]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks) {
265                 err = ext4_truncate(inode);
266                 if (err) {
267                         ext4_error(inode->i_sb,
268                                    "couldn't truncate inode %lu (err %d)",
269                                    inode->i_ino, err);
270                         goto stop_handle;
271                 }
272         }
273
274         /*
275          * ext4_ext_truncate() doesn't reserve any slop when it
276          * restarts journal transactions; therefore there may not be
277          * enough credits left in the handle to remove the inode from
278          * the orphan list and set the dtime field.
279          */
280         if (!ext4_handle_has_enough_credits(handle, 3)) {
281                 err = ext4_journal_extend(handle, 3);
282                 if (err > 0)
283                         err = ext4_journal_restart(handle, 3);
284                 if (err != 0) {
285                         ext4_warning(inode->i_sb,
286                                      "couldn't extend journal (err %d)", err);
287                 stop_handle:
288                         ext4_journal_stop(handle);
289                         ext4_orphan_del(NULL, inode);
290                         sb_end_intwrite(inode->i_sb);
291                         goto no_delete;
292                 }
293         }
294
295         /*
296          * Kill off the orphan record which ext4_truncate created.
297          * AKPM: I think this can be inside the above `if'.
298          * Note that ext4_orphan_del() has to be able to cope with the
299          * deletion of a non-existent orphan - this is because we don't
300          * know if ext4_truncate() actually created an orphan record.
301          * (Well, we could do this if we need to, but heck - it works)
302          */
303         ext4_orphan_del(handle, inode);
304         EXT4_I(inode)->i_dtime  = get_seconds();
305
306         /*
307          * One subtle ordering requirement: if anything has gone wrong
308          * (transaction abort, IO errors, whatever), then we can still
309          * do these next steps (the fs will already have been marked as
310          * having errors), but we can't free the inode if the mark_dirty
311          * fails.
312          */
313         if (ext4_mark_inode_dirty(handle, inode))
314                 /* If that failed, just do the required in-core inode clear. */
315                 ext4_clear_inode(inode);
316         else
317                 ext4_free_inode(handle, inode);
318         ext4_journal_stop(handle);
319         sb_end_intwrite(inode->i_sb);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             (atomic_read(&inode->i_writecount) == 0))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386                                    map->m_len)) {
387                 ext4_error_inode(inode, func, line, map->m_pblk,
388                                  "lblock %lu mapped to illegal pblock "
389                                  "(length %d)", (unsigned long) map->m_lblk,
390                                  map->m_len);
391                 return -EFSCORRUPTED;
392         }
393         return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397                        ext4_lblk_t len)
398 {
399         int ret;
400
401         if (ext4_encrypted_inode(inode))
402                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405         if (ret > 0)
406                 ret = 0;
407
408         return ret;
409 }
410
411 #define check_block_validity(inode, map)        \
412         __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416                                        struct inode *inode,
417                                        struct ext4_map_blocks *es_map,
418                                        struct ext4_map_blocks *map,
419                                        int flags)
420 {
421         int retval;
422
423         map->m_flags = 0;
424         /*
425          * There is a race window that the result is not the same.
426          * e.g. xfstests #223 when dioread_nolock enables.  The reason
427          * is that we lookup a block mapping in extent status tree with
428          * out taking i_data_sem.  So at the time the unwritten extent
429          * could be converted.
430          */
431         down_read(&EXT4_I(inode)->i_data_sem);
432         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434                                              EXT4_GET_BLOCKS_KEEP_SIZE);
435         } else {
436                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         /*
442          * We don't check m_len because extent will be collpased in status
443          * tree.  So the m_len might not equal.
444          */
445         if (es_map->m_lblk != map->m_lblk ||
446             es_map->m_flags != map->m_flags ||
447             es_map->m_pblk != map->m_pblk) {
448                 printk("ES cache assertion failed for inode: %lu "
449                        "es_cached ex [%d/%d/%llu/%x] != "
450                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451                        inode->i_ino, es_map->m_lblk, es_map->m_len,
452                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
453                        map->m_len, map->m_pblk, map->m_flags,
454                        retval, flags);
455         }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482                     struct ext4_map_blocks *map, int flags)
483 {
484         struct extent_status es;
485         int retval;
486         int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488         struct ext4_map_blocks orig_map;
489
490         memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493         map->m_flags = 0;
494         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
496                   (unsigned long) map->m_lblk);
497
498         /*
499          * ext4_map_blocks returns an int, and m_len is an unsigned int
500          */
501         if (unlikely(map->m_len > INT_MAX))
502                 map->m_len = INT_MAX;
503
504         /* We can handle the block number less than EXT_MAX_BLOCKS */
505         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506                 return -EFSCORRUPTED;
507
508         /* Lookup extent status tree firstly */
509         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511                         map->m_pblk = ext4_es_pblock(&es) +
512                                         map->m_lblk - es.es_lblk;
513                         map->m_flags |= ext4_es_is_written(&es) ?
514                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515                         retval = es.es_len - (map->m_lblk - es.es_lblk);
516                         if (retval > map->m_len)
517                                 retval = map->m_len;
518                         map->m_len = retval;
519                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520                         map->m_pblk = 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG_ON(1);
528                 }
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535
536         /*
537          * Try to see if we can get the block without requesting a new
538          * file system block.
539          */
540         down_read(&EXT4_I(inode)->i_data_sem);
541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543                                              EXT4_GET_BLOCKS_KEEP_SIZE);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         }
548         if (retval > 0) {
549                 unsigned int status;
550
551                 if (unlikely(retval != map->m_len)) {
552                         ext4_warning(inode->i_sb,
553                                      "ES len assertion failed for inode "
554                                      "%lu: retval %d != map->m_len %d",
555                                      inode->i_ino, retval, map->m_len);
556                         WARN_ON(1);
557                 }
558
559                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562                     !(status & EXTENT_STATUS_WRITTEN) &&
563                     ext4_find_delalloc_range(inode, map->m_lblk,
564                                              map->m_lblk + map->m_len - 1))
565                         status |= EXTENT_STATUS_DELAYED;
566                 ret = ext4_es_insert_extent(inode, map->m_lblk,
567                                             map->m_len, map->m_pblk, status);
568                 if (ret < 0)
569                         retval = ret;
570         }
571         up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579
580         /* If it is only a block(s) look up */
581         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582                 return retval;
583
584         /*
585          * Returns if the blocks have already allocated
586          *
587          * Note that if blocks have been preallocated
588          * ext4_ext_get_block() returns the create = 0
589          * with buffer head unmapped.
590          */
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592                 /*
593                  * If we need to convert extent to unwritten
594                  * we continue and do the actual work in
595                  * ext4_ext_map_blocks()
596                  */
597                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598                         return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to unwritten extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_block()
610          * with create == 1 flag.
611          */
612         down_write(&EXT4_I(inode)->i_data_sem);
613
614         /*
615          * We need to check for EXT4 here because migrate
616          * could have changed the inode type in between
617          */
618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620         } else {
621                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624                         /*
625                          * We allocated new blocks which will result in
626                          * i_data's format changing.  Force the migrate
627                          * to fail by clearing migrate flags
628                          */
629                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630                 }
631
632                 /*
633                  * Update reserved blocks/metadata blocks after successful
634                  * block allocation which had been deferred till now. We don't
635                  * support fallocate for non extent files. So we can update
636                  * reserve space here.
637                  */
638                 if ((retval > 0) &&
639                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640                         ext4_da_update_reserve_space(inode, retval, 1);
641         }
642
643         if (retval > 0) {
644                 unsigned int status;
645
646                 if (unlikely(retval != map->m_len)) {
647                         ext4_warning(inode->i_sb,
648                                      "ES len assertion failed for inode "
649                                      "%lu: retval %d != map->m_len %d",
650                                      inode->i_ino, retval, map->m_len);
651                         WARN_ON(1);
652                 }
653
654                 /*
655                  * We have to zeroout blocks before inserting them into extent
656                  * status tree. Otherwise someone could look them up there and
657                  * use them before they are really zeroed. We also have to
658                  * unmap metadata before zeroing as otherwise writeback can
659                  * overwrite zeros with stale data from block device.
660                  */
661                 if (flags & EXT4_GET_BLOCKS_ZERO &&
662                     map->m_flags & EXT4_MAP_MAPPED &&
663                     map->m_flags & EXT4_MAP_NEW) {
664                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665                                            map->m_len);
666                         ret = ext4_issue_zeroout(inode, map->m_lblk,
667                                                  map->m_pblk, map->m_len);
668                         if (ret) {
669                                 retval = ret;
670                                 goto out_sem;
671                         }
672                 }
673
674                 /*
675                  * If the extent has been zeroed out, we don't need to update
676                  * extent status tree.
677                  */
678                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680                         if (ext4_es_is_written(&es))
681                                 goto out_sem;
682                 }
683                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686                     !(status & EXTENT_STATUS_WRITTEN) &&
687                     ext4_find_delalloc_range(inode, map->m_lblk,
688                                              map->m_lblk + map->m_len - 1))
689                         status |= EXTENT_STATUS_DELAYED;
690                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691                                             map->m_pblk, status);
692                 if (ret < 0) {
693                         retval = ret;
694                         goto out_sem;
695                 }
696         }
697
698 out_sem:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704
705                 /*
706                  * Inodes with freshly allocated blocks where contents will be
707                  * visible after transaction commit must be on transaction's
708                  * ordered data list.
709                  */
710                 if (map->m_flags & EXT4_MAP_NEW &&
711                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
713                     !IS_NOQUOTA(inode) &&
714                     ext4_should_order_data(inode)) {
715                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
717                         else
718                                 ret = ext4_jbd2_inode_add_write(handle, inode);
719                         if (ret)
720                                 return ret;
721                 }
722         }
723         return retval;
724 }
725
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732         unsigned long old_state;
733         unsigned long new_state;
734
735         flags &= EXT4_MAP_FLAGS;
736
737         /* Dummy buffer_head? Set non-atomically. */
738         if (!bh->b_page) {
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740                 return;
741         }
742         /*
743          * Someone else may be modifying b_state. Be careful! This is ugly but
744          * once we get rid of using bh as a container for mapping information
745          * to pass to / from get_block functions, this can go away.
746          */
747         do {
748                 old_state = READ_ONCE(bh->b_state);
749                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750         } while (unlikely(
751                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755                            struct buffer_head *bh, int flags)
756 {
757         struct ext4_map_blocks map;
758         int ret = 0;
759
760         if (ext4_has_inline_data(inode))
761                 return -ERANGE;
762
763         map.m_lblk = iblock;
764         map.m_len = bh->b_size >> inode->i_blkbits;
765
766         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767                               flags);
768         if (ret > 0) {
769                 map_bh(bh, inode->i_sb, map.m_pblk);
770                 ext4_update_bh_state(bh, map.m_flags);
771                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772                 ret = 0;
773         } else if (ret == 0) {
774                 /* hole case, need to fill in bh->b_size */
775                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776         }
777         return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781                    struct buffer_head *bh, int create)
782 {
783         return _ext4_get_block(inode, iblock, bh,
784                                create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793                              struct buffer_head *bh_result, int create)
794 {
795         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796                    inode->i_ino, create);
797         return _ext4_get_block(inode, iblock, bh_result,
798                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810                                 struct buffer_head *bh_result, int flags)
811 {
812         int dio_credits;
813         handle_t *handle;
814         int retries = 0;
815         int ret;
816
817         /* Trim mapping request to maximum we can map at once for DIO */
818         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820         dio_credits = ext4_chunk_trans_blocks(inode,
821                                       bh_result->b_size >> inode->i_blkbits);
822 retry:
823         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824         if (IS_ERR(handle))
825                 return PTR_ERR(handle);
826
827         ret = _ext4_get_block(inode, iblock, bh_result, flags);
828         ext4_journal_stop(handle);
829
830         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831                 goto retry;
832         return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837                        struct buffer_head *bh, int create)
838 {
839         /* We don't expect handle for direct IO */
840         WARN_ON_ONCE(ext4_journal_current_handle());
841
842         if (!create)
843                 return _ext4_get_block(inode, iblock, bh, 0);
844         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853                 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855         int ret;
856
857         /* We don't expect handle for direct IO */
858         WARN_ON_ONCE(ext4_journal_current_handle());
859
860         ret = ext4_get_block_trans(inode, iblock, bh_result,
861                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863         /*
864          * When doing DIO using unwritten extents, we need io_end to convert
865          * unwritten extents to written on IO completion. We allocate io_end
866          * once we spot unwritten extent and store it in b_private. Generic
867          * DIO code keeps b_private set and furthermore passes the value to
868          * our completion callback in 'private' argument.
869          */
870         if (!ret && buffer_unwritten(bh_result)) {
871                 if (!bh_result->b_private) {
872                         ext4_io_end_t *io_end;
873
874                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
875                         if (!io_end)
876                                 return -ENOMEM;
877                         bh_result->b_private = io_end;
878                         ext4_set_io_unwritten_flag(inode, io_end);
879                 }
880                 set_buffer_defer_completion(bh_result);
881         }
882
883         return ret;
884 }
885
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892                 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894         int ret;
895
896         /* We don't expect handle for direct IO */
897         WARN_ON_ONCE(ext4_journal_current_handle());
898
899         ret = ext4_get_block_trans(inode, iblock, bh_result,
900                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902         /*
903          * Mark inode as having pending DIO writes to unwritten extents.
904          * ext4_ext_direct_IO() checks this flag and converts extents to
905          * written.
906          */
907         if (!ret && buffer_unwritten(bh_result))
908                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910         return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914                    struct buffer_head *bh_result, int create)
915 {
916         int ret;
917
918         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919                    inode->i_ino, create);
920         /* We don't expect handle for direct IO */
921         WARN_ON_ONCE(ext4_journal_current_handle());
922
923         ret = _ext4_get_block(inode, iblock, bh_result, 0);
924         /*
925          * Blocks should have been preallocated! ext4_file_write_iter() checks
926          * that.
927          */
928         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930         return ret;
931 }
932
933
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938                                 ext4_lblk_t block, int map_flags)
939 {
940         struct ext4_map_blocks map;
941         struct buffer_head *bh;
942         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943         int err;
944
945         J_ASSERT(handle != NULL || create == 0);
946
947         map.m_lblk = block;
948         map.m_len = 1;
949         err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951         if (err == 0)
952                 return create ? ERR_PTR(-ENOSPC) : NULL;
953         if (err < 0)
954                 return ERR_PTR(err);
955
956         bh = sb_getblk(inode->i_sb, map.m_pblk);
957         if (unlikely(!bh))
958                 return ERR_PTR(-ENOMEM);
959         if (map.m_flags & EXT4_MAP_NEW) {
960                 J_ASSERT(create != 0);
961                 J_ASSERT(handle != NULL);
962
963                 /*
964                  * Now that we do not always journal data, we should
965                  * keep in mind whether this should always journal the
966                  * new buffer as metadata.  For now, regular file
967                  * writes use ext4_get_block instead, so it's not a
968                  * problem.
969                  */
970                 lock_buffer(bh);
971                 BUFFER_TRACE(bh, "call get_create_access");
972                 err = ext4_journal_get_create_access(handle, bh);
973                 if (unlikely(err)) {
974                         unlock_buffer(bh);
975                         goto errout;
976                 }
977                 if (!buffer_uptodate(bh)) {
978                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979                         set_buffer_uptodate(bh);
980                 }
981                 unlock_buffer(bh);
982                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983                 err = ext4_handle_dirty_metadata(handle, inode, bh);
984                 if (unlikely(err))
985                         goto errout;
986         } else
987                 BUFFER_TRACE(bh, "not a new buffer");
988         return bh;
989 errout:
990         brelse(bh);
991         return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995                                ext4_lblk_t block, int map_flags)
996 {
997         struct buffer_head *bh;
998
999         bh = ext4_getblk(handle, inode, block, map_flags);
1000         if (IS_ERR(bh))
1001                 return bh;
1002         if (!bh || buffer_uptodate(bh))
1003                 return bh;
1004         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005         wait_on_buffer(bh);
1006         if (buffer_uptodate(bh))
1007                 return bh;
1008         put_bh(bh);
1009         return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013                            struct buffer_head *head,
1014                            unsigned from,
1015                            unsigned to,
1016                            int *partial,
1017                            int (*fn)(handle_t *handle,
1018                                      struct buffer_head *bh))
1019 {
1020         struct buffer_head *bh;
1021         unsigned block_start, block_end;
1022         unsigned blocksize = head->b_size;
1023         int err, ret = 0;
1024         struct buffer_head *next;
1025
1026         for (bh = head, block_start = 0;
1027              ret == 0 && (bh != head || !block_start);
1028              block_start = block_end, bh = next) {
1029                 next = bh->b_this_page;
1030                 block_end = block_start + blocksize;
1031                 if (block_end <= from || block_start >= to) {
1032                         if (partial && !buffer_uptodate(bh))
1033                                 *partial = 1;
1034                         continue;
1035                 }
1036                 err = (*fn)(handle, bh);
1037                 if (!ret)
1038                         ret = err;
1039         }
1040         return ret;
1041 }
1042
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068                                 struct buffer_head *bh)
1069 {
1070         int dirty = buffer_dirty(bh);
1071         int ret;
1072
1073         if (!buffer_mapped(bh) || buffer_freed(bh))
1074                 return 0;
1075         /*
1076          * __block_write_begin() could have dirtied some buffers. Clean
1077          * the dirty bit as jbd2_journal_get_write_access() could complain
1078          * otherwise about fs integrity issues. Setting of the dirty bit
1079          * by __block_write_begin() isn't a real problem here as we clear
1080          * the bit before releasing a page lock and thus writeback cannot
1081          * ever write the buffer.
1082          */
1083         if (dirty)
1084                 clear_buffer_dirty(bh);
1085         BUFFER_TRACE(bh, "get write access");
1086         ret = ext4_journal_get_write_access(handle, bh);
1087         if (!ret && dirty)
1088                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094                                   get_block_t *get_block)
1095 {
1096         unsigned from = pos & (PAGE_SIZE - 1);
1097         unsigned to = from + len;
1098         struct inode *inode = page->mapping->host;
1099         unsigned block_start, block_end;
1100         sector_t block;
1101         int err = 0;
1102         unsigned blocksize = inode->i_sb->s_blocksize;
1103         unsigned bbits;
1104         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105         bool decrypt = false;
1106
1107         BUG_ON(!PageLocked(page));
1108         BUG_ON(from > PAGE_SIZE);
1109         BUG_ON(to > PAGE_SIZE);
1110         BUG_ON(from > to);
1111
1112         if (!page_has_buffers(page))
1113                 create_empty_buffers(page, blocksize, 0);
1114         head = page_buffers(page);
1115         bbits = ilog2(blocksize);
1116         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118         for (bh = head, block_start = 0; bh != head || !block_start;
1119             block++, block_start = block_end, bh = bh->b_this_page) {
1120                 block_end = block_start + blocksize;
1121                 if (block_end <= from || block_start >= to) {
1122                         if (PageUptodate(page)) {
1123                                 if (!buffer_uptodate(bh))
1124                                         set_buffer_uptodate(bh);
1125                         }
1126                         continue;
1127                 }
1128                 if (buffer_new(bh))
1129                         clear_buffer_new(bh);
1130                 if (!buffer_mapped(bh)) {
1131                         WARN_ON(bh->b_size != blocksize);
1132                         err = get_block(inode, block, bh, 1);
1133                         if (err)
1134                                 break;
1135                         if (buffer_new(bh)) {
1136                                 clean_bdev_bh_alias(bh);
1137                                 if (PageUptodate(page)) {
1138                                         clear_buffer_new(bh);
1139                                         set_buffer_uptodate(bh);
1140                                         mark_buffer_dirty(bh);
1141                                         continue;
1142                                 }
1143                                 if (block_end > to || block_start < from)
1144                                         zero_user_segments(page, to, block_end,
1145                                                            block_start, from);
1146                                 continue;
1147                         }
1148                 }
1149                 if (PageUptodate(page)) {
1150                         if (!buffer_uptodate(bh))
1151                                 set_buffer_uptodate(bh);
1152                         continue;
1153                 }
1154                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155                     !buffer_unwritten(bh) &&
1156                     (block_start < from || block_end > to)) {
1157                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158                         *wait_bh++ = bh;
1159                         decrypt = ext4_encrypted_inode(inode) &&
1160                                 S_ISREG(inode->i_mode);
1161                 }
1162         }
1163         /*
1164          * If we issued read requests, let them complete.
1165          */
1166         while (wait_bh > wait) {
1167                 wait_on_buffer(*--wait_bh);
1168                 if (!buffer_uptodate(*wait_bh))
1169                         err = -EIO;
1170         }
1171         if (unlikely(err))
1172                 page_zero_new_buffers(page, from, to);
1173         else if (decrypt)
1174                 err = fscrypt_decrypt_page(page->mapping->host, page,
1175                                 PAGE_SIZE, 0, page->index);
1176         return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181                             loff_t pos, unsigned len, unsigned flags,
1182                             struct page **pagep, void **fsdata)
1183 {
1184         struct inode *inode = mapping->host;
1185         int ret, needed_blocks;
1186         handle_t *handle;
1187         int retries = 0;
1188         struct page *page;
1189         pgoff_t index;
1190         unsigned from, to;
1191
1192         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193                 return -EIO;
1194
1195         trace_ext4_write_begin(inode, pos, len, flags);
1196         /*
1197          * Reserve one block more for addition to orphan list in case
1198          * we allocate blocks but write fails for some reason
1199          */
1200         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201         index = pos >> PAGE_SHIFT;
1202         from = pos & (PAGE_SIZE - 1);
1203         to = from + len;
1204
1205         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207                                                     flags, pagep);
1208                 if (ret < 0)
1209                         return ret;
1210                 if (ret == 1)
1211                         return 0;
1212         }
1213
1214         /*
1215          * grab_cache_page_write_begin() can take a long time if the
1216          * system is thrashing due to memory pressure, or if the page
1217          * is being written back.  So grab it first before we start
1218          * the transaction handle.  This also allows us to allocate
1219          * the page (if needed) without using GFP_NOFS.
