handle))
5603                 return PTR_ERR(handle);
5604
5605         err = ext4_mark_inode_dirty(handle, inode);
5606         ext4_handle_sync(handle);
5607         ext4_journal_stop(handle);
5608         ext4_std_error(inode->i_sb, err);
5609
5610         return err;
5611 }
5612
5613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5614 {
5615         return !buffer_mapped(bh);
5616 }
5617
5618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5619 {
5620         struct page *page = vmf->page;
5621         loff_t size;
5622         unsigned long len;
5623         int ret;
5624         struct file *file = vma->vm_file;
5625         struct inode *inode = file_inode(file);
5626         struct address_space *mapping = inode->i_mapping;
5627         handle_t *handle;
5628         get_block_t *get_block;
5629         int retries = 0;
5630
5631         sb_start_pagefault(inode->i_sb);
5632         file_update_time(vma->vm_file);
5633
5634         down_read(&EXT4_I(inode)->i_mmap_sem);
5635         /* Delalloc case is easy... */
5636         if (test_opt(inode->i_sb, DELALLOC) &&
5637             !ext4_should_journal_data(inode) &&
5638             !ext4_nonda_switch(inode->i_sb)) {
5639                 do {
5640                         ret = block_page_mkwrite(vma, vmf,
5641                                                    ext4_da_get_block_prep);
5642                 } while (ret == -ENOSPC &&
5643                        ext4_should_retry_alloc(inode->i_sb, &retries));
5644                 goto out_ret;
5645         }
5646
5647         lock_page(page);
5648         size = i_size_read(inode);
5649         /* Page got truncated from under us? */
5650         if (page->mapping != mapping || page_offset(page) > size) {
5651                 unlock_page(page);
5652                 ret = VM_FAULT_NOPAGE;
5653                 goto out;
5654         }
5655
5656         if (page->index == size >> PAGE_SHIFT)
5657                 len = size & ~PAGE_MASK;
5658         else
5659                 len = PAGE_SIZE;
5660         /*
5661          * Return if we have all the buffers mapped. This avoids the need to do
5662          * journal_start/journal_stop which can block and take a long time
5663          */
5664         if (page_has_buffers(page)) {
5665                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5666                                             0, len, NULL,
5667                                             ext4_bh_unmapped)) {
5668                         /* Wait so that we don't change page under IO */
5669                         wait_for_stable_page(page);
5670                         ret = VM_FAULT_LOCKED;
5671                         goto out;
5672                 }
5673         }
5674         unlock_page(page);
5675         /* OK, we need to fill the hole... */
5676         if (ext4_should_dioread_nolock(inode))
5677                 get_block = ext4_get_block_unwritten;
5678         else
5679                 get_block = ext4_get_block;
5680 retry_alloc:
5681         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5682                                     ext4_writepage_trans_blocks(inode));
5683         if (IS_ERR(handle)) {
5684                 ret = VM_FAULT_SIGBUS;
5685                 goto out;
5686         }
5687         ret = block_page_mkwrite(vma, vmf, get_block);
5688         if (!ret && ext4_should_journal_data(inode)) {
5689                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5690                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5691                         unlock_page(page);
5692                         ret = VM_FAULT_SIGBUS;
5693                         ext4_journal_stop(handle);
5694                         goto out;
5695                 }
5696                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5697         }
5698         ext4_journal_stop(handle);
5699         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5700                 goto retry_alloc;
5701 out_ret:
5702         ret = block_page_mkwrite_return(ret);
5703 out:
5704         up_read(&EXT4_I(inode)->i_mmap_sem);
5705         sb_end_pagefault(inode->i_sb);
5706         return ret;
5707 }
5708
5709 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5710 {
5711         struct inode *inode = file_inode(vma->vm_file);
5712         int err;
5713
5714         down_read(&EXT4_I(inode)->i_mmap_sem);
5715         err = filemap_fault(vma, vmf);
5716         up_read(&EXT4_I(inode)->i_mmap_sem);
5717
5718         return err;
5719 }
5720
5721 /*
5722  * Find the first extent at or after @lblk in an inode that is not a hole.
5723  * Search for @map_len blocks at most. The extent is returned in @result.
5724  *
5725  * The function returns 1 if we found an extent. The function returns 0 in
5726  * case there is no extent at or after @lblk and in that case also sets
5727  * @result->es_len to 0. In case of error, the error code is returned.
5728  */
5729 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5730                          unsigned int map_len, struct extent_status *result)
5731 {
5732         struct ext4_map_blocks map;
5733         struct extent_status es = {};
5734         int ret;
5735
5736         map.m_lblk = lblk;
5737         map.m_len = map_len;
5738
5739         /*
5740          * For non-extent based files this loop may iterate several times since
5741          * we do not determine full hole size.
5742          */
5743         while (map.m_len > 0) {
5744                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5745                 if (ret < 0)
5746                         return ret;
5747                 /* There's extent covering m_lblk? Just return it. */
5748                 if (ret > 0) {
5749                         int status;
5750
5751                         ext4_es_store_pblock(result, map.m_pblk);
5752                         result->es_lblk = map.m_lblk;
5753                         result->es_len = map.m_len;
5754                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5755                                 status = EXTENT_STATUS_UNWRITTEN;
5756                         else
5757                                 status = EXTENT_STATUS_WRITTEN;
5758                         ext4_es_store_status(result, status);
5759                         return 1;
5760                 }
5761                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5762                                                   map.m_lblk + map.m_len - 1,
5763                                                   &es);
5764                 /* Is delalloc data before next block in extent tree? */
5765                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5766                         ext4_lblk_t offset = 0;
5767
5768                         if (es.es_lblk < lblk)
5769                                 offset = lblk - es.es_lblk;
5770                         result->es_lblk = es.es_lblk + offset;
5771                         ext4_es_store_pblock(result,
5772                                              ext4_es_pblock(&es) + offset);
5773                         result->es_len = es.es_len - offset;
5774                         ext4_es_store_status(result, ext4_es_status(&es));
5775
5776                         return 1;
5777                 }
5778                 /* There's a hole at m_lblk, advance us after it */
5779                 map.m_lblk += map.m_len;
5780                 map_len -= map.m_len;
5781                 map.m_len = map_len;
5782                 cond_resched();
5783         }
5784         result->es_len = 0;
5785         return 0;
5786 }