1220          */
1221 retry_grab:
1222         page = grab_cache_page_write_begin(mapping, index, flags);
1223         if (!page)
1224                 return -ENOMEM;
1225         unlock_page(page);
1226
1227 retry_journal:
1228         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229         if (IS_ERR(handle)) {
1230                 put_page(page);
1231                 return PTR_ERR(handle);
1232         }
1233
1234         lock_page(page);
1235         if (page->mapping != mapping) {
1236                 /* The page got truncated from under us */
1237                 unlock_page(page);
1238                 put_page(page);
1239                 ext4_journal_stop(handle);
1240                 goto retry_grab;
1241         }
1242         /* In case writeback began while the page was unlocked */
1243         wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = ext4_block_write_begin(page, pos, len,
1248                                              ext4_get_block_unwritten);
1249         else
1250                 ret = ext4_block_write_begin(page, pos, len,
1251                                              ext4_get_block);
1252 #else
1253         if (ext4_should_dioread_nolock(inode))
1254                 ret = __block_write_begin(page, pos, len,
1255                                           ext4_get_block_unwritten);
1256         else
1257                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259         if (!ret && ext4_should_journal_data(inode)) {
1260                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261                                              from, to, NULL,
1262                                              do_journal_get_write_access);
1263         }
1264
1265         if (ret) {
1266                 unlock_page(page);
1267                 /*
1268                  * __block_write_begin may have instantiated a few blocks
1269                  * outside i_size.  Trim these off again. Don't need
1270                  * i_size_read because we hold i_mutex.
1271                  *
1272                  * Add inode to orphan list in case we crash before
1273                  * truncate finishes
1274                  */
1275                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276                         ext4_orphan_add(handle, inode);
1277
1278                 ext4_journal_stop(handle);
1279                 if (pos + len > inode->i_size) {
1280                         ext4_truncate_failed_write(inode);
1281                         /*
1282                          * If truncate failed early the inode might
1283                          * still be on the orphan list; we need to
1284                          * make sure the inode is removed from the
1285                          * orphan list in that case.
1286                          */
1287                         if (inode->i_nlink)
1288                                 ext4_orphan_del(NULL, inode);
1289                 }
1290
1291                 if (ret == -ENOSPC &&
1292                     ext4_should_retry_alloc(inode->i_sb, &retries))
1293                         goto retry_journal;
1294                 put_page(page);
1295                 return ret;
1296         }
1297         *pagep = page;
1298         return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304         int ret;
1305         if (!buffer_mapped(bh) || buffer_freed(bh))
1306                 return 0;
1307         set_buffer_uptodate(bh);
1308         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309         clear_buffer_meta(bh);
1310         clear_buffer_prio(bh);
1311         return ret;
1312 }
1313
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322                           struct address_space *mapping,
1323                           loff_t pos, unsigned len, unsigned copied,
1324                           struct page *page, void *fsdata)
1325 {
1326         handle_t *handle = ext4_journal_current_handle();
1327         struct inode *inode = mapping->host;
1328         loff_t old_size = inode->i_size;
1329         int ret = 0, ret2;
1330         int i_size_changed = 0;
1331
1332         trace_ext4_write_end(inode, pos, len, copied);
1333         if (ext4_has_inline_data(inode)) {
1334                 ret = ext4_write_inline_data_end(inode, pos, len,
1335                                                  copied, page);
1336                 if (ret < 0) {
1337                         unlock_page(page);
1338                         put_page(page);
1339                         goto errout;
1340                 }
1341                 copied = ret;
1342         } else
1343                 copied = block_write_end(file, mapping, pos,
1344                                          len, copied, page, fsdata);
1345         /*
1346          * it's important to update i_size while still holding page lock:
1347          * page writeout could otherwise come in and zero beyond i_size.
1348          */
1349         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350         unlock_page(page);
1351         put_page(page);
1352
1353         if (old_size < pos)
1354                 pagecache_isize_extended(inode, old_size, pos);
1355         /*
1356          * Don't mark the inode dirty under page lock. First, it unnecessarily
1357          * makes the holding time of page lock longer. Second, it forces lock
1358          * ordering of page lock and transaction start for journaling
1359          * filesystems.
1360          */
1361         if (i_size_changed)
1362                 ext4_mark_inode_dirty(handle, inode);
1363
1364         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365                 /* if we have allocated more blocks and copied
1366                  * less. We will have blocks allocated outside
1367                  * inode->i_size. So truncate them
1368                  */
1369                 ext4_orphan_add(handle, inode);
1370 errout:
1371         ret2 = ext4_journal_stop(handle);
1372         if (!ret)
1373                 ret = ret2;
1374
1375         if (pos + len > inode->i_size) {
1376                 ext4_truncate_failed_write(inode);
1377                 /*
1378                  * If truncate failed early the inode might still be
1379                  * on the orphan list; we need to make sure the inode
1380                  * is removed from the orphan list in that case.
1381                  */
1382                 if (inode->i_nlink)
1383                         ext4_orphan_del(NULL, inode);
1384         }
1385
1386         return ret ? ret : copied;
1387 }
1388
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395                                             struct page *page,
1396                                             unsigned from, unsigned to)
1397 {
1398         unsigned int block_start = 0, block_end;
1399         struct buffer_head *head, *bh;
1400
1401         bh = head = page_buffers(page);
1402         do {
1403                 block_end = block_start + bh->b_size;
1404                 if (buffer_new(bh)) {
1405                         if (block_end > from && block_start < to) {
1406                                 if (!PageUptodate(page)) {
1407                                         unsigned start, size;
1408
1409                                         start = max(from, block_start);
1410                                         size = min(to, block_end) - start;
1411
1412                                         zero_user(page, start, size);
1413                                         write_end_fn(handle, bh);
1414                                 }
1415                                 clear_buffer_new(bh);
1416                         }
1417                 }
1418                 block_start = block_end;
1419                 bh = bh->b_this_page;
1420         } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424                                      struct address_space *mapping,
1425                                      loff_t pos, unsigned len, unsigned copied,
1426                                      struct page *page, void *fsdata)
1427 {
1428         handle_t *handle = ext4_journal_current_handle();
1429         struct inode *inode = mapping->host;
1430         loff_t old_size = inode->i_size;
1431         int ret = 0, ret2;
1432         int partial = 0;
1433         unsigned from, to;
1434         int size_changed = 0;
1435
1436         trace_ext4_journalled_write_end(inode, pos, len, copied);
1437         from = pos & (PAGE_SIZE - 1);
1438         to = from + len;
1439
1440         BUG_ON(!ext4_handle_valid(handle));
1441
1442         if (ext4_has_inline_data(inode)) {
1443                 ret = ext4_write_inline_data_end(inode, pos, len,
1444                                                  copied, page);
1445                 if (ret < 0) {
1446                         unlock_page(page);
1447                         put_page(page);
1448                         goto errout;
1449                 }
1450                 copied = ret;
1451         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452                 copied = 0;
1453                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454         } else {
1455                 if (unlikely(copied < len))
1456                         ext4_journalled_zero_new_buffers(handle, page,
1457                                                          from + copied, to);
1458                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459                                              from + copied, &partial,
1460                                              write_end_fn);
1461                 if (!partial)
1462                         SetPageUptodate(page);
1463         }
1464         size_changed = ext4_update_inode_size(inode, pos + copied);
1465         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467         unlock_page(page);
1468         put_page(page);
1469
1470         if (old_size < pos)
1471                 pagecache_isize_extended(inode, old_size, pos);
1472
1473         if (size_changed) {
1474                 ret2 = ext4_mark_inode_dirty(handle, inode);
1475                 if (!ret)
1476                         ret = ret2;
1477         }
1478
1479         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480                 /* if we have allocated more blocks and copied
1481                  * less. We will have blocks allocated outside
1482                  * inode->i_size. So truncate them
1483                  */
1484                 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487         ret2 = ext4_journal_stop(handle);
1488         if (!ret)
1489                 ret = ret2;
1490         if (pos + len > inode->i_size) {
1491                 ext4_truncate_failed_write(inode);
1492                 /*
1493                  * If truncate failed early the inode might still be
1494                  * on the orphan list; we need to make sure the inode
1495                  * is removed from the orphan list in that case.
1496                  */
1497                 if (inode->i_nlink)
1498                         ext4_orphan_del(NULL, inode);
1499         }
1500
1501         return ret ? ret : copied;
1502 }
1503
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510         struct ext4_inode_info *ei = EXT4_I(inode);
1511         int ret;
1512
1513         /*
1514          * We will charge metadata quota at writeout time; this saves
1515          * us from metadata over-estimation, though we may go over by
1516          * a small amount in the end.  Here we just reserve for data.
1517          */
1518         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519         if (ret)
1520                 return ret;
1521
1522         spin_lock(&ei->i_block_reservation_lock);
1523         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524                 spin_unlock(&ei->i_block_reservation_lock);
1525                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526                 return -ENOSPC;
1527         }
1528         ei->i_reserved_data_blocks++;
1529         trace_ext4_da_reserve_space(inode);
1530         spin_unlock(&ei->i_block_reservation_lock);
1531
1532         return 0;       /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538         struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540         if (!to_free)
1541                 return;         /* Nothing to release, exit */
1542
1543         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         trace_ext4_da_release_space(inode, to_free);
1546         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547                 /*
1548                  * if there aren't enough reserved blocks, then the
1549                  * counter is messed up somewhere.  Since this
1550                  * function is called from invalidate page, it's
1551                  * harmless to return without any action.
1552                  */
1553                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554                          "ino %lu, to_free %d with only %d reserved "
1555                          "data blocks", inode->i_ino, to_free,
1556                          ei->i_reserved_data_blocks);
1557                 WARN_ON(1);
1558                 to_free = ei->i_reserved_data_blocks;
1559         }
1560         ei->i_reserved_data_blocks -= to_free;
1561
1562         /* update fs dirty data blocks counter */
1563         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571                                              unsigned int offset,
1572                                              unsigned int length)
1573 {
1574         int to_release = 0, contiguous_blks = 0;
1575         struct buffer_head *head, *bh;
1576         unsigned int curr_off = 0;
1577         struct inode *inode = page->mapping->host;
1578         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579         unsigned int stop = offset + length;
1580         int num_clusters;
1581         ext4_fsblk_t lblk;
1582
1583         BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585         head = page_buffers(page);
1586         bh = head;
1587         do {
1588                 unsigned int next_off = curr_off + bh->b_size;
1589
1590                 if (next_off > stop)
1591                         break;
1592
1593                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594                         to_release++;
1595                         contiguous_blks++;
1596                         clear_buffer_delay(bh);
1597                 } else if (contiguous_blks) {
1598                         lblk = page->index <<
1599                                (PAGE_SHIFT - inode->i_blkbits);
1600                         lblk += (curr_off >> inode->i_blkbits) -
1601                                 contiguous_blks;
1602                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603                         contiguous_blks = 0;
1604                 }
1605                 curr_off = next_off;
1606         } while ((bh = bh->b_this_page) != head);
1607
1608         if (contiguous_blks) {
1609                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612         }
1613
1614         /* If we have released all the blocks belonging to a cluster, then we
1615          * need to release the reserved space for that cluster. */
1616         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617         while (num_clusters > 0) {
1618                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619                         ((num_clusters - 1) << sbi->s_cluster_bits);
1620                 if (sbi->s_cluster_ratio == 1 ||
1621                     !ext4_find_delalloc_cluster(inode, lblk))
1622                         ext4_da_release_space(inode, 1);
1623
1624                 num_clusters--;
1625         }
1626 }
1627
1628 /*
1629  * Delayed allocation stuff
1630  */
1631
1632 struct mpage_da_data {
1633         struct inode *inode;
1634         struct writeback_control *wbc;
1635
1636         pgoff_t first_page;     /* The first page to write */
1637         pgoff_t next_page;      /* Current page to examine */
1638         pgoff_t last_page;      /* Last page to examine */
1639         /*
1640          * Extent to map - this can be after first_page because that can be
1641          * fully mapped. We somewhat abuse m_flags to store whether the extent
1642          * is delalloc or unwritten.
1643          */
1644         struct ext4_map_blocks map;
1645         struct ext4_io_submit io_submit;        /* IO submission data */
1646 };
1647
1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649                                        bool invalidate)
1650 {
1651         int nr_pages, i;
1652         pgoff_t index, end;
1653         struct pagevec pvec;
1654         struct inode *inode = mpd->inode;
1655         struct address_space *mapping = inode->i_mapping;
1656
1657         /* This is necessary when next_page == 0. */
1658         if (mpd->first_page >= mpd->next_page)
1659                 return;
1660
1661         index = mpd->first_page;
1662         end   = mpd->next_page - 1;
1663         if (invalidate) {
1664                 ext4_lblk_t start, last;
1665                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1666                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1667                 ext4_es_remove_extent(inode, start, last - start + 1);
1668         }
1669
1670         pagevec_init(&pvec, 0);
1671         while (index <= end) {
1672                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673                 if (nr_pages == 0)
1674                         break;
1675                 for (i = 0; i < nr_pages; i++) {
1676                         struct page *page = pvec.pages[i];
1677                         if (page->index > end)
1678                                 break;
1679                         BUG_ON(!PageLocked(page));
1680                         BUG_ON(PageWriteback(page));
1681                         if (invalidate) {
1682                                 if (page_mapped(page))
1683                                         clear_page_dirty_for_io(page);
1684                                 block_invalidatepage(page, 0, PAGE_SIZE);
1685                                 ClearPageUptodate(page);
1686                         }
1687                         unlock_page(page);
1688                 }
1689                 index = pvec.pages[nr_pages - 1]->index + 1;
1690                 pagevec_release(&pvec);
1691         }
1692 }
1693
1694 static void ext4_print_free_blocks(struct inode *inode)
1695 {
1696         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697         struct super_block *sb = inode->i_sb;
1698         struct ext4_inode_info *ei = EXT4_I(inode);
1699
1700         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1701                EXT4_C2B(EXT4_SB(inode->i_sb),
1702                         ext4_count_free_clusters(sb)));
1703         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1705                (long long) EXT4_C2B(EXT4_SB(sb),
1706                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1707         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1708                (long long) EXT4_C2B(EXT4_SB(sb),
1709                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1710         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1712                  ei->i_reserved_data_blocks);
1713         return;
1714 }
1715
1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1717 {
1718         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1719 }
1720
1721 /*
1722  * This function is grabs code from the very beginning of
1723  * ext4_map_blocks, but assumes that the caller is from delayed write
1724  * time. This function looks up the requested blocks and sets the
1725  * buffer delay bit under the protection of i_data_sem.
1726  */
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728                               struct ext4_map_blocks *map,
1729                               struct buffer_head *bh)
1730 {
1731         struct extent_status es;
1732         int retval;
1733         sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735         struct ext4_map_blocks orig_map;
1736
1737         memcpy(&orig_map, map, sizeof(*map));
1738 #endif
1739
1740         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741                 invalid_block = ~0;
1742
1743         map->m_flags = 0;
1744         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745                   "logical block %lu\n", inode->i_ino, map->m_len,
1746                   (unsigned long) map->m_lblk);
1747
1748         /* Lookup extent status tree firstly */
1749         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1750                 if (ext4_es_is_hole(&es)) {
1751                         retval = 0;
1752                         down_read(&EXT4_I(inode)->i_data_sem);
1753                         goto add_delayed;
1754                 }
1755
1756                 /*
1757                  * Delayed extent could be allocated by fallocate.
1758                  * So we need to check it.
1759                  */
1760                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761                         map_bh(bh, inode->i_sb, invalid_block);
1762                         set_buffer_new(bh);
1763                         set_buffer_delay(bh);
1764                         return 0;
1765                 }
1766
1767                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768                 retval = es.es_len - (iblock - es.es_lblk);
1769                 if (retval > map->m_len)
1770                         retval = map->m_len;
1771                 map->m_len = retval;
1772                 if (ext4_es_is_written(&es))
1773                         map->m_flags |= EXT4_MAP_MAPPED;
1774                 else if (ext4_es_is_unwritten(&es))
1775                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1776                 else
1777                         BUG_ON(1);
1778
1779 #ifdef ES_AGGRESSIVE_TEST
1780                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782                 return retval;
1783         }
1784
1785         /*
1786          * Try to see if we can get the block without requesting a new
1787          * file system block.
1788          */
1789         down_read(&EXT4_I(inode)->i_data_sem);
1790         if (ext4_has_inline_data(inode))
1791                 retval = 0;
1792         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794         else
1795                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797 add_delayed:
1798         if (retval == 0) {
1799                 int ret;
1800                 /*
1801                  * XXX: __block_prepare_write() unmaps passed block,
1802                  * is it OK?
1803                  */
1804                 /*
1805                  * If the block was allocated from previously allocated cluster,
1806                  * then we don't need to reserve it again. However we still need
1807                  * to reserve metadata for every block we're going to write.
1808                  */
1809                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1810                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1811                         ret = ext4_da_reserve_space(inode);
1812                         if (ret) {
1813                                 /* not enough space to reserve */
1814                                 retval = ret;
1815                                 goto out_unlock;
1816                         }
1817                 }
1818
1819                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820                                             ~0, EXTENT_STATUS_DELAYED);
1821                 if (ret) {
1822                         retval = ret;
1823                         goto out_unlock;
1824                 }
1825
1826                 map_bh(bh, inode->i_sb, invalid_block);
1827                 set_buffer_new(bh);
1828                 set_buffer_delay(bh);
1829         } else if (retval > 0) {
1830                 int ret;
1831                 unsigned int status;
1832
1833                 if (unlikely(retval != map->m_len)) {
1834                         ext4_warning(inode->i_sb,
1835                                      "ES len assertion failed for inode "
1836                                      "%lu: retval %d != map->m_len %d",
1837                                      inode->i_ino, retval, map->m_len);
1838                         WARN_ON(1);
1839                 }
1840
1841                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844                                             map->m_pblk, status);
1845                 if (ret != 0)
1846                         retval = ret;
1847         }
1848
1849 out_unlock:
1850         up_read((&EXT4_I(inode)->i_data_sem));
1851
1852         return retval;
1853 }
1854
1855 /*
1856  * This is a special get_block_t callback which is used by
1857  * ext4_da_write_begin().  It will either return mapped block or
1858  * reserve space for a single block.
1859  *
1860  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861  * We also have b_blocknr = -1 and b_bdev initialized properly
1862  *
1863  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865  * initialized properly.
1866  */
1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868                            struct buffer_head *bh, int create)
1869 {
1870         struct ext4_map_blocks map;
1871         int ret = 0;
1872
1873         BUG_ON(create == 0);
1874         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875
1876         map.m_lblk = iblock;
1877         map.m_len = 1;
1878
1879         /*
1880          * first, we need to know whether the block is allocated already
1881          * preallocated blocks are unmapped but should treated
1882          * the same as allocated blocks.
1883          */
1884         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885         if (ret <= 0)
1886                 return ret;
1887
1888         map_bh(bh, inode->i_sb, map.m_pblk);
1889         ext4_update_bh_state(bh, map.m_flags);
1890
1891         if (buffer_unwritten(bh)) {
1892                 /* A delayed write to unwritten bh should be marked
1893                  * new and mapped.  Mapped ensures that we don't do
1894                  * get_block multiple times when we write to the same
1895                  * offset and new ensures that we do proper zero out
1896                  * for partial write.
1897                  */
1898                 set_buffer_new(bh);
1899                 set_buffer_mapped(bh);
1900         }
1901         return 0;
1902 }
1903
1904 static int bget_one(handle_t *handle, struct buffer_head *bh)
1905 {
1906         get_bh(bh);
1907         return 0;
1908 }
1909
1910 static int bput_one(handle_t *handle, struct buffer_head *bh)
1911 {
1912         put_bh(bh);
1913         return 0;
1914 }
1915
1916 static int __ext4_journalled_writepage(struct page *page,
1917                                        unsigned int len)
1918 {
1919         struct address_space *mapping = page->mapping;
1920         struct inode *inode = mapping->host;
1921         struct buffer_head *page_bufs = NULL;
1922         handle_t *handle = NULL;
1923         int ret = 0, err = 0;
1924         int inline_data = ext4_has_inline_data(inode);
1925         struct buffer_head *inode_bh = NULL;
1926
1927         ClearPageChecked(page);
1928
1929         if (inline_data) {
1930                 BUG_ON(page->index != 0);
1931                 BUG_ON(len > ext4_get_max_inline_size(inode));
1932                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933                 if (inode_bh == NULL)
1934                         goto out;
1935         } else {
1936                 page_bufs = page_buffers(page);
1937                 if (!page_bufs) {
1938                         BUG();
1939                         goto out;
1940                 }
1941                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942                                        NULL, bget_one);
1943         }
1944         /*
1945          * We need to release the page lock before we start the
1946          * journal, so grab a reference so the page won't disappear
1947          * out from under us.
1948          */
1949         get_page(page);
1950         unlock_page(page);
1951
1952         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953                                     ext4_writepage_trans_blocks(inode));
1954         if (IS_ERR(handle)) {
1955                 ret = PTR_ERR(handle);
1956                 put_page(page);
1957                 goto out_no_pagelock;
1958         }
1959         BUG_ON(!ext4_handle_valid(handle));
1960
1961         lock_page(page);
1962         put_page(page);
1963         if (page->mapping != mapping) {
1964                 /* The page got truncated from under us */
1965                 ext4_journal_stop(handle);
1966                 ret = 0;
1967                 goto out;
1968         }
1969
1970         if (inline_data) {
1971                 BUFFER_TRACE(inode_bh, "get write access");
1972                 ret = ext4_journal_get_write_access(handle, inode_bh);
1973
1974                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975
1976         } else {
1977                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978                                              do_journal_get_write_access);
1979
1980                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981                                              write_end_fn);
1982         }
1983         if (ret == 0)
1984                 ret = err;
1985         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1986         err = ext4_journal_stop(handle);
1987         if (!ret)
1988                 ret = err;
1989
1990         if (!ext4_has_inline_data(inode))
1991                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1992                                        NULL, bput_one);
1993         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1994 out:
1995         unlock_page(page);
1996 out_no_pagelock:
1997         brelse(inode_bh);
1998         return ret;
1999 }
2000
2001 /*
2002  * Note that we don't need to start a transaction unless we're journaling data
2003  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004  * need to file the inode to the transaction's list in ordered mode because if
2005  * we are writing back data added by write(), the inode is already there and if
2006  * we are writing back data modified via mmap(), no one guarantees in which
2007  * transaction the data will hit the disk. In case we are journaling data, we
2008  * cannot start transaction directly because transaction start ranks above page
2009  * lock so we have to do some magic.
2010  *
2011  * This function can get called via...
2012  *   - ext4_writepages after taking page lock (have journal handle)
2013  *   - journal_submit_inode_data_buffers (no journal handle)
2014  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015  *   - grab_page_cache when doing write_begin (have journal handle)
2016  *
2017  * We don't do any block allocation in this function. If we have page with
2018  * multiple blocks we need to write those buffer_heads that are mapped. This
2019  * is important for mmaped based write. So if we do with blocksize 1K
2020  * truncate(f, 1024);
2021  * a = mmap(f, 0, 4096);
2022  * a[0] = 'a';
2023  * truncate(f, 4096);
2024  * we have in the page first buffer_head mapped via page_mkwrite call back
2025  * but other buffer_heads would be unmapped but dirty (dirty done via the
2026  * do_wp_page). So writepage should write the first block. If we modify
2027  * the mmap area beyond 1024 we will again get a page_fault and the
2028  * page_mkwrite callback will do the block allocation and mark the
2029  * buffer_heads mapped.
2030  *
2031  * We redirty the page if we have any buffer_heads that is either delay or
2032  * unwritten in the page.
2033  *
2034  * We can get recursively called as show below.
2035  *
2036  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037  *              ext4_writepage()
2038  *
2039  * But since we don't do any block allocation we should not deadlock.
2040  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2041  */
2042 static int ext4_writepage(struct page *page,
2043                           struct writeback_control *wbc)
2044 {
2045         int ret = 0;
2046         loff_t size;
2047         unsigned int len;
2048         struct buffer_head *page_bufs = NULL;
2049         struct inode *inode = page->mapping->host;
2050         struct ext4_io_submit io_submit;
2051         bool keep_towrite = false;
2052
2053         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2055                 unlock_page(page);
2056                 return -EIO;
2057         }
2058
2059         trace_ext4_writepage(page);
2060         size = i_size_read(inode);
2061         if (page->index == size >> PAGE_SHIFT)
2062                 len = size & ~PAGE_MASK;
2063         else
2064                 len = PAGE_SIZE;
2065
2066         page_bufs = page_buffers(page);
2067         /*
2068          * We cannot do block allocation or other extent handling in this
2069          * function. If there are buffers needing that, we have to redirty
2070          * the page. But we may reach here when we do a journal commit via
2071          * journal_submit_inode_data_buffers() and in that case we must write
2072          * allocated buffers to achieve data=ordered mode guarantees.
2073          *
2074          * Also, if there is only one buffer per page (the fs block
2075          * size == the page size), if one buffer needs block
2076          * allocation or needs to modify the extent tree to clear the
2077          * unwritten flag, we know that the page can't be written at
2078          * all, so we might as well refuse the write immediately.
2079          * Unfortunately if the block size != page size, we can't as
2080          * easily detect this case using ext4_walk_page_buffers(), but
2081          * for the extremely common case, this is an optimization that
2082          * skips a useless round trip through ext4_bio_write_page().
2083          */
2084         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085                                    ext4_bh_delay_or_unwritten)) {
2086                 redirty_page_for_writepage(wbc, page);
2087                 if ((current->flags & PF_MEMALLOC) ||
2088                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2089                         /*
2090                          * For memory cleaning there's no point in writing only
2091                          * some buffers. So just bail out. Warn if we came here
2092                          * from direct reclaim.
2093                          */
2094                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095                                                         == PF_MEMALLOC);
2096                         unlock_page(page);
2097                         return 0;
2098                 }
2099                 keep_towrite = true;
2100         }
2101
2102         if (PageChecked(page) && ext4_should_journal_data(inode))
2103                 /*
2104                  * It's mmapped pagecache.  Add buffers and journal it.  There
2105                  * doesn't seem much point in redirtying the page here.
2106                  */
2107                 return __ext4_journalled_writepage(page, len);
2108
2109         ext4_io_submit_init(&io_submit, wbc);
2110         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111         if (!io_submit.io_end) {
2112                 redirty_page_for_writepage(wbc, page);
2113                 unlock_page(page);
2114                 return -ENOMEM;
2115         }
2116         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2117         ext4_io_submit(&io_submit);
2118         /* Drop io_end reference we got from init */
2119         ext4_put_io_end_defer(io_submit.io_end);
2120         return ret;
2121 }
2122
2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124 {
2125         int len;
2126         loff_t size = i_size_read(mpd->inode);
2127         int err;
2128
2129         BUG_ON(page->index != mpd->first_page);
2130         if (page->index == size >> PAGE_SHIFT)
2131                 len = size & ~PAGE_MASK;
2132         else
2133                 len = PAGE_SIZE;
2134         clear_page_dirty_for_io(page);
2135         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2136         if (!err)
2137                 mpd->wbc->nr_to_write--;
2138         mpd->first_page++;
2139
2140         return err;
2141 }
2142
2143 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2144
2145 /*
2146  * mballoc gives us at most this number of blocks...
2147  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2148  * The rest of mballoc seems to handle chunks up to full group size.
2149  */
2150 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2151
2152 /*
2153  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2154  *
2155  * @mpd - extent of blocks
2156  * @lblk - logical number of the block in the file
2157  * @bh - buffer head we want to add to the extent
2158  *
2159  * The function is used to collect contig. blocks in the same state. If the
2160  * buffer doesn't require mapping for writeback and we haven't started the
2161  * extent of buffers to map yet, the function returns 'true' immediately - the
2162  * caller can write the buffer right away. Otherwise the function returns true
2163  * if the block has been added to the extent, false if the block couldn't be
2164  * added.
2165  */
2166 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2167                                    struct buffer_head *bh)
2168 {
2169         struct ext4_map_blocks *map = &mpd->map;
2170
2171         /* Buffer that doesn't need mapping for writeback? */
2172         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2173             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2174                 /* So far no extent to map => we write the buffer right away */
2175                 if (map->m_len == 0)
2176                         return true;
2177                 return false;
2178         }
2179
2180         /* First block in the extent? */
2181         if (map->m_len == 0) {
2182                 map->m_lblk = lblk;
2183                 map->m_len = 1;
2184                 map->m_flags = bh->b_state & BH_FLAGS;
2185                 return true;
2186         }
2187
2188         /* Don't go larger than mballoc is willing to allocate */
2189         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2190                 return false;
2191
2192         /* Can we merge the block to our big extent? */
2193         if (lblk == map->m_lblk + map->m_len &&
2194             (bh->b_state & BH_FLAGS) == map->m_flags) {
2195                 map->m_len++;
2196                 return true;
2197         }
2198         return false;
2199 }
2200
2201 /*
2202  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2203  *
2204  * @mpd - extent of blocks for mapping
2205  * @head - the first buffer in the page
2206  * @bh - buffer we should start processing from
2207  * @lblk - logical number of the block in the file corresponding to @bh
2208  *
2209  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2210  * the page for IO if all buffers in this page were mapped and there's no
2211  * accumulated extent of buffers to map or add buffers in the page to the
2212  * extent of buffers to map. The function returns 1 if the caller can continue
2213  * by processing the next page, 0 if it should stop adding buffers to the
2214  * extent to map because we cannot extend it anymore. It can also return value
2215  * < 0 in case of error during IO submission.
2216  */
2217 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2218                                    struct buffer_head *head,
2219                                    struct buffer_head *bh,
2220                                    ext4_lblk_t lblk)
2221 {
2222         struct inode *inode = mpd->inode;
2223         int err;
2224         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2225                                                         >> inode->i_blkbits;
2226
2227         do {
2228                 BUG_ON(buffer_locked(bh));
2229
2230                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231                         /* Found extent to map? */
2232                         if (mpd->map.m_len)
2233                                 return 0;
2234                         /* Everything mapped so far and we hit EOF */
2235                         break;
2236                 }
2237         } while (lblk++, (bh = bh->b_this_page) != head);
2238         /* So far everything mapped? Submit the page for IO. */
2239         if (mpd->map.m_len == 0) {
2240                 err = mpage_submit_page(mpd, head->b_page);
2241                 if (err < 0)
2242                         return err;
2243         }
2244         return lblk < blocks;
2245 }
2246
2247 /*
2248  * mpage_map_buffers - update buffers corresponding to changed extent and
2249  *                     submit fully mapped pages for IO
2250  *
2251  * @mpd - description of extent to map, on return next extent to map
2252  *
2253  * Scan buffers corresponding to changed extent (we expect corresponding pages
2254  * to be already locked) and update buffer state according to new extent state.
2255  * We map delalloc buffers to their physical location, clear unwritten bits,
2256  * and mark buffers as uninit when we perform writes to unwritten extents
2257  * and do extent conversion after IO is finished. If the last page is not fully
2258  * mapped, we update @map to the next extent in the last page that needs
2259  * mapping. Otherwise we submit the page for IO.
2260  */
2261 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2262 {
2263         struct pagevec pvec;
2264         int nr_pages, i;
2265         struct inode *inode = mpd->inode;
2266         struct buffer_head *head, *bh;
2267         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2268         pgoff_t start, end;
2269         ext4_lblk_t lblk;
2270         sector_t pblock;
2271         int err;
2272
2273         start = mpd->map.m_lblk >> bpp_bits;
2274         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2275         lblk = start << bpp_bits;
2276         pblock = mpd->map.m_pblk;
2277
2278         pagevec_init(&pvec, 0);
2279         while (start <= end) {
2280                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2281                                           PAGEVEC_SIZE);
2282                 if (nr_pages == 0)
2283                         break;
2284                 for (i = 0; i < nr_pages; i++) {
2285                         struct page *page = pvec.pages[i];
2286
2287                         if (page->index > end)
2288                                 break;
2289                         /* Up to 'end' pages must be contiguous */
2290                         BUG_ON(page->index != start);
2291                         bh = head = page_buffers(page);
2292                         do {
2293                                 if (lblk < mpd->map.m_lblk)
2294                                         continue;
2295                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2296                                         /*
2297                                          * Buffer after end of mapped extent.
2298                                          * Find next buffer in the page to map.
2299                                          */
2300                                         mpd->map.m_len = 0;
2301                                         mpd->map.m_flags = 0;
2302                                         /*
2303                                          * FIXME: If dioread_nolock supports
2304                                          * blocksize < pagesize, we need to make
2305                                          * sure we add size mapped so far to
2306                                          * io_end->size as the following call
2307                                          * can submit the page for IO.
2308                                          */
2309                                         err = mpage_process_page_bufs(mpd, head,
2310                                                                       bh, lblk);
2311                                         pagevec_release(&pvec);
2312                                         if (err > 0)
2313                                                 err = 0;
2314                                         return err;
2315                                 }
2316                                 if (buffer_delay(bh)) {
2317                                         clear_buffer_delay(bh);
2318                                         bh->b_blocknr = pblock++;
2319                                 }
2320                                 clear_buffer_unwritten(bh);
2321                         } while (lblk++, (bh = bh->b_this_page) != head);
2322
2323                         /*
2324                          * FIXME: This is going to break if dioread_nolock
2325                          * supports blocksize < pagesize as we will try to
2326                          * convert potentially unmapped parts of inode.
2327                          */
2328                         mpd->io_submit.io_end->size += PAGE_SIZE;
2329                         /* Page fully mapped - let IO run! */
2330                         err = mpage_submit_page(mpd, page);
2331                         if (err < 0) {
2332                                 pagevec_release(&pvec);
2333                                 return err;
2334                         }
2335                         start++;
2336                 }
2337                 pagevec_release(&pvec);
2338         }
2339         /* Extent fully mapped and matches with page boundary. We are done. */
2340         mpd->map.m_len = 0;
2341         mpd->map.m_flags = 0;
2342         return 0;
2343 }
2344
2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346 {
2347         struct inode *inode = mpd->inode;
2348         struct ext4_map_blocks *map = &mpd->map;
2349         int get_blocks_flags;
2350         int err, dioread_nolock;
2351
2352         trace_ext4_da_write_pages_extent(inode, map);
2353         /*
2354          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355          * to convert an unwritten extent to be initialized (in the case
2356          * where we have written into one or more preallocated blocks).  It is
2357          * possible that we're going to need more metadata blocks than
2358          * previously reserved. However we must not fail because we're in
2359          * writeback and there is nothing we can do about it so it might result
2360          * in data loss.  So use reserved blocks to allocate metadata if
2361          * possible.
2362          *
2363          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364          * the blocks in question are delalloc blocks.  This indicates
2365          * that the blocks and quotas has already been checked when
2366          * the data was copied into the page cache.
2367          */
2368         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370                            EXT4_GET_BLOCKS_IO_SUBMIT;
2371         dioread_nolock = ext4_should_dioread_nolock(inode);
2372         if (dioread_nolock)
2373                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374         if (map->m_flags & (1 << BH_Delay))
2375                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376
2377         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378         if (err < 0)
2379                 return err;
2380         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381                 if (!mpd->io_submit.io_end->handle &&
2382                     ext4_handle_valid(handle)) {
2383                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384                         handle->h_rsv_handle = NULL;
2385                 }
2386                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2387         }
2388
2389         BUG_ON(map->m_len == 0);
2390         if (map->m_flags & EXT4_MAP_NEW) {
2391                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2392                                    map->m_len);
2393         }
2394         return 0;
2395 }
2396
2397 /*
2398  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2399  *                               mpd->len and submit pages underlying it for IO
2400  *
2401  * @handle - handle for journal operations
2402  * @mpd - extent to map
2403  * @give_up_on_write - we set this to true iff there is a fatal error and there
2404  *                     is no hope of writing the data. The caller should discard
2405  *                     dirty pages to avoid infinite loops.
2406  *
2407  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2408  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2409  * them to initialized or split the described range from larger unwritten
2410  * extent. Note that we need not map all the described range since allocation
2411  * can return less blocks or the range is covered by more unwritten extents. We
2412  * cannot map more because we are limited by reserved transaction credits. On
2413  * the other hand we always make sure that the last touched page is fully
2414  * mapped so that it can be written out (and thus forward progress is
2415  * guaranteed). After mapping we submit all mapped pages for IO.
2416  */
2417 static int mpage_map_and_submit_extent(handle_t *handle,
2418                                        struct mpage_da_data *mpd,
2419                                        bool *give_up_on_write)
2420 {
2421         struct inode *inode = mpd->inode;
2422         struct ext4_map_blocks *map = &mpd->map;
2423         int err;
2424         loff_t disksize;
2425         int progress = 0;
2426
2427         mpd->io_submit.io_end->offset =
2428                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2429         do {
2430                 err = mpage_map_one_extent(handle, mpd);
2431                 if (err < 0) {
2432                         struct super_block *sb = inode->i_sb;
2433
2434                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436                                 goto invalidate_dirty_pages;
2437                         /*
2438                          * Let the uper layers retry transient errors.
2439                          * In the case of ENOSPC, if ext4_count_free_blocks()
2440                          * is non-zero, a commit should free up blocks.
2441                          */
2442                         if ((err == -ENOMEM) ||
2443                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444                                 if (progress)
2445                                         goto update_disksize;
2446                                 return err;
2447                         }
2448                         ext4_msg(sb, KERN_CRIT,
2449                                  "Delayed block allocation failed for "
2450                                  "inode %lu at logical offset %llu with"
2451                                  " max blocks %u with error %d",
2452                                  inode->i_ino,
2453                                  (unsigned long long)map->m_lblk,
2454                                  (unsigned)map->m_len, -err);
2455                         ext4_msg(sb, KERN_CRIT,
2456                                  "This should not happen!! Data will "
2457                                  "be lost\n");
2458                         if (err == -ENOSPC)
2459                                 ext4_print_free_blocks(inode);
2460                 invalidate_dirty_pages:
2461                         *give_up_on_write = true;
2462                         return err;
2463                 }
2464                 progress = 1;
2465                 /*
2466                  * Update buffer state, submit mapped pages, and get us new
2467                  * extent to map
2468                  */
2469                 err = mpage_map_and_submit_buffers(mpd);
2470                 if (err < 0)
2471                         goto update_disksize;
2472         } while (map->m_len);
2473
2474 update_disksize:
2475         /*
2476          * Update on-disk size after IO is submitted.  Races with
2477          * truncate are avoided by checking i_size under i_data_sem.
2478          */
2479         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480         if (disksize > EXT4_I(inode)->i_disksize) {
2481                 int err2;
2482                 loff_t i_size;
2483
2484                 down_write(&EXT4_I(inode)->i_data_sem);
2485                 i_size = i_size_read(inode);
2486                 if (disksize > i_size)
2487                         disksize = i_size;
2488                 if (disksize > EXT4_I(inode)->i_disksize)
2489                         EXT4_I(inode)->i_disksize = disksize;
2490                 up_write(&EXT4_I(inode)->i_data_sem);
2491                 err2 = ext4_mark_inode_dirty(handle, inode);
2492                 if (err2)
2493                         ext4_error(inode->i_sb,
2494                                    "Failed to mark inode %lu dirty",
2495                                    inode->i_ino);
2496                 if (!err)
2497                         err = err2;
2498         }
2499         return err;
2500 }
2501
2502 /*
2503  * Calculate the total number of credits to reserve for one writepages
2504  * iteration. This is called from ext4_writepages(). We map an extent of
2505  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507  * bpp - 1 blocks in bpp different extents.
2508  */
2509 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510 {
2511         int bpp = ext4_journal_blocks_per_page(inode);
2512
2513         return ext4_meta_trans_blocks(inode,
2514                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515 }
2516
2517 /*
2518  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519  *                               and underlying extent to map
2520  *
2521  * @mpd - where to look for pages
2522  *
2523  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524  * IO immediately. When we find a page which isn't mapped we start accumulating
2525  * extent of buffers underlying these pages that needs mapping (formed by
2526  * either delayed or unwritten buffers). We also lock the pages containing
2527  * these buffers. The extent found is returned in @mpd structure (starting at
2528  * mpd->lblk with length mpd->len blocks).
2529  *
2530  * Note that this function can attach bios to one io_end structure which are
2531  * neither logically nor physically contiguous. Although it may seem as an
2532  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533  * case as we need to track IO to all buffers underlying a page in one io_end.
2534  */
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536 {
2537         struct address_space *mapping = mpd->inode->i_mapping;
2538         struct pagevec pvec;
2539         unsigned int nr_pages;
2540         long left = mpd->wbc->nr_to_write;
2541         pgoff_t index = mpd->first_page;
2542         pgoff_t end = mpd->last_page;
2543         int tag;
2544         int i, err = 0;
2545         int blkbits = mpd->inode->i_blkbits;
2546         ext4_lblk_t lblk;
2547         struct buffer_head *head;
2548
2549         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550                 tag = PAGECACHE_TAG_TOWRITE;
2551         else
2552                 tag = PAGECACHE_TAG_DIRTY;
2553
2554         pagevec_init(&pvec, 0);
2555         mpd->map.m_len = 0;
2556         mpd->next_page = index;
2557         while (index <= end) {
2558                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2559                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2560                 if (nr_pages == 0)
2561                         goto out;
2562
2563                 for (i = 0; i < nr_pages; i++) {
2564                         struct page *page = pvec.pages[i];
2565
2566                         /*
2567                          * At this point, the page may be truncated or
2568                          * invalidated (changing page->mapping to NULL), or
2569                          * even swizzled back from swapper_space to tmpfs file
2570                          * mapping. However, page->index will not change
2571                          * because we have a reference on the page.
2572                          */
2573                         if (page->index > end)
2574                                 goto out;
2575
2576                         /*
2577                          * Accumulated enough dirty pages? This doesn't apply
2578                          * to WB_SYNC_ALL mode. For integrity sync we have to
2579                          * keep going because someone may be concurrently
2580                          * dirtying pages, and we might have synced a lot of
2581                          * newly appeared dirty pages, but have not synced all
2582                          * of the old dirty pages.
2583                          */
2584                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2585                                 goto out;
2586
2587                         /* If we can't merge this page, we are done. */
2588                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2589                                 goto out;
2590
2591                         lock_page(page);
2592                         /*
2593                          * If the page is no longer dirty, or its mapping no
2594                          * longer corresponds to inode we are writing (which
2595                          * means it has been truncated or invalidated), or the
2596                          * page is already under writeback and we are not doing
2597                          * a data integrity writeback, skip the page
2598                          */
2599                         if (!PageDirty(page) ||
2600                             (PageWriteback(page) &&
2601                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2602                             unlikely(page->mapping != mapping)) {
2603                                 unlock_page(page);
2604                                 continue;
2605                         }
2606
2607                         wait_on_page_writeback(page);
2608                         BUG_ON(PageWriteback(page));
2609
2610                         if (mpd->map.m_len == 0)
2611                                 mpd->first_page = page->index;
2612                         mpd->next_page = page->index + 1;
2613                         /* Add all dirty buffers to mpd */
2614                         lblk = ((ext4_lblk_t)page->index) <<
2615                                 (PAGE_SHIFT - blkbits);
2616                         head = page_buffers(page);
2617                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2618                         if (err <= 0)
2619                                 goto out;
2620                         err = 0;
2621                         left--;
2622                 }
2623                 pagevec_release(&pvec);
2624                 cond_resched();
2625         }
2626         return 0;
2627 out:
2628         pagevec_release(&pvec);
2629         return err;
2630 }
2631
2632 static int __writepage(struct page *page, struct writeback_control *wbc,
2633                        void *data)
2634 {
2635         struct address_space *mapping = data;
2636         int ret = ext4_writepage(page, wbc);
2637         mapping_set_error(mapping, ret);
2638         return ret;
2639 }
2640
2641 static int ext4_writepages(struct address_space *mapping,
2642                            struct writeback_control *wbc)
2643 {
2644         pgoff_t writeback_index = 0;
2645         long nr_to_write = wbc->nr_to_write;
2646         int range_whole = 0;
2647         int cycled = 1;
2648         handle_t *handle = NULL;
2649         struct mpage_da_data mpd;
2650         struct inode *inode = mapping->host;
2651         int needed_blocks, rsv_blocks = 0, ret = 0;
2652         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2653         bool done;
2654         struct blk_plug plug;
2655         bool give_up_on_write = false;
2656
2657         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658                 return -EIO;
2659
2660         percpu_down_read(&sbi->s_journal_flag_rwsem);
2661         trace_ext4_writepages(inode, wbc);
2662
2663         if (dax_mapping(mapping)) {
2664                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2665                                                   wbc);
2666                 goto out_writepages;
2667         }
2668
2669         /*
2670          * No pages to write? This is mainly a kludge to avoid starting
2671          * a transaction for special inodes like journal inode on last iput()
2672          * because that could violate lock ordering on umount
2673          */
2674         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675                 goto out_writepages;
2676
2677         if (ext4_should_journal_data(inode)) {
2678                 struct blk_plug plug;
2679
2680                 blk_start_plug(&plug);
2681                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2682                 blk_finish_plug(&plug);
2683                 goto out_writepages;
2684         }
2685
2686         /*
2687          * If the filesystem has aborted, it is read-only, so return
2688          * right away instead of dumping stack traces later on that
2689          * will obscure the real source of the problem.  We test
2690          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2691          * the latter could be true if the filesystem is mounted
2692          * read-only, and in that case, ext4_writepages should
2693          * *never* be called, so if that ever happens, we would want
2694          * the stack trace.
2695          */
2696         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2697                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2698                 ret = -EROFS;
2699                 goto out_writepages;
2700         }
2701
2702         if (ext4_should_dioread_nolock(inode)) {
2703                 /*
2704                  * We may need to convert up to one extent per block in
2705                  * the page and we may dirty the inode.
2706                  */
2707                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2708         }
2709
2710         /*
2711          * If we have inline data and arrive here, it means that
2712          * we will soon create the block for the 1st page, so
2713          * we'd better clear the inline data here.
2714          */
2715         if (ext4_has_inline_data(inode)) {
2716                 /* Just inode will be modified... */
2717                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2718                 if (IS_ERR(handle)) {
2719                         ret = PTR_ERR(handle);
2720                         goto out_writepages;
2721                 }
2722                 BUG_ON(ext4_test_inode_state(inode,
2723                                 EXT4_STATE_MAY_INLINE_DATA));
2724                 ext4_destroy_inline_data(handle, inode);
2725                 ext4_journal_stop(handle);
2726         }
2727
2728         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2729                 range_whole = 1;
2730
2731         if (wbc->range_cyclic) {
2732                 writeback_index = mapping->writeback_index;
2733                 if (writeback_index)
2734                         cycled = 0;
2735                 mpd.first_page = writeback_index;
2736                 mpd.last_page = -1;
2737         } else {
2738                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2739                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2740         }
2741
2742         mpd.inode = inode;
2743         mpd.wbc = wbc;
2744         ext4_io_submit_init(&mpd.io_submit, wbc);
2745 retry:
2746         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2747                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2748         done = false;
2749         blk_start_plug(&plug);
2750         while (!done && mpd.first_page <= mpd.last_page) {
2751                 /* For each extent of pages we use new io_end */
2752                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753                 if (!mpd.io_submit.io_end) {
2754                         ret = -ENOMEM;
2755                         break;
2756                 }
2757
2758                 /*
2759                  * We have two constraints: We find one extent to map and we
2760                  * must always write out whole page (makes a difference when
2761                  * blocksize < pagesize) so that we don't block on IO when we
2762                  * try to write out the rest of the page. Journalled mode is
2763                  * not supported by delalloc.
2764                  */
2765                 BUG_ON(ext4_should_journal_data(inode));
2766                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2767
2768                 /* start a new transaction */
2769                 handle = ext4_journal_start_with_reserve(inode,
2770                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2771                 if (IS_ERR(handle)) {
2772                         ret = PTR_ERR(handle);
2773                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2774                                "%ld pages, ino %lu; err %d", __func__,
2775                                 wbc->nr_to_write, inode->i_ino, ret);
2776                         /* Release allocated io_end */
2777                         ext4_put_io_end(mpd.io_submit.io_end);
2778                         break;
2779                 }
2780
2781                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2782                 ret = mpage_prepare_extent_to_map(&mpd);
2783                 if (!ret) {
2784                         if (mpd.map.m_len)
2785                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2786                                         &give_up_on_write);
2787                         else {
2788                                 /*
2789                                  * We scanned the whole range (or exhausted
2790                                  * nr_to_write), submitted what was mapped and
2791                                  * didn't find anything needing mapping. We are
2792                                  * done.
2793                                  */
2794                                 done = true;
2795                         }
2796                 }
2797                 /*
2798                  * Caution: If the handle is synchronous,
2799                  * ext4_journal_stop() can wait for transaction commit
2800                  * to finish which may depend on writeback of pages to
2801                  * complete or on page lock to be released.  In that
2802                  * case, we have to wait until after after we have
2803                  * submitted all the IO, released page locks we hold,
2804                  * and dropped io_end reference (for extent conversion
2805                  * to be able to complete) before stopping the handle.
2806                  */
2807                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808                         ext4_journal_stop(handle);
2809                         handle = NULL;
2810                 }
2811                 /* Submit prepared bio */
2812                 ext4_io_submit(&mpd.io_submit);
2813                 /* Unlock pages we didn't use */
2814                 mpage_release_unused_pages(&mpd, give_up_on_write);
2815                 /*
2816                  * Drop our io_end reference we got from init. We have
2817                  * to be careful and use deferred io_end finishing if
2818                  * we are still holding the transaction as we can
2819                  * release the last reference to io_end which may end
2820                  * up doing unwritten extent conversion.
2821                  */
2822                 if (handle) {
2823                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2824                         ext4_journal_stop(handle);
2825                 } else
2826                         ext4_put_io_end(mpd.io_submit.io_end);
2827
2828                 if (ret == -ENOSPC && sbi->s_journal) {
2829                         /*
2830                          * Commit the transaction which would
2831                          * free blocks released in the transaction
2832                          * and try again
2833                          */
2834                         jbd2_journal_force_commit_nested(sbi->s_journal);
2835                         ret = 0;
2836                         continue;
2837                 }
2838                 /* Fatal error - ENOMEM, EIO... */
2839                 if (ret)
2840                         break;
2841         }
2842         blk_finish_plug(&plug);
2843         if (!ret && !cycled && wbc->nr_to_write > 0) {
2844                 cycled = 1;
2845                 mpd.last_page = writeback_index - 1;
2846                 mpd.first_page = 0;
2847                 goto retry;
2848         }
2849
2850         /* Update index */
2851         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2852                 /*
2853                  * Set the writeback_index so that range_cyclic
2854                  * mode will write it back later
2855                  */
2856                 mapping->writeback_index = mpd.first_page;
2857
2858 out_writepages:
2859         trace_ext4_writepages_result(inode, wbc, ret,
2860                                      nr_to_write - wbc->nr_to_write);
2861         percpu_up_read(&sbi->s_journal_flag_rwsem);
2862         return ret;
2863 }
2864
2865 static int ext4_nonda_switch(struct super_block *sb)
2866 {
2867         s64 free_clusters, dirty_clusters;
2868         struct ext4_sb_info *sbi = EXT4_SB(sb);
2869
2870         /*
2871          * switch to non delalloc mode if we are running low
2872          * on free block. The free block accounting via percpu
2873          * counters can get slightly wrong with percpu_counter_batch getting
2874          * accumulated on each CPU without updating global counters
2875          * Delalloc need an accurate free block accounting. So switch
2876          * to non delalloc when we are near to error range.
2877          */
2878         free_clusters =
2879                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2880         dirty_clusters =
2881                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2882         /*
2883          * Start pushing delalloc when 1/2 of free blocks are dirty.
2884          */
2885         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2886                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2887
2888         if (2 * free_clusters < 3 * dirty_clusters ||
2889             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2890                 /*
2891                  * free block count is less than 150% of dirty blocks
2892                  * or free blocks is less than watermark
2893                  */
2894                 return 1;
2895         }
2896         return 0;
2897 }
2898
2899 /* We always reserve for an inode update; the superblock could be there too */
2900 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2901 {
2902         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2903                 return 1;
2904
2905         if (pos + len <= 0x7fffffffULL)
2906                 return 1;
2907
2908         /* We might need to update the superblock to set LARGE_FILE */
2909         return 2;
2910 }
2911
2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2913                                loff_t pos, unsigned len, unsigned flags,
2914                                struct page **pagep, void **fsdata)
2915 {
2916         int ret, retries = 0;
2917         struct page *page;
2918         pgoff_t index;
2919         struct inode *inode = mapping->host;
2920         handle_t *handle;
2921
2922         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923                 return -EIO;
2924
2925         index = pos >> PAGE_SHIFT;
2926
2927         if (ext4_nonda_switch(inode->i_sb) ||
2928             S_ISLNK(inode->i_mode)) {
2929                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2930                 return ext4_write_begin(file, mapping, pos,
2931                                         len, flags, pagep, fsdata);
2932         }
2933         *fsdata = (void *)0;
2934         trace_ext4_da_write_begin(inode, pos, len, flags);
2935
2936         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2937                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2938                                                       pos, len, flags,
2939                                                       pagep, fsdata);
2940                 if (ret < 0)
2941                         return ret;
2942                 if (ret == 1)
2943                         return 0;
2944         }
2945
2946         /*
2947          * grab_cache_page_write_begin() can take a long time if the
2948          * system is thrashing due to memory pressure, or if the page
2949          * is being written back.  So grab it first before we start
2950          * the transaction handle.  This also allows us to allocate
2951          * the page (if needed) without using GFP_NOFS.
2952          */
2953 retry_grab:
2954         page = grab_cache_page_write_begin(mapping, index, flags);
2955         if (!page)
2956                 return -ENOMEM;
2957         unlock_page(page);
2958
2959         /*
2960          * With delayed allocation, we don't log the i_disksize update
2961          * if there is delayed block allocation. But we still need
2962          * to journalling the i_disksize update if writes to the end
2963          * of file which has an already mapped buffer.
2964          */
2965 retry_journal:
2966         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2967                                 ext4_da_write_credits(inode, pos, len));
2968         if (IS_ERR(handle)) {
2969                 put_page(page);
2970                 return PTR_ERR(handle);
2971         }
2972
2973         lock_page(page);
2974         if (page->mapping != mapping) {
2975                 /* The page got truncated from under us */
2976                 unlock_page(page);
2977                 put_page(page);
2978                 ext4_journal_stop(handle);
2979                 goto retry_grab;
2980         }
2981         /* In case writeback began while the page was unlocked */
2982         wait_for_stable_page(page);
2983
2984 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2985         ret = ext4_block_write_begin(page, pos, len,
2986                                      ext4_da_get_block_prep);
2987 #else
2988         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2989 #endif
2990         if (ret < 0) {
2991                 unlock_page(page);
2992                 ext4_journal_stop(handle);
2993                 /*
2994                  * block_write_begin may have instantiated a few blocks
2995                  * outside i_size.  Trim these off again. Don't need
2996                  * i_size_read because we hold i_mutex.
2997                  */
2998                 if (pos + len > inode->i_size)
2999                         ext4_truncate_failed_write(inode);
3000
3001                 if (ret == -ENOSPC &&
3002                     ext4_should_retry_alloc(inode->i_sb, &retries))
3003                         goto retry_journal;
3004
3005                 put_page(page);
3006                 return ret;
3007         }
3008
3009         *pagep = page;
3010         return ret;
3011 }
3012
3013 /*
3014  * Check if we should update i_disksize
3015  * when write to the end of file but not require block allocation
3016  */
3017 static int ext4_da_should_update_i_disksize(struct page *page,
3018                                             unsigned long offset)
3019 {
3020         struct buffer_head *bh;
3021         struct inode *inode = page->mapping->host;
3022         unsigned int idx;
3023         int i;
3024
3025         bh = page_buffers(page);
3026         idx = offset >> inode->i_blkbits;
3027
3028         for (i = 0; i < idx; i++)
3029                 bh = bh->b_this_page;
3030
3031         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3032                 return 0;
3033         return 1;
3034 }
3035
3036 static int ext4_da_write_end(struct file *file,
3037                              struct address_space *mapping,
3038                              loff_t pos, unsigned len, unsigned copied,
3039                              struct page *page, void *fsdata)
3040 {
3041         struct inode *inode = mapping->host;
3042         int ret = 0, ret2;
3043         handle_t *handle = ext4_journal_current_handle();
3044         loff_t new_i_size;
3045         unsigned long start, end;
3046         int write_mode = (int)(unsigned long)fsdata;
3047
3048         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3049                 return ext4_write_end(file, mapping, pos,
3050                                       len, copied, page, fsdata);
3051
3052         trace_ext4_da_write_end(inode, pos, len, copied);
3053         start = pos & (PAGE_SIZE - 1);
3054         end = start + copied - 1;
3055
3056         /*
3057          * generic_write_end() will run mark_inode_dirty() if i_size
3058          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3059          * into that.
3060          */
3061         new_i_size = pos + copied;
3062         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3063                 if (ext4_has_inline_data(inode) ||
3064                     ext4_da_should_update_i_disksize(page, end)) {
3065                         ext4_update_i_disksize(inode, new_i_size);
3066                         /* We need to mark inode dirty even if
3067                          * new_i_size is less that inode->i_size
3068                          * bu greater than i_disksize.(hint delalloc)
3069                          */
3070                         ext4_mark_inode_dirty(handle, inode);
3071                 }
3072         }
3073
3074         if (write_mode != CONVERT_INLINE_DATA &&
3075             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076             ext4_has_inline_data(inode))
3077                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3078                                                      page);
3079         else
3080                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3081                                                         page, fsdata);
3082
3083         copied = ret2;
3084         if (ret2 < 0)
3085                 ret = ret2;
3086         ret2 = ext4_journal_stop(handle);
3087         if (!ret)
3088                 ret = ret2;
3089
3090         return ret ? ret : copied;
3091 }
3092
3093 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3094                                    unsigned int length)
3095 {
3096         /*
3097          * Drop reserved blocks
3098          */
3099         BUG_ON(!PageLocked(page));
3100         if (!page_has_buffers(page))
3101                 goto out;
3102
3103         ext4_da_page_release_reservation(page, offset, length);
3104
3105 out:
3106         ext4_invalidatepage(page, offset, length);
3107
3108         return;
3109 }
3110
3111 /*
3112  * Force all delayed allocation blocks to be allocated for a given inode.
3113  */
3114 int ext4_alloc_da_blocks(struct inode *inode)
3115 {
3116         trace_ext4_alloc_da_blocks(inode);
3117
3118         if (!EXT4_I(inode)->i_reserved_data_blocks)
3119                 return 0;
3120
3121         /*
3122          * We do something simple for now.  The filemap_flush() will
3123          * also start triggering a write of the data blocks, which is
3124          * not strictly speaking necessary (and for users of
3125          * laptop_mode, not even desirable).  However, to do otherwise
3126          * would require replicating code paths in:
3127          *
3128          * ext4_writepages() ->
3129          *    write_cache_pages() ---> (via passed in callback function)
3130          *        __mpage_da_writepage() -->
3131          *           mpage_add_bh_to_extent()
3132          *           mpage_da_map_blocks()
3133          *
3134          * The problem is that write_cache_pages(), located in
3135          * mm/page-writeback.c, marks pages clean in preparation for
3136          * doing I/O, which is not desirable if we're not planning on
3137          * doing I/O at all.
3138          *
3139          * We could call write_cache_pages(), and then redirty all of
3140          * the pages by calling redirty_page_for_writepage() but that
3141          * would be ugly in the extreme.  So instead we would need to
3142          * replicate parts of the code in the above functions,
3143          * simplifying them because we wouldn't actually intend to
3144          * write out the pages, but rather only collect contiguous
3145          * logical block extents, call the multi-block allocator, and
3146          * then update the buffer heads with the block allocations.
3147          *
3148          * For now, though, we'll cheat by calling filemap_flush(),
3149          * which will map the blocks, and start the I/O, but not
3150          * actually wait for the I/O to complete.
3151          */
3152         return filemap_flush(inode->i_mapping);
3153 }
3154
3155 /*
3156  * bmap() is special.  It gets used by applications such as lilo and by
3157  * the swapper to find the on-disk block of a specific piece of data.
3158  *
3159  * Naturally, this is dangerous if the block concerned is still in the
3160  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3161  * filesystem and enables swap, then they may get a nasty shock when the
3162  * data getting swapped to that swapfile suddenly gets overwritten by
3163  * the original zero's written out previously to the journal and
3164  * awaiting writeback in the kernel's buffer cache.
3165  *
3166  * So, if we see any bmap calls here on a modified, data-journaled file,
3167  * take extra steps to flush any blocks which might be in the cache.
3168  */
3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3170 {
3171         struct inode *inode = mapping->host;
3172         journal_t *journal;
3173         int err;
3174
3175         /*
3176          * We can get here for an inline file via the FIBMAP ioctl
3177          */
3178         if (ext4_has_inline_data(inode))
3179                 return 0;
3180
3181         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3182                         test_opt(inode->i_sb, DELALLOC)) {
3183                 /*
3184                  * With delalloc we want to sync the file
3185                  * so that we can make sure we allocate
3186                  * blocks for file
3187                  */
3188                 filemap_write_and_wait(mapping);
3189         }
3190
3191         if (EXT4_JOURNAL(inode) &&
3192             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3193                 /*
3194                  * This is a REALLY heavyweight approach, but the use of
3195                  * bmap on dirty files is expected to be extremely rare:
3196                  * only if we run lilo or swapon on a freshly made file
3197                  * do we expect this to happen.
3198                  *
3199                  * (bmap requires CAP_SYS_RAWIO so this does not
3200                  * represent an unprivileged user DOS attack --- we'd be
3201                  * in trouble if mortal users could trigger this path at
3202                  * will.)
3203                  *
3204                  * NB. EXT4_STATE_JDATA is not set on files other than
3205                  * regular files.  If somebody wants to bmap a directory
3206                  * or symlink and gets confused because the buffer
3207                  * hasn't yet been flushed to disk, they deserve
3208                  * everything they get.
3209                  */
3210
3211                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3212                 journal = EXT4_JOURNAL(inode);
3213                 jbd2_journal_lock_updates(journal);
3214                 err = jbd2_journal_flush(journal);
3215                 jbd2_journal_unlock_updates(journal);
3216
3217                 if (err)
3218                         return 0;
3219         }
3220
3221         return generic_block_bmap(mapping, block, ext4_get_block);
3222 }
3223
3224 static int ext4_readpage(struct file *file, struct page *page)
3225 {
3226         int ret = -EAGAIN;
3227         struct inode *inode = page->mapping->host;
3228
3229         trace_ext4_readpage(page);
3230
3231         if (ext4_has_inline_data(inode))
3232                 ret = ext4_readpage_inline(inode, page);
3233
3234         if (ret == -EAGAIN)
3235                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3236
3237         return ret;
3238 }
3239
3240 static int
3241 ext4_readpages(struct file *file, struct address_space *mapping,
3242                 struct list_head *pages, unsigned nr_pages)
3243 {
3244         struct inode *inode = mapping->host;
3245
3246         /* If the file has inline data, no need to do readpages. */
3247         if (ext4_has_inline_data(inode))
3248                 return 0;
3249
3250         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3251 }
3252
3253 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254                                 unsigned int length)
3255 {
3256         trace_ext4_invalidatepage(page, offset, length);
3257
3258         /* No journalling happens on data buffers when this function is used */
3259         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260
3261         block_invalidatepage(page, offset, length);
3262 }
3263
3264 static int __ext4_journalled_invalidatepage(struct page *page,
3265                                             unsigned int offset,
3266                                             unsigned int length)
3267 {
3268         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269
3270         trace_ext4_journalled_invalidatepage(page, offset, length);
3271
3272         /*
3273          * If it's a full truncate we just forget about the pending dirtying
3274          */
3275         if (offset == 0 && length == PAGE_SIZE)
3276                 ClearPageChecked(page);
3277
3278         return jbd2_journal_invalidatepage(journal, page, offset, length);
3279 }
3280
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page *page,
3283                                            unsigned int offset,
3284                                            unsigned int length)
3285 {
3286         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3287 }
3288
3289 static int ext4_releasepage(struct page *page, gfp_t wait)
3290 {
3291         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292
3293         trace_ext4_releasepage(page);
3294
3295         /* Page has dirty journalled data -> cannot release */
3296         if (PageChecked(page))
3297                 return 0;
3298         if (journal)
3299                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3300         else
3301                 return try_to_free_buffers(page);
3302 }
3303
3304 #ifdef CONFIG_FS_DAX
3305 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3306                             unsigned flags, struct iomap *iomap)
3307 {
3308         struct block_device *bdev;
3309         unsigned int blkbits = inode->i_blkbits;
3310         unsigned long first_block = offset >> blkbits;
3311         unsigned long last_block = (offset + length - 1) >> blkbits;
3312         struct ext4_map_blocks map;
3313         int ret;
3314
3315         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3316                 return -ERANGE;
3317
3318         map.m_lblk = first_block;
3319         map.m_len = last_block - first_block + 1;
3320
3321         if (!(flags & IOMAP_WRITE)) {
3322                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3323         } else {
3324                 int dio_credits;
3325                 handle_t *handle;
3326                 int retries = 0;
3327
3328                 /* Trim mapping request to maximum we can map at once for DIO */
3329                 if (map.m_len > DIO_MAX_BLOCKS)
3330                         map.m_len = DIO_MAX_BLOCKS;
3331                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3332 retry:
3333                 /*
3334                  * Either we allocate blocks and then we don't get unwritten
3335                  * extent so we have reserved enough credits, or the blocks
3336                  * are already allocated and unwritten and in that case
3337                  * extent conversion fits in the credits as well.
3338                  */
3339                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3340                                             dio_credits);
3341                 if (IS_ERR(handle))
3342                         return PTR_ERR(handle);
3343
3344                 ret = ext4_map_blocks(handle, inode, &map,
3345                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3346                 if (ret < 0) {
3347                         ext4_journal_stop(handle);
3348                         if (ret == -ENOSPC &&
3349                             ext4_should_retry_alloc(inode->i_sb, &retries))
3350                                 goto retry;
3351                         return ret;
3352                 }
3353
3354                 /*
3355                  * If we added blocks beyond i_size, we need to make sure they
3356                  * will get truncated if we crash before updating i_size in
3357                  * ext4_iomap_end(). For faults we don't need to do that (and
3358                  * even cannot because for orphan list operations inode_lock is
3359                  * required) - if we happen to instantiate block beyond i_size,
3360                  * it is because we race with truncate which has already added
3361                  * the inode to the orphan list.
3362                  */
3363                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3364                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3365                         int err;
3366
3367                         err = ext4_orphan_add(handle, inode);
3368                         if (err < 0) {
3369                                 ext4_journal_stop(handle);
3370                                 return err;
3371                         }
3372                 }
3373                 ext4_journal_stop(handle);
3374         }
3375
3376         iomap->flags = 0;
3377         bdev = inode->i_sb->s_bdev;
3378         iomap->bdev = bdev;
3379         if (blk_queue_dax(bdev->bd_queue))
3380                 iomap->dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
3381         else
3382                 iomap->dax_dev = NULL;
3383         iomap->offset = first_block << blkbits;
3384
3385         if (ret == 0) {
3386                 iomap->type = IOMAP_HOLE;
3387                 iomap->blkno = IOMAP_NULL_BLOCK;
3388                 iomap->length = (u64)map.m_len << blkbits;
3389         } else {
3390                 if (map.m_flags & EXT4_MAP_MAPPED) {
3391                         iomap->type = IOMAP_MAPPED;
3392                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3393                         iomap->type = IOMAP_UNWRITTEN;
3394                 } else {
3395                         WARN_ON_ONCE(1);
3396                         return -EIO;
3397                 }
3398                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3399                 iomap->length = (u64)map.m_len << blkbits;
3400         }
3401
3402         if (map.m_flags & EXT4_MAP_NEW)
3403                 iomap->flags |= IOMAP_F_NEW;
3404         return 0;
3405 }
3406
3407 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3408                           ssize_t written, unsigned flags, struct iomap *iomap)
3409 {
3410         int ret = 0;
3411         handle_t *handle;
3412         int blkbits = inode->i_blkbits;
3413         bool truncate = false;
3414
3415         put_dax(iomap->dax_dev);
3416         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3417                 return 0;
3418
3419         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3420         if (IS_ERR(handle)) {
3421                 ret = PTR_ERR(handle);
3422                 goto orphan_del;
3423         }
3424         if (ext4_update_inode_size(inode, offset + written))
3425                 ext4_mark_inode_dirty(handle, inode);
3426         /*
3427          * We may need to truncate allocated but not written blocks beyond EOF.
3428          */
3429         if (iomap->offset + iomap->length > 
3430             ALIGN(inode->i_size, 1 << blkbits)) {
3431                 ext4_lblk_t written_blk, end_blk;
3432
3433                 written_blk = (offset + written) >> blkbits;
3434                 end_blk = (offset + length) >> blkbits;
3435                 if (written_blk < end_blk && ext4_can_truncate(inode))
3436                         truncate = true;
3437         }
3438         /*
3439          * Remove inode from orphan list if we were extending a inode and
3440          * everything went fine.
3441          */
3442         if (!truncate && inode->i_nlink &&
3443             !list_empty(&EXT4_I(inode)->i_orphan))
3444                 ext4_orphan_del(handle, inode);
3445         ext4_journal_stop(handle);
3446         if (truncate) {
3447                 ext4_truncate_failed_write(inode);
3448 orphan_del:
3449                 /*
3450                  * If truncate failed early the inode might still be on the
3451                  * orphan list; we need to make sure the inode is removed from
3452                  * the orphan list in that case.
3453                  */
3454                 if (inode->i_nlink)
3455                         ext4_orphan_del(NULL, inode);
3456         }
3457         return ret;
3458 }
3459
3460 const struct iomap_ops ext4_iomap_ops = {
3461         .iomap_begin            = ext4_iomap_begin,
3462         .iomap_end              = ext4_iomap_end,
3463 };
3464
3465 #endif
3466
3467 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3468                             ssize_t size, void *private)
3469 {
3470         ext4_io_end_t *io_end = private;
3471
3472         /* if not async direct IO just return */
3473         if (!io_end)
3474                 return 0;
3475
3476         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3477                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3478                   io_end, io_end->inode->i_ino, iocb, offset, size);
3479
3480         /*
3481          * Error during AIO DIO. We cannot convert unwritten extents as the
3482          * data was not written. Just clear the unwritten flag and drop io_end.
3483          */
3484         if (size <= 0) {
3485                 ext4_clear_io_unwritten_flag(io_end);
3486                 size = 0;
3487         }
3488         io_end->offset = offset;
3489         io_end->size = size;
3490         ext4_put_io_end(io_end);
3491
3492         return 0;
3493 }
3494
3495 /*
3496  * Handling of direct IO writes.
3497  *
3498  * For ext4 extent files, ext4 will do direct-io write even to holes,
3499  * preallocated extents, and those write extend the file, no need to
3500  * fall back to buffered IO.
3501  *
3502  * For holes, we fallocate those blocks, mark them as unwritten
3503  * If those blocks were preallocated, we mark sure they are split, but
3504  * still keep the range to write as unwritten.
3505  *
3506  * The unwritten extents will be converted to written when DIO is completed.
3507  * For async direct IO, since the IO may still pending when return, we
3508  * set up an end_io call back function, which will do the conversion
3509  * when async direct IO completed.
3510  *
3511  * If the O_DIRECT write will extend the file then add this inode to the
3512  * orphan list.  So recovery will truncate it back to the original size
3513  * if the machine crashes during the write.
3514  *
3515  */
3516 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3517 {
3518         struct file *file = iocb->ki_filp;
3519         struct inode *inode = file->f_mapping->host;
3520         struct ext4_inode_info *ei = EXT4_I(inode);
3521         ssize_t ret;
3522         loff_t offset = iocb->ki_pos;
3523         size_t count = iov_iter_count(iter);
3524         int overwrite = 0;
3525         get_block_t *get_block_func = NULL;
3526         int dio_flags = 0;
3527         loff_t final_size = offset + count;
3528         int orphan = 0;
3529         handle_t *handle;
3530
3531         if (final_size > inode->i_size) {
3532                 /* Credits for sb + inode write */
3533                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3534                 if (IS_ERR(handle)) {
3535                         ret = PTR_ERR(handle);
3536                         goto out;
3537                 }
3538                 ret = ext4_orphan_add(handle, inode);
3539                 if (ret) {
3540                         ext4_journal_stop(handle);
3541                         goto out;
3542                 }
3543                 orphan = 1;
3544                 ei->i_disksize = inode->i_size;
3545                 ext4_journal_stop(handle);
3546         }
3547
3548         BUG_ON(iocb->private == NULL);
3549
3550         /*
3551          * Make all waiters for direct IO properly wait also for extent
3552          * conversion. This also disallows race between truncate() and
3553          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3554          */
3555         inode_dio_begin(inode);
3556
3557         /* If we do a overwrite dio, i_mutex locking can be released */
3558         overwrite = *((int *)iocb->private);
3559
3560         if (overwrite)
3561                 inode_unlock(inode);
3562
3563         /*
3564          * For extent mapped files we could direct write to holes and fallocate.
3565          *
3566          * Allocated blocks to fill the hole are marked as unwritten to prevent
3567          * parallel buffered read to expose the stale data before DIO complete
3568          * the data IO.
3569          *
3570          * As to previously fallocated extents, ext4 get_block will just simply
3571          * mark the buffer mapped but still keep the extents unwritten.
3572          *
3573          * For non AIO case, we will convert those unwritten extents to written
3574          * after return back from blockdev_direct_IO. That way we save us from
3575          * allocating io_end structure and also the overhead of offloading
3576          * the extent convertion to a workqueue.
3577          *
3578          * For async DIO, the conversion needs to be deferred when the
3579          * IO is completed. The ext4 end_io callback function will be
3580          * called to take care of the conversion work.  Here for async
3581          * case, we allocate an io_end structure to hook to the iocb.
3582          */
3583         iocb->private = NULL;
3584         if (overwrite)
3585                 get_block_func = ext4_dio_get_block_overwrite;
3586         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3587                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3588                 get_block_func = ext4_dio_get_block;
3589                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3590         } else if (is_sync_kiocb(iocb)) {
3591                 get_block_func = ext4_dio_get_block_unwritten_sync;
3592                 dio_flags = DIO_LOCKING;
3593         } else {
3594                 get_block_func = ext4_dio_get_block_unwritten_async;
3595                 dio_flags = DIO_LOCKING;
3596         }
3597 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3598         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3599 #endif
3600         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3601                                    get_block_func, ext4_end_io_dio, NULL,
3602                                    dio_flags);
3603
3604         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3605                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3606                 int err;
3607                 /*
3608                  * for non AIO case, since the IO is already
3609                  * completed, we could do the conversion right here
3610                  */
3611                 err = ext4_convert_unwritten_extents(NULL, inode,
3612                                                      offset, ret);
3613                 if (err < 0)
3614                         ret = err;
3615                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3616         }
3617
3618         inode_dio_end(inode);
3619         /* take i_mutex locking again if we do a ovewrite dio */
3620         if (overwrite)
3621                 inode_lock(inode);
3622
3623         if (ret < 0 && final_size > inode->i_size)
3624                 ext4_truncate_failed_write(inode);
3625
3626         /* Handle extending of i_size after direct IO write */
3627         if (orphan) {
3628                 int err;
3629
3630                 /* Credits for sb + inode write */
3631                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3632                 if (IS_ERR(handle)) {
3633                         /* This is really bad luck. We've written the data
3634                          * but cannot extend i_size. Bail out and pretend
3635                          * the write failed... */
3636                         ret = PTR_ERR(handle);
3637                         if (inode->i_nlink)
3638                                 ext4_orphan_del(NULL, inode);
3639
3640                         goto out;
3641                 }
3642                 if (inode->i_nlink)
3643                         ext4_orphan_del(handle, inode);
3644                 if (ret > 0) {
3645                         loff_t end = offset + ret;
3646                         if (end > inode->i_size) {
3647                                 ei->i_disksize = end;
3648                                 i_size_write(inode, end);
3649                                 /*
3650                                  * We're going to return a positive `ret'
3651                                  * here due to non-zero-length I/O, so there's
3652                                  * no way of reporting error returns from
3653                                  * ext4_mark_inode_dirty() to userspace.  So
3654                                  * ignore it.
3655                                  */
3656                                 ext4_mark_inode_dirty(handle, inode);
3657                         }
3658                 }
3659                 err = ext4_journal_stop(handle);
3660                 if (ret == 0)
3661                         ret = err;
3662         }
3663 out:
3664         return ret;
3665 }
3666
3667 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3668 {
3669         struct address_space *mapping = iocb->ki_filp->f_mapping;
3670         struct inode *inode = mapping->host;
3671         size_t count = iov_iter_count(iter);
3672         ssize_t ret;
3673
3674         /*
3675          * Shared inode_lock is enough for us - it protects against concurrent
3676          * writes & truncates and since we take care of writing back page cache,
3677          * we are protected against page writeback as well.
3678          */
3679         inode_lock_shared(inode);
3680         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3681                                            iocb->ki_pos + count);
3682         if (ret)
3683                 goto out_unlock;
3684         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3685                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3686 out_unlock:
3687         inode_unlock_shared(inode);
3688         return ret;
3689 }
3690
3691 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3692 {
3693         struct file *file = iocb->ki_filp;
3694         struct inode *inode = file->f_mapping->host;
3695         size_t count = iov_iter_count(iter);
3696         loff_t offset = iocb->ki_pos;
3697         ssize_t ret;
3698
3699 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3700         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3701                 return 0;
3702 #endif
3703
3704         /*
3705          * If we are doing data journalling we don't support O_DIRECT
3706          */
3707         if (ext4_should_journal_data(inode))
3708                 return 0;
3709
3710         /* Let buffer I/O handle the inline data case. */
3711         if (ext4_has_inline_data(inode))
3712                 return 0;
3713
3714         /* DAX uses iomap path now */
3715         if (WARN_ON_ONCE(IS_DAX(inode)))
3716                 return 0;
3717
3718         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3719         if (iov_iter_rw(iter) == READ)
3720                 ret = ext4_direct_IO_read(iocb, iter);
3721         else
3722                 ret = ext4_direct_IO_write(iocb, iter);
3723         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3724         return ret;
3725 }
3726
3727 /*
3728  * Pages can be marked dirty completely asynchronously from ext4's journalling
3729  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3730  * much here because ->set_page_dirty is called under VFS locks.  The page is
3731  * not necessarily locked.
3732  *
3733  * We cannot just dirty the page and leave attached buffers clean, because the
3734  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3735  * or jbddirty because all the journalling code will explode.
3736  *
3737  * So what we do is to mark the page "pending dirty" and next time writepage
3738  * is called, propagate that into the buffers appropriately.
3739  */
3740 static int ext4_journalled_set_page_dirty(struct page *page)
3741 {
3742         SetPageChecked(page);
3743         return __set_page_dirty_nobuffers(page);
3744 }
3745
3746 static int ext4_set_page_dirty(struct page *page)
3747 {
3748         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3749         WARN_ON_ONCE(!page_has_buffers(page));
3750         return __set_page_dirty_buffers(page);
3751 }
3752
3753 static const struct address_space_operations ext4_aops = {
3754         .readpage               = ext4_readpage,
3755         .readpages              = ext4_readpages,
3756         .writepage              = ext4_writepage,
3757         .writepages             = ext4_writepages,
3758         .write_begin            = ext4_write_begin,
3759         .write_end              = ext4_write_end,
3760         .set_page_dirty         = ext4_set_page_dirty,
3761         .bmap                   = ext4_bmap,
3762         .invalidatepage         = ext4_invalidatepage,
3763         .releasepage            = ext4_releasepage,
3764         .direct_IO              = ext4_direct_IO,
3765         .migratepage            = buffer_migrate_page,
3766         .is_partially_uptodate  = block_is_partially_uptodate,
3767         .error_remove_page      = generic_error_remove_page,
3768 };
3769
3770 static const struct address_space_operations ext4_journalled_aops = {
3771         .readpage               = ext4_readpage,
3772         .readpages              = ext4_readpages,
3773         .writepage              = ext4_writepage,
3774         .writepages             = ext4_writepages,
3775         .write_begin            = ext4_write_begin,
3776         .write_end              = ext4_journalled_write_end,
3777         .set_page_dirty         = ext4_journalled_set_page_dirty,
3778         .bmap                   = ext4_bmap,
3779         .invalidatepage         = ext4_journalled_invalidatepage,
3780         .releasepage            = ext4_releasepage,
3781         .direct_IO              = ext4_direct_IO,
3782         .is_partially_uptodate  = block_is_partially_uptodate,
3783         .error_remove_page      = generic_error_remove_page,
3784 };
3785
3786 static const struct address_space_operations ext4_da_aops = {
3787         .readpage               = ext4_readpage,
3788         .readpages              = ext4_readpages,
3789         .writepage              = ext4_writepage,
3790         .writepages             = ext4_writepages,
3791         .write_begin            = ext4_da_write_begin,
3792         .write_end              = ext4_da_write_end,
3793         .set_page_dirty         = ext4_set_page_dirty,
3794         .bmap                   = ext4_bmap,
3795         .invalidatepage         = ext4_da_invalidatepage,
3796         .releasepage            = ext4_releasepage,
3797         .direct_IO              = ext4_direct_IO,
3798         .migratepage            = buffer_migrate_page,
3799         .is_partially_uptodate  = block_is_partially_uptodate,
3800         .error_remove_page      = generic_error_remove_page,
3801 };
3802
3803 void ext4_set_aops(struct inode *inode)
3804 {
3805         switch (ext4_inode_journal_mode(inode)) {
3806         case EXT4_INODE_ORDERED_DATA_MODE:
3807         case EXT4_INODE_WRITEBACK_DATA_MODE:
3808                 break;
3809         case EXT4_INODE_JOURNAL_DATA_MODE:
3810                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3811                 return;
3812         default:
3813                 BUG();
3814         }
3815         if (test_opt(inode->i_sb, DELALLOC))
3816                 inode->i_mapping->a_ops = &ext4_da_aops;
3817         else
3818                 inode->i_mapping->a_ops = &ext4_aops;
3819 }
3820
3821 static int __ext4_block_zero_page_range(handle_t *handle,
3822                 struct address_space *mapping, loff_t from, loff_t length)
3823 {
3824         ext4_fsblk_t index = from >> PAGE_SHIFT;
3825         unsigned offset = from & (PAGE_SIZE-1);
3826         unsigned blocksize, pos;
3827         ext4_lblk_t iblock;
3828         struct inode *inode = mapping->host;
3829         struct buffer_head *bh;
3830         struct page *page;
3831         int err = 0;
3832
3833         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3834                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3835         if (!page)
3836                 return -ENOMEM;
3837
3838         blocksize = inode->i_sb->s_blocksize;
3839
3840         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3841
3842         if (!page_has_buffers(page))
3843                 create_empty_buffers(page, blocksize, 0);
3844
3845         /* Find the buffer that contains "offset" */
3846         bh = page_buffers(page);
3847         pos = blocksize;
3848         while (offset >= pos) {
3849                 bh = bh->b_this_page;
3850                 iblock++;
3851                 pos += blocksize;
3852         }
3853         if (buffer_freed(bh)) {
3854                 BUFFER_TRACE(bh, "freed: skip");
3855                 goto unlock;
3856         }
3857         if (!buffer_mapped(bh)) {
3858                 BUFFER_TRACE(bh, "unmapped");
3859                 ext4_get_block(inode, iblock, bh, 0);
3860                 /* unmapped? It's a hole - nothing to do */
3861                 if (!buffer_mapped(bh)) {
3862                         BUFFER_TRACE(bh, "still unmapped");
3863                         goto unlock;
3864                 }
3865         }
3866
3867         /* Ok, it's mapped. Make sure it's up-to-date */
3868         if (PageUptodate(page))
3869                 set_buffer_uptodate(bh);
3870
3871         if (!buffer_uptodate(bh)) {
3872                 err = -EIO;
3873                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3874                 wait_on_buffer(bh);
3875                 /* Uhhuh. Read error. Complain and punt. */
3876                 if (!buffer_uptodate(bh))
3877                         goto unlock;
3878                 if (S_ISREG(inode->i_mode) &&
3879                     ext4_encrypted_inode(inode)) {
3880                         /* We expect the key to be set. */
3881                         BUG_ON(!fscrypt_has_encryption_key(inode));
3882                         BUG_ON(blocksize != PAGE_SIZE);
3883                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3884                                                 page, PAGE_SIZE, 0, page->index));
3885                 }
3886         }
3887         if (ext4_should_journal_data(inode)) {
3888                 BUFFER_TRACE(bh, "get write access");
3889                 err = ext4_journal_get_write_access(handle, bh);
3890                 if (err)
3891                         goto unlock;
3892         }
3893         zero_user(page, offset, length);
3894         BUFFER_TRACE(bh, "zeroed end of block");
3895
3896         if (ext4_should_journal_data(inode)) {
3897                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3898         } else {
3899                 err = 0;
3900                 mark_buffer_dirty(bh);
3901                 if (ext4_should_order_data(inode))
3902                         err = ext4_jbd2_inode_add_write(handle, inode);
3903         }
3904
3905 unlock:
3906         unlock_page(page);
3907         put_page(page);
3908         return err;
3909 }
3910
3911 /*
3912  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3913  * starting from file offset 'from'.  The range to be zero'd must
3914  * be contained with in one block.  If the specified range exceeds
3915  * the end of the block it will be shortened to end of the block
3916  * that cooresponds to 'from'
3917  */
3918 static int ext4_block_zero_page_range(handle_t *handle,
3919                 struct address_space *mapping, loff_t from, loff_t length)
3920 {
3921         struct inode *inode = mapping->host;
3922         unsigned offset = from & (PAGE_SIZE-1);
3923         unsigned blocksize = inode->i_sb->s_blocksize;
3924         unsigned max = blocksize - (offset & (blocksize - 1));
3925
3926         /*
3927          * correct length if it does not fall between
3928          * 'from' and the end of the block
3929          */
3930         if (length > max || length < 0)
3931                 length = max;
3932
3933         if (IS_DAX(inode)) {
3934                 return iomap_zero_range(inode, from, length, NULL,
3935                                         &ext4_iomap_ops);
3936         }
3937         return __ext4_block_zero_page_range(handle, mapping, from, length);
3938 }
3939
3940 /*
3941  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3942  * up to the end of the block which corresponds to `from'.
3943  * This required during truncate. We need to physically zero the tail end
3944  * of that block so it doesn't yield old data if the file is later grown.
3945  */
3946 static int ext4_block_truncate_page(handle_t *handle,
3947                 struct address_space *mapping, loff_t from)
3948 {
3949         unsigned offset = from & (PAGE_SIZE-1);
3950         unsigned length;
3951         unsigned blocksize;
3952         struct inode *inode = mapping->host;
3953
3954         /* If we are processing an encrypted inode during orphan list handling */
3955         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3956                 return 0;
3957
3958         blocksize = inode->i_sb->s_blocksize;
3959         length = blocksize - (offset & (blocksize - 1));
3960
3961         return ext4_block_zero_page_range(handle, mapping, from, length);
3962 }
3963
3964 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3965                              loff_t lstart, loff_t length)
3966 {
3967         struct super_block *sb = inode->i_sb;
3968         struct address_space *mapping = inode->i_mapping;
3969         unsigned partial_start, partial_end;
3970         ext4_fsblk_t start, end;
3971         loff_t byte_end = (lstart + length - 1);
3972         int err = 0;
3973
3974         partial_start = lstart & (sb->s_blocksize - 1);
3975         partial_end = byte_end & (sb->s_blocksize - 1);
3976
3977         start = lstart >> sb->s_blocksize_bits;
3978         end = byte_end >> sb->s_blocksize_bits;
3979
3980         /* Handle partial zero within the single block */
3981         if (start == end &&
3982             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3983                 err = ext4_block_zero_page_range(handle, mapping,
3984                                                  lstart, length);
3985                 return err;
3986         }
3987         /* Handle partial zero out on the start of the range */
3988         if (partial_start) {
3989                 err = ext4_block_zero_page_range(handle, mapping,
3990                                                  lstart, sb->s_blocksize);
3991                 if (err)
3992                         return err;
3993         }
3994         /* Handle partial zero out on the end of the range */
3995         if (partial_end != sb->s_blocksize - 1)
3996                 err = ext4_block_zero_page_range(handle, mapping,
3997                                                  byte_end - partial_end,
3998                                                  partial_end + 1);
3999         return err;
4000 }
4001
4002 int ext4_can_truncate(struct inode *inode)
4003 {
4004         if (S_ISREG(inode->i_mode))
4005                 return 1;
4006         if (S_ISDIR(inode->i_mode))
4007                 return 1;
4008         if (S_ISLNK(inode->i_mode))
4009                 return !ext4_inode_is_fast_symlink(inode);
4010         return 0;
4011 }
4012
4013 /*
4014  * We have to make sure i_disksize gets properly updated before we truncate
4015  * page cache due to hole punching or zero range. Otherwise i_disksize update
4016  * can get lost as it may have been postponed to submission of writeback but
4017  * that will never happen after we truncate page cache.
4018  */
4019 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4020                                       loff_t len)
4021 {
4022         handle_t *handle;
4023         loff_t size = i_size_read(inode);
4024
4025         WARN_ON(!inode_is_locked(inode));
4026         if (offset > size || offset + len < size)
4027                 return 0;
4028
4029         if (EXT4_I(inode)->i_disksize >= size)
4030                 return 0;
4031
4032         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4033         if (IS_ERR(handle))
4034                 return PTR_ERR(handle);
4035         ext4_update_i_disksize(inode, size);
4036         ext4_mark_inode_dirty(handle, inode);
4037         ext4_journal_stop(handle);
4038
4039         return 0;
4040 }
4041
4042 /*
4043  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4044  * associated with the given offset and length
4045  *
4046  * @inode:  File inode
4047  * @offset: The offset where the hole will begin
4048  * @len:    The length of the hole
4049  *
4050  * Returns: 0 on success or negative on failure
4051  */
4052
4053 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4054 {
4055         struct super_block *sb = inode->i_sb;
4056         ext4_lblk_t first_block, stop_block;
4057         struct address_space *mapping = inode->i_mapping;
4058         loff_t first_block_offset, last_block_offset;
4059         handle_t *handle;
4060         unsigned int credits;
4061         int ret = 0;
4062
4063         if (!S_ISREG(inode->i_mode))
4064                 return -EOPNOTSUPP;
4065
4066         trace_ext4_punch_hole(inode, offset, length, 0);
4067
4068         /*
4069          * Write out all dirty pages to avoid race conditions
4070          * Then release them.
4071          */
4072         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4073                 ret = filemap_write_and_wait_range(mapping, offset,
4074                                                    offset + length - 1);
4075                 if (ret)
4076                         return ret;
4077         }
4078
4079         inode_lock(inode);
4080
4081         /* No need to punch hole beyond i_size */
4082         if (offset >= inode->i_size)
4083                 goto out_mutex;
4084
4085         /*
4086          * If the hole extends beyond i_size, set the hole
4087          * to end after the page that contains i_size
4088          */
4089         if (offset + length > inode->i_size) {
4090                 length = inode->i_size +
4091                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4092                    offset;
4093         }
4094
4095         if (offset & (sb->s_blocksize - 1) ||
4096             (offset + length) & (sb->s_blocksize - 1)) {
4097                 /*
4098                  * Attach jinode to inode for jbd2 if we do any zeroing of
4099                  * partial block
4100                  */
4101                 ret = ext4_inode_attach_jinode(inode);
4102                 if (ret < 0)
4103                         goto out_mutex;
4104
4105         }
4106
4107         /* Wait all existing dio workers, newcomers will block on i_mutex */
4108         ext4_inode_block_unlocked_dio(inode);
4109         inode_dio_wait(inode);
4110
4111         /*
4112          * Prevent page faults from reinstantiating pages we have released from
4113          * page cache.
4114          */
4115         down_write(&EXT4_I(inode)->i_mmap_sem);
4116         first_block_offset = round_up(offset, sb->s_blocksize);
4117         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4118
4119         /* Now release the pages and zero block aligned part of pages*/
4120         if (last_block_offset > first_block_offset) {
4121                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4122                 if (ret)
4123                         goto out_dio;
4124                 truncate_pagecache_range(inode, first_block_offset,
4125                                          last_block_offset);
4126         }
4127
4128         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4129                 credits = ext4_writepage_trans_blocks(inode);
4130         else
4131                 credits = ext4_blocks_for_truncate(inode);
4132         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4133         if (IS_ERR(handle)) {
4134                 ret = PTR_ERR(handle);
4135                 ext4_std_error(sb, ret);
4136                 goto out_dio;
4137         }
4138
4139         ret = ext4_zero_partial_blocks(handle, inode, offset,
4140                                        length);
4141         if (ret)
4142                 goto out_stop;
4143
4144         first_block = (offset + sb->s_blocksize - 1) >>
4145                 EXT4_BLOCK_SIZE_BITS(sb);
4146         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4147
4148         /* If there are no blocks to remove, return now */
4149         if (first_block >= stop_block)
4150                 goto out_stop;
4151
4152         down_write(&EXT4_I(inode)->i_data_sem);
4153         ext4_discard_preallocations(inode);
4154
4155         ret = ext4_es_remove_extent(inode, first_block,
4156                                     stop_block - first_block);
4157         if (ret) {
4158                 up_write(&EXT4_I(inode)->i_data_sem);
4159                 goto out_stop;
4160         }
4161
4162         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4163                 ret = ext4_ext_remove_space(inode, first_block,
4164                                             stop_block - 1);
4165         else
4166                 ret = ext4_ind_remove_space(handle, inode, first_block,
4167                                             stop_block);
4168
4169         up_write(&EXT4_I(inode)->i_data_sem);
4170         if (IS_SYNC(inode))
4171                 ext4_handle_sync(handle);
4172
4173         inode->i_mtime = inode->i_ctime = current_time(inode);
4174         ext4_mark_inode_dirty(handle, inode);
4175 out_stop:
4176         ext4_journal_stop(handle);
4177 out_dio:
4178         up_write(&EXT4_I(inode)->i_mmap_sem);
4179         ext4_inode_resume_unlocked_dio(inode);
4180 out_mutex:
4181         inode_unlock(inode);
4182         return ret;
4183 }
4184
4185 int ext4_inode_attach_jinode(struct inode *inode)
4186 {
4187         struct ext4_inode_info *ei = EXT4_I(inode);
4188         struct jbd2_inode *jinode;
4189
4190         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4191                 return 0;
4192
4193         jinode = jbd2_alloc_inode(GFP_KERNEL);
4194         spin_lock(&inode->i_lock);
4195         if (!ei->jinode) {
4196                 if (!jinode) {
4197                         spin_unlock(&inode->i_lock);
4198                         return -ENOMEM;
4199                 }
4200                 ei->jinode = jinode;
4201                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4202                 jinode = NULL;
4203         }
4204         spin_unlock(&inode->i_lock);
4205         if (unlikely(jinode != NULL))
4206                 jbd2_free_inode(jinode);
4207         return 0;
4208 }
4209
4210 /*
4211  * ext4_truncate()
4212  *
4213  * We block out ext4_get_block() block instantiations across the entire
4214  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4215  * simultaneously on behalf of the same inode.
4216  *
4217  * As we work through the truncate and commit bits of it to the journal there
4218  * is one core, guiding principle: the file's tree must always be consistent on
4219  * disk.  We must be able to restart the truncate after a crash.
4220  *
4221  * The file's tree may be transiently inconsistent in memory (although it
4222  * probably isn't), but whenever we close off and commit a journal transaction,
4223  * the contents of (the filesystem + the journal) must be consistent and
4224  * restartable.  It's pretty simple, really: bottom up, right to left (although
4225  * left-to-right works OK too).
4226  *
4227  * Note that at recovery time, journal replay occurs *before* the restart of
4228  * truncate against the orphan inode list.
4229  *
4230  * The committed inode has the new, desired i_size (which is the same as
4231  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4232  * that this inode's truncate did not complete and it will again call
4233  * ext4_truncate() to have another go.  So there will be instantiated blocks
4234  * to the right of the truncation point in a crashed ext4 filesystem.  But
4235  * that's fine - as long as they are linked from the inode, the post-crash
4236  * ext4_truncate() run will find them and release them.
4237  */
4238 int ext4_truncate(struct inode *inode)
4239 {
4240         struct ext4_inode_info *ei = EXT4_I(inode);
4241         unsigned int credits;
4242         int err = 0;
4243         handle_t *handle;
4244         struct address_space *mapping = inode->i_mapping;
4245
4246         /*
4247          * There is a possibility that we're either freeing the inode
4248          * or it's a completely new inode. In those cases we might not
4249          * have i_mutex locked because it's not necessary.
4250          */
4251         if (!(inode->i_state & (I_NEW|I_FREEING)))
4252                 WARN_ON(!inode_is_locked(inode));
4253         trace_ext4_truncate_enter(inode);
4254
4255         if (!ext4_can_truncate(inode))
4256                 return 0;
4257
4258         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4259
4260         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4261                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4262
4263         if (ext4_has_inline_data(inode)) {
4264                 int has_inline = 1;
4265
4266                 err = ext4_inline_data_truncate(inode, &has_inline);
4267                 if (err)
4268                         return err;
4269                 if (has_inline)
4270                         return 0;
4271         }
4272
4273         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4274         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4275                 if (ext4_inode_attach_jinode(inode) < 0)
4276                         return 0;
4277         }
4278
4279         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4280                 credits = ext4_writepage_trans_blocks(inode);
4281         else
4282                 credits = ext4_blocks_for_truncate(inode);
4283
4284         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4285         if (IS_ERR(handle))
4286                 return PTR_ERR(handle);
4287
4288         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4289                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4290
4291         /*
4292          * We add the inode to the orphan list, so that if this
4293          * truncate spans multiple transactions, and we crash, we will
4294          * resume the truncate when the filesystem recovers.  It also
4295          * marks the inode dirty, to catch the new size.
4296          *
4297          * Implication: the file must always be in a sane, consistent
4298          * truncatable state while each transaction commits.
4299          */
4300         err = ext4_orphan_add(handle, inode);
4301         if (err)
4302                 goto out_stop;
4303
4304         down_write(&EXT4_I(inode)->i_data_sem);
4305
4306         ext4_discard_preallocations(inode);
4307
4308         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4309                 err = ext4_ext_truncate(handle, inode);
4310         else
4311                 ext4_ind_truncate(handle, inode);
4312
4313         up_write(&ei->i_data_sem);
4314         if (err)
4315                 goto out_stop;
4316
4317         if (IS_SYNC(inode))
4318                 ext4_handle_sync(handle);
4319
4320 out_stop:
4321         /*
4322          * If this was a simple ftruncate() and the file will remain alive,
4323          * then we need to clear up the orphan record which we created above.
4324          * However, if this was a real unlink then we were called by
4325          * ext4_evict_inode(), and we allow that function to clean up the
4326          * orphan info for us.
4327          */
4328         if (inode->i_nlink)
4329                 ext4_orphan_del(handle, inode);
4330
4331         inode->i_mtime = inode->i_ctime = current_time(inode);
4332         ext4_mark_inode_dirty(handle, inode);
4333         ext4_journal_stop(handle);
4334
4335         trace_ext4_truncate_exit(inode);
4336         return err;
4337 }
4338
4339 /*
4340  * ext4_get_inode_loc returns with an extra refcount against the inode's
4341  * underlying buffer_head on success. If 'in_mem' is true, we have all
4342  * data in memory that is needed to recreate the on-disk version of this
4343  * inode.
4344  */
4345 static int __ext4_get_inode_loc(struct inode *inode,
4346                                 struct ext4_iloc *iloc, int in_mem)
4347 {
4348         struct ext4_group_desc  *gdp;
4349         struct buffer_head      *bh;
4350         struct super_block      *sb = inode->i_sb;
4351         ext4_fsblk_t            block;
4352         int                     inodes_per_block, inode_offset;
4353
4354         iloc->bh = NULL;
4355         if (!ext4_valid_inum(sb, inode->i_ino))
4356                 return -EFSCORRUPTED;
4357
4358         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4359         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4360         if (!gdp)
4361                 return -EIO;
4362
4363         /*
4364          * Figure out the offset within the block group inode table
4365          */
4366         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4367         inode_offset = ((inode->i_ino - 1) %
4368                         EXT4_INODES_PER_GROUP(sb));
4369         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4370         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4371
4372         bh = sb_getblk(sb, block);
4373         if (unlikely(!bh))
4374                 return -ENOMEM;
4375         if (!buffer_uptodate(bh)) {
4376                 lock_buffer(bh);
4377
4378                 /*
4379                  * If the buffer has the write error flag, we have failed
4380                  * to write out another inode in the same block.  In this
4381                  * case, we don't have to read the block because we may
4382                  * read the old inode data successfully.
4383                  */
4384                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4385                         set_buffer_uptodate(bh);
4386
4387                 if (buffer_uptodate(bh)) {
4388                         /* someone brought it uptodate while we waited */
4389                         unlock_buffer(bh);
4390                         goto has_buffer;
4391                 }
4392
4393                 /*
4394                  * If we have all information of the inode in memory and this
4395                  * is the only valid inode in the block, we need not read the
4396                  * block.
4397                  */
4398                 if (in_mem) {
4399                         struct buffer_head *bitmap_bh;
4400                         int i, start;
4401
4402                         start = inode_offset & ~(inodes_per_block - 1);
4403
4404                         /* Is the inode bitmap in cache? */
4405                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4406                         if (unlikely(!bitmap_bh))
4407                                 goto make_io;
4408
4409                         /*
4410                          * If the inode bitmap isn't in cache then the
4411                          * optimisation may end up performing two reads instead
4412                          * of one, so skip it.
4413                          */
4414                         if (!buffer_uptodate(bitmap_bh)) {
4415                                 brelse(bitmap_bh);
4416                                 goto make_io;
4417                         }
4418                         for (i = start; i < start + inodes_per_block; i++) {
4419                                 if (i == inode_offset)
4420                                         continue;
4421                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4422                                         break;
4423                         }
4424                         brelse(bitmap_bh);
4425                         if (i == start + inodes_per_block) {
4426                                 /* all other inodes are free, so skip I/O */
4427                                 memset(bh->b_data, 0, bh->b_size);
4428                                 set_buffer_uptodate(bh);
4429                                 unlock_buffer(bh);
4430                                 goto has_buffer;
4431                         }
4432                 }
4433
4434 make_io:
4435                 /*
4436                  * If we need to do any I/O, try to pre-readahead extra
4437                  * blocks from the inode table.
4438                  */
4439                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4440                         ext4_fsblk_t b, end, table;
4441                         unsigned num;
4442                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4443
4444                         table = ext4_inode_table(sb, gdp);
4445                         /* s_inode_readahead_blks is always a power of 2 */
4446                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4447                         if (table > b)
4448                                 b = table;
4449                         end = b + ra_blks;
4450                         num = EXT4_INODES_PER_GROUP(sb);
4451                         if (ext4_has_group_desc_csum(sb))
4452                                 num -= ext4_itable_unused_count(sb, gdp);
4453                         table += num / inodes_per_block;
4454                         if (end > table)
4455                                 end = table;
4456                         while (b <= end)
4457                                 sb_breadahead(sb, b++);
4458                 }
4459
4460                 /*
4461                  * There are other valid inodes in the buffer, this inode
4462                  * has in-inode xattrs, or we don't have this inode in memory.
4463                  * Read the block from disk.
4464                  */
4465                 trace_ext4_load_inode(inode);
4466                 get_bh(bh);
4467                 bh->b_end_io = end_buffer_read_sync;
4468                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4469                 wait_on_buffer(bh);
4470                 if (!buffer_uptodate(bh)) {
4471                         EXT4_ERROR_INODE_BLOCK(inode, block,
4472                                                "unable to read itable block");
4473                         brelse(bh);
4474                         return -EIO;
4475                 }
4476         }
4477 has_buffer:
4478         iloc->bh = bh;
4479         return 0;
4480 }
4481
4482 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4483 {
4484         /* We have all inode data except xattrs in memory here. */
4485         return __ext4_get_inode_loc(inode, iloc,
4486                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4487 }
4488
4489 void ext4_set_inode_flags(struct inode *inode)
4490 {
4491         unsigned int flags = EXT4_I(inode)->i_flags;
4492         unsigned int new_fl = 0;
4493
4494         if (flags & EXT4_SYNC_FL)
4495                 new_fl |= S_SYNC;
4496         if (flags & EXT4_APPEND_FL)
4497                 new_fl |= S_APPEND;
4498         if (flags & EXT4_IMMUTABLE_FL)
4499                 new_fl |= S_IMMUTABLE;
4500         if (flags & EXT4_NOATIME_FL)
4501                 new_fl |= S_NOATIME;
4502         if (flags & EXT4_DIRSYNC_FL)
4503                 new_fl |= S_DIRSYNC;
4504         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4505             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4506             !ext4_encrypted_inode(inode))
4507                 new_fl |= S_DAX;
4508         inode_set_flags(inode, new_fl,
4509                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4510 }
4511
4512 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4513                                   struct ext4_inode_info *ei)
4514 {
4515         blkcnt_t i_blocks ;
4516         struct inode *inode = &(ei->vfs_inode);
4517         struct super_block *sb = inode->i_sb;
4518
4519         if (ext4_has_feature_huge_file(sb)) {
4520                 /* we are using combined 48 bit field */
4521                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4522                                         le32_to_cpu(raw_inode->i_blocks_lo);
4523                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4524                         /* i_blocks represent file system block size */
4525                         return i_blocks  << (inode->i_blkbits - 9);
4526                 } else {
4527                         return i_blocks;
4528                 }
4529         } else {
4530                 return le32_to_cpu(raw_inode->i_blocks_lo);
4531         }
4532 }
4533
4534 static inline void ext4_iget_extra_inode(struct inode *inode,
4535                                          struct ext4_inode *raw_inode,
4536                                          struct ext4_inode_info *ei)
4537 {
4538         __le32 *magic = (void *)raw_inode +
4539                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4540         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4541             EXT4_INODE_SIZE(inode->i_sb) &&
4542             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4543                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4544                 ext4_find_inline_data_nolock(inode);
4545         } else
4546                 EXT4_I(inode)->i_inline_off = 0;
4547 }
4548
4549 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4550 {
4551         if (!ext4_has_feature_project(inode->i_sb))
4552                 return -EOPNOTSUPP;
4553         *projid = EXT4_I(inode)->i_projid;
4554         return 0;
4555 }
4556
4557 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4558 {
4559         struct ext4_iloc iloc;
4560         struct ext4_inode *raw_inode;
4561         struct ext4_inode_info *ei;
4562         struct inode *inode;
4563         journal_t *journal = EXT4_SB(sb)->s_journal;
4564         long ret;
4565         loff_t size;
4566         int block;
4567         uid_t i_uid;
4568         gid_t i_gid;
4569         projid_t i_projid;
4570
4571         inode = iget_locked(sb, ino);
4572         if (!inode)
4573                 return ERR_PTR(-ENOMEM);
4574         if (!(inode->i_state & I_NEW))
4575                 return inode;
4576
4577         ei = EXT4_I(inode);
4578         iloc.bh = NULL;
4579
4580         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4581         if (ret < 0)
4582                 goto bad_inode;
4583         raw_inode = ext4_raw_inode(&iloc);
4584
4585         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4586                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4587                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4588                         EXT4_INODE_SIZE(inode->i_sb) ||
4589                     (ei->i_extra_isize & 3)) {
4590                         EXT4_ERROR_INODE(inode,
4591                                          "bad extra_isize %u (inode size %u)",
4592                                          ei->i_extra_isize,
4593                                          EXT4_INODE_SIZE(inode->i_sb));
4594                         ret = -EFSCORRUPTED;
4595                         goto bad_inode;
4596                 }
4597         } else
4598                 ei->i_extra_isize = 0;
4599
4600         /* Precompute checksum seed for inode metadata */
4601         if (ext4_has_metadata_csum(sb)) {
4602                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4603                 __u32 csum;
4604                 __le32 inum = cpu_to_le32(inode->i_ino);
4605                 __le32 gen = raw_inode->i_generation;
4606                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4607                                    sizeof(inum));
4608                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4609                                               sizeof(gen));
4610         }
4611
4612         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4613                 EXT4_ERROR_INODE(inode, "checksum invalid");
4614                 ret = -EFSBADCRC;
4615                 goto bad_inode;
4616         }
4617
4618         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4619         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4620         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4621         if (ext4_has_feature_project(sb) &&
4622             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4623             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4624                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4625         else
4626                 i_projid = EXT4_DEF_PROJID;
4627
4628         if (!(test_opt(inode->i_sb, NO_UID32))) {
4629                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4630                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4631         }
4632         i_uid_write(inode, i_uid);
4633         i_gid_write(inode, i_gid);
4634         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4635         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4636
4637         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4638         ei->i_inline_off = 0;
4639         ei->i_dir_start_lookup = 0;
4640         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4641         /* We now have enough fields to check if the inode was active or not.
4642          * This is needed because nfsd might try to access dead inodes
4643          * the test is that same one that e2fsck uses
4644          * NeilBrown 1999oct15
4645          */
4646         if (inode->i_nlink == 0) {
4647                 if ((inode->i_mode == 0 ||
4648                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4649                     ino != EXT4_BOOT_LOADER_INO) {
4650                         /* this inode is deleted */
4651                         ret = -ESTALE;
4652                         goto bad_inode;
4653                 }
4654                 /* The only unlinked inodes we let through here have
4655                  * valid i_mode and are being read by the orphan
4656                  * recovery code: that's fine, we're about to complete
4657                  * the process of deleting those.
4658                  * OR it is the EXT4_BOOT_LOADER_INO which is
4659                  * not initialized on a new filesystem. */
4660         }
4661         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4662         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4663         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4664         if (ext4_has_feature_64bit(sb))
4665                 ei->i_file_acl |=
4666                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4667         inode->i_size = ext4_isize(raw_inode);
4668         if ((size = i_size_read(inode)) < 0) {
4669                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4670                 ret = -EFSCORRUPTED;
4671                 goto bad_inode;
4672         }
4673         ei->i_disksize = inode->i_size;
4674 #ifdef CONFIG_QUOTA
4675         ei->i_reserved_quota = 0;
4676 #endif
4677         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4678         ei->i_block_group = iloc.block_group;
4679         ei->i_last_alloc_group = ~0;
4680         /*
4681          * NOTE! The in-memory inode i_data array is in little-endian order
4682          * even on big-endian machines: we do NOT byteswap the block numbers!
4683          */
4684         for (block = 0; block < EXT4_N_BLOCKS; block++)
4685                 ei->i_data[block] = raw_inode->i_block[block];
4686         INIT_LIST_HEAD(&ei->i_orphan);
4687
4688         /*
4689          * Set transaction id's of transactions that have to be committed
4690          * to finish f[data]sync. We set them to currently running transaction
4691          * as we cannot be sure that the inode or some of its metadata isn't
4692          * part of the transaction - the inode could have been reclaimed and
4693          * now it is reread from disk.
4694          */
4695         if (journal) {
4696                 transaction_t *transaction;
4697                 tid_t tid;
4698
4699                 read_lock(&journal->j_state_lock);
4700                 if (journal->j_running_transaction)
4701                         transaction = journal->j_running_transaction;
4702                 else
4703                         transaction = journal->j_committing_transaction;
4704                 if (transaction)
4705                         tid = transaction->t_tid;
4706                 else
4707                         tid = journal->j_commit_sequence;
4708                 read_unlock(&journal->j_state_lock);
4709                 ei->i_sync_tid = tid;
4710                 ei->i_datasync_tid = tid;
4711         }
4712
4713         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714                 if (ei->i_extra_isize == 0) {
4715                         /* The extra space is currently unused. Use it. */
4716                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4717                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4718                                             EXT4_GOOD_OLD_INODE_SIZE;
4719                 } else {
4720                         ext4_iget_extra_inode(inode, raw_inode, ei);
4721                 }
4722         }
4723
4724         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4725         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4726         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4727         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4728
4729         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4730                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4731                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4733                                 inode->i_version |=
4734                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4735                 }
4736         }
4737
4738         ret = 0;
4739         if (ei->i_file_acl &&
4740             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4741                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4742                                  ei->i_file_acl);
4743                 ret = -EFSCORRUPTED;
4744                 goto bad_inode;
4745         } else if (!ext4_has_inline_data(inode)) {
4746                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4747                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4748                             (S_ISLNK(inode->i_mode) &&
4749                              !ext4_inode_is_fast_symlink(inode))))
4750                                 /* Validate extent which is part of inode */
4751                                 ret = ext4_ext_check_inode(inode);
4752                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4753                            (S_ISLNK(inode->i_mode) &&
4754                             !ext4_inode_is_fast_symlink(inode))) {
4755                         /* Validate block references which are part of inode */
4756                         ret = ext4_ind_check_inode(inode);
4757                 }
4758         }
4759         if (ret)
4760                 goto bad_inode;
4761
4762         if (S_ISREG(inode->i_mode)) {
4763                 inode->i_op = &ext4_file_inode_operations;
4764                 inode->i_fop = &ext4_file_operations;
4765                 ext4_set_aops(inode);
4766         } else if (S_ISDIR(inode->i_mode)) {
4767                 inode->i_op = &ext4_dir_inode_operations;
4768                 inode->i_fop = &ext4_dir_operations;
4769         } else if (S_ISLNK(inode->i_mode)) {
4770                 if (ext4_encrypted_inode(inode)) {
4771                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4772                         ext4_set_aops(inode);
4773                 } else if (ext4_inode_is_fast_symlink(inode)) {
4774                         inode->i_link = (char *)ei->i_data;
4775                         inode->i_op = &ext4_fast_symlink_inode_operations;
4776                         nd_terminate_link(ei->i_data, inode->i_size,
4777                                 sizeof(ei->i_data) - 1);
4778                 } else {
4779                         inode->i_op = &ext4_symlink_inode_operations;
4780                         ext4_set_aops(inode);
4781                 }
4782                 inode_nohighmem(inode);
4783         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4784               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4785                 inode->i_op = &ext4_special_inode_operations;
4786                 if (raw_inode->i_block[0])
4787                         init_special_inode(inode, inode->i_mode,
4788                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4789                 else
4790                         init_special_inode(inode, inode->i_mode,
4791                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4792         } else if (ino == EXT4_BOOT_LOADER_INO) {
4793                 make_bad_inode(inode);
4794         } else {
4795                 ret = -EFSCORRUPTED;
4796                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4797                 goto bad_inode;
4798         }
4799         brelse(iloc.bh);
4800         ext4_set_inode_flags(inode);
4801         unlock_new_inode(inode);
4802         return inode;
4803
4804 bad_inode:
4805         brelse(iloc.bh);
4806         iget_failed(inode);
4807         return ERR_PTR(ret);
4808 }
4809
4810 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4811 {
4812         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4813                 return ERR_PTR(-EFSCORRUPTED);
4814         return ext4_iget(sb, ino);
4815 }
4816
4817 static int ext4_inode_blocks_set(handle_t *handle,
4818                                 struct ext4_inode *raw_inode,
4819                                 struct ext4_inode_info *ei)
4820 {
4821         struct inode *inode = &(ei->vfs_inode);
4822         u64 i_blocks = inode->i_blocks;
4823         struct super_block *sb = inode->i_sb;
4824
4825         if (i_blocks <= ~0U) {
4826                 /*
4827                  * i_blocks can be represented in a 32 bit variable
4828                  * as multiple of 512 bytes
4829                  */
4830                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4831                 raw_inode->i_blocks_high = 0;
4832                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4833                 return 0;
4834         }
4835         if (!ext4_has_feature_huge_file(sb))
4836                 return -EFBIG;
4837
4838         if (i_blocks <= 0xffffffffffffULL) {
4839                 /*
4840                  * i_blocks can be represented in a 48 bit variable
4841                  * as multiple of 512 bytes
4842                  */
4843                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4844                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4845                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4846         } else {
4847                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4848                 /* i_block is stored in file system block size */
4849                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4850                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4851                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4852         }
4853         return 0;
4854 }
4855
4856 struct other_inode {
4857         unsigned long           orig_ino;
4858         struct ext4_inode       *raw_inode;
4859 };
4860
4861 static int other_inode_match(struct inode * inode, unsigned long ino,
4862                              void *data)
4863 {
4864         struct other_inode *oi = (struct other_inode *) data;
4865
4866         if ((inode->i_ino != ino) ||
4867             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4868                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4869             ((inode->i_state & I_DIRTY_TIME) == 0))
4870                 return 0;
4871         spin_lock(&inode->i_lock);
4872         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4873                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4874             (inode->i_state & I_DIRTY_TIME)) {
4875                 struct ext4_inode_info  *ei = EXT4_I(inode);
4876
4877                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4878                 spin_unlock(&inode->i_lock);
4879
4880                 spin_lock(&ei->i_raw_lock);
4881                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4882                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4883                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4884                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4885                 spin_unlock(&ei->i_raw_lock);
4886                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4887                 return -1;
4888         }
4889         spin_unlock(&inode->i_lock);
4890         return -1;
4891 }
4892
4893 /*
4894  * Opportunistically update the other time fields for other inodes in
4895  * the same inode table block.
4896  */
4897 static void ext4_update_other_inodes_time(struct super_block *sb,
4898                                           unsigned long orig_ino, char *buf)
4899 {
4900         struct other_inode oi;
4901         unsigned long ino;
4902         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4903         int inode_size = EXT4_INODE_SIZE(sb);
4904
4905         oi.orig_ino = orig_ino;
4906         /*
4907          * Calculate the first inode in the inode table block.  Inode
4908          * numbers are one-based.  That is, the first inode in a block
4909          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4910          */
4911         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4912         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4913                 if (ino == orig_ino)
4914                         continue;
4915                 oi.raw_inode = (struct ext4_inode *) buf;
4916                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4917         }
4918 }
4919
4920 /*
4921  * Post the struct inode info into an on-disk inode location in the
4922  * buffer-cache.  This gobbles the caller's reference to the
4923  * buffer_head in the inode location struct.
4924  *
4925  * The caller must have write access to iloc->bh.
4926  */
4927 static int ext4_do_update_inode(handle_t *handle,
4928                                 struct inode *inode,
4929                                 struct ext4_iloc *iloc)
4930 {
4931         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4932         struct ext4_inode_info *ei = EXT4_I(inode);
4933         struct buffer_head *bh = iloc->bh;
4934         struct super_block *sb = inode->i_sb;
4935         int err = 0, rc, block;
4936         int need_datasync = 0, set_large_file = 0;
4937         uid_t i_uid;
4938         gid_t i_gid;
4939         projid_t i_projid;
4940
4941         spin_lock(&ei->i_raw_lock);
4942
4943         /* For fields not tracked in the in-memory inode,
4944          * initialise them to zero for new inodes. */
4945         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4946                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4947
4948         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4949         i_uid = i_uid_read(inode);
4950         i_gid = i_gid_read(inode);
4951         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4952         if (!(test_opt(inode->i_sb, NO_UID32))) {
4953                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4954                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4955 /*
4956  * Fix up interoperability with old kernels. Otherwise, old inodes get
4957  * re-used with the upper 16 bits of the uid/gid intact
4958  */
4959                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4960                         raw_inode->i_uid_high = 0;
4961                         raw_inode->i_gid_high = 0;
4962                 } else {
4963                         raw_inode->i_uid_high =
4964                                 cpu_to_le16(high_16_bits(i_uid));
4965                         raw_inode->i_gid_high =
4966                                 cpu_to_le16(high_16_bits(i_gid));
4967                 }
4968         } else {
4969                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4970                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4971                 raw_inode->i_uid_high = 0;
4972                 raw_inode->i_gid_high = 0;
4973         }
4974         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4975
4976         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4980
4981         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4982         if (err) {
4983                 spin_unlock(&ei->i_raw_lock);
4984                 goto out_brelse;
4985         }
4986         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4987         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4988         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4989                 raw_inode->i_file_acl_high =
4990                         cpu_to_le16(ei->i_file_acl >> 32);
4991         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4992         if (ei->i_disksize != ext4_isize(raw_inode)) {
4993                 ext4_isize_set(raw_inode, ei->i_disksize);
4994                 need_datasync = 1;
4995         }
4996         if (ei->i_disksize > 0x7fffffffULL) {
4997                 if (!ext4_has_feature_large_file(sb) ||
4998                                 EXT4_SB(sb)->s_es->s_rev_level ==
4999                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5000                         set_large_file = 1;
5001         }
5002         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5003         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5004                 if (old_valid_dev(inode->i_rdev)) {
5005                         raw_inode->i_block[0] =
5006                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5007                         raw_inode->i_block[1] = 0;
5008                 } else {
5009                         raw_inode->i_block[0] = 0;
5010                         raw_inode->i_block[1] =
5011                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5012                         raw_inode->i_block[2] = 0;
5013                 }
5014         } else if (!ext4_has_inline_data(inode)) {
5015                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5016                         raw_inode->i_block[block] = ei->i_data[block];
5017         }
5018
5019         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5021                 if (ei->i_extra_isize) {
5022                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023                                 raw_inode->i_version_hi =
5024                                         cpu_to_le32(inode->i_version >> 32);
5025                         raw_inode->i_extra_isize =
5026                                 cpu_to_le16(ei->i_extra_isize);
5027                 }
5028         }
5029
5030         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5031                i_projid != EXT4_DEF_PROJID);
5032
5033         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5034             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5035                 raw_inode->i_projid = cpu_to_le32(i_projid);
5036
5037         ext4_inode_csum_set(inode, raw_inode, ei);
5038         spin_unlock(&ei->i_raw_lock);
5039         if (inode->i_sb->s_flags & MS_LAZYTIME)
5040                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5041                                               bh->b_data);
5042
5043         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5045         if (!err)
5046                 err = rc;
5047         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5048         if (set_large_file) {
5049                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5050                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5051                 if (err)
5052                         goto out_brelse;
5053                 ext4_update_dynamic_rev(sb);
5054                 ext4_set_feature_large_file(sb);
5055                 ext4_handle_sync(handle);
5056                 err = ext4_handle_dirty_super(handle, sb);
5057         }
5058         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5059 out_brelse:
5060         brelse(bh);
5061         ext4_std_error(inode->i_sb, err);
5062         return err;
5063 }
5064
5065 /*
5066  * ext4_write_inode()
5067  *
5068  * We are called from a few places:
5069  *
5070  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5071  *   Here, there will be no transaction running. We wait for any running
5072  *   transaction to commit.
5073  *
5074  * - Within flush work (sys_sync(), kupdate and such).
5075  *   We wait on commit, if told to.
5076  *
5077  * - Within iput_final() -> write_inode_now()
5078  *   We wait on commit, if told to.
5079  *
5080  * In all cases it is actually safe for us to return without doing anything,
5081  * because the inode has been copied into a raw inode buffer in
5082  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5083  * writeback.
5084  *
5085  * Note that we are absolutely dependent upon all inode dirtiers doing the
5086  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5087  * which we are interested.
5088  *
5089  * It would be a bug for them to not do this.  The code:
5090  *
5091  *      mark_inode_dirty(inode)
5092  *      stuff();
5093  *      inode->i_size = expr;
5094  *
5095  * is in error because write_inode() could occur while `stuff()' is running,
5096  * and the new i_size will be lost.  Plus the inode will no longer be on the
5097  * superblock's dirty inode list.
5098  */
5099 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5100 {
5101         int err;
5102
5103         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5104                 return 0;
5105
5106         if (EXT4_SB(inode->i_sb)->s_journal) {
5107                 if (ext4_journal_current_handle()) {
5108                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5109                         dump_stack();
5110                         return -EIO;
5111                 }
5112
5113                 /*
5114                  * No need to force transaction in WB_SYNC_NONE mode. Also
5115                  * ext4_sync_fs() will force the commit after everything is
5116                  * written.
5117                  */
5118                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5119                         return 0;
5120
5121                 err = ext4_force_commit(inode->i_sb);
5122         } else {
5123                 struct ext4_iloc iloc;
5124
5125                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5126                 if (err)
5127                         return err;
5128                 /*
5129                  * sync(2) will flush the whole buffer cache. No need to do
5130                  * it here separately for each inode.
5131                  */
5132                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5133                         sync_dirty_buffer(iloc.bh);
5134                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5135                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5136                                          "IO error syncing inode");
5137                         err = -EIO;
5138                 }
5139                 brelse(iloc.bh);
5140         }
5141         return err;
5142 }
5143
5144 /*
5145  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5146  * buffers that are attached to a page stradding i_size and are undergoing
5147  * commit. In that case we have to wait for commit to finish and try again.
5148  */
5149 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5150 {
5151         struct page *page;
5152         unsigned offset;
5153         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5154         tid_t commit_tid = 0;
5155         int ret;
5156
5157         offset = inode->i_size & (PAGE_SIZE - 1);
5158         /*
5159          * All buffers in the last page remain valid? Then there's nothing to
5160          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5161          * blocksize case
5162          */
5163         if (offset > PAGE_SIZE - i_blocksize(inode))
5164                 return;
5165         while (1) {
5166                 page = find_lock_page(inode->i_mapping,
5167                                       inode->i_size >> PAGE_SHIFT);
5168                 if (!page)
5169                         return;
5170                 ret = __ext4_journalled_invalidatepage(page, offset,
5171                                                 PAGE_SIZE - offset);
5172                 unlock_page(page);
5173                 put_page(page);
5174                 if (ret != -EBUSY)
5175                         return;
5176                 commit_tid = 0;
5177                 read_lock(&journal->j_state_lock);
5178                 if (journal->j_committing_transaction)
5179                         commit_tid = journal->j_committing_transaction->t_tid;
5180                 read_unlock(&journal->j_state_lock);
5181                 if (commit_tid)
5182                         jbd2_log_wait_commit(journal, commit_tid);
5183         }
5184 }
5185
5186 /*
5187  * ext4_setattr()
5188  *
5189  * Called from notify_change.
5190  *
5191  * We want to trap VFS attempts to truncate the file as soon as
5192  * possible.  In particular, we want to make sure that when the VFS
5193  * shrinks i_size, we put the inode on the orphan list and modify
5194  * i_disksize immediately, so that during the subsequent flushing of
5195  * dirty pages and freeing of disk blocks, we can guarantee that any
5196  * commit will leave the blocks being flushed in an unused state on
5197  * disk.  (On recovery, the inode will get truncated and the blocks will
5198  * be freed, so we have a strong guarantee that no future commit will
5199  * leave these blocks visible to the user.)
5200  *
5201  * Another thing we have to assure is that if we are in ordered mode
5202  * and inode is still attached to the committing transaction, we must
5203  * we start writeout of all the dirty pages which are being truncated.
5204  * This way we are sure that all the data written in the previous
5205  * transaction are already on disk (truncate waits for pages under
5206  * writeback).
5207  *
5208  * Called with inode->i_mutex down.
5209  */
5210 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211 {
5212         struct inode *inode = d_inode(dentry);
5213         int error, rc = 0;
5214         int orphan = 0;
5215         const unsigned int ia_valid = attr->ia_valid;
5216
5217         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5218                 return -EIO;
5219
5220         error = setattr_prepare(dentry, attr);
5221         if (error)
5222                 return error;
5223
5224         if (is_quota_modification(inode, attr)) {
5225                 error = dquot_initialize(inode);
5226                 if (error)
5227                         return error;
5228         }
5229         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5230             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5231                 handle_t *handle;
5232
5233                 /* (user+group)*(old+new) structure, inode write (sb,
5234                  * inode block, ? - but truncate inode update has it) */
5235                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5236                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5237                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5238                 if (IS_ERR(handle)) {
5239                         error = PTR_ERR(handle);
5240                         goto err_out;
5241                 }
5242                 error = dquot_transfer(inode, attr);
5243                 if (error) {
5244                         ext4_journal_stop(handle);
5245                         return error;
5246                 }
5247                 /* Update corresponding info in inode so that everything is in
5248                  * one transaction */
5249                 if (attr->ia_valid & ATTR_UID)
5250                         inode->i_uid = attr->ia_uid;
5251                 if (attr->ia_valid & ATTR_GID)
5252                         inode->i_gid = attr->ia_gid;
5253                 error = ext4_mark_inode_dirty(handle, inode);
5254                 ext4_journal_stop(handle);
5255         }
5256
5257         if (attr->ia_valid & ATTR_SIZE) {
5258                 handle_t *handle;
5259                 loff_t oldsize = inode->i_size;
5260                 int shrink = (attr->ia_size <= inode->i_size);
5261
5262                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5263                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5264
5265                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5266                                 return -EFBIG;
5267                 }
5268                 if (!S_ISREG(inode->i_mode))
5269                         return -EINVAL;
5270
5271                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5272                         inode_inc_iversion(inode);
5273
5274                 if (ext4_should_order_data(inode) &&
5275                     (attr->ia_size < inode->i_size)) {
5276                         error = ext4_begin_ordered_truncate(inode,
5277                                                             attr->ia_size);
5278                         if (error)
5279                                 goto err_out;
5280                 }
5281                 if (attr->ia_size != inode->i_size) {
5282                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5283                         if (IS_ERR(handle)) {
5284                                 error = PTR_ERR(handle);
5285                                 goto err_out;
5286                         }
5287                         if (ext4_handle_valid(handle) && shrink) {
5288                                 error = ext4_orphan_add(handle, inode);
5289                                 orphan = 1;
5290                         }
5291                         /*
5292                          * Update c/mtime on truncate up, ext4_truncate() will
5293                          * update c/mtime in shrink case below
5294                          */
5295                         if (!shrink) {
5296                                 inode->i_mtime = current_time(inode);
5297                                 inode->i_ctime = inode->i_mtime;
5298                         }
5299                         down_write(&EXT4_I(inode)->i_data_sem);
5300                         EXT4_I(inode)->i_disksize = attr->ia_size;
5301                         rc = ext4_mark_inode_dirty(handle, inode);
5302                         if (!error)
5303                                 error = rc;
5304                         /*
5305                          * We have to update i_size under i_data_sem together
5306                          * with i_disksize to avoid races with writeback code
5307                          * running ext4_wb_update_i_disksize().
5308                          */
5309                         if (!error)
5310                                 i_size_write(inode, attr->ia_size);
5311                         up_write(&EXT4_I(inode)->i_data_sem);
5312                         ext4_journal_stop(handle);
5313                         if (error) {
5314                                 if (orphan)
5315                                         ext4_orphan_del(NULL, inode);
5316                                 goto err_out;
5317                         }
5318                 }
5319                 if (!shrink)
5320                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5321
5322                 /*
5323                  * Blocks are going to be removed from the inode. Wait
5324                  * for dio in flight.  Temporarily disable
5325                  * dioread_nolock to prevent livelock.
5326                  */
5327                 if (orphan) {
5328                         if (!ext4_should_journal_data(inode)) {
5329                                 ext4_inode_block_unlocked_dio(inode);
5330                                 inode_dio_wait(inode);
5331                                 ext4_inode_resume_unlocked_dio(inode);
5332                         } else
5333                                 ext4_wait_for_tail_page_commit(inode);
5334                 }
5335                 down_write(&EXT4_I(inode)->i_mmap_sem);
5336                 /*
5337                  * Truncate pagecache after we've waited for commit
5338                  * in data=journal mode to make pages freeable.
5339                  */
5340                 truncate_pagecache(inode, inode->i_size);
5341                 if (shrink) {
5342                         rc = ext4_truncate(inode);
5343                         if (rc)
5344                                 error = rc;
5345                 }
5346                 up_write(&EXT4_I(inode)->i_mmap_sem);
5347         }
5348
5349         if (!error) {
5350                 setattr_copy(inode, attr);
5351                 mark_inode_dirty(inode);
5352         }
5353
5354         /*
5355          * If the call to ext4_truncate failed to get a transaction handle at
5356          * all, we need to clean up the in-core orphan list manually.
5357          */
5358         if (orphan && inode->i_nlink)
5359                 ext4_orphan_del(NULL, inode);
5360
5361         if (!error && (ia_valid & ATTR_MODE))
5362                 rc = posix_acl_chmod(inode, inode->i_mode);
5363
5364 err_out:
5365         ext4_std_error(inode->i_sb, error);
5366         if (!error)
5367                 error = rc;
5368         return error;
5369 }
5370
5371 int ext4_getattr(const struct path *path, struct kstat *stat,
5372                  u32 request_mask, unsigned int query_flags)
5373 {
5374         struct inode *inode = d_inode(path->dentry);
5375         struct ext4_inode *raw_inode;
5376         struct ext4_inode_info *ei = EXT4_I(inode);
5377         unsigned int flags;
5378
5379         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5380                 stat->result_mask |= STATX_BTIME;
5381                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5382                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5383         }
5384
5385         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5386         if (flags & EXT4_APPEND_FL)
5387                 stat->attributes |= STATX_ATTR_APPEND;
5388         if (flags & EXT4_COMPR_FL)
5389                 stat->attributes |= STATX_ATTR_COMPRESSED;
5390         if (flags & EXT4_ENCRYPT_FL)
5391                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5392         if (flags & EXT4_IMMUTABLE_FL)
5393                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5394         if (flags & EXT4_NODUMP_FL)
5395                 stat->attributes |= STATX_ATTR_NODUMP;
5396
5397         stat->attributes_mask |= (STATX_ATTR_APPEND |
5398                                   STATX_ATTR_COMPRESSED |
5399                                   STATX_ATTR_ENCRYPTED |
5400                                   STATX_ATTR_IMMUTABLE |
5401                                   STATX_ATTR_NODUMP);
5402
5403         generic_fillattr(inode, stat);
5404         return 0;
5405 }
5406
5407 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5408                       u32 request_mask, unsigned int query_flags)
5409 {
5410         struct inode *inode = d_inode(path->dentry);
5411         u64 delalloc_blocks;
5412
5413         ext4_getattr(path, stat, request_mask, query_flags);
5414
5415         /*
5416          * If there is inline data in the inode, the inode will normally not
5417          * have data blocks allocated (it may have an external xattr block).
5418          * Report at least one sector for such files, so tools like tar, rsync,
5419          * others don't incorrectly think the file is completely sparse.
5420          */
5421         if (unlikely(ext4_has_inline_data(inode)))
5422                 stat->blocks += (stat->size + 511) >> 9;
5423
5424         /*
5425          * We can't update i_blocks if the block allocation is delayed
5426          * otherwise in the case of system crash before the real block
5427          * allocation is done, we will have i_blocks inconsistent with
5428          * on-disk file blocks.
5429          * We always keep i_blocks updated together with real
5430          * allocation. But to not confuse with user, stat
5431          * will return the blocks that include the delayed allocation
5432          * blocks for this file.
5433          */
5434         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5435                                    EXT4_I(inode)->i_reserved_data_blocks);
5436         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5437         return 0;
5438 }
5439
5440 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5441                                    int pextents)
5442 {
5443         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5444                 return ext4_ind_trans_blocks(inode, lblocks);
5445         return ext4_ext_index_trans_blocks(inode, pextents);
5446 }
5447
5448 /*
5449  * Account for index blocks, block groups bitmaps and block group
5450  * descriptor blocks if modify datablocks and index blocks
5451  * worse case, the indexs blocks spread over different block groups
5452  *
5453  * If datablocks are discontiguous, they are possible to spread over
5454  * different block groups too. If they are contiguous, with flexbg,
5455  * they could still across block group boundary.
5456  *
5457  * Also account for superblock, inode, quota and xattr blocks
5458  */
5459 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5460                                   int pextents)
5461 {
5462         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5463         int gdpblocks;
5464         int idxblocks;
5465         int ret = 0;
5466
5467         /*
5468          * How many index blocks need to touch to map @lblocks logical blocks
5469          * to @pextents physical extents?
5470          */
5471         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5472
5473         ret = idxblocks;
5474
5475         /*
5476          * Now let's see how many group bitmaps and group descriptors need
5477          * to account
5478          */
5479         groups = idxblocks + pextents;
5480         gdpblocks = groups;
5481         if (groups > ngroups)
5482                 groups = ngroups;
5483         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5484                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5485
5486         /* bitmaps and block group descriptor blocks */
5487         ret += groups + gdpblocks;
5488
5489         /* Blocks for super block, inode, quota and xattr blocks */
5490         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5491
5492         return ret;
5493 }
5494
5495 /*
5496  * Calculate the total number of credits to reserve to fit
5497  * the modification of a single pages into a single transaction,
5498  * which may include multiple chunks of block allocations.
5499  *
5500  * This could be called via ext4_write_begin()
5501  *
5502  * We need to consider the worse case, when
5503  * one new block per extent.
5504  */
5505 int ext4_writepage_trans_blocks(struct inode *inode)
5506 {
5507         int bpp = ext4_journal_blocks_per_page(inode);
5508         int ret;
5509
5510         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5511
5512         /* Account for data blocks for journalled mode */
5513         if (ext4_should_journal_data(inode))
5514                 ret += bpp;
5515         return ret;
5516 }
5517
5518 /*
5519  * Calculate the journal credits for a chunk of data modification.
5520  *
5521  * This is called from DIO, fallocate or whoever calling
5522  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5523  *
5524  * journal buffers for data blocks are not included here, as DIO
5525  * and fallocate do no need to journal data buffers.
5526  */
5527 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5528 {
5529         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5530 }
5531
5532 /*
5533  * The caller must have previously called ext4_reserve_inode_write().
5534  * Give this, we know that the caller already has write access to iloc->bh.
5535  */
5536 int ext4_mark_iloc_dirty(handle_t *handle,
5537                          struct inode *inode, struct ext4_iloc *iloc)
5538 {
5539         int err = 0;
5540
5541         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5542                 return -EIO;
5543
5544         if (IS_I_VERSION(inode))
5545                 inode_inc_iversion(inode);
5546
5547         /* the do_update_inode consumes one bh->b_count */
5548         get_bh(iloc->bh);
5549
5550         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5551         err = ext4_do_update_inode(handle, inode, iloc);
5552         put_bh(iloc->bh);
5553         return err;
5554 }
5555
5556 /*
5557  * On success, We end up with an outstanding reference count against
5558  * iloc->bh.  This _must_ be cleaned up later.
5559  */
5560
5561 int
5562 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5563                          struct ext4_iloc *iloc)
5564 {
5565         int err;
5566
5567         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5568                 return -EIO;
5569
5570         err = ext4_get_inode_loc(inode, iloc);
5571         if (!err) {
5572                 BUFFER_TRACE(iloc->bh, "get_write_access");
5573                 err = ext4_journal_get_write_access(handle, iloc->bh);
5574                 if (err) {
5575                         brelse(iloc->bh);
5576                         iloc->bh = NULL;
5577                 }
5578         }
5579         ext4_std_error(inode->i_sb, err);
5580         return err;
5581 }
5582
5583 /*
5584  * Expand an inode by new_extra_isize bytes.
5585  * Returns 0 on success or negative error number on failure.
5586  */
5587 static int ext4_expand_extra_isize(struct inode *inode,
5588                                    unsigned int new_extra_isize,
5589                                    struct ext4_iloc iloc,
5590                                    handle_t *handle)
5591 {
5592         struct ext4_inode *raw_inode;
5593         struct ext4_xattr_ibody_header *header;
5594
5595         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5596                 return 0;
5597
5598         raw_inode = ext4_raw_inode(&iloc);
5599
5600         header = IHDR(inode, raw_inode);
5601
5602         /* No extended attributes present */
5603         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5604             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5605                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5606                         new_extra_isize);
5607                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5608                 return 0;
5609         }
5610
5611         /* try to expand with EAs present */
5612         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5613                                           raw_inode, handle);
5614 }
5615
5616 /*
5617  * What we do here is to mark the in-core inode as clean with respect to inode
5618  * dirtiness (it may still be data-dirty).
5619  * This means that the in-core inode may be reaped by prune_icache
5620  * without having to perform any I/O.  This is a very good thing,
5621  * because *any* task may call prune_icache - even ones which
5622  * have a transaction open against a different journal.
5623  *
5624  * Is this cheating?  Not really.  Sure, we haven't written the
5625  * inode out, but prune_icache isn't a user-visible syncing function.
5626  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5627  * we start and wait on commits.
5628  */
5629 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5630 {
5631         struct ext4_iloc iloc;
5632         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5633         static unsigned int mnt_count;
5634         int err, ret;
5635
5636         might_sleep();
5637         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5638         err = ext4_reserve_inode_write(handle, inode, &iloc);
5639         if (err)
5640                 return err;
5641         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5642             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5643                 /*
5644                  * In nojournal mode, we can immediately attempt to expand
5645                  * the inode.  When journaled, we first need to obtain extra
5646                  * buffer credits since we may write into the EA block
5647                  * with this same handle. If journal_extend fails, then it will
5648                  * only result in a minor loss of functionality for that inode.
5649                  * If this is felt to be critical, then e2fsck should be run to
5650                  * force a large enough s_min_extra_isize.
5651                  */
5652                 if (!ext4_handle_valid(handle) ||
5653                     jbd2_journal_extend(handle,
5654                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5655                         ret = ext4_expand_extra_isize(inode,
5656                                                       sbi->s_want_extra_isize,
5657                                                       iloc, handle);
5658                         if (ret) {
5659                                 if (mnt_count !=
5660                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5661                                         ext4_warning(inode->i_sb,
5662                                         "Unable to expand inode %lu. Delete"
5663                                         " some EAs or run e2fsck.",
5664                                         inode->i_ino);
5665                                         mnt_count =
5666                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5667                                 }
5668                         }
5669                 }
5670         }
5671         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5672 }
5673
5674 /*
5675  * ext4_dirty_inode() is called from __mark_inode_dirty()
5676  *
5677  * We're really interested in the case where a file is being extended.
5678  * i_size has been changed by generic_commit_write() and we thus need
5679  * to include the updated inode in the current transaction.
5680  *
5681  * Also, dquot_alloc_block() will always dirty the inode when blocks
5682  * are allocated to the file.
5683  *
5684  * If the inode is marked synchronous, we don't honour that here - doing
5685  * so would cause a commit on atime updates, which we don't bother doing.
5686  * We handle synchronous inodes at the highest possible level.
5687  *
5688  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5689  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5690  * to copy into the on-disk inode structure are the timestamp files.
5691  */
5692 void ext4_dirty_inode(struct inode *inode, int flags)
5693 {
5694         handle_t *handle;
5695
5696         if (flags == I_DIRTY_TIME)
5697                 return;
5698         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5699         if (IS_ERR(handle))
5700                 goto out;
5701
5702         ext4_mark_inode_dirty(handle, inode);
5703
5704         ext4_journal_stop(handle);
5705 out:
5706         return;
5707 }
5708
5709 #if 0
5710 /*
5711  * Bind an inode's backing buffer_head into this transaction, to prevent
5712  * it from being flushed to disk early.  Unlike
5713  * ext4_reserve_inode_write, this leaves behind no bh reference and
5714  * returns no iloc structure, so the caller needs to repeat the iloc
5715  * lookup to mark the inode dirty later.
5716  */
5717 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5718 {
5719         struct ext4_iloc iloc;
5720
5721         int err = 0;
5722         if (handle) {
5723                 err = ext4_get_inode_loc(inode, &iloc);
5724                 if (!err) {
5725                         BUFFER_TRACE(iloc.bh, "get_write_access");
5726                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5727                         if (!err)
5728                                 err = ext4_handle_dirty_metadata(handle,
5729                                                                  NULL,
5730                                                                  iloc.bh);
5731                         brelse(iloc.bh);
5732                 }
5733         }
5734         ext4_std_error(inode->i_sb, err);
5735         return err;
5736 }
5737 #endif
5738
5739 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5740 {
5741         journal_t *journal;
5742         handle_t *handle;
5743         int err;
5744         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5745
5746         /*
5747          * We have to be very careful here: changing a data block's
5748          * journaling status dynamically is dangerous.  If we write a
5749          * data block to the journal, change the status and then delete
5750          * that block, we risk forgetting to revoke the old log record
5751          * from the journal and so a subsequent replay can corrupt data.
5752          * So, first we make sure that the journal is empty and that
5753          * nobody is changing anything.
5754          */
5755
5756         journal = EXT4_JOURNAL(inode);
5757         if (!journal)
5758                 return 0;
5759         if (is_journal_aborted(journal))
5760                 return -EROFS;
5761
5762         /* Wait for all existing dio workers */
5763         ext4_inode_block_unlocked_dio(inode);
5764         inode_dio_wait(inode);
5765
5766         /*
5767          * Before flushing the journal and switching inode's aops, we have
5768          * to flush all dirty data the inode has. There can be outstanding
5769          * delayed allocations, there can be unwritten extents created by
5770          * fallocate or buffered writes in dioread_nolock mode covered by
5771          * dirty data which can be converted only after flushing the dirty
5772          * data (and journalled aops don't know how to handle these cases).
5773          */
5774         if (val) {
5775                 down_write(&EXT4_I(inode)->i_mmap_sem);
5776                 err = filemap_write_and_wait(inode->i_mapping);
5777                 if (err < 0) {
5778                         up_write(&EXT4_I(inode)->i_mmap_sem);
5779                         ext4_inode_resume_unlocked_dio(inode);
5780                         return err;
5781                 }
5782         }
5783
5784         percpu_down_write(&sbi->s_journal_flag_rwsem);
5785         jbd2_journal_lock_updates(journal);
5786
5787         /*
5788          * OK, there are no updates running now, and all cached data is
5789          * synced to disk.  We are now in a completely consistent state
5790          * which doesn't have anything in the journal, and we know that
5791          * no filesystem updates are running, so it is safe to modify
5792          * the inode's in-core data-journaling state flag now.
5793          */
5794
5795         if (val)
5796                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5797         else {
5798                 err = jbd2_journal_flush(journal);
5799                 if (err < 0) {
5800                         jbd2_journal_unlock_updates(journal);
5801                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5802                         ext4_inode_resume_unlocked_dio(inode);
5803                         return err;
5804                 }
5805                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5806         }
5807         ext4_set_aops(inode);
5808         /*
5809          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5810          * E.g. S_DAX may get cleared / set.
5811          */
5812         ext4_set_inode_flags(inode);
5813
5814         jbd2_journal_unlock_updates(journal);
5815         percpu_up_write(&sbi->s_journal_flag_rwsem);
5816
5817         if (val)
5818                 up_write(&EXT4_I(inode)->i_mmap_sem);
5819         ext4_inode_resume_unlocked_dio(inode);
5820
5821         /* Finally we can mark the inode as dirty. */
5822
5823         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5824         if (IS_ERR(handle))
5825                 return PTR_ERR(handle);
5826
5827         err = ext4_mark_inode_dirty(handle, inode);
5828         ext4_handle_sync(handle);
5829         ext4_journal_stop(handle);
5830         ext4_std_error(inode->i_sb, err);
5831
5832         return err;
5833 }
5834
5835 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5836 {
5837         return !buffer_mapped(bh);
5838 }
5839
5840 int ext4_page_mkwrite(struct vm_fault *vmf)
5841 {
5842         struct vm_area_struct *vma = vmf->vma;
5843         struct page *page = vmf->page;
5844         loff_t size;
5845         unsigned long len;
5846         int ret;
5847         struct file *file = vma->vm_file;
5848         struct inode *inode = file_inode(file);
5849         struct address_space *mapping = inode->i_mapping;
5850         handle_t *handle;
5851         get_block_t *get_block;
5852         int retries = 0;
5853
5854         sb_start_pagefault(inode->i_sb);
5855         file_update_time(vma->vm_file);
5856
5857         down_read(&EXT4_I(inode)->i_mmap_sem);
5858         /* Delalloc case is easy... */
5859         if (test_opt(inode->i_sb, DELALLOC) &&
5860             !ext4_should_journal_data(inode) &&
5861             !ext4_nonda_switch(inode->i_sb)) {
5862                 do {
5863                         ret = block_page_mkwrite(vma, vmf,
5864                                                    ext4_da_get_block_prep);
5865                 } while (ret == -ENOSPC &&
5866                        ext4_should_retry_alloc(inode->i_sb, &retries));
5867                 goto out_ret;
5868         }
5869
5870         lock_page(page);
5871         size = i_size_read(inode);
5872         /* Page got truncated from under us? */
5873         if (page->mapping != mapping || page_offset(page) > size) {
5874                 unlock_page(page);
5875                 ret = VM_FAULT_NOPAGE;
5876                 goto out;
5877         }
5878
5879         if (page->index == size >> PAGE_SHIFT)
5880                 len = size & ~PAGE_MASK;
5881         else
5882                 len = PAGE_SIZE;
5883         /*
5884          * Return if we have all the buffers mapped. This avoids the need to do
5885          * journal_start/journal_stop which can block and take a long time
5886          */
5887         if (page_has_buffers(page)) {
5888                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5889                                             0, len, NULL,
5890                                             ext4_bh_unmapped)) {
5891                         /* Wait so that we don't change page under IO */
5892                         wait_for_stable_page(page);
5893                         ret = VM_FAULT_LOCKED;
5894                         goto out;
5895                 }
5896         }
5897         unlock_page(page);
5898         /* OK, we need to fill the hole... */
5899         if (ext4_should_dioread_nolock(inode))
5900                 get_block = ext4_get_block_unwritten;
5901         else
5902                 get_block = ext4_get_block;
5903 retry_alloc:
5904         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5905                                     ext4_writepage_trans_blocks(inode));
5906         if (IS_ERR(handle)) {
5907                 ret = VM_FAULT_SIGBUS;
5908                 goto out;
5909         }
5910         ret = block_page_mkwrite(vma, vmf, get_block);
5911         if (!ret && ext4_should_journal_data(inode)) {
5912                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5913                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5914                         unlock_page(page);
5915                         ret = VM_FAULT_SIGBUS;
5916                         ext4_journal_stop(handle);
5917                         goto out;
5918                 }
5919                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5920         }
5921         ext4_journal_stop(handle);
5922         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5923                 goto retry_alloc;
5924 out_ret:
5925         ret = block_page_mkwrite_return(ret);
5926 out:
5927         up_read(&EXT4_I(inode)->i_mmap_sem);
5928         sb_end_pagefault(inode->i_sb);
5929         return ret;
5930 }
5931
5932 int ext4_filemap_fault(struct vm_fault *vmf)
5933 {
5934         struct inode *inode = file_inode(vmf->vma->vm_file);
5935         int err;
5936
5937         down_read(&EXT4_I(inode)->i_mmap_sem);
5938         err = filemap_fault(vmf);
5939         up_read(&EXT4_I(inode)->i_mmap_sem);
5940
5941         return err;
5942 }
5943
5944 /*
5945  * Find the first extent at or after @lblk in an inode that is not a hole.
5946  * Search for @map_len blocks at most. The extent is returned in @result.
5947  *
5948  * The function returns 1 if we found an extent. The function returns 0 in
5949  * case there is no extent at or after @lblk and in that case also sets
5950  * @result->es_len to 0. In case of error, the error code is returned.
5951  */
5952 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5953                          unsigned int map_len, struct extent_status *result)
5954 {
5955         struct ext4_map_blocks map;
5956         struct extent_status es = {};
5957         int ret;
5958
5959         map.m_lblk = lblk;
5960         map.m_len = map_len;
5961
5962         /*
5963          * For non-extent based files this loop may iterate several times since
5964          * we do not determine full hole size.
5965          */
5966         while (map.m_len > 0) {
5967                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5968                 if (ret < 0)
5969                         return ret;
5970                 /* There's extent covering m_lblk? Just return it. */
5971                 if (ret > 0) {
5972                         int status;
5973
5974                         ext4_es_store_pblock(result, map.m_pblk);
5975                         result->es_lblk = map.m_lblk;
5976                         result->es_len = map.m_len;
5977                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5978                                 status = EXTENT_STATUS_UNWRITTEN;
5979                         else
5980                                 status = EXTENT_STATUS_WRITTEN;
5981                         ext4_es_store_status(result, status);
5982                         return 1;
5983                 }
5984                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5985                                                   map.m_lblk + map.m_len - 1,
5986                                                   &es);
5987                 /* Is delalloc data before next block in extent tree? */
5988                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5989                         ext4_lblk_t offset = 0;
5990
5991                         if (es.es_lblk < lblk)
5992                                 offset = lblk - es.es_lblk;
5993                         result->es_lblk = es.es_lblk + offset;
5994                         ext4_es_store_pblock(result,
5995                                              ext4_es_pblock(&es) + offset);
5996                         result->es_len = es.es_len - offset;
5997                         ext4_es_store_status(result, ext4_es_status(&es));
5998
5999                         return 1;
6000                 }
6001                 /* There's a hole at m_lblk, advance us after it */
6002                 map.m_lblk += map.m_len;
6003                 map_len -= map.m_len;
6004                 map.m_len = map_len;
6005                 cond_resched();
6006         }
6007         result->es_len = 0;
6008         return 0;
6009 }